

GENERAL INFORMATION

Data of the subject		
Subject name	Heat Transfer	
Subject code	DIM-GITI-314	
Mainprogram	Bachelor's Degree in Engineering for Industrial Technologies	
Involved programs	Grado en Ingeniería en Tecnologías Industriales y Grado en Administración y Dirección de Empresas [Third year] Grado en Ingeniería en Tecnologías Industriales [Third year]	
Level	Reglada Grado Europeo	
Quarter	Semestral	
Credits	4,5 ECTS	
Туре	Obligatoria (Grado)	
Department	Department of Mechanical Engineering	
Coordinator	Luis Mochón Castro	

Teacher Information

Teacher			
Name	Alberto David Jáñez Cordero		
Department	Department of Electrical Engineering		
EMail	adjanez@icai.comillas.edu		
Teacher			
Name	José Luis Martínez del Pozo		
Department	Department of Mechanical Engineering		
EMail	jlmartinez@comillas.edu		
Teacher			
Name	José Rafael Rubio Caldera		
Department	Department of Mechanical Engineering		
EMail	jrrubio@icai.comillas.edu		
Teacher			
Name	José Rubén Pérez Domínguez		
Department	Department of Mechanical Engineering		
EMail	jrpdominguez@icai.comillas.edu		
Teacher			
Name	Luis Manuel Mochón Castro		
Department	Department of Mechanical Engineering		
Office	Alberto Aguilera 25 [D-308]		

EMail	lmochon@icai.comillas.edu	
Teacher		
Name	César Ignacio Boró Martín	
Department	Department of Mechanical Engineering	
EMail	ciboro@icai.comillas.edu	
Teacher		
Name	Jorge Sampedro Feito	
Department	Department of Mechanical Engineering	
EMail	jsampedro@comillas.edu	
Teacher		
Name	Leopoldo Prieto Fernández	
Department	Department of Mechanical Engineering	
EMail	lpfernandez@icai.comillas.edu	
Profesores de laboratorio		
Teacher		
Name	Juan Norverto Moriñigo	
Department	Department of Mechanical Engineering	
EMail	jnorvert@comillas.edu	

DESCRIPTION OF THE SUBJECT

Contextualization of the subject

Prerequisites

Basic knowledge of thermodynamics and fluid mechanics.

Course contents

Contents

Theory:

- 1. Introduction to heat transfer. Conduction, Convection and Radiation. Energy balance for control volumes and surfaces.
- 2. Conduction. The heat diffusion equation: initial and boundary conditions. One-dimensional, steady-state conduction. Thermal resistance. Thermal contact resistance. Critical radius of insulation. Conduction with thermal energy generation. Fins. Transient conduction: the lumped capacitance model. Geometrical effects. The semi-infinite solid.
- 3. Convection. Hydrodynamic and thermal boundary layers. Laminar and turbulent flow. Nusselt number. Functional forms of convection coefficients. Non dimensional groups in heat transfer. Forced convection: internal and external flow. Free convection: internal and external flow. Mixed convection.
- 4. Heat exchangers. Classification. Overall heat transfer coefficient. Basic equations: the log mean temperature method and the

Effectiveness-NTU method.

5. Radiation. Blackbody radiation: Planck's, Wien's and Stefan-Boltzmann's laws. Radiation exchange between black surfaces: view factor. Radiative properties of real surfaces. Kirchoff's Law. Radiation exchange between opaque diffuse surfaces. Solar radiation.

Laboratory:

Students will complete three of the six sessions proposed:

- 1. Conductive heat transfer
- 2. Convective heat transfer
- 3. Radiation heat transfer
- 4. Boiling heat transfer
- 5. Heat exchangers
- 6. Numerical methods in heat transfer

EVALUATION AND CRITERIA

The use of AI to produce full assignments or substantial parts thereof, without proper citation of the source or tool used, or without explicit permission in the assignment instructions, will be considered plagiarism and therefore subject to the University's General Regulations.

Evaluation activities	Evaluation criteria	Weight
	Understanding of concepts	75
Mid-term exams Final Exam	Applications of concepts for the resolution of practical problems	
	Analysis and interpretation of the conclusions obtained from problem-solving	
	Understanding of concepts	
	Application of concepts for the resolution of practical problems and for their implementation in labs	
Labs	Analysis and interpretation of the data obtained in labs	25
	Ability to work in groups	
	Oral presentation and writen communication	

Syllabus 2025 - 2026

Grading

The following conditions must be accomplished to pass the course:

- A minimum overall grade of at least 5 over 10.
- A minimum grade in the final exam of 5 over 10.

The overall grade is obtained as follows:

- Final exam 50%.
- Other exams 25%.
- Lab exam 20%.
- Performance during the lab sessions 5%.

BIBLIOGRAPHY AND RESOURCES

Basic References

- Notes in Moodle
- Heat and mass transfer. Yunus A. Çengel; Afshin J. Ghajar. Mc Graw Hill.

In compliance with current regulations on the **protection of personal data**, we would like to inform you that you may consult the aspects related to privacy and data <u>that you have accepted on your registration form</u> by entering this website and clicking on "download"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792