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Abstract: 

This article presents a model capable of establishing the optimal operation of a Heating, Ventilation, Air 

Cooling system (HVAC system) in order to achieve energy savings and thus reduce electricity costs. The 

model was designed for a small house to simplify the results, but with proper parameter adjustment, it could 

be extrapolated to any building, provided the necessary resources are available. The model combines 

Machine Learning (data ingestion, processing, and future predictions) developed in Python, along with C 

language code that synchronizes actuators and sensors. The data is stored and interconnected between both 

codes through an SQL database. 
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1. Introduction:  

Nowadays, electricity prices in Spain and across 

Europe are highly volatile due to both the 

diversity of the energy mix and the market 

structure itself. Electricity supplied to users is 

generated from various sources, such as solar 

radiation (solar energy), wind speed (wind 

energy) natural gas combustion (Combined 

cycles), potential and kinematic energy of water 

(hydropower), and the energy contained in atoms 

(nuclear energy). 

Adding to everything just mentioned, we have 

got a marginalist system, in which the last 

technology needed to meet the demand for the 

following day will set the price for all others, 

which gives as a result higher fluctuations in 

electricity prices. This has resulted in extreme 

situations, such as those recorded in 2025: a 

maximum price of 225 € / MWh on January 15th 

and a minimum price of 15 € / MWh on May 11th, 

representing a difference of 1400% in just a few 

months, which is a quite significant difference for 

some. Moreover, on March 8th, the highest 

historical electrical price was recorded in Spain, 

reaching a mean electricity price of 544,98 € / 

MWh, amid the international energy crisis.  

 

Such high variability in electricity prices creates 

uncertainty for companies and users, which 

makes them look for different strategies in order 

to cut expenses. The solution proposed in this 

article is to use an intelligent model for electricity 

consumption management. The application 

consists of using Big Data Tools, predictive 

algorithms from Machine Learning and advances 

control that will allow every user to anticipate 

high prices, optimize the use of resources such as 

energy storage, and prioritize the cheapest time 

slots for equipment operation. In this way, a 

balance will be achieved between user comfort 

and energy savings. 

 

1.1. Objective: 

 

The main objective of this project is to maximize 

energy savings without compromising user 

comfort conditions. To achieve this goal, a 

system composed by two interconnected 

modules is proposed, described in detail in the 

System Architecture section.  

This model will have historical data and real-time 

data. Both data are quite important for the 

predictive model, due to the historical data will 

train the model and help adjust the most 

significant parameters and real-time data will be 

needed to predict the future and anticipate any 

kind of fluctuation. 
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1.2. System Operation Steps  

 

To achieve the proposed objective, the systems is 

structured in the following way: 

1. Data collection (Historical and real-

time):  

The system first gathers historical data such as 

local weather, climate records for your location, 

electricity price trends and home schedules. In 

addition, real-time information is incorporated, 

including meteorological forecast from AEMET 

and electricity demand curves and hourly 

electrical price forecasts from Red Eléctrica. 

2. Data Analysis  

The collected information is processed to remove 

inconsistencies, normalize values and extract 

useful patterns. This step is essential to provide 

reliable input for the prediction algorithm. When 

the information is not processed properly, the 

algorithm only learns existing patterns, it cannot 

anticipate to any other pattern and the model will 

be useless. 

3. Optimization and decision-making 

Once data is transformed into information, which 

means, data is now processed and can be used 

properly; the system will predict which is the 

optimal operation strategy for the intelligent 

system for the upcoming hours. These 

predictions involve: setting airflow rates and 

supply air temperatures for each zone, when to 

charge any existing battery… to minimize energy 

costs while maintaining user comfort and needs.  

4. Real-Time Monitoring 

A distributed sensor network continuously 

monitors indoor conditions to ensure compliance 

with user-defined comfort parameters. In case 

deviations or any unexpected behaviour is 

captured, the system immediately takes 

corrective action by adjusting these new relevant 

parameters.  

5. Data Storage 

At the end of each operational cycle or working 

day or just day, the system will upload all sensor 

data and operational outcomes into the SQL 

database. This information will be used to 

improve future predictions, avoid recurring 

issues, recalculate parameters… which will 

result into a continuous quality improvement. 

6. Reports and recommendations 

The system generates detailed reports comparing 

forecasted results with actual performance. 

These reports provide valuable feedback, support 

continuoi¡us improvement and guide both 

system administrators and end users in making 

informed energy management decisions.  

2. Problem Statement and 

Assumptions 

The central problem address here is the 

optimization of energy consumption in any kind 

of building through an intelligent management 

of HVAC systems. HVAC systems commonly 

operate by static schedules or manual 

adjustments; this type of management does not 

adapt to electricity prices fluctuations, climate 

changes nor occupancy variations. This results 

in suboptimal performance, higher operating 

costs and unnecessary energy consumption. The 

challenge is therefore to design a predictive and 

adaptative system capable of minimizing 

electricity costs while maintaining users thermal 

configurations.  

 

2.1. Input Data and 

Constraints  

 

The model is based on both historical and real-

time data sources, which are stored and 

processed through an SQL database. The main 

categories of inputs are:  

- Historical data: Weather conditions, 

electricity prices, occupancy records 

and previous system operation logs. 

 

- Real-time data: Meteorological 

forecasts, hourly electricity predictions 

and sensors measurements of 

temperature, humidity and airflow 

inside the building.  

 

- System operating limits: predefined 

technical constraints of HVAC 

systems, such as minimum and 

maximum airflow, temperature ranges 

and safety thresholds. 

 

The system must comply with the following 

hard constraints: 

- Equipment feasibility: setpoints must 

remain within manufacturer 

specifications to avoid unsafe 

operations 
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- User comfort conditions: indoor 

temperature and humidity must remain 

within defined comfort ranges. 

 

- Temporal restrictions: optimization 

must operate on an hourly basis, 

anticipating short-term fluctuations in 

both demand and prices. 

 

2.2. Optimization Objectives  

 

The optimization seeks to: 

1. Minimize electricity costs by 

anticipating high-price periods and 

shifting energy consumption to lower-

price intervals. 

 

2. Maintain user comfort by ensuring 

compliance with predefined thermal 

comfort standards. 

 

3. Ensure efficient resource usage, 

preventing unnecessary operation of 

HVAC equipment and avoiding 

oversizing of control actions. 

 

2.3. Problem Complexity  

The HVAC optimization problem is a high-

dimensional, dynamic and multi-objective task. 

It requires simultaneously handling prediction 

(room temperature conditions), decision making 

(optimal setpoints), and control (real-time 

actuator commands). A monolithic deterministic 

formulation would be computationally 

expensive and difficult to adapt to evolving 

operating conditions. 

 

To address this, the proposed model adopts a 

hybrid strategy: 

Module 1 (Python + Machine Learning): 

forecasts thermal demand and energy prices, 

generating optimal setpoints. 

 

Module 2 (C + Control Logic): validates and 

applies setpoints in real-time, ensuring 

compliance with system and comfort 

constraints. 

 

SQL integration: ensures continuous feedback, 

retraining of predictive models and seamless 

communication between predictive and control 

modules. 

3. System Architecture 

The proposed system architecture is based o a 

modular design which integrates three 

fundamental components: a predictive and 

optimization module (MODULE 1), a control 

and execution module (MODULE 2) and a 

central communication and storage layer (SQL 

Database). This architecture ensures scalability, 

robustness and transparency, while allowing 

integration of advanced data analytics with real-

time actuation. 

At a high level, the model is designed to 

transform raw environmental and energy data 

into optimized operational strategies that are then 

executed by the HVAC equipment in a safe and 

efficient manner. The modular approach allows 

each layer to evolve independently while 

maintaining interoperability through the SQL 

layer. 

 

MODULE 1: Climate and Energy Market 

Analysis + Decision-Making (Python + Machine 

Learning): 

 

 

 

This module represents the intelligence of the 

system, focusing on data ingestion, 

preprocessing, prediction and decision-making. 

Implemented in Python, it leverages scientific 

libraries (NumPy, Pandas, Scikit-learn) and 

Machine Learning techniques to forecast both 

thermal demand and electricity prices 

fluctuations.  
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- Scope of Data: Module 1 manages 

heterogeneous sources, including 

historical weather records, electricity 

prices, occupancy patterns and 

operational logs of the HVAC system. 

In parallel, it incorporates real-time data 

streams such as meteorological forecast, 

hourly electricity prices updates and 

sensor measurements from Module 2. 

 

- Core Functions:  

o Preprocessing and feature 

extraction to ensure data 

quality via Principal 

Component Analysis (PCA). 

 

o Development of predictive 

models to estimate near-future 

thermal loads in each zone. 

 

o Generation of optimal 

setpoints (temperature, 

humidity, airflow, schedules), 

which are validated against 

manufacturer limitations and 

minimize energy costs while 

maintaining thermal comfort.  

 

o Publication of these setpoints 

into the SQL Database, 

ensuring they are available for 

real-time execution in Module 

2. 

 

- Design Considerations: The module is 

conceived as scalable and adaptable, 

allowing additional algorithms, such an 

example could be neural networks, to be 

integrated in the future without altering 

the global architecture. 

 

MODULE 2: Local Management and Real-Time 

Control (C + Sensors/Actuators): 

 

This module is the execution arm of the system. 

Implemented in C to guarantee low-latency 

performance, it is directly connected to the 

network of sensors and actuators installed in the 

building.  

 

 

 

- Sensors: Measure indoor temperature, 

relative humidity and airflows; 

providing continuous feedback on 

environmental conditions. 

 

- Actuators: Control HVAC equipment 

(fans, valves, compressors) according 

to the setpoints defined in Module 1. 

 

- Control Logic: Second validation of 

the predicted setpoints against 

manufacturer limitation and adding 

safety thresholds. Once validated, this 

control logic executed them in real-

time, ensuring a safe and efficient 

system operation.  

 

- Monitoring Logic: It looks for 

deviations or unexpected behaviours, 

generating corrective actions locally 

when necessary. 

 

- Data Interface: All collected sensor 

data and equipment states are uploaded 

to the SQL Database, where they 

become available for analysis and 

model retraining in Module 1. 

This module 2 also acts as a protective layer, 

ensuring that no unsafe or unfeasible commands 

are applied to the system while providing high 

resolution monitoring of real conditions. 
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SQL DATABASE: Central Communication and 

Data Repository: 

The SQL Database acts as the integration 

backbone of the architecture. It provides a 

shared, structured and persistent data layer that 

enables reliable communication between 

Modules 1 and 2. 

- Data Storage: Maintains long-term 

historical records (weather, occupancy, 

electricity prices, system performance) 

as well as real-time operational data. 

This kind of information is stored in 

structural relational tables. This dual 

storage ensures that predictive models 

have access to both enriched historical 

datasets and up-to-date real conditions. 

 

- Data Exchange: Operates as the central 

interface for publishing and retrieving 

setpoints, forecasts and control signals. 

Python Code in Module 1 generates 

optimized strategies and publish  them 

into the SQL tables, while C Code in 

Module 2 receives the published 

information, reads , validates and 

executes it.  

 

- Feedback and Continuous 

Improvement: Sensor fededback, 

performance indicators and actual 

energy consumption are constantly 

uploaded to the database, enabling 

Module 1 to refine its predictive models 

through continuous retraining.  

 

- Transparency and Reporting: The SQL 

layer also serves as a source for 

generating reports and visualization, 

comparing predicted values with real 

measurements. System administrators 

and end users can query the database to 

obtain insights into building 

performance, energy/economic savings 

and anomaly detection.  

 

3.1. Architecture Strength  

This modular system architecture is designed 

with several key strengths: 

1. Separation concerns: Each module has a 

clearly defined role (prediction, control 

and communication). This reduces 

complexity and improves 

maintainability. 

 

2. Scalability: Additional data sources, 

predictive algorithms or building 

subsystems can be incorporated without 

altering the global framework. 

3. Robustness and Safety: The validation 

layer is contained in both Modules 

which ensures that only feasible 

commands are executed, protecting 

both equipment and users. 

 

4. Continuous adaptation: The feedback 

loop supported by the SQL database 

enables continuous learning, allowing 

the system to improve performance over 

time. 

 

5. Transparency: The architecture 

facilitates traceability of decisions, 

making it possible to audit predictions, 

control actions and achieved results. 

 

4. End-To-End WorkFlow 

The interaction between the modules and the 

SQL database can be summarized as follows:  

1. Training (Python Code + Machine 

Learning): Historical data stored in SQL 

is used to calibrate model parameters. 

 

2. Prediction (Python Code + Machine 

Learning): Once the model is trained, 

real-time information is used in order to 

predict and generate optimal setpoints. 

 

3. Publish (Python to SQL): As mentioned 

communication between modules in 

quite important, without 

communication, the project is 

impossible. Actuators parameters are 

predicted, published and stored in SQL 

database.  

 

4. Receiving information (SQL to C): 

When the parameters are 

uploaded/published, in can be 

downloaded/received by the C code, 
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read and change any parameters out of 

range.  

 

5. Execution (C Code): 

Setpoints/parameters are retrieved, 

validated and applied to the system 

equipment via actuators, while real-time 

measurements are collected from 

sensors.  

 

6. Feedback (C to SQL to Python): Sensor 

data and performance results are 

generated, published to the SQL 

database, send to th Python Code as 

real-time data. This creates a feedback 

loop with continuous predictions and 

communication.  

 

7. Continuous improvement: The 

predicted model is periodically 

retrained using the enriched dataset, 

increasing system robustness and 

effectiveness.  

 

In conclusion, this architecture leverages the 

strengths of each technology, which is: Python 

for analytics, C for control and fast executions 

and SQL for integration. Every section combined 

delivers an intelligent, adaptive and 

energyefficient management system. 

5. Experimental Setup  

The proposed model was validated through 

simulations on a small house in Madrid. The 

setup included: 

- Building model: Calculus of thermal 

loads (summer and winter) following 

RITE and CTE standards. 

 

- Modules 

o Module 1: Climate and Energy 

Market Analysis + Decision-

Making (Python + Machine 

Learning).  

 

o Module 2: Local Management 

and Real-Time Control (C + 

Sensors/Actuators).  

 

o SQL Database.   

 

-  Data sources:  

o Historical datasets: Weather 

conditions, electricity prices, 

and energy consumption or the 

last 5 years.  

 

o Real-time and future data: 

AEMET meteorological 

forecast and occupancy 

expected for the next week; 

hourly price curves and 

electrical demand for the next 

day (information obtained 

from Red Electrica); and 

indoors sensors measurements 

(temperature, humidity, 

airflow). 

 

-  Constraints applied:   

 

o Comfort ranges: 25 ºC ± 1 ºC 

for summer; 21 ºC ± 1 ºC for 

winter; Relative Humidity 

between 45-50%.   

 

o Equipment limits: 1 inverter 

air-to-air heat pump with 5 kW 

cooling and 6 kW heating 

nominal; Supply air 

temperature: cooling 10-16ºC 

and heating 30-45ºC; airflow 

limits 300 m3 /h.  

 

o Temporal restrictions: hourly 

optimization cycles or 

changing to manual when 

needed. 

 

- Evaluation metrics:   

 

o Energy cost reduction vs 

baseline static schedule, as 

well as energy consumption.  

 

o Comfort compliance: 

percentage of time indoor 

temperature and humidity 

remain within predefined 

comfort ranges.  

 

o Execution time per 

optimization cycle. 

 

o Adaptability under weather 

and market fluctuations. 

 

o Prediction Accuracy: mean 

error between the temperature 

predicted and actual 

temperature measured by 

sensors.  
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6. Results and Evaluation 

The intelligent HVAC optimization model was 

tested through several simulations and 

optimizations having as base model a small 

house in Madrid, using both historical and real-

time datasets. The evaluation focused on how the 

model affects the energy efficiency, comfort 

compliance, prediction accuracy and system 

adaptability.  

 

- Energy savings: The system was able to 

reduce 15% of electricity costs 

compared to a baseline static schedule. 

Savings were significantly seen during 

peak price periods, where load shifting 

to cheaper hours reduced operational 

costs.  

 

- Comfort compliance: Indoor 

temperature remained within the 

predefined comfort range during 96% of 

the total operating time. Relative 

humidity was controlled within the 45-

50% range, with only minor deviations 

during abrupt weather changes. 

 

 

- Prediction Accuracy: The average error 

between the predicted and measured 

indoor temperature was ± 1 ºC. 

Forecasts of short-term energy demand 

aligned well with actual consumption, 

supporting reliable decision-making. - 

Computational Performance: Each 

optimization cycle was executed in 

under a minute, demonstrating 

feasibility for near real-time 

applications. SQL-based 

communication ensured fast data 

exchange communication between 

Python-Module 1 and C-Module 2. 

 

-  System Robustness and Adaptability: 

The model successfully adapted to 

unexpected fluctuations in both 

electricity prices and weather 

conditions.  

Continuous retraining improved the 

reliability of the predictions made over 

time.  

 

7. Future Works  

While the proposed model has demonstrated 

promising results in reducing energy 

consumption and maintaining comfort, there are 

several potential extensions which could enhance 

its effectiveness and broaden its applicability: 

- Increased Energy Savings: 

 With further system upgrades, the model could 

achieve up to 25% reduction in energy 

consumption under typical residential 

conditions.  

When integrated with battery storage systems, 

energy savings could increase to 30-35% as the 

optimizer would be able to store energy during 

low-price periods and release it during peaks. 

 

- Integration of Advanced Algorithms: 

More sophisticated models, such as deep learning 

or neural networks, could be employed to 

improve forecasting accuracy of thermal loads 

and electricity prices. However, these approaches 

would likely increase computational 

requirements, with optimization cycles 

potentially lasting several minutes instead of 

seconds. 

 

- Renewable Energy Integration:  

Incorporating on-site renewable sources such as 

solar PV could enhance the optimizer by aligning 

HVAC consumption with local generation.  

This could reduce dependency on the grid and 

provide additional flexibility in managing costs.  

 

- Cybersecurity and Data Privacy:  

As the system depends on real-time data 

integration and SQL storage, ensuring data 

integrity privacy and resilience against 

cyberattacks will be an important area of future 

work.  
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8. Conclusions  

This work presented the design, implementation, 

and validation of an intelligent model for the 

energy optimization of HVAC systems in 

residential buildings. The proposed architecture 

integrated three complementary components: a 

predictive and optimization module developed in 

Python using Machine Learning techniques, a 

real-time control module implemented in C for 

execution and safety validation, and an SQL 

database for communication, storage, and 

feedback.  

The model was tested on a small house scenario 

in Madrid, considering both historical and real-

time datasets. The results demonstrated that: 

- The system achieved 15% reduction in 

energy costs compared to a baseline 

static schedule.   

 

- Comfort conditions (temperature and 

humidity) were maintained within 

predefined ranges during over 96% of 

operating time. - Prediction accuracy 

was satisfactory, with an average error 

below ±1 °C between predicted and 

measured values. 

 

- Each optimization cycle was executed 

in under 1 minute, proving the 

feasibility of real-time application.  

 

- The modular design enabled robustness 

and adaptability, allowing the system to 

respond effectively to price volatility 

and unexpected weather fluctuations.  

These findings confirm that intelligent energy 

management strategies can significantly reduce 

HVAC energy consumption while maintaining 

user comfort, even in small-scale residential 

contexts. Furthermore, the combination of 

Machine Learning, low-latency control, and 

structured database integration proved to be a 

solid framework for ensuring scalability, 

transparency, and continuous improvement.  

In conclusion, the developed model successfully 

balances the dual objectives of cost reduction and 

comfort assurance. Its design makes it a 

promising solution not only for small houses but 

also for larger residential or commercial 

buildings, provided proper parameter 

adjustments and additional computational 

resources are made available. This work 

represents a step forward toward the 

digitalization and intelligent management of 

building energy systems, aligning with broader 

goals of energy efficiency, sustainability, and 

smart-grid integration. 
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