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Abstract
In this work, generalized principal bundles modelled by Lie group bundle actions are inves-
tigated. In particular, the definition of equivariant connections in these bundles, associated to
Lie group bundle connections, is provided, together with the analysis of their existence and
their main properties. The final part gives some examples. In particular, since this research
was initially originated by some problems on geometric reduction of gauge field theories,
we revisit the classical Utiyama Theorem from the perspective investigated in the article.
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1 Introduction

A fiberwise action of a Lie group fiber bundle on a smooth bundle over the same base leads to
the notion of generalized principal bundle. They share some similar properties to (standard)
principal bundles [13, Ch.II], but they also show important differences. For instance, on one
hand it is possible to build (generalized) associated bundles by the action of Lie group bundles
on other bundles. But on the other hand, Ehresmann connections [14, 21] that are equivariant
with respect to the action, require a precise and correct approach providing the corresponding
notion of generalized principal connections. Unlike usual principal connections, they are
always associated to a certain connection on the Lie group bundle, which gives an additional
term in the equivariance formula.
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Lie group bundles, together with their natural infinitesimal companions, the Lie algebra
bundles, are classical objects in the literature (see, for example, [9]). These type of bundles
naturally arise in various geometric contexts and in different applications. The reader should
be aware that these bundles may involve questions concerning non-isomorphic algebraic
structure between different fibers (the seminal work of Douady and Lazard [9] already dis-
cussed this situation; see [1] for a recent approach). Although this scenario is very interesting
and beautiful, in this work we confine ourselves to the case where the fibers are algebraically
isomorphic (that is, the bundle is locally trivial from an algebraic point of view), a decision
mainlymotivated by the bundles that one encounters in the applications.With respect to them,
they appear in a natural way when performing reduction by local symmetries in Lagrangian
field theory [11, 19] and, since principal connections may be regarded from this perspec-
tive, they are also useful for classical reduction –that is, reduction by global symmetries– in
mechanics [5, 6, 18] and field theories [3, 4, 10]. Lie group bundles are the unavoidable start-
ing point in the geometric foundations of gauge theories. In particular, they provide the basic
language for a theory of geometric reduction of field theories when the group of symmetries
are sections of Lie group bundles. This theory (that is still in progress) will collect the main
instances of gauge theories and will require a wise use of the concepts exposed in this article.
Actually, our initial interest in generalized principal bundles started in that framework, from
where we have taken much inspiration. We would like to mention that fibered actions can be
extended to the Lie groupoid setting (for example see [7, 8, 16]), but we do not address this
matter here.

Despite the interest and ubiquitous presence of these objects, it is remarkable to check
the existence of some important gaps in the literature about the main properties, definitions,
and the key geometric objects involved. In this work we aim at solving this situation with
the study of fibered actions, as well as the smooth bundles arising from the quotient by these
actions: generalized principal bundles. Furthermore, we define equivariant connections on
these bundles (i.e., generalized principal connections) and their curvature. Before doing that,
we need to define Lie group bundle connections, which are connections on a Lie group bundle
that respect the multiplicative structure. Actually, the generalized principal connections will
be associated to Lie group bundle connections, a situation that does not have a counterpart
in the notion of (standard) principal bundle connections.

The paper is organized as follows. In Sect. 2 we investigate fibered actions and quotients
by them. After that, the definition of infinitesimal generators is recalled and generalized asso-
ciated bundles are defined. In Sect. 3 we introduce Lie group bundle connections, as well as
the induced linear connection on the Lie algebra bundle. Then generalized principal connec-
tions are defined and characterized using parallel transport. Besides, we prove a theorem of
existence and study their curvature. In Sect. 4 we present several examples to illustrate the
ideas of this work. In particular, we show that usual principal bundles and connections are
particular cases of the generalized objects. We have a similar situation with connections in
affine bundles. Finally, the action of the gauge group on connections is modelled with Lie
group bundle actions. In this case, the generalized principal bundle provides a new approach
to the well-known Utiyama Theorem.

In the following, every manifold or map is smooth, meaning C∞. In addition, every
fiber bundle πY ,X : Y → X is assumed to be locally trivial and is denoted by πY ,X . Given
x ∈ X , Yx = π−1

Y ,X ({x}) denotes the fiber over x . The space of (smooth) global sections
of πY ,X is denoted by �(πY ,X ). In particular, vector fields on a manifold X are denoted
by X(X) = �(πT X ,X ), where T X is the tangent bundle of X . Likewise, the space of local
sections on an open set U ⊂ X is denoted by�(U, πY ,X ). The derivative, or tangent map, of a
map f ∈ C∞(X , X ′) between the manifolds X and X ′ is denoted by (d f )x : Tx X → Tx ′ X ′,
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x ′ = f (x). When working in local coordinates, we will assume the Einstein summation
convention for repeated indices. A compact interval will be denoted by I = [a, b].

2 Generalized principal bundles

2.1 Actions of Lie group bundles

A Lie group fiber bundle with typical fiber a Lie group G is a fiber bundle πG,X : G → X
such that for any point x ∈ X the fiber Gx is equipped with a Lie group structure and there
is a neighborhood U ⊂ X and a diffeomorphism x ∈ U × G → π−1

G,X (U) preserving the Lie
group structure fiberwisely.

Note that the multiplication map M : G ×X G → G and the inversion map ·−1 : G → G
are bundle morphisms covering the identity idX : X → X , where ×X denotes the fibered
product. Likewise, the map 1 : X → G that assigns the identity element 1x ∈ Gx to each
x ∈ X is a global section (called the unit section) of πG,X . Any Lie group bundle defines a
Lie algebra bundle πg,X : g → X as the vector bundle whose fiber gx at each x ∈ X is the
Lie algebra of Gx . That is, the Lie algebra bundle is the pull-back bundle g = 1∗(VG), where
VG ⊂ TG is the vertical bundle of πG,X , i.e., the kernel of (πG,X )∗.

Remark 2.1 (Jets of Lie group fiber bundles) Let πG,X : G → X be a Lie group fiber bundle
and r ≥ 0 be an integer. Then the r -th jet bundle of πG,X , JrG → X , is again a Lie group
fiber bundle (see, for example, [11, §3, Th. 1]). The multiplication is inherited from the Lie
group bundle structure of πG,X , that is,

M
(
jrx γ1, j

r
x γ2

) = jrx (M ◦ (γ1, γ2)) , jrx γ1, j
r
x γ2 ∈ JrG.

We consider subgroups of Lie group bundles in the following sense.

Definition 2.1 A Lie group subbundle of a Lie group bundle πG,X : G → X is a Lie group
bundle πH,X : H → X such that H is a submanifold of G and Hx is a Lie subgroup of Gx

for each x ∈ X . It is said to be closed if Hx is a closed Lie subgroup of Gx for every x ∈ X .

Let πY ,X be a fiber bundle and πG,X be a Lie group fiber bundle.

Definition 2.2 A (right) fibered action of πG,X on πY ,X is a bundle morphism

� : Y ×X G −→ Y

covering the identity idX : X → X such that �(y, hg) = �(�(y, h), g) and �(y, 1x ) = y,
for all (y, g), (y, h) ∈ Y ×X G, πG,X (y) = x .

For the sake of simplicity, we will denote �(y, g) = y · g and we will say that πG,X

acts fiberwisely on the right on πY ,X . Note that � induces a right action on each fiber,
�x = �|Yx×Gx : Yx × Gx → Yx . The fibered action is said to be free if y · g = y for some
(y, g) ∈ Y ×X G implies that g = 1x , x = πY ,X (y). In the same way, it is said to be proper
if the bundle morphism Y ×X G 
 (y, g) �→ (y, y · g) ∈ Y ×X Y is proper. If � is free and
proper, so is each action �x , since the fibers of a bundle are closed.

As the fibered action is vertical (i.e., it covers the identity idX ), wemay regard the quotient
space Y/G as the disjoint union of the quotients of the fibers by the induced actions, that is,

Y/G =
⊔

x∈X
Yx/Gx = {[y]G = (x, [y]Gx ) : x ∈ X , y ∈ Yx

}
.
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Obviously, the following diagram is commutative:

Y X

Y/G

πY ,X

πY ,Y/G πY/G,X

y x

[y]G

(1)

Example 2.1 (Jet lift of fibered actions) Let � : Y ×X G → Y be a (right) fibered action of a
Lie group bundle πG,X on a fiber bundle πY ,X . The first jet extension of � turns out to be a
(right) fibered action of πJ 1G,X on πJ 1Y ,X ,

�(1) : J 1Y ×X J 1G −→ J 1Y(
j1x s, j

1
x γ

) �−→ j1x (� ◦ (s, γ )).

If we regard 1-jets as differentials of sections at a point, that is, j1x s ≡ (ds)x and j1x γ ≡ (dγ )x
for certain local sections s and γ , then �(1) may be seen as

�(1)( j1x s, j
1
x γ ) ≡ (d�)(s(x),γ (x)) ◦ ((ds)x , (dγ )x ) : Tx X −→ Ts(x)·γ (x)Y .

2.2 Smooth structure of fibered quotients

Theorem 2.1 If πG,X acts on πY ,X freely and properly, then Y/G admits a unique smooth
structure such that

(i) πY ,Y/G is a fiber bundle with typical fiber G, called generalized principal bundle.
(ii) πY/G,X is a fibered manifold, i.e., a surjective submersion.

Proof Taking trivializations of πY ,X and πG,X on the same neighborhood U ⊂ X , the local
expression of the actions is:

U × Ŷ × G −→ U × Ŷ ,

where Ŷ is the typical fiber of Y . This can be seen as a standard Lie group action acting
trivially on U . The classical results on Lie group actions (for example, see [15, Theorem
7.10]) provide a unique smooth structure on (U × Ŷ )/G that can be used as a chart on Y/G.
In these trivializations, the projections πY ,Y/G and πY/G,X are U × Ŷ → (U × Ŷ )/G and
(U × Ŷ )/G → U which gives (i) and (ii). 
�
Remark 2.2 If a Lie groupG acts freely, properly and fiberwisely on a bundle πY ,X : Y → X ,
thenπY/G,X : Y/G → X is a bundle with typical fiber Ŷ/G. However, in the case of action of
Lie group bundle, since the action depends on X , the notion of typical fiber is more delicate.
For example, if X is not connected, the topology of the typical fiber may differ on each
component. This is the case of the action of X × Z on X × (S1 × R) with X = R − {0}
defined as

� : Y ×X G −→ Y(
(t, (cos θ, sin θ), z), (t, n)

) �−→ (
t,

(
sgn(t)n cos θ, sin θ

)
, z + n

)
.

The typical fiber is a Klein bottle for t < 0 and a torus for t > 0.
For a connected base manifold X , the quotient Ŷ/G is well-defined (up to diffeomor-

phism). Indeed, given any two points p, q ∈ X connected by a path, p = γ (0), q = γ (1),
the action on Yt = π−1

Y ,X (γ (t)) can be regarded (from the local trivializations of G and Y ) as
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a homotopy of diffeomorphism of G on Ŷ . This gives a diffeomorphism of the fibers of Y/G
on p and q .

We can build a trivializing atlas for πY ,Y/G starting from a trivializing atlas
{(Uα, ψα

G
) : α ∈ 	

}

of πG,X . For α ∈ 	, let Vα = π−1
Y/G,X (Uα) and pick a local section ŝ ∈ �(Vα, πY ,Y/G) (the

existence of that local section may require the choice of a smaller Uα). We define

ψα
Y : Y |Vα = π−1

Y ,Y/G(Vα) −→ Vα × G

y �−→
(
[y]G, ĥ

)
,

(2)

where ĥ ∈ G is such that y = ŝ([y]G) · g, with g = (ψα
G)−1

(
πY/G,X ([y]G), ĥ

)
∈ G. The

element ĥ exists since Orb(y) = π−1
Y ,Y/G ([y]G) and it is unique because the fibered action

is free. It turns out that (Vα, ψα
Y ) is a trivialization for πY ,Y/G . Indeed, its inverse is given by

(ψα
Y )−1 : Vα × G −→ Y |Vα(

[y]G, ĥ
)

�−→ ŝ([y]G) · (ψα
G)−1

(
πY/G,X ([y]G), ĥ

)
.

As a result,
{
(Vα, ψα

Y ) | α ∈ 	
}
is an atlas for πY ,Y/G .

Observe that, by definition of Lie group bundle, the mapsψα
G |Gx : Gx → {x}×G, x ∈ Uα ,

are Lie group homomorphisms. It is thus straightforward that the fibered action is locally
given by the right multiplication on the Lie group G.

Corollary 2.1 Let x ∈ Uα , y = (ψα
Y )−1

(
[y]G, ĥ

)
∈ Yx and g = (ψα

G)−1
(
x, ĝ

) ∈ Gx , then

y · g = (ψα
Y )−1

(
[y]G, ĥĝ

)
. (3)

Moreover, for each x ∈ Uα the following diagram is commutative

Gx {x} × G

gx {x} × g

ψα
G |Gx

exp
(dψα

G |Gx )1x

(
id{x}, exp

)

where πg,X is the Lie algebra bundle of πG,X , g is the Lie algebra of G and exp is the
exponential map between the Lie algebra and its corresponding Lie group. Furthermore, note
that (dψα

G |Gx )1x is a linear isomorphism, since ψα
G |Gx is a diffeomorphism. In other words,

for each ξ = (dψα
G |Gx )

−1
1x

(
x, ξ̂

)
∈ gx we have

exp (ξ) = (ψα
G)−1

(
x, exp ξ̂

)
. (4)

In fact, we can define a linear trivialization (Uα, ψα
g ) for πg,X from (Uα, ψα

G). Namely,

ψα
g : g|Uα −→ Uα × g

ξ �−→ (dψα
G |Gx )1x (ξ), x = πg,X (ξ).

(5)
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2.3 Infinitesimal generators

If we fix x ∈ X , y0 ∈ Yx and g0 ∈ Gx , we can consider the maps

�y0 : Gx −→ Yx , �g0 : Yx −→ Yx
g �−→ y0 · g, y �−→ y · g0.

In the same way, we denote by Lg0 : Gx → Gx and Rg0 : Gx → Gx the left and right
multiplication by g0 ∈ Gx , respectively. Infinitesimal generators (or fundamental fields) are
defined in the same fashion as in classical actions of Lie groups. Namely, for each ξ ∈ gx ,
then ξ∗ ∈ X(Yx ) is defined as

ξ∗
y = d

dt

∣
∣
∣∣
t=0

y · exp(tξ) = (d�y)1x (ξ), y ∈ Yx . (6)

Fundamental vector fields are πY ,Y/G-vertical, i.e., ξ∗
y ∈ VyY = ker(dπY ,Y/G)y for each

y ∈ Yx . Of course, they are also πY ,X -vertical.

Proposition 2.1 Let πg,X be the Lie algebra bundle of πG,X . The following map is a vertical
isomorphism of vector bundles over Y :

Y ×X g −→ VY
(y, ξ) �−→ ξ∗

y .
(7)

In addition, for any (g, ξ) ∈ G ×X g, we have:

(�g)∗(ξ∗) = (Adg−1ξ)∗. (8)

Proof It is clear that the morphism is vertical by definition. Fix y ∈ Y with πY ,X (y) = x .
Let us see that the map (Y ×X g)y = gx 
 ξ �→ ξ∗

y ∈ VyY is a linear isomorphism. The
linearity is clear from the second equality of (6). Since dim gx = dim Gx = dim VyY (the last
equality is for being πY ,Y/G a submersion), we just need to prove the injectivity to conclude.
Let ξ ∈ gx be such that ξ

∗
y = 0. Then, y · exp tξ = y for every t ∈ (−ε, ε). Since the action

is free, this says that exp tξ = 1x for every t ∈ (−ε, ε) and, hence, ξ = 0. The second part
is a straightforward computation. 
�

2.4 Generalized associated bundles

Let πF,X : F → X be a fiber bundle on which πG,X acts fiberwisely on the left. This yields
a right fibered action of πG,X on product bundle πY×X F,X . Namely,

(y, f ) · g = (y · g, g−1 · f ), (y, f , g) ∈ Y ×X F ×X G.

If the fibered action of πG,X on πY ,X is free and proper, so is the induced action on πY×X F,X .
In such case, we have the smooth manifold

Y ×G F = (Y ×X F)/G.

We denote the equivalence classes by [y, f ]G ∈ Y ×G F .

Proposition 2.2 In the above conditions, if F̂ is the typical fiber of πF,X , then πY×G F,Y/G is

a fiber bundle with typical fiber F̂, called generalized associated bundle, where

πY×G F,Y/G : Y ×G F −→ Y/G
[y, f ]G �−→ [y]G .
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Proof It is clear that the projection is well-defined and surjective. For each [y0, f0]G ∈
Y ×G F , let us find a trivialization through that point. Let U ⊂ X be a trivializing set of both
πG,X and πF,X , such that πY ,X (y0) = πF,X ( f0) ∈ U . Let V = π−1

Y/G,X (U) and suppose that
it is a trivializing set of πY ,Y/G (maybe we need to choose a smaller U in order to achieve
this). Using the above trivializations, we define

φ : (Y ×G F)|V −→ V × F̂
[(σ, g), (x, f )]G �−→ (σ, g · f ) ,

where the action G× F̂ → F̂ is induced by the fibered action of πG,X on πF,X . Observe that
this action may depend on the base point x . Nevertheless, the condition of � : Y ×X G → Y
is smooth ensures that φ is also smooth.

Of course, [y0, f0]G ∈ (Y ×G F)|V , since πY ,X (y0) = πF,X ( f0) ∈ U . In fact, the pair
(V, φ) is a trivialization of πY×G F,Y/G . Indeed, the inverse map is given by

φ−1 : V × F̂ −→ (Y ×G F)|V
(σ, f ) �−→ [(σ, 1), (x, f )]G,

where again x = πY/G,X (σ ). 
�
Example 2.2 (Conjugacy bundle) A Lie group bundle πG,X acts fiberwisely on the left on
itself by conjugation: g · h = cg(h) = ghg−1, (g, h) ∈ G ×X G. We can thus consider the
generalized conjugacy bundle, Y ×G G, which inherits the Lie group bundle structure from
πG,X .

Example 2.3 (Adjoint bundle) In the same vein, πG,X acts fiberwisely on the left on πg,X via
the adjoint map: g · ξ = Adg(ξ) = (dcg)1x (ξ), (g, ξ) ∈ G×X g. The corresponding quotient
is the generalized adjoint bundle, which we will denote by g̃ = Y ×G g. It is a vector bundle
equipped with a Lie algebra bundle structure.

Example 2.4 (Coadjoint bundle) Let g∗ be the dual vector bundle of πg,X , where πG,X acts
fiberwisely on the left via the coadjoint representation, g · η = Ad∗

g−1(η), (g, η) ∈ G ×X g∗.
Using this action we get the generalized coadjoint bundle, g̃∗ = Y ×G g∗, which is a vector
bundle.

3 Generalized principal connections

3.1 Lie group bundle connections

Recall that an Ehresmann connection (see for example [14]) on a fiber bundle πZ ,X : Z → X
is a fiber map T Z → V Z = ker(πZ ,X )∗ such that its restriction to V Z is the identity.
Similarly, we can understand an Ehresmann connection as a distribution HZ ⊂ T Z com-
plementary to V Z . Finally, an Ehresmann connection is also a section of the jet bundle
πJ 1Z ,Z : J 1Z → Z .

If πG,X is a Lie group bundle, an Ehresmann connection

ν : TG −→ VG, Ug �−→ U v
g ,

can be also regarded as a vertical bundle map (denoted by the same letter for the sake of
simplicity)

ν : TG −→ g, Ug �−→ (
dRg−1

)
g
(U v

g ).
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Furthermore, it is natural to impose a compatibility of ν with the algebraic structure of G.

Definition 3.1 ALie groupbundle connectiononπG,X is anEhresmann connection ν : TG →
VG satisfying

(i) ker ν1x = (d1)x (Tx X) for each x ∈ X .
(ii) For every (g, h) ∈ G ×X G and (Ug,Uh) ∈ TgG ×Tx X ThG, x = πG,X (g), then:

νgh
(
(dM)(g,h)(Ug,Uh)

) = (dRh)g
(
νg(Ug)

) + (dLg)h (νh(Uh)) ,

where M : G ×X G → G is the fiber multiplication map.

The corresponding conditions when regarded as a map ν : TG → g are

(i) ker ν1x = (d1)x (Tx X) for each x ∈ X .
(ii) For every (g, h) ∈ G ×X G and (Ug,Uh) ∈ TgG ×Tx X ThG, x = πG,X (g), then:

νgh
(
(dM)(g,h)(Ug,Uh)

) = νg(Ug) + Adg
(
νg(Uh)

)
.

Geometric interpretations of Lie group bundle connections are provided by the following
results. We denote by ν

∣
∣
∣
∣ the parallel transport of ν and by Horν

g : Tx X → TgG its horizontal
lift at any g ∈ G, x = πG,X (g).

Proposition 3.1 Let ν be an Ehresmann connection on πG,X such that ker ν1x = (d1)x (Tx X)

for each x ∈ X. Then ν is a Lie group connection if and only if for any curve x : I → X we
have

ν
∣∣∣∣x(b)
x(a)

(gh) =
(

ν
∣∣∣∣x(b)
x(a)

g
) (

ν
∣∣∣∣x(b)
x(a)

h
)

, g, h ∈ Gx(a). (9)

Consequently,

ν
∣∣∣∣x(b)
x(a)

g−1 =
(

ν
∣∣∣∣x(b)
x(a)

g
)−1

, ν
∣∣∣∣x(b)
x(a)

1x(a) = 1x(b). (10)

Proof Suppose that ν is a Lie group connection. Let x : I → X be a curve and g, h ∈ Gx(a).

Denote α1(t) = ν
∣∣∣∣x(t)
x(a)

g, α2(t) = ν
∣∣∣∣x(t)
x(a)

h, t ∈ I , and α = M ◦ (α1, α2). To show that

α(t) = ν
∣∣∣∣x(t)
x(a)

(gh), t ∈ I , we use the uniqueness of the parallel transport. It is clear that
πG,X ◦ α = x and α(a) = gh, so we only need to check that it is horizontal,

να(t)
(
α′(t)

) = να(t)
(
(dM)(α1(t),α2(t))

(
α′
1(t), α

′
2(t)

))

= (
dRα2(t)

)
α1(t)

(
να1(t)

(
α′
1(t)

)) + (
dLα1(t)

)
α2(t)

(
να2(t)

(
α′
2(t)

)) = 0,

since α1 and α2 are horizontal.
Conversely, suppose that ν satisfies (9). Let x ∈ X , g, h ∈ Gx and (Ug,Uh) ∈ TgG ×Tx X

ThG. Then there exists α = (α1, α2) : (−ε, ε) → G×X G such that α′(0) = (α′
1(0), α

′
2(0)) =

(Ug,Uh). Denote x = πG,X ◦α1 = πG,X ◦α2. We conclude that ν is a Lie group connection
as a straightforward consequence of (9) and the definition of covariant derivative,

νgh
(
(dM)(g,h)(Ug,Uh)

) = νgh
(
(M ◦ α)′(0)

)

= Dν(M ◦ α)(0)

Dt

= (dRh)g

(
Dνα1(0)

Dt

)
+ (dLg)h

(
Dνα2(0)

Dt

)

= (dRh)g
(
νg(Ug)

) + (dLg)h (νh(Uh)) .


�
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Proposition 3.2 Let ν be an Ehresmann connection on πG,X and consider the corresponding
jet section ν̂ ∈ �(πJ 1G,G). Then ν is a Lie group bundle connection if and only if

(i) ν̂ ◦ 1 = j11 = d1,
(ii) for each (g, h) ∈ G ×X G, we have that ν̂(gh) = ν̂(g) ν̂(h) with respect to the Lie group

bundle structure in J 1G.
Proof It is clear that (i) is equivalent to the condition: ker ν1x = (d1)x (Tx X) for each x ∈ X .
Thanks to the previous Proposition, it is enough to show that (i i) is equivalent to (9). Let
x ∈ X , Ux ∈ Tx X and g, h ∈ Gx and pick a curve α : (−ε, ε) → X such that α′(0) = Ux .
We define the following curve:

βg(t) = ν
∣
∣
∣
∣α(t)
α(0)g, t ∈ (−ε, ε).

We have β ′
g(0) = Horν

g (Ux ) = ν̂(g)(Ux ), where Horν
g : Tx X → TgG is the horizon-

tal lifting given by ν. Performing the same construction with h and gh we obtain curves
βh, βgh : (−ε, ε) → TG.

Suppose that (9) is satisfied, then βgh = M ◦ (βg, βh). Therefore

ν̂(gh)(Ux ) = β ′
gh(0)

= (dM)(g,h)

(
β ′
g(0), β

′
h(0)

)

= (dM)(g,h)

(
ν̂(g)(Ux ), ν̂(h)(Ux )

)
.

Since the equality is valid for every Ux ∈ Tx X , we conclude that ν̂(gh) = ν̂(g) ν̂(h).
Conversely, if (i i)holds, thenβgh(0) = gh = βg(0) βh(0) andβ ′

gh(0) = (dM)(g,h)(β
′
g(0),

β ′
h(0)) = (

M ◦ (βg, βh)
)′

(0). By uniqueness of the parallel transport we obtain that
βgh = M ◦ (βg, βh) for each local curve α : (−ε, ε) → X such that α(0) = x . 
�

From the proof above we also deduce that the condition

Horν
gh = (dM)(g,h) ◦

(
Horν

g , Horν
h

)
, (g, h) ∈ G ×X G,

together with (i) of Definition 3.1 characterize Lie group connections. More generally, we
have the following property.

Proposition 3.3 Let ν be a Lie group connection on πG,X . Then for each (g, h) ∈ G ×X G,
Ux ∈ Tx X, x = πG,X (g), and Uh ∈ ThG such that (dπG,X )h(Uh) = Ux we have

(dM)(g,h)

(
Horν

g (Ux ),Uh

)
= Horν

gh(Ux ) + (
dLg

)
h (νh(Uh)) .

Proof Thanks to the uniqueness of the horizontal lifting, it is enough to show that

U = (dM)(g,h)

(
Horν

g (Ux ),Uh

)
− (

dLg
)
h (νh(Uh))

is horizontal and projects to Ux . For horizontality we have that

νgh(U ) = (dRh)g

(
νg

(
Horν

g (Ux )
))

+ (
dLg

)
h (νh (Uh)) − νgh

((
dLg

)
h (νh(Uh))

)

= (
dLg

)
h (νh (Uh)) − νgh

((
dLg

)
h (νh(Uh))

)

= 0.

The last equality is a particular case of property (i i) of the definition of Lie group connection
with Ug = 0. In such case, we have (dM)(g,h) (0,Uh) = (

dLg
)
(Uh) and, thus,

νgh
((
dLg

)
(Uh)

) = νgh
(
(dM)(g,h) (0,Uh)

) = (
dLg

)
h (νh (Uh)) .

123



32 Page 10 of 26 Geometriae Dedicata (2023) 217 :32

At last, we check that it projects toUx . In order to do so, letα = (α1, α2) : (−ε, ε) → G×X G
such that α(0) = (g, h) and α′(0) =

(
Horν

g (Ux ),Uh

)
,

(dπG,X )gh(U ) = (dπG,X )gh

(
(dM)(g,h)

(
Horν

g (Ux ),Uh

))

−(dπG,X )gh
((
dLg

)
h (νh(Uh))

)

= d(πG,X ◦ M)(g,h)

(
Horν

g (Ux ),Uh

)

= d

dt

∣
∣
∣
∣
t=0

(πG,X ◦ M ◦ α)(t)

= d

dt

∣
∣
∣
∣
t=0

(πG,X ◦ α1)(t)

= (dπG,X )g

(
Horν

g (Ux )
)

= Ux .


�
With respect to this last Proposition, if the vector Uh is horizontal, then

(dM)(g,h)

(
Hg,Uh

) = Hgh, Uh ∈ ThG, πG,X (g) = πG,X (h),

an identity that is similar to the corresponding property of connections on standard principal
bundles.

3.2 Induced connection on the Lie algebra bundle

ALie group connection induces a linear connection on the corresponding Lie algebra bundle.

Proposition 3.4 Let x : I → X be a smooth curve. Then the map g∣∣∣∣x(b)
x(a)

: gx(a) → gx(b)
defined as

g∣∣∣∣x(b)
x(a)

ξ = d

dε

∣∣∣∣
ε=0

ν
∣∣∣∣x(b)
x(a)

exp(ε ξ), ξ ∈ gx(a)

is a linear parallel transport on πg,X .

Proof The map is well-defined, since ν
∣∣∣∣x(b)
x(a)

1x(a) = 1x(b). Likewise, it is easy to check that
g∣∣∣∣x(b)

x(a)
λξ = λg

∣∣∣∣x(b)
x(a)

ξ for each ξ ∈ gx(a) and λ ∈ R. To conclude, let ξ, η ∈ gx(a) and ε ∈ R

“small enough”. We apply the Zassenhaus formula (for example, cf. [2]):

exp(ε(ξ + η)) = exp(ε ξ) exp(ε η)

∞∏

n=2

exp(Cn(ε ξ, ε η)),

where Cn(ε ξ, ε η) is a homogeneous Lie polynomial in {ε ξ, ε η} for each n ≥ 2. Thus,
exp(ε(ξ + η)) = exp(ε ξ) exp(ε η) exp

(
o(ε2)

)
and we are done:

g∣∣∣∣x(b)
x(a)

(ξ + η) = d

dε

∣∣∣∣
ε=0

ν
∣∣∣∣x(b)
x(a)

exp(ε(ξ + η))

= d

dε

∣∣∣∣
ε=0

ν
∣∣∣∣x(b)
x(a)

(
exp(ε ξ) exp(ε η) exp

(
o

(
ε2

)))
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= d

dε

∣
∣
∣
∣
ε=0

(
ν
∣
∣
∣
∣x(b)
x(a)

exp(ε ξ)
) (

ν
∣
∣
∣
∣x(b)
x(a)

exp(ε η)
) (

ν
∣
∣
∣
∣x(b)
x(a)

exp
(
o

(
ε2

)))

= d

dε

∣
∣
∣
∣
ε=0

ν
∣
∣
∣
∣x(b)
x(a)

exp(ε ξ) + d

dε

∣
∣
∣
∣
ε=0

ν
∣
∣
∣
∣x(b)
x(a)

exp(ε η)

+ d

dε

∣
∣
∣
∣
ε=0

ν
∣
∣
∣
∣x(b)
x(a)

exp
(
o

(
ε2

))

︸ ︷︷ ︸
0

= g∣∣
∣
∣x(b)
x(a)

ξ + g∣∣
∣
∣x(b)
x(a)

η.


�

This linear parallel transport naturally respects the adjoint representation of g.

Proposition 3.5 Let x : I → X. Then

g∣∣
∣
∣x(b)
x(a)

Adg(ξ) = Adν ||x(b)x(a)
g

(
g∣∣

∣
∣x(b)
x(a)

ξ
)

, g ∈ Gx(a), ξ ∈ gx(a).

Proof Consider the curves α(t) = Adν ||x(t)x(a)
g

(
g∣∣∣∣x(t)

x(a)
ξ
)
and β(t) = g∣∣∣∣x(t)

x(a)
Adg(ξ), t ∈ I ,

which satisfyα(a) = β(a) = Adg(ξ) andπg,X ◦α = πg,X ◦β = x . Thanks to the uniqueness
of parallel transport, to show that α = β it is enough to check that α′ = β ′. For each t ∈ I ,
using the definition of g

∣∣∣∣ we have

α′(t) = d

dt

d

dε

∣∣∣∣
ε=0

cν ||x(t)x(a)
g

(
ν
∣∣∣∣x(t)
x(a)

exp(ε ξ)
)

(�)= d

dt

d

dε

∣∣∣∣
ε=0

ν
∣∣∣∣x(t)
x(a)

cg (exp(ε ξ))

(��)= d

dt

d

dε

∣∣∣∣
ε=0

ν
∣∣∣∣x(t)
x(a)

exp
(
(dcg)1x(a)

(ε ξ)
)

= β ′(t),

where (�) is due to ν being a Lie group connection and (��) comes from the fact that
cg : Gx(a) → Gx(a) is a Lie group homomorphism. 
�

We denote by ∇g and ∇g/dt the linear connection and the covariant derivative on πg,X

corresponding to this parallel transport g
∣∣∣∣, respectively. A more practical way of regarding

∇g may be the following. Consider the Lie group bundle connection as a map ν : TG → g.
Then, for any section ξ ∈ �(πg,X ), we have

∇gξ = d

dt

∣∣∣∣
t=0

ν ◦ d exp(tξ).

The next result is the infinitesimal version of Proposition 3.5.

Proposition 3.6 Let g : I → G and ξ : I → g be such that πG,X ◦ g = πg,X ◦ ξ = x. Then
for all t ∈ I we have

∇g (
Adg ◦ ξ

)
(t)

dt
= Adg(t)

(∇gξ(t)

dt

)
+

[(
dRg(t)−1

)
g(t)

(∇νg(t)

dt

)
, Adg(t)(ξ(t))

]

G
.
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Proof Fix t ∈ I and denote x = πG,X ◦ g. Let α : (−ε, ε) → Gx(t) be the curve given by

α(s) = ν
∣
∣
∣
∣x(t)
x(t+s)g(t+s) for each s ∈ (−ε, ε). We have α(0) = g(t) and α′(0) = ∇νg(t)/dt .

Denoting β(s) = α(s) g(t)−1 = Rg(t)−1 (α(s)), s ∈ (−ε, ε), we have that β(0) = 1x(t) and
β ′(0) = (

dRg(t)−1
)
g(t)

(∇νg(t)/dt). Hence,

d

ds

∣
∣
∣
∣
s=0

Adα(s) (ξ(t)) = d

ds

∣
∣
∣
∣
s=0

Adβ(s)
(
Adg(t)(ξ(t))

)

= ad(β ′(0))
(
Adg(t)(ξ(t))

)

=
[
(
dRg(t)−1

)
g(t)

(∇νg(t)

dt

)
, Adg(t)(ξ(t))

]

G
.

Using this, we conclude

∇g (
Adg ◦ ξ

)
(t)

dt
= d

ds

∣
∣
∣
∣
s=0

∇g ∣
∣
∣
∣
x(t)

x(t+s)Adg(t+s)(ξ(t + s))

= d

ds

∣
∣
∣
∣
s=0

Adν ||x(t)x(t+s)g(t+s)

(
∇g ∣

∣
∣
∣
x(t)

x(t+s)ξ(t + s)

)

= d

ds

∣
∣
∣∣
s=0

Adg(t)

(
∇g ∣

∣
∣
∣
x(t)

x(t+s)ξ(t + s)

)
+ d

ds

∣
∣
∣∣
s=0

Adν ||x(t)x(t+s)g(t+s)
(ξ(t))

= Adg(t)

(∇gξ(t)

dt

)
+

[(
dRg(t)−1

)
g(t)

(∇νg(t)

dt

)
, Adg(t)(ξ(t))

]

G
.


�

3.3 Generalized principal connections

Let πY ,X : Y → X be a fiber bundle on which a Lie group bundle πG,X : G → X acts freely
and properly on the right, and denote by � : Y ×X G → Y the fibered action.

Lemma 3.1 For every (y, g) ∈ Y ×X G and ξ, η ∈ gx , x = πG,X (g), we have

(d�)(y,g)

(
ξ∗
y , η

∗
g

)
= (Adg−1 (ξ + η))∗y·g,

where η∗
g = d/dt |t=0 exp(tη)g is the infinitesimal generator of η at g.

Proof It is a straightforward computation using that

Adg−1
(
ηg

)∗
y·g = d

dt

∣∣∣∣
t=0

�y
(
exp (t ηg) g

)
.


�
Ehresmann connections on πY ,Y/G are identified with forms as follows.

Proposition 3.7 There is a bijective correspondence between Ehresmann connections on
πY ,Y/G and 1-forms1 ω ∈ �1(Y , g) such that

ωy(ξ
∗
y ) = ξ, (y, ξ) ∈ Y ×X g.

1 In fact, we are considering forms with values in (πY ,X )∗(g) = Y ×X g but, for the sake of simplicity, we
do not write it. In the same fashion, abusing the notation we suppose that ωy ∈ T ∗

y Y ⊗ gx for each y ∈ Y ,
x = πY ,X (y).
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Furthermore, such forms satisfy

ωy·g
(
(d�g)y(ξ

∗
y )

)
= Adg−1

(
ωy(ξ

∗
y )

)
, (y, g, ξ) ∈ Y ×X G ×X g.

Proof The equivalence between Ehresmann connections on πY ,Y/G and the 1-forms as in the
statement is a consequence of the isomorphism (7).

For the second part, let (y, g, ξ) ∈ Y ×X G ×X g, then:

ωy·g
(
(d�g)y(ξ

∗
y )

)
= ωy·g

(
(Adg−1ξ)∗y·g

)
= Adg−1(ξ) = Adg−1

(
ωy(ξ

∗
y )

)
,

where equation (8) has been taken into account. 
�
Observe thatU v

y = ωy(Uy)
∗
y for eachUy ∈ TyY , y ∈ Y , and, thusUy is horizontal if and

only if ωy(Uy) = 0. We are ready to introduce generalized principal connections.

Definition 3.2 Let ν be an Ehresmann connection on the Lie group bundle πG,X . A general-
ized principal connection on πY ,Y/G associated to ν is an Ehresmann connection H ⊂ TY
on πY ,Y/G satisfying:

[
(d�)(y,g)

(
Uy,Ug

)]v = (d�g)y(U
v
y ) + (dLg−1)g(νg(Ug))

∗
y·g,

for every (y, g) ∈ Y ×X G and (Uy,Ug) ∈ TyY ×Tx X TgG, where x = πY ,X (y).

Thanks to Proposition 3.7, it is easy to check that the following is an equivalent way of
defining a generalized principal connection.

Definition 3.3 Let ν be an Ehresmann connection on the Lie group bundle πG,X . A general-
ized principal connection on πY ,Y/G associated to ν is a form ω ∈ �1(Y , g) satisfying:

(i) (Complementarity) ωy(ξ
∗
y ) = ξ for every (y, ξ) ∈ Y ×X g.

(ii) (Ad-equivariance) For each (y, g) ∈ Y ×X G and (Uy,Ug) ∈ TyY ×Tx X TgG, x =
πY ,X (x), then

ωy·g
(
(d�)(y,g)(Uy,Ug)

) = Adg−1
(
ωy(Uy) + νg(Ug)

)
.

Roughly speaking, generalized principal connections extend the property given in Lemma
3.1 and Proposition 3.7 to non-necessarily vertical vectors Ug with respect to ν.

The next result gives a geometric interpretation of the above Definitions in terms of the
parallel transports ν

∣∣∣∣ and ω
∣∣∣∣, in the same vein as Proposition 3.1.

Proposition 3.8 Let ν : TG → g and ω ∈ �1(Y , g) be Ehresmann connections on πG,X and
πY ,Y/G , respectively. Then ω is a generalized principal connection associated to ν if and
only if for any curve γ : I → Y/G, the corresponding parallel transports satisfy

ω
∣∣∣∣γ (t)

γ (a)
(y · g) =

(
ω
∣∣∣∣γ (t)

γ (a)
y
)

·
(

ν
∣∣∣∣x(t)
x(a)

g
)

, g ∈ Gx(a), y ∈ Yγ (a), t ∈ I , (11)

where x = πY/G,X ◦ γ .

Proof Suppose thatω is a generalized principal connection associated to ν. Let γ : I → Y/G
be a curve, x = πY/G,X ◦ γ , y ∈ Yγ (a) and g ∈ Gx(a). Denote α1(·) = ω

∣∣∣∣γ (·)
γ (a)

y, α2(·) =
ν
∣∣∣∣x(·)
x(a)

g and α = � ◦ (α1, α2). To show that α(·) = ω
∣∣∣∣γ (·)

γ (a)
(y · g) we use the uniqueness of
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the parallel transport. It is clear that πY ,Y/G ◦ α = γ and α(a) = y · g, so we only need to
check that α is horizontal. For each t ∈ I we have

α′(t)v = (d�)(α1(t),α2(t))
(
α′
1(t), α

′
2(t)

)v

= (
d�α2(t)

)
α1(t)

(
α′
1(t)

v
) + (

dLα2(t)−1
)
α2(t)

(
να2(t)

(
α′
2(t)

))∗
α(t) = 0,

since α1 and α2 are horizontal for the corresponding connections.
Conversely, suppose that ω and ν satisfy (11). Let (y, g) ∈ Y ×X G and (Uy,Ug) ∈

TyY ×Tx X Tg . We consider α = (α1, α2) : (−ε, ε) → Y ×X G such that α′(0) =
(α′

1(0), α
′
2(0)) = (Uy,Ug) and we denote γ = πY ,Y/G ◦α1 and x = πY ,X ◦α1 = πG,X ◦α2.

A straightforward consequence of (11) and the definition of covariant derivative is the fol-
lowing:

(� ◦ α)′(0)v = Dω(� ◦ α)

Dt

∣
∣
∣
∣
t=0

= (d�g)y

(
Dωα1

Dt

∣
∣
∣
∣
t=0

)
+ (d�y)g

(
Dνα2

Dt

∣
∣
∣
∣
t=0

)

= (d�g)y

(
U v

y

)
+ (d�y)g

(
U v
g

)
.

Furthermore, note that (d�y)g

(
U v
g

)
= (d�y·g)1x

(
(dLg−1)g

(
U v
g

))
= (dLg−1)g

(
U v
g

)∗
y·g .

Thus, we conclude that ω is a generalized principal connection associated to ν:

(d�)(y,g)
(
Uy,Ug

)v = (� ◦ α)′(0)v = (d�g)y

(
U v

y

)
+ (dLg−1)g

(
U v
g

)∗
y·g .


�
Proposition 3.9 Let ν : TG → g and ω ∈ �1(Y , g) be Ehresmann connections on πG,X and
πY ,Y/G , respectively, and suppose that Y/G = X. Let ω̂ ∈ �(πJ 1Y ,Y ) and ν̂ ∈ �(πJ 1G,G)

be the corresponding jet sections. Then ω is a generalized principal connection associated
to ν if and only if

ω̂(y · g) = ω̂(y) · ν̂(g), (y, g) ∈ Y ×X g, (12)

where the fibered action of πJ 1G,X on πJ 1Y ,X is given by the first jet extension of � (recall
Example 2.1).

Proof Thanks to Proposition 3.8 we only need to show that (12) is equivalent to (11). Let
(y, g) ∈ Y ×X G, x = πY ,X (y) and Ux ∈ Tx X , and pick a curve α : (−ε, ε) → X with
α′(0) = Ux . We define the curves

βy(t) = ω
∣∣∣∣α(t)

α(0)y, βy·g(t) = ω
∣∣∣∣α(t)

α(0)(y · g), βy(t) = ν
∣∣∣∣α(t)

α(0)g,

This way, we have β ′
g(0) = Horν

g (Ux ) = ν̂(g)(Ux ) and β ′
y(0) = Horω

y (Ux ) = ω̂(y)(Ux ),
and analogous for βy·g .

Suppose that (11) is satisfied. Then βy·g = � ◦ (βy, βg). Hence

ω̂(y · g)(Ux ) = β ′
y·g(0)

= (d�)(y,g)

(
β ′
y(0), β

′
g(0)

)

= (d�)(y,g)
(
ω̂(y)(Ux ), ν̂(g)(Ux )

)
.

This equation is valid for every Ux ∈ Tx X , whence ω̂(y · g) = ω̂(y) · ν̂(g).
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Conversely, if (12) is satisfied, then βy·g(0) = y · g = βy(0) · βg(0) = (� ◦ (βy, βg))(0)
and

β ′
y·g(0) = ω̂(y · g)(Ux )

= (
ω̂(y) · ν̂(g)

)
(Ux )

= (d�)(y,g)
(
ω̂(y)(Ux ), ν̂(g)(Ux )

)

= (d�)(y,g)

(
β ′
y(0), β

′
g(0)

)

= (� ◦ (βy, βg))
′(0).

By uniqueness of the parallel transport we conclude that βy·g = � ◦ (βy, βg). 
�
We denote by Horω

y : T[y]G (Y/G) → TyY the horizontal lift given by ω at y ∈ Y . A
different geometric interpretation of generalized principal connections is the following.

Proposition 3.10 Let (y, g) ∈ Y ×X G and (U[y]G ,Ug) ∈ T[y]G (Y/G) ×Tx X TgG, where
x = πY ,X (y). Then

(d�)(y,g)

(
Horω

y (U[y]G ),Ug

)
= Horω

y·g(U[y]G ) + (dLg−1)g(νg(Ug))
∗
y·g.

Proof We just need to prove thatU = (d�)(y,g)

(
Horω

y (U[y]G ),Ug

)
−(dLg−1)g(νg(Ug))

∗
y·g

is horizontal and projects to U[y]G . With respect to the former

U v = (d�)(y,g)

(
Horω

y (U[y]G ),Ug

)v − (dLg−1)g(νg(Ug))
∗
y·g

= (d�g)y

(
Horω

y (U[y]G )v
)

= 0.

For the latter let α = (α1, α2) : (−ε, ε) → Y ×X G be such α′(0) =
(
Horω

y (U[y]G ),Ug

)
.

We then have

(dπY ,Y/G)y·g(U ) = (dπY ,Y/G)y·g
(
(d�)(y,g)

(
Horω

y (U[y]G ),Ug

))

= d(πY ,Y/G ◦ �)(y,g)

(
Horω

y (U[y]G ),Ug

)

= d

dt

∣∣∣∣
t=0

(πY ,Y/G ◦ � ◦ α)(t)

= d

dt

∣∣∣∣
t=0

(πY ,Y/G ◦ α1)(t)

= (dπY ,Y/G)y

(
Horω

y (U[y]G )
)

= U[y]G .


�
Theorem 3.1 (Existence of generalized principal connections) If X is a paracompact smooth
manifold, then there exist an Ehresmann connection ν on πG,X and a generalized principal
connection ω on πY ,Y/G associated to ν.

Proof Let {(Uα, ψα
G) | α ∈ 	} be a trivializing atlas for πG,X , {(Vα = π−1

Y/G,X (Uα), ψα
Y ) |

α ∈ 	} be the induced trivializing atlas for πY ,Y/G , as in (2), and {(Uα, ψα
g ) | α ∈ 	} be

the induced trivializing atlas for πg,X , as in (5). For ĝ ∈ G, we denote by L̂ ĝ : G → G and

R̂ĝ : G → G the left and right multiplication by ĝ, respectively. In the same way, we denote
by Âd the adjoint representation of G.
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Fixed α ∈ 	, we define the local Ehresmann connection να : TG|Uα → VG|Uα on
πG,X |Uα : G|Uα → Uα as follows

(να)g

(
(dψα

G)−1
g

(
Ux ,

(
d L̂ ĝ

)

1

(
η̂
)))

= (dψα
G)−1

g

(
0x ,

(
d L̂ ĝ

)

1

(
η̂
))

, Ux ∈ Tx X , η̂ ∈ g,

where x ∈ Uα , ĝ ∈ G and g = (ψα
G)−1

(
x, ĝ

) ∈ G|Uα . Likewise, we define the local 1-form
ωα ∈ �1

(
Y |Vα , g|Uα

)
as

(ωα)y

(
(dψα

Y )−1
y

(
U[y]G ,

(
d L̂ĥ

)

1

(
ξ̂
)))

= (ψα
g )−1

(
x, ξ̂

)
, U[y]G ∈ T[y]G (Y/G), ξ̂ ∈ g,

where [y]G ∈ Vα , ĥ ∈ G and y = (ψα
Y )−1

(
[y]G, ĥ

)
∈ Y |Vα . We show that να andωα satisfy

both properties of Definition 3.3:

(i) (Complementarity) Let ξ = (ψα
g )−1

(
x, ξ̂

)
∈ g|Uα and y = (ψα

Y )−1
(
[y]G, ĥ

)
∈ Y |Vα .

Using Corollary 2.1 and equation (4) we get

ξ∗
y = (dψα

Y )−1
y

(
0[y]G ,

(
d L̂ĥ

)

1

(
ξ̂
))

. (13)

Thence,

(ωα)y

(
ξ∗
y

)
= (ωα)y

(
(dψα

Y )−1
y

(
0[y]G ,

(
d L̂ĥ

)

1

(
ξ̂
)))

= (ψα
g )−1

(
x, ξ̂

)
= ξ.

(ii) (Ad-equivariance) Let ĥ, ĝ ∈ G and [y]G ∈ Vα , and consider y = (ψα
Y )−1

(
[y]G, ĥ

)

and g = (ψα
G)−1

(
x, ĝ

)
, where x = πY/G,X ([y]G) ∈ Uα . Likewise, let ξ̂ , η̂ ∈ g and

U[y]G ∈ T[y]G (Y/G), and consider

Uy = (dψα
Y )−1

y

(
U[y]G ,

(
d L̂ĥ

)

1

(
ξ̂
))

∈ TyY , Ug = (dψα
G)−1

g

(
Ux ,

(
d L̂ ĝ

)

1

(
η̂
)) ∈ TgG,

where Ux = (dπY/G,X )[y]G
(
U[y]G

) ∈ Tx X . Consider curves γ : (−ε, ε) → Y |Vα

and β : (−ε, ε) → G|Uα such that γ ′(0) = Uy and β ′(0) = Ug . Then we have that
ψα
Y ◦ γ = (γ1, γ2) and ψα

G ◦ β = (β1, β2) for certain curves γ1 : (−ε, ε) → Vα ,
γ2 : (−ε, ε) → G, β1 : (−ε, ε) → Uα and β2 : (−ε, ε) → G such that γ ′

1(0) = U[y]G ,
γ ′
2(0) =

(
d L̂ĥ

)

1

(
ξ̂
)
, β ′

1(0) = Ux and β ′
2(0) =

(
d L̂ ĝ

)

1

(
η̂
)
. Note that we can always

choose the curves satisfying πY/G,X ◦ γ1 = β1. Using these curves, Corollary 2.1 and
Equation (13) it can be seen that

(d�)(y,g)
(
Uy,Ug

) = d

dt

∣∣∣∣
t=0

�(α(t), β(t))

= (dψα
Y )−1

y·g
(
U[y]G ,

(
d L̂ĥĝ

)

1

(
Âd ĝ−1

(
ξ̂
)))

+ (ψα
g )−1 (

x, η̂
)∗
y·g .

This, together with property (i), lead to

(ωα)y·g
(
(d�)y·g(Uy,Ug)

) = (ψα
g )−1

(
x, Âd ĝ−1

(
ξ̂
))

+ (ψα
g )−1

(
x, η̂

)

= Adg−1

(
(ψα

g )−1
(
x, ξ̂

))
+ (dψα

G)−1
1x

(
0x , η̂

)

= Adg−1
(
(ωα)y(Uy)

) + Adg−1

((
dRg−1

)
g

(
(να)g(Ug)

))

= Adg−1
(
(ωα)y(Uy) + (να)g(Ug)

)
,

where we have used (5) and the fact that (dψα
G)−1

1x

(
0x , η̂

) = (dψα
G |Gx )

−1
1x

(x, η̂).
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Therefore,ωα is a generalized principal connection onπY ,Y/G |Vα : Y |Vα → Vα associated
to να . At last, we take a smooth partition of unity {θα | α ∈ 	} on X subordinated to
{Uα | α ∈ 	}. It is easy to check that {�α = θα ◦ πY/G,X | α ∈ 	} is a smooth partition
of unity on Y/G subordinated to {Vα | α ∈ 	}. Now set ω = ∑

α∈	(�α ◦ πY ,Y/G) ωα

and ν = ∑
α∈	(θα ◦ πG,X ) να . They are a well defined 1-form ω ∈ �1(Y , g) and a well

defined Ehresmann connection ν : TG → VG. It is straightforward that ν and ω satisfy both
properties of Definition 3.3. Thus, ω is a generalized principal connection associated to ν. 
�

A 1-form α ∈ �1(Y , g) is said to be tensorial of the adjoint type if it is horizontal, i.e.,
αy(Uy) = 0 for each Uy ∈ VyY = ker(dπY ,Y/G)y , y ∈ Y , and Ad-equivariant, i.e.,

αy·g
(
(d�)(y,g)(Uy,Ug)

) = Adg−1
(
αy(Uy)

)
,

for each (Uy,Ug) ∈ TyY ×Tx X TgG, (y, g) ∈ Y ×X G, x = πY ,X (y). The family of tensorial

1-forms of the adjoint type is denoted by �
1
(Y , g). These forms can be reduced to Y/G in

the sense that we have a bijection

�
1
(Y , g) −→ �1(Y/G, g̃)
α �−→ α̃,

given by α̃[y]G (U[y]G ) = [y, αy(Uy)]G , where Uy ∈ TyY projects to U[y]G ∈ T[y]G (Y/G),
y ∈ Y . By an abuse of notation,we identifyα ≡ α̃. This construction can be straightforwardly
generalized to p-forms.

Proposition 3.11 Let ν : TG → g be an Ehresmann connection on πG,X . The family of
generalized principal connections on πY ,Y/G associated to ν is an affine space modelled on

�
1
(Y , g).

Proof On the one hand, if ω1, ω2 ∈ �1(Y , g) are generalized principal connections on

πY ,Y/G associated to ν, then ω1 −ω2 ∈ �
1
(Y , g). The Ad-equivariance comes from the Ad-

equivariance of ω1 and ω2 and the fact that the adjoint map is linear. For the horizontality,
let y ∈ Y and Vy ∈ VyY = ker (dπY ,Y/G)y , we have

(ω1 − ω2)y(Vy)
∗
y = (ω1)y(Vy)

∗
y − (ω2)y(Vy)

∗
y = Vy − Vy = 0.

As the map (7) is an isomorphism, we deduce that (ω1 − ω2)y(Vy) = 0.
On the other hand, given a generalized principal connection ω ∈ �1(Y , g) associated to ν

and a 1-form ω ∈ �
1
(Y , g), a straightforward computation shows that ω+ω is a generalized

principal connection, since ω vanish on vertical vectors. 
�
Now we give another interpretation of a generalized principal connection as a connection

on πY×XG,X equivariant under the fibered action.

Proposition 3.12 Let ω ∈ �1(Y , g) be a generalized principal connection on πY ,Y/G asso-
ciated to an Ehresmann connection ν : TG → VG on πG,X . Then the map

� : T (Y ×X G) −→ V (Y ×X G)

(Uy,Ug) �−→
(
ωy(Uy)

∗
y, νg(Ug)

)
,

where V (Y ×X G) = ker
(
πY×XG,X

)
∗, is an Ehresmann connection on πY×XG,X equivariant

under the map 8 : Y ×X G → Y ×X G defined as 8(y, g) = (y · g, g), i.e.,
(d8)(y,g)

(
�(y,g)

(
Uy,Ug

)) = �8(y,g)
(
(d8)y,g(Uy,Ug)

)
,

for each (Uy,Ug) ∈ TyY ×Tx X TgG, (y, g) ∈ Y ×X G.
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Proof To begin with, observe that � is well defined, i.e., �(y,g)(Uy,Ug) ∈ V(y,g)(Y ×X G)

for every (Uy,Ug) ∈ TyY ×Tx X TgG, (y, g) ∈ Y ×X G. This is a straightforward con-
sequence of equality V(y,g)(Y ×X G) = VyY × VgG, where VyY = ker(πY ,X )∗, and the
fact that infinitesimal generators are πY ,X -vertical. Likewise, it is clear that � is a verti-
cal vector bundle morphism over Y ×X G, since ωy , νg and the infinitesimal generator are
linear maps. To conclude, let us check the 8-equivariance. Note that (d8)(y,g)

(
Uy,Ug

) =(
(d�)(y,g)(Uy,Ug),Ug

)
. Hence,

(d8)(y,g)
(
�(y,g)

(
Uy,Ug

)) = (d8)(y,g)
(
ωy(Uy)

∗
y, νg(Ug)

)

=
(
(d�)(y,g)

(
ωy(Uy)

∗
y, νg(Ug)

)
, νg(Ug)

)

=
(
Adg−1

(
ωy(Uy) + νg(Ug)

)∗
�(y,g) , νg(Ug)

)

=
(
ω�(y,g)

(
(d�)(y,g)(Uy,Ug)

)∗
�(y,g) , νg(Ug)

)

= �(�(y,g),g)
(
(d�)(y,g)

(
Uy,Ug

)
,Ug

)

= �8(y,g)
(
(d8)(y,g)

(
Uy,Ug

))
.


�

So far, we have considered generalized principal connections associated to arbitrary Ehres-
mann connections on G → X . We now prove that this Ehresmann connections must be a Lie
group bundle connection, that is, they must respect the algebraic structure of πG,X .

Proposition 3.13 Let ω ∈ �1(Y , g) be a generalized principal connection on πY ,Y/G asso-
ciated to an Ehresmann connection ν : TG → g on πG,X . Then ν is a Lie group bundle
connection.

Proof Let γ : I → Y/G projecting onto x : I → X . Thanks to (11) for each y ∈ Yγ (a) and
g, h ∈ Gx(a) we have

(
ω
∣∣∣∣γ (b)

γ (a)
y
)

·
(

ν
∣∣∣∣x(b)
x(a)

g
) (

ν
∣∣∣∣x(b)
x(a)

h
)

=
(

ω
∣∣∣∣γ (b)

γ (a)
(y · g)

)
·
(

ν
∣∣∣∣x(b)
x(a)

h
)

= ω
∣∣∣∣γ (b)

γ (a)
(y · gh)

=
(

ω
∣∣∣∣γ (b)

γ (a)
y
)

·
(

ν
∣∣∣∣x(b)
x(a)

(gh)
)

.

Since the action is free, we conclude that property (9) holds.
On the other hand, applying (11) with g = 1x(a) and using again the fact that the action

is free, we get

ν
∣∣∣∣x(t)
x(a)

1x(a) = 1x(b).

This gives that ker ν1x = (d1)x (Tx X) for each x ∈ X and we conclude thanks to Propo-
sition 3.1. Indeed, let Ux ∈ ker ν1x = H1x and denote ux = (dπG,X )1x (Ux ) ∈ Tx X . Let
x : (−ε, ε) → X be such that x ′(0) = ux . Then we have that

Ux = d

dt

∣∣∣∣
t=0

ν
∣∣∣∣x(t)
x(0)1x = d

dt

∣∣∣∣
t=0

1x(t) = (d1)x (ux ).

Therefore, ker ν1x ⊂ (d1)x (Tx X). The other inclusion is due to the fact that both are vector
spaces of the same dimension. 
�

123



Geometriae Dedicata (2023) 217 :32 Page 19 of 26 32

3.4 Curvature

The cuvature ω as an Ehresmann connection (see, for example [14, §9.4]) is the VY -valued
2-form � ∈ �2(Y , VY ) defined as

�(U1,U2) = − [
U1 − ω(U1)

∗,U2 − ω(U2)
∗] , U1,U2 ∈ X(Y ).

This is equivalent, by the identification (7), to the g-valued 2-form � ∈ �2(Y , g)

�(U1,U2) = −ω
([
U1 − ω(U1)

∗,U2 − ω(U2)
∗]) ,

which will be denoted the same.
The linear connection ∇g induced on πg,X by ν enables us to express the curvature as

follows.

Proposition 3.14 Let dg be the exterior covariant derivative2 associated to ∇g. Then3

�(U1,U2) = dg ω
(
Uh
1 ,Uh

2

)
, U1,U2 ∈ X(Y ).

As in the case of (standard) principal connections, it is possible to regard the curvature as
a 2-form on the base space Y/G with values in g̃.

Definition 3.4 The reduced curvature of ω is the 2-form �̃ ∈ �2
(
Y/G, g̃

)
taking values in

the adjoint bundle given by

�̃[y]G (U1,U2) =
[
y,�y

(
Horω

y (U1), Horω
y (U2)

)]

G

for each [y]G ∈ Y/G andU1,U2 ∈ T[y]G (Y/G), where y ∈ Y is such that πY ,Y/G(y) = [y]G .

The reduced curvature is well-defined, i.e., it does not depend on the choice of y ∈ Y .
Indeed, let g ∈ Gx , where x = πY ,X (y), ui = (dπY/G,X )[y]G (Ui ) ∈ Tx X for i = 1, 2 and
γ ∈ �(πG,X ) be such that γ (x) = g and νγ (x) ◦ (dγ )x = 0. Proposition 3.10 gives

Horω
y·g(Ui ) = (d�)(y,g)

(
Horω

y (Ui ), (dγ )x (ui )
)

, i = 1, 2.

2 The exterior covariant derivative of a linear connection ∇E on a vector bundle πE,X is an operator in the
family of E-valued forms on X , dE : �•(X , E) −→ �•+1(X , E). For a 1-form α ∈ �1(X , E) it is given by

dEα(U1,U2) = ∇E
U1

(α(U2)) − ∇E
U2

(α(U1)) − α([U1,U2]), U1,U2 ∈ X(X).

3 The generalized connectionω takes values on the vector bundleπY×Xg,Y , which is the pull-back ofπg,X by

πY ,X . Hence, we also need to pull-back the linear connection ∇g to compute the exterior covariant derivative

of ω. Abusing the notation, we denote the pull-back connection by the same symbol: π∗
Y ,X

(
∇g

)
≡ ∇g.
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Hence, we have
[
y · g, �y·g

(
Horω

y·g(U1), Horω
y·g(U2)

)]

G
=

[
y · g,−ωy·g

([
Horω

y·g(U1), Horω
y·g(U2)

])]

G
=

[
y · g,−ωy·g

([
(d�)(y,g)

(
Horω

y (U1), (dγ )x (u1)
)

, (d�)(y,g)

(
Horω

y (U2), (dγ )x (u2)
)])]

G
(�)=

[
y · g,−ωy·g

(
(d�)(y,g)

([
Horω

y (U1), Horω
y (U2)

]
, [(dγ )x (u1), (dγ )x (u2)]

))]

G
=

[
y · g,−ωy·g

(
(d�)(y,g)

([
Horω

y (U1), Horω
y (U2)

]
, (dγ )x ([u1, u2])

))]

G
=

[
y · g,−Adg−1

(
ωy

([
Horω

y (U1), Horω
y (U2)

]))]

G
=

[
y,−ωy

([
Horω

y (U1), Horω
y (U2)

])]

G
=

[
y, �y

(
Horω

y (U1), Horω
y (U2)

)]

G
,

(14)

where we have used that
[
(dγ )x (u1), (dγ )x (u2)

] = (dγ )x ([u1, u2]).

4 Examples

4.1 Standard principal bundles and connections

Generalized principal connections reduce to usual principal connections on (standard) prin-
cipal bundles (for example, [13, Ch.II], [14, Ch.III]). Let πP,X be a principal G-bundle and
denote by R : P × G → P the corresponding right action. We define a fibered action of the
trivial Lie group bundle G = X × G on πP,X as

� : P ×X G −→ P
(y, (x, ĝ)) �−→ Rĝ(y) = y · ĝ.

Note that P/G � X , so we can regard πP,X as a generalized principal bundle with respect
to this fibered action.

Let ν0 be the trivial connection on πG,X , that is, the one given by

(ν0)(x,ĝ)
(
Ux ,Uĝ

) = (0x ,Uĝ), (Ux ,Uĝ) ∈ T(x,ĝ)G = Tx X ⊕ TĝG.

In addition, note that the Lie algebra bundle of πG,X is g = X × g, where g is the Lie algebra
of G.

Proposition 4.1 Let ω̂ ∈ �1(P, g) and ω ∈ �1(P, g) be such that

ωy(Uy) = (x, ω̂y(Uy)), y ∈ P, Uy ∈ Ty P, x = πP,X (y).

Then ω is a generalized principal connection associated to ν0 if and only if ω̂ is a (standard)
principal connection.

Proof Let (y, ξ) ∈ P ×X g and denote ξ = (x, ξ̂ ), x = πP,X (y), for some ξ̂ ∈ g. Observe
that

ξ∗
y = d

dt

∣∣∣∣
t=0

y · exp(t ξ) = d

dt

∣∣∣∣
t=0

y ·
(
x, exp(t ξ̂ )

)
= d

dt

∣∣∣∣
t=0

y · exp
(
t ξ̂

)
= ξ̂ �

y ,

where ξ̂ �
y is the infinitesimal generator of ξ̂ ∈ g at y in the sense of principal bundles. Hence,

ωy(ξ
∗
y ) = ξ ⇐⇒

(
x, ω̂y

(
ξ̂ �
y

))
=

(
x, ξ̂

)
⇐⇒ ω̂y

(
ξ̂ �
y

)
= ξ̂ .

Subsequently, we only need to check Ad-equivariance to conclude.
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(⇒) Suppose thatω is a generalized principal connection onπP,X associated to ν0. Let y ∈ P ,
Uy ∈ Ty P and ĝ ∈ G, and denote g = (x, ĝ), x = πP,X (y). Pick α : (−ε, ε) → P such
that α(0) = y and α′(0) = Uy , we have

(dRĝ)y(Uy) = d

dt

∣
∣
∣
∣
t=0

Rĝ (α(t)) = d

dt

∣
∣
∣
∣
t=0

�(α(t), β(t)) = (d�)(α(0),β(0))
(
α′(0), β ′(0)

)
,

whereβ : (−ε, ε) → G is given byβ(t) = (
(πP,X ◦ α)(t), ĝ

)
. Note thatβ(0) = (x, ĝ) =

g and β ′(0) = (Ux , 0ĝ) for Ux = (dπP,X )y(Uy) ∈ Tx X . As a result,

(dRĝ)y(Uy) = (d�)(y,g)
(
Uy,Ug

)
, Ug = (Ux , 0ĝ).

Now, property (i i) of Definition 3.3 ensures that ω̂ is a principal connection on πP,X :

(x, ω̂y·ĝ
(
(dRĝ)y(Uy)

) = ωy·g
(
(d�)(y,g)

(
Uy,Ug

))

= Adg−1
(
ωy(Uy) + (ν0)g(Ux , 0ĝ)

)

= Adg−1
(
x, ω̂y(Uy)

)

= (
x, Adĝ−1

(
ω̂y(Uy)

))
.

(⇐) Suppose that ω̂ is a principal connection on πP,X . Let (y, g) ∈ P ×X G with g = (x, ĝ),
and (Uy,Ug) ∈ Ty P ×Tx X TgG with Ug = (Ux ,Uĝ) ∈ Tx X ⊕ TĝG. Observe that

(d�)(y,g)
(
Uy,Ug

) = (dR)(y,ĝ)
(
Uy,Uĝ

)

= (dRĝ)y(Uy) + (dφy)ĝ(Uĝ)

= (dRĝ)y(Uy) + (dφy·ĝ)1
(
(dLĝ−1)ĝ(Uĝ)

)

= (dRĝ)y(Uy) + (dLĝ−1)ĝ(Uĝ)
�
y·ĝ,

where φy : G → P is given by φy(ĝ) = y · ĝ and Lĝ : G → G is the left multiplication
by ĝ. Using this we conclude

ωy·g
(
(d�)(y,g)(Uy,Ug)

) =
(
x, ω̂y·ĝ

(
(dRĝ)y(Uy) + (dLĝ−1)ĝ(Uĝ)

�
y·ĝ

))

= (
x, Adĝ−1

(
ω̂y(Uy)

) + (dLĝ−1)ĝ(Uĝ)
)

= Adg−1
(
ωy(Uy)

) + (dLg−1)g
(
(ν0)g(Ug)

)

= Adg−1
(
ωy(Uy) + (ν0)g(Ug)

)
.


�

4.2 Affine bundles and connections

Generalized principal connections on an affine bundle are just affine connections (see [13],
[20]) associated to linear connections on themodelling vector bundle. A vector bundleπE,X is

an abelian Lie group bundle with the additive structure. A Lie group connection ν : T E → E
is just a linear connection, since it respects this additive structure. If we consider linear bundle
coordinates (xμ, vA) corresponding to a basis of local sections {eA : 1 ≤ A ≤ m} of πE,X ,
then we may write

ν(xμ, vA) = νA
μ,B(xμ) vB dxμ ⊗ eA + dvA ⊗ eA,

for some (local) functions νB
μ,A ∈ C∞(X), 1 ≤ μ ≤ n, 1 ≤ A, B ≤ m.

Now consider an affine bundle πE,X modelled on πE,X . We have the following fibered
action

E ×X E −→ E
(y, v) �−→ y + v.
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This action is clearly free and proper, and it satisfies that E/E � X , so we can regard πE,X

as a generalized principal bundle. In the following result we see that generalized principal
connections for this action are just affine connections.

Proposition 4.2 Letω ∈ �1
(
E, E

)
and ν be a linear connection onπE,X . Thenω is an affine

connection on πE,X with ν as underlying linear connection if and only if ω is a generalized
principal connection on πE,X associated to ν.

Proof Let (xμ, yA) be affine bundle coordinates for πE,X associated to (xμ, vA). First, we
suppose that ω is an affine connection with ν as underlying linear connection. The local
expression of ω is

ω(xμ, yA) =
(
νA
μ,B(xμ)yB + �A

μ(xμ)
)
dxμ ⊗ eA + dyA ⊗ eA

for some (local) functions �A
μ ∈ C∞(X), 1 ≤ μ ≤ n, 1 ≤ A ≤ m. It is straightforward

to check the the equivariance condition from Definition 3.3, that for this case reads ωy+v =
ωy + νv for each (y, v) ∈ E ×X E (observe that the adjoint representation is trivial, since
the group is abelian).

Conversely, suppose that ω is a generalized principal connection associated to ν. Locally,
ω will be given by

ω(xμ, yA) = ωA
μ(xμ, yA) dxμ ⊗ eA + dyA ⊗ eA

for some (local) functions ωA
μ ∈ C∞(E), 1 ≤ μ ≤ n, 1 ≤ A ≤ m. It must satisfy

the equivariance condition, that is, ω(xμ, yA + vA) = ω(xμ, yA) + ν(xμ, vA) for every
(xμ, yA, vA) ∈ E ×X E . This gives

ωA
μ(xμ, yA + vA) = ωA

μ(xμ, yA) + νA
μ,B(xμ)vB , 1 ≤ μ ≤ n, 1 ≤ A ≤ m.

Thence, ωA
μ(xμ, yA) = �A

μ(xμ) + νA
μ,B(xμ)yB for 1 ≤ μ ≤ n and 1 ≤ A ≤ m, where

�A
μ(xμ) = ωA

μ(xμ, 0). This is the local expressionof an affine connectionwith ν as underlying
linear connection. 
�

4.3 Gauge transformations

Let πP,X : P → X be a (standard) principal bundle with structure group G. Recall that
gauge transformations on πP,X are in a bijective correspondence with sections of the Lie
group bundle

Ad(P) = (P × G)/G −→ X ,

where the right action of G on P × G is given by (p, g) · h = (p · h, h−1gh) for each
p ∈ P and g, h ∈ G. This provides a fibered action of πAd(P),X on πP,X . The adjoint bundle
Ad(P) is a main instance of Lie group bundle and, in particular, the question of when an
arbitrary Lie group bundle G → X is the adjoint bundle of a (standard) principal bundle has
interesting topological consequences (for example, see [17]).

Principal connections on πP,X are in a bijective correspondence with sections of the
bundle of connections,

C(P) = (J 1P)/G −→ X ,

which is an affine bundle modelled on T ∗X ⊗ ad(P) → X , of covectors taking values in
the adjoint bundle ad(P) = (P × g)/G, where g is the Lie algebra of G and the action of
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G on g is given by the adjoint representation. The group of gauge transformations acts on
connections. This action is fiberwisely expressed as

J 1Ad(P) ×X C(P) −→ C(P)

( j1x γ, [ j1x s]) �→ [ j1x (γ ◦ s)].
The 1-jet lift of this action is

J 1
(
J 1Ad(P)

) ×X J 1C(P) −→ J 1C(P).

This is again a (left) fibered action, but it is not free. Nevertheless, we may consider the
following Lie group subbundle of J 1

(
J 1Ad(P)

)
,

J 20 Ad(P) = {
j2x γ ∈ J 2Ad(P) | γ (x) = 1Ad(P)x

} ⊂ J 2Ad(P) ⊂ J 1
(
J 1Ad(P)

)
.

The restriction of the action to this Lie group subbundle is free and proper, making

J 1C(P) −→ J 1C(P)/J 20 Ad(P)

a generalized principal bundle that is not a (standard) principal bundle. Furthermore, the
quotient is isomorphic to the curvature bundle of πP,X ,

J 1C(P)/J 20 Ad(P) −̃→ ∧2 T ∗X ⊗ ad(P)[
j1x A

]
J 20 Ad(P)

�−→ (FA)x ,

where we denote by FA ∈ �2(X , ad(P)) the reduced curvature corresponding to a principal
connection A ∈ �1(P, g). This is (the main part of) the geometric statement of the well-
known Utiyama theorem (for example, see [12, §5]).

4.3.1 An example of generalized principal connection

Within the framework of gauge field theories analyzed above, we now present a simple
example of a generalized principal connection. Even though one initially would like to have
such connection on C(P) = (J 1P)/G, the action of J 1Ad(P) on C(P) is not free. To
remedy this, we may consider the action on J 1P instead,

� : J 1Ad(P) ×X J 1P −→ J 1P
( j1x ϕ, j1x s) �−→ j1x (ϕ ◦ s).

that is free and and proper. Actually, this construction is conceptually close to the case of
affine connections (see §4.2 above), since J 1Ad(P) acts transitively on J 1P .

For the sake of brevity, in the following, we work in a trivializing chart of πP,X , i.e., we
pick U ⊂ X with U � R

n , so that we can write P|U = U × G, Ad(P)|U = U × G and
ad(P)|U = U × g. For the sake of simplicity, we write U = X . Furthermore, consider the
right trivialization TG � G × g, which is given by Ug �→ (

g, (dRg−1)g(Ug)
)
. Using this,

we have

J 1P = J 1Ad(P) = G � (T ∗X ⊗ g), J 1ad(P) = g ⊕ (T ∗X ⊗ g),

where the (fiberwise) semidirect product � is given by the adjoint representation, that is,

(g, ξx ) · (
g′, ξ ′

x

) = (
gg′, ξx + Adg ◦ ξ ′

x

)
, (g, ξx ) ,

(
g′, ξ ′

x

) ∈ J 1x Ad(P) = G � (T ∗
x X ⊗ g).

The same expression holds for the trivialized (left) fibered action, i.e.,

(g, ξx ) · (h, Ax ) = (
gh, ξx + Adg ◦ Ax

)
, (g, ξx ) ∈ J 1x Ad(P) = J 1x P 
 (h, Ax ).(15)
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Remark 4.1 It is easy to check that

(g, ξx )
−1 = (

g−1,−Adg−1 ◦ ξx
)
, (g, ξx ) ∈ J 1Ad(P).

In addition, the adjoint representation of J 1Ad(P) is given by

Ad(g,ξx )(η, φx ) = (
Adg(η), Adg ◦ φx − [Adg(η), ξx ]

)

for every (g, ξx ) ∈ J 1Ad(P) and (η, φx ) ∈ J 1ad(P), where [·, ·] is the Lie bracket of g.
On the other hand, the trivialization P = X × G also allows us to identify

J 1(J 1P) = J 1(J 1Ad(P)) = G �
(
(T ∗X ⊗ g) ⊕ (T ∗X ⊗ g) ⊕ (T ∗X ⊗ T ∗X ⊗ g)

)
.

Moreover, the jet extension of the action (15) is given by

(g, ξx , ηx , φx ) · (h, Ax , χx , αx )

= (
gh, Adg ◦ Ax + ξx ; Adg ◦ χx + ηx , Adg ◦ αx + φx + [ηx , Adg ◦ Ax ]

)
(16)

for each (g, ξx , ηx , φx ) ∈ J 1(J 1Ad(P)) and (h, Ax , χx , αx ) ∈ J 1(J 1P).

Lemma 4.1 The jet section ν̂ ∈ �
(
πJ 1(J 1Ad(P)),J 1Ad(P)

)
defined as

ν̂ (g, ξx ) = (g, ξx , 0x , 0x ) , (g, ξx ) ∈ J 1Ad(P),

is a Lie group bundle connection on πJ 1Ad(P),X .

Proof It is clear that (ν̂ ◦ 1)(x) = ν̂(1, 0x ) = (1, 0x , 0x , 0x ) = (d1)x for each x ∈ X .
Besides, we have

ν̂
(
(g, ξx ) · (

g′, ξ ′
x

)) = ν̂
(
gg′, ξx + Adg ◦ ξ ′

x

)

= (
gg′, ξx + Adg ◦ ξ ′

x , 0x , 0x
)

= (g, ξx , 0x , 0x ) · (
g′, ξ ′

x , 0x , 0x
)

= ν̂ (g, ξx ) · ν̂
(
g′, ξ ′

x

)

and we conclude by Proposition 3.2. 
�
Observe that the Lie algebra bundle of J 1Ad(P) is J 1ad(P). Theorem 3.1 ensures that

there exists a generalized principal connection ω ∈ �1(J 1P, J 1ad(P)) associated to ν.

Proposition 4.3 An Ehresmann connection ω ∈ �1(J 1P, J 1ad(P)) with corresponding jet
section ω̂ ∈ �(πJ 1(J 1P),J 1P ) is a generalized principal connection on πJ 1P,X associated to
ν if and only if

ω̂(h, Ax ) = (h, Ax , Adh ◦ f (x), Adh ◦ g(x)) , (h, Ax ) ∈ J 1P,

for some sections f ∈ �(πT ∗X⊗g,X ) and g ∈ �(πT ∗X⊗T ∗X⊗g,X ).

Proof Observe that we may write

ω̂(h, Ax ) = (h, Ax ,�(h, Ax ), �̃ (h, Ax )) , (h, Ax ) ∈ J 1P,

for some � : J 1P → T ∗X ⊗ g and �̃ : J 1P → T ∗X ⊗ T ∗X ⊗ g. By choosing (h, Ax ) =
(1, 0x ) we get

ω̂ ((g, ξx ) · (1, 0x )) = ω̂ (g, ξx ) = (g, ξx ,�(g, ξx ), �̃ (g, ξx )) .
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Likewise, from (16) we have

ν̂(g, ξx ) · ω̂(1, 0x ) = (g, ξx , 0x , 0x ) · (1, 0x ,�(1, 0x ), �̃ (1, 0x ))
= (

g, ξx , Adg ◦ �(1, 0x ), Adg ◦ �̃ (1, 0x )
)
.

Proposition 3.9 ensures that ω is a generalized principal connection on πJ 1P,X associated to
ν if and only if

�(g, ξx ) = Adg ◦ �(1, 0x ), �̃ (g, ξx ) = Adg ◦ �̃ (1, 0x ),

for each (g, ξx ) ∈ J 1P . By denoting f (x) = �(1, 0x ) and g(x) = �̃ (1, 0x ) for each x ∈ X
we conclude. 
�
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