
Trend Detection for E-commerce Seller Feedback

Jorge Soldevilla Artajona

August 2025

1

1 Introduction to the Project

1.1 State of Art

In recent years, e-commerce has rapidly changed the way businesses operate and
consumers shop. One of the most significant developments in this field has been
the emergence of logistics services that eases online sales. Fulfillment by Solde
(FBS) is one such model designed to help sellers manage inventory, packaging,
and shipping. This approach allows sellers to focus on growing their business
while relying on FBS to handle the operational complexity of order fulfillment.

The FBS business model allows individuals and businesses to sell their products
through the platform, using FBS´s infrastructure and without having to worry
about any logistics. Sellers often use forums to share experiences, discussing var-
ious aspects of the service, such as inventory management or customer service.
However, the massive volume of posts makes manual analysis difficult, high-
lighting the importance of automated systems that can process these comments
and provide quick insights to drive action items.

1.2 Objectives

The main goal of this project is to design an AI system that analyzes anecdotes
posted by sellers on the FBS forum. Through natural language processing and
machine learning, the system will detect trending topics in seller feedback and
generate actionable insights into their main concerns.

The project aims to achieve the following specific objectives:

1. Automate Feedback Analysis: The AI system will automate the anal-
ysis of seller anecdotes, reducing a lot the time and effort needed to review
large amounts of feedback. In addition to improving efficiency, it will also
enable real-time monitoring of seller sentiment.

2. Extract Trending Topics: Through classification and clustering topics,
the AI will group seller anecdotes into specific topics and clusters. This
will help to show recurring issues and new trends.

3. Drive Insights for Improvement: The findings from the analysis will
be used by the stakeholders to help them in their decisions. By finding
trends and patterns in seller feedback, Fulfillment by Solde can introduce
targeted improvements to its services, strengthening both seller experience
and satisfaction.

4. Summarize Findings: The AI system will produce short summaries
of trending topics, allowing stakeholders to quickly grasp the main issues.
Along with these summaries, it will generate short titles to further support
rapid understanding.

2

1.3 Procedure

The pipeline for this project will consist of four key steps: classification of anec-
dotes into predefined topics, clustering of anecdotes within each topic, summa-
rization of the clusters, and generation of titles for each cluster.

1. Classification: The first phase involves building a supervised model to
classify seller anecdotes into predefined categories such as Listing, Ads
& Deals, Seller Support, Fee, Inventory Management, Inbounding, and
Insurance. Using a BERT-based architecture fine-tuned on a labeled
dataset, the system will learn to capture context and meaning in text.
Once trained, it will automatically assign new anecdotes that the model
has not seen to the appropriate topic, enhancing the classification process.

2. Clustering: After classifying the anecdotes by topic, clustering will be
applied within each topic to find out emerging themes. Using BERTopic,
which combines UMAP for dimensionality reduction and HDBSCAN for
clustering, similar anecdotes will be grouped together, making it possible
to identify shared concerns and feedback among sellers.

3. Summary: Once the clustering is finished, the anecdotes of each cluster
will be summarized using a Llama2 model. These summaries will cap-
ture the core ideas and sentiments, making it easier to identify the most
relevant issues in each group.

4. Title Generation: Finally, a FLAN-T5 model will generate titles for
each cluster based on the summaries generated in the previous step.

By applying this structured procedure, we will build an efficient pipeline that
classifies seller anecdotes into predefined topics and drive actionable insights
through clustering, summarization, and title generation.

2 Classification Task

2.1 Introduction

To effectively analyze seller feedback, it is necessary to develop a dedicated
classification model capable of categorizing anecdotes into topics relevant to
Fulfillment by Solde (FBS). Using a generic model would lead to suboptimal
outputs, since these models do not have the context or understanding of the
terminology used in FBS. By training on a labeled dataset that reflects the
context and acronyms of FBS, the model can learn to identify and classify
anecdotes with higher accuracy. Once fine-tuned, the model can be applied to
new, unlabeled anecdotes, automating the classification process.

For the supervised training, three models were evaluated: LLaMA 2, GPT-
2, and BERT. The LLaMA 2 model required extremely high computational
resources, GPT-2, while easier to train, failed to deliver reliable results, as it

3

consistently assigned all anecdotes to a single topic. In contrast, the BERT
model achieved strong performance, accurately classifying anecdotes into their
respective topics. Therefore, BERT was selected for the classification task.
The training dataset contained 667 anecdotes with a balanced distribution
across all the topics. In the table below, it is shown example of anecdotes
for each topic:

Figure 1: Examples of anecdotes of each topic

2.2 Steps for Implementing BERT for Text Classification

To carry out the classification task, we implemented a supervised model based
on BERT (Bidirectional Encoder Representations from Transformers), chosen
for its ability to capture semantic context and perform well in text classification.

The first step involved initializing the BERT tokenizer to preprocess the anec-
dotes and mapping the textual labels into numerical indices:

tokenizer = BertTokenizer.from_pretrained(’bert-base-uncased’)

label_dict = {label: idx for idx, label in enumerate(df[’Topic’].unique())}

labels = torch.tensor(df[’Topic’].map(label_dict).values)

The dataset was then split into training and validation sets and tokenized into
input IDs and attention masks suitable for BERT. These were stored in Tensor-
Dataset objects and handled with DataLoader for batching.

The classification model was defined as a sequence classification BERT with the
number of labels equal to the topics. Training was conducted with the AdamW
optimizer and a linear scheduler:

4

model = BertForSequenceClassification.from_pretrained(

’bert-base-uncased’, num_labels=len(label_dict))

optimizer = AdamW(model.parameters(), lr=1e-4, eps=1e-8)

The model was fine-tuned for two epochs with a batch size of 16. During
training, we applied gradient clipping to stabilize learning and used a scheduler
to dynamically adjust the learning rate.

Given that the dataset size is 677 and we are using a batch size of 16, we
calculate the total number of batches as

677

16
≈ 43

This means that in each epoch, the model will see approximately 43 batches of
data. Since we are training for 2 epochs, the total number of parameter updates
will amount to:

43× 2 = 86

epochs = 2

for epoch in range(epochs):

model.train()

total_train_loss = 0

for batch in train_loader:

batch = tuple(b.to(device) for b in batch)

b_input_ids, b_input_mask, b_labels = batch

model.zero_grad()

outputs = model(b_input_ids, attention_mask=b_input_mask,

labels=b_labels)

loss = outputs.loss

total_train_loss += loss.item()

loss.backward()

torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)

optimizer.step()

scheduler.step()

avg_train_loss = total_train_loss / len(train_loader)

print(f"Epoch {epoch + 1}/{epochs} - Training loss: {avg_train_loss:.4f}")

Figure 2: Training loss

As shown in the image above, the training loss decreases significantly in the
second epoch, indicating that the model’s parameters have adjusted to values
that effectively minimize the loss function.
Once the training of the model is finished, we continue with the evaluation step,
where we can evaluate the performance of the model to unseen data.
For evaluation, the model was tested on the validation dataset with dropout
disabled (model.eval()), and predictions were compared to the true labels. Met-
rics such as accuracy, precision, recall, and F1-score were computed. The model
achieved an accuracy of 92.38 %, with precision, recall, and F1-score values

5

above 92%. Following the completion of the evaluation, we move on to generat-
ing the accuracy report. This report is crucial as it not only provides an overall
assessment of the model’s performance but also breaks down the results for each
individual topic.

The classification report demonstrates that the model performs well across all
topics. Even the lowest precision score of 0.78 for Seller Support is sufficiently
high, indicating that the model maintains accuracy across all topics.

Finally, the fine-tuned model was applied to an unseen dataset of 300 new anec-
dotes, automatically classifying them into the predefined topics and demonstrat-
ing its scalability in real-world conditions.
The classification results for each topic are summarized in the image below:

Figure 3: Classification results for each topic

3 Clustering Task

The clustering task takes the analysis a step further, moving beyond simple
classification to a deep dive into the anecdotes of the sellers. Although classifying
the anecdotes into topics gives us an initial view of feedback, clustering helps
to uncover more particular trends and patterns. By grouping similar anecdotes
within each topic, we can show recurring concerns that might otherwise go
unnoticed. This allows for a more precise understanding of seller challenges and
provides insights that can guide targeted enhancements to the Fulfillment by
Solde platform.

To do this, the anecdotes were first split by topic, so each one could be examined
on its own and its specific issues addressed. Given the nature of the data, we
used the BERTopic model, which combines UMAP for dimensionality reduction
and HDBSCAN for clustering. UMAP reduces the complexity of the text data,
while HDBSCAN forms clusters based on density, without needing to predefine
their number. Standard parameters were applied, such as nneighbors = 5 and
min dist = 0.0 for UMAP, and min cluster size = 3 and min samples = 3
for HDBSCAN, ensuring flexibility in the formation of clusters.These clusters

6

gave both qualitative insights from the text and quantitative signals from the
model, helping to build a clearer picture of seller sentiment and guide data-
driven improvements to the platform.
.

for topic, topic_df in topic_dfs.items():

Define the UMAP model for dimensionality reduction

umap_model = umap.UMAP(n_neighbors=5, n_components=2, min_dist=0.0, metric=’cosine’,

low_memory=False, random_state=891)

Define the HDBSCAN model for clustering

hdbscan_model = hdbscan.HDBSCAN(min_cluster_size=3, min_samples=3, metric=’euclidean’,

cluster_selection_method=’eom’, prediction_data=True, core_dist_n_jobs=1)

Define the CountVectorizer model for text vectorization

vectorizer_model = CountVectorizer(ngram_range=(1, 2), stop_words=’english’)

Define the BERTopic model

topic_model = BERTopic(language="english", verbose=True, umap_model=umap_model,

hdbscan_model=hdbscan_model, vectorizer_model=vectorizer_model)

Apply BERTopic to the current topic’s anecdotes

topics, probs = topic_model.fit_transform(topic_df[’Anecdote_preprocessed’])

The table below summarizes the results of the clustering analysis for each topic.

Figure 4: Cluster for each topic

4 Summarization

After clustering the anecdotes, we now have each topic linked to its correspond-
ing cluster. The next step is to better understand the content of these clusters.
Reading every anecdote would be too time-consuming, so instead we generate
a summary for each cluster.

7

For this, we use the Llama2 model, a large language model well suited for text
generation and summarization. By processing the anecdotes within each cluster,
Llama2 produces concise summaries that capture the key themes and insights,
making it easier to inform decisions and improvements on the Fulfillment by
Solde platform. .

Load the Llama2 model from Hugging Face

llama_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")

llama_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf")

Create a pipeline for the Llama2 model

llama_pipeline = pipeline("text-generation", model=llama_model,

tokenizer=llama_tokenizer, device=0 if torch.cuda.is_available() else -1)

The next step was to define a function that takes the anecdotes of a cluster and
creates a prompt for the Llama2 model. The model is tasked with producing
an extremely short and cohesive summary based on the provided anecdotes.
The importance of prompt engineering cannot be overestimated in this context;
the way are framed the input prompts significantly influences the quality and
relevance of the generated summaries. .

def generate_summary(input_text):

prompt = (

"You will receive comments from e-commerce sellers which belong to a specific

cluster. "

"Your task is to generate an extremely short and cohesive summary in a single

sentence. \n" f"Summary: {input_text}\n\nProvide one extremely short and cohesive

summary in a single sentence for the above comments.")

try:

response = llama_pipeline(prompt, max_length=1024, top_p=0.9, temperature=0.6)

return response[0][’generated_text’]

Once the function was defined, the anecdotes of each cluster were concatenated
into a single string and passed to the summarization model. For each cluster,
the generated summary was stored along with its topic and cluster information:
.

summaries = []

for topic, topic_dict in enumerate(dict_list_by_topic):

for topic_name, anecdotes in topic_dict.items():

clusters = set([anecdote[’Cluster’] for anecdote in anecdotes])

for cluster in clusters:

cluster_anecdotes = [anecdote[’Anecdote’] for anecdote

in anecdotes if anecdote[’Cluster’] == cluster]

input_text = " ".join(cluster_anecdotes)

summary = generate_summary(input_text)

summaries.append({"topic": topic_name, "cluster": cluster,

"summary": summary})

Below are the summaries of the clusters for the Fee topic:

8

Figure 5: Fee clusters summary

In short, using the Llama2 model to generate concise summaries of the clusters
gave us clear insights into seller issues and sentiments. By condensing feed-
back into short, actionable statements, we were able to highlight key issues and
trends within each topic. This not only improves our understanding of seller
experiences but also prepares the ground for the next step: creating titles that
make the findings easier to communicate and act upon.

5 Title generation

Following the summarization of clustered anecdotes, the next step involves gen-
erating titles that encapsulate the essence of each summary. This step is crucial
as effective titles serve as quick reference points, allowing stakeholders to grasp
the main ideas without delving into the details of each summary.

After summarizing the clustered anecdotes, the next step is to generate titles
that capture the essence of each summary. Good titles act as quick reference
points, helping stakeholders understand the main ideas at a glance. For this,
we use the FLAN-T5 Large model, which is well suited for text-to-text tasks
like title generation. Thanks to its training on diverse datasets, it can grasp
context and semantics effectively, producing concise and accurate titles from
the summaries. .

from transformers import T5Tokenizer, T5ForConditionalGeneration

Load the FLAN-T5 tokenizer and model

model_name = "google/flan-t5-large"

tokenizer = T5Tokenizer.from_pretrained(model_name)

model = T5ForConditionalGeneration.from_pretrained(model_name)

We then define a function which takes a summary as input and generates an
appropriate title. The function provides a prompt specifically designed to ask
for a concise title to the FLAN-T5 model. .

9

def generate_title(summary_text):

prompt = f"Generate a short and descriptive title for the following summary:

{summary_text}"

inputs = tokenizer(prompt, return_tensors="pt", max_length=512, t

runcation=True)

output = model.generate(**inputs, max_new_tokens=500, num_beams=4, top_p=0.9,

temperature=0.6)

title = tokenizer.decode(output[0], skip_special_tokens=True)

return title

Subsequently, we iterate through each summary in the dataset, generating a
title for each one. Below it is shown the titles and summaries for the Fee topic:

Figure 6: Fee clusters titles and summaries

6 Conclusions

In this work, an AI-based pipeline was developed to analyze seller feedback on
the Fulfillment by Solde (FBS) platform. Through the combination of classi-
fication, clustering, summarization, and title generation, a system was created
to transform large volumes of unstructured anecdotes into clear and actionable
insights.

Seller anecdotes were first classified into relevant topics using BERT, achieving
high accuracy in the categorization task. Clustering with BERTopic was then
applied, allowing the identification of sub-themes and emerging issues within
each topic. Subsequently, summaries were generated with Llama2 to provide
concise representations of each cluster, and titles were produced with FLAN-T5
to facilitate quick communication of the findings.

Overall, the proposed pipeline demonstrated the potential of advanced NLP
techniques for gaining a deeper understanding of seller sentiment. In addition, it
provided a scalable and efficient method to continuously monitor feedback and
inform improvements to the platform. By structuring and highlighting seller

10

challenges, the approach contributes to enhancing the overall seller experience
on FBS.

11

