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Abstract—As electricity distribution networks become increas-
ingly complex due to factors such as the electrification of the
demand or the integration of distributed generation, ensuring
their resilience and reliability is a growing challenge for DNOs.
In this project, the effectiveness of Multiple Centrality Analy-
sis (MCA) in assessing vulnerabilities in electrical distribution
networks was evaluated. It focuses on both purely topological
centrality metrics and hybrid ones, that incorporate electrical
properties. Using four real SPEN distribution networks of varying
sizes and meshing levels, simulations were conducted under peak
demand conditions. Contingency analysis was performed with
OpenDSS to provide a benchmark, while NetworkX was used to
calculate most centrality metrics.

The study reveals that betweenness centrality, despite re-
lying only on topological data, performs robustly as a rapid
screening tool but tends to overestimate the criticality of some
nodes. Hybrid metrics, particularly current-flow line between-
ness centrality, usually outperformed purely topological metrics
in identifying vulnerable nodes with improved accuracy. Both
betweenness metrics effectively identify the most critical nodes,
whereas discrimination among less critical nodes is less precise
but less relevant practically. The methodology achieved significant
computational savings compared to full contingency analysis,
enabling efficient and scalable vulnerability screening for DNOs.

Index Terms—Multicentrality analysis, Vulnerability assess-
ment, Electrical distribution networks.

I. INTRODUCTION

HE resilience of electrical distribution networks has

become a critical concern as the UK electricity system
evolves towards greater decentralization and decarbonization.
Distribution grids face challenges such as the increase of
electrical demand, as well as the growing integration of
distributed generation (DG). These changes increase system
complexity and highlight the need for robust vulnerability
assessment tools.

Conventional approaches, such as contingency analysis, are
very computationally intensive and often impractical when
applied to large scale distribution systems. As an alternative,
centrality metrics have been widely proposed as a means of
rapidly estimating node vulnerability based solely on the net-
work’s structure. However, the practical effectiveness of these
metrics in accurately identifying critical nodes in real world
power distribution systems remains uncertain. Most existing
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studies have focused on highly interconnected transmission
grids or IEEE bus systems, which are fundamentally different
from actual radial or weakly meshed distribution networks in
both topology and operational characteristics.

Consequently, the predictive performance of centrality met-
rics established on benchmark systems cannot be guaranteed
when applied directly to real distribution grids. This lack
of validation in realistic network scenarios, along with the
increasing complexity introduced by distributed generation and
electrification, emphasizes the necessity for focused research
to assess the suitability and reliability of these approaches for
use in distribution networks.

In this context, Scottish Power Energy Networks (SPEN)
has recognized the potential of these innovative methodologies
and is interested in investigating their application to achieve
a more efficient and scalable evaluation of the resilience of
the distribution network. Therefore, this paper investigates the
potential of Multiple Centrality Analysis (MCA), including
both purely topological and hybrid metrics, to provide accurate
and computationally efficient vulnerability assessments in real
distribution networks. As such, the primary contributions of
this paper are summarized as follows:

o The work investigates the performance and applicability
of centrality metrics, including both purely topological
and hybrid approaches, for vulnerability assessment in
real SPEN electrical distribution networks. By focusing
on real DSO networks rather than idealized or transmis-
sion grids, it addresses a key gap in practical deployment.

o The methodology develops and implements a comprehen-
sive MCA framework, benchmarking the centrality based
vulnerability metrics against a traditional contingency
analysis model.

o The study evaluates the accuracy of different centrality
metrics across the 4 selected case studies with varying
topologies. It also provides practical insights into how
MCA could be integrated into a DNO’s network planning,
supporting more effective and timely decision making for
resilience enhancement.

II. BACKGROUND AND LITERATURE REVIEW

This section summarizes how the increasing complexity of
distribution networks is intensifying operational and computa-
tional challenges for DNOs, emphasizing the need for efficient
vulnerability assessment tools. It also describes the traditional
methods used for vulnerability assessment and some of the
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most promising new approaches, with a particular focus on
MCA [1].

A. Vulnerability assessment and traditional approaches

Utilities use vulnerability frameworks to identify critical
infrastructure and prioritize mitigation measures in those assets
[2]. Vulnerability Assessment (VA) specifically focuses on
determining the susceptibility of the network by analysing
its components, their structure and their operational state. By
this means, the impact of a failure on system stability or
continuity of supply can be quantified and its management can
be planned. Many companies use it to prioritize investments
in assets whose failures cause the greatest impact, or optimize
network design by evaluating different topologies (e.g. ring or
radial) to reduce vulnerabilities.

VA in power systems has evolved according to the ad-
vancements in technology and grid characteristics. Below is
an overview of the most widespread methods that have been
deployed historically to carry out VA with key points and
relevance to this study:

¢ Classical deterministic methods: During the 1980s and

1990s, these methods mainly revolved around contin-
gency analysis (CA). N — k contingency analysis simu-
lates the failure of £ components to test security of supply
and system stability. CA requires running a power flow
for each simulated contingency. This is a computationally
intensive process, especially in large networks.
The primary objective of CA is to ensure the system
operates within prescribed voltage and thermal limits
under outage conditions, typically allowing +10% voltage
variation [3] and avoiding conductor overloads [4]. CA
remains a valuable and widely used tool however, it
has several key limitations. It does not account for cas-
cading failures, event probabilities or economic impacts.
Consequently, it needs to be complemented with other
approaches to ensure that it contemplates all the desired
aspects.

o Probabilistic approaches: From the 1990s onwards, prob-
abilistic risk assessments incorporated uncertainty into
VA techniques, such as Fault Tree Analysis [5] and
Monte Carlo Simulation. These probabilistic methods
transformed metrics [6] like SAIDI and EENS from
purely descriptive to predictive and economically mean-
ingful indicators. However, they also have limitations. For
example, SAIDI does not capture the social criticality of
outages in different customer segments.

B. Future trends and emerging challenges

Electrical distribution networks have evolved from passive
radial systems to complex active systems with bidirectional
flows. This transformation is driven primarily by technolog-
ical innovation, decarbonization policies, digitization and the
decentralization of energy resources. Traditionally, distribution
networks have always had a hierarchical radial structure. Their
design was characterized by radial systems with unidirectional
energy flows [7], as illustrated in Figure 1.
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Fig. 1: Radial distribution network [7].

Electricity distribution networks are rapidly evolving to-
wards smart grids, driven by the integration of DERs, electric
vehicles and advanced metering technologies. This transfor-
mation has significantly increased the complexity of these
networks, presenting operational and computational challenges
for distribution network operators. Scottish Power, the second
largest distribution network operator in the UK, is allocating
approximately £360 million to the resilience of its network
[8]. This investment is part of its RIIO-ED2 regulatory plan.

The rapid growth of DERs, including distributed PV gener-
ation, battery energy storage systems, EVs or heat pump water
heaters, is reshaping traditional network operation [9]. DERs
provide clear benefits such as emissions reduction and greater
energy efficiency by generating close to consumption points.
Nevertheless, their integration also introduces new operational
challenges. High penetration of DERs can lead to reverse
power flows [10], overvoltages during low load conditions [11]
and protection system malfunctions [12], all of which impact
network stability.

The deployment of EVs is accelerating worldwide, causing
increased peak demand [13], network overload risks [14] and
power quality issues, like voltage fluctuations and harmonics
[15]. Similarly, heat pump water heaters can significantly
increase electrical demand [16] and cause voltage instability
[17]. These emerging complexities put distribution networks
under greater stress, requiring network reinforcement and
adaptive management strategies. Therefore, there is a critical
need for efficient and scalable vulnerability assessment tools
to be able to rapidly prioritize critical assets.

C. Alternative methods

As already explained above, the rapid growth of DERs
and the increasing electrification of transport and heating
are introducing significant challenges for the management of
electrical distribution networks. To overcome these challenges,
utilities want to develop faster, scalable and non-iterative
approaches compared to the traditional ones.

Among the emerging methodologies are machine learning
and Al driven models [18] using AMI data to predict vulnera-
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bilities, graph based topological analyses [19] which calculate
centrality metrics to rapidly identify structurally important
components and hybrid methods [20] that combine physical
grid models with topological insights.

Among these, centrality based approaches are particularly
appealing for vulnerability analysis in future grids, since they
use purely topological data and scale well as network size
and complexity grow. The integration of graph based and
multicentrality approaches presents a promising direction for
fast, non-iterative and scalable VA, that could adequately
complement those more computationally intensive traditional
methodologies.

Multiple Centrality Analysis (MCA) is a general mathemat-
ical process that can be implemented in any network structure,
regardless of what it represents. It aims to analyze the spatial
distribution of centrality by representing the system as a
primal graph [21] where nodes and edges (lines) correspond
to physical intersections and connections, respectively.

However, “being central” [22] can have different meanings.
Therefore, a single measure of centrality cannot capture all the
important dimensions of the network. Because of this, it em-
ploys a set of distinct centrality metrics, such as betweenness
or eigenvector centrality.

Although it was originally developed for applications in
urban design, MCA has demonstrated versatility across various
fields. For instance, in the identification of vulnerable ports in
maritime supply chains through combined centrality rankings
[23]. However, its direct application to electrical distribution
networks remains limited. Among some of the few examples
in electrical networks, [24] applied weighted MCA in trans-
mission grids and [25] developed a metric called “electrical
centrality” revealing highly electrically connected hub nodes
that were not evident in the topological analysis.

Nonetheless, it is important to highlight that distribution
networks possess unique structural characteristics very distinct
from transmission grids and from IEEE test networks. They
tend to exhibit predominantly radial or lightly meshed topolo-
gies with less redundancy. These structural differences may
reduce the efficacy of traditional centrality metrics, motivat-
ing the need to critically evaluate MCA frameworks in real
distribution grids.

Recent research has shown that topological centrality met-
rics provide useful initial screening, but may not fully capture
operational vulnerabilities due to electrical constraints and
power flow effects ([26], [27]). In contrast, hybrid centrality
metrics that incorporate electrical parameters ([19], [20]),
such as line impedances and node characteristics, have shown
promise. However, both of this works use IEEE bus systems,
but are not extensively tested in actual distribution networks.

This gap, combined with the limitations of traditional
vulnerability assessment approaches, motivates the present
project’s focus on evaluating MCA performance within real
distribution networks operated by SPEN, which exhibit lightly
meshed structures.

D. MCA Theoretical framework

This project’s MCA framework models the electrical distri-
bution network as a graph G = (V, E), where V represents

the set of nodes (e.g., buses, substations, loads) and E the set
of edges representing electrical lines. The adjacency matrix
A of graph G is defined by A;; = 1 if nodes ¢ and j are
connected, and O otherwise.

Centrality metrics quantify node importance within this
network, each according to its definition. The study applies
a combination of the following classical topological metrics
and hybrid metrics based on electrical characteristics.

1) Classical topological centrality metrics: : These metrics
evaluate node importance based solely on the structure of the
network. They rely purely on the configuration of connections,
without any reference to electrical properties of the system.

o Degree Centrality (DC) measures the number of direct
connections a node has:

_ 2jenAig

n—1

DC(i) (1)
Where A;; represents the connectivity between nodes 4
and j in the adjacency matrix, A, and n is the total
number of nodes in the network.

+ Betweenness Centrality (BC) quantifies how often a
node lies on shortest paths between node pairs:
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with o4 the total number of shortest paths from node s
to ¢, and o4 (i) those passing through .

o Closeness Centrality (CC) indicates inverse average
shortest path distance from a node to all others:

1
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where d(i, j) is the shortest path distance between nodes
1 and j.
o Eigenvector Centrality (EC) assigns relative scores

based on connections to influential neighbours, defined
as:
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with A being the respective eigenvalue of the adjacency
matrix, A.
o Clustering Coefficient (CCoef) measures the tendency
of nodes to cluster:

2. T(i)

CCoef(i) = DC(i) - (DC(i) — 1)

(&)

with T'(7) being the number of triangles through node i
and DC(i) the degree centrality of that same node.

2) Hybrid centrality metrics: These metrics incorporate
electrical parameters using the weighted Laplacian matrix L,
calculated as the difference between the degree matrix and
weighted adjacency matrix, with weights derived from line
impedances. The pseudo-inverse L™ of L is used to evaluate
electrical distances.

e Current-flow Closeness Centrality (CF CC) extends
classical closeness centrality by measuring the effective
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resistance distance (ERD) between a node and all other
nodes in the network. The distance is defined as:

n Z,L
d; = ==L (®)
n
Therefore, the metric is expressed as:
n—1
CPCCi = =7 (7
Ek:l Zik

A central node for CF CC is a node that is joined to
others by the shortest mean ERD. The shorter the total
electrical distance, the greater its centrality.

o Current-flow Line Betweenness Centrality (CF Line
BC) evaluates the importance of a line relative to power
flow. For a line between nodes ¢ and & and a source-target
pair (s,t), powerflow is expressed as:
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Where 65t = L} — L}, and 6;¢ = L], — L}, are the
phase angle nodes of nodes ¢ and k with the respective
pseudo-inverse of L. After simplifying, applying it to
every possible source and target pair and normalizing it:

2- Zs<t P;kt
n-(n—1)
This metric uniquely evaluates edges (lines), instead of

nodes, thus identifying potential bottlenecks or overload
points in the network.

CF Line BC; = )

III. MODEL DEVELOPMENT

To evaluate the effectiveness of MCA in identifying vul-
nerabilities within electrical distribution networks, a model
was developed to systematically calculate a range of centrality
metrics and validate them against an objective performance
benchmark. This process involved implementing algorithms
for both classical topological and hybrid centrality measures
and constructing a comprehensive benchmark framework for
performance comparison.

This section describes the methodology, including key de-
sign decisions. It presents the vulnerability assessment frame-
work, covering model setup, algorithm implementation and
validation procedures. The benchmark design is also detailed,
specifying the operational scenarios, selected performance
metrics and the development of comparison criteria.

A. Methodology development and benchmark selection

The project initially explored the use of purely topological
centrality metrics to assess distribution network vulnerability,
considering composite indices combining multiple measures
with different weighting schemes. However, due to the subjec-
tivity and network dependency of such composites, the focus
shifted to evaluating individual centrality metrics. Recognizing
the limitations of purely topological approaches, the study also
incorporated hybrid centrality metrics that integrate electrical
network characteristics to better capture operational vulnera-
bilities.

A critical step involved defining a clear, objective bench-
mark metric to evaluate the effectiveness of these centrality
measures. Based on the operational context of SP Energy
Networks (SPEN), vulnerability was defined by the network’s
ability to maintain reliable supply under disturbances. Metrics
from the literature, like network efficiency, were found insuffi-
cient for distribution systems, as they fail to capture customer
supply interruption directly. Therefore, Energy Not Served
(ENS) was adopted as the principal vulnerability indicator,
as it can quantify the total unsupplied energy due to faults
or overloads through contingency analysis and power flow
simulations. ENS provides a clear, objective and physically
meaningful measure that reflects the actual loss of service ex-
perienced by customers. Hence, it serves as a robust reference
for validating centrality based vulnerability assessments and
guiding comparative analysis across network nodes.

B. MCA framework

The MCA model implemented in this project calculates
the set of vulnerability metrics introduced in section II-D,
encompassing both purely topological and hybrid centrality
measures.

Topological metrics, such as degree and betweenness cen-
trality, analyze the network’s adjacency structure to identify
structural vulnerabilities based solely on their connectivity
patterns. Complementing this, hybrid metrics incorporate elec-
trical parameters by using the weighted Laplacian matrix
and its pseudo-inverse, capturing power flow and resistance
characteristics that topological metrics overlook.

The purely topological centrality metrics were computed
using the NetworkX [28] library. In contrast, hybrid metrics
were calculated by directly implementing the mathematical
formulations detailed in section II-D. Visualization tools
including Plotly, Matplotlib and Seaborn were used to sup-
port interpretation of results and comparison of vulnerability
indicators across nodes.

Model validation was performed using the IEEE 30 bus
benchmark network. To ensure fidelity with the network model
used in the comparative literature [27], the exact system data
file was downloaded from the Pandapower repository. The
successful reproduction of key centrality results and closely
matching power flow simulations confirmed the framework’s
accuracy and established confidence before applying the ap-
proach to real SPEN distribution networks.

C. Case studies and operational conditions

To validate the vulnerability assessment framework, four
LV distribution networks with diverse sizes and topologies,
ranging from radial to meshed configurations, were selected
for analysis. These areas were extracted from Scottish Power
Energy Network’s data and are presented below.

The Greasby network, located in the Wirral Peninsula and
served by SP MANWESB, is a large and complex distribution
system with a highly meshed topology. It includes 4 trans-
formers, 1,127 lines and 1,126 nodes, of which 480 are loads.

The Lanark network, managed by SP Distribution in central
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MANWEB Distribution Network - Greasby

°

Fig. 2: Representation of the Greasby distribution network within SP
MANWESB area.

and southern Scotland, is a medium-sized distribution system
with a predominantly radial topology and some localized
interconnections. It comprises 5 transformers, 847 lines and
847 nodes, including 356 loads.

SP Distribution Network - Lanark EX ]

Fig. 3: Representation of the Lanark distribution network within SP
MANWERB area.

The Whifflet subnetwork in Glasgow is a smaller, primarily
radial distribution grid supplied by a single transformer. With
220 lines, 221 nodes and 70 loads, its simpler structure
highlights vulnerability patterns associated with single points
of failure.

SP Distribution Network - Glasgow

Fig. 4: Representation of the Whifflet distribution network within SP area.

The distribution network operated by SP MANWEB, shown
in Figure 5, features a lightly meshed topology typical of
the MANWEB area. It includes 4 transformers, 1,235 lines
and nodes, of which 460 are loads. This network is more
radial than the Greasby network but maintains some important
redundancy and meshing.

MANWEB Distribution Network - Moreton

Fig. 5: Representation of the Moreton distribution network within SP area.

Regarding operational conditions, distribution network vul-
nerability is highly dependent on the demand scenario an-
alyzed. Two representative scenarios were considered: peak
demand, when high simultaneous consumption stresses net-
work capacity and increases the risk of overloads and supply
interruptions, and low demand, which can reveal issues like
overvoltages, especially with high distributed generation.

This project concentrates on peak demand scenarios, as they
represent the most critical and stressful conditions for LV
grids. While this represents a critical operational condition,
it should be acknowledged that distribution networks may
exhibit different vulnerability patterns under other operational
states. Hence, it is important to recognize the limitations of
this approach, as other scenarios may introduce additional
vulnerabilities that are not fully addressed in this study.
However, this case was chosen due to several methodological
and practical considerations.

Particularly, with the increasing electrification from EVs
and heat pumps. Additionally, simulating node failures (CA)
during peak demand aligns with nodal centrality metrics, en-
abling a direct comparison. While other scenarios may present
different vulnerabilities, this focus provides relevant insight
for practical network planning and contingency management
in utility operations.

D. Benchmark model implementation

The project developed a realistic vulnerability benchmark
for SPEN’s distribution networks using OpenDSS with Python
integration via OpenDSSDirect [29]. In this project, power
flow analysis was employed as a fundamental tool for as-
sessing network performance and identifying vulnerability to
thermal overloads in SPEN’s distribution network.

A contingency analysis model was implemented using
OpenDSSDirect in Python. It focuses on single contingency
(N-1) scenarios, where each and every node outage is sim-
ulated individually. By isolating the impact of individual
element failures, it becomes possible to assign a distinct, quan-
titative vulnerability value to each node in the network. This
is essential, just as MCA produces a centrality score for every
node, the single contingency analysis yields a clear metric
associated with the loss of each node, that can be directly
compared. This methodological consistency supports the core
objective of the benchmark framework, which is to enable
a robust, node by node comparison between centrality based
values and ENS increase outcomes derived from simulated
outage scenarios.

The analysis iteratively isolates each node, calculates the
baseline and post-contingency ENS, including isolated loads,
and resets the network after each scenario. The outcome is a
quantitative nodal ENS ranking consistent with MCA outputs.

Due to lack of customer load data, the CREST demand
model was used to generate diverse residential peak demand
profiles, which were randomly assigned to network loads. This
approach enhances the realism and reliability of vulnerability
assessment under critical peak demand conditions despite data
limitations.

The model uses three main input datasets:
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o Network topology and parameters provided by SPEN in
OpenDSS format, including real connectivity and asset
data.

o Geospatial node coordinates in .json format.

o Peak residential demand profiles, randomly assigned to
network loads, each with an assumed power factor of
0.95.

The complete workflow for evaluating network vulnerability
via ENS increase is detailed below in Figure 6.

{ Extract network data } Extract coordinates }

Load data into
Python struct
Calculate baseline
ENS

Assign peak
demand data

Baseline network
configuration
Calculate
baseline ENS
Obtain bus list
Filter buses
to analyze

Contingency scenario
Remove bus and
connected elements

Disable loads
disconnected from
sources

Run power flow
Calculate ENS after
contingency
Calculate ENS
increase
Store contingency
results

Summarize and
report results

Fig. 6: Contingency analysis workflow for evaluating network vulnerability
using ENS.
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xlsx file
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IV. RESULTS AND ANALYSIS

This chapter presents the results from the modelling and
simulations, comparing purely topological and hybrid cen-
trality metrics with ENS values from contingency analysis.
The analysis focuses primarily on the Greasby distribution
network, illustrating how centrality measures correlate with
node vulnerability to supply disruptions.

A. Topological metrics

As observed in Figure 7, most nodes exhibit low degree
values, which reflects the limited connectivity that is charac-
teristic of distribution networks. Results show that most nodes

have low degree centrality with an average degree of 2.002,
typical of radial distribution networks, where most nodes serve
as simple endpoints and only a few act as main feeders or
connection hubs.

Node Degree

Fig. 7: Distribution of node degree in the Greasby distribution network.

Figure 8 compares five purely topological centrality metrics
with node ENS values from failure simulations. It is worth
noting that the clustering coefficient is mostly zero for nodes,
reflecting the radial, tree-like topology of distribution networks
with minimal local redundancy and high vulnerability to
node disconnections. This contrasts with meshed transmission
networks, as proved in the IEEE 30 bus validation, which
exhibit higher clustering coefficients due to multiple paths
and redundancy. Therefore, the metric is more meaningful for
vulnerability assessment in more meshed systems.

Fig. 8: Comparative scatter plots of five topological centrality metrics
against ENS in the Greasby network.

Eigenvector centrality also reveals another fundamental lim-
itation when applied to distribution networks. Most nodes
cluster near zero and only a few have higher values that do
not correlate well with ENS. This occurs because eigenvector
centrality diminishes in robustness as network size increases
and relies heavily on connections to other important nodes
[30]. In extensive, sparse networks with low average degree,
many nodes are peripheral, resulting in small eigenvector
values.

Furthermore, the degree centrality plot shows distinct ver-
tical bands due to discrete node degree values. While nodes
with degree one tend to have low ENS, reflecting their role
as loads affecting only single customers, overall there is no
clear correlation between degree centrality and ENS. This
discrepancy between ENS and degree centrality makes sense,
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because for example high degree nodes serving low demand
areas may contribute little to vulnerability, whereas lower
degree nodes near transformers or high demand loads can have
significant ENS. This demonstrates that connectivity alone is
insufficient to assess distribution network vulnerabilities.

Finally, it is worth looking more closely at both betweenness
and closeness centrality since they both show some ability
to predict vulnerable nodes, with betweenness exhibiting a
strong positive correlation with ENS (R?> = 0.793) and
closeness showing weaker, noisier correlation (R? = 0.121). A
significant number of nodes with high closeness scores cause
little ENS when they fail, despite the fact that many other high
closeness nodes correlate with heightened ENS. This suggests
that closeness may occasionally overestimate criticality for
well connected, but low demand nodes.

Betweenness centrality’s performance suggests that the con-
cept of intermediary importance, or more simply nodes that
lie on shortest paths between other node pairs, translates
meaningfully to operational vulnerability. Consequently, fur-
ther analysis uses Spearman rank correlation to assess the
consistency of node ranking between betweenness and ENS.

Spearman Rank - Greasby

400

Spearmanrho = 0.741 °

1000

ENS rank

0 200 400 600 800 1000
Betweenness centrality rank

Fig. 9: Spearman rank correlation plot comparing node rankings by
betweenness centrality and ENS in the Greasby network

A Spearman’s p of 0.741 confirms a strong correlation
between betweenness centrality and ENS rankings, validating
betweenness as an effective vulnerability indicator. However,
it tends to overestimate the criticality of a considerable amount
of nodes, assigning similar high rankings to structurally less
relevant nodes due to the network’s large, sparse topology.

To gain a clearer understanding of this overestimation
phenomenon, we have highlighted the most critical nodes
and the overestimated nodes directly on the network plot.
This visualization in Figure 10 allows to spatially examine
whether there is a structural basis for the overestimation by
betweenness centrality. From this, it appears that some of the
nodes identified as overestimated correspond to key connecting
lines or main streets. In that way, structurally, they represent
important links and redundancy within the network topology.

MANWEB Distribution Network - Greasby + [.]

Fig. 10: Highlighted Greasby’s network representation showing critical
nodes and overestimated nodes

But, despite this structural significance, these connections
may not be as electrically essential in terms of maintaining
customer supply. In other words, while these nodes serve
important topological roles by linking different areas, their
failure does not necessarily translate into large scale supply
interruptions reflected by the ENS metric. This divergence
shows a fundamental limitation of purely topological metrics
like betweenness centrality in distribution networks. They
capture structural importance, but do not fully reflect the
electrical operational impact of node failures.

These drawbacks highlight the need for a more sophisticated
vulnerability assessment. Although betweenness centrality has
shown impressive results in identifying electrically vulnerable
nodes, as all critical nodes are identified correctly. Nonethe-
less, incorporating hybrid centrality metrics, which include
electrical data, may further improve vulnerability detection.

B. Hybrid metrics

Current-flow (CF) centrality metrics integrate electrical
properties into structural vulnerability analysis, offering a
more physically grounded perspective. CF closeness centrality,
the first hybrid metric analyzed, enhances the traditional
topological measure by incorporating line impedances.

ENS vs CF Closeness Centrality - Greasby
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Fig. 11: Scatter plot of ENS against current-flow closeness centrality in the
Greasby network.

The relationship between CF closeness centrality and ENS
resembles that of standard closeness centrality, with only a
modest improvement in the coefficient of determination from
0.121 to 0.187 overall. One possible explanation is that in
distribution networks lines could have similar characteristics.



MASTER’S DEGREE IN SMART GRIDS, AUGUST 2025

Therefore, the difference in impedance values is not enough
for the weighted methodology to provide more accurate re-
sults.

Moreover, CF line betweenness centrality, which incorpo-
rates generator and load pairs, was mapped onto the Greasby
network. Lines near source nodes and key connectors between
network areas consistently show higher centrality values. This
metric effectively captures the actual vulnerabilities in the
electric grid, aligning well with the identified critical nodes.

CF Line Betweenness - Glasgow

Current-Flow Line Betweenness Centrality
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Fig. 12: Visualization of current-flow line betweenness centrality values in
the Greasby network.

Since CF line betweenness is originally defined for lines,
its values were aggregated to nodes by summing adjacent line
scores to enable comparison with nodal metrics and ENS.
The resulting analysis shows a coefficient of determination
of 0.699, slightly lower than pure topological betweenness
(0.793), but still indicates that higher CF betweenness scores
align with higher ENS values.

ENS vs Current-Flow Line Betweenness aggregated per node - Greasby
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Fig. 13: Scatter plot of ENS against current-flow line betweenness centrality
in the Greasby network.

However, nodes with higher CF betweenness score tend to
have a higher ENS value, which indicates that this metric is
good at assessing electrical vulnerability. Although there is an

outlier group located towards the bottom right, which means
that the metric overestimates vulnerability, it has not been
assigned values as large as those of the truly most vulnerable
nodes. Thus, even if the plot is slightly deviated, the metric
seems to distinguish well among the most critical nodes.
Therefore, a Spearman rank was also conducted to confirm
this assumption.

In effect, Figure 14 shows excellent results at the identifi-
cation of the most vulnerable nodes in the network. No nodes
have been overestimated and compared to the most critical
ones, in other words, the metric has not assigned similar
values to electrically not so vulnerable nodes, as occurred with
betweenness centrality in Figure 9.
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Fig. 14: Spearman rank correlation plot comparing node rankings by CF
line betweenness centrality and ENS in the Greasby network.

As node criticality decreases, accuracy of CF line between-
ness worsens with nodes dispersing above and below the
diagonal, but unlike topological betweenness, it distinguishes
less critical nodes better. Spearman’s p improves from 0.741
to 0.777. But most importantly, all critical nodes are cor-
rectly identified, and there is no overestimation of non-critical
nodes relative to truly vulnerable ones. Although precision
diminishes for peripheral nodes, CF line betweenness excels
at detecting the most vulnerable nodes, proving its value as an
effective screening tool for distribution network vulnerability.

C. Computational efficiency and practical applications

The table below summarizes the computation times required
for both traditional contingency analysis and the proposed
MCA method, including the hybrid metrics, across the four
distribution networks analysed in this study. MCA offers sig-

TABLE I: Computation time comparison between traditional approach and

MCA
Distribution network Contingency MCA (s) Speed-up
Analysis (s) factor
Greasby 95.5 7 13.64
Moreton 103.2 6.1 16.92
Glasgow 3.7 0.2 18.5
Lanark 43.9 2.7 16.26
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nificant computational savings compared to traditional contin-
gency analysis, providing similar results up to 16 times faster.
For large networks like SPEN’s, conventional methods could
require several days of computation, while MCA delivers
results in a fraction of that time, saving approximately 92%
of computational effort. This allows DNOs to quickly identify
critical nodes for further analysis and ensures resources are
focused where they are most valuable, making MCA an
effective first stage screening tool or filter for large scale
distribution networks.

V. CONCLUSIONS AND FUTURE WORK

The comparative analysis of centrality metrics revealed
varying effectiveness in assessing vulnerability across distribu-
tion network topologies. Betweenness centrality, despite rely-
ing solely on topological data, showed robust performance but
tended to overestimate some nodes’ criticality. Nevertheless,
it serves well as a rapid screening tool to identify a subset of
potentially critical nodes, allowing focused detailed analyses.

Other standard topological metrics, such as clustering co-
efficient, eigenvector and degree centralities, showed limited
applicability due to the radial and weakly connected nature
of distribution networks. However, in more meshed MV net-
works, these metrics may hold more promise.

Hybrid centrality metrics, particularly CF line betweenness,
outperformed purely topological measures by integrating elec-
trical properties and network structure, making it the most
effective metric for identifying vulnerable nodes. Both topo-
logical and hybrid betweenness metrics excelled in identifying
the most critical nodes, which is the main operational concern,
while less critical node rankings were less precise.

This suggests a two stage methodology where ideally CF
line betweenness, but topological betweenness could also be
an option, is used as an initial filter to rapidly identify
critical nodes for deeper, computationally expensive analysis.
Implementing MCA in this way could provide DNOs like
Scottish Power with fast, routine vulnerability screening en-
abling a deeper study of significant nodes, resulting in a better
prioritization of investments and faster responses to network
issues.

Future improvements should include analyzing a wider
range of operational scenarios beyond peak demand, such
as low demand periods and varying distributed generation
(DG) levels, to better capture network vulnerability nuances.
Incorporating different network configurations and alternative
vulnerability metrics beyond ENS, like loss of load probability
or customer impact, could provide complementary insights,
especially under conditions with high DG penetration where
voltage and power flow issues arise. Applying the analysis to
more meshed MV networks may enhance the effectiveness
of topological metrics. A promising future direction could
be to use betweenness-based centrality metrics to guide net-
work reconfiguration and reinforcement through optimization
frameworks, transitioning from vulnerability assessment to
actionable network design for improved resilience.

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

A. Mittal, J. Hazra, N. Jain, V. Goyal, D. P. Seetharam, and Y. Sabharwal,
“Real time contingency analysis for power grids,” in Euro-Par 2011
Parallel Processing, E. Jeannot, R. Namyst, and J. Roman, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 303-315.
“Climate  vulnerability considerations for the power
Transmission and distribution infrastructure,” EPRI, Techni-
cal Report 3002026315, October 2023. [Online]. Available:
https://www.epri.com/research/products/000000003002026315

IEEE Recommended Practice for Monitoring Electric Power Quality, In-
stitute of Electrical and Electronics Engineers Std. IEEE Std 1159-2019,
2019. [Online]. Available: https://standards.ieee.org/ieee/1159/6124/
Short-circuit  currents in three-phase AC systems — Part 3:

sector:

Currents during two separate simultaneous line-to-earth short
circuits and  partial ~ short-circuit  currents  flowing  through
earth, 1IEC Std. IEC 60909-3:2009, 2009. [Online]. Available:
https://webstore.iec.ch/en/publication/3890

Fault tree analysis (FTA), IEC Std. IEC 61 025:2006, 2006.

R. Billinton and R. N. Allan, “Probabilistic assessment
of power systems,” Proceedings of the IEEE, vol. 88,
no. 2, ppP- 139-162, 2000. [Online]. Available:

https://home.engineering.iastate.edu/ jdm/ee653/BasicConcept_Reliability
Evaluation.pdf

T. Gonen, Electric Power Distribution Engineering, 3rd ed.
CRC Press, Taylor & Francis Group, 2014. [Online]. Available:
http://students.aiu.edu/submissions/profiles/resources/onlineBook/Z7e5T7
_Electric_Power_Distribution_Engineering-_Third_Edition.pdf
“Distribution annual performance report 2023/24” SP Energy
Networks, Annual Performance Report, July 2024. [Online]. Available:
https://www.spenergynetworks.co.uk/userfiles/file/SP__Energy_Networks
_Distribution_Annual_Performance_Report_2023-24.pdf

H. Farhangi, “The path of the smart grid,” IEEE Power and Energy
Magazine, vol. 8, no. 1, pp. 18-28, 2010. [Online]. Available:
https://doi.org/10.1109/MPE.2009.934876

D. Pudjianto, P. Djapic, G. Strbac, E. T. van Schalkwyk, and
B. Stojkovska, “Der reactive services and distribution network
losses,” CIRED, vol. 2020, pp. 541-544, 2021. [Online]. Available:
https://digital-library.theiet.org/doi/abs/10.1049/0oap-cired.2021.0111

I. B. Majeed and N. I. Nwulu, “Impact of reverse power flow on
distributed transformers in a solar-photovoltaic-integrated low-voltage
network,” Energies, vol. 15, no. 23, 2022. [Online]. Available:
https://www.mdpi.com/1996-1073/15/23/9238

A. M. Howlader, S. Sadoyama, L. R. Roose,
“Active power control to mitigate voltage and frequency
deviations for the smart grid using smart pv inverters,”
Applied Energy, vol. 258, p. 114000, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306261919316873
Y. Li and A. Jenn, “Impact of electric vehicle charging demand
on power distribution grid congestion,” Proceedings of the National
Academy of Sciences, vol. 121, no. 18, p. €2317599121, 2024. [Online].
Available: https://www.pnas.org/doi/abs/10.1073/pnas.2317599121
BloombergNEF, “Electric vehicle outlook 2025, June 2025,
annual flagship report analyzing the future of road transport
electrification, including market forecasts, battery trends, and policy
impacts. [Online]. Available: https://about.bnef.com/insights/clean-
transport/electric-vehicle-outlook/

Trialog, “L’impact de [Iintégration des véhicules
dans le réseau  électrique,”  2023. [Online].
https://www.trialog.com/fr/impact-vehicules-reseau/

K. Fenaughty, D. S. Parker, J. Butzbaugh, and C. Colon, “Detailed
evaluation of electric demand load shifting potential of heat pump
water heaters in a hot humid climate,” Science and Technology for
the Built Environment, vol. 29, no. 9, pp. 905-926, 2023. [Online].
Available: https://doi.org/10.1080/23744731.2023.2261808

T. L. Lee, “Implications of heating electrification on distribution
networks and distributed energy resources,” S.M. Thesis,
Massachusetts Institute of Technology, May 2022. [Online]. Available:
https://dspace.mit.edu/handle/1721.1/144976

J. Noh, S. Kang, J. Kim, and J.-W. Park, “A study on volt-watt mode of
smart inverter to prevent voltage rise with high penetration of pv system,”
in 2019 IEEE Power Energy Society General Meeting (PESGM), 2019,
pp- 1-5.

W. Liu, T. Zhang, C. Lin, K. Li, and R. Wang, “Graph
attention networks unleashed: A fast and explainable vulnerability
assessment framework for microgrids,” March 2025. [Online]. Available:
https://arxiv.org/htm1/2503.00786v 1

and Y. Chen,

électriques
Available:



MASTER’S DEGREE IN SMART GRIDS, AUGUST 2025

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

S. Maity and P. Panigrahi, “Vulnerability and efficiency assessment
of complex power grids using current-flow line centralities,”
arXiv preprint arXiv:2404.10005, April 2024. [Online]. Available:
https://arxiv.org/pdf/2404.10005

P. Crucitti, V. Latora, and S. Porta, “Centrality measures in spatial
networks of urban streets,” Physical review. E, Statistical, nonlinear,
and soft matter physics, vol. 73, p. 036125, 04 2006.

Y. Alrowaili, N. Saxena, and P. Burnap, “Towards developing an
asset-criticality identification framework in smart grids,” in Proceedings
of the IEEE International Conference on Cyber Security and Resilience
(CSR). London, United Kingdom: IEEE, September 2024. [Online].
Available: https://orca.cardiff.ac.uk/id/eprint/171133/1/2024217970.pdf
S. Porta, P. Crucitti, and V. Latora, “Multiple centrality assessment in
parma: A network analysis of paths and open spaces,” Urban Design
International, vol. 13, no. 1, pp. 41-50, 2008. [Online]. Available:
https://www.academia.edu/2818958/Multiple_centrality_assessment_in
_Parma_a_network_analysis_of_paths_and_open_spaces

J. Li, X. Wang, and T. Zhang, “Sequence-based centrality measures
in maritime transportation networks,” IET Intelligent Transport
Systems, vol. 14, no. 14, pp. 2042-2051, 2020. [Online]. Avail-
able: https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-
its.2020.0301

S. Forsberg, K. Thomas, and M. Bergkvist, “Power grid vulnerability
analysis using complex network theory: A topological study of
the nordic transmission grid,” Physica A: Statistical Mechanics and
its Applications, vol. 626, p. 129072, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0378437123006271
A. B. M. Nasiruzzaman, H. R. Pota, and F. R. Islam, “Method, impact
and rank similarity of modified centrality measures of power grid to
identify critical components,” in 2012 11th International Conference on
Environment and Electrical Engineering, 2012, pp. 223-228.

P. Espinoza-Arriagada, G. Ruz, and L. Gutierrez-Lagos, “Graph theory-
based topological and nodal analysis for identifying critical points to
enhance resilience in electrical distribution systems,” 12 2024.

N. Developers, “Networkx: Software for the creation, manipulation,
and study of complex networks,” 2025. [Online]. Available:
https://networkx.org

DSS-Extensions Developers, “Opendssdirect.py docu-
mentation,” 2025. [Online]. Available: https://dss-
extensions.org/OpenDSSDirect.py/index.html

C. Martin and P. Niemeyer, “On the impact of network size and average
degree on the robustness of centrality measures,” Network Science,
vol. 9, no. S1, p. S61-S82, 2021.



