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Abstract— This thesis project studies PMU-based fault location in 

medium-voltage distribution networks with a focus on solutions 

that a utility could actually deploy. The core of the work aims to 

discover if a single-ended impedance estimator, supported by a 

small set of well-placed PMUs can deliver reliable locations 

without instrumenting the entire feeder. To keep costs realistic, 

PMUs are assumed at sites where previous monitors already exist. 

The choice is tied to quality of service, since quicker and more 

trustworthy location shortens isolation and restoration. 

A 43-node section of an urban Milan feeder serves as the case 

study. Faults are simulated across nine scenario families that 

combine three fault types with three fault-resistance levels of 0, 1, 

and 5 Ω. Phasors are extracted, apparent impedances are 

computed, and each PMU produces a location probability over the 

network. These per-sensor views are then combined through a 

Bayesian rule under a uniform prior. Performance is reported 

using correct-classification rate, posterior probabilities, and 

distance error both in metres and as a share of feeder length. For 

context, a baseline using only the head-end sensor is evaluated 

alongside the fused method. 

The method resulted in three main findings. At low resistance the 

method performs strongly, in several 0 Ω cases it identifies 41 of 

43 events, and the associated posteriors are high. As resistance 

increases, confidence and hit rate decline, which accords with 

established accounts of one-ended impedance methods, where the 

additional voltage drop across the fault is read as extra line length. 

Even so, the 5 Ω group shows average spatial errors that remain 

local, roughly 3.2 percent of feeder extent, keeping switching and 

patrol efforts near the true section. Against the single-sensor 

baseline, correct classifications fall by about a quarter at 0 and 1 

Ω, and distance errors rise slightly. The results suggest a credible 

path for DSOs: incremental PMU deployment at legacy sites, a 

transparent impedance estimator, and probability-based fusion. 

 
Index Terms— Phasor measurement units, fault location, 

distribution networks, MATLAB. 

 

I. INTRODUCTION 

HE first electric power system (EPS) was developed in 

1882 by Thomas A. Edison. It was a direct current (DC) 

system with the purpose of supplying energy to a small 

portion of the area of Manhattan in New York City [1]. 

Over the next 143 years that followed, EPSs have become an 

irreplaceable aspect of modern societies. Many, if not all, of our 

day-to-day activities are currently powered by electricity; 

offices, houses, hospitals, transport, they all depend on the 

supply of electrical energy to keep their function. 

Consequently, this has placed a great responsibility on the 

electrical industry to deliver safe, clean, and cheap energy to the 

rest of the industries. This involves the crucial concept of 

 
 

quality of service (QOS). 

Due to the elevated dependency on electrical energy, cities and 

countries have increased their need for a continuous energy 

supply, and the constant reduction of interruption times. This is 

part of what is considered QOS, which focuses on guaranteeing 

the overall quality of the energy delivered from the power 

systems to the final customers, as well as the energy transfer 

between different sections of the grid. 

One of the main causes of service interruptions in electrical 

networks are faults. Faults have many potential origins, from 

weather conditions, equipment malfunction, or even human 

error, faults negatively affect the grid’s stability. Therefore, 

when a fault occurs, it is crucial to locate it as quickly and as 

accurately as possible, as the time taken to find and isolate the 

affected section will determine how long customers remain 

with interrupted supply. This turns fault location into an 

essential process for protection systems in EPS. 

There are several traditional fault location methods, some of 

them still widely used, but they will face limitations when 

applied to modern grids. Traditional methods’ accuracy may 

decrease as the grid becomes more complex, and the 

penetration of distributed generation keeps increasing. In the 

past years, this has led to the development of more advanced 

fault location techniques that can better adapt to current power 

system conditions. Among these, Phasor Measurement Units 

(PMUs) have gained much attention. 

PMUs are able to provide time-synchronised measurements of 

voltage and current phasors from different points in the 

network. This allows operators to analyse faults with a higher 

level of precision, as the measurements from separate locations 

can be compared directly. PMU technology can be used along 

with traditional impedance-based fault location algorithms, 

which could reduce the uncertainty of the estimated location 

and facilitate the distribution system operators (DSOs) job at 

reestablishing power. 

However, deploying PMUs across a distribution network can be 

a costly modernisation. Therefore, DSOs may be interested in 

strategies that reduce installation and maintenance costs 

without losing their benefits. Here is where a new approach is 

needed, to install PMUs in the same positions where existing 

measurement devices are already present, avoiding the need for 

additional infrastructure. 

T 
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This project follows this approach and applies it to a section of 

a medium-voltage distribution grid located in Milan, Italy. The 

method combines a more traditional impedance-based fault 

location with a probabilistic refinement process that merges 

different location predictions into a single result. This is done 

using Bayes’ Theorem, which allows the results from different 

PMU perspectives to be weighted and combined according to 

their likelihood. The performance of this method is evaluated 

by simulating different types of faults and fault resistances, 

comparing the intended result and the actual estimation. 

II. CURRENT APPLICATIONS OF PMUS IN HV 

TRANSMISSION NETWORKS 

There is a large volume of published studies describing the role 

of PMUs in high voltage (HV) transmission networks. An 

increasing amount of literature is being published on the use of 

these devices for many applications such as fault detection and 

location, distance protection, stability, and Wide Area 

Monitoring System (WAMS). Recent developments in the field 

of power systems have led to a renewed interest in PMU-based 

protection schemes. The general consensus in the literature is 

that they improve stability, reliability, and efficiency. 

MONITORING AND CONTROL 

PMUs can provide precise and synchronised measurements, 

useful for advanced control strategies, grid automation, and 

system optimization. Thanks to this, PMUs contribute 

significantly to real-time monitoring of power systems. They 

offer Transmission System Operators (TSOs) detailed 

measurements of voltage and current phasors, which are crucial 

for identifying disturbances and assessing the overall health of 

the power system [3]. 

SYSTEM STABILITY AND EFFICIENCY 

PMUs are vital for enhancing system stability and operational 

efficiency in smart grids. Their measurements help in state 

estimation and voltage stability assessment [3]. 

FAULT DETECTION 

PMU technology has become instrumental in fault detection 

within the power grid. The microsecond accuracy allows for 

precise detection of disturbances like frequency variations and 

voltage instabilities. 

The growth in the adoption of PMUs reflects their important 

role in improving the monitoring and control mechanisms of 

power grid operations, providing the accuracy and reliability 

necessary for modern grid management [3]. 

PMUs are used for wide-area fault detection and location, 

employing analytical methods that utilize dispersed 

synchrophasor measurements and bus impedance matrices to 

detect fault inception. This allows for the determination of the 

faulted zone, diagnosis of the suspected faulted line, and 

identification of the exact fault point along the line. 

They can also detect multiple faults across a wide area network 

using signal processing approaches, where PMUs installed at 

various buses acquire synchronised voltage phasors [4]. 

These applications are all extremely useful for transmission line 

protection schemes, as well as monitoring. However, the focus 

of this study is fault location, so the document will gravitate 

towards that. 

Fault location is a crucial area of research for EPS. Data 

extracted using PMU device has proven to be useful for 

improving traditional fault location methods, as well as opening 

the way for new, innovative approaches. 

FAULT LOCATION METHODS IN TRANSMISSION NETWORKS 

IEEE Standard C37.114-2004 [5] mentions two different types 

of fault location methods. The first method, based on the 

estimation of line impedances, is often called in the literature as 

impedance-based. Impedances are commonly obtained using 

the equations developed and published by J.R. Carson, et al. in 

1926 [6]. Naturally, the accuracy of this method depends on the 

accuracy of the impedance estimation method, which is high for 

Carson’s equations. 

A second method, often referred to as traveling wave, is defined 

by IEEE as “The resulting wave when the electric variation in 

a circuit takes the form of translation of energy along a 

conductor, such energy being always equally divided between 

current and potential forms” [6]. 

 

Impedance-based methods can be divided into two main 

categories: one-ended, known as single-ended, and two-

terminal, also referred to as double-ended. These methods are 

explained below. 

Single-ended 

Single-ended, or one-ended, fault location techniques are 

widely used in transmission and distribution systems to 

estimate the location of faults using electrical measurements 

obtained exclusively from one terminal of the line. These 

methods are typically embedded in microprocessor-based 

protective relays and require specific equipment and data inputs 

to operate effectively. 

The fundamental idea behind single-ended fault location 

techniques lies in estimating the apparent impedance seen from 

a single measurement point into the transmission line. This 

estimated impedance is then used to infer the distance to the 

fault. In order to obtain accurate results, it is generally necessary 

to measure phase-to-ground voltages and the corresponding 

phase currents across the three phases. However, phase-to-

phase faults remain detectable even if only line-to-line voltage 

data is available. Furthermore, if the zero-sequence source 

impedance is known, estimates of phase-to-ground faults can 

also be obtained. 

One of the simplest implementations of this approach is known 

as the reactance method. In this case, the fault distance is 

assumed to be proportional to the ratio between the measured 

reactance and the total line reactance. 

Double-ended 

Double-ended, or two-terminal, fault location methods utilize 

data collected from both ends of a transmission line to 

determine the location of the fault. These methods are generally 

more accurate than one-ended techniques due to their ability to 

mitigate common sources of error. 

Unlike single-ended methods that rely solely on local 

measurements, double-ended methods use voltage and current 
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data from both ends of the line. This comprehensive data allows 

for more accurate calculations. One of the main advantages of 

these methods is their ability to minimize the negative effects 

of variations such as fault resistance and load current in their 

predictions, which are one of the major sources of error in 

single-ended methods. 

One of the main disadvantages of double-ended methods is, 

naturally, their need to gather data from both ends and then 

process it at a single location. This characteristic turns the data 

acquisition and processing into much more complex stages than 

those in single-ended methods. Another important disadvantage 

is their speed. These location techniques generally require more 

time to generate an estimate, and although speed may not be 

critical for some applications, a longer location estimation time 

can lead to longer downtime and interruptions, negatively 

impacting the grid’s QOS. 

PMUS IN MV DISTRIBUTION NETWORKS 

Applications 

In a review published by Menezes et al. [4], the authors mention 

different applications related to distribution systems, they 

particularly highlight fault detection and location, state 

estimation, islanding detection, and other protection schemes. 

The papers reviewed are significantly fewer than those related 

to transmission applications. From a total of 39 research papers 

proposing new approaches to PMU integration in EPS, a total 

of 32 were focused on transmission systems, while only 8 

researched distribution-level areas, with 4 of them being 

microgrids. However, 2 of those papers focus on general 

protection. That means only 1 paper from the 39 reviewed is 

truly relevant to fault location. 

In the research paper published by Pignati et al. [12], it is 

claimed that PMU-based protection schemes possess the 

needed characteristics required for time-critical situations such 

as fault location. 

III. CHALLENGES OF PMU IMPLEMENTATION IN MV 

NETWORKS 

An important aspect to consider is the challenges that come 

with working in medium-voltage (MV) distribution networks. 

While PMUs have been extensively developed and integrated 

to operate in HV transmission networks, the challenges that 

distribution presents are not equivalent to those of transmission. 

This means that the particular limitations related to MV grids 

will have to be considered to adapt PMU technology to these 

new applications. 

INSTALLATION AND MAINTENANCE COSTS 

Despite their attractive advantages, PMU deployment carries 

several challenges that need to be considered. One of these 

challenges is the costs related to installation and maintenance 

activities. Considering general PMU implementation costs, that 

is, both transmission and distribution levels. 

The U.S. Department of Energy offers a brief sight of the 

related costs concerning these deployments in [13]. This 

document sheds some light on the average investment required 

by these devices. It shows a median of 43,400 USD per PMU 

installed. This value includes the cost of each device as well as 

every installation-related cost such as design, labour, materials, 

and construction. 

Economies of scale do not benefit this particular type of 

devices. That means that there is no cost decrease associated 

with the large-scale PMU deployment. 

Nevertheless, it is important to note that the results shown in 

these reports vary in magnitude (i.e. some projects presented 

costs double or half the median cost) [13]. 

However, research suggests that it is possible that through 

optimal PMU placement, high costs and communication 

infrastructure issues might be reduced. In reference [14], Cruz 

et al. propose an optimization algorithm for centralised WAMS. 

This paper presented an optimization algorithm that managed 

to reduce PMU installation costs for certain applications. This 

proposal was tested in various IEEE test networks, including a 

practical application in a 5804-bus Brazilian transmission 

system. The results demonstrated flexibility and effectiveness, 

with a promising scalability and adaptability. These results 

contradict the conclusions presented in the recovery Act from 

the U.S. government. 

IV. JUSTIFICATION 

As modern power systems evolve to accommodate high levels 

of distributed energy resources (DERs), electric vehicles, and 

bidirectional energy flows, medium voltage (MV) distribution 

networks face increased complexity. Fault detection and 

location are now more challenging than ever, yet critical for 

protection schemes, focused on maintaining reliability and 

minimising downtime. Phasor Measurement Units (PMUs) 

offer an attractive solution by providing time-synchronised 

measurements. However, their adoption in MV networks has 

been hindered by high costs, complex installation requirements, 

and the traditionally dense deployment needed for effective 

coverage. 

Research has shown that DER penetration has a negative impact 

in the stability and reliability of distribution networks. In a 

study done in 2022, M. S. Turiman et al. analysed and studied 

the technical impacts that distributed generation (DG) had in 

distribution grids. The consensus was that one of the main 

effects of DG integration was an increase in fault level, 

especially related to synchronous and asynchronous machines. 

Other findings were that DG integration had the potential to 

affect voltage regulation, cause voltage limit violation, 

increased network losses, and increased line loading [17]. 

However, DER not only have negative impacts, Ref. [18] 

studied the impact of Battery Energy Storage Systems (BESS) 

on distribution networks. In this paper, the authors found that 

BESS had a positive impact on the grid in which they were 

implemented. They appeared to improve stabilization by 

facilitating a fast response, as well as reducing the negative 

effects of disturbances and improving the power quality of the 

grid. 

It is also important to note that while a low presence of DG in 

the grid is normally manageable, when that presence reaches a 

percentage higher than 20%, outages start to become much 

more likely and critical. Ref. [19] highlights how much DG 

impacts distribution networks. 

This project addresses these shortcomings by developing and 

testing a PMU-based fault location method for MV networks 
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that provides higher-quality data. The methodology is built 

around realistic data and conditions: it utilises real 

measurements provided by Gridspertise, along with a 

MATLAB Simulink simulation that accurately models the 

behaviour of MV distribution grids under fault conditions. 

The method centres on single-ended, impedance-based fault 

location algorithms, chosen for their low infrastructure 

requirements and compatibility with existing utility devices. 

However, unlike traditional single-ended methods, the 

approach proposed in this project introduces enhancements 

aimed at maximising the value of each PMU by using a tailored 

measurement placement strategy and adapted fault analysis to 

compensate for the reduced observability. 

The value of the proposition is clear, to use fewer PMUs to 

achieve accurate fault location. This can significantly reduce 

capital and installation costs. Faster and more efficient fault 

detection will minimise outage times and improve service 

reliability indicators like System Average Interruption Duration 

Index (SAIDI) and System Average Interruption Frequency 

Index (SAIFI). Deployment is more realistic and scalable, as 

the system can operate effectively even in partially monitored 

networks. 

Using real PMU data from an industry partner improves the 

applicability of the approach, while the simulation testing 

allows for a flexible analysis of performance under diverse 

scenarios and fault types without the technical and economic 

complications of real grid testing. 

This project aims to offer a commercially and operationally 

viable alternative to populate networks with PMU technology 

by balancing performance and practicality. It gives utilities a 

path to benefit from the protection and monitoring capabilities 

of PMUs without the financial and technical burden of making 

entirely new installations. The proposed method aligns with the 

goals of smart grid modernisation, especially in regions where 

investment in new infrastructure must be carefully analysed. 

In conclusion, this project aims to deliver a cost-effective 

solution for PMU-based fault location in MV distribution 

systems. It combines academic content with industrial 

relevance, building a bridge between research and deployment. 

For distribution system operators (DSOs), the result is a method 

that provides the benefits of synchrophasor data while 

optimizing economic investment and reducing the need for 

large-scale infrastructure deployment. 

V. MODEL & ALGORITHM DEVELOPED 

MV DISTRIBUTION GRID 

The case study selected for the development of this project 

corresponds to a 43-node MV distribution network, which 

forms part of a larger and more complex grid located in the city 

of Milan, Italy. Rather than implementing and testing the 

proposed methodology across the entire distribution system, 

which would have posed significant challenges in terms of 

complexity, computational requirements, and result 

interpretation, as well as time investment, a decision was made 

to focus the study on a smaller subsection of the grid. 

This decision allowed for a more controlled and efficient 

evaluation of the algorithm’s performance. The selected section 

includes 43 nodes, distributed across several radial branches 

and its respective amount of topological characteristics 

characteristic of typical urban MV networks. This portion of the 

grid is depicted in Figure 1. 

 

In order to simulate the grid and apply the fault location 

algorithm effectively, a number of assumptions were 

introduced. These assumptions helped define and limit various 

aspects of the project, from the structure and configuration of 

the simulation model to the implementation and limitations of 

the algorithm. The most relevant assumptions are briefly 

described below: 

As discussed earlier, to reduce infrastructure and installation 

costs, PMUs are assumed to be installed in the same physical 

locations where previous measurement devices, which in this 

case study are RGDMs, were deployed. This strategy is critical 

to the project’s cost-efficiency goal, as it uses existing 

infrastructure to avoid the need for significant additional 

investment, turning this proposal into a much more attractive 

option. 

Currently, due to technological limitations, it remains infeasible 

to obtain PMU-grade measurements directly from the header of 

the grid. As a result, data obtained from the header do not reflect 

the same level of time-synchronised accuracy as those obtained 

from the PMUs installed at the rest of the nodes. While this 

introduces a degree of uncertainty into the dataset, it represents 

no critical disadvantage as its impact is mitigated by the 

combination carried by the algorithm. 

To address the limitations introduced by the absence of a PMU 

at the grid header, the algorithm relies on data gathered from 

multiple PMUs strategically distributed throughout the 

network. In this specific case, five PMUs were deployed at 

critical locations, all of them with both remote control and 

RGDM sensors present beforehand. This allows the algorithm 

to obtain more information that then translates into a more 

accurate prediction method. This proposal improves the 

robustness of fault location predictions and compensates for 

any inaccuracies potentially introduced by non-PMU data 

sources. 

The core principle behind the algorithm is the estimation of the 

fault distance by comparing the expected, pre-fault, line 

impedances with the actual impedances measured during a fault 

event. By doing so, the algorithm is able to calculate a set of 

possible distances for each observation point. These estimated 

distances are then combined, and their consistency evaluated, 

to produce a final prediction of the fault location along with an 

associated likelihood or confidence level. 

RTDS MODEL 

To properly test the algorithm, the first step is to create a model 

the respective grid in a simulation software. This modelling 

process was conducted at the laboratories of Gridspertise in 

Milan, Italy, with technical support from the company. And 

then adapted specifically for the purposes of this study. 
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The model was modified to include a configurable fault 

component, allowing the faults to be activated at any of the 43 

nodes in the network. Additionally, controllable switches were 

integrated to selectively activate or deactivate specific fault 

types. Then the resulting voltage, current, and frequency values 

were captured by all 5 PMU sensors and stored in folders within 

the software in real-time. This way, the fault location could be 

chosen at any point and changed whenever needed. 

PMU devices were placed in their corresponding locations, 

header and nodes 10, 20, 26, 30. This distribution covers the 

entire grid and guarantees a proper observability of the grid. 

The core idea was to use the model in the RTDS software to 

simulate in real-time the faults that were to be analysed in this 

study. The study focused on 9 different scenarios, which 

encompass 3 different fault types and 3 fault resistance values, 

stated as follows. 

The fault types under analysis were: 

• 3-Phase 

• Double-line-to-ground 

• Line-to-line 

Similarly, these 3 fault types were simulated in 3 different fault 

resistance conditions, i.e., three different FR values: 

• FR= 0Ω 

• FR= 1Ω 

• FR= 5Ω 

As each one of the three fault conditions is analysed under other 

three FR conditions, the results amount to nine unique 

simulations with individual results. 

To achieve this, the model had to be simulated and automated 

to facilitate the extraction process. This was carried out through 

a script implemented in the RSCAD software that runs the 

RTDS simulation. This script handled the currently simulated 

fault location to switch from one FR value to the next, and then 

from one FT to the next. Each time the script finished obtaining 

the relevant voltage and current data, it then created a CSV file 

to store it and saved it in the proper folder within the device. 

This required the manual modification of the model to place the 

fault in each one of the 43 nodes within the grid. 

Although the automation script streamlined much of the 

process, manual intervention was still required to reposition the 

fault component across all 43 nodes of the network, one by one. 

Once data had been generated for all nodes and fault scenarios, 

the resulting data folders were transferred to the computing 

environment where the main fault location (FL) algorithm was 

executed and evaluated. 

MATLAB SYSTEM 

The system is implemented in MATLAB, utilising a central 

orchestration script that interacts with many specialised 

functional modules, including its main: a DFT module for 

waveform processing, an impedance calculation for impedance-

based localisation, and a fault classifier that classifies the fault 

into one of 4 possible types. 

The proposed system addresses the challenge of rapidly and 

accurately identifying fault locations by processing large 

volumes of simulated fault data from a Real-Time Digital 

Simulator (RTDS). The methodology is structured to first 

identify potential fault zones using individual PMU 

measurements (Stage 1) and then refine this localisation by 

probabilistically combining information from multiple PMUs 

(Stage 2). The main script manages the overall workflow, from 

data ingestion and organisation to the execution of the two 

analytical stages and the presentation of final fault location 

predictions. 

Stage 1: Traditional Distance Protection 

The first stage of the localization process makes use of 

conventional impedance-based principles to determine 

individual fault locations from the perspective of each 

individual PMU. 

Waveform Phasor Extraction 

For each PMU measurement associated with a given fault 

scenario, the script calls the DFT_v7.m model to apply the 

Discrete Fourier Transform to the respective waveform 

obtained from the CSV data. This takes the path to the raw 

waveform CSV file and the nominal system voltage (Vn) as 

inputs. Figure 1 shows the waveform signal in MATLAB. 

 

Within this module, the time-series voltage and current data are 

processed using the DFT. This function extracts the steady-state 

phasor components, including positive, negative, and zero 

sequence voltages (E1, E2, E3, E0a, Eda, Eia) and currents (I1, 

I2, I3, I0a, Ida, Iia). These phasor values serve as the 

fundamental electrical measurements for the fault analysis done 

in the rest of the process. 

Impedance-Based Fault Zone Identification 

This module receives the grid node ID corresponding to the 

measuring PMU, the pre-loaded grid and node topology data, 

HV system parameters, feeder details, nominal voltage, and the 

specific PMU's waveform file path. 

Figure 1. Waveform signal for the algorithm. Y axis: current (kA); X axis: 

time (s). 
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Initially, the grid's impedance matrices (positive and zero 

sequence, Zd, Z0) are computed using the 

get_imped_matrix_v5 function, establishing the electrical 

characteristics of each line and node. This function calculates 

the baseline impedances as seen from each one of the buses in 

the grid. This is a critical step, as the distance calculation 

depends on the comparison of baseline impedances and 

apparent impedances. In Figure 2, the results of this 

identification are visible.  

Figure 2. Impedance location. 

However, the analysis results must consider the different fault 

types that the data might correspond to. With this in mind, a 

fault classifier sub-function is implemented to analyse the 

symmetrical components of the phasors during the fault period 

to determine the specific fault type (e.g., three-phase, line-to-

line, or double line-to-ground). Once the fault type is 

calculated, there is another critical action that the script must 

tackle to ensure that the results are accurate. 

Fault Type Filter 

The script uses fault currents and voltages to calculate the 

apparent impedance and then makes a comparison between that 

and the baseline bus impedance. This information is then used 

to make a prediction of the fault location. However, PMUs do 

not always see a fault, as it may be located outside of their point 

of view. This may lead to false predictions as the algorithm 

must give a prediction regardless of the data. It is for this reason 

that a filter is implemented. Figure 3 shows a typical unfiltered 

current signal that is part of the signal inputs to the algorithm. 

Based on the fault type detected by the fault type classifier, the 

filter sets a series of conditions that, if met by the fault data, will 

classify the prediction as a “no fault” prediction. This is done 

by analysing the current values and based on the fault type, 

setting a threshold that divides fault current levels from normal 

current levels. This means that the data sets detected with 

normal current levels will have their predictions set as “no fault 

seen”, which provides useful information for the final 

prediction. The result is that if a PMU detects no fault, then the 

rest of the predictions have a higher value, as the fault is not 

present in this zone. 

 

 

 

Figure 3. Unfiltered current signal. Y axis: current (kA); Y axis: time (s) 

Results 

After the data has been filtered, the apparent impedance 

observed at the PMU location is calculated. This apparent 

impedance is subsequently mapped onto predefined MHO relay 

characteristic zones associated with each node in the 

distribution network, utilizing the Z_map function. This 

mapping process quantifies the likelihood that the observed 

fault impedance falls within the protective zone of each node. 

The primary output of this stage, for each individual PMU, is a 

percentage vector. This vector represents a probability 

distribution, indicating the percentage likelihood of the fault 

being located at each specific node in the system, purely based 

on the measurements from that single PMU. For numerical 

stability in the subsequent stage, a small smoothing factor (ϵ) is 

applied to these percentages, ensuring no zero probabilities, and 

the vector is normalized to sum to unity. 

 

Stage 2: PMU Refinement 

The second stage focuses on refining the predicted fault 

location results by combining the individual probabilities 

(likelihoods) obtained from multiple PMUs using Bayes’ 

Theorem. This integration takes advantage of several PMU 

measurements to improve the prediction accuracy and reduce 

the ambiguity inherent in the individual measurements. 

Bayesian Combination of Fault Location Probabilities 

The proposed algorithm relies on PMU data to estimate the 

location of faults in a distribution network. Due to the nature of 

electrical faults and the distribution of PMUs across the system, 

each measurement point provides a partial and independent 

perspective of the event. These perspectives are expressed as 

probabilistic fault location estimates for each possible bus in the 

network. In order to reach a final, consolidated prediction of the 

faulted location, the algorithm uses a Bayesian combination 

method to integrate the multiple estimates into a single, 

coherent probability distribution. 

The core idea is to treat the outputs from different PMU 

viewpoints as conditionally independent likelihoods of the fault 

being at each node. By assuming a uniform prior probability 
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(i.e. there is no prior knowledge for any specific node over 

another), the code applies Bayes’ Theorem to update this prior 

probability using the available likelihoods. 

Each iteration of the loop in the code corresponds to one group 

of six likelihood values (e.g., from six different PMU 

measurements) and for each of the 43 possible fault locations. 

The key steps of the algorithm are the following: 

Prior Definition 

A uniform prior probability distribution is assumed for all 

possible fault locations. Reflecting the temporary assumption 

that all nodes are equally likely to experience a fault. 

Likelihood Aggregation 

For each set of six probability columns, representing different 

views or methods of estimating the fault likelihood, the 

algorithm computes the product of the likelihoods for each 

location. This step combines the individual observations into a 

single combined likelihood for each node. This aligns with the 

assumption of conditional independence. 

Posterior Calculation 

Then, the unnormalized posterior values are computed by 

performing an element-wise multiplication of the prior and the 

combined likelihoods. This results in an intermediate vector 

that represents the relative belief that each node is the faulty 

node, before normalisation. 

Normalization 

To make sure that the final values represent a valid probability 

distribution (i.e. they sum to 100%), the unnormalized posterior 

is scaled accordingly. This results in the final Bayesian 

posterior probabilities, which are stored in a vector. 

The algorithm aims to improve the robustness and reliability of 

the fault location prediction by combining all the different 

estimates through this probabilistic framework. Bayes’ 

Theorem allows for the fusion of independent evidence, 

improving its accuracy, especially in cases where some 

measurements may be noisy, ambiguous, or do not provide 

enough information when interpreted in isolation. This happens 

especially often when the PMU is located before a branch 

separation that leads to 2 or more branches with one of them 

containing the fault. In these cases, the PMU calculates a 

distance that corresponds to several different nodes, which 

leads to multiple predictions with similar likelihoods. 

VI. RESULTS AND DISCUSSION 

As mentioned in the previous chapter, the algorithm begins the 

process by extracting the fault data from the CSV file that 

contains the measurements recorded during the fault event. 

Then, this information is presented in the form of waveforms to 

facilitate their processing. This waveform is also plotted in an 

effort to facilitate the visualisation of the fault behaviour, which 

in turn aids troubleshooting as well. The rest of the algorithm 

will use the voltage and current phasors in their rectangular 

form, 𝑎 + 𝑖𝑏. These values are the core of the calculations and 

are used throughout the entire process to calculate the 

impedances that will bring the results. 

After reading and adapting the data, the impedance estimation 

stage will produce several outputs. These include the following. 

Location estimates provided by each PMU individually 

The likelihood distribution for each of the estimates 

A graph visually showcasing the comparison between the 

measured impedance (during the fault event) and the baseline 

bus values 

The voltage and current waveforms associated with the fault. 

In this case study, the system includes five PMUs and one non-

PMU sensor located at the header of the grid. Together, they 

provide a total of six separate fault location estimates. Then, in 

order to obtain a single final prediction, these individual 

estimates are combined using Bayes’ Theorem. This 

combination step produces two outputs. 

• A Bayesian combined estimate 

• Probability values for each possible fault location. 

It is important to note that some of the individual estimates may 

be, and surely will be, incorrect. This results in estimations that 

differ from the actual faulty node. To consider this and allow 

for analysis, the distance between the estimated and the actual 

faulty node is calculated by computing the difference between 

the predicted location and the true location once the algorithm 

shows its results. This metric helps build a more detailed 

assessment of the accuracy and reliability of the proposed 

method. 

The proposed Bayesian fusion approach was tested on a 43-

node urban feeder model under nine scenario families, 

combining three fault types (single-phase-to-ground, double-

phase, and three-phase) with three fault resistances (0, 1, and 5 

Ω). Performance was assessed in terms of correct-classification 

rate, posterior probability, and distance error, and benchmarked 

against a baseline method that relies solely on the feeder head 

PMU. 

For low-resistance faults (Rf = 0 Ω), the method achieved high 

accuracy. In several three-phase cases, the algorithm correctly 

identified 41 out of 43 events, with posterior probabilities 

exceeding 99.95%. Distance errors were negligible, confirming 

that the single-ended impedance estimator performs reliably 

when additional fault resistance does not distort apparent 

impedance. 

At Rf = 1 Ω, a moderate decline in performance was observed. 

Classification rates dropped by approximately 15–20%, and 

posterior probabilities decreased accordingly. These results are 

consistent with theoretical expectations, as the added resistance 

introduces a voltage drop that biases the estimator toward 

longer apparent line lengths. Nonetheless, distance errors 

remained moderate, and the Bayesian combination helped 

preserve robustness by down-weighting inconsistent 

estimations. 

The most challenging case was Rf = 5 Ω, where accuracy 

declined further, and several events were misclassified. 

However, the spatial analysis showed that the average error 

remained limited to about 266.9 m, corresponding to roughly 

3.2% of the feeder length. Thus, while classification accuracy 

diminished, fault localization still remained sufficiently close to 
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the true section to be operationally useful. 

A comparison with the single-sensor baseline underscores the 

value of Bayesian fusion. Using only the head-end PMU 

reduced correct-classification rates by about 20–25% in the 0 

and 1 Ω scenarios and produced slightly larger distance errors. 

This confirms that combining multiple measurement 

perspectives significantly improves accuracy and mitigates 

local biases associated with single-point estimation. 

Overall, the results demonstrate that the proposed approach 

maintains high accuracy at low fault resistance, degrades in a 

controlled manner as resistance increases, and consistently 

outperforms a single-sensor benchmark. 

DISCUSSION 

Once all results are considered together, the pattern becomes 

easier to see. Figure 4 presents the average estimation 

probability for the three fault types across the three-fault 

resistance (FR) levels. A consistent tendency appears, as FR 

increases, the mean estimation probability tends to drop. This 

behaviour was expected and is visible in the figure for all three 

fault categories, where the estimation values decline as the FR 

moves from 0Ω to 1Ω to 5Ω. 

 

Estimation probability alone, however, does not fully describe 

the method’s behaviour. A second viewpoint is needed for this. 

Figure 5 reports the percentage of correct estimations for each 

scenario in the analysed grid. The numbers closely track those 

in the previous figure, which is reasonable because most correct 

classifications carry probabilities very close to 100 percent. As 

a result, the average probability and the share of correct 

outcomes move in parallel. 

It is also clear that the predictions obtained with an FR of 5Ω 

show lower probabilities and reduced accuracy. Yet this count 

of correct cases relies on a binary decision: either the estimate 

matches the true node, or it does not. To better interpret the 

results, it is necessary to add a measure that reflects how far a 

wrong estimate is from the actual faulted section. 

Figure 6 offers that perspective by plotting the distance between 

the node predicted by the algorithm and the true location. This 

view helps to judge the severity of errors rather than only their 

occurrence. The pattern is straightforward, low FR values lead 

to small distances. More interestingly, the 5Ω scenarios still 

produce an average spatial error of about 3.2 % of the grid’s 

extent, which is not especially large. This reframes the earlier 

accuracy figures and provides a more balanced view of 

performance under higher resistance. 

 

The reason for the degradation at 5Ω is consistent with the 

theory of single-ended, impedance-based location. The 

additional voltage drop across the fault resistance is interpreted 

as part of the line, so the apparent impedance becomes the sum 

of the true line segment and a term that scales with FR and the 

fault type. If the model is tuned around lower FR, that extra 

drop is read as extra distance, creating a bias that grows with 

resistance. A higher FR also lowers fault current, reducing the 

contrast between pre-fault and fault phasors; residual load 

components, infeed, and modest measurement errors therefore 

matter more. For ground faults, zero-sequence paths and 

grounding impedances can further disturb simplified positive-

sequence assumptions and add to the error. 

Even so, the 5Ω simulations in this study do not show extreme 

deviations. Three factors likely explain this outcome. 

First, the phasors are clean, and parameters are well specified, 

which reduces noise that would otherwise magnify high-

resistance effects. Third, the approach combines viewpoints 

from multiple PMUs, this means that weaker estimates lose 

weight when results are fused, and the final location tends to be 

Figure 4. Average Estimation Probability (%) 

Figure 5. Number of Correct Estimations (%) 

Figure 6. Estimation Error Distance (%) 
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pulled toward the more reliable predictions. 

Taken together, these observations suggest that FR is more 

impactful in performance than fault type. In practical terms, the 

method behaves consistently across the three fault categories as 

long as the resistance level remains comparable. 

Comparison vs. Baseline Case 

All these results are interesting on their own, but the value of 

the obtained outcomes does not only rely on their isolated 

values, but also on their performance when compared to other 

methods’ results. In an effort to further visualise these methods’ 

accuracy, the obtained data is compared to a baseline in this 

section. 

The algorithm computes its estimations based on the data 

obtained from each one of the measurement points in the grid 

and then combines six different estimation data sets to end up 

with only one set of estimation data. This baseline case relies 

on a single measurement point at the head of the grid and 

instead of combining the resulting predictions with others, it 

estimates based solely on that one set of information. Naturally, 

this will mean that the amount of information with which the 

algorithm uses to produce a prediction is less than this study’s 

case, and thus it is expected to have a lower accuracy and higher 

error ratio. 

When set against the Bayesian combination, it can be seen that 

the baseline accuracy is smaller, the correct classification rate 

decreases by about 23.26% in FR 0Ω and 1Ω scenarios, from 

95.35% to 72.09% for 0Ω and from 81.40% to 58.14% for 1Ω, 

while the third FR scenario presents only a small difference in 

value.  This is all visible in Figure 7.  

 

Several factors are likely to contribute to this gap. Firstly, a 

head-end point of view offers limited visibility of deep feeder 

sections, as the fault lies farther from the substation, the 

distinctiveness of the measured phasors is decreased. Also, with 

higher fault resistances, the extra voltage drop across the fault 

is read by the estimator as additional line length, which biases 

the apparent impedance even further, which is visible in Figure 

8.  

From an operational perspective, the differences are modest but 

not trivial. A reduction in correct identifications implies more 

switching steps or extra field checks before location, while the 

added distance error translates into longer patrol distance. 

Where the infrastructure supports multiple PMUs, the Bayesian 

fusion is preferable. If only a head-end PMU is available, the 

baseline still offers a somewhat decent performance, but its 

limitations should be expected to increase in high-resistance 

scenarios. Future work could examine whether lightweight 

compensation for fault resistance, or adaptive reweighting of 

PMUs based on past performance, narrows the remaining gap 

without adding significant complexity. 

The Bayesian combination of different probabilities proves 

useful to increase the certainty of a fault being in a certain 

location. Each individual measurement point, whether it is 

PMU or not, is capable of delivering a limited certainty that a 

fault is located in any given portion of the grid. The Bayesian 

consideration of previous probability helps this “current 

probability” increase with any extra information that can be 

extracted from the scenario and ultimately increases the overall 

probability and therefore, the accuracy of this method. 

In this study, the Bayesian comparison yields a 32.25% 

improvement in estimation capability for FR 0 scenarios and a 

32.98% improvement for FR 1 scenarios. Taken together with 

the distance results, these gains support the use of multi-point 

fusion for location in the analysed grid, while also indicating 

where further refinement should focus.  

VII. CONCLUSIONS AND FUTURE WORK 

This project set out to improve fault location in medium-voltage 

distribution networks while keeping deployment costs realistic. 

The method combines a single-ended impedance estimator with 

a Bayesian step that combines several perspectives, prioritising 

PMU placements that coincide with existing measurement sites 

to limit new infrastructure. The broader motivation of the study 

is quality of service (QOS), a faster and more reliable location 

shortens isolation and restoration, which supports continuity for 

customers and safer operations. 

Methodologically, the work proceeds along two tracks. First, it 

builds a reproducible pipeline that ingests event waveforms, 

forms phasors, computes apparent impedances, and maps these 

to likely positions along the feeder. Second, it merges per-

sensor outputs into a single posterior using Bayes’ theorem with 

simple priors. The case study is a 43-node urban feeder in 

Milan, chosen to keep analysis tractable while retaining realistic 

Figure 7. Percentage of Correct Estimations. 

Figure 8. Distance to Actual Fault (%). 
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features such as branching laterals and varied sequence 

parameters. PMUs are assumed at legacy monitor sites so the 

study can ask not only whether accuracy improves, but whether 

the gains arise in a way a DSO could plausibly adopt. 

Across nine scenario families that cross three fault types with 

three resistance levels, three patterns emerge. At low fault 

resistance the method performs well, in several 0 Ω cases 

correctly identifying most events with high posterior 

probabilities. As resistance increases, accuracy declines, which 

aligns with single-ended impedance theory because the extra 

drop across the fault is interpreted as additional line length. 

Even so, at 5 Ω the distance errors remain moderate: the average 

error is close to three per cent of the grid’s extent, which keeps 

switching and patrol effort local rather than feeder-wide. 

In this case, the distance matters because a simple judgement 

whether its estimation is correct or not does not convey how far 

a wrong estimate lies from the true section. The distance metric 

contextualizes these results. Low resistances cause small 

deviations, and a higher resistance, while it lowers the number 

of correct estimations, still produces errors that cluster near the 

correct area. This means that even though higher resistance 

levels may cause the estimations to be incorrect, estimated 

locations do not fall far away from the faulty section. With this, 

it can be expected that this method degrades in a controlled 

manner under added resistance, which is precisely the condition 

that often complicates field work. 

To reinforce this analysis, a structured comparison with a 

single-sensor baseline is carried out. Relying only on the head-

end viewpoint reduces observability of deeper feeder sections. 

In the results, correct classifications fall by roughly 32% in the 

0 Ω and 1 Ω groups, and distance errors rise slightly. This is 

consistent with local bias from branching, infeed, and 

resistance-induced drops that the single point reads as extra 

length. Fusion reduces the impact of these effects by reducing 

weak perspectives and concentrating probability on candidates 

supported by multiple sensors. 

Additionally, the deployment implications are considered. 

Reusing existing sites is a pragmatic compromise between ideal 

placement and cost. This decision facilitates implementation 

and eases smart grid modernisation. 

However, the algorithm presents a key limitation. The header 

measurement device has weaker synchronisation than PMU-

grade points, which is detrimental to the results when that 

perspective dominates. PMU installation on the header of the 

grid is not yet technologically feasible, which limits options to 

counter this problem. Even then, the potential affected 

estimations would be located closer to the header, which helps 

mitigate any inaccuracies. 

Even with its limitation, the possible applications are clear. For 

operators, multi-PMU fusion offers clear improvement over a 

single sensor, particularly for distant faults and non-negligible 

resistance. The distance-based view suggests that a small set of 

well-placed PMUs can shorten patrol lengths and reduce the 

number of switching steps before isolation. For planners, the 

results point to incremental deployment tied to legacy sites, and 

to treating resistance compensation and calibration as first-

order concerns. 

The work also identifies concrete next steps. Modest fault-

resistance compensation inside the estimator, tuned to local 

parameters, could reduce bias that grows with resistance. 

Relaxing the independence assumption during fusion, through 

covariance-aware weighting or learning sensor reliability from 

past events, may help. Testing resilience under noise, dropouts, 

and timestamp jitter, together with ablations that remove 

individual PMUs to measure marginal value, would further 

clarify applicability. 

In summary, a single-ended impedance method, paired with 

simple probabilistic fusion across a handful of strategically 

located sensors, can provide accurate and operationally useful 

fault locations on an urban MV feeder. Although performance 

falls with increasing resistance, spatial errors remain contained, 

and fusion outperforms a single head-end baseline by a 

meaningful margin. The combination of practical placement, 

transparent computation, and clear reporting offers a credible 

path from study to deployment, and a foundation for 

incremental refinements that target the most consequential 

sources of error. 
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