

Escuela Técnica Superior de Ingeniería ICAI

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura					
Nombre	Sistemas Digitales II				
Código	DEA-TEL-313				
Titulación	Grado en Ingeniería Telemática				
Curso	3°				
Cuatrimestre	1°				
Créditos ECTS	6 ECTS				
Carácter	Básico				
Departamento	Electrónica, Automática y Comunicaciones				
Área	Sistemas Digitales				
Universidad	Universidad Pontificia Comillas				
Horario					
Profesores	José Daniel Muñoz Frías,				
Descriptor					

Datos del profesorado					
Profesor	Profesor				
Nombre	ombre José Daniel Muñoz Frías				
Departamento	Departamento Electrónica, Automática y Comunicaciones				
Área					
Despacho	D-219				
e-mail	daniel@comillas.edu				
Horario de					
Tutorías					
Profesor de la	Profesor de laboratorio				
Nombre Álvaro Padierna Díaz					

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

En el perfil profesional del graduado en Ingeniería Telemática, esta asignatura pretende aportar al alumno los conocimientos de sistemas digitales avanzados que le permitan diseñar sistemas con aplicaciones en telecomunicaciones aplicando técnicas de microprocesadores y/o procesadores digitales de señal.

Al finalizar el curso el alumno ha de ser capaz de:

- Diseñar y especificar sistemas digitales complejos.
- Saber describir un sistema digital usando el lenguaje VHDL.
- Manejar las herramientas CAD para diseñar circuitos basados en lógica programable usando lenguaje VHDL.
- Verificar circuitos digitales mediante bancos de prueba en VHDL
- Comprender la estructura interna de una CPU.

Prerrequisitos

Sistemas Digitales I

Competencias - Objetivos

Competencias Genéricas del título-curso

- CGT2. Conocimiento, comprensión y capacidad para aplicar la legislación necesaria durante el desarrollo de la profesión de Ingeniero Técnico de Telecomunicación y facilidad para el manejo de especificaciones, reglamentos y normas de obligado cumplimiento
- CGT3. Conocimiento de materias básicas y tecnologías, que le capacite para el aprendizaje de nuevos métodos y tecnologías, así como que le dote de una gran versatilidad para adaptarse a nuevas situaciones.
- CGT6. Capacidad para el manejo de especificaciones, reglamentos y normas de obligado cumplimiento.

Competencias comunes de la rama

CRT10. Conocimiento y aplicación de los fundamentos de lenguajes de descripción de dispositivos de hardware.

Resultados de Aprendizaje¹

- RA1. Conoce y sabe usar microprocesadores y tecnologías digitales.
- RA2. Diseña circuitos digitales de complejidad media.
- RA3. Diseña sistemas digitales mediante ruta de datos + control con herramientas CAD para el diseño de circuitos digitales.
- RA4. Diseña de forma fluida circuitos digitales avanzados con lenguajes de descripción de hardware VHDL.
- RA5. Conoce las arquitecturas programables FPGAs y herramientas para el diseño de las mismas.

Los resultados de aprendizaje son indicadores de las competencias que nos permiten evaluar el grado de dominio que poseen los alumnos. Las competencias suelen ser más generales y abstractas. Los R.A. son indicadores observables de la competencia

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos – Bloques Temáticos

BLOQUE 1: Teoría

Las líneas básicas contenidas en el programa se articulan alrededor de los conceptos de tecnologías y digitales avanzados con énfasis en las comunicaciones digitales.

Tema 1: Introducción al diseño de sistemas digitales avanzados.

- 1.1- Introducción a las tecnologías digitales y VLSI.
- 1.2- Representación y tratamiento de la información digital.
- 1.3- Fundamentos del diseño digital.
- 1.4- Los lenguajes de descripción de hardware (HDL).
- 1.5- Metodologías de diseño de sistemas.

Tema 2: Subsistemas básicos combinacionales y secuenciales

- 2.1- Descripción de sistemas aritméticos básicos y avanzados.
- 2.2- Descripción de sistemas para transferencia de información.
- 2.3- Diseño secuencial síncrono específico.
- 2.4- Descripción de máquinas secuenciales y secuenciadores de datos.
- 2.5- Metaestabilidad y diseño específico de alta velocidad.

Tema 3: Subsistemas basados en memorias integradas

- 3.1- Introducción a memorias integradas. Clasificación y características tecnológicas.
- 3.2- Diseño combinacional y secuencial con memorias. Tablas LUT.
- 3.3- Arquitecturas con memorias. Memorias cache.
- 3.4- Integración de sistemas con memorias.

Tema 4: Diseño digital avanzado

- 4.1- Organización de sistemas digitales avanzados.
- 4.2- Diseño basado en ruta de datos y unidades de control.
- 4.2- Sincronización de sistemas complejos.
- 4.3- Segmentación de caminos de datos (pipeline).
- 4.4- Introducción al diseño RISC y sistemas segmentados.

Tema 5: Introducción a los sistemas digitales para comunicaciones

- 5.1- Entradas y salidas en los sistemas digitales.
- 5.2- Temporizadores, conversión de datos y optimización de memoria.
- 5.3- Interfaces serie en los sistemas. RS232, SPI, I2C.

Bloque 2: Laboratorio

- LAB 1- Diseño de transmisor serie (2 sesiones).
- LAB 2- Diseño de receptor serie (2 sesiones).
- LAB 3- Diseño de un sistema de display multiplexado.
- LAB 4- Diseño microprocesador: fase ALU del ICAI-RISC-16 (2 sesiones).
- LAB 5- Diseño de módulos complementarios: ICAI-RISC-16 (3 sesiones)
- LAB 6- Diseño e integración del ICAI-RISC-16. Proyecto individual (3 sesiones).

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

Con el fin de conseguir el desarrollo de competencias propuesto, la materia se desarrollará teniendo en cuenta la actividad del alumno como factor prioritario. Ello implicará que tanto las sesiones presenciales como las no presenciales promoverán la implicación activa de los alumnos en las actividades de aprendizaje.

Metodología Presencial: Actividades

- 1. Lección expositiva: El profesor explicará los conceptos fundamentales de cada tema incidiendo en lo más importante y a continuación se explicarán una serie de problemas tipo, gracias a los cuáles se aprenderá a identificar los elementos esenciales del planteamiento y la resolución de problemas del tema.
- 2. Resolución en clase de problemas propuestos: En estas sesiones se explicarán, corregirán y analizarán problemas análogos y de mayor complejidad de cada tema previamente propuestos por el profesor y trabajados por el alumno.
- **3. Prácticas de laboratorio**. Se realizara en grupos y en ellas los alumnos ejercitarán los conceptos y técnicas estudiadas, familiarizándose con el entorno material y humano del trabajo en el laboratorio.
- **4. Tutorías** se realizarán en grupo e individualmente para resolver las dudas que se les planteen a los alumnos después de haber trabajado los distintos temas. Y también para orientar al alumno en su proceso de aprendizaje.

Metodología No presencial: Actividades

- **1.** Estudio individual y personal por parte del alumno de los conceptos expuestos en las lecciones expositivas.
- 2. Resolución de problemas prácticos que se corregirán en clase.
- 3. Preparación de las prácticas.
- 4. Resolución grupal de problemas y esquemas de los conceptos teóricos.

El objetivo principal del trabajo no presencial es llegar a entender y comprender los conceptos teóricos de la asignatura, así como ser capaz de poner en práctica estos conocimientos para resolver los diferentes tipos de problemas.

RESUMEN HORAS DE TRABAJO DEL ALUMNO							
HORAS PRESENCIALES							
Lección magistral Resolución de Prácticas laboratorio Evaluación problemas							
22	8	22	8				
HORAS NO PRESENCIALES							
Trabajo autónomo sobre contenidos teóricos	Trabajo autónomo sobre contenidos prácticos	Realización de trabajos colaborativos	Estudio				
20 40		20	40				
	CRÉDITOS ECTS:6 (180 horas)						

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

Actividades de evaluación	Criterios de evaluación	PESO
 Realización de exámenes: Pruebas de seguimiento. En clase las semanas 4 y 11. Examen intercuatrimestral. Semana 7. Examen Final 	 Comprensión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos. Análisis e interpretación de los resultados obtenidos en la resolución de problemas. Presentación y comunicación escrita. 	60%
Para aprobar la asignatura los a en el examen final de la asignat	llumnos tienen que tener al menos 5 puni ura.	tos sobre 10
Laboratorio	 Compresión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos y a la realización de prácticas en el laboratorio. Análisis e interpretación de los resultados obtenidos en las prácticas de laboratorio. Capacidad de trabajo en grupo. Presentación y comunicación escrita. 	40%

Calificaciones.

Calificaciones

La evaluación del alumno consta de dos partes: teoría y laboratorio. Para evaluar la teoría se realizarán las siguientes pruebas:

- Ejercicios cortos en clase. El objetivo de estos ejercicios es que el alumno conozca lo que sabe durante la marcha del curso. La media de estos ejercicios proporciona la nota de clase n_c .
- Examen intercuatrimestral. n_i.
- Un examen final en diciembre que comprenderá toda la materia impartida en el curso. De este examen se obtendrá la nota ne.
- Para obtener la nota final de la teoría n
 _n
 se obtendrá una media ponderada de las notas anteriores según la siguiente fórmula:

$$n_T = n_c * 0.1 + n_i * 0.2 + n_e * 0.7$$

El laboratorio se evalúa a partir del trabajo previo, el funcionamiento del circuito y la documentación final de la práctica. El trabajo previo se evalúa mediante un test de 10 minutos al principio de la práctica. Además la última práctica consiste en un examen final del proyecto de laboratorio. Es obligatorio entregar todas las prácticas. Si no se ha entregado alguna de ellas, la nota del laboratorio será un cero. En caso contrario, la nota se obtendrá mediante la siguiente fórmula:

$$n_{LAB} = n_{ex} * 0.4 + n_{m} * 0.1 + n_{p} * 0.4 + n_{trab} * 0.1$$

En donde:

n_{ex} es la nota de examen final del proyecto de laboratorio,

ntrab es la nota de la capacidad de trabajo en grupo del alumno,

 n_m es la media de los test previos a las sesiones de laboratorio,

 n_p es la media de las prácticas, que incluye el funcionamiento del circuito en el

laboratorio y la documentación entregada.

Para aprobar la asignatura las notas n_T y n_{LAB} deben ser superiores a 5. Si se cumple esta condición, La nota final de la asignatura se calcula:

$$n_{FINAL} = n_T * 0.6 + n_{LAB} * 0.4$$

En caso contrario la nota final será la menor de las dos notas n_T y n_{LAB} .

En la convocatoria extraordinaria el alumno se examinará de toda la materia y el examen comprenderá teoría y laboratorio. La nota obtenida será:

$$n_{FINAL} = n_{ej} * 0.9 + n_{C} * 0.1$$

en donde n_{ej} es la nota obtenida en el examen de junio y n_c es la nota de clase obtenida durante el curso.

Nota muy importante: En la convocatoria extraordinaria el alumno se examinará de toda la materia. El examen podrá comprender teoría y laboratorio.

La asistencia a clase es obligatoria, según el artículo 93 de las Normas Académicas de la Escuela Técnica Superior de Ingeniería (ICAI). Los requisitos de asistencia se aplicarán de forma independiente para las sesiones de teoría y de laboratorio.

- En el caso de las sesiones de teoría, el incumplimiento de esta norma podrá impedir presentarse a examen en la convocatoria ordinaria.
- En el caso de las sesiones de laboratorio, el incumplimiento de esta norma podrá impedir presentarse a examen en la convocatoria ordinaria y en la extraordinaria. En cualquier caso las faltas no justificadas a sesiones de laboratorio serán penalizadas en la evaluación.

PLAN DE TRABAJO Y CRONOGRAMA²

Actividades No presenciales	Fecha de realización	Fecha de entrega	
Lectura y estudio de los contendidos teóricos en el libro de texto	Después de cada clase		
Resolución de los problemas propuestos	Semanalmente		
Preparación de las pruebas que se realizarán durante las horas de clase	Semanas 4, 7 y 11		
Preparación de Examen Final	Diciembre		
Elaboración de los informes de laboratorio	Semanalmente	Semana siguiente a la realización	

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

- Notas de introducción a los sistemas digitales. Un enfoque usando lenguajes de descripción de hardware. José Daniel Muñoz Frías (2011)
- Notas sobre diseño avanzado de sistemas digitales. Sadot Alexandres (2014)
- Jan M. Rabaey. Digital Integrated Circuits. A design perspective. Prentice Hall.
- Hennesy and Patterson. Computer Architecture. A Quantitative Approach. Prentice-Hall.

Bibliografía Complemetaria

- John F. Wakerly Digital Design: Principles and practices. 4ª Edición. (Hay versión en español de la tercera edición) Prentice Hall. 2000.
- Thomas L. Floyd Fundamentos de sistemas digitales. 9ª Edición. Pearson/ Prentice Hall. 2006.
- Daniel D. Gajski. Principios de Diseño Digital. Prentice-Hall, 1997

_

En la ficha resumen se encuentra una planificación semanal de la asignatura. Esta planificación tiene un carácter orientativo y las fechas podrán irse adaptando de forma dinámica a medida que avance el curso.

FICHA RESUMEN

Semanas	Tema	Bibliografía básica
1	1.1 – 1.2	Capítulo 3,4 (1)
2	1.3 – 1.4	Capítulo 11 (1)
3	1.5	Capítulo 1 (2)
4	2.1 – 2.2	Capítulo 2 (2)
5	2.3	Capítulo 2 (2)
6	2.4	Capítulo 3 (2)
7	2.5	Capítulo 3 (2)
8	3.1 – 3.2	Capítulo 4 (2)
9	3.3	Capítulo 4 (2)
10	3.4	Capítulo 4 (2)
11	4.1 – 4.2	Capítulo 5 (2)
12	4.3 – 4.5	Capítulo 5 (2)
13	5.1	Capítulo 6 (2)
14	5.2 – 5.3	Capítulo 6 (2)

⁽¹⁾ Notas de introducción a los sistemas digitales. Un enfoque usando lenguajes de descripción de hardware. José Daniel Muñoz Frías (2011)

⁽²⁾ Notas sobre diseño avanzado de sistemas digitales. Sadot Alexandres (2014)

	ACTIVIDADES PRESENCIALES			ACTIVIDADES NO PRESENCIALES					
Semana	h/s	Clase teoría / problemas	Laboratorio	Evaluación	h/s	Estudio individual de conceptos teóricos	Resolución de problemas	Preparación previa e informe de prácticas de laboratorio	Resultados de aprendizaje
1	4	Presentación (1h)+ Teoria Tema 1 (1h)	Prática 1 (2h)		5	Lectura y estudio de los contenidos teoricos vistos del Tema 1 (2h)		Preparación de laboratorio y lectura de enunciados y heramientas (3h)	RA1
2	4	Teoria Tema 1 (2h)	Prática 1 (2h)		9	Estudio de todos los contenidos teóricos del Tema 1 (5h)	Ejercicios propuestos (4h)		RA1, RA5
3	4	Teoria Tema 1 -2 (2h)	Prática 2 (2h)		9	Estudio de todos los contenidos teóricos del Tema 2 (5h)		Realizar el informe de la práctica (4h)	RA1
4	4	Teoria Tema 2 (1h)	Prática 2 (2h)	Prueba Evaluación Rendimiento Temas 1 ,2 (1h)	9	Estudio de los contenidos teóricos del Tema 2 (2h)	Ejercicios propuestos (2h)	Preparación del examen del Tema 1-2 (5h)	RA2
5	4	Teoria Tema 3 (2h)	Prática 3 (2h)		9	Estudio de los contenidos teóricos del Tema 3 (5h)		Realizar el informe de la práctica (4h)	RA2
6	4	Teoria Tema 3 (2h)	Prática 4 (2h)		9	Estudio de los contenidos teóricos del Tema 3 (5h)		Realizar el informe de la práctica (4h)	RA2, RA3
7	4	Examen intercuatrimestral			9			Preparación del examen del (9h)	
8	4	Problemas Tema 3 (3h)	Prática 4(2h)		9	Estudio de los contenidos teóricos del Tema 3 (5h)		Realizar el informe de la práctica (4h)	RA2, RA3
9	4	Teoria Tema 4 (2h)	Prática 5(2h)		9	Estudio de los contenidos teóricos del Tema 4 (5h)	Ejercicios propuestos (4h)		RA3, RA4
10	4	Teoria Tema 4 (2h)	Prática 5(2h)		9	Estudio de los contenidos teóricos del Tema 4 (5h)	Ejercicios propuestos (4h)		RA3, RA4
11	4	Problemas Tema 4 (2h)	Prática 5 (2h)		9	Preparación del examen del Tema 4(5h)		Realizar el informe de la práctica (4h)	RA3, RA4
12	4	Teoria Tema 5 (1h)	Prática 6 (2h)	Prueba Evaluación Rendimiento Tema 3,4 (1h)	9	Estudio de los contenidos teóricos del Tema 5 (2h)	Ejercicios propuestos (2h)	Preparación del examen del Tema 3,4,5 (5h)	RA3, RA4, RA5
13	4	Teoria Tema 5 (2h)	Prática 6 (2h)		9	Estudio de los contenidos teóricos del Tema 5 (5h)	Ejercicios propuestos (4h)		RA3, RA4, RA5
14	4	Teoria Tema 5 (1h)	Prática 6 (2h)		9	Estudio de los contenidos teóricos del Tema 5 (5h)		Realizar el informe de la práctica (2h)	RA3, RA4, RA5
15	4	Problemas tema 5 (2h)			9	Preparación del examen del Final (5h)	Ejercicios propuestos (4h)		RA3, RA4, RA5