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Abstract

In this work, generalized principal bundles modelled by Lie group bundle actions are inves-
tigated. In particular, the definition of equivariant connections in these bundles, associated to
Lie group bundle connections, is provided, together with the analysis of their existence and
their main properties. The final part gives some examples. In particular, since this research
was initially originated by some problems on geometric reduction of gauge field theories,
we revisit the classical Utiyama Theorem from the perspective investigated in the article.

Keywords Ehresmann connection - Fiberwise action - Lie group bundle - Parallel
transport - Generalized principal bundle - Utiyama Theorem

Mathematics Subject Classification 53CO05 - 53C15 - 22E99

1 Introduction

A fiberwise action of a Lie group fiber bundle on a smooth bundle over the same base leads to
the notion of generalized principal bundle. They share some similar properties to (standard)
principal bundles [13, Ch.II], but they also show important differences. For instance, on one
hand it is possible to build (generalized) associated bundles by the action of Lie group bundles
on other bundles. But on the other hand, Ehresmann connections [14, 21] that are equivariant
with respect to the action, require a precise and correct approach providing the corresponding
notion of generalized principal connections. Unlike usual principal connections, they are
always associated to a certain connection on the Lie group bundle, which gives an additional
term in the equivariance formula.
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Lie group bundles, together with their natural infinitesimal companions, the Lie algebra
bundles, are classical objects in the literature (see, for example, [9]). These type of bundles
naturally arise in various geometric contexts and in different applications. The reader should
be aware that these bundles may involve questions concerning non-isomorphic algebraic
structure between different fibers (the seminal work of Douady and Lazard [9] already dis-
cussed this situation; see [1] for a recent approach). Although this scenario is very interesting
and beautiful, in this work we confine ourselves to the case where the fibers are algebraically
isomorphic (that is, the bundle is locally trivial from an algebraic point of view), a decision
mainly motivated by the bundles that one encounters in the applications. With respect to them,
they appear in a natural way when performing reduction by local symmetries in Lagrangian
field theory [11, 19] and, since principal connections may be regarded from this perspec-
tive, they are also useful for classical reduction —that is, reduction by global symmetries— in
mechanics [5, 6, 18] and field theories [3, 4, 10]. Lie group bundles are the unavoidable start-
ing point in the geometric foundations of gauge theories. In particular, they provide the basic
language for a theory of geometric reduction of field theories when the group of symmetries
are sections of Lie group bundles. This theory (that is still in progress) will collect the main
instances of gauge theories and will require a wise use of the concepts exposed in this article.
Actually, our initial interest in generalized principal bundles started in that framework, from
where we have taken much inspiration. We would like to mention that fibered actions can be
extended to the Lie groupoid setting (for example see [7, 8, 16]), but we do not address this
matter here.

Despite the interest and ubiquitous presence of these objects, it is remarkable to check
the existence of some important gaps in the literature about the main properties, definitions,
and the key geometric objects involved. In this work we aim at solving this situation with
the study of fibered actions, as well as the smooth bundles arising from the quotient by these
actions: generalized principal bundles. Furthermore, we define equivariant connections on
these bundles (i.e., generalized principal connections) and their curvature. Before doing that,
we need to define Lie group bundle connections, which are connections on a Lie group bundle
that respect the multiplicative structure. Actually, the generalized principal connections will
be associated to Lie group bundle connections, a situation that does not have a counterpart
in the notion of (standard) principal bundle connections.

The paper is organized as follows. In Sect. 2 we investigate fibered actions and quotients
by them. After that, the definition of infinitesimal generators is recalled and generalized asso-
ciated bundles are defined. In Sect. 3 we introduce Lie group bundle connections, as well as
the induced linear connection on the Lie algebra bundle. Then generalized principal connec-
tions are defined and characterized using parallel transport. Besides, we prove a theorem of
existence and study their curvature. In Sect. 4 we present several examples to illustrate the
ideas of this work. In particular, we show that usual principal bundles and connections are
particular cases of the generalized objects. We have a similar situation with connections in
affine bundles. Finally, the action of the gauge group on connections is modelled with Lie
group bundle actions. In this case, the generalized principal bundle provides a new approach
to the well-known Utiyama Theorem.

In the following, every manifold or map is smooth, meaning C*. In addition, every
fiber bundle my x: Y — X is assumed to be locally trivial and is denoted by 7y x. Given
x e X, Y, = 71'; lX({x}) denotes the fiber over x. The space of (smooth) global sections
of my x is denoted by I'(zy x). In particular, vector fields on a manifold X are denoted
by X(X) = I'(mrx,x), where T X is the tangent bundle of X. Likewise, the space of local
sections on an open setYd C X is denoted by I' (4, my x). The derivative, or tangent map, of a
map f € C*°(X, X') between the manifolds X and X’ is denoted by (df)y: Tx X — Ty X/,
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x" = f(x). When working in local coordinates, we will assume the Einstein summation
convention for repeated indices. A compact interval will be denoted by I = [a, b].

2 Generalized principal bundles
2.1 Actions of Lie group bundles

A Lie group fiber bundle with typical fiber a Lie group G is a fiber bundle 7g x : G — X
such that for any point x € X the fiber G, is equipped with a Lie group structure and there
is a neighborhood ¢/ C X and a diffeomorphismx e Y x G — ngjlx (U) preserving the Lie
group structure fiberwisely.

Note that the multiplication map M: G xx G — G and the inversion map -~': ¢ — G
are bundle morphisms covering the identity idx: X — X, where x x denotes the fibered
product. Likewise, the map 1: X — G that assigns the identity element 1, € G, to each
x € X is a global section (called the unit section) of mg x. Any Lie group bundle defines a
Lie algebra bundle 7 x : § — X as the vector bundle whose fiber g, at each x € X is the
Lie algebra of G,. That is, the Lie algebra bundle is the pull-back bundle g = 1*(V G), where
VG C TG is the vertical bundle of 7rg x, i.e., the kernel of (g, x)x.

Remark 2.1 (Jets of Lie group fiber bundles) Let 7g x : G — X be a Lie group fiber bundle
and r > 0 be an integer. Then the r-th jet bundle of g x, J'G — X, is again a Lie group
fiber bundle (see, for example, [11, §3, Th. 1]). The multiplication is inherited from the Lie
group bundle structure of g x, that is,

M (jiviojive) = ji Mo (yi,v),  jivi.jiva € J'G.
We consider subgroups of Lie group bundles in the following sense.
Definition 2.1 A Lie group subbundle of a Lie group bundle 7g x : G — X is a Lie group

bundle 73, x : H — X such that H is a submanifold of G and H, is a Lie subgroup of G,
for each x € X. Itis said to be closed if H, is a closed Lie subgroup of G, for every x € X.

Let y x be a fiber bundle and 7g x be a Lie group fiber bundle.

Definition 2.2 A (right) fibered action of g, x on y x is a bundle morphism
O: Y xxG—Y

covering the identity idy : X — X such that ®(y, hg) = ©(P(y, k), g) and D(y, 1) =y,
forall (y, g),(y,h) € Y xx G, mg.x(y) = x.

For the sake of simplicity, we will denote ®(y, g) = y - g and we will say that ng x
acts fiberwisely on the right on 7y x. Note that ® induces a right action on each fiber,
D, = Ply,xg,: Yx x Gy — Y. The fibered action is said to be free if y - g = y for some
(y.8) € Y xx G implies that g = 1,, x = 7y x(y). In the same way, it is said to be proper
if the bundle morphism Y xx G > (y,g) — (y,y-g) € Y xx Y is proper. If & is free and
proper, so is each action ®,, since the fibers of a bundle are closed.

As the fibered action is vertical (i.e., it covers the identity idy ), we may regard the quotient
space Y /G as the disjoint union of the quotients of the fibers by the induced actions, that is,

Y/G = | | ¥/G: = {Iylg = (x.[lg,): x € X,y € i}

xeX
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Obviously, the following diagram is commutative:

y Ty X X yh—_ 5 x
Y/G [ylg

Example 2.1 (Jet lift of fibered actions) Let ®: Y xx G — Y be a (right) fibered action of a
Lie group bundle g x on a fiber bundle 7y x. The first jet extension of ® turns out to be a
(right) fibered action of 7 ;15 x on 71y y,

oW gy xy J1g — Jly
(is, jly) F— j{(@o (s, y).

If we regard 1-jets as differentials of sections at a point, that is, j; s = (ds)y and j; y = (dy)y
for certain local sections s and y, then ol may be seen as

oD (jls, jly) = dP)(s(x)p ) © ([@S)xs (@dY)x) : TeX —> Ty )Y -

2.2 Smooth structure of fibered quotients

Theorem 2.1 If g x acts on wy x freely and properly, then Y /G admits a unique smooth
structure such that

(i) my,y/g is a fiber bundle with typical fiber G, called generalized principal bundle.
(ii) my,g,x is a fibered manifold, i.e., a surjective submersion.

Proof Taking trivializations of 7y x and mg x on the same neighborhood &/ C X, the local
expression of the actions is:

Ux?xG—)L{x?,

where ¥ is the typical fiber of Y. This can be seen as a standard Lie group action acting
trivially on ¢. The classical results on Lie group actions (for example, see [15, Theorem
7.10]) provide a unique smooth structure on (U X 1?) /G that can be used as a charton Y /G.
In these trivializations, the projections 7y y,g and my,g x are U x Y - U xY)/G and
U x ?)/G—>Z/lwhichgives (i) and (ii). O

Remark 2.2 1f a Lie group G acts freely, properly and fiberwisely onabundle ry x: ¥ — X,
then 7y, x: Y/G — X is abundle with typical fiber Y /G . However, in the case of action of
Lie group bundle, since the action depends on X, the notion of typical fiber is more delicate.
For example, if X is not connected, the topology of the typical fiber may differ on each
component. This is the case of the action of X x Z on X x (S' x R) with X = R — {0}
defined as

o Y xx G — Y
((r, (cosB,sin6), 2), (t,n)) —> (¢, (sgn(t)" cos b, sin6), z +n).

The typical fiber is a Klein bottle for + < 0 and a torus for ¢ > 0.

For a connected base manifold X, the quotient Y /G is well-defined (up to diffeomor-
phism). Indeed, given any two points p, g € X connected by a path, p = y(0),q = y (1),
the actionon Y; = Ty lX(y(t)) can be regarded (from the local trivializations of G and Y) as
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a homotopy of diffeomorphism of G on Y. This gives a diffeomorphism of the fibers of ¥ /G
on p and q.

We can build a trivializing atlas for 7y y /g starting from a trivializing atlas
((the v8) s o < A)

of mg x. Fora € A, letV, = n;/lg’x(ua) and pick a local section § € T'(V,, 7y y/g) (the
existence of that local section may require the choice of a smaller U4, ). We define

Yo Yy, = anly/g(vO,) — VyxG

y — (vlg. h). .

where i € G is such that y =58(ylg) - g, with g = (1//8)_1 (ﬂy/g,x([y]g), fz) € G. The

element £ exists since Orb(y) = my ly /G ([ylg) and it is unique because the fibered action
is free. It turns out that (Vy, ¥}) is a trivialization for y y,g. Indeed, its inverse is given by

WH™ Vax G —> Yy,
(1. h) — 5110) - W& (7 /o.x (1510 )

As aresult, {(Va, YY) la e A} is an atlas for 7y y /g.

Observe that, by definition of Lie group bundle, the maps wg lg,: Gxr = {x} x G, x € Uy,
are Lie group homomorphisms. It is thus straightforward that the fibered action is locally
given by the right multiplication on the Lie group G.

Corollary 2.1 Let x € Uy, y = (%)~ ([y]g, 12) € Yiand g = (W (x,8) € Gx, then
vog=wH ™ (vlg. hg). )

Moreover, for each x € U, the following diagram is commutative

Yélg,
G, —

(x} x G

exp[ T (id(x}, exp)
dyglgn,

gx——>{x X

where 7y x is the Lie algebra bundle of g x, g is the Lie algebra of G and exp is the
exponential map between the Lie algebra and its corresponding Lie group. Furthermore, note
that (d¥/glg, )1, is a linear isomorphism, since ¥glg, is a diffeomorphism. In other words,

for each & = (dl/fg|gx)1:1 (x, é) € g, we have
exp (€)= (¥§) ™" (x.exp &) )
In fact, we can define a linear trivialization (I4,, 1//&‘) for g x from (U, 1//5). Namely,

Wﬁiﬁluu — Uy X g

£ @Pelen, €).  x=mgx(). ®
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2.3 Infinitesimal generators

If we fix x € X, yp € Yy and go € G, we can consider the maps
Dyy: Gy —> Yy, Dyt Yy — ¥,
g§ —> Yo 8§ Yy > y-&o-
In the same way, we denote by Lg : Gy — Gy and Rg: Gy — G the left and right
multiplication by go € Gy, respectively. Infinitesimal generators (or fundamental fields) are

defined in the same fashion as in classical actions of Lie groups. Namely, for each § € g,,
then £* € X(Y,) is defined as

gr= Ly exptt) = @O, )., ye.. ©)
’ dt|,—p

Fundamental vector fields are wy y g-vertical, i.e., S;‘ € VyY = ker(dmy y,g)y for each
y € Y. Of course, they are also my_ x-vertical.

Proposition 2.1 Let mig x be the Lie algebra bundle of g, x. The following map is a vertical
isomorphism of vector bundles over Y :

Yxxg— VY

(v.6) — £ n
In addition, for any (g, &) € G Xx &, we have:
(P)«(E") = (Ady18)". ®

Proof 1t is clear that the morphism is vertical by definition. Fix y € Y with 7y _x(y) = x.
Let us see that the map (Y xx §)y =g, 3§ — “g‘y* € V,Y is a linear isomorphism. The
linearity is clear from the second equality of (6). Since dim g, = dim G, = dim V), Y (the last
equality is for being 7y y,g a submersion), we just need to prove the injectivity to conclude.
Let& € g, be such that £ = 0. Then, y - expt& = y for every ¢ € (—¢, €). Since the action
is free, this says that expt& = 1, for every t € (—¢, €) and, hence, & = 0. The second part
is a straightforward computation. O

2.4 Generalized associated bundles

Let mp x: F — X be a fiber bundle on which mg x acts fiberwisely on the left. This yields
aright fibered action of g x on product bundle 7y, r, x. Namely,

0. f-g=0-88"1, O f.ge¥xxFxxg.

If the fibered action of g x on 7y x is free and proper, so is the induced action on wy « , F, x -
In such case, we have the smooth manifold

Y xg F=({ xx F)/G.
We denote the equivalence classes by [y, flg € Y xg F.

Proposition 2.2 In the above conditions, sz:" is the typical fiber of T x, then Ty x g F v /g Is
a fiber bundle with typical fiber F, called generalized associated bundle, where

TYxgF,Y/G" YxgF —Y/G
[y, flg —> [¥lg.
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Proof 1t is clear that the projection is well-defined and surjective. For each [yo, folg €
Y xg F, let us find a trivialization through that point. Let// C X be a trivializing set of both
ng,x and wr x, such that my x (yo) = mr x(fo) € U. Let V = n;/lg’X(L{) and suppose that
it is a trivializing set of 7y y,g (maybe we need to choose a smaller ¢/ in order to achieve
this). Using the above trivializations, we define

¢: (Y xgF)ly — VxF
[(ng)v('x’f)]g'_)(a»g'f)v

where the action G x F' — F is induced by the fibered action of mg x on mr x. Observe that
this action may depend on the base point x. Nevertheless, the conditionof ®: ¥ xx G — Y
is smooth ensures that ¢ is also smooth.

Of course, [yo, folg € (Y xg F)|y, since my x(y0) = 7r,x(fo) € U. In fact, the pair
(V, @) is a trivialization of 7wy« F,y,g. Indeed, the inverse map is given by

p VX EF — (Y xg F)ly
(0, f) —> (o, 1), (x, Nlg.

where again x = 7y /g, x (o). O

Example 2.2 (Conjugacy bundle) A Lie group bundle 7g x acts fiberwisely on the left on
itself by conjugation: g - h = cy(h) = ghg™', (g.h) € G xx G. We can thus consider the
generalized conjugacy bundle, Y xg G, which inherits the Lie group bundle structure from
TG, X-

Example 2.3 (Adjoint bundle) In the same vein, g x acts fiberwisely on the left on 7rg x via
the adjoint map: g -& = Ad, (&) = (dcg)1,(§), (g, &) € G xx & The corresponding quotient
is the generalized adjoint bundle, which we will denote by § = Y X ¢ g. It is a vector bundle
equipped with a Lie algebra bundle structure.

Example 2.4 (Coadjoint bundle) Let g* be the dual vector bundle of mg x, where g x acts
fiberwisely on the left via the coadjoint representation, g - n = Ad;f, ), (g,n) € G xxg".

Using this action we get the generalized coadjoint bundle, § = Y xg g*, which is a vector
bundle.

3 Generalized principal connections
3.1 Lie group bundle connections

Recall that an Ehresmann connection (see for example [14]) onafiberbundle rz x: Z — X
is a fiber map TZ — VZ = ker(mz x)« such that its restriction to V Z is the identity.
Similarly, we can understand an Ehresmann connection as a distribution HZ C T Z com-
plementary to V Z. Finally, an Ehresmann connection is also a section of the jet bundle
Tyiz.z" J'z -z

If g, x is a Lie group bundle, an Ehresmann connection

v: TG — VG, Ugr—>U;’,

can be also regarded as a vertical bundle map (denoted by the same letter for the sake of
simplicity)

v: TG — q, Uy —> (ng—l)g (U;,’).
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Furthermore, it is natural to impose a compatibility of v with the algebraic structure of G.

Definition 3.1 A Lie group bundle connection on g x is an Ehresmann connectionv: TG —
VG satisfying
(i) kervy, = (d1)x(T;X) foreach x € X.
(ii) Forevery (g,h) € G xx G and (U, Uyp) € T,G x1,x T1G, x = 7g x(g), then:
Veh ((dM)(g,h)(Ug, Uh)) = (dRh)g (Vg(Ug)) + (dLg)h wn(Un)) ,
where M : G xx G — G is the fiber multiplication map.

The corresponding conditions when regarded as amap v: TG — g are

(1) kervy, = (d1)x(TX) foreach x € X.
(ii) Forevery (g,h) € G xx G and (Ug, Uy) € T,G X1,x T1G, x = 7g x(g), then:

Vgh ((dM)(g,h)(Ug’ Uh)) = vg(Ug) + Ad, (Vg(Uh)) .

Geometric interpretations of Lie group bundle connections are provided by the following
results. We denote by ” | | the parallel transport of v and by Hor é‘,’ : Ty X — T,G its horizontal
liftatany g € G, x = g, x(g).

Proposition 3.1 Let v be an Ehresmann connection on g, x such thatker vy, = (d1),(Ty X)
foreach x € X. Then v is a Lie group connection if and only if for any curve x: I — X we
have

x(b) x(b) xBb)
"Il = Clhoe) ClGn) . eh <G ©
Consequently,
x(b) x(b) x(b)
||x(a) ( Hx(a) ) ’ ||x(a) L@ = Le)- (10)
Proof Suppose that v is a Lie group connection. Let x: / — X be acurve and g, i € Gx(q)-
Denote a1 (t) = "Hi&))g, ar(t) = ||§§;))h t € lI,and o = M o (a1, a). To show that

a(t) =" | mﬁz)) (gh), t € I, we use the uniqueness of the parallel transport. It is clear that

g x oo = x and a(a) = gh, so we only need to check that it is horizontal,

Va) (&) = Va) (M) @y 1),000) (1 (1), 25(D)))
= (ARew) 4, (Ver @ (@1 ) + (AL 1) gy (Ve (151))) =0,

since 1 and «, are horizontal.

Conversely, suppose that v satisfies (9). Let x € X, g, h € Gy and (U, Uy) € T,G X1,.x
T;,G. Then there exists @ = (ar, 02) : (—€, €) = G x x G suchthata’(0) = (¢ (0), 25(0)) =
(Ug, Up). Denote x = g x oy = g, x o az. We conclude that v is a Lie group connection
as a straightforward consequence of (9) and the definition of covariant derivative,

Vgh ((dM)(g,h)(Ug» Uh)) = Vgh ((M o (X)/(O))
DY (M o a)(0)

Dt
DV 0 DY 0
(dR), (#“) + Lo (%())

= (dRh)g (Vg(Ug)) + (dLg)h (v (Un)) -
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Proposition 3.2 Let v be an Ehresmann connection on mg x and consider the corresponding
Jet section b € T' (7w j15 g). Then v is a Lie group bundle connection if and only if

(i) Dol=jl1=4dl,
(ii) foreach (g, h) € G xx G, we have that V(gh) = v(g) V(h) with respect to the Lie group
bundle structure in J'G.

Proof 1tis clear that (i) is equivalent to the condition: ker vi, = (d1) (7 X) foreachx € X.
Thanks to the previous Proposition, it is enough to show that (i7) is equivalent to (9). Let
xe€X,U, e TyXand g,h € G, and pick a curve a: (—¢, €) — X such that &’(0) = U,.
We define the following curve:

®
B ="l[qg: 1€ (—€.0).

We have ,8;(0) = Hory(Uy) = U(g)(Uy), where Hory: T,X — T,G is the horizon-
tal lifting given by v. Performing the same construction with 2 and gh we obtain curves
Bus Bgn: (—€,€) > TG.

Suppose that (9) is satisfied, then B¢, = M o (B¢, By). Therefore

D(gh)(Uy) = B, (0)
= @M)e.) (B0, B,0))
= (@M) g1 (V@ Wy), D) (Uy)).

Since the equality is valid for every U, € Ty X, we conclude that v(gh) = v(g) V(h).
Conversely, if (ii) holds, then B¢, (0) = gh = B4(0) B1,(0) andﬂ}:,h 0) = (dM)(g,h)(,Bé (0),

ﬂ,’l(O)) = (M o (Bg, ,Bh))/ (0). By uniqueness of the parallel transport we obtain that
Bgn = M o (B, Bp) for each local curve o : (—€, €) — X such that «(0) = x. O

From the proof above we also deduce that the condition
Hor;h = (dM)n o (Hor;,Hor};), (g,h) € G xx G,

together with (i) of Definition 3.1 characterize Lie group connections. More generally, we
have the following property.

Proposition 3.3 Let v be a Lie group connection on g x. Then for each (g, h) € G xx G,
Uy e I\ X, x =g x(g), and Uy, € T),G such that (drng x)n(Up) = Uy we have

@M)g) (Hory (U2, Uy) = Horly, (U0 + (dLyg), (4 (Up))
Proof Thanks to the uniqueness of the horizontal lifting, it is enough to show that
U = @My (Hor(U). Up) = (dLg),, (o (Ui)

is horizontal and projects to Uy. For horizontality we have that

ven(U) = (@R, (vg (Hory(Un)) + (L), (o (U) = v ((dLg), (0(Un)))

(dLg), (on (Un)) — ven ((dLg), (v (Un)))
=0.

The last equality is a particular case of property (ii) of the definition of Lie group connection
with Uy = 0. In such case, we have (dM) g ) (0, Up) = (dLg) (Up) and, thus,

ven ((dLg) (Un)) = vgn ((dM) g1y (0, Up)) = (dLg), (v (Up)).
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Atlast, we check that it projects to U,.. In order todo so, leta = (a1, a2) : (—€,€) > GXxxG
such that &(0) = (g, h) and '(0) = (Hor}(U»), U, ),

(@7g.)¢1 (U) = (@76.x)gh (@M e,y (Hory (U2, Uy ) )
_(dng,X)gh ((dLg)h (Vh(Uh)))
= d(rg.x o M)y (Hor}(U), Uy )

dt

(mg,.x o M o ax)(t)
=0

— t
arl (wg,x oay)()

= (d76.x); (Hory(Uy)
= U,.

With respect to this last Proposition, if the vector U}, is horizontal, then
(dM)g.n) (Hg. Up) = Hgp,  Up € ThG, 75, x(8) = 7g. x (h),

an identity that is similar to the corresponding property of connections on standard principal
bundles.

3.2 Induced connection on the Lie algebra bundle
A Lie group connection induces a linear connection on the corresponding Lie algebra bundle.

Proposition 3.4 Let x: I — X be a smooth curve. Then the map gHiEZ; Br@) — Sx(v)
defined as

®) d b)
9l = ge| "I
€=l

x(a) eXP(E S)v g € gx(a)

is a linear parallel transport on mg, x.

Proof The map is well-defined, since ¥ | |§Ez; 1

g‘ ’x(b))\s = )\5‘ |X(b)§ foreach & € g,(,) and A € R. To conclude, let &, € g,(,) and € € R

x(a) x(a)

x(a) = lxw)- Likewise, it is easy to check that

“small enough”. We apply the Zassenhaus formula (for example, cf. [2]):

exp(e (€ + 1) = exp(e &) exp(e n) [ [ exp(Ca(e &, € ),
n=2

where C, (€ &€, € ) is a homogeneous Lie polynomial in {€ &, € n} for each n > 2. Thus,
exp(e(& 4+ n)) = exp(e &) exp(e n) exp (0(62)) and we are done:

x d
L@ +m = go| I epiee +m)
€=l
d
= - | |i$; (exp(e &) exp(e n) exp (0 (€2)))
€ le=0
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d
= Zel (I eweo) (11 exptem) (113 exp (0 (7))
e=0
d ®) d »
= de o v||§(a) exp(e§) + df‘e:o ”Hi(a) exp(e n)
d ®)
+E Hj(a) exp( ( ))
0
®) ®)
=5 |;((a)$ +4] |i(a)

This linear parallel transport naturally respects the adjoint representation of g.

Proposition3.5 Letx: I — X. Then

) x(b)
[ Ads® = Ad por, (BI[18) - 8 € G € € B

x(a)

. x(1) x(t)
Proof Consider the curves «(f) = Ad”“ﬁxl))g (ng(a)E) and B(1) = g”x(a)Adg(f), tel,

which satisfy o (a) = B(a) = Ady(§) and g x o = 7 x o = x. Thanks to the uniqueness
of parallel transport, to show that « = § it is enough to check that ' = g’. Foreachr € I,

using the definition of Eg| | we have

d d
’ _ £« v[[x®)
() = di de|._, vuﬁy)g( Hx(a) exp(éé))
w d d b))
- E E o Hx(a)cé’ (eXP(f S))
(%) d d x(1)
= I de e:oUHX(a) exp ((deg)1,, (€ €))
= B0,

where (x) is due to v being a Lie group connection and (**) comes from the fact that
Cg: Gx(a) = Gx(a) is a Lie group homomorphism. m]

We denote by V3 and V8/dr the linear connection and the covariant derivative on TR, X

V% may be the following. Consider the Lie group bundle connection as amap v : TG — g.
Then, for any section & € I'(7rg x), we have

vodexp(t§).
1=0

d
v8s = =
§ dt

The next result is the infinitesimal version of Proposition 3.5.

Proposition3.6 Let g: I — Gand&: I — g be such that g x o g = mg,x 0 & = x. Then
forallt € I we have

V8 (Ad, 0 &) (1) V8&(r) VVg (1)
Vo) @ _ Adg(,)< ft )+[(ng<,>—l)g<t> (g),Adms(r»L

dt dt
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Proof Fix t € I and denote x = 7g x o g. Let a: (—¢, €) — Gy () be the curve given by

als) = “||i$:_s)g(t+s) foreachs € (—e, €). We have a(0) = g(1) and &’ (0) = Vg (z)/dt.

Denoting B(s) = als) g~ = Rypy-1 (ae(s)), 5 € (—€, €), we have that 8(0) = 1,(;) and
B'(0) = (ng(,)_l)g(t) (VVg(t)/dt). Hence,

ds Ada(s) (S (Z))

s=0

*‘ Adp(s) (Adg (5(1)))

ad(p’ (0)) (Adga (@)

VVg(t)
[(dzeg(,),])g " (%) ,Adg(,><f(r>)]

g
Using this, we conclude
V8 (Adyo€) (1)  d

a
dt T ds v ||x(t+s)Adg(r+s)(€(t+s))

S=
d "
= O | A, s < om0+ s>>
Adgy (81 dl
=7 o HO) ||x(t+s)f(l +s) )+ s - YD glits) E®)

vEe(1) V()
Adg(t)( T >+[(ng<z>*1)g(,) <Z>,Adg(,)($(t))]g

3.3 Generalized principal connections

Letry x: Y — X be a fiber bundle on which a Lie group bundle g x: G — X acts freely
and properly on the right, and denote by ®: ¥ xx G — Y the fibered action.

Lemma3.1 Forevery (y,g) € Y xx Gand §,n € a,, x = g x(g), we have
@)y, (&5 17) = (Adger € + ),
where ’7; = d/dt|;—o exp(tn)g is the infinitesimal generator of n at g.

Proof 1t is a straightforward computation using that

@, (CXP (tng) g) .

d
Adg7l (ng);k)g = E -0

Ehresmann connections on y y,g are identified with forms as follows.

Proposition 3.7 There is a bijective correspondence between Ehresmann connections on
y,y)g and l—forms1 w € Ql(Y, g) such that

wyED =6 (nEeY xxm.

! In fact, we are considering forms with values in (y x)*(@) = Y x x § but, for the sake of simplicity, we
do not write it. In the same fashion, abusing the notation we suppose that wy € T;Y ® g, foreachy € Y,

x =ny x(»).
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Furthermore, such forms satisfy
* *
Oy (@), () = Adgr (04)) . (8.6 €Y xx G xx 8.

Proof The equivalence between Ehresmann connections on 7y y,g and the 1-forms as in the
statement is a consequence of the isomorphism (7).
For the second part, let (y, g, &) € Y xx G xx g, then:

wy.g ((dopg)y(s;)) =y ((Adg,lg);g) — Ady1(8) = Ady (wy(s;)) ,
where equation (8) has been taken into account. ]

Observe that U = w, (U, )* foreach Uy € T,Y, y € Y, and, thus Uy, is horizontal if and
only if wy (Uy) = O We are ready to 1ntr0duce generahzed principal connections.

Definition 3.2 Let v be an Ehresmann connection on the Lie group bundle 7g x. A general-
ized principal connection on my y g associated to v is an Ehresmann connection H C TY
on 7y y g satisfying:

[(dq))(y,g) (Uy’ Ug)]v = (dq)g)y(va) + (dLg‘l)g(vé’(Ug));g’
forevery (y, ) € Y xx G and (Uy, Ug) € TyY X1,x TG, where x = 7y x(y).

Thanks to Proposition 3.7, it is easy to check that the following is an equivalent way of
defining a generalized principal connection.

Definition 3.3 Let v be an Ehresmann connection on the Lie group bundle 7g x. A general-
ized principal connection on wy y g associated to v is a form w € QLY. satisfying:

(i) (Complementarity) wy (& ;," ) =& forevery (y,§) € Y xxa.
(ii) (Ad-equivariance) For each (y,g) € Y xx G and (Uy,Ug) € TyY X7, x TeG, x =
my x(x), then

Wy.g ((dD)(y,5)(Uy, Ug)) = Ady-1 (0, (Uy) + vg(Uy)) .

Roughly speaking, generalized principal connections extend the property given in Lemma
3.1 and Proposition 3.7 to non-necessarily vertical vectors U, with respect to v.

The next result gives a geometric interpretation of the above Definitions in terms of the
parallel transports ” | } an

Proposition 3.8 Letv: TG — gand w € Q' (Y, g) be Ehresmann connections on ng.x and
my,y /g, respectively. Then w is a generalized principal connection associated to v if and
only if for any curve y : I — Y /G, the corresponding parallel transports satisfy

0 _ y () x(1)
w||y(a)()’ : g) - ( ||y(a))’) ( Hx(a)g) 8 € gx(a), y € Yy(a)» re Ia (11)
where x = my;g x o y.

Proof Suppose that w is a generalized principal connection associatedtov.Lety: I — Y /G

be a curve, x = my,;g x oY,y € Yy(q) and g € Gy (q). Denote oy (-) = wHZEa))y’ a() =

"||X() gand @ = ® o («1, a2). To show that a(-) = “’H (a)(y g) we use the uniqueness of

x(a)
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the parallel transport. It is clear that 7y y,g oo = y and a(a) = y - g, so we only need to
check that « is horizontal. For each ¢t € I we have

o' (1) = (dP) (1.2 (1)) (&) (1), a5 (2))" .
= (dq)O‘Z(t))m(t) (") + (dLaz(t)*‘)az(z) (V1) (a/Z(t)))a(l) = 0

since o] and o are horizontal for the corresponding connections.

Conversely, suppose that w and v satisfy (11). Let (y,g) € Y xx G and (Uy, Uy) €
T,Y x7.x Tg. We consider @« = (a1,a2): (—€,€) — Y xx G such that a'(0) =
(o}(0), @5(0)) = (Uy, Ug) and we denote y = my y/g oy andx =y x o) = 7g, x 0 0t2.
A straightforward consequence of (11) and the definition of covariant derivative is the fol-
lowing:

D®(®
(® o) (0) = D¥(®oa)
Dt |,
D% DVayp
=dDy)y | — ddy), | ——
wnor (5] ) reon (2] )

= (@), (U}) + @Dy, (V7).

*
Furthermore, note that (d®,), (Ué’,’) = (dDyg)1, ((dLg—l )g (U;)) = (dLg-1)g (Ué’,’) .

Vg
Thus, we conclude that w is a generalized principal connection associated to v:

@0 (U, ) = (@0 0 = @0, (U5) + @y (U5) -
O

Proposition3.9 Letv: TG — gand o € Qly, &) be Ehresmann connections on g x and
Ty,y /g, respectively, and suppose that Y /G = X. Let » € T'(mpiy y) and € T' (w16 )
be the corresponding jet sections. Then w is a generalized principal connection associated
to v if and only if

o(y-g) =w() - 0@, (.8 €Y xxg, (12)
where the fibered action of wj1g x on 7w 1y x is given by the first jet extension of ® (recall

Example 2.1).

Proof Thanks to Proposition 3.8 we only need to show that (12) is equivalent to (11). Let
(y,8) €Y xx G, x =mayx(y) and U, € T X, and pick a curve o: (—€,€) — X with
o’ (0) = U,. We define the curves

B0 = |20y, Bre® =[O v-9). B0 ="|"De.

This way, we have ﬂ;(O) = Hor;(UX) = 1(g)(Uy) and ﬂ;(O) = Hor;’(Ux) = o(y)(Uy),
and analogous for By.¢.
Suppose that (11) is satisfied. Then 8., = ® o (By, B¢). Hence

oy - g)(Ux) = By.,(0)
= @®)0) (£(0). B,(0)
= (d D)y, () (Uy), D()(Uy)).

This equation is valid for every U, € T, X, whence @(y - g) = o(y) - 1(g).
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Conversely, if (12) is satisfied, then By.,(0) =y - g = B,(0) - B4,(0) = (P o (B, Be))(0)
and

By.g(0) = &(y - g)(Uy)
= (60 $(9)) (U
= (qu)(y,g) ((D()’)(Ux)a ‘A)(g)(Ux))
= @®).0) (B0, B,(0))
= (@0 (B, o) O).

By uniqueness of the parallel transport we conclude that 8y., = ® o (B, By). a

We denote by Hor(: Tjy);(Y/G) — T,Y the horizontal lift givenby w aty € Y. A
different geometric interpretation of generalized principal connections is the following.

Proposition 3.10 Let (y, g) € Y xx G and (Uyg, Ug) € Ty (Y/G) X1, x TG, where
x =my x(y). Then

D) y.0) (Horfv"(U[y]g), Ug) — Horl,(Upyig) + (dLg 1)g(0g(Up)YY -

Proof Wejustneedtoprovethat U = (d®)y.g) (Hory (Uyig). Uy ) = (dLg-1)g (v (Ug)Vs.g
is horizontal and projects to Ujy), . With respect to the former
v
U = @) (Horg Uyg). Ug) — (dLyg 1) (g (U
= (dDy), (Hor;?(U[y]g)”)

For the latter let o = (a1, @2): (—€,€) — Y xx G be such o/(0) = (Hor;f’(U[y]g), Ug).
We then have

(dry y/6)yg(U) = (dmy y/G)y-g ((dq>)(y,g) (HO”;)(U[ylg)’ Ug))
d(ry,v/G 0 @)y, (Hory Uig). Ug)

dt

(wy,y/g o ® o)(?)
1=0

— t
arl (wy,y/g o a1)(1)

(dmy y)g)y (HOV;U(UD']Q))
= U[y]g .

[m}

Theorem 3.1 (Existence of generalized principal connections) If X is a paracompact smooth
manifold, then there exist an Ehresmann connection v on ng x and a generalized principal
connection w on Ty y /g associated to v.

Proof Let {(Uy, WS) | « € A} be a trivializing atlas for g x, {(V, = n;/lg’x(ua), ¥y |
a € A} be the induced trivializing atlas for 7y y,g, as in (2), and {(Uy, 1//&‘) | « € A} be

the induced trivializing atlas for 7rg x, as in (5). For g € G, we denote by I3 3 G — G and

Rg, : G — G the left and right multiplication by g, respectively. In the same way, we denote
by Ad the adjoint representation of G.

@ Springer



32 Page 16 0f 26 Geometriae Dedicata (2023) 217:32

Fixed « € A, we define the local Ehresmann connection vy : TGly, — VGly, on
7g.xlu, : Glu, — Uy as follows

vo)e (@ (Vs (dlg) (D)) = @y (0 (dlg) (D).  UseTX. e

where x € Uy, § € Gand g = (¥) ™" (x, &) € Glu, - Likewise, we define the local 1-form
wa € Q' (Y]y,, 8ly,) as

o)y (@7 (V- (4L;), (8))) = W™ (v.§). Ui € Ting(¥/9). & e,

where [y]g € Va,ﬁ €eGandy = (1/1{‘,‘)_l ([y]g, fz) € Yly,. We show that v, and w, satisfy
both properties of Definition 3.3:

(i) (Complementarity) Let ¢ = (¥g)~" (x.£) e gly, and y = W)~ (Ivlg. ) € Y1y
Using Corollary 2.1 and equation (4) we get

& =@y, (Omg, (diﬁ>1 (E)) (13)

Thence,
@a)y (&) = @a), (@yi) (o6 (aL;), (§))) = W™ (x.8) =&.

(ii) (Ad-equivariance) Let fl, g € G and [ylg € Vy, and consider y = (1//1‘}‘)’1 ([y]g, fz)
and g = (&))" (x. §). where x = 7y/g x ([ylg) € Uy. Likewise, let &, 7 € g and
Ulyg € Tiy)g (Y /G), and consider
Uy = @) (Ve (a2;), (8)) ey, U = @y (Vs (als), (7)) € 728,
where U, = (dn'y/gqx)[y]g (U[y]g) € T, X. Consider curves y: (—e€,€) — Y|y,
and B: (—€,€) — Gy, such that y’(0) = U, and p’(0) = U,. Then we have that
Yy oy = (y1,72) and ¥g o B = (B1, B2) for certain curves y;: (—€,€) — Vq,
Y2: (—€,€) = G, B1: (—€,€) = Uy and By: (—€, €) — G such that y{(0) = Unyig>
¥5(0) = (diﬁ>1 (é), B1(0) = Uy and B5(0) = (dig)l (ﬁ) Note that we can always
choose the curves satisfying wy,g x o y1 = Bi. Using these curves, Corollary 2.1 and
Equation (13) it can be seen that

d
@D)y.g) (Uy. Ug) = . (), (1))
=l

@5y (Uiig- (alig), (Ader (8))) + ™ (i),

This, together with property (i), lead to

(@a)yg ((AD)yg Uy, Up)) = W)™ (x. Adgr () + W) (x. )
= Adgr (W (x.8)) + @y (0x )
= Adg-1 @)y (U)) + Adgr (AR 1), () (U))
= Ady1 ((0a)y(Uy) + (va)g (Uy)) .

where we have used (5) and the fact that (dtpg)il (Ox, ﬁ) = (dyg |gx)17Xl (x, ).
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Therefore, wy is a generalized principal connectionon 7y y/gly, : Y|y, — Ve associated
to vy. At last, we take a smooth partition of unity {f, | « € A} on X subordinated to
{Uy | @ € A}. Itis easy to check that {®y, = 0, o my,g x | @ € A} is a smooth partition
of unity on Y /G subordinated to {V, | « € A}. Now set = ZQGA(GQ o Ty,Y/G) Wq
and v = ), A0y 0 g x) vo. They are a well defined 1-form w € QL(Y, g) and a well
defined Ehresmann connection v: TG — V. It is straightforward that v and w satisfy both
properties of Definition 3.3. Thus, w is a generalized principal connection associated to v. O

A 1-form o € Q'(Y, g) is said to be tensorial of the adjoint type if it is horizontal, i.e.,
ay(Uy) =0foreach Uy € VY =ker(dny y,g)y, y € Y, and Ad-equivariant, i.e.,
ay.g ((dP)(y,g)(Uy, Ug)) = Ad,- (O‘y(Uy)) )
foreach (Uy, Ug) € T,Y x1,x T¢G, (v, 8) € Y xx G, x = my x(y). The family of tensorial

1-forms of the adjoint type is denoted by Q' (Y, g). These forms can be reduced to Y /G in
the sense that we have a bijection

=1 -
Q.9 — Q'(Y/G,8
o — a,
given by a1y1; (Upylg) = Ly, @y (Uy)lg, where Uy € T,Y projects to Upyyg € Tjyig(Y/G),
y € Y.By anabuse of notation, we identify « = &. This construction can be straightforwardly
generalized to p-forms.

Proposition3.11 Let v: TG — g be an Ehresmann connection on ng x. The family of
generalized principal connections on wy y g associated to v is an affine space modelled on
=1

Q2 (Y, 0.

Proof On the one hand, if w;, w2 € QI(Y, g) are generalized principal connections on

my,y/g associated to v, then w; —w, € ﬁl (Y, g). The Ad-equivariance comes from the Ad-
equivariance of wj and w; and the fact that the adjoint map is linear. For the horizontality,
lety € Y and Vy € VY = ker (dny y/g)y, we have

(w1 — w2)y(vy); = (a)l)y(vy); - (wZ)y(Vy); =V, -V,=0.

As the map (7) is an isomorphism, we deduce that (w1 — w2)y(Vy) = 0.
On the other hand, given a generalized principal connection @ € Ql(Y, g) associated to v

_ =l . . . .
anda l-formw € Q (Y, g), a straightforward computation shows that w 4+ is a generalized
principal connection, since @ vanish on vertical vectors. O

Now we give another interpretation of a generalized principal connection as a connection
on Ty, g, x equivariant under the fibered action.

Proposition 3.12 Let w € Q! (Y, g) be a generalized principal connection on Ty,y /g asso-
ciated to an Ehresmann connection v: TG — VG on g x. Then the map

o:TY xxG) — V(I xxG)
WUy Up) = (0,05, veWy))
where V(Y xx G) = ker (JTYXXg,X)*, is an Ehresmann connection on my x g, x equivariant

underthe map 8: Y xx G — Y xx G defined as 8(y, g) = (v - g, g), i.e.,

(d8)(y,9) (w(y,g) (Uy’ Ug)) = D8(y.8) ((ds)y,g(Uw Ug)) )
foreach (Uy,Ug) € T,Y x1.x TgG, (y,8) €Y xxG.
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Proof To begin with, observe that @ is well defined, i.e., @y, ¢)(Uy, Ug) € V(3 ¢)(¥Y xx G)
for every (Uy,U,) € T,Y x1,x TgG, (v,8) € Y xx G. This is a straightforward con-
sequence of equality V(y o (Y xx G) = VY x V,G, where V,Y = ker(rwy x)«, and the
fact that infinitesimal generators are my x-vertical. Likewise, it is clear that z is a verti-
cal vector bundle morphism over ¥ xx G, since wy, v, and the infinitesimal generator are
linear maps. To conclude, let us check the 8-equivariance. Note that (d8)(y, ¢ (Uy, Ug) =
((d®)(y,0)(Uy, Ug), Ug). Hence,

(d8)(y.¢) (w(y»g) (Uy’ Ug)) = (d8)(y.9) (“’)’(Uy);’ Vg(Ug))

= ((qu)(y,g) (“’)’(U.v);’ Vg(Ug)) ) ‘)g(Ug))
(Adg*‘ (wy (Uy) + Vg(Ug));(y,g) , ”g(Ug))
(“’Cb(y,g) (d®)y.) Uy, Ug));(y,g) » Vg (Ug)>

= W(@(y.8),8) ((d(b)(y,g) (Uys Ug) ’ Ug)
= W8(y,2) ((ds)(.v,g) (Uy’ Ug))

[m}

So far, we have considered generalized principal connections associated to arbitrary Ehres-
mann connections on G — X. We now prove that this Ehresmann connections must be a Lie
group bundle connection, that is, they must respect the algebraic structure of g x.

Proposition 3.13 Let w € Q'(Y, §) be a generalized principal connection on Ty,y /g asso-
ciated to an Ehresmann connection v: TG — @ on ng x. Then v is a Lie group bundle
connection.

Proof Let y: I — Y /G projecting onto x: I — X. Thanks to (11) for each y € Y, (4 and
8, h € Gx(a) we have

(b) (b) (b) (b) (b)
(o) - (liime) Clhan) = (o o) - (lmr)
= |70 (- gh)

v (b) x(b)
= <w| y(a)y) ’ <U||x(a)(gh)) :

Since the action is free, we conclude that property (9) holds.

On the other hand, applying (11) with ¢ = 1,(,) and using again the fact that the action
is free, we get

| |X(t) 1
x(a) X(@) = X(b)'

This gives that ker vi, = (d1),(TxX) for each x € X and we conclude thanks to Propo-

sition 3.1. Indeed, let U, € kervi, = Hj, and denote u, = (dng x)1,(Ux) € TxX. Let
x: (—€, €) — X be such that x’(0) = u,. Then we have that

d x()
Uy = E HX(O) x = 0 1)c(t) = (d1)x(uy).

Therefore, ker vy, C (d1), (T X). The other inclusion is due to the fact that both are vector
spaces of the same dimension. O
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3.4 Curvature

The cuvature ® as an Ehresmann connection (see, for example [14, §9.4]) is the V'Y -valued
2-form Q € Q2(Y, VY) defined as

QU1 U) = — U1 —o(UD*, Uy —oU)*], U, Uz € X(Y).
This is equivalent, by the identification (7), to the g-valued 2-form Q2 € QX(Y, 1)
QU Ua) = —o ([U — o(U)*, Uy — o(U2)*]),

which will be denoted the same.
The linear connection V% induced on 7, x by v enables us to express the curvature as
follows.

Proposition 3.14 Let d% be the exterior covariant derivative? associated to V8. Then?
QU1 U =d80 (U, UF), UL U e X().

As in the case of (standard) principal connections, it is possible to regard the curvature as
a 2-form on the base space Y /G with values in g.

Definition 3.4 The reduced curvature of  is the 2-form Q € Q2 (Y /G, fg) taking values in
the adjoint bundle given by

Sivig U1, U2) = [y, (Hory ). Hory W) )|
foreach[ylg € Y/Gand Uy, U; € Ty, (Y/G), where y € Yissuchthatmy y,g(y) = [ylg-

The reduced curvature is well-defined, i.e., it does not depend on the choice of y € Y.
Indeed, let g € Gy, where x = 7y x(¥), ui = (d7y g, x)y1g(Ui) € TxX fori = 1,2 and
y € I'(7g,x) be such that y (x) = g and v (x) o (dy)x = 0. Proposition 3.10 gives

Hor? (Up) = @®)y, (Hord U, @y, i=1.2.

2 The exterior covariant derivative of a linear connection VE on a vector bundle 7 E, X is an operator in the
family of E-valued forms on X, dE . Q*(X,E) — Q*TH(X, E).Fora l-forma € QL(X, E) itis given by

dPa(Uy, Uy) = Vi (@(U) = Vi, (@U) — (U1, Ual), Uy, Us € X(X).

3 The generalized connection w takes values on the vector bundle 7y  , 5 v, which is the pull-back of gy x by
my. x - Hence, we also need to pull-back the linear connection vE o compute the exterior covariant derivative

of w. Abusing the notation, we denote the pull-back connection by the same symbol: ﬂ; x (Vg) =v8
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Hence, we have
[v-8 2 (Horg g(Ul),Har;{g(Uz))]g = [ g —on ([Hor;%g(Ul),Hor;ﬁg(Uz)])]g
= [y 8 —os ([@@)0p (Hory W, @ysn) . @)y.g) (Hory o). @y)ew) ])]
v -8~ (@O ([Hory ). Horg ) | 1y, @y)swa)) ]
= [3- 8 —0r (@O).0) ([ Horg W), Horg )] @y (i, w2 ) )| (14)
[y g —Adgr (o ([Horg @), Hor;f’(Uz)]))]g
= [v. =0y ([Horyw. Horgw)]) ]
= y Q, (Hor;f’(Ul), Hor;f)(Uz))]

where we have used that [(dy)x(ul), (dy)x(uz)] = (dy)x ([u1, uz2l).

4 Examples
4.1 Standard principal bundles and connections

Generalized principal connections reduce to usual principal connections on (standard) prin-
cipal bundles (for example, [13, Ch.II], [14, Ch.III]). Let p x be a principal G-bundle and
denote by R: P x G — P the corresponding right action. We define a fibered action of the
trivial Lie group bundle G = X x G on wp_x as
d: PxxG — P
(y, (x,8) —> Ry(y) =y - 8.
Note that P/G >~ X, so we can regard wp_x as a generalized principal bundle with respect

to this fibered action.
Let vp be the trivial connection on g x, that is, the one given by

W0)(x.p) (Uxs Ug) = (0x, Up),  (Ux, Up) € T G = Tu X © T3G.

In addition, note that the Lie algebra bundle of g x is § = X X g, where g is the Lie algebra
of G.

Proposition 4.1 Let ® € Q! (P, g) and w € Q' (P, §) be such that
wy(Uy) = (x,&,(U,)), yeP, Uy eTyP, x=mpx(y).

Then w is a generalized principal connection associated to vy if and only if & is a (standard)
principal connection.

Proof Let (y,&) € P xx g and denote & = (x, é‘), x =mp x(y), for some§ € g. Observe
that

S

d A A
&= veprs) = yoexp () =&,

dt|,—o di

t=0 t=0

where & + is the infinitesimal generator of £ € gat y in the sense of principal bundles. Hence,

&= s (0,(8))= () — 4.(5)=¢

Subsequently, we only need to check Ad-equivariance to conclude.
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(=) Suppose that w is a generalized principal connection on 7w p_y associated to vg. Lety € P,
Uy, e TyP and g € G,and denote g = (x, §), x = wp x(y). Picka: (—€,€) — P such
that «(0) = y and «’(0) = Uy, we have

d d

(dR3)y(Uy) = i R; (a(r) = — D (a(t), B()) = (dP)@w(©0).50)) ((x’(O), ,3/(0)),
=0 dt |,

where B: (—¢, €) — Gisgivenby B(r) = ((ﬂp’x oa)(1), g).Notethatﬂ(O) =(x,8) =

g and B/(0) = (Uy, 0g) for Uy = (dmp x)y(Uy) € Ty X. As aresult,

(dRg)y(Uy) = (dP)(y,q) (Uy,Ug),  Ug= Uy, 05).
Now, property (ii) of Definition 3.3 ensures that & is a principal connection on 7p x:
(x, @y (R y(Uy)) = wy.¢ ((dP)y) (Uy, Uy))
= Adg—l (a)y(AUy) + (VO)g(Ux» Og,))
= Adg1 (x, wZ(U),))
= (x, Ady- (a)y(Uy))) .
(<) Suppose that @ is a principal connectionon 7p_x. Let (y, g) € P xx G with g = (x, g),
and (Uy, Ug) € Ty P x1,x T,G with Uy = (U, Ug) € T, X ® T3 G. Observe that

(dP)(y,g) (Uy’ Ug) = (dR)(y.5 (Uy’ Ué')
= (dR;)y(Uy) + (dy.3) ((dLg—l)g(Ug))
= (dRg)y(Uy) + (dLg-1)5(Ug)]

where ¢: G — P is givenby ¢,(¢) =y-gand L;: G — G is the left multiplication
by g. Using this we conclude

Oy ([AP).0)(Uy, Up) = (. Gyg (@R, (Uy) + Ly )
= (x, Adg—1 (0, (Uy)) + (dLg-1)3(Up))
= Ady1 (wy(Uy)) 4 (dLg-1)g ((10)g(Uy))
= Ady-1 (0, (Uy) + (v0)g(Uy)) .

4.2 Affine bundles and connections

Generalized principal connections on an affine bundle are just affine connections (see [13],
[20]) associated to linear connections on the modelling vector bundle. A vector bundle TE x is
an abelian Lie group bundle with the additive structure. A Lie group connectionv: TE — E
is just a linear connection, since it respects this additive structure. If we consider linear bundle
coordinates (x*, vA) corresponding to a basis of local sections {e4: 1 < A < m} of 7z y,
then we may write ’

v(xk, vty = V,f,B(X") VB dxt ®eq +dvt ®ea,

for some (local) functions va eC®X),1<u<nl1<A B<m.
Now consider an affine bundle 7g x modelled on TE x- We have the following fibered
action
Exx E — E
(y,v) — y+uv.
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This action is clearly free and proper, and it satisfies that E/E ~ X, so we can regard g x
as a generalized principal bundle. In the following result we see that generalized principal
connections for this action are just affine connections.

Proposition4.2 Letw € Q! (E, E) and v be a linear connection on wg y. Then w is an affine
connection on g, x with v as underlying linear connection if and only if w is a generalized
principal connection on g, x associated to v.

Proof Let (x*, y4) be affine bundle coordinates for g, x associated to (x*, v4). First, we
suppose that w is an affine connection with v as underlying linear connection. The local
expression of w is

o, yh) = (V,?,B(X”)yB - F,ff(x")) dx" @eq+dy* ®es

for some (local) functions I‘I’f € C®(X),1 <u <n,1 <A < m. ltis straightforward
to check the the equivariance condition from Definition 3.3, that for this case reads wy4, =
wy + vy for each (y,v) € E xx E (observe that the adjoint representation is trivial, since
the group is abelian).

Conversely, suppose that w is a generalized principal connection associated to v. Locally,
o will be given by

o,y = o (", yh) dxt @ e + dy* @ ex

for some (local) functions a)/j‘ € C®E),1 <u <n 1< A < m It must satisfy
the equivariance condition, that is, w(x*, yA + ) = Wk, yA) + v(xH*, v4) for every

(x*, y4,v4) € E xx E. This gives
a)ﬁ(x“, yA o) = a)l‘:‘(x“, yAh + vl‘:"B(x")vB, l<pu<n 1<A<m.

Thence, wﬁ(x“,yA) = Fﬁ(x") + v;"B(x")yB forl < u <nand1 < A < m, where
Fl’j x*) = a)ﬁ (x*, 0). This is the local expression of an affine connection with v as underlying
linear connection. O

4.3 Gauge transformations

Let mp x: P — X be a (standard) principal bundle with structure group G. Recall that
gauge transformations on mwp x are in a bijective correspondence with sections of the Lie
group bundle

Ad(P)=(P xG)/G — X,

where the right action of G on P x G is given by (p,g) - h = (p - h, h~'gh) for each
p € Pand g, h € G. This provides a fibered action of w44(p),x on wp, x. The adjoint bundle
Ad(P) is a main instance of Lie group bundle and, in particular, the question of when an
arbitrary Lie group bundle G — X is the adjoint bundle of a (standard) principal bundle has
interesting topological consequences (for example, see [17]).

Principal connections on 7p x are in a bijective correspondence with sections of the
bundle of connections,

C(P)=({'P)/G — X,
which is an affine bundle modelled on 7*X ® ad(P) — X, of covectors taking values in

the adjoint bundle ad(P) = (P x g)/G, where g is the Lie algebra of G and the action of
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G on g is given by the adjoint representation. The group of gauge transformations acts on
connections. This action is fiberwisely expressed as

J'Ad(P) xx C(P) — C(P)
GivsLidsh = iy o).
The 1-jet lift of this action is
JH (' Ad(P)) xx J'C(P) — J'C(P).
This is again a (left) fibered action, but it is not free. Nevertheless, we may consider the
following Lie group subbundle of J! (J 1 Ad (P)),
JGAd(P) = {jiy € J?Ad(P) | y(x) = Laacp), } C J*Ad(P) C J' (J'Ad(P)).
The restriction of the action to this Lie group subbundle is free and proper, making
Jtcpy — J'c(p)/JgAd(P)

a generalized principal bundle that is not a (standard) principal bundle. Furthermore, the
quotient is isomorphic to the curvature bundle of 7p x,

J'C(P)/JRAd(P) = N*T*X ® ad(P)

1
[ A]J&Ad(i)) — (Fa)sx,

where we denote by F4 € Q*(X, ad(P)) the reduced curvature corresponding to a principal
connection A € Q' (P, g). This is (the main part of) the geometric statement of the well-
known Utiyama theorem (for example, see [12, §5]).

4.3.1 An example of generalized principal connection

Within the framework of gauge field theories analyzed above, we now present a simple
example of a generalized principal connection. Even though one initially would like to have
such connection on C(P) = (JlP)/G, the action of J!Ad(P) on C(P) is not free. To
remedy this, we may consider the action on J! P instead,

®: J'Ad(P) xx J'P — J'P
Gig,js) > jigos).
that is free and and proper. Actually, this construction is conceptually close to the case of
affine connections (see §4.2 above), since J!Ad(P) acts transitively on J lp,

For the sake of brevity, in the following, we work in a trivializing chart of 7p x, i.e., we
pick 4 C X with &4 >~ R”, so that we can write Plyy = U X G, Ad(P)|yy = U x G and
ad(P)|y = U x g. For the sake of simplicity, we write { = X. Furthermore, consider the
right trivialization TG ~ G x g, which is given by U, > (g, (dR4-1)(Uy)). Using this,
we have

J'P=J'Ad(P)=Gx (T*X®9g), J'ad(P)=g& (T*X®y),
where the (fiberwise) semidirect product x is given by the adjoint representation, that is,

(8.6 (¢,€) = (28 & + Adg o &), (8.60), (¢ &) € JJAd(P) =G x (T}X ® ).
The same expression holds for the trivialized (left) fibered action, i.e.,

(8.£0) (h, Ay) = (gh. & + Adg o Ay),  (8.&) € JIAd(P) = J} P 5 (h, Ay)(15)
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Remark 4.1 1t is easy to check that
(.80 = (g7 —Ady10&).  (g.6) € J'Ad(P).
In addition, the adjoint representation of J ' Ad(P) is given by
Adg £ (1, ¢x) = (Adg(n), Adg o ¢ — [Adg(), &4])
for every (g, &) € J]Ad(P) and (n, ¢y) € J'ad(P), where [, -] is the Lie bracket of g.

On the other hand, the trivialization P = X x G also allows us to identify
J'I'P) =T J'Ad(P) =G x (T'X @) @ (T*X®9) & (T X ®T*X ®g)).
Moreover, the jet extension of the action (15) is given by

(8, &%, Nx, Px) - (h, Ax, Xy 0tx)
= (gh, Adg o Ax + &3 Adg 0 Xx + 0y, Adg 0 oy + ¢ + [0y, Adg 0 AL])  (16)

for each (g, &, 0y, ¢x) € J'(J'Ad(P)) and (h, Ay, xx, ax) € J'(J'P).
Lemma4.1 The jet sectiond € T (njl(]lAd(P))J1Ad(P)) defined as

D(g, &) = (8,6, 05,0y),  (g,&) € J'Ad(P),

is a Lie group bundle connection on 7 j1 p4(p) x-

Proof 1t is clear that (0 o 1)(x) = v(1,0,) = (1,04,0,,0,) = (d1), for each x € X.
Besides, we have

D((e. 8- (¢ 8)) =0 (g8, & + Adg 0 &)
= (gg/7$x + Adg Oé)/(7 Ox, Ox)
= (8,5x,0x,0x) - (g/v‘i:;/(vox’ Ox)
=0(g.&)-0(g, &)

and we conclude by Proposition 3.2. O

Observe that the Lie algebra bundle of J!Ad(P) is J'ad(P). Theorem 3.1 ensures that
there exists a generalized principal connection w € Q!(J' P, J'ad(P)) associated to v.

Proposition 4.3 An Ehresmann connection w € Q' (J' P, J'ad(P)) with corresponding jet
section ® € T (7w 1 j1py j1p) is a generalized principal connection on 7t j1 p y associated to
v if and only if

w(h, Ay) = (h, Ay, Ady o f(x), Adj 0 g(x)), (h, Ay) € Jip,
for some sections f € I'(mr+xgg,x) and g € ' (WT+xeT*X®g,X)-
Proof Observe that we may write
h, Ay) = (h, Ay, o (h, Ay), & (h, Ay)),  (h,Ay) e J'P,

forsome w: JIP - T*X ®@gand @ : J'P — T*X ® T*X ® g. By choosing (h, A,) =
(1, 0y) we get

@ ((g.8x) - (1,00)) = @ (8, §x) = (8. &x, @ (8, &x), (8. 6x)) -
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Likewise, from (16) we have

\’}(g7 EX) : &)(190)() = (g’ gXa OXa OX) N (17 OXa w(l»ox)a é.(15 OJC))
= (g, &, Adg 0 r(1,0,), Adg 0 i (1,0y)) .

Proposition 3.9 ensures that w is a generalized principal connection on 7 ;1 p_x associated to
v if and only if

w(8,6x) = Adgow (1,0x), @ (g, &) = Adgow(l,0y),

for each (g, £,) € J! P. By denoting f(x) = @ (1, 0,) and g(x) = @& (1, 0;) foreach x € X
we conclude. ]
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