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ABSTRACT 

This thesis project studies PMU-based fault location in medium-voltage distribution 

networks with a focus on solutions that a utility could actually deploy. The core of the work 

aims to discover if a single-ended impedance estimator, supported by a small set of well-

placed PMUs can deliver reliable locations without instrumenting the entire feeder. To keep 

costs realistic, PMUs are assumed at sites where previous monitors already exist. The choice 

is tied to quality of service, since quicker and more trustworthy location shortens isolation 

and restoration. 

A 43-node section of an urban Milan feeder serves as the case study. Faults are simulated 

across nine scenario families that combine three fault types with three fault-resistance levels 

of 0, 1, and 5 Ω. Phasors are extracted, apparent impedances are computed, and each PMU 

produces a location probability over the network. These per-sensor views are then combined 

through a Bayesian rule under a uniform prior. Performance is reported using correct-

classification rate, posterior probabilities, and distance error both in metres and as a share of 

feeder length. For context, a baseline using only the head-end sensor is evaluated alongside 

the fused method. 

The method resulted in three main findings. At low resistance the method performs strongly, 

in several 0 Ω cases it identifies 41 of 43 events, and the associated posteriors are high. As 

resistance increases, confidence and hit rate decline, which accords with established 

accounts of one-ended impedance methods, where the additional voltage drop across the 

fault is read as extra line length. Even so, the 5 Ω group shows average spatial errors that 

remain local, roughly 3.2 percent of feeder extent, keeping switching and patrol efforts near 

the true section. Against the single-sensor baseline, correct classifications fall by about a 

quarter at 0 and 1 Ω, and distance errors rise slightly. The results suggest a credible path for 

DSOs: incremental PMU deployment at legacy sites, a transparent impedance estimator, and 

probability-based fusion. 
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Chapter 1.  INTRODUCTION 

The first electric power system (EPS) was developed in 1882 by Thomas A. Edison. It was 

a direct current (DC) system with the purpose of supplying energy to a small portion of the 

area of Manhattan in New York City [1]. Over the next 143 years that followed, EPSs have 

become an irreplaceable aspect of modern societies. Many, if not all, of our day-to-day 

activities are currently powered by electricity; offices, houses, hospitals, transport, they all 

depend on the supply of electrical energy to keep their function. Consequently, this has 

placed a great responsibility on the electrical industry to deliver safe, clean, and cheap energy 

to the rest of the industries. This involves the crucial concept of quality of service (QOS). 

Due to the elevated dependency on electrical energy, cities and countries have increased 

their need for a continuous energy supply, and the constant reduction of interruption times. 

This is part of what is considered QOS, which focuses on guaranteeing the overall quality 

of the energy delivered from the power systems to the final customers, as well as the energy 

transfer between different sections of the grid. 

One of the main causes of service interruptions in electrical networks are faults. Faults have 

many potential origins, from weather conditions, equipment malfunction, or even human 

error, faults negatively affect the grid’s stability. Therefore, when a fault occurs, it is crucial 

to locate it as quickly and as accurately as possible, as the time taken to find and isolate the 

affected section will determine how long customers remain with interrupted supply. This 

turns fault location into an essential process for protection systems in EPS. 

There are several traditional fault location methods, some of them still widely used, but they 

will face limitations when applied to modern grids. Traditional methods’ accuracy may 

decrease as the grid becomes more complex, and the penetration of distributed generation 

keeps increasing. In the past years, this has led to the development of more advanced fault 

location techniques that can better adapt to current power system conditions. Among these, 

Phasor Measurement Units (PMUs) have gained much attention. 
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PMUs are able to provide time-synchronised measurements of voltage and current phasors 

from different points in the network. This allows operators to analyse faults with a higher 

level of precision, as the measurements from separate locations can be compared directly. 

PMU technology can be used along with traditional impedance-based fault location 

algorithms, which could reduce the uncertainty of the estimated location and facilitate the 

distribution system operators (DSOs) job at reestablishing power. 

However, deploying PMUs across a distribution network can be a costly modernisation. 

Therefore, DSOs may be interested in strategies that reduce installation and maintenance 

costs without losing their benefits. Here is where a new approach is needed, to install PMUs 

in the same positions where existing measurement devices are already present, avoiding the 

need for additional infrastructure. 

This project follows this approach and applies it to a section of a medium-voltage 

distribution grid located in Milan, Italy. The method combines a more traditional impedance-

based fault location with a probabilistic refinement process that merges different location 

predictions into a single result. This is done using Bayes’ Theorem, which allows the results 

from different PMU perspectives to be weighted and combined according to their likelihood. 

The performance of this method is evaluated by simulating different types of faults and fault 

resistances, comparing the intended result and the actual estimation. 

1.1 ALIGNMENT WITH THE SUSTAINABLE DEVELOPMENT GOALS 

(SDGS) 

This section focuses on describing how the project relates to the United Nations’ Sustainable 

Development Goals. The main focus is on Goals 7, 9, and 11. The connection mostly comes 

from an improvement in grid observability and faster fault handling when PMU-based 

location is applied in distribution networks. The key points are outlined below. [21] 
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1.1.1 GOAL 7: AFFORDABLE AND CLEAN ENERGY 

The proposed PMU-based fault location supports wider and more reliable access to 

electricity. When faults are found more quickly and with a higher confidence, interruptions 

shorten and thus technical losses reduce. Both of these effects may help improve service 

quality and cost. In systems that include renewable generation, a grid that returns to normal 

operation sooner is also a grid that can host more variable resources without frequent 

curtailment. While the exact numbers will depend on each feeder, the direction is this: a 

better location helps a cleaner and more dependable supply, which aligns with Goal 7. [21] 

1.1.2 GOAL 9: INDUSTRY, INNOVATION AND INFRASTRUCTURE 

This work is a step in a continuous process of modernising electrical infrastructure. An 

important part of the proposal involves that PMUs are placed where monitors already exist, 

and that their measurements are combined to produce a final estimation. In this way, fault 

management improves without the need for full-network instrumentation, which promises 

to keep costs and maintenance at lower levels for DSOs. These features match Goal 9’s 

emphasis on resilient infrastructure and innovation grounded in real operational constraints. 

[21] 

1.1.3 GOAL 11: SUSTAINABLE CITIES AND COMMUNITIES 

Urban areas depend on continuous electricity for transport, healthcare, communications, and 

many other daily activities. Long-lasting supply interruptions can disrupt all of these 

activities. Faster and more accurate location will reduce restoration times and stabilise 

operations during disturbances. Even small improvements at feeder level can contribute to 

resilience. This is in line with Goal 11’s aim to reduce the impact of disruptions and to 

support reliable services for communities. [21] 
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Chapter 2.  STATE OF THE ART 

2.1 OVERVIEW OF PMUS 

Phasor Measurement Units (PMUs) are measuring devices designed for monitoring, 

protection, and control within power systems. These devices have been present in electrical 

power systems (EPS) for the past 50 years and they have become one of the most promising 

options for providing efficient, accurate, and reliable measurement data for protection and 

monitoring schemes. 

2.1.1 BRIEF HISTORY 

Their development began in the early 1970s along with the Symmetrical Component 

Distance Relay (SCDR) [2]. Since then, the multiple algorithm proposals in the 70s and the 

development of the GPS satellite system made the creation of the first PMU prototype 

possible in 1988. However, that was merely a prototype, and it was not until 1991 that the 

first commercial PMU was released [3], which in the following decades continued to evolve 

into a more efficient, reliable technology. This technology has since become essential to the 

development, maintenance, and protection of smart grids worldwide. 

Figure 1. History of PMU technology [3] 
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One of the main features that makes PMUs so attractive is their use of global positioning 

system (GPS) signals to provide precise timing signals. GPS synchronisation enables them 

to provide synchronised measurements of voltage and current phasors. This means they can 

measure voltage and current phasors, and the frequencies of the voltage phasors with precise 

time synchronisation [3]. This allows them to synchronise measurements across the grid with 

very high accuracy [4]. This turns them into devices that are well suited for applications such 

as state estimation, fault detection and location, protection, and other time-sensitive related 

applications. 

These devices play an essential role in enhancing performance, reliability, efficiency, and 

safety in EPS. 

2.1.2 OPERATION 

The structure of PMU-based protection systems can be sectioned into their hardware and 

their software portions. 

2.1.2.1 Hardware 

The physical installation of PMUs can be explained by its basic, most essential phases, 

presented in the following process: 

• In the first stage, voltage and current magnitudes are lowered through potential and 

current transformers (PTs and CTs). 

• Then, once the signals are at an appropriate level, they are sent through a low pass 

filter to prevent aliasing. 

• After that comes the most important section of the measurement process. The signals 

are synchronised by assigning a Universal Coordinated Time (UTC) timestamp to 

each one. These are received in the GPS receiver that obtains the synchronisation 

pulses from GPS satellites. 
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• Once this stage is over, the now synchronised signals are digitised in the analog-to-

digital converter. 

• The processing unit extracts the voltage and current phasors from the received signals 

by using a phasor estimation algorithm. 

• Finally, the synchrophasors, with their respective timestamps, are sent to the control 

centres by using the communication infrastructure [4]. 

Figure Ov1 shows a diagram of the operation previously explained. 

Naturally, PMU deployment requires the installation of a communication infrastructure 

capable of transmitting a great amount of  

2.1.2.2 Software 

Regarding the software side of PMU operations, phasor estimation algorithms are the area 

of research with the most extensive presence in literature. There is a large volume of studies 

analysing and comparing existing algorithms, as well as proposing new approaches. The 

review [4] presents an extensive comparison of papers encompassing the last 25 years, 

mainly focusing on PMU phasor estimation algorithm research.  

Figure 2. Diagram showing PMU operation 

[4]. 
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2.2 CURRENT APPLICATIONS OF PMUS IN HV TRANSMISSION 

NETWORKS 

There is a large volume of published studies describing the role of PMUs in high voltage 

(HV) transmission networks. An increasing amount of literature is being published on the 

use of these devices for many applications such as fault detection and location, distance 

protection, stability, and Wide Area Monitoring System (WAMS). Recent developments in 

the field of power systems have led to a renewed interest in PMU-based protection schemes. 

The general consensus in the literature is that they improve stability, reliability, and 

efficiency. 

2.2.1 COMMON APPLICATIONS 

2.2.1.1 Monitoring and Control 

PMUs can provide precise and synchronised measurements, useful for advanced control 

strategies, grid automation, and system optimization. Thanks to this, PMUs contribute 

significantly to real-time monitoring of power systems. They offer Transmission System 

Operators (TSOs) detailed measurements of voltage and current phasors, which are crucial 

for identifying disturbances and assessing the overall health of the power system [3]. 

2.2.1.2 System Stability and Efficiency 

PMUs are vital for enhancing system stability and operational efficiency in smart grids. 

Their measurements help in state estimation and voltage stability assessment [3]. 

2.2.1.3 Fault Detection 

PMU technology has become instrumental in fault detection within the power grid. The 

microsecond accuracy allows for precise detection of disturbances like frequency variations 

and voltage instabilities. 
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The growth in the adoption of PMUs reflects their important role in improving the 

monitoring and control mechanisms of power grid operations, providing the accuracy and 

reliability necessary for modern grid management [3]. 

PMUs are used for wide-area fault detection and location, employing analytical methods that 

utilize dispersed synchrophasor measurements and bus impedance matrices to detect fault 

inception. This allows for the determination of the faulted zone, diagnosis of the suspected 

faulted line, and identification of the exact fault point along the line. 

They can also detect multiple faults across a wide area network using signal processing 

approaches, where PMUs installed at various buses acquire synchronised voltage phasors 

[4]. 

These applications are all extremely useful for transmission line protection schemes, as well 

as monitoring. However, the focus of this study is fault location, so the document will 

gravitate towards that. 

Fault location is a crucial area of research for EPS. Data extracted using PMU device has 

proven to be useful for improving traditional fault location methods, as well as opening the 

way for new, innovative approaches. 

2.2.2 FAULT LOCATION METHODS IN TRANSMISSION NETWORKS 

IEEE Standard C37.114-2004 [5] mentions two different types of fault location methods. 

The first method, based on the estimation of line impedances, is often called in the literature 

as impedance-based. Impedances are commonly obtained using the equations developed and 

published by J.R. Carson, et al. in 1926 [6]. Naturally, the accuracy of this method depends 

on the accuracy of the impedance estimation method, which is high for Carson’s equations. 

A second method, often referred to as traveling wave, is defined by IEEE as “The resulting 

wave when the electric variation in a circuit takes the form of translation of energy along a 

conductor, such energy being always equally divided between current and potential forms” 

[6]. 
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2.2.2.1 Impedance-based 

Impedance-based methods can be divided into two main categories: one-ended, known as 

single-ended, and two-terminal, also referred to as double-ended. These methods are 

explained below. 

2.2.2.1.1 Single-ended 

Single-ended, or one-ended, fault location techniques are widely used in transmission and 

distribution systems to estimate the location of faults using electrical measurements obtained 

exclusively from one terminal of the line. These methods are typically embedded in 

microprocessor-based protective relays and require specific equipment and data inputs to 

operate effectively. 

The fundamental idea behind single-ended fault location techniques lies in estimating the 

apparent impedance seen from a single measurement point into the transmission line. This 

estimated impedance is then used to infer the distance to the fault. In order to obtain accurate 

results, it is generally necessary to measure phase-to-ground voltages and the corresponding 

phase currents across the three phases. However, phase-to-phase faults remain detectable 

even if only line-to-line voltage data is available. Furthermore, if the zero-sequence source 

impedance is known, estimates of phase-to-ground faults can also be obtained. 

One of the simplest implementations of this approach is known as the reactance method. In 

this case, the fault distance is assumed to be proportional to the ratio between the measured 

reactance and the total line reactance. 

In order to properly apply these methods, there are mainly three crucial components that 

these systems must possess. Firstly, measurement equipment, typically a digital relay, that 

is capable of capturing voltage and current signals and performing the corresponding 

impedance-based calculations. Secondly, the system needs to be able to guarantee accurate 

data acquisition, for this most algorithms rely on voltage and current measurements. The 

algorithm must be able to identify the faulted phases. In some cases, this process is aided by 

including pre-fault load data to improve the overall accuracy. Finally, a communication 
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interface is essential to allow the remote access of the fault location estimates. This is 

normally carried out in many TSOs by Supervisory Control and Data Acquisition (SCADA) 

systems. 

Unfortunately, single-ended methods are subject to various situations that can potentially 

impact their accuracy. For example, the presence of high levels of load current and fault 

resistance can significantly affect the estimation. This is evident in basic reactance methods. 

As these assume negligible resistance and load, they tend to be especially sensitive to these 

deviations. Another of these examples could be the incorrect identification of the faulted 

phases, which would lead to a mislead in the impedance calculation, ultimately resulting in 

inaccurate location estimates. 

Other inaccuracies may also be introduced from the assumptions inherent in the line 

modelling process. For example, assuming perfect transposition or neglecting the impact of 

charging capacitance can result in discrepancies between actual and modelled system 

behaviour. In a similar way, the presence of system elements such as shunt capacitors or 

reactors can alter the impedance profile observed from the relay. This affects the resulting 

fault location estimation. It is also possible for unbalanced pre-fault load flow to distort the 

waveforms used by the algorithm, leading to measurement errors. These can be the result of 

errors present in the CTs and PTs, the analog-to-digital converter, or the filters, reducing 

reliability, especially for transient faults where steady-state conditions are not achieved. 

To address these limitations, various algorithmic strategies have been developed over the 

years. The simple reactance method ignores the resistive component of the fault path, which 

in turn makes it less effective facing high-resistance faults and heavily loaded systems. 

Other, more complex techniques, such as the Takagi method and other superposition-based 

approaches, appear to improve accuracy by removing the load current with a differential 

current term. These methods intend to increase the robustness against unbalanced conditions, 

although they may still be sensitive to heavy variations in the system impedance. 

Overall, single-ended fault location methods present the advantage of being able to provide 

practical solutions without losing their cost-efficient characteristics by reducing 
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infrastructure requirements, identifying fault locations by using data from only one terminal. 

While this approaches face various challenges, continuous improvements in algorithms can 

counter them and answer to the needs of the TSOs and DSOs using them. 

2.2.2.1.2 Double-ended 

Double-ended, or two-terminal, fault location methods utilize data collected from both ends 

of a transmission line to determine the location of the fault. These methods are generally 

more accurate than one-ended techniques due to their ability to mitigate common sources of 

error. 

Unlike single-ended methods that rely solely on local measurements, double-ended methods 

use voltage and current data from both ends of the line. This comprehensive data allows for 

more accurate calculations. One of the main advantages of these methods is their ability to 

minimize the negative effects of variations such as fault resistance and load current in their 

predictions, which are one of the major sources of error in single-ended methods. 

One of the main disadvantages of double-ended methods is, naturally, their need to gather 

data from both ends and then process it at a single location. This characteristic turns the data 

acquisition and processing into much more complex stages than those in single-ended 

methods. Another important disadvantage is their speed. These location techniques generally 

require more time to generate an estimate, and although speed may not be critical for some 

applications, a longer location estimation time can lead to longer downtime and 

interruptions, negatively impacting the grid’s QOS. 

In conclusion, double-ended methods are generally more precise in comparison to single-

ended techniques. As they benefit from the data collected at both ends of the line, they can 

better account for fault resistance and load current. Also, they do not require prior knowledge 

of the fault type. Nevertheless, single-ended methods greatly benefit from their simplicity, 

and, consequently, their lower cost. These characteristics become especially relevant in 

systems where investment is limited or unavailable. 
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2.2.2.2 Travelling Wave 

Travelling wave methods leverage the transient signals, or travelling waves, generated when 

a fault occurs to compute the location of the fault. These waves, travelling close to the speed 

of light, propagate from the fault location to the line terminals. There, the measurement 

devices receive the signals and timestamp them using a common time reference. [7] 

These methods are also divided into the same two categories as impedance-based techniques. 

2.2.3 OTHER APPROACHES 

Additionally, recent advancements in fault location methods have led to the exploration of 

hybrid approaches that combine elements of both traditional techniques to enhance fault 

location accuracy. These hybrid methods take advantage of the strengths of synchronised 

phasor data from PMUs alongside transient signal analysis, allowing for a more complete 

fault detection under varying system conditions. For example, integrating impedance 

measurements with travelling wave analysis can significantly improve the precision of fault 

localisation, especially in complex distribution networks where multiple factors may 

influence the signal integrity [8]. Furthermore, the implementation of machine learning 

algorithms in conjunction with these hybrid methods has shown promise in optimising fault 

location processes by adapting to real-time data variations and learning from historical fault 

patterns [9]. This fusion of technologies has demonstrated to be a promising approach to 

improve EPS's detection capabilities. 

In Ref. [10], the authors propose a new, interesting method that tackles the challenges of 

fault location. This method integrates data from a limited number of PMUs and smart meters 

by transforming all measurements into a unified linear form, allowing their use in a weighted 

least squares state estimation model. The method includes zero-injection constraints and 

accounts for measurement uncertainty, obtaining an accurate estimation of network states 

under fault conditions. 

To improve efficiency, the network is divided into subregions, and the fault region is 

identified by analysing current imbalances derived from pre-fault and post-fault 
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measurements. Within the identified region, each node is tested as a hypothetical fault point 

by injecting a virtual fault current and recalculating the system state. The node that 

minimizes the weighted measurement residual is selected as the fault location. This process 

is extended over a short time window to improve its resilience against noise. 

The approach was tested on a modified IEEE 33-node system. The results show that the 

method achieves high accuracy across different fault types and resistances, outperforming 

existing techniques while requiring fewer measurement devices and less computational 

effort. 

Ref. [11] proposes a novel method that uses smart meter data to more accurately determine 

faulty points. A key advantage of this technique is its ability to use low-resolution data for 

identifying potential fault locations. 

These new methods aim to overcome limitations of older techniques, such as those that only 

narrow down the fault range to the nearest nodes, which prevents precise location 

determination. The development of these methods focuses on improving accuracy and 

reliability across various fault scenarios and measurement noise levels [10]. 

2.2.4 SUMMARY 

Although considerable research has been conducted on PMU applications in HV 

transmission networks, a critical gap remains in understanding their effect on MV 

distribution systems, especially under the increasing DER penetration.  As highlighted in a 

review by Menezes et al. [4], few studies have directly examined PMU applications in real-

life electrical grids. This indicates a potential limitation in the existing body of work, as most 

research papers focus on simulations instead of real EPS. It is important to note that this lack 

of experimental results may hinder the accuracy and general relevance of these data for real 

PMU implementation. Another problem is the lack of information regarding the 

methodology; this is probably due to limited access to relevant data. Consequently, further 

investigation targeting this gap may provide new insights into the practical implications of 

implementing this technology in smart distribution networks. 
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2.3 PMUS IN MV DISTRIBUTION NETWORKS 

2.3.1 APPLICATIONS 

In a review published by Menezes et al. [4], the authors mention different applications 

related to distribution systems, they particularly highlight fault detection and location, state 

estimation, islanding detection, and other protection schemes. 

The papers reviewed are significantly fewer than those related to transmission applications. 

From a total of 39 research papers proposing new approaches to PMU integration in EPS, a 

total of 32 were focused on transmission systems, while only 8 researched distribution-level 

areas, with 4 of them being microgrids. However, 2 of those papers focus on general 

protection. That means only 1 paper from the 39 reviewed is truly relevant to fault location. 

In the research paper published by Pignati et al. [12], it is claimed that PMU-based protection 

schemes possess the needed characteristics required for time-critical situations such as fault 

location. 

2.3.2 CHALLENGES OF PMU IMPLEMENTATION IN MV NETWORKS 

An important aspect to consider is the challenges that come with working in medium-voltage 

(MV) distribution networks. While PMUs have been extensively developed and integrated 

to operate in HV transmission networks, the challenges that distribution presents are not 

equivalent to those of transmission. This means that the particular limitations related to MV 

grids will have to be considered to adapt PMU technology to these new applications. 

2.3.2.1 Installation and Maintenance Costs 

Despite their attractive advantages, PMU deployment carries several challenges that need to 

be considered. One of these challenges is the costs related to installation and maintenance 

activities. Considering general PMU implementation costs, that is, both transmission and 

distribution levels. 
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The U.S. Department of Energy offers a brief sight of the related costs concerning these 

deployments in [13]. This document sheds some light on the average investment required by 

these devices. It shows a median of 43,400 USD per PMU installed. This value includes the 

cost of each device as well as every installation-related cost such as design, labour, materials, 

and construction. 

Economies of scale do not benefit this particular type of devices. That means that there is no 

cost decrease associated with the large-scale PMU deployment. 

Nevertheless, it is important to note that the results shown in these reports vary in magnitude 

(i.e. some projects presented costs double or half the median cost) [13]. 

However, research suggests that it is possible that through optimal PMU placement, high 

costs and communication infrastructure issues might be reduced. In reference [14], Cruz et 

al. propose an optimization algorithm for centralised WAMS. This paper presented an 

optimization algorithm that managed to reduce PMU installation costs for certain 

applications. This proposal was tested in various IEEE test networks, including a practical 

application in a 5804-bus Brazilian transmission system. The results demonstrated flexibility 

and effectiveness, with a promising scalability and adaptability. These results contradict the 

conclusions presented in the recovery Act from the U.S. government. 

2.4 STANDARDS AND REGULATIONS IN PMU IMPLEMENTATION 

The standards regulating PMUs integration primarily focus on ensuring that their 

performance, accuracy, and reliability in measuring electrical grid parameters is sufficient 

for the required applications. These standards define specific requirements for PMU 

functionality, measurement capabilities, time synchronisation, and evaluation methods. 
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To be compliant with IEEE C37-118-1:2011, a PMU must accurately provide three specific 

measurements: 

• Synchrophasor measurements 

• Frequency measurements 

• Rate of Change of Frequency (ROCOF) measurement 

These measurements are crucial for understanding the dynamic behaviour of power systems. 

The requirements for these measurements must be met consistently, regardless of whether 

the PMU is a standalone device or integrated into a multi-function unit. The standard also 

specifies methods for evaluating these measurements under both static and dynamic 

conditions [15]. 

Accurate time synchronisation is, naturally, a fundamental requirement for PMUs, as it 

ensures that measurements taken at different locations in the power system are correctly 

aligned in time. The IEC/IEEE 60255-118-1:2018 standard specifies stringent criteria for 

time synchronisation to guarantee the integrity of synchrophasor, frequency, and ROCOF 

measurements. 

Each PMU must be capable of receiving a time reference traceable to UTC, typically 

delivered via a Global Navigation Satellite System (GNSS), such as GPS. The accuracy of 

this time input must be sufficient to maintain all measurement errors, particularly Total 

Vector Error (TVE), Frequency Error (FE), and ROCOF Error (RFE), within their defined 

limits. 

A time synchronisation error of 1 microsecond translates to a synchrophasor phase error of 

approximately 0.022° in a 60Hz system or 0.018° in a 50Hz system. Given that a phase error 

of approximately 0.57° corresponds to a 1% TVE, the standard effectively permits a 

maximum time synchronisation error of ±26μs for 60 Hz systems and ±31μs for 50Hz 

systems. To ensure appropriate performance, the standard recommends that the time 

reference used by the PMU provides time, frequency, and stability with an accuracy at least 

ten times better than these values. 
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In addition to receiving accurate time, the PMU must generate a timestamp for each 

measurement. This timestamp must include the measurement time with a resolution of at 

least 1μs, and it must also convey information about time quality, traceability to UTC, and 

leap second status. Proper compensation for system-induced delays, such as filter group 

delays, is also mandated, ensuring that timestamps accurately reflect the true measurement 

time. 

By enforcing these synchronisation requirements, the standard aims to ensure that 

synchrophasor data from distributed PMUs can be reliably used for analysis, control, and 

protection applications in modern power systems. 

However, this standard has been, as of today, replaced by the newer standard IEC/IEEE 

60255-118-1:2018 [16]. This more recent standard has updated the definitions of many 

measurands, as well as some of the compliance requirements. 
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Chapter 3.  PROJECT DEFINITION 

3.1 JUSTIFICATION 

As modern power systems evolve to accommodate high levels of distributed energy 

resources (DERs), electric vehicles, and bidirectional energy flows, medium voltage (MV) 

distribution networks face increased complexity. Fault detection and location are now more 

challenging than ever, yet critical for protection schemes, focused on maintaining reliability 

and minimising downtime. Phasor Measurement Units (PMUs) offer an attractive solution 

by providing time-synchronised measurements. However, their adoption in MV networks 

has been hindered by high costs, complex installation requirements, and the traditionally 

dense deployment needed for effective coverage. 

Research has shown that DER penetration has a negative impact in the stability and 

reliability of distribution networks. In a study done in 2022, M. S. Turiman et al. analysed 

and studied the technical impacts that distributed generation (DG) had in distribution grids. 

The consensus was that one of the main effects of DG integration was an increase in fault 

level, especially related to synchronous and asynchronous machines. Other findings were 

that DG integration had the potential to affect voltage regulation, cause voltage limit 

violation, increased network losses, and increased line loading [17]. 

However, DER not only have negative impacts, Ref. [18] studied the impact of Battery 

Energy Storage Systems (BESS) on distribution networks. In this paper, the authors found 

that BESS had a positive impact on the grid in which they were implemented. They appeared 

to improve stabilization by facilitating a fast response, as well as reducing the negative 

effects of disturbances and improving the power quality of the grid. 

It is also important to note that while a low presence of DG in the grid is normally 

manageable, when that presence reaches a percentage higher than 20%, outages start to 

become much more likely and critical. Ref. [19] highlights how much DG impacts 

distribution networks. 
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This project addresses these shortcomings by developing and testing a PMU-based fault 

location method for MV networks that provides higher-quality data. The methodology is 

built around realistic data and conditions: it utilises real measurements provided by 

Gridspertise, along with a MATLAB Simulink simulation that accurately models the 

behaviour of MV distribution grids under fault conditions. 

The method centres on single-ended, impedance-based fault location algorithms, chosen for 

their low infrastructure requirements and compatibility with existing utility devices. 

However, unlike traditional single-ended methods, the approach proposed in this project 

introduces enhancements aimed at maximising the value of each PMU by using a tailored 

measurement placement strategy and adapted fault analysis to compensate for the reduced 

observability. 

The value of the proposition is clear, to use fewer PMUs to achieve accurate fault location. 

This can significantly reduce capital and installation costs. Faster and more efficient fault 

detection will minimise outage times and improve service reliability indicators like System 

Average Interruption Duration Index (SAIDI) and System Average Interruption Frequency 

Index (SAIFI). Deployment is more realistic and scalable, as the system can operate 

effectively even in partially monitored networks. 

Using real PMU data from an industry partner improves the applicability of the approach, 

while the simulation testing allows for a flexible analysis of performance under diverse 

scenarios and fault types without the technical and economic complications of real grid 

testing. 

This project aims to offer a commercially and operationally viable alternative to populate 

networks with PMU technology by balancing performance and practicality. It gives utilities 

a path to benefit from the protection and monitoring capabilities of PMUs without the 

financial and technical burden of making entirely new installations. The proposed method 

aligns with the goals of smart grid modernisation, especially in regions where investment in 

new infrastructure must be carefully analysed. 
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In conclusion, this project aims to deliver a cost-effective solution for PMU-based fault 

location in MV distribution systems. It combines academic content with industrial relevance, 

building a bridge between research and deployment. For distribution system operators 

(DSOs), the result is a method that provides the benefits of synchrophasor data while 

optimizing economic investment and reducing the need for large-scale infrastructure 

deployment. 

3.2 OBJECTIVES 

The main objective of this project is to analyse the feasibility of PMU deployment in 

distribution networks. This analysis consists of two main sections. First, the literature review 

and feasibility analysis for the implementation of PMU technology in MV grids by the 

company Gridspertise, and a second section focused on proposing a new algorithm approach 

for fault location using PMU synchrophasor data. 

This second section aims to develop and evaluate a fault location method for MV distribution 

networks based on PMU data, with a specific focus on reducing the number of PMUs 

required for fault location without sacrificing their accuracy. 

To achieve these goals, the project is structured around the following specific objectives: 

1. Do an extensive and critical literature review of existing PMU-based fault location 

methods, with a particular emphasis on their applicability to MV distribution systems 

and their respective infrastructure requirements. 

2. Identify and analyse the main limitations of current single-ended and double-ended 

fault location techniques, considering the context of reduced sensor deployment, 

DER penetration, and distribution network topology. 

3. Design a fault location strategy based on single-ended impedance-based algorithms, 

optimising for limited PMU deployment, using real measurement data provided by 

Gridspertise. 
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4. Develop a distribution network model in MATLAB Simulink that replicates realistic 

MV grid conditions, to then proceed to test fault events, system behaviour, and 

algorithmic performance. 

5. Simulate and test the proposed fault location algorithm under a range of fault 

scenarios, including varying fault types. 

6. Compare the proposed approach against a baseline method, such as a traditional 

single-ended impedance-based algorithms to highlight the implications and 

advantages of the proposed PMU strategy. 

Through these objectives, the project aims to contribute a validated, efficient, and practical 

approach to fault location in MV networks, supporting the adaptability of smart grids while 

minimising investment in hardware and communication infrastructure. 

3.3 METHODOLOGY 

This project follows a multi-phase methodology that integrates a systematic literature review 

(SLR), an algorithm development, a simulation-based validation, and a feasibility analysis. 

The aim of the first phase of the project is to extensively review the existing literature 

regarding PMU devices, fault location, and medium voltage networks. The second phase 

focuses on the design and evaluation of a novel fault location algorithm for MV distribution 

networks using synchronised phasor data obtained from PMUs. The final phase, the 

feasibility analysis, intends to determine whether it is viable or not for the company 

Gridspertise to implement PMU technology in MV smart grids. 

3.3.1 GRIDSPERTISE AND INDUSTRIAL COLLABORATION 

This project was conducted in collaboration with Gridspertise, an Enel Group company 

specialised in providing advanced smart grid solutions. Gridspertise served as the industrial 

partner and primary source of technical insight for this study. The company offered 

experience as well as the simulation model of a real MV distribution network with its 
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respective data, which was fundamental for conducting the experimental portion of this 

research. 

3.3.2 RESEARCH TOOLS AND PROCEDURES 

The research aims to investigate fault location methods in MV distribution networks using 

PMU data. By combining a literature review with the use of a simulation-based model 

provided by Gridspertise, the methodology integrates theoretical analysis, data collection, 

and experimental validation. 

3.3.2.1 Literature Review and Reference Management 

The state of the art presented in this project was developed by using an SLR approach. For 

that purpose, a search was conducted in several research databases such as IEEE Xplore, 

MDPI, and ScienceDirect, using terms relevant to the project, including “fault location”, 

“phasor measurement units”, “medium voltage”, “distribution networks”, “standard”, 

“impedance-based”, among many others. More than 150 papers published between 2000 and 

2025 were reviewed. The selection criteria for them included their relevance to PMU-based 

fault location, their application in MV networks, and the journal’s quality. The selected 

studies were categorized based on their relevance, area of application, year of publication, 

and methodology, facilitating the identification of common techniques, limitations, and 

research challenges. This approach intends to make sure that the review provides a reliable 

foundation for the development of the proposed algorithm. This literature review used 6a 

qualitative approach to gather and analyse the information found in the research. The review 

process was supported by the reference manager software Mendeley, as well as Microsoft 

Excel. The mentioned databases were used to search a variety of research papers, conference 

proceedings, standards, books, and reports, with access granted by both Universidad 

Pontificia Comillas and the University of Strathclyde. 
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3.3.2.2 PMU Data and Simulation Model 

This section outlines the methodology followed to develop and validate the impedance-based 

fault location algorithm using real fault data from a distribution network. This study uses 

existing measurements extracted with non-PMU devices, under the assumption that future 

PMUs will be installed at these same locations. This strategy leverages already available 

infrastructure, significantly reducing deployment costs and enabling more scalable fault 

location solutions. 

The core idea of this work is to use existing fault measurements, originally collected by 

conventional monitoring devices such as RGDAT, and use them to test the PMU-based fault 

location algorithm. This works under the following assumptions: 

• PMU devices will be installed by the DSOs in the same locations where previous 

measurement devices were already installed, replacing previously utilised 

equipment. This is important and will reduce costs and optimise their deployment. 

Studies and research made by the U.S. Department of Energy have proved that PMU 

deployment is a cost-intensive change. Naturally, DSOs will not only need to invest 

in each device, but also in the communications infrastructure, the sensors, CTs, and 

PTs required to extract the desired measurements. Due to this, there has been 

considerable research aiming to optimise PMU placement to guarantee the most cost-

effective solution for their integration in the grid [13]. 

From an academic perspective, the ideal scenario for achieving the highest fault location 

accuracy involves optimising PMU placement specifically for the topology of the target 

distribution grid. This can be accomplished through the use of optimal PMU placement 

algorithms, which have been extensively studied in the literature in the past decade [20]. 

However, in practical settings, this approach may not be the most viable for DSOs, as 

building an entirely new infrastructure for each device is economically infeasible. Therefore, 

relying on existing infrastructure, including previously installed monitoring devices such as 

RGDMs, proves to be a more convenient approach. 
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To respond to that need, this project proposes a cost-effective alternative: installing PMUs 

at the same locations currently occupied by older measurement devices. By reusing this 

existing infrastructure, DSOs can significantly reduce installation and deployment costs, 

providing a more accessible option to introduce this technology into the networks. 

By assuming that PMUs will be installed at the same measurement points in the future, this 

study avoids the need for costly new installations during the validation phase. Instead, the 

available data is processed and used to simulate how a PMU-based system would behave 

under the same conditions. 

The methodology consists of three main stages: 

1. Data acquisition and formatting 

2. Model construction 

3. Algorithm execution and validation 

3.3.2.2.1 Data Collection and Formatting 

The raw input for the study consists of real fault data collected from a MV distribution 

network. These measurements were obtained using traditional monitoring equipment and 

cover various fault events across the network. 

The data is first transformed into .csv files, which contain voltage and current time series 

corresponding to each fault scenario. These files are used both to simulate the system 

behaviour and as direct input to the fault location algorithm. Additionally, a structured .xlsx 

file is created to represent the network model. This file includes the base electrical 

parameters of the grid such as line lengths and impedances and is used for building a 

reference model against which the fault data can be compared. 
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3.3.2.2.2 Model Construction 

The model used in this study represents a 43-node MV feeder, reflecting real Italian 

distribution topology. This model is provided by Gridspertise. This is the base used to build 

the impedance comparison and distance estimation. 

3.3.2.2.3 Algorithm Implementation 

The impedance-based fault location algorithm is developed in MATLAB and builds upon a 

base version provided by Gridspertise. This algorithm is adapted and extended to fit the 

specific characteristics of the 43-node system and the structure of the available data. 

The algorithm operates by: 

1. Parsing the .csv files for each fault event. 

2. Identifying and isolating the faulty portion of the data using a fault classifier, which 

filters out non-faulty or irrelevant measurements. 

3. Computing the measured impedance at the time of the fault from the available phasor 

data. 

4. Comparing the measured impedance to the reference impedance calculated from the 

model. 

By comparing the impedance seen at a particular bus during a fault with the expected 

(normal) impedance profile of the network, the algorithm estimates the distance to the fault. 

The result is then mapped to the closest node or line segment. 

3.3.2.2.4 Output and Validation 

For each fault case, the algorithm produces several output plots and data tables, including: 

• A comparison table between the measured impedance (during fault) and the modelled 

impedance (under normal conditions). 
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• A visual representation of the estimated fault distance across the feeder. 

• Additional plots showing phase-by-phase impedance trajectories and classifier 

decisions. 

These outputs are used to evaluate the algorithm’s performance in locating faults across 

multiple real-world cases. The ability to accurately match fault impedance with the model's 

normal impedance allows the method to infer fault distance with minimal instrumentation, 

supporting the objective of reducing the number of PMUs required in the field. 

3.4 PLANNING AND ECONOMIC ESTIMATION 

3.4.1 PROJECT PLANNING 

The project begins with a dedicated planning phase aimed at outlining the scope, objectives, 

methodology, and resource requirements. Several key activities are tackled during this stage. 

The decision of the milestones, definition of the tasks, and the setting of the timeline are 

some examples. While the original planning, including the objectives, milestones, and 

timeline, may still change later on, organising them early in the process facilitates facing 

these challenges in future phases. This foundational step is essential to guide the following 

phases to improve the project’s efficiency, as well as to minimise potential problems in later 

phases. 

3.4.1.1 Literature Review 

The literature review starts early on the timeline, overlapping with the planning phase, with 

the intention to build a solid theoretical foundation. This step involves critically searching 

existing research on fault location techniques, PMU applications, and related topics for smart 

grid operation. The goal of this phase is to identify the gaps in research, competing 

methodologies, and the key theoretical frameworks that may aid the direction of the study. 

The state-of-the-art review phase is carried out partially in parallel to the literature review. 

It focuses on analysing and discussing the most recent research and development, including 

both academical and industrial innovation. This seeks to enrich the study by bridging 
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algorithmic innovations with real-world applications. This phase plays a crucial role in 

defining for future sections the methodological approach that holds the project. 

3.4.1.2 Algorithm Review 

This step involves a deep analysis of existing algorithms related to impedance-based fault 

location. By reviewing their assumptions, limitations, and practical outcomes, this phase 

intends to set the stage for developing an improved adapted algorithm suitable for the data 

and context of the project. 

3.4.1.3 Algorithm Proposal 

The literature reviews are followed by a proposal of a new algorithm that adapts to the case 

study, answering to the needs of the company, Gridspertise. This involves turning theoretical 

knowledge obtained in earlier stages into a testable method. The proposal requires a 

considerable effort in choosing design choices, defining parameters, and preparing for future 

simulation and testing. 

3.4.1.4 Algorithm Development and Testing 

This is the most time-intensive stage of the project. During this period, the focus is on 

developing the main script that will carry out the fault location estimation. Later, the 

proposed algorithm will be tested using simulated PMU data to reflect real grid conditions 

and verify the algorithm’s performance. This phase will require any issues that arise to be 

attended, and its logic refined where necessary. 

3.4.2 ECONOMIC ESTIMATION 

The proposed fault location scheme proves promising to provide a balance between the 

improvement of grid monitoring capabilities and the decrease in the cost of deploying new 

infrastructure. Much of this balance is achieved by assuming the installation of PMU units 

at locations that were previously equipped with RGDM devices, which minimises the capital 

investment associated with sensor deployment. This approach aims to reduce installation 

costs and therefore offer a more cost-efficient solution. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MASTER’S DEGREE IN SMART GRIDS 

 

PROJECT DEFINITION 

36 

 

Finally, from a long-term perspective, a project like this attempts to contribute to the larger 

economic goals present in the energy transition process. Its cost-effective proposal may 

facilitate the integration of DERs, which is central to current decarbonization efforts. 

Therefore, this project explores a research area that may reduce operational costs in the short 

term, as well as benefiting future grid investments. 
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Chapter 4.  MODEL & ALGORITHM DEVELOPED 

4.1 MV DISTRIBUTION GRID 

The case study selected for the development of this project corresponds to a 43-node MV 

distribution network, which forms part of a larger and more complex grid located in the city 

of Milan, Italy. Rather than implementing and testing the proposed methodology across the 

entire distribution system, which would have posed significant challenges in terms of 

complexity, computational requirements, and result interpretation, as well as time 

investment, a decision was made to focus the study on a smaller subsection of the grid. 

This decision allowed for a more controlled and efficient evaluation of the algorithm’s 

performance. The selected section includes 43 nodes, distributed across several radial 

branches and its respective amount of topological characteristics characteristic of typical 

urban MV networks. This portion of the grid is depicted in Figure 3. 

Figure 3. MV Grid. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MASTER’S DEGREE IN SMART GRIDS 

 

MODEL & ALGORITHM DEVELOPED 

38 

 

 

In order to simulate the grid and apply the fault location algorithm effectively, a number of 

assumptions were introduced. These assumptions helped define and limit various aspects of 

the project, from the structure and configuration of the simulation model to the 

implementation and limitations of the algorithm. The most relevant assumptions are briefly 

described below: 

• As discussed earlier, to reduce infrastructure and installation costs, PMUs are 

assumed to be installed in the same physical locations where previous measurement 

devices, which in this case study are RGDMs, were deployed. This strategy is critical 

to the project’s cost-efficiency goal, as it uses existing infrastructure to avoid the 

need for significant additional investment, turning this proposal into a much more 

attractive option. 

• Currently, due to technological limitations, it remains infeasible to obtain PMU-

grade measurements directly from the header of the grid. As a result, data obtained 

from the header do not reflect the same level of time-synchronised accuracy as those 

obtained from the PMUs installed at the rest of the nodes. While this introduces a 

degree of uncertainty into the dataset, it represents no critical disadvantage as its 

impact is mitigated by the combination carried by the algorithm. 

• To address the limitations introduced by the absence of a PMU at the grid header, 

the algorithm relies on data gathered from multiple PMUs strategically distributed 

throughout the network. In this specific case, five PMUs were deployed at critical 

locations, all of them with both remote control and RGDM sensors present 

beforehand. This allows the algorithm to obtain more information that then translates 

into a more accurate prediction method. This proposal improves the robustness of 

fault location predictions and compensates for any inaccuracies potentially 

introduced by non-PMU data sources. 

The core principle behind the algorithm is the estimation of the fault distance by comparing 

the expected, pre-fault, line impedances with the actual impedances measured during a fault 

event. By doing so, the algorithm is able to calculate a set of possible distances for each 
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observation point. These estimated distances are then combined, and their consistency 

evaluated, to produce a final prediction of the fault location along with an associated 

likelihood or confidence level. 

4.2 RTDS MODEL 

To properly test the algorithm, the first step is to create a model the respective grid in a 

simulation software. This modelling process was conducted at the laboratories of 

Gridspertise in Milan, Italy, with technical support from the company. And then adapted 

specifically for the purposes of this study. 

The model was modified to include a configurable fault component, allowing the faults to 

be activated at any of the 43 nodes in the network. Additionally, controllable switches were 

integrated to selectively activate or deactivate specific fault types. Then the resulting voltage, 

current, and frequency values were captured by all 5 PMU sensors and stored in folders 

within the software in real-time. This way, the fault location could be chosen at any point 

and changed whenever needed. 

PMU devices were placed in their corresponding locations, header and nodes 10, 20, 26, 30. 

This distribution covers the entire grid and guarantees a proper observability of the grid. 

The core idea was to use the model in the RTDS software to simulate in real-time the faults 

that were to be analysed in this study. The study focused on 9 different scenarios, which 

encompass 3 different fault types and 3 fault resistance values, stated as follows. 

The fault types under analysis were: 

• 3-Phase 

• Double-line-to-ground 

• Line-to-line 
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Similarly, these 3 fault types were simulated in 3 different fault resistance conditions, i.e., 

three different FR values: 

• FR= 0Ω 

• FR= 1Ω 

• FR= 5Ω 

As each one of the three fault conditions is analysed under other three FR conditions, the 

results amount to nine unique simulations with individual results. 

To achieve this, the model had to be simulated and automated to facilitate the extraction 

process. This was carried out through a script implemented in the RSCAD software that runs 

the RTDS simulation. This script handled the currently simulated fault location to switch 

from one FR value to the next, and then from one FT to the next. Each time the script finished 

obtaining the relevant voltage and current data, it then created a CSV file to store it and saved 

it in the proper folder within the device. This required the manual modification of the model 

to place the fault in each one of the 43 nodes within the grid. 

Although the automation script streamlined much of the process, manual intervention was 

still required to reposition the fault component across all 43 nodes of the network, one by 

one. Once data had been generated for all nodes and fault scenarios, the resulting data folders 

were transferred to the computing environment where the main fault location (FL) algorithm 

was executed and evaluated. 

4.3 MATLAB SYSTEM 

This chapter describes the two-stage system for the automated detection and precise 

localisation of faults within a power distribution network. The approach integrates traditional 

impedance-based fault analysis with a multi-PMU data fusion technique, aiming to enhance 

the accuracy and reliability of fault location. The system is implemented in MATLAB, 

utilising a central orchestration script that interacts with many specialised functional 

modules, including its main: a DFT module for waveform processing, an impedance 
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calculation for impedance-based localisation, and a fault classifier that classifies the fault 

into one of 4 possible types. 

The proposed system addresses the challenge of rapidly and accurately identifying fault 

locations by processing large volumes of simulated fault data from a Real-Time Digital 

Simulator (RTDS). The methodology is structured to first identify potential fault zones using 

individual PMU measurements (Stage 1) and then refine this localisation by probabilistically 

combining information from multiple PMUs (Stage 2). The main script manages the overall 

workflow, from data ingestion and organisation to the execution of the two analytical stages 

and the presentation of final fault location predictions. 

4.3.1 DATA ACQUISITION AND INITIAL ORGANISATION 

The initial phase focuses on efficiently loading and structuring the simulated fault data: 

4.3.1.1 System Initialisation 

The algorithm script starts by loading fundamental system parameters, including High 

Voltage (HV) network data and the detailed topology of the distribution feeder from an Excel 

spreadsheet. This establishes the electrical model crucial for subsequent impedance 

calculations. 

4.3.1.2 Automated Data Ingestion 

To facilitate batch processing, the user designates a single directory containing all RTDS 

waveform data files. These files are required to be in a Comma Separated Values (CSV) 

format. 

4.3.1.3 Filename Scenario Grouping 

A very important aspect of this stage is the appropriate organisation of the input data. Each 

CSV filename is created to adhere to a customised convention, N[node number] 

_PMU[PMU number]_[Fault type]_Rf[Fault resistance].csv. One example of this 

convention would be file N10_PMU1_3P_Rf_0.csv. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MASTER’S DEGREE IN SMART GRIDS 

 

MODEL & ALGORITHM DEVELOPED 

42 

 

Where: 

• N10 is the code indicating that the data in this file corresponds to a fault happening 

in node 10. 

• PMU1 indicates that the fault data is collected by PMU 1. 

• 3P represents the fault type, in this case a three-phase fault. Other fault types are 

represented as DLG (double line to ground) and LL (line to line).  

• Rf_0 corresponds to the fault resistance, in this case 0. 

This structured naming convention allows the script to automatically extract the associated 

PMU identifier, and the specific fault scenario (true fault node, type, and resistance), turning 

them into unique keys that are used later on. A programmatic structure, such as a 

containers.Map, is then utilized to group all PMU data files that correspond to the same 

unique fault scenario. This ensures that for a single fault event, all contributing PMU 

measurements are collectively accessible for analysis. 

4.3.2 STAGE 1: TRADITIONAL DISTANCE PROTECTION 

The first stage of the localization process makes use of conventional impedance-based 

principles to determine individual fault locations from the perspective of each individual 

PMU. 

4.3.2.1 Waveform Phasor Extraction 

For each PMU measurement associated with a given fault scenario, the script calls the 

DFT_v7.m model to apply the Discrete Fourier Transform to the respective waveform 

obtained from the CSV data. This takes the path to the raw waveform CSV file and the 

nominal system voltage (Vn) as inputs. Figure 4 shows the waveform signal in MATLAB. 
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Within this module, the time-series voltage and current data are processed using the DFT. 

This function extracts the steady-state phasor components, including positive, negative, and 

zero sequence voltages (E1, E2, E3, E0a, Eda, Eia) and currents (I1, I2, I3, I0a, Ida, Iia). 

These phasor values serve as the fundamental electrical measurements for the fault analysis 

done in the rest of the process. 

4.3.2.2 Impedance-Based Fault Zone Identification 

This module receives the grid node ID corresponding to the measuring PMU, the pre-loaded 

grid and node topology data, HV system parameters, feeder details, nominal voltage, and the 

specific PMU's waveform file path. 

Figure 4. Waveform signal for the algorithm. Y axis: current (kA); X axis: time (s). 
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Initially, the grid's impedance matrices (positive and zero sequence, Zd, Z0) are computed 

using the get_imped_matrix_v5 function, establishing the electrical characteristics of each 

line and node. This function calculates the baseline impedances as seen from each one of the 

buses in the grid. This is a critical step, as the distance calculation depends on the comparison 

of baseline impedances and apparent impedances. In Figure 5, the results of this 

identification are visible.  

Figure 5. Impedance location. 

However, the analysis results must consider the different fault types that the data might 

correspond to. With this in mind, a fault classifier sub-function is implemented to analyse 

the symmetrical components of the phasors during the fault period to determine the specific 

fault type (e.g., three-phase, line-to-line, or double line-to-ground). Once the fault type is 

calculated, there is another critical action that the script must tackle to ensure that the results 

are accurate. 
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4.3.2.3 Fault Type Filter 

The script uses fault currents and voltages to calculate the apparent impedance and then 

makes a comparison between that and the baseline bus impedance. This information is then 

used to make a prediction of the fault location. However, PMUs do not always see a fault, 

as it may be located outside of their point of view. This may lead to false predictions as the 

algorithm must give a prediction regardless of the data. It is for this reason that a filter is 

implemented. Figure 6 shows a typical unfiltered current signal that is part of the signal 

inputs to the algorithm. 

Figure 6. Unfiltered current signal. Y axis: current (kA); Y axis: time (s) 

Based on the fault type detected by the fault type classifier, the filter sets a series of 

conditions that, if met by the fault data, will classify the prediction as a “no fault” prediction. 

This is done by analysing the current values and based on the fault type, setting a threshold 

that divides fault current levels from normal current levels. This means that the data sets 

detected with normal current levels will have their predictions set as “no fault seen”, which 

provides useful information for the final prediction. The result is that if a PMU detects no 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MASTER’S DEGREE IN SMART GRIDS 

 

MODEL & ALGORITHM DEVELOPED 

46 

 

fault, then the rest of the predictions have a higher value, as the fault is not present in this 

zone. 

4.3.2.4 Results 

After the data has been filtered, the apparent impedance observed at the PMU location is 

calculated. This apparent impedance is subsequently mapped onto predefined MHO relay 

characteristic zones associated with each node in the distribution network, utilizing the 

Z_map function. This mapping process quantifies the likelihood that the observed fault 

impedance falls within the protective zone of each node. 

The primary output of this stage, for each individual PMU, is a percentage vector. This vector 

represents a probability distribution, indicating the percentage likelihood of the fault being 

located at each specific node in the system, purely based on the measurements from that 

single PMU. For numerical stability in the subsequent stage, a small smoothing factor (ϵ) is 

applied to these percentages, ensuring no zero probabilities, and the vector is normalized to 

sum to unity. 

4.3.3 STAGE 2: PMU REFINEMENT 

The second stage focuses on refining the predicted fault location results by combining the 

individual probabilities (likelihoods) obtained from multiple PMUs using Bayes’ Theorem. 

This integration takes advantage of several PMU measurements to improve the prediction 

accuracy and reduce the ambiguity inherent in the individual measurements. 

4.3.3.1 Bayesian Combination of Fault Location Probabilities 

The proposed algorithm relies on PMU data to estimate the location of faults in a distribution 

network. Due to the nature of electrical faults and the distribution of PMUs across the 

system, each measurement point provides a partial and independent perspective of the event. 

These perspectives are expressed as probabilistic fault location estimates for each possible 

bus in the network. In order to reach a final, consolidated prediction of the faulted location, 

the algorithm uses a Bayesian combination method to integrate the multiple estimates into a 

single, coherent probability distribution. 
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The core idea is to treat the outputs from different PMU viewpoints as conditionally 

independent likelihoods of the fault being at each node. By assuming a uniform prior 

probability (i.e. there is no prior knowledge for any specific node over another), the code 

applies Bayes’ Theorem to update this prior probability using the available likelihoods. 

Each iteration of the loop in the code corresponds to one group of six likelihood values (e.g., 

from six different PMU measurements) and for each of the 43 possible fault locations. The 

key steps of the algorithm are the following: 

4.3.3.2 Prior Definition 

A uniform prior probability distribution is assumed for all possible fault locations. Reflecting 

the temporary assumption that all nodes are equally likely to experience a fault. 

4.3.3.3 Likelihood Aggregation 

For each set of six probability columns, representing different views or methods of 

estimating the fault likelihood, the algorithm computes the product of the likelihoods for 

each location. This step combines the individual observations into a single combined 

likelihood for each node. This aligns with the assumption of conditional independence. 

4.3.3.4 Posterior Calculation 

Then, the unnormalized posterior values are computed by performing an element-wise 

multiplication of the prior and the combined likelihoods. This results in an intermediate 

vector that represents the relative belief that each node is the faulty node, before 

normalisation. 

4.3.3.5 Normalization 

To make sure that the final values represent a valid probability distribution (i.e. they sum to 

100%), the unnormalized posterior is scaled accordingly. This results in the final Bayesian 

posterior probabilities, which are stored in a vector. 

The algorithm aims to improve the robustness and reliability of the fault location prediction 

by combining all the different estimates through this probabilistic framework. Bayes’ 
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Theorem allows for the fusion of independent evidence, improving its accuracy, especially 

in cases where some measurements may be noisy, ambiguous, or do not provide enough 

information when interpreted in isolation. This happens especially often when the PMU is 

located before a branch separation that leads to 2 or more branches with one of them 

containing the fault. In these cases, the PMU calculates a distance that corresponds to several 

different nodes, which leads to multiple predictions with similar likelihoods. 

4.3.3.6 Conclusion 

This two-stage methodology offers a systematic and automated approach to fault location in 

distribution systems. By first employing traditional impedance-based methods on individual 

PMU data and then efficiently combining these results using BT, the system enhances the 

reliability and precision of the fault location method. 
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Chapter 5.  RESULTS AND DISCUSSION 

5.1 RESULTS 

As mentioned in the previous chapter, the algorithm begins the process by extracting the 

fault data from the CSV file that contains the measurements recorded during the fault event. 

Then, this information is presented in the form of waveforms to facilitate their processing. 

This waveform is also plotted in an effort to facilitate the visualisation of the fault behaviour, 

which in turn aids troubleshooting as well. The rest of the algorithm will use the voltage and 

current phasors in their rectangular form, 𝑎 + 𝑖𝑏. These values are the core of the 

calculations and are used throughout the entire process to calculate the impedances that will 

bring the results. 

After reading and adapting the data, the impedance estimation stage will produce several 

outputs. These include the following. 

• Location estimates provided by each PMU individually 

• The likelihood distribution for each of the estimates 

• A graph visually showcasing the comparison between the measured impedance 

(during the fault event) and the baseline bus values 

• The voltage and current waveforms associated with the fault. 

In this case study, the system includes five PMUs and one non-PMU sensor located at the 

header of the grid. Together, they provide a total of six separate fault location estimates. 

Then, in order to obtain a single final prediction, these individual estimates are combined 

using Bayes’ Theorem. This combination step produces two outputs. 

• A Bayesian combined estimate 

• Probability values for each possible fault location. 

It is important to note that some of the individual estimates may be, and surely will be, 

incorrect. This results in estimations that differ from the actual faulty node. To consider this 
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and allow for analysis, the distance between the estimated and the actual faulty node is 

calculated by computing the difference between the predicted location and the true location 

once the algorithm shows its results. This metric helps build a more detailed assessment of 

the accuracy and reliability of the proposed method. 

The algorithm was tested across nine different scenarios, using three different fault resistance 

conditions and three unique fault types. The following sections will give a more detailed 

description of each of their results. 

The testing worked by cycling through all the possible node faults (i.e. a file was created for 

each possible fault location, and the algorithm attempted to estimate correctly) and placing 

each final result in a table. This gives a total of 9 different tables each containing the results 

of 43 algorithm estimations, which also contain the combined data from 6 different sensors. 

This means that the analysis covers 2322 individual results, combined and categorised to 

facilitate their visualisation. 

5.1.1 3-PHASE FAULTS 

5.1.1.1 𝑭𝑹 = 𝟎𝜴 

The first scenario that was analysed was a 3-phase fault with a fault resistance value of 0Ω. 

The estimation algorithm cycled through each one of the fault data files, assigning an 

estimation and its respective probability. These results are shown in Table 1, where the 

Faulty Node column indicates the real fault location, the Final Estimated Node indicates the 

algorithm estimate, and the Estimation Likelihood shows the probability of the estimate 

being correct.  

Table 1. 3-Phase FR=0Ω Fault Estimation Results. 

Faulty 

Node 

Final Estimated 

Node 

Estimation 

Likelihood (%) 

2 2 99.95700698 

3 3 99.95700698 
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4 4 99.95700698 

5 5 99.95700698 

6 6 99.95700698 

7 7 99.95700698 

8 8 99.95700698 

9 9 99.95700698 

10 10 99.95700698 

11 11 99.99799909 

12 12 99.99899932 

13 13 99.99899932 

14 14 99.99899932 

15 15 99.99999957 

16 16 99.99999957 

17 17 99.99999957 

18 18 99.99999957 

19 19 99.99999957 

20 20 99.99999957 

21 21 100 

22 22 100 

23 23 100 

24 24 100 

25 25 100 

26 26 100 

27 27 100 

28 28 100 

29 29 99.99999999 

30 30 100 

31 31 100 

32 32 100 

33 33 99.99899974 
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34 34 99.99899974 

35 35 100 

36 36 100 

37 1 2.272727273 

38 38 99.99899932 

39 39 99.99899932 

40 40 99.99899932 

41 41 99.99899932 

42 42 99.99899932 

43 43 99.99899932 

44 15 99.95700698 

 

The results shown in the table above show both the real and the estimated faulty nodes. A 

look at them makes it clear that the vast majority of the estimations turned out to be correct, 

as 41 of the 43 predictions are accurate. Regarding the estimation likelihoods, once again, 

the vast majority of them are above a 99.5%. 

However, there are two estimations that failed to predict the correct node. When a fault 

happened in node 37, the algorithm did not detect any faults in the grid. When the 3-phase 

fault was located in node 44, the method mistakenly predicted a fault in node 15. 

Taking all results into consideration, this scenario produced the following results. 

• The method presents an average estimation probability of 95.34%. 

• A total of 95.35% of the estimations were correct. 

These results  

5.1.1.2 𝑭𝑹 = 𝟏𝜴 

The next case that was examined changed the fault resistance from 0Ω to 1Ω and once again, 

the estimation algorithm processes each of the fault data files and produces an estimated 
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location along with its probability. These outcomes are presented in Table 2, with the same 

format as previously. 

Table 2. 3-Phase FR=1Ω Fault Estimation Results. 

Faulty 

Node 

Final Estimated 

Node 

Estimation 

Likelihood (%) 

2 2 99.95700698 

3 3 99.95700698 

4 4 99.95700698 

5 5 99.95700698 

6 6 99.95700698 

7 7 99.95700698 

8 8 99.95700698 

9 9 99.95700698 

10 10 99.95700698 

11 11 99.99899932 

12 12 99.99899932 

13 13 99.99899932 

14 14 99.99899932 

15 15 99.99999957 

16 16 99.99999957 

17 17 49.98949939 

18 18 99.99999957 

19 19 99.99999957 

20 20 99.99999957 

21 22 99.99899932 

22 23 99.99899932 

23 23 100 

24 24 100 

25 26 99.99899932 

26 27 99.99899932 
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27 27 100 

28 28 100 

29 29 49.99999989 

30 30 49.99999989 

31 31 100 

32 32 100 

33 33 49.99974983 

34 35 99.99999998 

35 36 99.99899974 

36 36 100 

37 1 2.272727273 

38 38 99.99899932 

39 39 99.99899932 

40 40 99.99899932 

41 41 99.99899932 

42 42 99.99899932 

43 43 99.99899932 

44 15 99.95700698 

 

The results in the table above display both the actual and the estimated faulted nodes. Similar 

to last case, these entries suggests that the great majority of estimates were correct, with, 

again, 41 of the 43 predictions being accurate. Regarding the estimation likelihoods, most 

values too exceed 99.95%. 

In this case, there is a total of 8 incorrect estimations. However, the errors in this instance 

are of a different nature than those of the past scenario. Table 3 shows incorrect predictions 

on fault nodes 21, 22, 25, 26, 34, and 35. In all those cases, the estimated location was only 

one node away from the faulty node. This means that, while the average estimation 

likelihood is 76.73%, the errors in prediction are relatively small when compared to the past 

errors. 
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When computed, the distance between the faulty node and the estimated node is shown in 

Table 3. 

Table 3. 3-Phase Distance Error FR=1Ω 

Faulty 

Node 

Final Estimated 

Node 

Distance 

to fault 

(km) 

21 22 0.537 

22 23 0.09 

25 26 0.347 

26 27 0.102 

34 35 0.081 

35 36 0.065 

 

This yields a mean distance of 85.70m between the estimated fault and the actual fault across 

the entire network. When contrasted with the grid’s geographical extent, this figure amounts 

to 1.04%. In other words, the method produces estimates with an average error of 1.04% of 

the analysed network. 

Still, the fault in node 37 is not detected by the algorithm, and fault node 44 is still mistakenly 

predicted at node 15. 

To summarize, this scenario produced the following results. 

• The method presents an average estimation probability of 76.73%. 

• A total of 81.40% of the estimations were correct. 

5.1.1.3 𝑭𝑹 = 𝟓𝜴 

The last 3-phase case now uses a fault resistance of 5Ω. The table structure is the same and 

can be seen in Table 4. 
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Table 4. 3-Phase FR=5Ω Fault Estimation Results. 

Faulty 

Node 

Final Estimated 

Node 

Estimation 

Likelihood (%) 

2 2 99.95700698 

3 3 99.95700698 

4 5 99.95700698 

5 6 99.95700698 

6 7 99.95700698 

7 8 99.95700698 

8 9 99.95700698 

9 9 99.95700698 

10 11 49.98949939 

11 12 99.99899932 

12 13 99.99899932 

13 14 99.99899932 

14 14 99.99899932 

15 16 99.99999957 

16 18 99.99999957 

17 18 99.99999957 

18 19 99.99999957 

19 19 99.99999957 

20 20 99.99999957 

21 23 100 

22 24 100 

23 24 100 

24 24 100 

25 27 100 

26 27 100 
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27 28 100 

28 29 49.99999989 

29 31 100 

30 31 100 

31 32 100 

32 34 100 

33 36 100 

34 36 100 

35 36 100 

36 1 2.272727273 

37 1 2.272727273 

38 40 99.99899932 

39 40 99.99899932 

40 41 99.99899932 

41 42 99.99899932 

42 43 99.99899932 

43 15 49.98949939 

44 16 99.95700698 

 

The results in the table above display both the actual and the estimated faulted nodes; an 

inspection of these entries suggests that the great majority of estimates were correct, with 41 

of the 43 predictions being accurate. Regarding the estimation likelihoods, once again, most 

values exceed 99.95%. 

Now in this scenario, most of the estimations are incorrect. The errors this time are similar 

to the past scenario’s results. Table 5 shows all the incorrect predictions given by the 

algorithm. Again, most estimated locations were only one node away from the faulty node, 

but this time some distance errors were greater than in other cases. This results in an average 

estimation likelihood is 16.28%, although the errors in prediction are not as big as expected. 
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Table 5. 3-Phase Distance Error FR=5Ω 

Faulty 

Node 

Final Estimated 

Node 

Distance 

to fault 

(km) 

4 5 0.335 

5 6 0.118 

6 7 0.127 

7 8 0.127 

8 9 0.168 

10 11 0.390 

11 12 0.174 

12 13 0.189 

13 14 0.170 

15 16 0.381 

16 18 0.334 

17 18 0.146 

18 19 0.080 

21 23 0.627 
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22 24 0.174 

23 24 0.084 

25 27 0.449 

26 27 0.102 

27 28 0.102 

28 29 0.240 

29 31 0.294 

30 31 0.094 

31 32 0.125 

32 34 0.223 

33 36 0.311 

34 36 0.146 

35 36 0.065 

38 40 0.309 

39 40 0.100 

40 41 0.100 

41 42 0.151 

42 43 0.176 

43 15 1.951 
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44 16 2.379 

 

5.1.2 DOUBLE-LINE-TO-GROUND 

5.1.2.1 𝑭𝑹 = 𝟎𝜴 

The first DLG case considers a fault resistance of 0Ω. The table layout remains the same and 

appears in Table 6. 

Table 6. DLG FR=0Ω Fault Estimation Results. 

Faulty 

Node 

Final Estimated 

Node 

Estimation 

Likelihood (%) 

2 2 99.95700698 

3 3 99.95700698 

4 4 99.95700698 

5 5 99.95700698 

6 6 99.95700698 

7 7 99.95700698 

8 8 99.95700698 

9 9 99.95700698 

10 10 99.95700698 

11 11 99.99799909 

12 12 99.99899932 

13 13 99.99899932 

14 14 99.99899932 

15 15 99.99999957 

16 16 99.99999957 

17 17 99.99999957 

18 18 99.99999957 

19 19 99.99999957 
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20 20 99.99999957 

21 21 100 

22 22 100 

23 23 100 

24 24 100 

25 25 100 

26 26 100 

27 27 100 

28 28 100 

29 29 99.99999999 

30 30 100 

31 31 100 

32 32 100 

33 33 99.99899974 

34 34 99.99899974 

35 35 100 

36 36 100 

37 1 0 

38 38 99.99899932 

39 39 99.99899932 

40 40 99.99899932 

41 41 99.99899932 

42 42 99.99899932 

43 43 99.99899932 

44 15 0 

 

The table above reports both the true and the inferred faulted nodes; reviewing these records 

indicates that the large majority of estimates were correct, with 41 out of 43 predictions 

accurate. Regarding the estimation likelihoods, again, most figures are above 99.95%. There 

are, however, two estimates that did not match the correct node. The case for node 37 was 
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the same as in 3-phase scenarios, and the algorithm did not detect the fault in the grid. On 

the other hand, when the three-phase fault was at node 44, the method incorrectly pointed to 

node 15. Taking all outcomes into account, this scenario produced the following results. 

• The method presents an average estimation probability of 95.34%. 

• A total of 95.35% of the estimations were correct. 

5.1.2.2 𝑭𝑹 = 𝟏𝜴 

The second DLG case uses a fault resistance of 1Ω. The same table format is retained and is 

shown in Table 7. 

Table 7. DLG FR=1Ω Fault Estimation Results. 

Faulty 

Node 

Final Estimated 

Node 

Estimation 

Likelihood (%) 

2 2 99.95700698 

3 3 99.95700698 

4 4 99.95700698 

5 5 99.95700698 

6 6 99.95700698 

7 7 99.95700698 

8 8 99.95700698 

9 9 99.95700698 

10 10 99.95700698 

11 11 99.99899932 

12 12 99.99899932 

13 13 99.99899932 

14 14 99.99899932 

15 15 99.99999957 

16 16 99.99999957 

17 18 99.99999957 

18 18 99.99999957 
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19 19 99.99999957 

20 20 99.99999957 

21 22 99.99899932 

22 23 100 

23 23 99.99899932 

24 24 100 

25 26 99.99899932 

26 27 99.99899932 

27 27 100 

28 28 100 

29 30 99.99999999 

30 30 49.99999989 

31 31 100 

32 32 100 

33 34 99.99899974 

34 35 100 

35 36 100 

36 36 100 

37 1 2.272727273 

38 11 33.32877718 

39 12 33.32877718 

40 40 99.99899932 

41 41 99.99899932 

42 42 99.99899932 

43 43 99.99899932 

44 15 99.95700698 

 

In the table above, both the actual and the estimated faulted nodes are listed. A quick review 

suggests that most estimates were correct, with 33 of 43 predictions classified as accurate. 

As for the estimation likelihoods, most values once again exceed 99.95%. Two estimates 
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failed to identify the correct node. With a fault at node 37, the algorithm reported no faults 

in the network. With the 3-phase fault at node 44, the method wrongly predicted node 15. 

Considering the full set of outputs, this scenario yields the following. 

• The method achieves an average estimation probability of 70.92%. 

• In total, 74.42% of the estimates were correct. 

For this scenario, most estimates are now incorrect. The error patterns resemble those 

observed previously. Table 7 summarises all wrong predictions produced by the algorithm. 

Once more, many predicted locations were only one node away from the true faulted node, 

though some distance errors are higher than in other cases. The resulting average estimation 

likelihood is 16.28%, even if the magnitude of the errors is lower than expected. The 

computed distance between the faulted node and the estimated node appears in Table 7. 

Overall, this leads to an average distance of 10.33m from the estimated fault to the real fault 

across the grid. When set against the grid’s geographical span, this corresponds to 1.25%, 

meaning the method’s average error is 1.25% of the analysed grid. 

5.1.2.3 𝑭𝑹 = 𝟓𝜴 

In the final three-phase scenario, the fault resistance is set to 5 Ω. The same table structure 

applies and is presented in Table 8. 

The table below includes both the real and the predicted faulted nodes. On inspection, the 

vast majority of estimates are correct, with 41 out of 43 predictions accurate. With respect 

to estimation likelihoods, most values once again surpass 99.95%. There are two exceptions. 

When the fault occurred at node 37, the algorithm failed to flag any fault. When the three-

phase fault was placed at node 44, the method selected node 15 instead. Aggregating the 

results, this scenario reports the following. 

• The average estimation probability is 17.07%. 

• Correct estimations account for 18.60% of the total. 
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Table 8. DLG FR=5Ω Fault Estimation Results. 

Faulty 

Node 

Final Estimated 

Node 

Estimation 

Likelihood (%) 

2 2 99.95700698 

3 3 99.95700698 

4 5 99.95700698 

5 6 99.95700698 

6 7 99.95700698 

7 8 99.95700698 

8 9 99.95700698 

9 9 99.95700698 

10 11 49.98949939 

11 12 99.99899932 

12 13 99.99899932 

13 14 99.99899932 

14 14 99.99899932 

15 16 99.99999957 

16 18 99.99999957 

17 18 99.99999957 

18 19 99.99999957 

19 19 99.99999957 

20 20 99.99999957 

21 23 100 

22 24 100 

23 24 100 

24 24 100 

25 27 100 

26 27 100 

27 28 100 

28 29 49.99999989 
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29 31 100 

30 31 100 

31 32 100 

32 34 100 

33 36 100 

34 36 100 

35 36 100 

36 1 2.272727273 

37 1 2.272727273 

38 40 99.99899932 

39 40 99.99899932 

40 41 99.99899932 

41 42 99.99899932 

42 43 99.99899932 

43 15 49.98949939 

44 16 99.95700698 

 

At this point, most estimations in this scenario are incorrect. The error types are comparable 

to those seen earlier. Table 10 lists every incorrect prediction generated by the algorithm. 

Many estimates land just one node away from the faulted node, although a few distance 

errors are larger than in other cases. This produces an average estimation likelihood of 

17.07%, even though the overall error magnitudes are not as high as anticipated. The distance 

between the true faulted node and the estimated node is reported in Table 10. Across the 

grid, the mean distance between the predicted and actual fault positions is 270.9m. Relative 

to the grid’s geographic extent, this equals 3.27%. In short, the method yields an average 

error of 3.27% of the analysed grid. 

Table 9. DLG Estimation Error distance. 
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Faulty 

Node 

Final Estimated 

Node 

Distance 

to Fault 

(km) 

4 5 0.335 

5 6 0.118 

6 7 0.127 

7 8 0.127 

8 9 0.168 

10 11 0.39 

11 12 0.174 

12 13 0.189 

13 14 0.17 

15 16 0.381 

16 18 0.334 

17 18 0.146 

18 19 0.08 

21 23 0.627 

22 24 0.174 

23 24 0.084 

25 27 0.449 

26 27 0.102 

27 28 0.102 

28 29 0.24 

29 31 0.29418 

30 31 0.09418 

31 32 0.12483 

32 34 0.388 

33 36 0.311 

34 36 0.146 

35 36 0.065 
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38 40 0.309 

39 40 0.1 

40 41 0.1 

41 42 0.151 

42 43 0.176 

43 15 1.951 

44 16 2.379 

 

5.1.3 LINE-TO-LINE 

5.1.3.1 𝑭𝑹 = 𝟎𝜴 

This last 3-phase test adopts a fault resistance of 0 Ω. The identical tabular layout applies 

and can be found in Table 11. 

Table 10. LL FR=0Ω Fault Estimation Results. 

Faulty 

Node 

Final Estimated 

Node 

Estimation 

Likelihood (%) 

2 2 99.95700698 

3 3 99.95700698 

4 4 99.95700698 

5 5 99.95700698 

6 6 99.95700698 

7 7 99.95700698 

8 8 99.95700698 

9 9 99.95700698 

10 10 99.95700698 

11 11 99.99799909 

12 12 99.99899932 

13 13 99.99899932 

14 14 99.99899932 
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15 15 99.99999957 

16 16 99.99999957 

17 17 99.99999957 

18 18 99.99999957 

19 19 99.99999957 

20 20 99.99999957 

21 21 100 

22 22 100 

23 23 100 

24 24 100 

25 25 100 

26 26 100 

27 27 100 

28 28 100 

29 29 99.99999999 

30 30 100 

31 31 100 

32 32 100 

33 33 99.99899974 

34 34 99.99899974 

35 35 100 

36 36 100 

37 1 2.272727273 

38 38 99.99899932 

39 39 99.99899932 

40 40 99.99899932 

41 41 99.99899932 

42 42 99.99899932 

43 43 99.99899932 

44 15 99.95700698 
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As shown above, the table lists both the true faulted node and the algorithm’s estimate. A 

closer look indicates that the majority of estimates were right, with 41 of 43 predictions 

accurate. For the estimation likelihoods, most entries are again above 99.5%. Two estimates 

did not match the ground truth. With a fault at node 37, the algorithm detected no fault in 

the grid. With the 3-phase fault placed at node 44, the method incorrectly chose node 15. 

Summing up, this scenario leads to the following. 

• The average estimation probability stands at 95.34%. 

• In total, 95.35% of the predictions were correct. 

This results in an average separation of 5.66m between the estimated and actual fault 

locations across the grid. Compared to the grid’s geographic reach, this is 0.68%, meaning 

the method’s average error amounts to 0.68% of the analysed grid. 

5.1.3.2 𝑭𝑹 = 𝟏𝜴 

In this second LL scenario, the fault resistance is set to 1Ω. The same table structure applies 

and is presented in Table 12. 

Table 11. LL FR=1Ω Fault Estimation Results.  

Faulty 

Node 

Final Estimated 

Node 

Estimation 

Likelihood (%) 

2 2 99.95700698 

3 3 99.95700698 

4 4 99.95700698 

5 5 99.95700698 

6 6 99.95700698 

7 7 99.95700698 

8 8 99.95700698 

9 9 99.95700698 

10 10 99.95700698 

11 11 99.99899932 
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12 12 99.99899932 

13 13 99.99899932 

14 14 99.99899932 

15 15 99.99999957 

16 16 99.99999957 

17 18 0 

18 18 99.99999957 

19 19 99.99999957 

20 20 99.99999957 

21 22 0 

22 23 0 

23 23 99.99899932 

24 24 100 

25 26 0 

26 27 0 

27 27 100 

28 28 100 

29 30 0 

30 30 49.99999989 

31 31 100 

32 32 100 

33 34 0 

34 35 0 

35 36 0 

36 36 100 

37 1 0 

38 11 0 

39 12 0 

40 40 99.99899932 

41 41 99.99899932 
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42 42 99.99899932 

43 43 99.99899932 

44 15 0 

 

The table above includes both the real and the predicted faulted nodes. On inspection, the 

majority of estimates are correct. With respect to estimation likelihoods, most values once 

again surpass 99.95%. Aggregating the results, this scenario reports the following. 

• The average estimation probability is 68.60%. 

• Correct estimations account for 72.09% of the total. 

In this case, there is a total of 12 incorrect estimations. However, the errors in this instance 

are of a different nature than those of the past scenario. Table 13 shows incorrect predictions 

on several nodes. In all those cases, the estimated location was only one node away from the 

faulty node. This means that, while the average estimation likelihood is 68.60%, the errors 

in prediction are relatively small when compared to the past errors. 

When computed, the distance between the faulty node and the estimated node is shown in 

Table 13. 

Table 12. Error distances (km) 

Faulty 

Node 

Final Estimated 

Node 

Distance 

to Fault 

(km) 

17 18 0.146 

21 22 0.537 

22 23 0.09 

25 26 0.347 

26 27 0.102 

29 30 0.2 

33 34 0.165 
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34 35 0.081 

35 36 0.065 

38 11 0.209 

39 12 0.1 

44 15 2.379 

 

This yields a mean distance of 10.53m between the estimated fault and the actual fault across 

the entire network. When contrasted with the grid’s geographical extent, this figure amounts 

to 1.27%. In other words, the method produces estimates with an average error of 1.27% of 

the analysed network. 

Still, the fault in node 37 is not detected by the algorithm, and fault node 44 is still mistakenly 

predicted at node 15. 

To summarise, this scenario produced the following results. 

• The method presents an average estimation probability of 68.60%. 

• A total of 72.09% of the estimations were correct. 

5.2 DISCUSSION 

5.2.1 OVERALL BEHAVIOUR 

The final results of this study are shown in this section, as well as the general discussion 

regarding them. Here are tables, graphs, and figures explaining the results and comparing 

them with the expected outcomes. 
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Once all results are considered together, the pattern becomes easier to see. Figure 7 presents 

the average estimation probability for the three fault types across the three-fault resistance 

(FR) levels. A consistent tendency appears, as FR increases, the mean estimation probability 

tends to drop. This behaviour was expected and is visible in the figure for all three fault 

categories, where the estimation values decline as the FR moves from 0Ω to 1Ω to 5Ω. 

 

Estimation probability alone, however, does not fully describe the method’s behaviour. A 

second viewpoint is needed for this. Figure 8 reports the percentage of correct estimations 

for each scenario in the analysed grid. The numbers closely track those in the previous figure, 

which is reasonable because most correct classifications carry probabilities very close to 100 

Graphic 1. Number of correct estimations over all 9 scenarios. 

Figure 7. Average Estimation Probability (%) 
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percent. As a result, the average probability and the share of correct outcomes move in 

parallel. 

 

It is also clear that the predictions obtained with an FR of 5Ω show lower probabilities and 

reduced accuracy. Yet this count of correct cases relies on a binary decision: either the 

estimate matches the true node, or it does not. To better interpret the results, it is necessary 

to add a measure that reflects how far a wrong estimate is from the actual faulted section. 

Figure 9 offers that perspective by plotting the distance between the node predicted by the 

algorithm and the true location. This view helps to judge the severity of errors rather than 

only their occurrence. The pattern is straightforward, low FR values lead to small distances. 

More interestingly, the 5Ω scenarios still produce an average spatial error of about 3.2 % of 

the grid’s extent, which is not especially large. This reframes the earlier accuracy figures 

and provides a more balanced view of performance under higher resistance. 

The reason for the degradation at 5Ω is consistent with the theory of single-ended, 

impedance-based location. The additional voltage drop across the fault resistance is 

interpreted as part of the line, so the apparent impedance becomes the sum of the true line 

Figure 8. Number of Correct Estimations (%) 
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segment and a term that scales with FR and the fault type. If the model is tuned around lower 

FR, that extra drop is read as extra distance, creating a bias that grows with resistance. A 

higher FR also lowers fault current, reducing the contrast between pre-fault and fault 

phasors; residual load components, infeed, and modest measurement errors therefore matter 

more. For ground faults, zero-sequence paths and grounding impedances can further disturb 

simplified positive-sequence assumptions and add to the error. 

Even so, the 5Ω simulations in this study do not show extreme deviations. Three factors 

likely explain this outcome. 

First, the phasors are clean, and parameters are well specified, which reduces noise that 

would otherwise magnify high-resistance effects. Third, the approach combines viewpoints 

from multiple PMUs, this means that weaker estimates lose weight when results are fused, 

and the final location tends to be pulled toward the more reliable predictions. 

Taken together, these observations suggest that FR is more impactful in performance than 

fault type. In practical terms, the method behaves consistently across the three fault 

categories as long as the resistance level remains comparable. 

Figure 9. Estimation Error Distance (%) 
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5.2.2 COMPARISON VS. BASELINE CASE 

All these results are interesting on their own, but the value of the obtained outcomes does 

not only rely on their isolated values, but also on their performance when compared to other 

methods’ results. In an effort to further visualise these methods’ accuracy, the obtained data 

is compared to a baseline in this section. 

The algorithm computes its estimations based on the data obtained from each one of the 

measurement points in the grid and then combines six different estimation data sets to end 

up with only one set of estimation data. This baseline case relies on a single measurement 

point at the head of the grid and instead of combining the resulting predictions with others, 

it estimates based solely on that one set of information. Naturally, this will mean that the 

amount of information with which the algorithm uses to produce a prediction is less than this 

study’s case, and thus it is expected to have a lower accuracy and higher error ratio. 

 

 

Figure 10. Percentage of Correct Estimations. 
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When set against the Bayesian combination, it can be seen that the baseline accuracy is 

smaller, the correct classification rate decreases by about 23.26% in FR 0Ω and 1Ω 

scenarios, from 95.35% to 72.09% for 0Ω and from 81.40% to 58.14% for 1Ω, while the 

third FR scenario presents only a small difference in value.  This is all visible in Figure 10. 

Several factors are likely to contribute to this gap. Firstly, a head-end point of view offers 

limited visibility of deep feeder sections, as the fault lies farther from the substation, the 

distinctiveness of the measured phasors is decreased. Also, with higher fault resistances, the 

extra voltage drop across the fault is read by the estimator as additional line length, which 

biases the apparent impedance even further, which is visible in Figure 11.  

From an operational perspective, the differences are modest but not trivial. A reduction in 

correct identifications implies more switching steps or extra field checks before location, 

while the added distance error translates into longer patrol distance. Where the infrastructure 

supports multiple PMUs, the Bayesian fusion is preferable. If only a head-end PMU is 

available, the baseline still offers a somewhat decent performance, but its limitations should 

be expected to increase in high-resistance scenarios. Future work could examine whether 

Figure 11. Distance to Actual Fault (%). 
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lightweight compensation for fault resistance, or adaptive reweighting of PMUs based on 

past performance, narrows the remaining gap without adding significant complexity. 

The Bayesian combination of different probabilities proves useful to increase the certainty 

of a fault being in a certain location. Each individual measurement point, whether it is PMU 

or not, is capable of delivering a limited certainty that a fault is located in any given portion 

of the grid. The Bayesian consideration of previous probability helps this “current 

probability” increase with any extra information that can be extracted from the scenario and 

ultimately increases the overall probability and therefore, the accuracy of this method. 

In this study, the Bayesian comparison yields a 32.25% improvement in estimation 

capability for FR 0 scenarios and a 32.98% improvement for FR 1 scenarios. Taken together 

with the distance results, these gains support the use of multi-point fusion for location in the 

analysed grid, while also indicating where further refinement should focus. 
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Chapter 6.  CONCLUSIONS AND FUTURE WORK 

This project set out to improve fault location in medium-voltage distribution networks while 

keeping deployment costs realistic. The method combines a single-ended impedance 

estimator with a Bayesian step that combines several perspectives, prioritising PMU 

placements that coincide with existing measurement sites to limit new infrastructure. The 

broader motivation of the study is quality of service (QOS), a faster and more reliable 

location shortens isolation and restoration, which supports continuity for customers and safer 

operations. 

Methodologically, the work proceeds along two tracks. First, it builds a reproducible pipeline 

that ingests event waveforms, forms phasors, computes apparent impedances, and maps 

these to likely positions along the feeder. Second, it merges per-sensor outputs into a single 

posterior using Bayes’ theorem with simple priors. The case study is a 43-node urban feeder 

in Milan, chosen to keep analysis tractable while retaining realistic features such as 

branching laterals and varied sequence parameters. PMUs are assumed at legacy monitor 

sites so the study can ask not only whether accuracy improves, but whether the gains arise 

in a way a DSO could plausibly adopt. 

Across nine scenario families that cross three fault types with three resistance levels, three 

patterns emerge. At low fault resistance the method performs well, in several 0 Ω cases 

correctly identifying most events with high posterior probabilities. As resistance increases, 

accuracy declines, which aligns with single-ended impedance theory because the extra drop 

across the fault is interpreted as additional line length. Even so, at 5 Ω the distance errors 

remain moderate: the average error is close to three per cent of the grid’s extent, which keeps 

switching and patrol effort local rather than feeder-wide. 

In this case, the distance matters because a simple judgement whether its estimation is correct 

or not does not convey how far a wrong estimate lies from the true section. The distance 

metric contextualizes these results. Low resistances cause small deviations, and a higher 

resistance, while it lowers the number of correct estimations, still produces errors that cluster 
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near the correct area. This means that even though higher resistance levels may cause the 

estimations to be incorrect, estimated locations do not fall far away from the faulty section. 

With this, it can be expected that this method degrades in a controlled manner under added 

resistance, which is precisely the condition that often complicates field work. 

To reinforce this analysis, a structured comparison with a single-sensor baseline is carried 

out. Relying only on the head-end viewpoint reduces observability of deeper feeder sections. 

In the results, correct classifications fall by roughly 32% in the 0 Ω and 1 Ω groups, and 

distance errors rise slightly. This is consistent with local bias from branching, infeed, and 

resistance-induced drops that the single point reads as extra length. Fusion reduces the 

impact of these effects by reducing weak perspectives and concentrating probability on 

candidates supported by multiple sensors. 

Additionally, the deployment implications are considered. Reusing existing sites is a 

pragmatic compromise between ideal placement and cost. This decision facilitates 

implementation and eases smart grid modernisation. 

However, the algorithm presents a key limitation. The header measurement device has 

weaker synchronisation than PMU-grade points, which is detrimental to the results when 

that perspective dominates. PMU installation on the header of the grid is not yet 

technologically feasible, which limits options to counter this problem. Even then, the 

potential affected estimations would be located closer to the header, which helps mitigate 

any inaccuracies. 

Even with its limitation, the possible applications are clear. For operators, multi-PMU fusion 

offers clear improvement over a single sensor, particularly for distant faults and non-

negligible resistance. The distance-based view suggests that a small set of well-placed PMUs 

can shorten patrol lengths and reduce the number of switching steps before isolation. For 

planners, the results point to incremental deployment tied to legacy sites, and to treating 

resistance compensation and calibration as first-order concerns. 

The work also identifies concrete next steps. Modest fault-resistance compensation inside 

the estimator, tuned to local parameters, could reduce bias that grows with resistance. 
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Relaxing the independence assumption during fusion, through covariance-aware weighting 

or learning sensor reliability from past events, may help. Testing resilience under noise, 

dropouts, and timestamp jitter, together with ablations that remove individual PMUs to 

measure marginal value, would further clarify applicability. 

In summary, a single-ended impedance method, paired with simple probabilistic fusion 

across a handful of strategically located sensors, can provide accurate and operationally 

useful fault locations on an urban MV feeder. Although performance falls with increasing 

resistance, spatial errors remain contained, and fusion outperforms a single head-end 

baseline by a meaningful margin. The combination of practical placement, transparent 

computation, and clear reporting offers a credible path from study to deployment, and a 

foundation for incremental refinements that target the most consequential sources of error. 
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Chapter 8.  ANNEXES 

8.1 ANNEX A: SOURCE CODE 

8.1.1 MAIN SCRIPT 

clc 

clear 

close all 

 

%%  

%GET HV DATA 

run("get_HV_data.m"); 

load("HV_data.mat"); 

Vn=str2double(HV_data(2,6))*1000; 

 

fprintf('V2n TRASF: %f [V]\n',Vn); 

 

%% 

%GET FEEDER 

 load("grid.mat"); 

 load("G.mat"); 

 load("nodes.mat"); 

 

%% CSV Data 

% Select Folder containing all PMU-specific CSV Fault Files 

fault_data_folder = uigetdir('', 'Select Folder Containing ALL CSV Fault Data 

Files (e.g., PMU1_NodeX_TypeY.csv)'); 

if isequal(fault_data_folder, 0) 

    error('Fault data folder selection cancelled. Cannot proceed.'); 

end 

fprintf('Selected Fault Data Folder: %s\n', fault_data_folder); 

 

% Get a list of all CSV files in the selected folder 

all_csv_files = dir(fullfile(fault_data_folder, '*.csv')); 

 

if isempty(all_csv_files) 

    error('No CSV files found in the selected folder.'); 

end 

fprintf('Found %d CSV fault data files in total.\n', length(all_csv_files)); 

 

for k = 1:length(all_csv_files) 

    current_filename = all_csv_files(k).name; 

 

    % This regex expects a format like 'PMU[ID]_[SCENARIO_KEY].csv' 

    % tokens = regexp(current_filename, 

'A85(\d+)_PMU(\d+)_(Node\d+_.*)_3PRf(\d+)\.csv', 'tokens', 'once'); 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
MASTER’S DEGREE IN SMART GRIDS 

 

ANNEXES 

93 

 

    tokens = regexp(current_filename, 'A(.*?)_PMU(.*?)_(.*?)Rf_(\d+)\.csv$', 

'tokens', 'once'); 

    if isempty(tokens) 

        warning('Filename does not match expected pattern (PMU[X]_Node[NN]...). 

Skipping: %s', current_filename); 

        continue; 

    end 

    tokenmat(k,:)=tokens; 

    tokenvec(k,1)=string(current_filename); 

    pmu_id_num = str2double(tokens{2}); % e.g., 1, 2, 3, 4 

    scenario_key = current_filename;           % e.g., "Node45_3P_Rf0_A12345" 

    myTable(k,:) = table(string(tokenmat(k,1)), string(tokenmat(k,2)), 

string(tokenmat(k,3)), string(tokenmat(k,4)), ... 

                'VariableNames', {'NodeCode', 'PMU', 'FaultType', 'Rf'}); 

end 

 

 

 

%% Main 

Location_Probability = zeros(height(nodes),height(all_csv_files)); 

epsilon = 1e-3; % A very small constant to avoid absolute zeros 

 

full_rtds_filepath = fullfile(fault_data_folder,tokenvec); 

 

h = waitbar(0, 'Please wait...', 'Fault Location', 'Current progress'); 

for k = 1:length(all_csv_files) 

current_fraction = k/length(all_csv_files); 

waitbar(current_fraction, h, sprintf('Processing %.f%% . . .', 

100*k/length(all_csv_files))); 

    if str2double(tokenmat(k,2)) == 1 

        PMU_node = 1; 

    elseif string(tokenmat{k,2}) == '2A' || string(tokens{1,2}) == '2B' 

        PMU_node = 10; 

    elseif str2double(tokenmat(k,2)) == 3 

        PMU_node = 20; 

    elseif str2double(tokenmat(k,2)) == 4 

        PMU_node = 26; 

    elseif str2double(tokenmat(k,2)) == 5 

        PMU_node=30; 

    end 

     

    waveform=readmatrix(full_rtds_filepath(k,1)); 

 

    [MHO_percentage] = 

Impedance_method_v4(PMU_node,grid,G,nodes,HV_data,Vn,waveform); 

     

    if myTable.PMU(k) == '2A' 

        MHO_percentage(11:37,1)=0; 

    elseif myTable.PMU(k) == '2B' 

        MHO_percentage(38:44,1)=0; 

    end 

 

    % Apply smoothing and convert to probabilities (0-1) 
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    MHO_percentage_smoothed = (MHO_percentage + epsilon) / 100; % Add epsilon, 

then convert to 0-1 

 

    Location_Probability(:, k) = MHO_percentage_smoothed; 

end 

close(h); % Closes the waitbar figure 

% end 

 

%% Percentage Combination - Bayes' Theorem 

% We must combine the percentages using Bayes' Theorem 

Bayesian_Percentage_unnormalized=zeros(height(Location_Probability),1); 

Bayesian_Percentage=zeros(height(Location_Probability),1); 

Final_Bayesian_Percentage=zeros(height(Location_Probability),1); 

for i=1:width(Location_Probability)/6 

    % Assuming a uniform prior probability for each node 

    prior_probability = ones(height(Location_Probability), 1) / 

height(Location_Probability); 

     

    % Element-wise multiplication (equivalent to product if each column is a 

likelihood vector) 

    % The 'prod' function across the columns will multiply the likelihoods for 

each node 

    combined_likelihoods = prod(Location_Probability(:,6*i-5:6*i), 2); 

     

    % Calculate the unnormalized posterior 

    Bayesian_Percentage_unnormalized(:,i) = combined_likelihoods .* 

prior_probability; 

         

    % Normalize to get the final Bayesian posterior probabilities 

    Bayesian_Percentage(:,i) = 

100*Bayesian_Percentage_unnormalized(:,i)/(sum(Bayesian_Percentage_unnormalized(:

,i)));     %multiplied by 1.0001 to avoid obtaining 100% probabilities 

    Final_Bayesian_Percentage(:,i)=Bayesian_Percentage(:,i); 

end 

 

%% Plotting 

% Assuming you have already run the code to calculate Percentage 

C=unique(myTable.NodeCode,'stable'); 

% 1. Define Node Numbers 

node_numbers = 1:height(Bayesian_Percentage); % Creates a vector [1, 2, ..., 44] 

for i=1:width(Final_Bayesian_Percentage) 

    % 2. Create the Bar Graph 

    % figure; % Opens a new figure window for the plot 

    % bar(node_numbers, Final_Bayesian_Percentage(:,i)); 

 

    % 3. Label Axes and Title 

    % xlabel('Node Number'); 

    % ylabel('Fault Probability ()'); 

    % title('Fault Probability Distribution Across Nodes for Node 

'+string(find(C(i,1)==nodes.NomeEnd))); 

    % grid on; % Adds a grid for better readability 

     

    % 4. Highlight the Most Probable Node (Optional) 
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    [max_prob, faulty_node_index] = max(Final_Bayesian_Percentage(:,i)); 

    faulty_node_number = node_numbers(faulty_node_index); 

     

    display_Likelihood(i,1)=max_prob; 

    display_Estimation(i,1)=faulty_node_number; 

    display_Real(i,1)=find(C(i,1)==nodes.NomeEnd); 

     

    % hold on; % Keep the current plot active to add more elements 

    % text_x_position = faulty_node_number + 2; % Adjust this offset as needed 

(e.g., 0.5, 1.0) 

    % plot(faulty_node_number, max_prob, 'MarkerSize', 12, 'LineWidth', 1.5); 

    % text(faulty_node_number, max_prob, ... 

    %      sprintf(' Most Likely Fault: Node %d (%.2f%%)', faulty_node_number, 

max_prob), ... 

    %      'VerticalAlignment', 'baseline', 'HorizontalAlignment', 'left', ... 

    %      'Color', 'red', 'FontSize', 10); 

    %  

    % NodeString=string(find(C(i,1)==nodes.NomeEnd)); 

    % fprintf('Fault is calculated in Node %d with a probability of %.4f%%\n', 

faulty_node_number, max_prob); 

    % fprintf('Fault is actually located in Node %d 

\n',find(C(i,1)==nodes.NomeEnd)) 

End 

 

8.1.2 IMPEDANCE METHOD FUNCTION 

function 

[MHO_percentage]=Impedance_method_v4(PMU_node,grid,G,nodes,HV_data,Vn,waveform) 

 

        clc 

   

 %% 

 %Z MATRIX 

 [Zd, Zo, z_hv, z_hv_0] = get_imped_matrix_v5 (grid,HV_data); 

  

 

 %% 

 %we need to input the data from RTDS 

 

       % waveform=readmatrix(rtds_data); 

       % waveform=(waveform); 

       % DFT of the PQ waveform 

        [E1,E2,E3,Eo_a,Ed_a,Ei_a,I1, I2, I3, Io_a,Id_a,Ii_a] = 

DFT_v7(Vn,waveform); 

 

 

 

%% Initialize more variables 

 No_Measure= length(Eo_a(:,1)); %total samples availableN 

 H = 1; 

 % frequency=zeros(length(E_MV_busbar(:,1)),2); 
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 d=0; d1=0; 

 No_Nodes=height(nodes(:,1)); 

 Zab=zeros(No_Measure-H,2); 

 Zbc=zeros(No_Measure-H,2); 

 Zca=zeros(No_Measure-H,2); 

 fault_type_record=[0,0,0,0,0,0]; 

 

%% impedance of the grid seen by each bus (excluding the z_hv) 

zd_bus=zeros(No_Nodes,1); 

        for i=PMU_node:No_Nodes 

            zd_bus(i,1)=Zd(i,i)-Zd(PMU_node,PMU_node); 

        end 

 

 %% ALGORITHM STARTS 

 % Initialize the branch probability method and impedance method 

 

        MHO_percentage=zeros(No_Nodes,1); 

        

            for i=1:length(Eo_a) 

        

                a=i-H+1; 

                Eo = abs(Eo_a(i,2)); 

                Ed = abs(Ed_a(i,2)); 

                Ei = abs(Ei_a(i,2)); 

                Eo_p = angle(Eo_a(i,1)); 

                Ed_p = angle(Ed_a(i,1)); 

                Ei_p = angle(Ei_a(i,1)); 

                Id_p=0; 

                Ii_p=0; 

                Io_p=0; 

                Id=abs(Id_a(i,1)); 

                Ii=abs(Ii_a(i,1)); 

                Io=abs(Io_a(i,1)); 

 

                % Recall Fault_classifier function 

                f_name = 

Fault_Classifier(Vn,Ed,Ei,Eo,Ed_p,Ei_p,Eo_p,Id,Ii,Io,Id_p,Ii_p,Io_p); 

         

                % cast of the fault type and isolating the right fault_table part 

                switch f_name 

                    case 'LLL' 

                        f_type = 1; %3P fault 

                        fault_type_record(1)=fault_type_record(1)+1; 

                        j=1:6; 

                    case 'LL' 

                        f_type = 2; %LL fault 

                        fault_type_record(2)=fault_type_record(2)+1; 

                        j=7:12; 

                    case 'LG' 

                        f_type = 3; %SLG fault 

                        fault_type_record(3)=fault_type_record(3)+1; 

                        j=13:18; 

                    case 'LLG' 
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                        f_type = 4; %DLG fault 

                        fault_type_record(4)=fault_type_record(4)+1; 

                        j=19:24; 

                    case 'No_fault' 

                        f_type = 5; %NO fault 

                        fault_type_record(5)=fault_type_record(5)+1; 

                        j=1:6; 

                        %fprintf('No fault!! \n') 

                    case 'Error' 

                        f_type = 6; %Error 

                        fault_type_record(6)=fault_type_record(6)+1; 

                        j=1:6; 

                        %fprintf('Error from the fault classifier!! \n') 

                end 

         

                % E= 

                 fault_type(i,1)=f_type; 

 

        if mean(abs(I1)) <501 && mean(abs(I2)) <501 && mean(abs(I3)) <501 

            MHO_percentage=zeros(No_Nodes,1); 

            return; 

        end 

 

                % impedance method_MHO 

                if f_type~=0 

                    Zab(a,1)=(E1(i,1)-E2(i,1))/(I1(i,1)-I2(i,1)); 

Zab(a,2)=abs(Zab(a,1)); 

                    Zbc(a,1)=(E2(i,1)-E3(i,1))/(I2(i,1)-I3(i,1)); 

Zbc(a,2)=abs(Zbc(a,1)); 

                    Zca(a,1)=(E3(i,1)-E1(i,1))/(I3(i,1)-I1(i,1)); 

Zca(a,2)=abs(Zca(a,1)); 

     

                    % Zab(1:fault_start_idx-1,:)=0; 

                    % Zbc(1:fault_start_idx-1,:)=0; 

                    % Zca(1:fault_start_idx-1,:)=0; 

                     

                    [MHO_ab(:,a),polygon_ab]=Z_map(grid,zd_bus,Zab(a,1)); 

                    [MHO_bc(:,a),polygon_bc]=Z_map(grid,zd_bus,Zbc(a,1)); 

                    [MHO_ca(:,a),polygon_ca]=Z_map(grid,zd_bus,Zca(a,1)); 

             

                    Za(a,1)=(E1(i,1))/(I1(i,1)); Za(a,2)=abs(Zab(a,1)); 

                     

                    % Filter the fault data 

     

     

                    MHO_ab_result(:,1)=sum(MHO_ab(:,:),2); 

                    MHO_bc_result(:,1)=sum(MHO_bc(:,:),2); 

                    MHO_ca_result(:,1)=sum(MHO_ca(:,:),2); 

                    

MHO_result(:,1)=MHO_ab_result(:,1)+MHO_bc_result(:,1)+MHO_ca_result(:,1); 

             

                    % The idea is to consider an activation either if there is a 

line-to-line 
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                    % activation or if there is a 3P activation (1 / 3 zones) 

                    answ=MHO_ab(:,:)+MHO_bc(:,:)+MHO_ca(:,:); 

                    cns=round(round(answ./2)./2); 

                    MHO_percentage(:,1)=sum(cns(:,:),2)*100/(No_Measure+H); 

                    % MHO_percentage(:,1)=sum(answ(:,:),2)*100/(sum(MHO_result)); 

                    % 

MHO_percentage(:,1)=MHO_percentage(:,1)*(sum(MHO_result)/8595); 

                     

                    if sum(MHO_result)==0 

                        MHO_percentage(:,1)=zeros(height(MHO_percentage),1); 

                    else 

                        % MHO_percentage(:,1)=MHO_result(:,:)*100/(4000); 

                    end 

                    clear answ cns; 

                end 

             end  

 

                plot impedance results 

                h_imp_zones=figure; 

                subplot(1,3,1) 

                plot(Zab(:,1),'Marker','o','Color','blu'); hold on; 

                % plot(filtered_Zab(:,1),'Marker','o','Color','magenta'); hold 

on; 

                subplot(1,3,2) 

                plot(Zbc(:,1),'Marker','o','Color','red'); hold on; 

                subplot(1,3,3) 

                plot(Zca(:,1),'Marker','o','Color','yellow'); hold on; 

 

                for i=1:No_Nodes 

                    subplot(1,3,1) 

                    

plot(real(zd_bus(i,1)),imag(zd_bus(i,1)),'Marker','diamond','Color','magenta'); 

hold on; 

                    text(real(zd_bus(i,1)),imag(zd_bus(i,1)),string(i)); 

                    subplot(1,3,2) 

                    

plot(real(zd_bus(i,1)),imag(zd_bus(i,1)),'Marker','diamond','Color','magenta'); 

hold on; 

                    text(real(zd_bus(i,1)),imag(zd_bus(i,1)),string(i)); 

                    subplot(1,3,3) 

                    

plot(real(zd_bus(i,1)),imag(zd_bus(i,1)),'Marker','diamond','Color','magenta'); 

hold on; 

                    text(real(zd_bus(i,1)),imag(zd_bus(i,1)),string(i)); 

 

                end 

 

            % 

                for i=1:No_Nodes 

                    subplot(1,3,1) 

                    if MHO_ab_result(i,1)>0 

                        

plot(polygon_ab(i,1:2:10),polygon_ab(i,2:2:10),'Color','green',LineWidth=1); 
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                        hold on; 

                    end 

                    subplot(1,3,2) 

                    if MHO_bc_result(i,1)>0 

                        

plot(polygon_bc(i,1:2:10),polygon_bc(i,2:2:10),'Color','green',LineWidth=1); 

                        hold on; 

                    end 

                    subplot(1,3,3) 

                    if MHO_ca_result(i,1)>0 

                        

plot(polygon_ca(i,1:2:10),polygon_ca(i,2:2:10),'Color','green',LineWidth=1); 

                        hold on; 

                    end 

                end 

 

                subplot(1,3,1) 

                ylim([-0.05,(max(polygon_ab(:,2:2:10),[],'all')*1.2)]) 

                xlim([-0.05,(max(polygon_ab(:,1:2:10),[],'all')*1.2)]) 

                legend('Zab','Zd behind of the busses'); 

                title('Zab loop impedance [ohm]'); 

                xlabel('R [ohm]'); 

                ylabel('X [ohm]'); 

                subplot(1,3,2) 

                ylim([-0.05,(max(polygon_bc(:,2:2:10),[],'all')*1.2)]) 

                xlim([-0.05,(max(polygon_bc(:,1:2:10),[],'all')*1.2)]) 

                legend('Zbc','Zd behind of the busses'); 

                title('Zbc loop impedance [ohm]'); 

                xlabel('R [ohm]'); 

                ylabel('X [ohm]'); 

                subplot(1,3,3) 

                ylim([-0.05,(max(polygon_ca(:,2:2:10),[],'all')*1.2)]) 

                xlim([-0.05,(max(polygon_ca(:,1:2:10),[],'all')*1.2)]) 

                legend('Zca','Zd behind of the busses'); 

                title('Zca loop impedance [ohm]'); 

                xlabel('R [ohm]'); 

                ylabel('X [ohm]'); 

 

            end 

 

8.1.3 DFT FUNCTION 

%% Function DFT_v7 

% the news is that v5 don't need the input of N_samples and pre_fault  

% (hyp that pre_fault doesn't change the  

%% 

% it takes the line-to-line voltages (Oscillo) and the residual voltage at 

% the secondary of the TV (0-100 [V]) and it calculates the star voltages 

% in time, the phasors of them and then move to the (d,i,0) seq. components 

% thanks to Fortescue transform. It returns the (d,i,0) voltages seq. 

% evolution recorded by the oscillo 
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%Vn input in [V] 

function [Ea, Eb, Ec, E0,Ed,Ei,Ia, Ib, Ic, I0,Id,Ii] = DFT_v7 (Vn,waveform) 

 

%% finding the N_samples 

index_zerocrossing1=0;index_zerocrossing2=0; j=1; 

for i=1:height(waveform)-1 

   

    if waveform(i,2)<= 0 && waveform(i+1,2)>= 0 

        

        index_zerocrossing2=i; 

         

    end 

      

      if index_zerocrossing1 ~= index_zerocrossing2 

           N_samples1(j) =  index_zerocrossing2-index_zerocrossing1; 

           j=j+1; 

      end 

      index_zerocrossing1 = index_zerocrossing2; 

end 

N_samples = 400; 

%% 

    %Fortescue matrix 

    alfa = exp(1i*(2/3)*pi); %angle shift for fortescue matrix 

    F = (1/3)*[1 1 1; 1 alfa alfa^2; 1 alfa^2 alfa]; %inverse fortescue matrix   

  

       

    Et(:,1)=waveform(:,4)*1000; 

    Es(:,1)=waveform(:,3)*1000; 

    Er(:,1)=waveform(:,2)*1000; 

    L = length(Er(:,1)); 

 

    Ea=zeros(L,1); 

    Eb=zeros(L,1); 

    Ec=zeros(L,1); 

 

    % Initializing fortescue transformation-> (d,i,0) sequences 

    I0 = zeros(L-N_samples,3); 

    Id = zeros(L-N_samples,3); 

    Ii = zeros(L-N_samples,3); 

     

    %% fft() of the star voltages and fortescue transformation-> (d,i,0) 

sequences 

    E0 = zeros(L-N_samples,3); 

    Ed = zeros(L-N_samples,3); 

    Ei = zeros(L-N_samples,3); 

 

 

    %% DFT code 

     

    for i=1:1:L-N_samples 

                       

            k=1; 
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            for n=0:N_samples-1 

                Ea(i,1)=Ea(i,1)+Er(n+i,1)*exp(-1i*k*2*pi*(1/N_samples)*(n)); 

                Eb(i,1)=Eb(i,1)+Es(n+i,1)*exp(-1i*k*2*pi*(1/N_samples)*(n)); 

                Ec(i,1)=Ec(i,1)+Et(n+i,1)*exp(-1i*k*2*pi*(1/N_samples)*(n)); 

            end 

            Ea(i,1)=Ea(i,1)*(2/(N_samples*sqrt(2))); 

            Eb(i,1)=Eb(i,1)*(2/(N_samples*sqrt(2))); 

            Ec(i,1)=Ec(i,1)*(2/(N_samples*sqrt(2))); 

             

 

            %(0,d,i) calc using inverse fortescue matrix F 

            A = F*[Ea(i,1); Eb(i,1); Ec(i,1)]; 

            %multiply by 1000 to get parameters in [V], from [kV] 

            E0(i,1) = A(1); 

            Ed(i,1) = A(2); 

            Ei(i,1) = A(3); 

 

    end 

 

    % Calcolation of magnitude and angle of the (d,i,o) seq. components 

    E0(:,2) = abs(E0(:,1)); 

    E0(:,3) = angle(E0(:,1)); 

    Ed(:,2) = abs(Ed(:,1)); 

    Ed(:,3) = angle(Ed(:,1)); 

    Ei(:,2) = abs(Ei(:,1)); 

    Ei(:,3) = angle(Ei(:,1)); 

%% CURRENTS 

  %initializing the arrarys to store the currents 

    Ia=zeros(L,1); 

    Ib=zeros(L,1); 

    Ic=zeros(L,1); 

    

  % Initializing fortescue transformation-> (d,i,0) sequences 

    I0 = zeros(L-N_samples,3); 

    Id = zeros(L-N_samples,3); 

    Ii = zeros(L-N_samples,3); 

   %Importing values 

    Ir=waveform(:,5)*1000; 

    Is=waveform(:,6)*1000; 

    It=waveform(:,7)*1000; 

 

    %DFT code 

        for i=1:1:L-N_samples 

                       

            k=1; 

            for n=0:N_samples-1 

                Ia(i,1)=Ia(i,1)+Ir(n+i,1)*exp(-1i*k*2*pi*(1/N_samples)*(n)); 

                Ib(i,1)=Ib(i,1)+Is(n+i,1)*exp(-1i*k*2*pi*(1/N_samples)*(n)); 

                Ic(i,1)=Ic(i,1)+It(n+i,1)*exp(-1i*k*2*pi*(1/N_samples)*(n)); 

                

            end 

            Ia(i,1)=Ia(i,1)*(2/(N_samples*sqrt(2))); 

            Ib(i,1)=Ib(i,1)*(2/(N_samples*sqrt(2))); 
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            Ic(i,1)=Ic(i,1)*(2/(N_samples*sqrt(2))); 

         

 

            %(0,d,i) calc using inverse fortescue matrix F 

            A = F*[Ia(i,1); Ib(i,1); Ic(i,1)]; 

            %multiply by 1000 to get parameters in [A], from [kA] 

            I0(i,1) = A(1); 

            Id(i,1) = A(2); 

            Ii(i,1) = A(3); 

 

            % Calcolation of magnitude and angle of the (d,i,o) seq. components 

            I0(:,2) = abs(I0(:,1)); 

            I0(:,3) = angle(I0(:,1)); 

            Id(:,2) = abs(Id(:,1)); 

            Id(:,3) = angle(Id(:,1)); 

            Ii(:,2) = abs(Ii(:,1)); 

            Ii(:,3) = angle(Ii(:,1)); 

 

        end 

             figure 

             subplot(2,1,1) 

            plot(waveform(:,5)) 

            hold on; 

            plot(waveform(:,6)) 

            hold on; 

            plot(waveform(:,7)) 

            hold on; 

            % plot(waveform(:,8)) 

            hold off; 

            title('Currents in time') 

            legend('Ir(t)','Is(t)','It(t)') 

            Y=1.1*sqrt(2)*Vn/1000; 

            ylim([-Y Y]) 

 

 

            subplot(2,1,2) 

            plot(I0(:,2)) 

            hold on; 

            plot(Id(:,2)) 

            hold on; 

            plot(Ii(:,2)) 

            hold off; 

            title('magnitude RMS of (d,i,0) sequence components Currents') 

            legend('I0_{rms}','Id_{rms}','Ii_{rms}') 

    

    %% plot of line-to-ground voltages 

 

    h_waveforms=figure; 

    subplot(3,1,1) 

    plot(waveform(:,2)) 

    hold on; 

    plot(waveform(:,3)) 

    hold on; 
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    plot(waveform(:,4)) 

    hold on; 

    % plot(V0_prim(:,1)) 

    hold off; 

    title('star voltages in time') 

    legend('Vr(t)','Vs(t)','Vt(t)') 

    Y=1.1*sqrt(2)*Vn; 

  %  ylim([-Y Y]) 

 

    subplot(3,1,2) 

    plot(1:1:length(Ea(:,1)),abs(Ea(:,1))) 

    hold on; 

    plot(1:1:length(Eb(:,1)),abs(Eb(:,1))) 

    hold on; 

    plot(1:1:length(Ec(:,1)),abs(Ec(:,1))) 

    hold off; 

    title('star voltages in time') 

    legend('Er(rms)','Es(rms)','Et(rms)') 

   % ylim([-Y Y]) 

%      

%  

    subplot(3,1,3) 

    plot(E0(:,2)) 

    hold on; 

    plot(Ed(:,2)) 

    hold on; 

    plot(Ei(:,2)) 

    hold off; 

   % ylim([0 Y/sqrt(3)]) 

    title('magnitude RMS of (d,i,0) sequence components (star voltages)') 

    legend('E0_{rms}','Ed_{rms}','Ei_{rms}') 

 

end 

 

8.1.4 FAULT CLASSIFIER 

%% Fault classifier 

 

function Fc = 

fault_classifier(Vn_ll,Ed,Ei,Eo,TetaEd,TetaEi,TetaEo,Id,Ii,Io,TetaId,TetaIi,TetaI

o) 

% It receives as input (d,i,o) seq components (magnitudes and phase 

% displacement and it calculates which fault it is  

 

    En = Vn_ll/sqrt(3); %rated line-to-ground voltages 

    k=9/10; %to calculate the thresholds 

    o_seq = 0; 

    i_seq = 0; 

 

    %Check the zero sequence voltage presence  

    if (Eo>(En*(1-k))) 
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        o_seq=1; 

    end 

    %Check the inverse sequence voltage presence 

    if (Ei>(En*(1-k))) 

        i_seq=1; 

    end 

 

    Fc='Error'; 

 

    %in case of null o-seq. we have an unground fault (LLL, LL) 

    if (o_seq==0 && i_seq==0 && Ed<=(k*En)) 

        Fc ='LLL'; 

    elseif (o_seq==0 && i_seq==0 && Ed>(k*En)) 

        Fc ='No_fault'; 

    elseif (o_seq==0 && i_seq==1) 

        Fc ='LL'; 

    end 

 

    %in case of not-null o-seq. we have a ground fault (LG, LLG) 

    if(o_seq==1) 

        Sum1 = Ed*cos(TetaEd)+ Eo*cos(TetaEo)+ Ei*cos(TetaEi); 

        Sum2 = Ed* sin(TetaEd)+ Eo*sin(TetaEo)+ Ei*sin(TetaEi); 

        if i_seq==0 % SLG faults should not have inverse sequence! 

            if (abs(Sum1) < Vn_ll*0.01) && (abs(Sum2) < 0.01*Vn_ll) 

                Fc='LG'; 

            end 

        elseif i_seq==1 

            Fc='LLG'; 

        end 

    end 

 

end 


