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INTERCONNECTED LAGRANGE-DIRAC SYSTEMS WITH NONSTANDARD
INTERACTION STRUCTURE

ALVARO RODRIGUEZ ABELLA

Instituto de Ciencias Matemdticas (CSIC-UAM-UCSM-UCM), Calle Nicolds Cabrera, 13-15,
Madrid, 28049, Madrid, Spain.

ABSTRACT. The Lagrange—Dirac interconnection theory has been developed for primitive sub-
systems coupled by a standard interaction Dirac structure, i.e., a structure of the form D;,; =
Yint ® Xins, where Xin: ¢ T(T7Q) is a regular distribution, X5,, ¢ T*(7T"Q) is its annihilator
and @ is the configuration manifold of the theory. In this work, we extend this theory to allow
for parameter-dependent subsystems coupled by nonstandard interaction Dirac structures. This
is done, first, by using the Dirac tensor product and, then, by using interaction forces. Both ap-
proaches are shown to be equivalent, and also equivalent to a variational principle. After that,
we demonstrate the relevance of this generalization by investigating three applications. Firstly,
an electromechanical system is modelled; namely, a piston driven by an ideal DC motor through
a scotch-yoke mechanism. Secondly, we relate the interconnection theory to the Euler—Poincaré—
Suslov reduction. More specifically, we show that the reduced system may be regarded as an
interconnected Lagrange—Dirac system with parameters. The nonholonomic Euler top is presented
as a particular instance of this situation. Lastly, control interconnected systems are defined and a
control for a planar rigid body with wheels is designed.

control theory; Dirac structure; implicit Lagrangian system; interconnection; nonholonomic me-
chanics; reduction by symmetries.

1. INTRODUCTION

The use of Dirac structures [I] in geometric mechanics provides a unifying framework for treating
degenerate systems with nonholonomic constraints both from the Lagrangian and the Hamiltonian
points of view [2} B]. In the same way, Dirac mechanics allows for interconnecting such systems
through ports [446]. This is essential to model complex multi-physical systems, such as electric
circuits or chemical reactions. More recently, the thermodynamics of non-simple systems [7] and
nonequilibrium thermodynamics [§] has also been studied by means of interconnection of Dirac
systems. On the other hand, the well-known theory of reduction by symmetries in Lagrangian [9]
and Hamiltonian mechanics [I0] has been extended to Dirac mechanics [IT 12]. Nevertheless, the
interplay between interconnection and reduction has not been explored yet (see section [5)).

The aim of this work is to extend the interconnection theory for Lagrange—Dirac systems devel-
oped in [6] to systems with parameters and external forces. Furthermore, we consider nonstandard
Dirac structures to couple the primitive systems. Any Dirac structure, Djs, on a smooth manifold,
M, is characterized by a distribution, Ay; ¢ T'M, and a skew-symmetric bilinear form, A ,,, on Apr
(see Propositionbelow). We say that D,y is standard if Qa,, = 0, in which case Dy = Ay @ A,
where A}, c T" M is the annihilator of Ays. Otherwise, D)y is said to be nonstandard. The use of
nonstandard interaction structures has not been developed in the previous literature on interconnec-
tion of Lagrange—Dirac systems. This generalization is significant, since there are physical systems
that are coupled through this type of interaction structures, such as electromechanical systems. We
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illustrate this by modelling a piston driven by an ideal DC motor through a scotch-yoke mechanism.
On the other hand, in the context of reduction of (possibly nonholonomic) Lagrange-Dirac systems
on Lie groups [II], we show that the reduced equations may be regarded as the equations of an
interconnected system, where the (nonstandard) interaction structure is defined by the the adjoint
representation of the corresponding Lie algebra. To conclude, control interconnected systems are
defined by means of a control map that modifies the dynamics of the original system, and a control
for a planar rigid body with wheels is designed.

The paper is structured as follows. In section [2] we briefly recall the geometric tools needed in the
forthcoming development, namely: the notion of Dirac structure on a smooth manifold, the tensor
product of Dirac structures and Lagrange-Dirac mechanics (including the parameter-dependent
case). Section |3| presents the main results of the work. More specifically, we couple a family of
Lagrange—Dirac systems with parameters using a nonstandard interaction Dirac structure that may
be parameter-dependent too. The interconnection may be regarded from two viewpoints: by means
of the Dirac tensor product and by means of the interaction forces that each system exerts on the
others. After presenting both approaches, we show that they are equivalent, and also equivalent
to the Lagrange—D’Alembert—Pontryagin variational principle. Next, we present three applications
of this theory in section [d Firstly, we study a piston driven by an ideal DC motor through a
scotch-yoke mechanism. This provides an example of several primitive subsystems with parameters
coupled through a nonstandard interconnection structure. Secondly, we recall the Euler—Poincaré—
Suslov reduction theory and we reinterpret the reduced system as an interconnected Lagrange-Dirac
system, where the interaction Dirac structure is defined by the adjoint representation of the Lie
algebra. This situation is illustrated with the Euler top subject to a nonholonomic constraint.
Lastly, we define control interconnected Lagrange—Dirac systems and we design a control for a
planar rigid body with wheels. To conclude, the main contributions of the paper are summarized
in section [5, and some future research directions are proposed.

Throughout the work, the space of parameters, .S, includes every possible value for the constants
of the system. Since the parameters are fixed before computing the dynamical equations, S may be
a general set, although in some cases it may have additional structure. For instance, in the context
of reduction with advected parameters [I3} 14] (see also section , S is required to be a vector
space and the parameters become dynamical variables after reduction.

Henceforth, we work with finite dimensional smooth manifolds, and every map is assumed to be
smooth unless otherwise stated. Since S is not a smooth manifold in general, any map depending
on the parameters is assumed to be smooth after fixing the parameter. Moreover, the tangent and
cotangent bundles of a smooth manifold, M, are denoted by mprpr : TM — M and 7wpspr : T M — M,
respectively. Given a vector space V', we denote by V* its dual space and by (-, -) the corresponding
dual pairing. At last, the family of sections of a vector bundle, 7wy : U — M, is denoted by I'(7y).

2. PRELIMINARIES

Let us briefly recall some fundamental notions about Dirac structures on manifolds and their use
to describe implicit Lagrangian systems. See [2; [6] for an extended development of these concepts.
Here and throughout the work, the constraint distributions considered do not need to be integrable.
In other words, Dirac mechanics is valid for both holonomic and nonholonomic systems. In addition,
every Lagrangian is possibly degenerate although not explicitly stated.

2.1. Dirac structures on manifolds.

Definition 2.1. A Dirac structure on a smooth manifold M is a vector subbundle Dy; c TMeT* M
such that

(a1,v2) + (ag,v1) =0, (v1,01), (v2,2) € Dps(z), x € M.



Furthermore, Dys is said to be integrable if
(Lo a2,v3) + (Lyya3,v1) + (Lyyar,v2) =0
for each (vi, ;) €'(mp,,), 1 <i <3, where £ denotes the Lie derivative.

The family of all Dirac structures on M is denoted by Dir (M). The integrability condition is
the Dirac analogue of the closure condition for presymplectic structures or the Jacobi identity for
Poisson brackets. In the following, the Dirac structures utilized are not assumed to be integrable,
since this condition is too restrictive (cf. [6; [15]).

Given another smooth manifold NV, a Dirac structure Dy € Dir (N) and a smooth map f: M —
N, the pull-back of Dy by f is defined as

F Dy ={(v2,00) e TM @ T* M |

Elﬂf(x) € T;(x)N such that Qg = (df);(ﬁf(z)), ((df)x(vw),ﬁf(x)) € DN} € Dir (M)

Let Ay ¢ TM be a regular distribution on M and Qp; € Q*(M) be a 2-form on M. Then the
Dirac structure on M defined by Ajs and Qjy is the following Dirac structure,

D ={(ve,00) e TM @ T*M | vy € Apr, ap = Uy (v2) € Ay},

where A3, ¢ T*M denotes the annihilator of Ay and QY : TM — T*M is given by (Q;(vs), wg) =
Qpr(vg, wy) for each vy, w, € T,M, x € M. Reciprocally, any Dirac structure is defined by some
distribution Ays ¢ TM and some skew-symmetric bilinear form Qa,, : Ay xar Ay = R, where xps

denotes the fibered product, as stated in the following result, which can be found in [T, §2.2] (see
also [6], §4.8]).

Proposition 2.1. Let Dy; € Dir(M). Then Dys is the Dirac structure on M defined by the
distribution Apy = w1 (Dyy), where mp : TM&T*M — T'M is the projection onto the first component,
and the skew-symmetric bilinear form Qa,, on Ay given by Qa,, () (ve, ws) = (0w, wy) for each
Vg, Wy € Apr(x) and x € M, being oy € Ty M any element such that (vg, o) € Dy(x).

If Qa,, =0, then Dys = Apr ® A}, and it is called a standard Dirac structure. Otherwise, Dy is
said to be nonstandard.

2.1.1. Direct sum and Dirac tensor product of Dirac structures. Let us define the direct sum and
the Dirac tensor product of Dirac structures, as presented in [6]. The direct sum of the Dirac
structures D; € Dir (M;), 1 <i < n, is the usual Direct sum as vector bundles, which is denoted by
Dio®---® D,. Observe that it is a vector bundle over M = M; x --- x M,,. As a matter of fact,
Dy&---® D, € Dir(M). Moreover, it is integrable if so are D;, 1 <i < n. Although the Direct
sum is appropriate to add separate physical subsystems, it does not model the interaction between
them. To that end, we need to define the Dirac tensor product.

Definition 2.2. Let D,, Dy € Dir (M). The Dirac tensor product of D, and Dy is defined as

Dy ® Dy ={(vg,05) e TM &T* M |
3Bz € Ty M such that (g, + Bz) € Doy (Vz,—f2) € Db}.

This is how Dirac tensor product is introduced in [5} [6; [16], but there are equivalent definitions
(cf. [I7)).
Theorem 2.1. Let Dy, Dy € Dir (M) and K = {(vg,vy) e T(M xM) |z e M}y @ T*(M x M). If
(Do ® Dy) n K has locally constant rank, then D, ® Dy, € Dir (M). Furthermore, if D, and Dy are
integrable, then so is D, ® Dy,.

Let A, = m1(Dy) and Ay = m1(Dy). The previous Theorem ensures that D, ® D, is a Dirac
structure provided A, N Ay has locally constant rank, i.e., it is a regular distribution.



4

2.2. Lagrange—Dirac mechanics. Let ) be a smooth manifold, Ag c T'Q be a regular distribu-
tion (which is known as the constraint distribution) and Q € Q?(T*Q) be the canonical symplectic
form, and consider the lifted distribution, Ap+g = (drr+q) ' (Ag) c T(T*Q). The Dirac structure
induced by Ag is the Dirac structure on 7@ defined by Ar+g and €, i.e.,

DAQ = {(qu7apq) € T(T*Q) ® T*(T*Q) | Upy € AT*Q’ Qpg — Qb(qu) € A%*Q}'

If Ag =TQ, it is known as the canonical Dirac structure on T Q).
Let L:T(Q — R be a (possibly degenerate) Lagrangian and FL : TQ) - T*(Q be the corresponding
Legendre transform, we denote by

DL =rvg0dl:TQ - T"(T"Q)

the Dirac differential of L, where 7o = Qo (kg)™! : T*(TQ) - T*(T*Q) and kg : T(T*Q) —
T*(TQ) is the natural diffecomorphism as defined in, for example, [2, §4].

Definition 2.3. A Lagrange—Dirac system on @Q, also known as implicit Lagrangian system, is a
triple (L, DAQ,X), where L : TQ — R is a Lagrangian, D, is the Dirac structure on T"Q induced
by the constraint distribution Ag c T'Q, and X : T*Q - T(T*Q) is a vector field on T*Q, satisfying

(X(pq),DL(vq)) € Dy (pq), Vg € TQ, pq=FL(vg) €T*Q.

Observe that when Ag is integrable, we have a holonomic system. Otherwise, the system
is nonholonomic. A solution curve for an implicit Lagrangian system (L,DAQ,X) is a curve
c¢:[to,t1] = TQ such that FLoc: [tg,t1] = T*Q is an integral curve of X.

In order to write the local expression of the equations, let U c ) be an open trivializing set for
TQ and T*Q, and let V be the typical fiber of T'Q. For the sake of simplicity, we write U = Q.
This way, locally we have TQ = @ xV and T*Q = Q x V*. We denote (¢q,v) € TQ and (¢,p) € T*Q.
The Lagrange—Dirac equations locally read

oL ) oL . o
p:%((bv)? q:UEAQ((]), _a_q(Q7U)+pEAQ(q)

Remark 2.1. For each (q,p) € T*Q, we write X (q,p) = (¢,p,q,p) for certain eV andpeV*. In
fact, they are maps ¢:T°Q -V and p:T*Q - V*, but we do not explicit the arguments in order
to maintain the notation simple. We will use this notation without further mention when working
with the local expression of vector fields.

Recall that the Lagrange-Dirac equations may also be obtained variationally (see [3]).

Definition 2.4. The Lagrange—D’Alembert—Pontryagin principle for a Lagrangian L:TQ — R is
defined as

s [ (o) + (P - vg)) dt = 0

for curves (vg,pq) * [to,t1] = TQ & T*Q projecting onto g = wpg o vg : [to, t1] = Q such that ¢ € Ag,
variations 6q € Ag with fixed endpoints, i.e., 6q(to) = 0q(t1) = 0, and arbitrary variations (dvg, 0pg).

Proposition 2.2. The variational equations given by the Lagrange—D’Alembert—Pontryagin prin-
ciple are exactly the Lagrange—Dirac equations.

2.3. Lagrange—Dirac mechanics with parameters. To conclude this introductory section, we
extend the Lagrange—Dirac mechanics introduced above for systems with parameters.

Definition 2.5. A Dirac structure on a smooth manifold M with parameters in S, also known as
parameter-dependent Dirac structure on M, is a map Dy : S - Dir (M).

From Proposition a parameter-dependent Dirac structure, Dy : S — Dir (M), is defined by
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(i) A parameter-dependent regular distribution, Ays : S - Sub (T'M), where Sub (T'M) de-
notes the family of vector subbundles of wpy : TM — M, i.e., the family of regular distri-
butions on M.

(ii) A parameter-dependent skew-symmetric bilinear form, Qa,,(s) @ Apr(s) xar Ap(s) - R,
selS.

The pull-back, direct sum and tensor product of Dirac structures are straightforwardly extended
to Dirac structures with parameters.

Let @ be a smooth manifolds. A parameter-dependent constraint distribution, Ag : § —
Sub (T'Q), induces a parameter-dependent Dirac structure on 7@,

Dag(s) = {(vpy: 09,) € T(T°Q) @ T(T" Q) |
Up, € A7+ (5), ap, —Q"(qu) € A%*Q(s)},

for each s € S, where Ar+(s) = (drrq) " (Ag(s)).

In the same vein, a parameter-dependent Lagrangian is a map L : T Q) xS — R. Observe that, for
each s € S, the restriction Ls = Llpgy(s) : TQ — R is a (standard) Lagrangian. In particular, we may
consider its Dirac differential, ®L, = yg o dLs: TQ - T*(T7Q), as well as its Legendre transform
FLs:TQ — T*Q. Similarly, a parameter-dependent vector field is a map X : T7Q x S - T(T7Q).
We denote X5 = X|7«qy(s) for each s € S.

Definition 2.6. Let L : TQxS — R be a parameter-dependent Lagrangian, Ag : S - Sub (T'Q) be a
parameter-dependent constraint distribution, and X : T*Q xS - T(T*Q) be a parameter-dependent
vector field. The triple (L,DAQ,X) is said to be a Lagrange—Dirac system on () with parameters
in S, also known as parameter-dependent Lagrange—Dirac system on @) or parameter-dependent
implicit Lagrangian system on @, if for each s € S it satisfies

(Xs(pq), D Ls(vg)) € DAQ(s)(pq)7 v €TQ, pg=FL(vy) eT*Q.

A solution curve for a Lagrange—Dirac system with parameters (L, Dag. X ) is a map c: [tg, 1] %
S — TQ such that FLg o ¢s : [to,t1] — T*@Q is an integral curve of X for each s € S, where
€s = Clito,t1)x{s)-

In a trivialization, TQ = @xV and T*Q = @ x V™, the Lagrange—Dirac equations with parameters
read

p=Gr @), dvedo()@. - (a) e A(s)a)

Observe that the condition for the velocities to belong to the constraint distribution, vy € Ag(s)(q),
is already included in the equations.

Remark 2.2 (External forces). The previous setting may be extended to non-conservative systems.
Namely, a parameter-dependent external force is a bundle morphism, F¢' : TQ x S - T*Q,
covering the identity, idg. As usual, we denote Fy = F|TQ><{5} :TQ —» T*Q for each s € S. The
corresponding parameter-dependent Lagrange—Dirac equations with external forces are given by

(XS(pq)>®LS(Uq) - (dWT*Q)>€ (Fsext(vq))) € DAQ(S)(pq)’

for each vy € TQ, py = FLs(vy) € T*Q and s € S. Locally, if we write FE**(q,v) = (g, f**(g,v)),
(q,v) eTQ, s €S, then the equations read

g0, d=verg)@), -

p- ‘9{; (0.0) +p— F(q,0) € AL (5)(0).

0



3. INTERCONNECTED LAGRANGE—-DIRAC SYSTEMS WITH PARAMETERS

Here we present the main theoretical results of the paper. Namely, we interconnect several
Lagrange-Dirac systems with parameters through a nonstandard interaction Dirac structure that
may be parameter-dependent too. Firstly, the interconnection is performed by using the Dirac
tensor product and, then, by using interaction forces. Next, we show that both approaches are
equivalent when the forces are appropriately chosen. After that, we present the variational point
of view, which leads to the same dynamical equations for the interconnected system. Lastly, we
relate the interconnected Lagrange—Dirac systems introduced here with the backward input—output
systems defined in [I5].

3.1. Interaction structure and interconnected structure. Let ) be a smooth manifold.
Given a parameter-dependent regular distribution, ¢ : S - Sub (T'Q), and a parameter-dependent
2-form, Qg : S - 02(Q), their pull-backs to T*Q are considered,

Sint = (A1) (2q) : S = Sub (T(T*Q)),  Qunt = 71+ (Qq) : S = Q(T*Q).

The parameter-dependent interaction Dirac structure is the Dirac structure on T () with parameters
in S defined by ¥;,; and €, i.e., for each s € S and py € T*Q we have

Dint(5)(Pg) = { (vpy» ) € T, (T*Q) @ T, (T7Q) |
Upy € Sint(8)(Pg)s p, = it () (vp,) € B30 (8) ()} (1)

Observe that Dini(s) = T7.(Dq(s)), where Dg : .S — Dir (Q) is the Dirac structure with parame-
ters defined by ¥ and Qq.

Definition 3.1. Let Ag,Yq : S = Sub(TQ) and Qg : S » Q*(Q), and let Sine = (drp+g) " (2q)
and Qe = ﬂ;*Q(QQ). The parameter-dependent interconnected Dirac structure on 1T Q) is defined
as

D= DAQ Dmt : S — Dir (T*Q).

Recall that nor ¥g neither Ag are supposed to be integrable. Therefore, the corresponding
systems may be either holonomic or nonholonomic.

Proposition 3.1. If Agn¥q: S - Sub(TQ), then D = Da, ® Djnt : S — Dir (T*Q). Moreover,
it is defined by Ap = Apsg N Eint and Qp = (Q+ Qint) ‘AT*QOE where Q2 S - Q2(T*Q) is the
constant map that assigns the canonical symplectic form Q€ Q*(T*Q) to each s € S.

int’

Proof. Let s € S. The first part is straightforward, since the condition Ag n3g : .S - Sub(7'Q)
ensures that Ag(s)NXg(s) c T'Q is a regular distribution. For the second part, it is immediate that
Ap(s) = Ar«q(s)NEint(s) c T(T*Q). On the other hand, the 2-form Qp(s) : Ap(s)xAp(s) = R
is given by (vp,,wp,) = {(ap,,wp,), where (v,,,ap, ) € D(s). Again, by definition of Dirac tensor
product there exists £, € T); (T*Q) such that (vp,,ap, + Bp,) € Day(s) and (vp,, —Bp,) € Dint(s).
Since D, (s) is defined by Ar«q(s) and Q, the first condition reads ay, + £y, - (vp,) € Afeg(s)-
Likewise, since Dint(s) is defined by 3ins(s) and Qine(s), the second condition says that -3, -
Q2,,(s)(vp,) € 35,,(s). By gathering both expressions, we obtain o, — Q' (v,,) = Q%,,(s)(vp,) €
AT (8) +27,(8) = (Ar+q(s) N Eint(s))°. Hence, we conclude

QD(S)(quvaq) = Q(qu’wpq) + Qint(s)(qu,wpq)v Upgy Wp, € Ap(s).
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3.1.1. Local expression. Let us find the local expression of the interconnected Dirac structure with
parameters. Let TQ = Q x V' be a trivialization of the tangent bundle, as in the last part of section
This leads to T(T*Q) = (@ xV*) x (VxV*) and T*(T*Q) = (@ x V*) x (V*x V). In addition,
for each s € S, Ap«g(s) and X;n(s) are the pull-backs of distributions on @), which enable us to
write

Ap(s) = {(a,p,9q,0p) e T(T*Q) | (a.0q) € Ag(s) N Eq(s)}
and
Ap(s) = {(g,p,a,w) | (q,a) € (Ag(s) NEq(s))°, w=0}.
Recall that (Ag(s) nXq(s))” = Ay (s) +X5(s), since we are dealing with finite dimensional mani-

folds. On the other hand, for each (g, p,dq,dp) € T(T*Q) the canonical symplectic form is locally
given by Q°(q,p,dq,p) = (¢,p,~0p,dq). In the same fashion, if we write

00(5)(q,09) = (¢, @s(q,0q)),  (q,6q) € TQ, (2)
for some (local) function ws : TQ — V*, then its pull-back is given by Q! .(s)(q,p,dq,dp) =
(q7p7 ws(Qvéq)7O) AS a result,

O (5)(q,p,0q,6p) = (¢,p, ~0p + @(4,69),0¢),  (q,D,0q,0p) € Apeq(s) N e (s).

In short, for each (q,p) € T*Q and s € S, the interconnected Dirac structure with parameters locally
read

D(s)(q,p) =
(50,69, (0,0)) € Ty (T*Q) ® T, ) (T*Q) | 60 € Ag(5) () 1 S (5)(a),
a+6p-ws(q,0q) € AH(s)(q) +E5(s)(q), w=6q}. (3)

3.2. Interconnection via Dirac tensor product. For 1<i<n, let (LZ-, D, ; XZ-) be a Lagrange—

Dirac system with parameters in S; (possibly degenerate, possibly nonholonomic), which we call
parameter-dependent primitive subsystem. The configuration manifold and the space of parameters
of the interconnected system are given by

Q=Qix-xQu  §=8x-xS, (4)
Definition 3.2. Let Diy = m7.o(Dq) : S — Dir(T"Q) be an interaction Dirac structure with
parameters as in . The interconnected Lagrange-Dirac system on Q is defined to be (L, D, X),
where L=Ly+--+L,: TQ xS >R, D= (DAQ1 GB---EBDAQR) R Dt and X :T°Q xS - T(T*Q)
satisfy the interconnected Lagrange—Dirac equations with parameters,

(Xs(pq),DLs(vg)) € D(s)(pg), Vg €TQ, pg=FLs(vg) €T*Q, s€8.

Note that DAQl @@ Dp, =Dna,, where Ag = Ag, ® -+ Ag,. In the following, we will
assume that Agn¥g: S - Sub (7'Q), which ensures that D is a Dirac structure with parameters.
A solution curve for the interconnected Lagrange—Dirac system (L, D, X) isamap c: [tg,t1]xS —
T'Q such that FLsocs : [to,t1] — T*Q is an integral curve of X; for each s € S, where cs = ¢4, 4, ]x{s}-

Proposition 3.2. Let T'Q = QxV be a trivialization of the tangent bundle. Then the interconnected
Lagrange—Dirac equations with parameters locally read

p=2E2(0), d=verg(s)(a) nSa(s)(a),

ov
oL

8_;(q’ v) +p-ws (g, 4) € Ag(s)(q) + Eg(s)(9)-
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Proof. The result can be easily checked from by writing Xs(q,p) = (¢,p, ¢, p) and by the recalling
that the Dirac differential is locally given by

oL ). @verQ ses

0L, s
OL() = (4. 52 (@.0). - 52 (@) 0
u

Note that, given s € S, the interaction Dirac structure is locally described by the map w; :
Q xV - V*, as well as the family of vector spaces, {£¢g(s)(¢) c V | ¢ € Q}. Therefore, there are
2dim ) decoupled equations,

p= %((LUL q=v,

together with 2dim @) coupled equations,
veAqg(s)(q) nEq(s)(q),

—%—L;m,v) s (0,d) € AD(5)(0) + 55(5) ().

Remark 3.1 (External forces). As in Remark we may consider non-conservative primitive
subsystems. Let Ff*' : TQ; x S; —» T*Q; be a parameter-dependent external force, 1 <i <n. The
total parameter-dependent external force is the map F¢t: TQ x S - T*Q defined as

FE™ (vg) = (F1™)sy (va, ), -+, (F™)s, (vg,))

for each vy = (vqgy,...,0q,) €TQ and s = (s1,...,5,) € S. This way, the interconnected, parameter-
dependent Lagrange—Dirac equations with external forces are given by

(Xs(pq), DLs(vg) = (drr+@) " (F™(vg))) € D(s)(py),

for each vy € TQ, py = FLs(vy) € T*Q and s € S. Locally, if we write F*'(q,v) = (q, f*'(q,v)),
(q,v) eTQ, s€S, then the equations read

0L,

v
8Ls . . ext o o

—a—q(q, v) +p-ws(q,q) - £ (q,v) € AH(s)(q) +X5H(8)(q)-

p=—7—(qv), d=veAg(s)(q)nq(s)(q),

Remark 3.2 (Relation with backward input—output systems). Alternate approaches of Dirac sys-
tems can be found in the literature, as in [15], where a new geometric framework to deal with systems
that may gain or lose energy through ports was described. This approach requires more general def-
initions of Dirac structures, such as Dirac structures on vector bundles and coisotropic structures.
It can be checked that the backward input—output systems (BIO-systems) introduced there to de-
scribe systems without energy exchange (closed systems) are the Hamiltonian counterpart of the
interconnected Lagrange—Dirac systems presented in the present work provided the Lagrangian is
hyperregular, i.e., its Legendre transform is an isomorphism. In other words, every interconnected
Lagrange—Dirac system (without parameters) has an equivalent BIO-system associated.

3.3. Interconnection via interaction forces. Now we model the interaction by means of the
interaction forces that the systems exert on each other. As above, for 1 <i < n, let (Li, Da Q_,Xi)

be a primitive subsystem with parameters in S;. Elements of Q = Q1 x--- x Q, and S = 51 x
- x S, are denoted by ¢ = (¢1,...,¢,) and s = (s1,...,8,), respectively. Likewise, we denote

Vg = (Vgys--.,0g,) €TQ and pg = (pgys-- -, Pgn) € T7Q.
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Definition 3.3. Let Dy = W%*Q(DQ) 1S = Dir (T*Q) be a parameter-dependent interaction Dirac
structure as in . The interconnected Lagrange—Dirac system on Q) is defined as the union of the
following forced Lagrange—Dirac systems,

(Li7DAQ.7X’iJE)7 1SZSn,

where the bundle morphisms F; : TQ xS — T*(Q); are known as the parameter-dependent interaction
forces and they satisfy

((dﬂT*Q)pq(Xs(pq))aFs(vq)) EDQ(S)(Q)a (U(I?pq) eTQaT"Q, seS, (5)

where X : T°Q - T(T*Q) 1is given by pg = (Pgr»---Pq,) + (Xi(Dg),---» Xn(pg,)), and F =
(F1,...,F,):TQ xS - T*Q is known as the parameter-dependent total interaction force.

Proposition 3.3. Let TQ = Q x V' be a trivialization of the tangent bundle. For each (q,v,p) €
TQ&T*Q and s € S, we write Xs(q,p) = (¢,p,4,p) and Fs(q,v) = (q, fs(q,v)) for some (local)
function f:TQ xS - V*. Then locally reads

GeXq(s)(q);, [fs(q:v) —ws(q,v) € £5(s)(q)-

Proof. The projection is locally given by mr+q(q,p) = ¢, whence (dr7+Q)(4p)(Xs(q,p)) = (¢,9)-
Besides, from the local expression it is straightforward that

Dq(s)(a) = {(v,p) e T,Q® T; Q| veSq(s)(q), p-ws(q,v) € TyH(s)(a)

and we conclude. 0
The following result ensures that Definitions [3.2] and [3.3] are equivalent.

Theorem 3.1. For each 1 <i < n, let (Li,DAQ_,Xi) be a primitive subsystem with parameters

in S;, and D, = W}*Q(DQ) be an interaction Dirac structure on T*Q with parameters in S =
Sy xox Sy Let L=Ly++ Ly and D = Dag, ® Dint, where Ag = Ag, & - @ Aq,. Then the
equation

(Xs(pq), DLs(vq)) € D(s5)(py) (6)
holds if and only if there exists a bundle morphism F = (Fy,...,F,):TQ xS - T*Q such that the
system of equations

{ ((X0)s(Pg,): D (Li)s(vg,) = (dmr+@.)* ((Fi)s(vq)) ) € Dag, (8)(pg), 1<i<n
((dmr+q)p, (Xs(pg)), Fs(vq)) € Do(s)(q)

holds, for each (vg,pq) = (Vgrs--- Vg, Pgis---1Pgn) € TQ & T*Q such that p; = FL(vg) and each
ses.

Proof. By definition of Dirac tensor product, Eq. (6) implies that there exists ¢, € T, 2, (I Q) such

that (Xs(pg), ds) € Dint(s)(pg) and (Xs(pg), DLs(vg) = ¢s) € Da,(8)(pg)- By recalling that Dy, =
T+ (Dq), from the first condition we know that there exists ¢ € T, Q) such that ¢ = (drr+q)* (¥s)

and ((drr+Q)p, (Xs(pg)),vs) € Do(s)(q). Subsequently, if we define F,(vg) = 15, it satisfies the
second equation of . Moreover, the second condition now reads
(Xs(pg), DLs(vg) — (dmrq)” (Fis(vg))) € Dag (5)(pq)- (8)

Now we use that Q = Q1 x---x @y and L = Ly +---+ Ly, which enables us to write DL(vy) =
(D(L1)s(vg ), -, D(Ln)s(vg,)). In the same way, observe that mp«g = (77+Q,,...,mr*@Q, ) and
Dy (8)(pg) = Dag, (5)(pgy) @ - ® Dag, (5)(pg,). Therefore, may be restated as

((X0)s (o) D(Li)s(vg) ~ (dmr-0) (F)s(v))) € Dag ()(pg).  1<i<m,

(7)
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which is, precisely, the first equation of @) Lastly, observe that

]FLs(Uq) = (F(Ll)S(Um)v e 7F(Ln)s(v%)) .
O

Remark 3.3. The interconnection of Lagrange—Dirac systems developed in [6] is a particular case
of the theory presented above when Qg =0 and S = @, that is, when Dj,; = W%*Q(EQ ® E"Q) is a
standard interaction structure and there are no parameters. In this situation, the local equations
given in Proposition[3.9 read

8[1 . 8L . o o
p=5.(a00), d=velq(a) nZo(9), —a—q(q,v)+p€AQ(Q)+2Q(Q)-
The last equation implies that there exists a (local) function F : T(Q — 22’2 cT*Q such that

oL ) o
_ﬁ_q(q’v) +p- F(vi) € AQ(Q)v
which is, exactly, the interaction force.

3.4. Variational viewpoint. The dynamical equations for an interconnected system can also be
obtained variationally. Namely, we employ the Lagrange-D’Alembert—Pontryagin principle with

interaction forces. As above, let Li,DAQi,Xi be a primitive subsystem with parameters in S;,
1<i<n,and denote Q = Q1 x---xQp and S = Sy x---x.S,. Let Dj = W}*Q(DQ) 1S - Dir (T"Q) be
a parameter dependent interaction Dirac structure as given in , and F = (Fy,...,F,):TQxS -
T*Q be the total interaction force defined in .

Definition 3.4. In the previous conditions, let a = (vq,pq) : [to,t1]xS = TQ®T*Q be a parameter-
dependent curve on the Pontryagin bundle of Q) projecting onto q = mpg o vy : [to,t1] xS = Q. For
each s € S, the Lagrange—D’Alembert—Pontryagin principle for the interconnected system is given

b
y 11 . t1
[ (B 0) + pa0.(0) = 0y 0) e+ [ (Fu(va(0)). 000t =0 (9)
for arbitrary variations o = (6vg, 6pq) such that ¢ € AgnXg and 6q € AgnXg with fized endpoints,
i.e., 0q(to) = dq(t1) =0.

As stated before, this variational principle leads to the same equations for the interconnected
system.

Proposition 3.4. The Lagrange—D’Alembert—Pontryagin equations obtained from the variational
principle @D with the interaction forces are equivalent to the equations of the interconnected
Lagrange—Dirac system

Proof. Let s € S. We work with the local expressions, which enable us to write a = (g, v, p) : [to, t1]x
S — @Q xV xV*. Furthermore, we write Fs(q,v) = (g, fs(¢,v)) and Qg(s)(q,éq) = (q,ws(q,0q)) for
each (q,v),(q,dq) € TQ, as above. By taking variations dq € Ag(s) N Xg(s) in (9), we get

8L . o °

aqs (q,v) =P+ fs(q:v) € Ag(s)(q) + Eo(s)(q),
where we have used integration by parts and the boundary conditions, dq(tg) = dq(t1) = 0. Making
use of Proposition this equation can be equivalently written as

oL ) o R
>(q,v) = p+w@s(q,v) € AZH(s)(q) + 5 () (q).
dq
Analogously, we take free variations dv, yielding

OL, .
W(q’ v)-p=0.
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At last, free variations dp lead to

d=velAq(s)(q) nEq(s)(q),

where we have used that ¢ € Ag nXg. In short, we have obtained the local expression of the
equations for the interconnected Lagrange—Dirac system given in Proposition [3.2 U

Observe that the Lagrange—D’Alembert—Pontryagin principle @D for the interconnected system
is the sum of the Lagrange-D’Alembert—Pontryagin principle (recall Definition for each prim-
itive system together with the interaction forces, which model the coupling between the primitive
systems, as well as the restriction of the variations and velocities to the constraint distribution.

4. APPLICATIONS

Let us consider three applications of the previous theory with the purpose of bringing its signif-
icance to light. To begin with, an electromechanical system is analyzed. After that, the relation
between interconnection and Euler—Poincaré—Suslov-Dirac reduction is explored. Lastly, control
interconnected systems are introduced and an example is presented.

4.1. Piston driven by an ideal DC motor through a scotch-yoke mechanism. An ideal
DC motor consists of an armature coil immersed in a constant magnetic field. When an electric
current flows through the coil, it experiences a Lorentz force, causing a torque. This yields an
electromechanical coupling that is not of the standard form (cf. [6]). On the other hand, a scotch-
yoke mechanism is a device that converts rotational movement into linear movement, or vice versa.
The longitude of the rod gives a relation between the linear and the angular displacements that
can be regarded as a mechanical coupling. In this example we consider an ideal DC motor driving
a piston through a scotch-yoke mechanism, as depicted in Figure[I] The primitive subsystems are
presented in Table [T}

x(1)

FIGURE 1. Piston driven by an ideal DC motor through a scotch-yoke mechanism.
The coil of inductance L represents the internal coil of the motor.

The coupling of the primitive systems is given by the following physical conditions:

(i) The torque produced on the coil due to the magnetic field is related to the electric current
through a parameter, K, known as the motor torque constant (cf. [I8, Chapter 3]): 7= K1.
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Primitive system  Electric circuit Rotating armature Piston
Conf. manifold Q1=R Qo =St Q3 =R
Coordinate Charge, q Angular displacement, # Linear displacement, x
Velocity Electric current, I Angular velocity, w Linear velocity, v
Momentum Voltage, V Torque, T Linear momentum, p
Parameter Inductance, L Moment of inertia, J Mass, m
Lagrangian Ly =LI%*2 Ly = Jw?/2 Lz = mv?/2

TABLE 1. Primitive subsystems of a piston driven by an ideal DC motor through
a scoth-yoke mechanism. The configuration space of the interconnected system is
Q =R x S! x R with coordinates (q,,z).

(ii) The linear displacement of the piston is determined by the angular displacement of the
motor through the longitude of the rod, d. Hence, the linear velocity is determined by the
angular velocity: v = —wdsin 6.

In addition, we assume that the motor is powered by a battery that provides a constant voltage
to the electric circuit, V, which we regard as a parameter. For the sake of brevity, we denote the
parameters of the system by

s=(Vo,L,J,m,K,d)eS =(R"°,

and we identify 7,1 = TyR = R and T, Q1 = T/R = R, and analogous for Qs = St (in this case,
this identification only holds locally) and @3 = R. The coupling conditions may be encoded in the
parameter-dependent Dirac structure defined by

Yo(s)(g,0,2) = {(I,w,v) € T(4,0,0)Q | v = ~wdsin 6}
and
Qo(s)(q,0,z) = Kdg A db
for each s = (Vp, L, J,m,K,d) € S and (q,0,x) € Q. On the other hand, the primitive subsystems
have no constraints, i.e., Ag = TQ. In addition, for each (q,0,7) € Q, (I,w,v) € T(49,)Q and
s=(L,J,m,K,d) €S, the total Lagrangian with parameters is given by

1
Ls((q,0,x),(I,w,v)) = 5 (LI2 +Jw? + mv2) .
Lastly, the battery can be regarded as a constant external force,
F:xt((q7 97 $)7 (‘[7 w? v)) = (%7 07 O)

Proposition 4.1. The interconnected Lagrange—Dirac equations with parameters for the piston
driven by an ideal DC motor through a scotch-yoke mechanism read as

V=LI, Gg=1, v +wdsinf =0,
T =Jw, 0=w, V+K0=W,
P =mu, =, 7— K¢ =pdsin.

Proof. Tt is easy to check that
EZ)(S)((],H,.%) = {(‘/77_7]9) € T(*q’g’x)Q | V = 0, T =pdsin9}

and
Q% (s)(q,0,2)(I,w,v) = (-Kw, KI,0).
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The vector field is denoted by

XS((Qa 07 $)7 (‘/7 T7p)) = ((QJ 07 x)? (‘/7 Tvp)7 (Q7 0'756)7 (V7T7p))
for each (V,7,p) € T(’; ea;)Q' At last, observe that the partial derivatives of the Lagrangian are

given by
0L 0L,

—— =(0,0,0 —F— =(LI,J .

0g.0.0) " 00 Gl T )
The result is now a straightforward computation from Proposition [3.2] by taking into account the
external force F&((q,0,z), (I,w,v)) = Vo (recall Remark. O

This example illustrates how the interconnection theory for Lagrange-Dirac systems with pa-
rameters and nonstandard interaction structure developed above can be used to model systems
with electromechanical couplings. Furthermore, it could be extended to more complicated systems
by considering more elements. For instance, in [19] §4], the authors added damping coefficients for
both the electric part (a resistor) and the mechanical part (a spring).

4.2. Euler—Poincaré—Suslov—Dirac systems as interconnected systems. The Euler—Poincaré—
Suslov—Dirac reduction, also known as implicit Euler—Poincaré—Suslov reduction, deals with implicit
Lagrangian systems with nonholonomic constraints defined on Lie groups. Here we will show that
the reduced system may be regarded as an interconnected system with parameters.

4.2.1. Euler—Poincaré—Suslov-Dirac reduction. Let us briefly recall the reduction procedure for this
kind of systems, as presented in [I1], §7]. Let G be a Lie group and Ag ¢ T'G be a left invariant
constraint distribution, i.e., (dLj)4(Ac(g)) = Ag(hg) for each g € G, where Lj, : G - G denotes
the left multiplication by h € G. We may transfer Ag to the trivialized space G x g* as follows,

Agxg- = (dm) ™ (Ag) € T(G x g¥),
where 71 : G xg* — G is the projection onto the first component. The invariance of Ag leads to the
invariance of Agyg+, where the left action is given by h-(g, ) = (hg, p) for each h,g € G and p € g*.

Moreover, Agxg+ induces a Dirac structure on G x g*, which we denote by DAG eDir(Gxg*). It
is also left invariant and, thus, it yields a Dirac structure on the corresponding quotient.

Theorem 4.1 ([II, Theorem 7.2)). For a fived p1 € g*, the Dirac structure D, induces a Dirac
structure [Da,](p) € Dir (V), where V = g® g*, known as the reduced Dirac structure. Further-
more, it is given

[Dacl(m) ={((& ). (v;m) eV @ V* |§eg™¢, v+ p-adi(n) e (s*9) . €=n},

where g2 = Ag(e) c T.G = g, being e € G the identity element, and adg 19" - g* is the coadjoint
representation of g.

Let L: TG — R be a left invariant Lagrangian density. By means of the left multiplication, we
may identify TG ~ G x g, yielding a map L : G x g — R that is also left invariant. Likewise, the map
vg : T*(TG) - T*(T"G) may also be transferred to the reduced spaces, ¢ : (G x g) x (g ®g) >
(Gxg*)xV*. This way, the Dirac differential of L is given by ®L = godL: Gxg— (Gxg*)xV*.
The invariance of the previous maps leads to the reduced Dirac differential,

[DL]:g—>g" x V"
On the other hand, thanks to the invariance of L, it is well-defined the reduced Lagrangian, | : g — R,
as [(§) = L(g, &) for each £ € g and g € G. Observe that its Legendre transform is a map, Fl: g — g*.

Lastly, let X : T*G — T(T*G) be a left invariant vector field. After transferring it to the
trivialized spaces, X : G x g* — (G x g*) x V, it descends to the quotient thanks to the invariance,

[X]:g" > g"xV.
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Theorem 4.2 ([11], Proposition 8.3]). Let (L, Da,X) be an implicit Lagrangian system on a Lie
group G, and assume that L : TG - R and Ag c TG are left invariant by the action of G. Then
X :T*G - T(T*Q) is also left invariant. Therefore, the reduced system is given by (l, [DAG], [X])
and it satisfies the implicit Euler—Poincaré—Suslov equations, also called Euler—Poincaré—Suslov—
Dirac equations,

(IX](), [DLI(E)) € [Dagl(w),  Eeg, p=Fi(¢) eg™,
Furthermore, if we denote [X](1) = (11,m, 1), then the reduced equations are given by
_al
= 5

4.2.2. Relation to interconnected systems. We will show that the reduced system may be regarded
as a (degenerate) interconnected system on G with parameters in g*. In order to utilize the theory
developed above, we make use the (global) left trivializations TG ~ G x g and TG ~ G x g*. In
addition, the family of Dirac structures given in Theorem can be regarded as a Dirac structure
on G x g* with parameters in g*. More specifically, we define

D(u)(g,) = [Dag)(w),  peg’s (9,0) e Gxg" (11)
For each p1 € g*, let Lo (p) = G x g™¢ and

Qa(p):Gxgxg-R,  (g,§n) (1, [&n]),

where [-,-] is the Lie bracket of g. Let Dg be the Dirac structure on G with parameters in g*
defined by ¥ and g, i.e.,

Da(p)(9) = {(€.p) €V [€e g™, p-Q(u) e (679)},  neg’, geG. (12)

On the other hand, we denote by Qg+ € O2(G x g*) the pull-back of the canonical symplectic form
Q € Q*(T*G) by the left trivialization. Let Dgxg+ € Dir (G x g*) be the Dirac structure induced
by Qg+ (the constraint distribution being the whole T'(G x g*) ~ (G x g*) x V). We may regard
Dgyg+ as a (constant) Dirac structure with parameters in g~, i.e.,

D (1)(g: 1) = {((&,0), (v,m)) e VO V™ | (v,1) = Qg (&, 0) (13)
for each p e g* and (g,/1) € G x g*.

m n=Eegc,  p-adi(u)e(g%¢) . (10)

Proposition 4.2. The reduced Dirac structure (11)) is a parameter-dependent interconnected Dirac
structure. Namely,

D = Dgxg* ® Diny 1 g* — Dir (G x g*),
where Dgxg+ 1s given by and Dint =1 (Dg) : ¢* - Dir (G x g*), with D¢ given by .

Proof. Let € g*. By definition of the coadjoint representation, we have Qg (1) (g, &) = (g, adg(,u)).
Indeed,

(% (1) (9,9, (9:m) = =1, (&) = (adf (w),m),  (9,€),(9,m) e G xg.
Likewise, the canonical symplectic form is given by Qbeg* (w)(g, 1, & p) = (g, 18,—p,&) for each
(9:1,€,p) € T(G x g*). By using (B), for each (g, 1) € G x g*

(DGxg* Dznt) (:U’)(gvu) = {((57/))7(”777)) € VGBV* |
§=neg™, v+p-adi(p)e(s*) },

which agrees with the structure given in Theorem and we conclude. 0
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Next, we regard the reduced Lagrangian as a parameter-dependent Lagrangian on G xg. Namely,
we define

[:(Gxg)xg" =R, (9.&n) = 1(8), (14)
and analogously for the reduced vector field,

X:(Gxg")xg" > (Gxg)xV,  (g:f,1) = (¢, [X](1)) = (9: 115, 11)-
Theorem 4.3. Let (L,Dp,X) be a left invariant Lagrange-Dirac system on a Lie group G, and
consider
(i) the corresponding reduced system, (I,[Da,],[X]), and
(ii) the parameter-dependent interconnected Lagrange—Dirac system defined above, (Z,f),f().

Then the Euler—Poincaré—Suslov—Dirac equations for (l, [DAG], [f(]) are equivalent to the inter-

connected Lagrange—Dirac equations with parameters for (f, ﬁ,X)

Proof. Let p € g*. Observe that

ol ol, ol

o9 og o¢
Hence, the parameter-dependent interconnected Lagrange—Dirac equations given in Proposition (3.2
read

ol . %
1= e (9:0): n=Eeg™e,  ji-adi(p)e(g™7),
which are exactly the Euler-Poincare-Suslov—Dirac equations , and we conclude. g

Note that we have shown that the reduced Dirac structure is a parameter-dependent intercon-
nected Dirac structure on G x g* in the sense of Definition Nevertheless, g* is not supposed
to be a product as in . In order to regard the reduced system as the interconnection of certain
primitive subsystems, we need to assume the following hypothesis:

(i) There is a decomposition g =V} x--- x V,, for some vector spaces Vi,..., V.
(ii) The reduced Lagrangian can be written as | = {; +---+1, : g - R for certain [; : V; > R,
1<i<n.

Observe that the first condition leads to a decomposition g* = V|* x--- x V.*. We illustrate this
situation in the following example.

4.2.3. Ezample: nonholonomic Euler top. Let us recall the reduction procedure for the Euler top
subject to a nonholonomic constraint, as presented in [I1}; [20], and relate it to the interconnection
theory. The configuration space of the system is G = SO(3), the Lagrangian is given by the kinetic
energy, and we assume that the system is subject to a constraint distribution Aggz) ¢ T'S O(3). The
Lagrangian being SO(3)-invariant allows for defining the reduced Lagrangian on the corresponding
Lie algebra,

1
l:50(3) > R, E'—>§<HZ,E),

where T : s0(3) — s0(3)* is the inertia tensor of the rigid body, which may be regarded as a
parameter. Likewise, the reduced constraint distribution is defined by some fixed X° € s0(3)*, as
follows
50(3)2500) = Agos)(e) = {T e s0(3) | (¥°,%) = 0}
Recall that we have the identification

0 -3 %
“s0(3)-RY 0 D= Sy 0 =% E=(E, 5, 5s).
-3 %0
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Here and henceforth, we use the standard basis of R3. This way, the previous map is a Lie algebra
isomorphism with the Lie bracket on R? given by the cross product, i.e.,
3
[B1,5%] =2t 82 = ( D eijkz,}zﬁ) , Sh= (2], 2, 58) e R3, 1=1,2,
6,5=1 1<k<3

where €51, 1 <14, j,k <3, are the components of the Levi-Civita tensor, i.e., the structure constants
of the Lie algebra (R?, x) in the standard basis. Under this identification, the reduced Lagrangian
is given by

3
> Bili%,

ij=1

Z:R3_>R, (21722523)'_)

DN | =

where I = (£i5), <ij<3 1s the inertia tensor. In the same vein, the constraint distribution reads
RA500) = {31 = (£1,%59,53) e R} | 1 57 + 2o 55 + £3 55 = 0} .
By rotating the standard basis if necessary, we can assume that X7 = 35 = 0 and 33 # 0. Hence,
RA50® = {31 = (%1,%,,%53) e R¥ | T3 = 0},
(RASO(S))O = {& = (01,02,03) cR? |o1=09= O}.

The reduced system may be interpreted as a interconnected system whenever the inertia tensor
is diagonal, i.e., I;; = 0 for ¢ # j. In such case, we denote I; = I;; and the reduced Lagrangian is
decomposed as | = l1 + l5 + I3, where [; : R > R is given by lAZ(E) = 1;%?/2, 1 <i < 3. By gathering
all and by denoting M = (My, Ms, Ms), the interconnected Lagrange-Dirac equations read

My =I5k, Mp-e,XiM;=0, k=12
Mz =33=0.

Observe that if we choose a non-orthonormal basis of R3, then the corresponding equations are
obtained by substituting the Levi-Civita tensor, €;;;, by the corresponding structure constants,
Cijk, 1 <1, 7,k <3, in such basis.

4.3. Control of interconnected systems. Given a mechanical system, control theory [21} [22]
deals with the design of different types of inputs, the so-called controls, capable of forcing the
system to reach a desired dynamics. Here we follow the approach introduced in [23], where the
dynamics of the plant, i.e., the physical system to be controlled, is described by a Lagrange—Dirac
system (an interconnected system in our case), and the control is described by an external force
acting on it. After presenting the general notions, we examine the controlled motion of a planar
rigid body with wheels.

Definition 4.1. Let Q be a smooth manifold, and (L,D,X) be an interconnected Lagrange—Dirac
system on Q with parameters in S, as in Definition[3.4 Let W c T*Q be a vector subbundle and
u:TE xS - W be a bundle morphism covering the identity, idg. The control interconnected
Lagrange—Dirac system s the tuple (L, D, W,u, X), where X¢:T*Q xS - T(T*Q) satisfies the
controlled interconnected Lagrange—Dirac equations,

(X5 (Pq), D Ls(vg) = (dmr+Q) " (us(vq))) € D(s)(pg);

for each vy € TQ, py = FLs(vy) € T*Q and s € S, where we denote us = Ulpgusy : TQ = W, as
usual.

In the previous definition, W c T (@ is known as the control bundle and u: TQ) xS — W is known
as the parameter-dependent control map. The idea of the control is to modify the dynamics of the
plant (encoded by X) to get the desired dynamics (encoded by X.). Observe that the input, u,
is a function of the current state of the system, v,. For this reason, it is known as a closed-loop
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or feedback control. An alternative is to choose the control to be a function, u : [to,t1] - W.
This situation, where the input of the system does not depend on the configuration of the system,
is known as an open loop control. In any case, the control system is said to be underactuated
when dimW < dimT*Q, i.e., there are less controls than degrees of freedom (observe that this
condition is equivalent to dim W, < dim7;Q for each g € @), and it is said to be fully actuated
when dim W =dim 77 Q.

In a trivialization, T'Q) = @ x V, the control bundle may be written as W = ) x W for some vector
subspace W c V*| and the control map reads us(q,v) = (¢,us(q,v)) for each (q,v) e TQ and s € S,
for some u: @ xV xS - W. Hence, the controlled equations are a particular instance of Remark
when the external force is given by the control map,

), d=ve2()@) 1 ()@)
! (15)

T 0,0) D () - waa,0) € A(5) ) + Tis) o)

p:

4.3.1. Ezample: control for a planar rigid body with wheels. Let us design a control for a planar
rigid body with wheels, as depicted in Figure[2] The position of the center of mass and the angular
orientation may be regarded as different subsystems, as presented in Table [2}

(acosf,asinb)

(vx’vy)

X

FiGure 2. Control for a planar rigid body with wheels.

For brevity, the parameters are denoted by s = (J,m) € S = (R")?, and we identify Tay)@1 =
T($’y)R2 =R? and T(*x y)Ql = T& y)R2 =R?, and analogous for Q3 = S (in this case, the identification
is local).

The primitive subsystems are coupled due to the non-slipping assumption. This compels the
linear velocity to belong to the direction determined by the angular orientation, i.e., the vector
(vz,vy) must be proportional to (cosf,sin@). As a result, the interaction Dirac structure is defined
by

() (2,y,0) = {(ve, vy, w) € T3,4,0)Q | v sinf — v, cosd = 0}
and Qg(s)(z,y,0) = 0 for each s = (J,m) € S and (z,y,6) € Q. Since the primitive subsystems
have no constraints, we have Ag =T'Q. Moreover, for each (z,y,0) € Q, (v, vy, w) € T(y 4 9)Q and
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Primitive system Center of mass Angular orientation
Configuration manifold Q1 =R? Qs =S!
Coordinate (z,y) 0
Velocity (vz, vy) w
Momentum (P2, Py) T
Parameter Mass, m Moment of inertia, J
Lagrangian Ly =m(v2 + vz)/Q Ly = Juw?/2

TABLE 2. Primitive subsystems of a planar rigid body with wheels. The configura-
tion space of the interconnected system is Q = R2xS! ~ SE(2), the special Euclidean
group in dimension 2, with coordinates (x,y,6).

s=(J,m) e S, the total Lagrangian is given by
1
LS((x,y,O), (Uz’yvy;w)) = 5(77“)2 + mvs + JwZ),

Proposition 4.3 (Dynamics without control). The interconnected Lagrange—Dirac equations with
parameters for the planar rigid body with wheels are given by

Dz = MUy, T = Uy, Vg sinf — vy cos = 0,
Dy = My, Y = vy, Pz cos O + Py sind =0,
T=Juw, 0=w, 7=0.

Proof. An easy computation shows that
558 (5)(@,9,0) = {(p 9y ) € T(, 9@ | P cOSO + pysind = 0, 7= 0}.
By denoting the vector field as
XS((‘Tayv 9)7 (px7py77—)) = ((3572/7 0)7 (px,py77)7 (x.7y7 0)7 (pxapya T))

for each (pg,py,7) € T("x ” O)Q, and by noting that the partial derivatives are given by

0L 0L
_ 9% _(0,0,0 LR J
a(ﬂLy,G) ( ) )7 a(vxjvva) (mUaT’mvy’ w)?
the result is straightforward from Proposition O

Now we introduce the controls, which consists of an accelerator that produces a force in the
direction of  (in red in Figure , and a torque applied at the center of mass (in blue in Figure .
This way, the open loop control is defined as

u=(acosf,asin®, Ty ):[to,t1]~ T(*acyG)Q7
—_— Y
Accelerator Torque
for some given functions a, Ty : [to,t1] = R. In this case,
Wiey.0) = {(Pa,py, 7) € T&,y,g)Q | pxsin® = p, cosf} c T&y’e)Q

is a 2-dimensional subspace for each (x,y,0) € Q. Hence, the system is underactuated. At last, the
controlled dynamics is obtained from .
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Proposition 4.4 (Controlled dynamics). The interconnected Lagrange—Dirac equations with pa-
rameters for the controlled planar rigid body are given by

Pz = MUy, T =g, Vg sin @ — vy cos @ = 0,
Dy = MUy, Y = vy, Dz cost + Py sinf = a,
T=Jw, 0=w, 7 ="Tp.

5. CONCLUSIONS AND FUTURE WORK

In the present work, the interconnection of Lagrange-Dirac systems developed in [6] has been
extended to include nonstandard interaction structures, external forces and parameters. This has
been done from three viewpoints: by means of the Dirac tensor product, by means of interaction
forces and from a variational principle. The three approaches have been proven to be equivalent.
Moreover, it has been checked that an interconnected Lagrange—Dirac system is the Lagrangian
counterpart of a backward input—output system. Furthermore, several applications have been
presented to illustrate the importance of this generalization. Firstly, a piston driven by an ideal DC
motor through a scotch-yoke mechanism has been analyzed, showing that electromechanical systems
require nonstandard interaction structures to be modelled. Next, Euler—Poincaré-Suslov-Dirac
systems have been reinterpreted as interconnected systems, where the nonstandard interaction Dirac
structure is given by the adjoint representation of the Lie algebra. At last, control interconnected
systems have been defined and illustrated by the analysis of a planar rigid body with wheels.

Some future research directions include the following:

(1) If a parameter-dependent primitive subsystem whose configuration manifold is a Lie group,
Q = G, is G-invariant for each fixed value of the parameter, sg € S, then reduction by
symmetries may be performed. In such case, S is required to be a vector space. The corre-
sponding reduced system is known as Fuler—Poincaré—Dirac system with advected quantities
(see [13] for the Lagrangian formulation and [I4] for the Dirac formulation). In such case,
the space of parameters is chosen to be a vector space and the parameters yield dynamic
variables of the reduced problem, the so-called advected quantities. It would be interest-
ing to explore the interconnection of invariant subsystems through an invariant interaction
structure, thus yielding an invariant interconnected Lagrange—Dirac system, and the cor-
responding reduction with advected quantities. Moreover, an interconnection theory for
Euler—Poincaré—Dirac systems could be formulated in order to have a commutative dia-
gram as follows,

Primitive ~__Invariant interaction Interconnected
Lagrange-Dirac Dirac structure Lagrange-Dirac
/G /G
Primitive _Reduced interaction Interconnected
Euler—Poincaré-Dirac Dirac structure Euler—Poincaré-Dirac

where the dashed lines mean interconnection and the solid lines mean reduction.

(2) In continuum mechanics, which include a wide variety of physical systems such as elasticity
or fluid dynamics [I3; 24H26], the configuration manifold is given by the family of smooth
embeddings from a compact, Riemannian manifold, (M, g), with smooth boundary, OM,
to a boundaryless manifold, B, that is, @ = Emb(M, B). In addition, the Lagrangian is
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defined through a Lagrangian density, i.e.,
L:TEmb(M,B) - R, Vo = L(vy) = v[ME(vcp,dgo) Lgs

where p4 is the Riemannian volume form on M, and dy : TM — T'B is the tangent map
of ¢ e Emb(M, B). A generalization of the theory presented here to continuum mechanics
would be highly desirable. Some steps in this direction have been made in [27] from the
Hamiltonian viewpoint. Furthermore, the relation between interconnection and reduction
mentioned above would play a fundamental role, since the Lagrangian of a number of con-
tinuous media is invariant either by the (right) action of Diff (M), which leads to the spatial
representation, or the (left) action of Diff (B), which leads to the convective representation.

(3) Discrete Dirac structures have been introduced by defining a discrete analog of the Tulczy-
jew’s triple [28; 29], yielding geometric numerical integrators for Lagrange-Dirac systems.
In addition, the interconnection of such systems through standard interaction structures
have been addressed in [30], where the discrete Dirac tensor product has been introduced.
Nevertheless, a general discrete theory of interconnection including the cases developed in
this work (nonstandard interaction structures, systems with parameters and external forces,
and control theory) is still lacking. On the other hand, the Lagrange—Poincaré-Dirac pro-
cedure has been mimicked in the discrete setting [31]. As explained above, the relation
between reduction by symmetries and interconnection is significant, so it would be interest-
ing to elaborate a discrete Euler—Poincaré—Dirac reduction theory that includes advected
parameters.
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