

Syllabus 2025 - 2026

GENERAL INFORMATION

Data of the subject		
Subject name	Advanced Control	
Subject code	DEAC-MII-531	
Mainprogram	Official Master's Degree in Industrial Engineering	
Involved programs	Máster Universitario en Ingeniería Industrial [First year]	
Credits	4,5 ECTS	
Туре	Obligatoria	
Department	Department of Electronics, Control and Communications	

Teacher Information		
Teacher		
Name	Juan Luis Zamora Macho	
Department	Department of Electronics, Control and Communications	
Office	Alberto Aguilera 25 [D-212]	
EMail	Juanluis.Zamora@iit.comillas.edu	
Phone	2420	
Teacher		
Name	Adán Simón Muela	
EMail	adansimon@icai.comillas.edu	

DESCRIPTION OF THE SUBJECT

Contextualization of the subject

Prerequisites

Basic knowledge of modeling dynamic systems.

PID control design based on frequency response.

Programming in Matlab/Simulink.

Course contents

Contents

Theory

1. Limitations of classical control. Conflicting dynamics in monovariable control systems. Multivariable control systems. Need for advanced control.

Syllabus 2025 - 2026

- 2. Advanced PID control. Feedforward control. Smith predictor. Cascade control. Multivariable PID control.
- 3. Multivariable control by state feedback. LQR control. Kalman filter.
- 4. Model Predictive Control. Fundamentals of Model Predictive Control. Fields of application.
- 5. Adaptive control. Autotuning. Gain Scheduling. Self-Tuning Regulator and Model Reference Adaptive System. Fields of application of each technique.

Laboratory

The laboratory work is aimed at developing a project, where teamwork, organization, creativity and initiative take on special importance. The activities carried out in the laboratory around a practical control project will be the following:

- 1. Project planning and distribution of tasks.
- 2. Modeling based on tests.
- 3. PID control.
- 4. Application of an advanced control.

EVALUATION AND CRITERIA

The use of AI to produce full assignments or substantial parts thereof, without proper citation of the source or tool used, or without explicit permission in the assignment instructions, will be considered plagiarism and therefore subject to the University's General Regulations.

Evaluation activities	Evaluation criteria	Weight
 Short tests and/or resolution of a practical problem. Final exam and/or practical problem for final assessment. 	 Understanding of concepts. Application of concepts to the resolution of practical problems. Analysis and interpretation of the results obtained in problem solving. Written communication. 	50
Performance during laboratory sessions. Intermediate and final laboratory exams.	 Understanding of concepts. Application of concepts to the resolution of practical problems. Analysis and interpretation of the results obtained in problem solving. Teamwork ability Oral and written communication. 	50

Grading

December Examination Session:

- Final exam with a minimum of 5, 60%.
- Continuous assessment tests during the course, 5%.
- Laboratory grade with a minimum of 5, 35%.

Syllabus 2025 - 2026

June Examination Session:

- Final exam with a minimum of 5, 60%.
- Continuous assessment tests during the course, 5%.
- Laboratory grade with a minimum of 5, 35%.

The student is not examined in the June Examination Session for the part (theory or laboratory) that he or she has passed in the December Examination Session. Class attendance is compulsory, according to the Academic Regulations of the Higher Technical School of Engineering (ICAI). The attendance requirements will be applied independently for the theory and laboratory sessions: In the case of theory sessions, failure to comply with this rule may prevent them from taking the exam in the December Examination Session. In the case of laboratory sessions, failure to comply with this rule may prevent them from taking the exam in both the December and June Examination Sessions. In any case, unexcused absences from laboratory sessions will be penalized in the assessment.

BIBLIOGRAPHY AND RESOURCES

Basic References

- Åström, Wittenmark. Adaptive Control. Addison-Wesley, 1989
- Camacho, Bordons. Model Predictive Control, Springer Verlag, 2004.
- Martín-Sánchez, Rodellar. Adaptive Predictive Control, Prentice Hall, 1995

In compliance with current regulations on the **protection of personal data**, we would like to inform you that you may consult the aspects related to privacy and data that you have accepted on your registration form by entering this website and clicking on "download"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792