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A B S T R A C T

This paper presents a novel methodology in the field of Prognosis and predictive Maintenance (PdM) of
industrial components. It has been designed as an inclusive PdM approach grounded on flexible strategies
capable of characterizing the behavior of an industrial system regardless of its nature in terms of its physics,
dynamics, or evolution in time. The proposed method includes two behavioral indicators computed through a
robust method based on Behavior Patterns. These two indicators (Deviation and Similarity) provide a precise
characterization of the behaviors of an industrial system. The prognosis of both indicators is carried out through
three different Neural Network (NN) architectures: a Multilayer Perceptron (MLP) and two types of Long–
Short Term Memory (LSTM) NNs with two different configurations. Among these configurations, this study
proposes a novel LSTM architecture characterized by its Chained Sequential Memory (CSM) architecture based
on Peephole Connections. The three architectures are studied and compared in detail in order to determine
which one achieves better results in prognosis. The originality of this approach lies in the prognosis of behaviors
by applying indicators to enhance and make more intuitive the characterization and prognosis of the state of
the system. The proposed LSTM CSM architecture reduces the forecast error by around 50% in comparison
to MLP and Stacked LSTM architectures. This study includes an application to a real case in which the
new methodology is implemented for the prognosis of the cooling system of a power plant diesel generator.
The results obtained prove the advantages and possibilities that the proposed methodology has for industrial
applications.
1. Introduction

Prognostics and health management (PHM) of industrial systems has
been one of the leading research areas over the last decades due to
the remarkable advances in the field of the Internet of Things. Data-
driven Artificial Intelligence (AI) approaches are widely used in PHM
applications (Khan and Yairi, 2018). PHM can be addressed from mul-
tiple points of view depending on its application: prediction/prognosis
of the remaining useful life (Stetter, 2020); reliability and failure
detection (Zhao, 2021; Xu et al., 2020), component degradation assess-
ment (Alaswad and Xiang, 2017) or normal behavior assessment (Gil
et al., 2018).

Among the current trends in Industry 4.0, such as wireless connec-
tivity, data analytics, or improvements in adaptation and flexibility,
Prognosis and Predictive Maintenance (PdM) is among the applications
with the highest interest in the industry (Zonta et al., 2020) due
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to its proven benefits in reducing downtimes owing to failures in
components, maintenance costs, etc.

This paper is grounded on an inclusive methodology for prognosis
based on behavioral indicators. The such inclusive methodology is
conceived to be compatible with a wide range of engineering systems,
the behaviors of which are determined by physical measurements. The
motivation behind this type of behavior characterization is to provide a
set of robust first-approach procedures that can be easily implemented
and understood by non-expert technicians in the field of data analyt-
ics. Such procedures allow for a deep characterization of behaviors
and deviations to be learned by the prognosis model. The proposed
inclusive methodology eases its implementation in several systems
through automated tuning processes (heuristic methods, e.g. Optimum
number of clusters obtained through the elbow method), unsupervised
learning algorithms (no prior knowledge required, e.g. Self Organiz-
ing Maps), white-box approaches (human-interpretable models, e.g.
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Behavior Patterns), and indicators (more intuitive assessments). These
automated unsupervised learning approaches ease their implementa-
tion into systems of different natures in comparison to other custom
approaches based on physical models. The second part of this method-
ology focuses on the prognosis of the system, predicting the evolution of
the two proposed indicators applying Long Short Term Memory (LSTM)
Neural Networks (NN). The capabilities and benefits of this prognosis
methodology are assessed in a real case of a diesel power generator.

Previous studies like (Venkatasubramanian, 2005) defend that any
prognosis methodology has to take into account multiple aspects
throughout its designing process: (1) Quick detection and diagnosis.
The quicker the detection is, the quicker the response becomes. (2)
Isolability, different failures must be identified separately to adapt the
response according to the type of failure. (3) Robustness against false
positive and negative alarms. (4) Novelty identifiability, new behaviors
must be differentiated from anomalous behaviors. (5) Classification
error estimates, deviations, and failures must be quantified and classi-
fied according to the confidence threshold defined for the diagnostic
decisions. (6) Adaptability to new behaviors that the system might
resent due to changes in external inputs or external changes. (7)
xplanation facility, the information provided must be easily understood
y the operator to explain the origin and evolution to the current
tate. (8) Modeling deployment complexity : The modeling efforts must
e optimized to be as minimal as possible without losing accuracy. (9)
torage and computational requirements, depending on the application,
eal-time solutions must take into account higher constraints in terms
f storage and computational requirements. (10) Inclusivity, the proce-
ures applied within the methodology have to be flexible enough to be
ompatible with systems and behaviors of different natures.

A recent anomaly detection methodology based on behavior pat-
erns (Calvo-Bascones et al., 2021) proposes an effective method for
haracterizing the behavior of a system based on behavior patterns
nd two behavioral indicators. The use of this methodology is justified
ccording to the previous requirements. This methodology defines the
oundaries of a normal behavior through behavior patterns based on
elf-Organizing Maps (SOMs) (Kohonen, 1982). Collecting the main
eatures of a behavior into most representative clusters improves the
obustness (3) of the model against outliers. It is easily adaptable,
lexible(10), and scalable to new behavior conditions (6) as each new
ondition can be learned by the model including those samples as part
f the training set of the SOM. It reduces the storage and computational
equirements (9) of the anomaly detection model making it compatible
ith online applications because the dataset is reduced to just the most

epresentative values. New behaviors can be easily differentiated from
nomalous behaviors (4) depending on the variations registered within
he behavior patterns. Anomalies and failures are easily identified and
uantified (2) through two behavioral indicators computed for each
nput of the system independently. The detection of anomalies and
iagnosis is remarkably fast (1) as they are detected as soon as the
alues of the indicators surpass the confident thresholds (5) that define
ormal behavior conditions.

The anomaly detection methodology used as a starting point of
he proposed prognosis methodology requires, as it was previously
entioned, the composition of behavior patterns using SOMs. Each
euron of the SOM is made up of a centroid value, its probability
ensity function, and its standard deviation. These last two elements
re used to compute two behavioral indicators.

This paper aims to build a prognosis methodology upon a robust
nomaly detection methodology with the intent to predict and assess
he evolution of behaviors to their current state.

This study started this section with a brief introduction to the main
equirements that a prognosis methodology must have and how the
roposed methodology fulfills those requirements. Section 2 contin-
es presenting different works related to the multiple areas covered
hroughout this study and its main contributions. In Section 3, the pre-
2

iminary bases are described, including the presentation of the behavior
characterization methodology as the starting point of the prognosis
methodology. Section 4 explains the steps followed to implement the
proposed prognosis methodology. Section 5 describes the main features
of the NN architectures implemented as part of the prognosis stage of
the methodology. Section 6 introduces the main characteristics of the
variables used to describe the behavior of the diesel engine. Section 7
presents how the methodology proposed has been applied to the study
of the cooling system of the engine. The results obtained are presented
in Section 8 and finally, Section 9 ends with the conclusions reached
from this study.

2. Related works and contributions

Nowadays, the type of maintenance applied to an industrial system
can be briefly summarized in two different strategies: failure-based and
condition-based. Failure-based strategies do not require any indicator
or prognosis. On the other side, condition-based strategies require not
only effective indicators about the behavior of a system but also their
evolution in time in addition to information about maintenance tasks,
etc.

The proposed methodology aims to predict how the behavior or
state of a system will evolve over time and how it will affect the
scheduling of the next maintenance tasks.

A wide range of AI, Machine Learning (ML), and Deep Learning (DL)
approaches has been implemented in PdM applications (Zhang et al.,
2019). Neural Networks (NN) are frequently implemented in fault prog-
nosis applications. Traditional architectures such as Multilayer Percep-
trons still play an important role in this field (Hou et al., 2020). Other
complex architectures based on Recurrent Neural Networks (RNN)
are frequently implemented due to their proven capabilities in the
prediction and forecast of time series, in particular, Long Short Term
Memory (LSTM) networks (Yu et al., 2019; Jalali et al., 2021; Mejia
et al., 2021).

Previous works in the field of Predictive Maintenance (PdM) and
condition-based assessments are built on LSTM NN. This study assesses
different LSTM architectures that range from common configurations
such as Stacked LSTMs (Sayah et al., 2020; Jalali et al., 2021) to other
more complex LSTM architectures with state memory between LSTM
cells (Yu et al., 2019) or stacked attention blocks (Su et al., 2021).
This study aims to compare the level of accuracy achieved for different
architectures.

Some limitations have been identified in the literature on PdM:

• The first limitation is the need for a predefined Remaining Useful
Life (RUL) scenario used to train the prognosis model (Cheng
et al., 2021). This type of approach presents several limitations
in cases where RUL scenarios are not available. The methodology
proposed in this study allows for the assessment of the system
degradation based on the two indicators proposed. The RUL of
the system is approximated by the temporal evolution of such
indicators.

• Other studies like (Venkatesan et al., 2019) estimate the RUL
of the components based on mathematical models. This type of
approach presents some limitations regarding its generalization
capabilities which hinder the application of the same method-
ology to a different system. The present study allows for the
assessment of the health condition of the system based on the
deviations registered in its behaviors and not in mathematical
models which are specific to a particular system and might be
subjected to temporal changes.

• PdM methodologies designed for systems where all the possible
operating conditions are determined beforehand present limita-
tions related to the inclusion of new operating conditions (Arun-
thavanathan et al., 2021). The methodology proposed in the
present study allows for including additional operating conditions
in the shape of behavior patterns that can be easily stacked to the

previous ones.
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Fig. 1. Representation of Similarity and Deviation indicators given the probability density function, the centroid, and the standard deviation of a particular neuron N.
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Inspired by the previous works, the contributions of the present
tudy can be summed up in:

• This study proposes a novel prognosis methodology based on
behavioral indicators. These behavioral indicators are obtained
from a previous methodology grounded on behavior patterns.
The combination of both methodologies aims to achieve better
prognosis and forecast capabilities.

• Three types of NNs are thoroughly compared to determine which
of them performs better in a real prognosis application. A custom
LSTM architecture is proposed to enhance the capabilities of this
type of Recurrent NN. This type of architecture was termed LSTM
with chained sequential memory (CSM LSTM).

• This study presents a real case application of the methodology.
The methodology described is applied to the behavior of the
cooling system of a diesel engine. This real case shows not only
how this methodology succeeds in the prognosis of a real system
but also how this methodology can be implemented step by step.

. Preliminary bases. Behavior characterization.

Different strategies are commonly applied in the field of behavior
haracterization and anomaly detection. Xu et al. (2020), several ap-
roaches based on Belief-Rule Based (BRB) expert systems, Artificial
N, or Support Vector Machines are presented and compared. The
ethodology proposed in this paper is built upon an anomaly detection
ethodology grounded in the composition and ensuing analysis of

ehavior patterns (Calvo-Bascones et al., 2021). A behavior pattern is
characterization of a set of collected samples during the operation of

he system. This characterization is a segmentation of a behavior into
perating Modes (OM)s. Each OM is obtained through unsupervised
lustering algorithms. The centroid of each cluster determines the OM
o which a sample belongs based on their Euclidean distance. This
revious methodology proposes two types of indicators. The first indi-
ator is called Deviation and compares the distance of a sample to the
entroid of its closest neuron normalized using the standard deviation
f such a neuron. The second indicator is called Similarity and assesses
he location of a sample within the Probability Density Function (PDF)
f its closest neuron. Deviation has an strictly positive non upper
imited range of values [0,∞], on the other side, Similarity values are

defined within the range [0, 1]. Fig. 1 shows how both indicators are
computed given a test sample 𝑋 and the PDF, the closest centroids
of the SOM, and the standard deviation of its closest neuron 𝑁 in
one of its multiple dimensions. These two indicators aim to improve
the feature extraction based on traditional Time-Domain features like
the ones presented in Abid et al. (2020), which underperform under
complex behavior scenarios.

The use of behavior patterns presents multiple benefits (Calvo-
Bascones et al., 2021):

• This method presents high robustness against outliers. Samples
that are less representative within a behavior are also less repre-
sentative within the pattern.
3

m

• In those cases where the number of observations under assess-
ment is significantly large, patterns allow for a reduction in the
volume of information that has to be stored and processed in the
assessment.

• Behavior patterns can be used to assess other behavior patterns or
individual samples. This means that the behavior assessment can
be carried out in a ‘‘pattern vs. pattern" or ‘‘pattern vs. observa-
tions" manner. This study applies the ‘‘patterns vs. observations’’
strategy since it presents fewer limitations for offline and online
applications.

The two indicators proposed present multiple advantages in com-
parison to other similar methods based on Gaussian Mixture Models
(GMMs) (Zhang et al., 2020). GMMs present several limitations when
the observations that make up each 𝑂𝑀 present a multi-modal distribu-
tion or the boundary regions have a high degree of skewness. In those
cases, gaussian modeling presents some disadvantages overcome by the
joint use of the two indicators proposed.

One of the advantages of using these two indicators jointly is an
effective detection of deviations in cases where a distance from the
centroid is not enough to characterize an observation. Fig. 2 (Calvo-
Bascones et al., 2021) shows two cases in which the joint use of these
two indicators allows for a better characterization of the observation
regarding its reference 𝑂𝑀 ; where a normal behavior condition is
defined as:
[

𝑆𝑓,𝑛 > 𝑆𝑓,min
]

∧
[

𝐷𝑓,𝑛 < 2.5
]

(1)

Fig. 2 shows two different cases in which only one condition is
fulfilled. Case a) shows an 𝑂𝑀 distribution in which the centroid
(𝐶𝑂𝑀,𝑓 ) is located in a region with a low density of samples. In this
case, those observations that are located too close to the centroid
would be considered as part of a normal behavior when only the
distance to the centroid of the 𝑂𝑀 is considered. Taking into account
the Similarity indicator, the normal behavior condition is not fulfilled
any longer. Case b) shows an opposite situation in which there is a
region located outside of the distance threshold delimited by ±2.5𝜎,
ut regarding its Similarity value, it is above the minimum acceptance
alue (𝑆𝑓,min).

. Description of the prognosis methodology

The workflow of the methodology proposed is shown in Fig. 3.
his methodology starts with the composition of reference (normal)
ehavior patterns (Abid et al., 2020) obtained from samples collected
uring normal behaviors. These samples do not have to be registered
equentially due to the fact that behavior models do not take into
ccount the sequentiality of the samples, only the distribution of their
alues. This fact allows for building reference behavior models from
ultiple working conditions. A working condition is defined by the con-

iguration set by the operator or controller of the system to determine
ts behavior. The methodology continues computing both indicators
rom a sequential training behavior dataset (Alaswad and Xiang, 2017).
rom the sequential values obtained for both indicators, a predictive

odel is trained as part of the Prognosis Model (Arunthavanathan
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Fig. 2. Particular cases in which the joint use of distance and similarity indicators
provide a better assessment of the observation regarding its reference 𝑂𝑀 .

et al., 2021). This prognosis model is based on machine learning
algorithms capable of learning the temporal features and evolution of
both indicators to carry out the prognosis of the system. The last step
in the methodology is the application of the predicted values of both
indicators (Calvo-Bascones et al., 2020) to multiple applications in the
field of prognosis.

The steps followed to compute the reference behavior pattern are
summarized in Algorithm 1.
Algorithm 1: Computation of the reference behavior pattern

Input: Reference behavior data set
Output: Reference behavior pattern

1 Compute the optimal number of 𝑂𝑀 through a K-means and
the elbow method;

2 for each 𝑂𝑀 do
3 compute its centroid using a SOM;
4 compute its PDF ;
5 compute standard deviation ;
6 end

The steps followed to train the prognosis model are summarized in
Algorithm 2.
Algorithm 2: Training of the prognosis model

Input: Reference degradation data set, number of input
samples 𝑡, number of output (forecast) samples 𝑘.

Output: Prognosis Model
1 for each observation ∈ Reference degradation data set do
2 match to its closest 𝑂𝑀 in the reference behavior pattern;
3 compute its Similarity value;
4 compute its Deviation value;
5 end
6 extract input time windows of size 𝑡 from the sequence of

Similarity and Deviation values;
7 for each input Similarity and Deviation time window do
8 extract the expected time window of size 𝑘 from the

sequence of Similarity and Deviation values;
9 end

10 Start NN training process with input and output-expected
windows;

The main contribution of this study is the application of behavior pat-
terns and smart indicators to prognosis applications. This contribution
is carried out in stages (Arunthavanathan et al., 2021; Calvo-Bascones
et al., 2020) of Fig. 3. So far, this behavior characterization approach
has been implemented only in anomaly detection applications (Wang
4

et al., 2021), Calvo-Bascones et al. (2021). This study aims to extend
the application field of such a previous methodology to the field of
prognosis. This contribution is accomplished in the prognosis model
through a new LSTM architecture and its application to RUL assess-
ments, maintenance planning, or resilience analysis. The capabilities
of this extension are proven in a real-case application.

The next section briefly explains the main features of the algorithms
implemented in the second step of the methodology as part of the
prognosis stage.

5. Predictive algorithms

Different predictive algorithms are proposed in the forecast of the
indicators introduced in Section 3. The algorithms proposed range
from a well-known straightforward architecture to a more complex
architecture that includes all the previous ones.

5.1. Multilayer Perceptron

The Multilayer Perceptron (MLP) is one type of feed-forward neural
network, which consists of an input layer, an output layer, and one or
more hidden layers. MLPs are commonly applied to the study of engine
behaviors, e.g. Dhahad et al. (2022) proposes an application of MLPs
for prognostic the performance of the internal combustion of a diesel
engine.

5.2. Long Short Term Memory neural networks

The motivation behind the architecture of LSTM networks is to deal
with ‘‘long-term dependencies’’. The architecture of an LSTM cell has
varied throughout time from its original form (Hochreiter and Schmid-
huber, 1997). These variations range from forget-gates to peephole
connections (Yu et al., 2019). The standard inner layout of an LSTM
cell is shown in Fig. 4
where 𝑋𝑡 is the input vector at time 𝑡. 𝜎 and 𝑡𝑎𝑛ℎ are activation
functions. The outputs of the three sigmoid functions control the in-
formation that is kept from the previous cell state 𝐶𝑡−1 and passed to
the new cell 𝐶𝑡. ℎ𝑡 is the output information from the current cell.

An example of the application of LSTMs in the diagnosis of a diesel
ower generator can be found in Kayaalp et al. (2021). This study
ocuses on the analysis of the combustion efficiency applying this type
f NN.

. System description

The system under assessment corresponds to a diesel generator of a
ower plant made up of nine cylinders equivalent to the motor shown
n Fig. 5. This two-stroke diesel engine has a power generation of
280 kW. Prognosis applications of Diesel generator engines of this
ize are rarely found in the literature. Smaller engines correspond-
ng to vehicles or small generators present lower criticality, and less
arked degradation trends, allowing for a wider margin of error in

he scheduling of maintenance tasks. These conditions make the pro-
osed case study a valuable application from a technical (characterize
he degradation of the system, anticipate potential failures, improve
he maintenance scheduling process), economic (reduce the costs de-
ived from inefficient maintenance planning and system break-downs),
nd energy-supply-planning perspectives (avoid unexpected halts and
ower cuts).

Each one of the nine cylinders is endowed with a set of temperature
ensors that provide a detailed characterization of the current state
f each cylinder. A simplified scheme of the gas–water recirculation
ystem is presented in Fig. 6. The scope of this study is the analysis
f the state of the cylinders through the temperature measurements
btained from its cooling system. The cooling system of the diesel
ngine presents a gas circuit, shown in gray, and a water circuit,
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Fig. 3. Structure of the methodology proposed.
Fig. 4. Scheme of an LSTM cell.

Fig. 5. Example of a diesel generator.

shown in blue. The critical part of the cooling system is located in the
cylinders of the engine, where the greatest amount of thermal energy
5

has to be evacuated. The other three main heat exchanger systems
are located at the beginning of the water circuit (heat exchanger)
and between the gas and water circuits, such as the inter-cooler and
the Exhaust Gas Recirculation (EGR) system. These components are
crucial in the cooling process of any engine. This study focuses on
the analysis of degradations of the cylinders quantified through the
temperatures registered in the gas at the intake and exhaust manifolds
and in the coolant at the outlet of the engine block. Other systems
within the gas circuit are the Turbine-Compressor and the Selective
Catalytic Reduction (SCR). The analysis of these systems is out of the
scope of this study. Therefore, they have not been included as part of
this analysis.

The aim of this study is the assessment of the engine behavior, in
particular the study of its cooling system. The cooling system is critical
for the operation of the engine. The prognosis of deviations in cooling
temperatures is crucial from the point of view of performance and re-
liability. Too low coolant temperatures might lead to underperforming
behaviors for the cooling system, and too high temperatures might lead
to accelerated degradation of the engine. If exhaust gas temperature is
low, then the cooling system is working with good efficiency. This study
is focused on the study of several temperatures registered at different
locations of the engine. The state of each cylinder is characterized by
its (1) sweeping air temperature, (2) exhaust gas temperature, and (3)
exhaust water temperature. Taking into account also the gross power
generated, the variables included as part of this study are:

• Gross power: Power generated by the engine (MW). This variable
allows for determining the operation state of the engine.

• Sweeping air temperature: temperature of the air before entering
the combustion chamber. (◦ C).

• Exhaust gas temperature: temperature of the gas leaving the
combustion chamber (◦ C) after the diesel pressure ignition.

Sweeping air and exhaust gas temperatures are crucial to know the
conditions and how the temperatures of the engine cylinders evolve.
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Fig. 6. Simplified scheme of the cooling system of a diesel engine.
Fig. 7. Correlation between temperatures.
• Exhaust water temperature: temperature of the cooling water (◦
C) after surrounding the cylinder liners.

The temperature of the exhaust water provides an overview of the
general state of the cooling system. Water temperatures show higher
inertia, this variable shows a higher resilience against abrupt changes in
temperatures of the rest of the system. Therefore, it is a good indicator
to know the state of the engine regarding its cooling system.

A visual representation of the training set and their correlation lines
between temperatures is shown in Fig. 7. When variables present a
good correlation between them, the accuracy of the predictive model
improves. The lower the dispersion along the black correlation lines,
the better the correlation between variables becomes.

The dataset used in this study corresponds to a period of three years
(∼ 23000 samples). Temperature measurement systems in these types
of generators are typically Resistance Temperature Detectors (RDTs),
with an accuracy lower than 0.5 ◦C. There are no records of tasks of
calibration or replacement of sensors; thus, the measurement devices
are considered the same for the whole testing campaign.

The next section explains how the methodology proposed is applied
to this system.

7. Normal behavior and prognosis models

As it was mentioned in Section 3, the methodology proposed is
built upon an anomaly detection model (Normal Behavior Model) and a
Prognosis Model. This section explains how both models are obtained.

7.1. Normal behavior model

The first component of the methodology is the composition of a
Normal Behavior Model based on Reference Behavior Patterns (RBPs).
6

Fig. 8. Training set used to build the Reference Behavior Pattern.

An RBP is computed from normal behavior samples. A normal
behavior might include several sub-behaviors defined by the multiple
configurations that the system might present. In the case of the diesel
engine, there are two different configurations to be taken into account.
These two operating conditions are related to the size of the flow of
the exhaust water, which has a direct effect on its temperature. In case
several configurations belong to the same RBP, a behavior pattern has
to be obtained for each configuration to be finally merged into a single
RBP. The training dataset used to build the RBP is shown in Fig. 8. The
final RBP is the combination of behavior patterns A and B.

An RBP is essentially a clustering of the main features of a behavior.
Following the methodology proposed in Calvo-Bascones et al. (2021),
the clustering algorithm applied is a Self Organizing Map (SOM) (Ko-
honen, 1982). The optimum number of clusters is determined through
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Fig. 9. Optimum number of clusters determined through the Elbow criterion applied
to the distortion value obtained through K-means.

Table 1
Centroid values of the Reference Behavior Pattern.

Table 2
Standard deviation values of the Reference Behavior Pattern.

the elbow criterion applied to the distortion values obtained using a K-
means algorithm (Kodinariya and Makwana, 2013). The cooperation of
SOMs and K-means is widely known (Van Laerhoven, 2001). Distortion
values refer to the sum of square distances between the samples of
each cluster to their centroid. As it can be seen in Fig. 9, the optimum
number of clusters was set to 7; divided into 4 clusters for behavior
pattern A and 3 clusters for behavior pattern B. This distribution was
made taking into account the higher variability that Behavior A shows
regarding its sweeping air and exhaust gas temperatures.

In addition to the centroids of the clusters, it is also necessary
to compute the PDFs and the standard deviations of each cluster for
each variable. Both elements are required to calculate the indicators of
Similarity and Deviation.

The centroid values obtained are shown in Table 1, the standard
deviation values obtained for each cluster are shown in Table 2 and
two examples of PDFs are shown in Fig. 10.

As seen in Table 2, cluster 1 presents significantly higher standard
deviation values compared to the other clusters, not only in tempera-
tures but, most surprisingly, in generated power. This big variation is
due to the fact that this cluster comprises all the transient behaviors of
the engine. Transient behaviors present on average the lowest power
7

generated and low-temperature values.
The Normal Behavior Model is used to compute the values of
Similarity and Deviation for the rest of the dataset. The prognosis of
Similarity and Deviation values obtained is the task of the Prognosis
Model.

7.2. Prognosis models

This model is in charge of predicting the values of Similarity and
Deviation. The original dataset has a sample rate of one sample per
hour. Due to the fact that variations in Similarity and Deviation are
not representative enough after each hour, it is necessary to group
the samples in longer periods to make such variations appreciable.
Therefore, the dataset used to train, validate and test the Prognosis
Model was grouped into weeks (∼ 150 samples). Samples were grouped
in calendar weeks; this means that each group is made up of all the
samples registered from Monday to Sunday. At most, 168 samples per
group.

Three types of architectures are proposed for this case study, all
of them are based on the algorithms presented in Section 5. These
architectures are shown in Fig. 11. The input vector 𝑋𝑇 is made up
f 𝑇 sequential time distributed samples used to make the prediction
f the 𝐾 samples of the output vector 𝑌𝐾 .

The input and output of the three architectures are the same for all
of them. The number of input samples is 𝑡, and the number of output
samples is 𝑘. The first architecture (a) represents a concatenation of
MLPs. The second architecture (b) is a basic concatenation of an LSTM
layer and an MLP stacked sequentially. The third architecture (c) is a
concatenation of LSTMs and MLPs with Chained Sequential Memory.

The inputs and outputs of each type of unit are:

• MLP. Each layer is essentially an MLP. Therefore each layer is a
dense layer fully connected to the previous and following layers.

• Stacked LSTM. Each layer is an LSTM directly connected to a
dense MLP. The inputs of each layer are:

– The output of the previous unit which is the output of its
dense layer. DENSE

(

ℎ𝑡−1
)

.
– One sample of the input vector. 𝑋𝑡−1

The output of this unit is the output of the dense layer. DENSE
(

ℎ𝑡
)

.
• LSTM CSM. This unit presents a similar structure as the Stacked

LSTM, but the connections between units are more sophisticated.
In contrast to the Stacked LSTM, the inputs of this unit are:

– Previous LSTM layer hidden state and cell state used to
initialize the current LSTM layer states. 𝑆ℎ𝑡−1 , 𝑆𝑐𝑡−1

– Output of the previous LSTM layer. ℎ𝑡−1
– Output of the previous layer as the output of its dense layer.

DENSE
(

ℎ𝑡
)

.
– One sample of the input vector. 𝑋𝑡−1

The outputs of each layer are:

– LSTM hidden state and cell state used to initialize the next
LSTM layer states. 𝑆ℎ𝑡 , 𝑆𝑐𝑡

– Output of the LSTM layer. ℎ𝑡
– Output of the dense layer. DENSE

(

ℎ𝑡
)

.

The main parameters of the three architectures proposed are deter-
mined in the following section.

7.3. Determining the parameters of the prognosis models

One of the scopes of this article is determining how to implement
the methodology proposed for prognosis applications. In order to reach
this goal, this study compares three Neural Network architectures
characterized by the type of layers of which they are made up. The
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Fig. 10. Examples of Probability Density Distributions of the Reference Behavior Pattern.
Fig. 11. Architecture of the neural networks proposed for the Prognosis Model.
Table 3

layers of the Stacked LSTM and CSM LSTM require one sample of the
input vector as input. Therefore the number of layers depends on the
size of the input vector of the network.

Different sizes of the input vector were studied to determine the
optimum size of the input vector. Too small or too big input sizes might
lead to underfitting or overfitting effects in the prediction, respectively.
Another aspect to take into account is that the size of the input vector
also determines the size of the layers of the network. The assessment
was carried out by predicting Deviation and Similarity values of
Exhaust gases temperatures as the output of an CSM LSTM architecture
with the configuration of Table 3:

The number of hidden neurons was set equal to 7 as a first rea-
sonable approach based on previous studies carried out for the same
system (Calvo-Bascones et al., 2020). This analysis only aims to assess
how the size of the input vector affects the forecasting capabilities of
the model; therefore, in this analysis, the size of the layers remains
constant. The size of the layers of the MLP was defined as: first layer,
8

Network configuration for assessing the optimum size of the input vector size.

20 times the size of the LSTM layer; second layer, ten times the size of
the LSTM layer; third layer, equal to the size of the LSTM layer; output
layer, equal to the size of the output vector.

The prediction errors obtained for an input vector size equal to 4,
6, 12, and 18 are shown in Fig. 12. The training data were split into
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Fig. 12. Analysis of the effects that changing the input size of the model has on the prediction errors.
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74 weeks for training and 18 weeks for validation. From the results
obtained, the optimum number of samples is set equal to 12. This
size is enough to reach a quick convergence and a low training error.
Although models with 4, 6, and 18 samples reach low training errors,
they present much higher validation errors in the case of Deviation
and, in the case of Similarity, 18 samples show similar validation
alues to the ones obtained using 12 samples.

The next step is determining the number of hidden neurons. The
ollowing analysis aims to compare the accuracy for each one of three
ariables (sweeping air, exhaust gases, and exhaust water tempera-
ures), taking into account the type of architecture and the size of their
ayers. The configuration of each architecture is shown in Table 4.

The results of this analysis are shown in Tables 5 and 6. Again, the
raining data were split into 74 weeks for training and 18 weeks for
alidation.

Fig. 13 summarizes the best accuracy values obtained for each NN
rchitecture. The values shown correspond to the lowest MAE obtained
s the average of training and validation sets according to their optimal
umber of neurons per layer. This figure shows how the LSTM with
SM obtains the lowest MAE in all the cases, improving the MAE up to
0% (around 50% on average) in comparison to the architecture with
he second lowest MAE.

The results obtained with the optimum model for each variable are
ncluded in the next section.
9

A

Table 4
Configuration of the three architectures to assess how the number of neurons per layer
affects the prediction error.

8. Results

The prognosis of Similarity and Deviation for each of the three
ariables are shown in Fig. 14.

The results shown correspond to the training set, validation set, and
est set. It can be seen in the three variables that there is an initial
eriod in which the predicted values have lower accuracy. This initial
eriod corresponds to the first 12 weeks (from 2016-03 till 2016-06)
hat the model requires to initialize its CSM.

The accuracy of the six models was computed through the Mean
bsolute Errors (MAE) and Root Mean Square Errors (RMSE) obtained
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c

Table 5
Errors obtained in the training set for each NN architecture depending on the number of neurons per layer.
Table 6
Errors obtained in the validation set for each NN architecture depending on the number of neurons per layer.
Table 7
Accuracy of the models measured through the Mean Absolute Errors obtained for each variable and indicator.
by comparing forecast and real values, see Table 7. Two deviations
are detected, both in the exhaust section of the system. The exhaust
gas temperature shows an MAE (Test) around 1.6 times its expected
MAE (Training), and in the case of the exhaust water temperature, this
increment reaches 2.4 times its expected MAE. These variations in the
MAE reflect the existence of alterations in the behavior regarding the
previous one observed within the training set.

Deviation values above 2.5 and Similarity values below 0.4 are
onsidered anomalous conditions that require corrective measures to
10
correct the behavior of the system. In most cases, anomalous behaviors
are detected earlier through the Similarity indicator than through the
Deviation indicator. Therefore, Deviation will be used for anomaly
detection and Similarity for making behavioral predictions.

Three main applications are achieved from the method proposed:
The first application is the assessment of maximum effectiveness
achieved after each maintenance task. Maximum effectiveness refers
to the maximum similarity value achieved after a maintenance task
was carried out. This maximum value can be used as an indicator
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to assess the effectiveness of a maintenance task. Once the maximum
effectiveness is achieved, the evolution of the behavior can be modeled
through a parametric RUL model.

The second one is the composition of a straightforward RUL model
based on parametric equations allowing making predictions further
than one week ahead. Thanks to the predictive model, the evolution
of the behavior is simplified, easing the characterization of a behav-
ior through a parametric model. A basic parametric model can be
formulated as:

𝑆′ (𝑡) = 𝑆𝑜 − (𝑡∕𝑇 )1∕𝜆 (2)

where 𝑆′ is the predicted similarity value, 𝑡 is the number of samples
time units) after the maximum Similarity is reached, 𝑆𝑜 is the value
f the maximum Similarity reached after a maintenance task, 𝑇 is the
stimated number of samples that a variable with a Similarity value
qual to 1 reaches a value equal to 0 and 𝜆 is the speed of loss of
imilarity.

The third application focuses on raising a forewarning event when
maintenance task is required. When the predicted similarity value

rops down below 0.4, a maintenance task has to be planned to avoid
otential abrupt failures.

These three applications are shown in Fig. 15. The results obtained
how how these three applications can be useful in the prognosis and
UL assessment of the behavior of the system.

The parametric curves of the RUL model aim to show how the
ehavior of a variable can be easily estimated through a simplified
arametric model. In the case of the Exhaust water temperature, the
irst period hides a prompt deviation of the model that becomes visible
uring the second period. At the end of this second period, it can be
11

een how the predicted similarity values and real values tally. The r
arametric model determines from an initial state the RUL of the
omponent. In this example, it determines when the similarity values
rop from a threshold value, in this case: 0.4.

. Conclusions

The use of behavior patterns is a powerful approach in the study of
he behavior of a component. A behavior pattern is a set of clusters
ith the main features that define a behavior. Two indicators are
sed for this purpose: Similarity and Deviation. This study aims
o complement an initial methodology based on anomaly detection,
ncluding a prognosis model based on the values registered from the
wo indicators previously mentioned. The methodology proposed aims
o develop a prognosis model choosing the best model obtained from
hree neural network architectures. The three neural networks proposed
ange from a basic multilayer perceptron, a Stacked LSTM, and an
STM with Chained Sequential Memory cells. The proposed CSM LSTM
rchitecture presents an outstanding improvement in the forecasting
apabilities of both indicators with a reduction of prediction errors up
o 70% (around 50% on average) in comparison to the lowest error
btained achieved with MLP and Stacked LSTM NNs The prediction
apabilities of each neural network were studied thoroughly in a real
ase study of a diesel generator of a power plant, determining which
odel achieved higher accuracy in their predictions of the two behav-

oral indicators. The proposed case study of a diesel generator of big
ower shows how the present prognosis methodology success in the
haracterization and forecast of degradation processes allows for better
aintenance planning and optimized management of critical industrial

ssets. In addition to the forecast of both behavioral indicators, the

esults obtained from the predictive model can be used to configure
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Fig. 14. Forecast values obtained for the different variables of the model.
Fig. 15. Potential parametric models for assessing the RUL of the system and the
effectiveness of maintenance tasks.
12
an additional parametric model used to carry out additional Remaining
Useful Life assessments.
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