

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura		
Nombre completo	Ciencia de Materiales	
Código	DIM-GITI-211	
Título	Grado en Ingeniería en Tecnologías Industriales por la Universidad Pontificia Comillas	
Impartido en	Grado en Ingeniería en Tecnologías Industriales [Segundo Curso] Grado en Ingeniería en Tecnologías Industriales y Grado en Administración y Dirección de Empresas [Segundo Curso]	
Nivel	Reglada Grado Europeo	
Cuatrimestre	Semestral	
Créditos	6,0 ECTS	
Carácter	Obligatoria (Grado)	
Departamento / Área	Departamento de Ingeniería Mecánica	
Responsable	Yolanda Ballesteros Iglesias	
Horario	Mañana	
Horario de tutorías	Previa petición mediante correo electrónico a cada profesor	
Descriptor	Conocimiento de las propiedades mecánicas, térmicas, eléctricas y magnéticas de los diferentes tipos de materiales y su relación con la estructura microscópica y macroscópica de los mismos.	

Datos del profesorado		
Profesor		
Nombre	Juana Abenojar Buendía	
Departamento / Área	Departamento de Ingeniería Mecánica	
Correo electrónico	jabenojar@comillas.edu	
Profesor		
Nombre	Saúl Manuel Dorado Nuño	
Departamento / Área	Departamento de Ingeniería Mecánica	
Correo electrónico	smdorado@icai.comillas.edu	
Profesor		
Nombre	Eva Paz Jiménez	
Departamento / Área	Departamento de Ingeniería Mecánica	
Despacho	D-119	
Correo electrónico	epaz@iit.comillas.edu	
Profesor		
Nombre	Marcos Benedicto Córdoba	
Departamento / Área	Departamento de Ingeniería Mecánica	
Despacho	D-314	

Correo electrónico	mbcordoba@icai.comillas.edu	
Profesor		
Nombre	María Yolanda Ballesteros Iglesias	
Departamento / Área	Departamento de Ingeniería Mecánica	
Despacho	D-320	
Correo electrónico	yballesteros@iit.comillas.edu	
Profesor		
Nombre	Marta Herrero Palomino	
Departamento / Área	Departamento de Ingeniería Mecánica	
Despacho	D-314	
Correo electrónico	mherrero@icai.comillas.edu	
Profesor		
Nombre	Mercedes Cano de Santayana Ortega	
Departamento / Área	Departamento de Ingeniería Mecánica	
Despacho	D-117	
Correo electrónico	mcanodes@icai.comillas.edu	
Profesor		
Nombre	Carmen de Pablos Alfaro	
Departamento / Área	Departamento de Ingeniería Mecánica	
Correo electrónico	cdepablos@icai.comillas.edu	
Profesor		
Nombre	Federico Ramírez Santa-Pau	
Departamento / Área	Departamento de Ingeniería Mecánica	
Correo electrónico	framirez@icai.comillas.edu	
Profesor		
Nombre	Julián Rodríguez Montes	
Departamento / Área	Departamento de Ingeniería Mecánica	
Correo electrónico	jmontes@icai.comillas.edu	
Profesor		
Nombre	Marta Revuelta Aramburu	
Departamento / Área	Departamento de Ingeniería Mecánica	
Despacho	D-115	
Correo electrónico	mrevuara@icai.comillas.edu	
Profesor		

Nombre	Sara López de Armentia Hernández	
Departamento / Área	Instituto de Investigación Tecnológica (IIT)	
Despacho	Santa Cruz de Marcenado 26	
Correo electrónico sara.lopez@comillas.edu		
Teléfono	2704	

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

En el perfil profesional del graduado en Ingeniería en Tecnologías Industriales, esta asignatura pretende profundizar en las propiedades de los materiales que suponen un elemento fundamental en la formación de un Ingeniero. Así mismo los conocimientos adquiridos en esta asignatura pretenden servir de base en otros estudios relacionados con los materiales y cursados en esta Titulación.

Al finalizar el curso los alumnos podrán conocer, comprender, manejar y relacionar la absoluta conexión que existe entre la estructura nano, micro y macroscópico de los materiales y sus propiedades mecánicas, térmicas, eléctricas y magnéticas, así como su comportamiento en bajo las condiciones de servicio.icas, eléctricas y magnéticas, así como su comportamiento en bajo las condiciones de servicio.

Prerequisitos

Química básica. Fuerzas y energías de enlace. Sistemas cristalinos

Competencias - Objetivos

Competencias

GENERALES		
CG03	Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.	
CG04	Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial.	
ESPECÍFICAS		
CEM07	Conocimientos y capacidades para la aplicación de la ingeniería de materiales	
CRI03	Conocimientos de los fundamentos de ciencia, tecnología y química de materiales. Comprender la relación entre la microestructura, la síntesis o procesado y las propiedades de los materiales.	

Resultados de Aprendizaje

Conocer la relación entre la estructura de los materiales metálicos, poliméricos y cerámicos a nivel microscópico y la

	respuesta macroscópica de estos	
RA2	Relacionar la composición química de los materiales metálicos, poliméricos, cerámicos y compuestos con las propiedades mecánicas, eléctricas, magnéticas y ópticas de dichos materiales	
RA3	Manejar los resultados de los ensayos mecánicos de los distintos materiales sabiendo establecer relaciones entre ellos. Manejar los diagramas de fase de materiales metálicos y cerámicos e interpretar y calcular empleándolos.	
RA4	Conocer la manera en que hoy en día se consiguen materiales muy resistentes, con bajas densidades, etc	
RA5	Conocer los principales mecanismos de deterioro de los materiales, primero como medida preventiva para el diseño y para el conocimiento de las necesidades de protecciones	

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos - Bloques Temáticos

Tema 1: DEFECTOS CRISTALINOS Y ESTRUCTURA NO CRISTALINA: IMPERFECCIÓN

- 1. Solidificación de metales, nucleación.
- 2. Soluciones sólidas de metales. Reglas de Hume-Rothery.
- 3. Defectos puntuales: Impurezas y vacantes
- 4. Defectos de línea o dislocaciones y sus tipos. Vector de Burgers.
- 5. Defectos de superficie: Macla. Borde de grano.
- 6. Cálculo del tamaño de grano. Importancia y consecuencias del tamaño de grano.

Tema 2: PROPIEDADES MECÁNICAS

- 1. Ensayos de tracción, compresión y torsión.
- 2. Curvas tensión-deformación ingenieriles y reales.
- 3. Deformación elástica en materiales cristalinos. Ley de Hooke
- 4. Deformación plástica en materiales cristalinos.
- 5. Propiedades elásticas de los materiales: Módulo de Young. Coeficiente de Poisson. Módulo de cizalladura.
- 6. Propiedades plásticas de los materiales: Límite elástico, límite inferior y superior de cedencia, resistencia a la tracción. Ductilidad. Tenacidad.
- 7. Fractura frágil y dúctil.
- 8. Dureza (Rockwell, Vickers y Brinell).
- 9. Deslizamiento en monocristales

Tema 3: MATERIALES POLIMÉRICOS

- 1. Síntesis de los polímeros: adición y condensación.
- 2. Solubilidad y estabilidad química.
- 3. Factores que facilitan la cristalinidad de los polímeros.
- 4. Consecuencias del grado de cristalinidad en las propiedades.
- 5. Comportamiento térmico de los polímeros termoestables, termoplásticos y elastómeros. Temperatura de transición vítrea.
- 6. Comportamiento mecánico de los polímeros termoestables, termoplásticos y elastómeros.
- 7. Plásticos comerciales.

Tema 4: DIFUSIÓN

- 1. Procesos térmicamente activ
- 2. Producción térmica de defectos puntuales.
- 3. Difusión en estado sólido.
- 4. Difusión en estado estacionario.
- 5. Comparación de la difusión en volumen, en borde de grano y en superficie.
- 6. Aplicaciones.

Tema 5: DIAGRAMAS DE FASES

- 1. Diagramas de fase de sustancias puras.
- 2. Regla de las fases de Gibbs
- 3. Diagramas de fase de aleaciones binarias metálicas:
 - 1. Solubilidad total en estado sólido. Curvas de enfriamiento. Regla de la palanca.
 - 2. Insolubilidad total en estado sólido. Punto eutéctico. Avance de la microestructura durante un enfriamiento lento.
 - 3. Solubilidad parcial en estado sólido. Límite de solubilidad. Avance de la microestructura durante un enfriamiento lento. Endurecimiento por precipitación.
 - 4. Transformación eutectoide y peritéctica.
 - 5. Compuestos intermedios.
 - 6. Diagrama metaestable de Fe-Fe₃C. Puntos invariantes. Aceros y fundiciones. Avance de la microestructura durante un enfriamiento lento.
 - 7. Diagramas de fase binarios generales.

Tema 6: MATERIALES METÁLICOS Y CORROSIÓN

- 1. Materiales ferrosos: aceros (aleados y no aleados) y fundiciones.
- 2. Materiales no ferrosos: aleaciones de aluminio, aleaciones base cobre, aleaciones de titanio.
- 3. Oxidación y corrosión electroquímica de metales.
- 4. Tipos de corrosión y causas.
- 5. Pasivado.
- 6. Prevención de la corrosión

Tema 7: MATERIALES COMPUESTOS

- 1. Clasificación. Reforzados con partículas o fibras. Materiales estructurales. Aplicaciones.
- 2. Función de la fibra en el material compuesto.
- 3. Función de la matriz en el material compuesto.
- 4. Propiedades de los materiales compuestos
- 5. Nanocompuestos

Tema 8: PROPIEDADES TÉRMICAS, ELÉCTRICAS Y MAGNÉTICAS

- 1. Capacidad calorífica
- 2. Conductividad térmica. Mecanismos de conductividad de calor en materiales metálicos, polímeros y cerámicos.
- 3. Dilatación térmica y fuerza del enlace atómico. Tensión térmica.
- 4. Choque térmico en materiales frágiles.

- 5. Enlace químico y conductividad.
- 6. Conducción eléctrica: Modelos de bandas.
- 7. Conductores, superconductores y aislantes. Comportamiento dieléctrico.
- 8. Semiconductores: Semiconductores elementales intrínsecos y extrínsecos.
- 9. Diamagnetismo, paramagnetismo y ferromagnetismo.
- 10. Dominios e histéresis.

Tema 9: SELECCIÓN DE MATERIALES

Selección de materiales para aplicaciones concretas mediante uso de Software

PRÁCTICAS

Propiedades Mecánicas: Ensayos de tracción y de dureza

Determinación del tamaño de grano

Polímeros. Síntesis y caracterización

Selección de materiales (SW CES EduPack de Granta)

Diagramas de fases y Corrosión

Materiales compuestos. Fabricación y caracterización

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

Metodología Presencial: Actividades

- 1. **Lección expositiva**: El profesor explicará los conceptos fundamentales y de mayor dificultad. Lo alumnos podrán participar planteando sus dudas o aportando los conocimientos que tengan al respecto.
- 2. **Resolución en clase de cuestiones y problemas:** En estas sesiones se explicarán, corregirán y analizarán problemas por orden creciente de complejidad de cada tema previamente propuestos por el profesor y trabajados por el alumno.
- 3. Preguntas cortas al comienzo de la clase: cuyo fin es evaluar lo que los alumnos han aprendido en las clases anteriores.
- 4. **Realización de prácticas en el laboratorio:** permite a los alumnos ver ensayos reales sobre materiales, metálicos y poliméricos, empleando máquinas de ensayos industriales, así como aplicar los conocimientos teóricos adquiridos a materiales y piezas de ingeniería reales.
- 5. **Tutorías** se realizarán individualmente o en grupo para resolver las dudas que se les planteen a los alumnos después de haber trabajado los distintos temas, así como para orientar al alumno en su proceso de aprendizaje.

Metodología No presencial: Actividades

- 1. Pre-lectura, en el libro de texto, del tema que se tratará en clase al día siguiente.
- 2. Estudio y asimilación de los conceptos y conocimientos básicos.
- 3. Realización de esquemas que recojan los conceptos fundamentales de cada tema.
- 4. Resolución de cuestiones y problemas prácticos. El alumno podrá comprobar la realización correcta del problema al tener los resultados del mismo. Algunos problemas estarán resueltos en su totalidad para servir como material de apoyo al estudio.
- 5. Realización de informes de laboratorio en grupo, empleando herramientas de office, diseño gráfico, realizando lo cálculos oportunos y analizando los resultados.

RESUMEN HORAS DE TRABAJO DEL ALUMNO

HORAS PRESENCIALES				
Clase magistral y presentaciones generales	Resolución en clase de problemas prácticos	Prácticas de laboratorio, trabajo previo e informe posterior		
28.00	20.00	12.00		
HORAS NO PRESENCIALES				
Trabajo autónomo sobre contenidos prácticos por parte del alumno Prácticas de laboratorio, trabajo previo e informe posterio		o, trabajo previo e informe posterior		
102.00	18.00			
		CRÉDITOS ECTS: 6,0 (180,00 horas)		

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

Actividades de evaluación	Criterios de evaluación	Peso
Examen Final (60%)Examen Intersemestral (15%)	 Comprensión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos. Análisis e interpretación de los resultados obtenidos en la resolución de problemas. Resultados coherentes. Presentación y comunicación escrita. 	75
 Realización de pruebas cortas de seguimiento realizadas en horario de clase o de forma autónoma por el alumno (10%) 	 Cuestionarios de Moodle que servirán a los alumnos como autoevaluación. Las preguntas serán de tipo conceptual, relacional y de cálculo. 	10 %
 Realización de las prácticas del laboratorio y elaboración de los informes de cada una de las prácticas (15%): Cuestionario indicidual antes de comenzar cada práctica (5%). Informe grupal posterior a cada práctica (10%). 	 Habilidades en el laboratorio de materiales y conocimientos prácticos necesarios para abordar la práctica. Capacidad para la redacción de informes, el análisis de resultados y conclusiones. 	15 %

Calificaciones

Convocatoria ordinaria

La nota de esta asignatura, en **convocatoria ordinaria**, estará compuesta por la suma ponderada de:

• La nota del examen final (60%). La nota mínima en dicho examen debe ser 4.0 para hacer la media ponderada. En caso contrario,

la calificación será la nota obtenida en el emanen final.

- La nota del examen Intersemestral (15%)
- La nota de las pruebas cortas (cuestionarios de Moodle) (10%)
- La nota de laboratorio (15%)

Tanto la nota de teoría (media ponderada de todos los exámenes) como la nota de laboratorio (media ponderada de todas las prácticas), han de ser al menos 5.0 puntos para poder hacer media con el resto de notas.

Convocatoria extraordinaria

En convocatoria extraordinaria, la nota resultará de la suma ponderada de:

- La nota del examen extraordinario (85%)
- La nota de laboratorio (15%)

Tanto la nota del examen extraordinario como la de laboratorio han de ser de al menos 5.0 puntos para poder hacer media con el resto de notas.

Normas de asistencia y de examen

Asistencia a clase:

La inasistencia a más del 15% de las horas presenciales de esta asignatura puede tener como consecuencia la imposibilidad de presentarse a la convocatoria ordinaria de esta asignatura

Asistencia a las prácticas de laboratorio:

La inasistencia a alguna práctica de laboratorio sin causa justificada supone un cero en la calificacion de la misma.

Durante los exámenes:

No se permitirá el uso de calculadora programable, libros, apuntes o formulario alguno que pueda falsear los resultados del examen. En caso de ser necesario el uso de algún tipo de formulario, éste será facilitado al alumno durante el examen por el profesor correspondiente.

Los teléfonos móviles deberán permanecer apagados, dentro de la mochila, bolso o carpeta y fuera del alcance del alumno en todo momento, debajo de la silla o al final de la clase.

No se permite asistir al examen con un smartwacht o cualquier otro dispositivo que permita la conexión o el almacenaje de datos.

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

• William D. Callister, Introducción a la Ciencia e Ingeniería de los Materiales. Ed. Reverté. 2016.

Bibliografía Complementaria

- William Smith, Javad Hashemi, Fundamentos de la Ciencia e Ingeniería de Materiales. Mc Graw Hill.
- Pat L. Mangonon, Ciencias de Materiales. Selección y Diseño. Prentice Hall.
- James F. Shackelford, Introducción a la Ciencia de materiales para Ingenieros. Pearson Education, 7º edición 2010.

puede consultar los aspectos relativos a privacidad y protección de datos <u>que ha aceptado en su matrícula</u> entrando en esta web y pulsando "descargar"

 $\underline{https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792}$