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Abstract

The gauge formalism in telepalallel gravity provides an interesting viewpoint
to describe interactions according to an anholonomic observer’s tetrad basis.
Without going into assessing the complete viability of quantization in an early
stage, this paper explores classical gravity within the framework of a classical-
to-quantum bridge between the SU(1, 3) Yang–Mills gauge formalism and the
gauge-like treatment of teleparallel gravity. Specifically, the perturbed spacetime
algebra with Weitzenböck connection can be assimilated to a local complexifi-
cation based on the SU(1, 3) Yang–Mills theory, what we call hypercolor or,
simply, color. The formulation of the hypercolor dynamics is build by a trans-
lational gauge, as in the teleparallel gravities. In particular, this work analyses
small perturbations of a metric decomposition related to the Wilson line and
the Kaluza–Klein metric, but obtaining electrodynamics in four dimensions. The
spacetime coordinates are now matrices that represent elements of the su(1, 3)
algebra. To make compatible the formulation of a colored gravity with the Lorentz
force and the Maxwell equations, it is enough to define every energy potential ori-
gin as 0 in the event horizon instead of the classic zero potential at infinity. Under
the colored gravity framework, standard electromagnetism can be obtained as a
particular abelian case.
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1 Introduction

1.1 Motivation

Geometrization is an exploration to extend the success of General Relativity (GR),
involving geodesics of pseudo-Riemannian metrics, to other aspects of the nature. The
geometrization of classical physics was a central axis of Wheeler [1, 2], who stated
that “classical physics can be described in terms of curved empty space, and nothing
more”. Wheeler introduced the notion of geons, gravitational wave packets confined
to a compact region of spacetime and held together by the gravitational attraction
of the (gravitational) field energy of the wave itself. Wheeler was intrigued by the
possibility that geons could affect the test particles much like a massive object. This
idea aimed to point the way to unify electrodynamics and general relativity. Aligned
with this, it was deliberate the title of the Einstein’s work “On the electrodynamics
of moving bodies”, and his later attempt to unify gravity and electromagmetism, also
referred to as absolute (tele)parallelism or teleparallel gravity [3–6]. Since he stated
that “the gravitational field can be found only through the discovery of a logically
simple mathematical condition,” Einstein tirelessly attempted the formulation of a
unified field theory for more than 30 years [7], employing the same methods (see for
instance the papers compiled in [8]).

As is well known, GR produces gravitomagnetic effects and Maxwell’s equations
similar to classical electromagnetism [9–12]. The awesome similitude between the
primarily-observed natural force (Newtonian gravity) and the later Coulomb elec-
trostatics guided several physicists for centuries to explore an early unification. As
unifications require, gravity is the last one missing to be satisfactorily quantified, in
spite of the remarkable contributions of (special and general) Relativity to Quantum
Electrodynamics, such as the reference-frame (Lorentz) transformations, the Dirac
spinor, and the Teleparallel Gravities [13–15]. The Kaluza–Klein theory [16] has been
proposed as a candidate for a purely classical extension of General Relativity to
(R1,4, g̃), with metric g̃, generalizing (R1,3, g) as follows:

g̃µν ≡ gµν + φ2AµAν , g̃5ν ≡ g̃ν5 ≡ φ2Aν , g̃55 ≡ φ2, (1)

where Aµ is the electromagnetic vector field, φ is a scalar field such that �φ =
1
4φ

3FαβFαβ , Fαβ := ∂αAβ − ∂βAα and � is the d’Alembert operator. The main
achievement of the theory was to deduce, in a natural way, the free-field Maxwell
equations and the electromagnetic stress-energy tensor to curve the spacetime. How-
ever, the gradient of φ leads to a dominant fifth component of the velocity, in
contradiction to experience.

If the particle quotient q/m between charge q and mass m is incorporated into
the Kaluza–Klein metric, it can explain some quantum effects, such as the Aharanov–
Bohm effect and the London equation (see, for instance, [17]). This effect consists of
the modification of the matter wave, exp(ikµdx

µ), of a charged particle according to
the Lagrangian exp(iqAµdx

µ), where kµ is the wave number and Aµ is the external
electric potential.
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The extra dimension of Kaluza–Klein theory was assimilated to the Lie group U(1)
used in the gauge formalism of electromagnetism [18]. A more general SU(n) gauge
theory was proposed by Yang–Mills (1954), and successfully implemented in the case
of SU(2)×U(1) for Electroweak Dynamics and SU(3) for Quantum Chromodynamics.
Currently, it is widely used in coupled gravity theories [19, 20] and integrated within
the double-copy or the squared gauge theories [21–26]. These are supergravities based
on the original idea of Kaluza–Klein, that is, g ∼ A⊗A, where A is a gauge potential
(geometrically, a connection on either a vector bundle or a principal bundle), now
linked to a color-kinematic duality. For instance, the Kerr–Schild–Kunndt metrics
contain a classic double copy of a Yang–Mills gauge field, which leads to a Einstein–
Yang–Mills system [21, 27].

In this context, M-Theory was for a certain time the most promising theory, but the
extra dimensions (not yet observed) and the few proposed experiments make it difficult
to test. Nevertheless, it uses an interesting property of the spacetime Lagrangian
density for D-branes, firstly proposed by Born–Infeld for electrodynamics,

L ∼ α−2

(√
− det (gµν + αFµν) −

√
− det(gµν)

)
α→0−−−→ 1

4
FµνF

µν , (2)

where Fµν is the Faraday tensor or another field-strength curvature 2-form, while α
is related to the tension of a string, D-brane or another quantity such as a dilaton
coupling factor [28, 29]. Moreover, this idea was used in Cosmology within the known
as Eddington-inspired Born–Infeld gravity, which uses the symmetric part of the Ricci
tensor, Rµν , instead of the field-strength, Fµν [30].

In contrast to String theories, Loop Quantum Gravity (LQG) uses only 4-
dimensional manifolds M , however, taking into account the Wick-rotated (i.e.
complex) spacetime. The LQG field states are invariant under the kinematical sym-
metry group SU(2)×Diff(M) of connection dynamics, that is, the semidirect product
of the local SU(2) gauge transformations and the diffeomorphisms of M [31].

Maxwell-type behavior was also found from the geometric structure developed
by Itin [32], who constructed a coframe-based family of linear connections with six
additional degrees of freedom that include both the Levi-Civita and the Weitzenböck
connections as special limiting cases. For its dynamical propagation, it is necessary to
satisfy a system of two first-order differential equations that coincides to the vacuum
Maxwell system on a flat manifold.

As a guiding principle of most theories, coupled Einstein–Maxwell equations are
based on the assumption that the electromagnetic energy modifies the spacetime in
accordance with the equivalence principle or following the geometrization of the inter-
actions [33, 34]. GR states that the gravitational mass (energy) exactly equals in
magnitude the inertial mass (energy); however, this may not be the case for all of the
interactions.

In this paper, we assume as a principle that all energy types contribute to a per-
turbation of the metric, hence reinforcing that all interactions are due to the metric.
Gravity has no stress-energy tensor, but locally it is possible to define a work (energy)
given by the gravity potential, which is transformed into kinetic energy. Both depend
on the reference system and therefore are important actors in GR. The key idea is to

4



define an adequate energy origin to perturb the metric. As a consequence, the inter-
action energy (mass) may be different from the inertial energy (mass). However, the
present work does not aim to stablish a “theory of everything” but it explores the link
between teleparallel gravity and the SU(1,3) gauge theory under the above ideas. This
step is probably necessary to better understand further developments in the direction
of quantum gravity.

The following paragraphs are devoted to reviewing the necessary material and
notation used in this work (especially referred to the spacetime algebra and the spin
connection), as well as to recall some fundamental concepts of the Yang-Mills theory.
Sections 2 and 3 are devoted to the development of perturbations in the spin connection
and in the spacetime algebra, respectively, focusing also on the macroscopic effects to
reproduce the Maxwell equations and the Lorentz force. The final section summarizes
the results and conclusions obtained. Unless otherwise stated, we use natural units
(c ≡ 1 ≡ ~).

1.2 SU(1, p) Yang–Mills field equations

A complex hyperbolic space CH
p, also noted as H

p
C
, is a Kähler manifold [35, 36],

characterized by three mutually compatible structures: a complex structure, a Rie-
mannian structure, and a symplectic structure. An important feature of CHp is that
they are symmetric spaces associated with pseudo-unitary groups SU(1, p), employed
in modern quantum field theories. For instance, let correlators or Green’s correlation
functions be defined as vacuum expectation values of time-ordered products of quan-
tum field operators. Lambert et al. [37, 38] showed that SU(1, 3) conformal symmetry
exhibits a rich structure, compared to conventional correlators in Lorentzian conformal
field theories, and that they solve the Ward-Takahashi identities for general N -point
correlation functions (see, for instance, [39]).

Furthermore, Lipstein and Orchard [40] found a reduction of 6d quantum gravity
to a 5d Lagrangian theory with SU(1, 3) × U(1) spacetime symmetry, linked to the
Poincaré algebra [38]. This idea is related to the Huang [41] proposal for the unification
of the gravitational and SU(1, 3) gauge fields, under the framework of a complex
connection.

As for the special unitary groups SU(n) with n = 1 + p, gauge symmetries of
SU(1, p) lead to Yang–Mills theories [19, 37, 38]. A parallel can be drawn between
chromodynamics, which uses SU(3) as a structure group, and the present work that
uses SU(1, 3) as a structure group. For this reason, color will be used for gauge
fields in SU(1, 3). The Yang–Mills developments are based on a gauge potential field
A ∈ Ω1(P, su(1, p)) that, geometrically, corresponds to a connection 1-form on a
given principal SU(1, p)-bundle, P → M , with (M,g) being a Lorentzian manifold.

Equivalently, gauge theories can be formulated on vector bundles. Let {λI}n
2−1
I=1 be

the (hyper)color generators, i.e., the generators of a representation of su(1, p). The
structure constants fKIJ encode the Lie algebra structure of su(1, p): [λI , λJ ] = ifKIJλK .

Gauge transformations are defined by introducing a phase ϕ(x) = λIϕ
I(x), x ∈M

to any physical wave Ψ(x), that is,

Ψ(x) 7→ Ψ̂(x) = exp(iϕ(x))Ψ(x). (3)

5



The invariance of physical measures of Ψ(x) leads to a gauge covariant derivative, ∇µ,

which satisfies the (gauge) transformation∇µΨ(x) 7→ (̂∇µΨ)(x) = exp(iϕ(x))∇µΨ(x).
Assuming that (M, η) is the (flat) Minkowski spacetime and writing locally A(x) =
Aµ(x)dx

µ, x ∈ M , the gauge covariant derivative is given by the following matrix
operator,

∇µ = 1∂µ − iqλIA
I
µ = 1∂µ − iqAµ, (4)

where Aµ = λIA
I
µ, 1 is the identity matrix (matching the size of the algebra genera-

tors) and q is a coupling constant. The transformation of the gauge potential is given
by

Aµ(x) 7→ Âµ(x) = U(x)Aµ(x)U(x)† − iq−1(∂µU(x))U(x)†, (5)

where U(x) = exp(iλIϕ
I(x)) and the subscript † denotes the Hermitian adjoint. Up

to first order, the previous expression reads

Aµ(x) 7→ Âµ(x) = Aµ(x) − i[λJ , λK ]AJµ(x)ϕ
K (x) + q−1λI∂µϕ

I(x). (6)

The strength of the field is geometrically the curvature of the gauge field, that is,
the 2-form F = dA + A ∧ A ∈ Ω2(P, su(1, p)). This curvature is a basic form of the
adjoint type, which enables us to regard it as a form in the base space M , with values
on the adjoint bundle, s̃u(1, p) = (P × su(1, p))/SU(1, p). It is given locally by the
commutation of the covariant derivative

Fµν := iq−1[∇µ,∇ν ] := λIF
I
µν = λI

(
∂µA

I
ν − ∂νA

I
µ − qf IJKA

J
µA

K
ν

)
. (7)

As the relation [∇α,F
I
νρ] = ∇αF I

νρ holds, the Bianchi identity (Eq. 8) and the Jacobi
identity (Eq. 9) are equivalent.

(∇µFνρ)
I + (∇ρFµν)

I + (∇νFρµ)
I = 0, (8)

[∇µ, [∇ν ,∇ρ]] + [∇ρ, [∇µ,∇ν ]] + [∇ν , [∇ρ,∇µ]] = 0. (9)

Defining the dual strength as F̃µν = 1
2ε
µνρσFρσ, where ε

µνρσ is the Levi-Civita

tensor, the Bianchi identity reads ∇ρF̃
µν = 0.

The gauge potential field has the property of being self-interacting and the
equations of motion are semi-linear. This means that one can manage this theory only
by perturbing with small nonlinearities.

In a four-dimensional manifold, by denoting g = det(g), the Lagrangian density
without sources reads

LF = −1

2

√
−g T r(F 2) = −1

4

√
−g F̃

µν
Fµν . (10)

Similarly, if we consider N spinor sources Ψ = {Ψk}Nk=1 of energy {mk}Nk=1, it
incorporates an additional term and no null equations of motion

LF+Ψ =
√
−g
(
−1

4
F̃
µν

Fµν + Ψ̄k (iγµ∇µ −mk)Ψk

)
(11)
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where Ψ̄k := γ0Ψk
† and {γµ}µ are the gamma matrices. The corresponding field

equations are
∇µF̃

µν = Jν , (12)

where Jν := λIJ
ν
I are the currents, with JνI = qΨ̄kγνλIΨk, which is equivariant under

gauge transformations and satisfies the continuity equation ∇µJ
µ
I = 0.

1.3 Affine, Cartan and Lorentz connections

Some preliminaries are required to recall the notation used in modern relativity,
especially in Lorentz connections and teleparallel gravities [42–45]. Let (M,g) be a 4-
dimensional Lorentzian manifold. Greek index labels are used to denote a (general)
reference frame, that is, a coordinate system on M : {xµ}µ∈{0,1,2,3}. The associated
partial derivatives, which form a basis of local sections of TM , are denoted by {∂µ}µ,
and the corresponding dual basis of the cotangent bundle is denoted by {dxµ}µ.

An observer is given by a tetrad frame, which is a (local) orthonormal paralleliza-
tion of M : {ea}a∈{0,1,2,3} = {e0, e1, e2, e3}. Note that we use Latin index labels for
the tetrad frame. The tetrad components define a vierbein matrix, (eµa)a,µ∈{0,1,2,3},
where ea = eµa∂µ for a ∈ {0, 1, 2, 3}. Analogously, the dual basis is known as the co-
tetrad frame, {ea = e aµ dx

µ}a, with the dual relationship given by ea(eb) = e aµ e
µ
b = δab .

The Lorentzian and Minkowski metrics are denoted by g = gµνdx
µdxν and η =

ηµνdx
µdxν ≡ diag(1,−1,−1,−1), respectively. Hence, the changes of the indexes are

given by e aµ = gµνη
abeνb for a, µ ∈ {0, 1, 2, 3}, since ηab = g (ea, eb) = ea · eb by

definition [5].
Remark 1 (Anholonomic observer frame). A natural question is whether the tetrad
frame can be regarded as the basis of partial derivatives associated to a certain refer-
ence frame. That is to say, if there exists a coordinate chart {xa}a∈{0,1,2,3} such that
ea = ∂a for all a ∈ {0, 1, 2, 3} (whenever both vectors are defined). This can only be
achieved if the Lorentzian manifold (M,g) is flat. In such a case, the frame {xa}a is
called an anholonomic observer, whereas the general frame {xµ}µ is called a holonomic
observer, and the vierbein matrix is given by (eµa = ∂xµ/∂xa)a,µ∈{0,1,2,3}.

The commutation relations of the derivatives in arbitrary coordinates are zero,
[∂µ, ∂ν ] = 0, but tetrads ea := eµa∂µ may present non-zero commutation relations:

[ea, eb] = eµae
ν
b(∂µe

c
ν − ∂νe

c
µ )ec := fcabec, (13)

where the fcab are known as the anholonomic coefficients. If dynamical constraints are
not originated from coordinates (so called holonomic constraints), the system is called
nonholonomic. A typical example of nonholonomic system is a disc rolling on a surface
without slipping, since the new position of every specific point of the disc depends on
the path taken, instead of the coordinates of the disc center.

The coordinate interval, which does not depend on the reference chosen, is given
by dτ := ∂µdx

µ = eae
a ∈ TM ⊗ T ∗M . Similarly, the invariant distance, that is, the

proper time, dτ , is found according to

dτ2 := dτ · dτ = (∂µ · ∂ν)dxµdxν = gµνdx
µdxν = gµνe

µ
ae
ν
b e
aeb

7



= (ea · eb)eaeb = ηabe
aeb = ηabe

a
µ e

b
ν dx

µdxν .

Observe that, in the previous expression, the metric is applied only to the first factor
of the tensor product.
Definition 1 (Affine connection). Let M be a smooth manifold and V → M be a
vector bundle. An affine connection (or covariant derivative) on V → M is a map
D : X(M)×Γ(V ) → Γ(V ) denoted as Duσ for u ∈ X(M) and σ ∈ Γ(V ), where X(M)
is the family of vector fields on M and Γ(V ) is the family of sections of V → M ,
such that (a) it is tensorial over M , i.e., Dfu+vσ = fDuσ +Dvσ, (b) it is linear over
V , i.e., Du(σ + τ) = Duσ +Duτ , and (c) it satifies the Leibniz rule, i.e., Du(fσ) =
u(f)σ + fDuσ, for all f ∈ C∞(M), u, v ∈ X(M) and σ, τ ∈ Γ(V ).

Note that an affine connection may also be regarded as a map D : Γ(V ) →
Ω1(M,V ), where Ω1(M,V ) denotes the family of V -valued 1-forms on M . In a
particular case, the Cartan connection is a principal connection on the frame bun-
dle FM → M that is determined by an affine connection on the tangent bundle,
TM → M . In a reference frame, this affine connection can be written as D = d + Γ,
where d is the exterior derivative and Γ : M → T ∗M ⊗ End(TM) is a matrix of 1-
form connection, where End(TM) denotes the family of endomorphisms of TM . If we
write Γ = Γρµν dx

µdxν∂ρ, where Γ
ρ
µν are the Christoffel symbols of the connection on

TM →M , it can be decomposed as

Γρµν =
◦

Γρµν + Cρµν , (14)

where
◦

Γρµν are the Christoffel symbols of the (torsion-free) Levi-Civita connection and
Cρµν are the components of the so-called contorsion tensor, which are given by

Cρµν =
1

2

(
gβρgλµT

λ
βν + gβρgλνT

λ
βµ − T ρµν

)
. (15)

In the expression above, T ρµν are the components of the torsion tensor, which are
given by T ρµν := Γρµν − Γρνµ.

Since the frame bundle is a principal GL(4)-bundle, the Cartan connection is
(locally) determined by a 1-form ω ∈ Ω1(M, gl(4)). If we restrict gl(4) to so(1, 3), the
Lie algebra of the Lorentz group, SO(1, 3), the corresponding principal connection is
known as the Lorentz connection. Geometrically, we are considering a reduction of the
principal GL(4)-bundle, FM → M , to a principal SO(1, 3)-bundle, P → M , which
exists whenever M is orientable.

Let {Sab}a,b∈{0,1,2,3} be the generators of a spin representation of so(1, 3) onto C4.

In this case, we can write ω = ωµdx
µ with ωµ = 1

2ω
ab
µ Sab for some functions ω ab

µ

that are skew-symmetric in the algebraic indices [42]. Analogously, the components of
the curvature and torsion 2-forms are given by Rµν = 1

2R
ab
µνSab and Tµν = T aµνea,

respectively. For the latter, observe that the generators of the Lie algebra of the trans-
lation group are {ea}a. The Lorentz connection (sometimes called spin connection)
satisfies the metricity condition (or metric compatibility) for the Riemann-Cartan
geometry, and it can be particularized to the (torsionless) Ricci coefficient of rotation
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to obtain GR. As stated above, the spin-connection components are obtained from
the affine connection on the tangent bundle. Specifically, they are given by

ω ab
µ = ηbce aν (∂µe

ν
c + Γνρµe

ρ
c). (16)

This connection defines the Fock–Ivanenko covariant derivative on the associated
vector bundle (P × so(1, 3))/SO(1, 3) →M ,

Dµ = ∂µ − i
2ω

ab
µ Sab. (17)

For a scalar field, the generators are given by Sab = 0. Likewise, for a Dirac spinor
field, we have Sab =

i
4 [γa, γb]. Finally, for a vector field, they are given by (Sab)

c
d :=

i(ηbdδ
c
a− ηadδ

c
b). In particular, the Fock-Ivanenko covariant derivative of a vector field

(wa) reads
Dµw

a = ∂µw
a + ηbcω

ab
µ wc. (18)

In any case, the curvature of the Fock-Ivanenko covariant derivative is given by

Rabµν := [Dµ, Dν ]
a,b = ∂µω

ab
ν − ∂νω

ab
µ + [ωµ, ων ]

ab ≡ (dω + ω ∧ ω) abµν , (19)

where [ωµ, ων ]
ab = ω a

µ cω
cb
ν − ω a

ν cω
cb
µ . The Ricci scalar curvature is given by R =

Rabµνe
µ
ae
ν
b.

1.4 Teleparallel gauge-like theories

Teleparallel gravities are a large set of theories that generalize or modify the GR
[44, 46]. The most widely studied is the teleparallel equivalent of General Relativity
(TEGR), which assumes that gravity is completely modeled by torsion instead of
curvature. That is to say that the Riemann curvature is zero (Rabµν = 0) with null

connection (ω ab
µ = 0). TEGR Euler-Lagrange equations can be obtained from its

action, which is dynamically equivalent to the Einstein-Hilbert equation, as they differ
only by a boundary term [44, 47, 48].

Imitating gauge theories, some authors use translational invariance properties to
formulate the TEGR theory. However, its “translation-gauge formalism” does not
gather the commonly accepted requirements for a complete gauge theory [49]. Inde-
pendently of the mathematical interpretation, we employ this gauge-like formalism due
to its very interesting similarities with the classical gauge theories of particle physics.

As in the previous sections, let (M,g) be a Lorentzian manifold and assume that to
each point of M there is an attached Minkowski space. The anholonomic coordinates
of the Minkowski space are denoted by {xa}a. The result is known as the Minkowski
bundle M → M with coordinates {xµ, xa}µ,a. The translation group acts locally on
the Minkowski bundle xa 7→ x̂a = xa + ǫa(xµ). The Lie algebra of the translation
group is generated by the partial derivatives of the anholonomic coordinates, {∂a}a.
The fields of teleparallel gravity are the 1-forms on M with values on the Lie algebra

9



of the translation group, which are referred to as translational gauge-like potentials,
denoted by φ = φµdx

µ with φµ = φ a
µ ∂a. An infinitesimal translation, δxa = ǫa(xµ),

yields a transformation of the gauge-like potential such that φ̂ a
µ = φ a

µ − ∂µǫ
a. That

is to say, the action of the translation group is extended to the family of gauge-like
potentials. In addition, the gauge-like potential φµ = φ a

µ ∂a induces a transformation
of the vierbein matrix as follows (see e.g. [33]):

e aµ = ∂µx
a 7→ ê aµ = e aµ + φ a

µ = ∂µx
a + φ a

µ . (20)

This enables us to define the gauge-like derivative in TEGR as Dµ = ê aµ ∂a = ∂µ+φµ.
The corresponding strength field is given by Fµν = F aµν∂a, where F

a
µν = ∂µφ

a
ν −

∂νφ
a
µ.
On the other hand, the Weitzenböck connection is the affine connection on TM →

M defined from the new tetrad as Γρµν = êρa∂ν ê
a
µ . The curvature of this connection

vanishes, whereas its torsion is given by T ρµν := Γρνµ − Γρµν . It turns out that the
torsion of the Weitzenböck connection is the field strength of the translational gauge-
like potential seen from the anholonomic frame:

F aµν = ê aρ T
ρ
µν = (e aρ + φ a

ρ )T ρµν (21)

TEGR assumes that the inertial effects are represented by the Weitzenböck con-
nection, while the gravity force is given by the contorsion tensor. In fact, Eq. 14 yields
a decomposition of the geodesic equation in General Relativity:

0 =
duµ
dτ

−
◦

Γρµνuρu
ν =

duµ
dτ

− Γρµνuρu
ν + Cρµνuρu

ν , (22)

where uµ = dxµ/dτ are the components of the 4-velocity. As we see, the Levi-Civita
connection contains both inertial effects and gravity forces under the GR framework.
Likewise, the dynamical equations for a spinless particle of mass m in a gravitational
field φ a

µ are [50]

ê aµ
dua
dτ

=
duµ
dτ

− Γρµνuρu
ν = −Cρµνuρuν = T ρµνu

ρuν = F aµνuau
ν , (23)

where ua = ê aµ u
µ are the anholonomic components of the 4-velocity of the particle.

Finally, the TEGR Lagrangian density is given by [44, 50],

L =
ê

2κ

(
1

4
T ρµνT

µν
ρ +

1

2
T ρµνT

νµ
ρ − T ρµρT

νµ
ν

)
=

ê

2κ

(
1

4
F aµνF

µν
a

)
, (24)

where κ = 8πG and ê := det ê aµ =
√−g. This Lagrangian density provides the same

dynamics as the Einstein–Hilbert Lagrangian with Ricci scalarR, that is, LGR = 1
κ êR,

since it only differs in a divergence, L − LGR = − 1
κ∂µ(ê T

νµ
ν).

Observe that the TEGR Lagrangian density is very close to the Lagrangian density
of a Yang–Mills theory with group structure U(1). Notice that, from the equations

10



above, it is easy to choose some gauge-like potential φµ to imitate the electrodynamic
gauge Aµ such as, for instance, φ a

µ ∼ Aµu
a with an additional factor q

m to connect
the energy m and the coupling factor q. This fact will be central in the following.

1.5 Spacetime algebra

We briefly summarize the main facts (see [51, 52] for more details). Let (M,g) be
a 4-dimensional Lorentzian manifold and M → TM be the Minkowski bundle with
frames {xµ, xa}µ,a, as in the previous section. Recall that the spacetime algebra, also
known as the Lorentz algebra, is the Clifford algebra Cl1,3(R,h), with h = η or g. Let
{vµ}µ and {γa}a be the generators of a representation of the spacetime algebra in the
Lorentzian and the Minkowski metrics, respectively. Hence, they satisfy the following
relations

vµ • vν :=
1

2
(vµvν + vνvµ) = gµν14 (25)

γa • γb :=
1

2
(γaγb + γbγa) = ηab14 (26)

where • is known as the outer product and 14 denotes the (sometimes omitted) identity
matrix. Besides, the exterior product is defined as

vµ ∧ vν :=
1

2
(vµvν − vνvµ) =

1

2
[vµ, vν ] (27)

γa ∧ γb :=
1

2
(γaγb − γbγa) =

1

2
[γa, γb] (28)

Therefore, the decomposition into the symmetric and skew-symmetric parts is given
by vµvν = vµ • vν + vµ ∧ vν , and analogous for γaγb. The relationship between tetrad
components and spacetime generators is given by vµ = eµaγ

a and γa = e aµ v
µ. They are

also related to the Lorentz or spin connection. If we define γa := γ−1
a , the orthogonality

property is satisfied, i.e., γa • γb = δba14, and the same holds for vµ. In particular,
vµ • vµ = γa • γa = 14.

The symbol vµ for the generators of the representation of Cl1,3(R,g) is purposely
chosen because of its link to the four-velocity covector uµ := dxµ/dτ with the line
element dτ :=

√
gνµdxνdxµ =

√
dxµdxµ, whereas the symbol γa is used in honour

to the representation by the Dirac gamma matrices. Indeed, distances defined by the
generators of the spacetime algebra are analogous to the ones defined by the co-vector
u = (uµ)µ∈{0,1,2,3}, that is, dτ = uµdx

µ ∈ Ω1(M). Namely, the element of spacetime is
now defined as dτ := vµdx

µ = γadx
a. This enables us to see the spacetime metric as

the inner product of the coordinate tangent co-vector fields, where the inner product
is defined from the outer product of the algebra generators. More specifically,

14 dτ
2 = dτ • dτ = (vµ • vν)dx

µdxν = 14 gµνdx
µdxν

11



= (γa • γb)dx
adxb = 14 ηabdx

adxb

For each vector field (wa), the total time derivative is given by

Dτw
a := (vµDµ)w

a = dτw
a + ηbcω

ab
µ wcvµ (29)

where Dµ is the Fock-Ivanenko covariant derivative, and dτ = vµ∂µ = γa∂a. Observe
that the classical definition is obtained in straightforward manner by replacing vµ 7→
uµ and the outer product by the standard product.

The main hypothesis of this paper is that the Cartan covariant derivative for
gravity behaves like an SU(1, p) gauge derivative for p = 3. For this purpose, the
spacetime generators γa are perturbed by an SU(1, p) gauge potential field Aµ that
involves the gauge phase of matter-energy fields such that vµ ≈ eµaγ

a + O(Aµ). In
other words, we assume that the set of generators {vµ}µ contains information about
some dynamics of the Standard Model. Our goal is to show how the SU(1, p) Yang–
Mills dynamics emerges from locally-perturbed tetrads, and to check some related
features, such as the recovery of electrodynamics.

1.6 Complexified Minkowskian spacetime

Let (M , η) be the Minkowskian manifold with metric η = diag(1,−1,−1,−1) and
(M c, ηc) be its complexification, defined by M c := M ⊕ iM , where i := e0e1e2e3
is the unitary pseudoscalar obtained with the vector basis {eµ}4µ=0 of M [53, 54]. In
contrast to the real Minkowskian four-vectors (e.g. velocity and linear momentum)
that do not depend on the space orientation choice, the imaginary part consists of
four-pseudovectors (e.g. angular and magnetic momenta) whose direction is affected by
the change of orientation (parity).The terminology of imaginary and complexification
is due to the property of i2 = (e0e1e2e3)(e0e1e2e3) = −1, with eiej := ei · ej + ei ∧ ej .

The inner product structure on M c ∋ a, b is defined by

η(a, b) := η(a+ i x, b+ i y) := η(a, b) + η(x, y)− i η(x, b) + i η(a, y) ,

where a = a + i x, b = b + i y and a, b, x, y are real tangent (vector) fields over M .
For instance, any spinor (spin- 12 particle) can be described as ψ = u + i s ∈ M c,
where u is the unitary linear momentum or four-velocity of the particle and s is the
four-dimensional (spin) angular momentum, which is a Pauli-Lubanski pseudovector
[54] satisfying s2 = −1 and the orthogonality u · s = η(u, s) = 0, while u2 = 1. This
relativistic two-state prescription is useful for describing, for example, the interaction
of a q-charged particle with mass m, spin s and Landé factor ge ≈ 2. Let F be an
electromagnetic tensor; then the interaction with current qψ is d

dτ ψ
α ≈ µψβF α

β ,
where µ = ge

2
q
ms ≈

q
ms is the magnetic momentum [53].
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2 Colored gravity

2.1 Complexified Lorentzian metric

In the following, all the notations previously introduced are assumed. Moreover, let
(M, g) be an oriented Lorentzian 4-manifold of signature (+,−,−,−) with a spin or
oriented loop space LM .

Let TM be the real tangent bundle of M and TcM = TM ⊗C ∼= M c be its com-
plexification. The corresponding frame bundle, which is a principal GL(4,C)-bundle,
is denoted by Lc(M) →M . The real metric g on TM has a unitary extension on TcM
given by

g(a+ i x, b+ i y) := g(a, b) + g(x, y)− i g(x, b) + i g(a, y) ,

where a, b, x, y are real tangent fields over M . The resulting metric preserves the
signature of the original metric and thus it is Lorentzian of signature (+,−,−,−).
Therefore, the metric induces a reduction of Lc(M) →M to a principal U(1, 3)-bundle.
Similarly, the volume form induced by g and the orientation on M yield a reduction
of Lc(M) → M to a principal SL(4,C)-bundle. By gathering both, a reduction1 of
Lc(M) → M to a principal bundle with structure group U(1, 3)∩ SL(4,C) = SU(1, 3)
is obtained. In Sect. 2.3, we onsider a principal connection A on this principal bundle.

The Levi–Civita connection
◦

D of g extends as
◦

Dc to TcM , thereby providing
some reference (torsion-free) connection among all SU(1, 3) connections on TcM .
Under this framework, we develop a theory based on the non-compact gauge group
SU(1, 3), which is subject to long-standing debate concerning the properties of a quan-
tum field theory (QFT) underlying such a gauge theory [56–58].The non-compact
nature of a group such as the U(1) gauge group is usually managed through the
Faddeev-Popov technique with gauge fixing (e.g. Lorenz gauge) and ghost fields for
preserving unitarity, which help to identify the physical degrees of freedom of the
bosons and ensure consistency in the quantization process [59, 60]. Another solution
for a quantum geometrodynamics is to slice the covariant spacetime into 3-dimensional
spacelike hypersurfaces, and its 1-dimensional transverse temporal flux, such as in
the Arnowitt–Deser–Misner (ADM) formalism [61–63]. However, without considering
the difficulties of a suitable quantization, this paper focuses on a possible classical-to-
quantum bridge between the SU(1, 3) Yang–Mills gauge formalism and the gauge-like
treatment of teleparallel gravity (Sect. 2.2). Drawing a parallel between SU(1,3) and
SU(3) chromodynamics, we will say that the bridge defines a colored gravity.

Henceforth, we can assume M ∼= M to be the Minkowski spacetime, which is
trivially a paralellizable non-compact manifold, and thus it admits a global cross-
section (in the frame bundle) that derives a spinor structure. This is essential for
constructing the SU(1,3)-colored connection, since this connection utilizes the spin
structure to define parallel transport and covariant differentiation of spinor fields. At

1Recall from [55, Proposition 5.6] that the existence of this reduction is equivalent to the existence of a
cross section of the bundle of oriented orthonormal frames of M , i.e., the associated bundle

Lc(M) × GL(4,C)/SU(1, 3)

GL(4,C)
→ M,

where the (well-defined) action of GL(4,C) on GL(4,C)/GL(1, 3) is given by left multiplication.
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second order, the Minkowski metric is perturbed by small terms related to the spinor
fields (Sect. 2.5), but it is assumed to be negligible to define the spin structure.

2.2 Classical-to-quantum bridge

To bridge the classical and quantum viewpoints of the coordinates, we have formulated
a hypothesis on the spatial density of a particle located at the point x ∈ M with
4-velocity u = γµu

µ. The volumetric density of a particle is a delta-type function,

℘(y) =
1√
|g(y)|

δ4(y − x), y ∈M , (30)

which contrasts to the quantum density operator ℘̂ := |ψ〉 〈ψ̄| for Dirac spinors |ψ〉.
For each subset U ⊂M , the probability of finding the particle in U is given by

̺(y) =

∫

U

℘(y)dτx :=
1√
|g(y)|

∫

U

δ4(y − x)dτx =

{
1 if y ∈ U

0 if y /∈ U
,

where locally dτx =
√

|g(x)|d4x ∈ Ω4(M). Therefore, the classical (point) density of
probability current is simply ℘u.

On the other hand, quantum field theory considers the current density from spinors
(fields instead of point particles). Let ψ be a Dirac spinor representing particles and
P be any operator. The expectation value is given by the L2 inner product over P ,

〈P 〉ψ = Re 〈ψ̄|P |ψ〉 , (31)

where ψ̄ := ψ†γ0 is the Dirac adjoint in this Hilbert space. Classical quantum mechan-
ics defines the density current as uµ := Re 〈ψ̄| Ûµ |ψ〉 with the momentum operator
Ûµ = i

m∂
µ evaluated for some mass m ∈ R>0. Now, the components of the space-

time current j = γµj
µ are jµ := ψ̄γµψ. Therefore, our hypothesis is that j should be

classically equivalent to ̺u:

j = γµψ̄γ
µψ ≃ ℘γµu

µ =⇒ 〈γµ〉ψ = ̺|x uµ = uµ. (32)

where x is the measured position of the “classical particle” and therefore 〈℘̂〉ψ =
〈14〉ψ = ̺|x = 1. Moreover, notice that Eq. 32 leads to

〈m〉ψ = m 〈u〉ψ = muµ 〈γµ〉ψ = muµu
µ = m = 〈ρ〉ψ , (33)

where ρ := ̺m is the classical point energy density and u = γµuµ = γµu
µ. From now

onwards, we use the symbol “≃” to refer to the classical-quantum bridge:

a ≃ b ⇐⇒ 〈a〉ψ = 〈b〉ψ , (34)
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which has the property that C a ≃ C b for any C ∈ R. Therefore, one recovers
the (quantum) momentum operator i∂µ ≃ mµ and the Dirac equation for ψ =
ψ0 exp(−imγνdx

ν),

iγµ∂µ ≃ m, (35)

or, similarly, iγµ∂µ −m ≃ 0.

2.3 Perturbed spinor frames

Let Ψ = {ψn}4n=1 = {ψ1, ψ2, ψ3, ψ4} be a set of 4 Dirac spinors on a M , that is, a
set of 4 column vectors of fermions or pairs of Weyl spinors. Recall that each Dirac
spinor has 4 components ψn(ψ

µ
n)

3
µ=0; therefore, they can be represented by matrices

|Ψ〉 ∈ M4(C) = C×Cl1,3(R, g), and the total spin of Ψ is an integer value between -2
and 2. These spinor fields represent particles with the same energy, m ∈ R>0, ideally
expressed by the 4-momentum m, i.e., a matrix satisfying m • m = m214, where 14

is the identity matrix. The moment can be decomposed into components using the
generators of the spacetime algebra, {mµ := m • γµ}µ, thus yielding the set of angular
wavenumbers of Ψ. As a physical assumption, we identify these angular wavenumbers
with classical momenta,

m • γµ = mµ = muµ14 := m
dxµ
dτ

14. (36)

Therefore, the velocity is u := m/m = γµuµ. In addition, the spacetime element is
given by dτ := γµdx

µ, whence m • dτ = mµdx
µ. As a result, we may write

Ψ := Ψ0(m) exp

(
−i

∫
m • dτ

)
. (37)

From now on, the integration symbol (
∫
) is omitted

Ψ ≃ Ψ0(m) exp (−im • γµ dx
µ) . (38)

Moreover, we use assume a time-dependent Ansatz for the spinor field to separate
the phase-coherent spinor field Ψ0(m) from the time-dependent scalar field ξ(τ) =
exp (−im • dτ ).

Let A = Aµγ
µ be a gauge potential field, expressed using the spacetime algebra

[64], while let A = Aµdx
µ ∈ Ω1(M, su(1, 3)) be a connection on the principal SU(1,

3)-bundle defined in Sec. 2.1 over M , whose components Aµ = AIµλI are represented
by using a basis {λI}15I=1 of su(1, 3).

Moreover, let ∂µ 7→ ∇µ := ∂µ − iqAµ be the transformation of the linked
covariant derivative. In coordinates, this is equivalent to the introduction of a phase
ϕ(x) into the spinor field given by the appearance of the potential field A. According

to Eq. 6 with vanishing starting potential, i.e. ∇(init)
µ = ∂µ, the final potential field

is Aµ(x) = q−1[∇(init)
µ , ϕ(x)] = q−1[∂µ, ϕ(x)] = q−1∂µϕ(x). Therefore, the phase is
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ϕ(x) = λIϕ
I(x) = qAIµ(x)λIdx

µ = qAµ(x)dx
µ, and is added to transform the field

by the unitary operator U(x) := exp(iϕ(x)) = exp(iqAµ(x)dx
µ). To compensate this

phase, the covariant derivative acts like the Hermitian adjoint operator U †(x) :=
exp(−iϕ(x)) = exp(−iqAµ(x)dx

µ) as follows

Ψ 7→ Ψ̂ := U †(x)Ψ = Ψ0(m) exp (−i (m • γµ + qAµ) dx
µ) . (39)

It can be easily verified that the gauge covariant derivative ∇µ = ∂µ − iqAµ satisfies

the symmetric transformation Ψ̂†∇̂µΨ̂ = Ψ†∇µΨ, with ∇̂µ = U(x)∇µU
†(x). The

operator U †(x) = exp(−iqAµ(x)dx
µ) ≈ exp(−iq

∫
Aµ(x)dx

µ) is also related to the
Wilson loop, a generalization of the Aharanov-Bohm effect [17, 65]. For a single-valued
wavefunction, the phase change around the loop must be an integer multiple such as
ϕ(x) = 2π n with n ∈ N, but these quantization aspects are not addressed in this
paper.

A key point is that the compensatory phase ϕ(x) = qAµ(x)dx
µ = q(A(x)•γµ)dx

µ =
qA(x) • dτ yields the following transformation,

(γµ • m)dxµ 7→
(
γµ + qAµ •

m

m2

)
• m dxµ, (40)

where we have used that m • m = m214. Moreover, we denote by γ̂µ the perturbed
spacetime generators,

γµ 7→ γ̂µ := γµ +Aµ •
q

m
= γµ + aIµλI •

m

m
, (41)

where we denote aIµ := qAIµ/m and 1/m := m/m2 for simplicity. Here, the four-vector

AIµ has one timelike and three spacelike components, analogous to a four-velocity.
On the other hand, it is possible to interpret the compensatory phase of Eq. 40 as
an energy perturbation, m 7→ m̂ := m + qA. This is equivalent to Eq. 41, since
γµ •m • γ̂µ = m+qA = m̂. Now, we can define û := m̂/m = γµûµ = u+qA/m, where

uµ 7→ ûµ := u • γ̂µ = 14uµ +Aµ
q

m
∈ R⊕ su(1, 3), (42)

with Aµ = AIµλI . Here, R is regarded as a subspace of gl(4,C) via the injection a 7→
a14. Note that Eqs. 41 and 42 satisfy the bridge defined by Eqs. 32 and 33. The velocity
component ûµ is an element of R⊕su(1, 3) because λI ∈ su(1, 3) and AIµ , q/m , uµ ∈ R.
Therefore, the velocity û = γµûµ implies that the translation δx̂ = û δτ is an element
of R1,3⊕u(1, 3), which includes the Poincaré algebra R1,3⊕o(1, 3). Thus, all the above
calculations performed with Aµ can be replicated for any element of R1,3 ⊕ u(1, 3).

Moreover, notice that the perturbation of the 4-velocity is a current term qAµ/m,
similar to the Ferrari proposal [17] and the London equation in electrodynamics [66,
67], interpreted as the ground state of the tetrad under the selected gauge, consistent
with the Dirac equation. Up to first order, by applying the change of 0 7→ Aµ to the
co-tetrad transformation ea 7→ êa (Eq. 20), and by assuming local invariance of the
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spacetime algebra, γa := e aµ γ
µ ≡ ê aµ • γ̂µ, Eq. 41 yields

e aµ γ
µ = ê aµ • γ̂µ ≈

(
e aµ + φ a

µ

)
•

(
γµ −Aµ

q

m

)
=⇒ φ a

µ
• γµ ≈ e aµ A

µ •
q

m
= Aa •

q

m
,

where we write Aa := e aµ A
µ. The co-tetrad perturbation φ a

µ is now a matrix that
is not unique. We use the following as an ansatz,

φ a
µ := −iqA a

µ := qAa
mµ

m2
=

q

m
Aauµ = Aa •

q

m
• γµ, (43)

where A a
µ := iAamµ/m

2 and mµ = muµ14, being uµ := dxµ/dτ the 4-velocity
covector (recall Eq. 36). The constant −iq is explicitly stated for convenience. Since
ea(e

b)14 = êa(ê
b) = êµa • ê bµ = δab14, the tetrad perturbation is φµa = eµbe

ν
aφ

b
ν ≈

−iqAµa, with êµb = eµa − φµa. To this, A a
µ = e bµ e

a
ν A

ν
b is implicitly related to the

teleparallel gauge-like potential φµ = φ a
µ ∂a, which implies that

Aa ≃ Aµa∂µ = Aa •
i

m
• γµ∂µ . (44)

The expression of the gauge potential (Eq. 44) is fundamental for the proposed
translation gauge φ a

µ = −iqA a
µ . However, the Dirac-like equation (see Eq. 35), i

m

•

γµ∂µ ≃ 14, is only valid for expectation values of the spinor Ψ = Ψ0(m) exp(−im • dτ )
selected, i.e.,

i

m
uµ 〈∂µ〉Ψ = 1.

For other cases, it is necessary to consider the replacement m ↔ iγµ∂µΨ̃, as it

corresponds to a new field Ψ̃.

2.4 Colored spacetime algebra for spinors

Given the set of spinors Ψ(x) = Ψ0(m) exp(−im • dτ ), we define an extended
teleparallel gauge (ETG) translation of the coordinates,

δxa ≈ − ( I4 φ
a
ν scalar + φ a

ν ) δxν (45)

where φ a
ν scalar is the usual TEGR perturbation, φ a

ν is the perturbation developed
in the section above and, therefore, δx ∈ R1,3 ⊕ u(1, 3). To explore possible limits of
electromagnetism, we neglect the scalar term φ a

ν scalar ≈ 0.
Now, δxa ≈ −φ a

ν δx
ν ≃ iqA a

ν δx
ν is related to the U(1, 3) gauge transformation

and the Wilson line, modifying the trajectories and therefore also the (oscillating) local
coordinates {xµ}, which become matrices. This ETG relation yields the following
transformations:

γµ 7→ γ̂µ := γµ +Aµ •
q

m
, (46)

dxµ 7→ ˆdxµ ≈ 14dx
µ −Aµ •

q

m
• γνdx

ν ≃ 14dx
µ + iqA µ

ν dx
ν ,
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∂µ 7→ ∂̂µ ≈ 14∂µ + Aµ •
q

m
• γν∂ν ≃ 14∂µ − iqAµ. (47)

where

Aµ = A a
µ ∂a ≃ Aµ •

i

m
• γa∂a,

q

m
• γν =

q

m2
mν =

q

m
uν14.

In particular, the new coordinates satisfy

γ̂µ • γ̂ν • ˆdxµ • ˆdxν = dτ • dτ = γµ • γνdx
µdxν .

Moreover, the following must be satisfied: 14 = 14∂µdx
µ = ∂̂µ • ˆdxµ, from which

we deduce that (Aµu
ν)∂νdx

µ = ∂µ(A
µuν dx

ν) = (Aµ∂µdx
ν)uν with uν∂µdx

ν =

uν∂µu
νdτ = 0 and ∂µA

µ = 0. Applying the derivative ∂̂µ to our particular set of

spinors, Ψ(x), we obtain ∂̂µΨ̂ ≈ −i(mµ + qAµ)Ψ = ∇µΨ. Naturally, condition

∂̂µΨ̂ = ∂µΨ is satisfied, which is equivalent to ∂̂µ • ˆdxµ = ∂µdx
µ, where the new coor-

dinates behave like matrices. In other words, the transformed spacetime basis for a
particle-field Ψ, ( ˆdxµ, ∂̂µ), is equivalent to the introduction of a (non-abelian) Wilson
phase, −ϕ = −Aµdxµ, to the field while keeping the original basis (dxµ, ∂µ).

Observe that the London equation current with gauge field Aµ in U(1, 3) transforms
the spacetime coordinates as follows:

x̂µ ≈ 14x
µ −

∫
q

m
Aµuνdx

ν = 14x
µ −

∫
q

m
Aµdτ ∈ R⊕ u(1, 3) (48)

Hence, x̂µ ≈ (ηµν − qAµuν/m)xν .
Moreover, the 4-velocity transforms as

ûµ ≈ 14u
µ − q

m
Aµ. (49)

We conclude from Eq. 42 that it satisfies ûµ • ûµ = 14.
The matrix structure of the 4-velocity ûµ and spacetime coordinates x̂µ can be

interpreted, respectively, by the classical-to-quantum bridge to the m-normalized
momentum operator Ûµ := 1

m P̂
µ := i

m (14∂
µ + qAµ) and the corresponding

translation-position operator X̂µ.

2.5 Colored metric

The perturbed metric coordinates evaluated at x for Ψ(x) are given by the perturbed
spacetime generators (Eq. 46). Taking êµ := ê aµ ∂a = eµ + φµ, the metric components
are now matrices themselves:

gµν := γ̂ν • γ̂ν = êµ • êν

≈ ηµν14 + 2
q

m
A(µuν) ≈ ηµν14 + 2φµν ,

(50)
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where A(µuν) := (Aµuν +Aνuµ)/2 and φµν = φ(µ • eν). The inverse is given by

gµν = (g−1)µν ≈ ηµν14 − 2
q

m
A(µuν) ≈ ηµν14 − 2φµν .

Alternatively, the metric components can be written as gµν ≈ ηµν14− ûµ • ûν+uµuν14

and gµν ≃ ηµν14 + ûµ • ûν − uµuν14. Observe that êµ and eµ behave as tetrads
of directions or four-velocities in the corresponding algebra and frame, while φµν is
identified as a linearized perturbation. In particular, the coordinates and the metric
components are complex matrices, as the perturbation generators {Aµuν}µ,ν are not
elements of Cl3,1(R). Moreover, now, the metric represents a spacetime-particle field
instead of the classical spacetime metric.

Definition 2. (Simply gravity). Let gµν := 14ηµν +
∑

r ςr û
r
µû

r
ν be the metric

components with perturbation such that (ûrµû
r
ν) :M → (14R⊕u(1, 3))⊗(14R⊕u(1, 3))

is multiplied by a scalar field ςr : M → R. The effects of the perturbation will be
named “simply gravity” whenever each perturbation component is a purely diagonal
matrix (ûrµû

r
ν)(x) ∈ 14R, that is, ςr û

r
µû

r
ν = 14ςr kµkν for some Kerr–Schild unitary

vector field k = (kµ)µ : M → TM . Moreover, if η0,0 ςr ≤ 0 the metric represents
a usual (simply) gravity spacetime, while for η0,0 ςr > 0, it leads to a (simply)
gravity source, corresponding to “matter sources” instead of “effects on spacetime
curvature”.

Remark 2 (Spacetime). We assume that spacetime is perturbed at second order,
M → M̂ =M⊕O(û2), as a result of the small terms added to the metric 14ηµν → gµν .

Remark 3 (Geons). The idea of “geons” conceptualized by [2] is very similar to the
simply gravity sources defined above.

2.6 Double-copy gauge potential

To derive more interesting effects, it is necessary to analyze the second-order terms.
In particular, one can pay attention to the definition of the origin of the SU(1, 3)
gauge potential following the covariant Lienard-Wiechert or Cornell-like forms. The
corresponding perturbation of the spacetime algebra is given by

γµ 7→ γ̂µ := γµ + κAµ • A(0) , (51)

where the origin (conveniently normalized with the quadratic Casimir operator),

A(0) =
q

κm
=

q

κm2
m ∈ M4(C),

is a matrix proportional to the momentum m = mµγµ = mµγ
µ. If we denote by

Â := A − A(0) the relative gauge with coordinates Âµ := Â • γµ, then the second

terms of the metric are found as above, but using the double gauge copy of Â instead
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(recall Eq. 50):

gµν = γ̂µ • γ̂ν = ηµν − κÂµ • Âν + κAµ(0) •Aν(0)
= ηµν − κAµ • Aν + 2qA(µuν)/m,

(52)

where Aµ = A • γµ is now a SU(1, 3) gauge potential (boson) and the last term
represents a gravity source at x = 0 ∈ R4 (see Def. 2), while the first perturbation
term, Aµ •Aν , corresponds to a gravity spacetime linked to a pair of bosons entangled
(i.e., a candidate for graviton).

Since Aµ ∈ su(1, 3) ⊂ u(1, 3) and u ∈ R1,3, perturbations of the complexified metric

g ∼ η + Â⊗ Â = η + (u⊕A)⊗ (u⊕A)

can be identified, via the canonical isomorphisms of tensor products, with elements of
the

(
R1,3 ⊕ u(1, 3)

)
⊗
(
R1,3 ⊕ u(1, 3)

)
space, instead of the classical R1,3 ⊗R1,3 tensor

space.
Observe that when the perturbation components are purely diagonal, the metric

provides a Cl4(C) algebra generated by {γ̂µ}3µ=0. As a particular case, one can recover
the classical double-copy used in the Kaluza–Klein and the Kerr–Schild–Kundt met-
rics, g ∼ η +A⊗ A (e.g., the black holes of Kerr–Newman and Reissner–Nordström)
[26], and can consider higher-order corrections to the Lagrangian (see Sect. 2.8) by
following analogies with the Born–Infeld / D-Brane actions [29]. Similarly, the dust-
based linearized metric, g ∼ η + u ⊗ u, can be recovered as a limiting case of the
torsion-based colored gravity metric.

Schematically, the torsion of the developed metric describes a double-helix-like
structure consisting of pairs A ⊗ A of entangled su(1, 3) vector fields or bosons (e.g.
QED-carrier photons or QCD-carrier gluons). Geometrically, these potential fields are
interpreted as the connection of a double-copy gauge transformation generated by an
extended Poincaré algebra R1,3 ⊕ u(1, 3). From a physical perspective, these bosons
are virtual particles of exchange in each interaction (transformation) of the extended
Poincaré symmetry group.

The features of the double-gauge metric are very rich and deserve to be analyzed
in detail in some future work. The simplest case is the abelian U(1) electrodynamics,
which is developed in Sect. 3.

From the compatibility hypothesis on both sides of the metric perturbation (A, u),
we conclude that the natural algebra is built with su(1, 3). The idea of a double-copy
gauge potential A⊗A ∈ su(1, 3)⊗ su(1, 3) is linked to some remarkable isomorphisms.
For instance, the chiral group for spinors is SU(2)×SU(2). The representatives of the
spacetime algebra are isomorphic to 2 × 2 quaternion matrices, M2(H), and to the
double 2 × 2 unitary matrices, U(2), that is, Cl1,3(R) ≃ gl(2,H) ≃ u(2) ⊕ u(2). On
the other hand, the quaternion formulation of the GR provides interesting links to
electrodynamics [68, 69].

The complexification of the spacetime algebra leads to the Dirac algebra, Cl4(C) ≃
Cl1,3(R)⊗C ≃ u(2)⊕ u(2)⊕ u(1), which contains the electroweak interaction algebra,
su(2) ⊕ u(1). Moreover, the reoriented elements of Cl1,3(R) representing the genera-
tors of SU(3) bring the well-known degree-preserving transformations of the Lorentz
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group and comprise enough structure for both the color- and the flavor-SU(3) [70, 71].
Nevertheless, the Dirac-algebra generators can be used to linearly span the whole alge-
bra gl(4,C), that is, any 4× 4 complex matrix can be expressed by using the sixteen
Dirac matrices as a basis [72, 73]. The su(4) algebra allows to model quarks and lep-
tons within the same symmetry [74, 75], while u(1, 3) is important to describe strong
interactions of quarks and gluons in a non-perturbative domain at large interaction
distances [76]. In this context, it is conceivable that the su(1, 3) algebra also leads to a
similar quark-lepton model, as happens in the su(4) case, and since it has similarities
with Wess-Zumino-Witten models in 2 dimensions and with Chern-Simons theories in
3 dimensions [56, 77].

Among the relevant subalgebras of su(1, 3), we enumerate su(3) and su(2)⊕ u(1),
which are reductive of maximal rank. However, su(3)⊕su(2)⊕u(1) cannot be embedded
into su(1, 3), although it admits an embedding into the double su(1, 3) and double
su(4), or more generally double u(4) [72, 78, 79]. Therefore, the (1, 3)-color symmetries
can be broken into the 3-color and the hypercharge symmetries of the Standard Model,
thanks to the coupling factors and the partial composition of the Higgs boson [71, 79–
83]. The role of this breaking is played by the perturbation properties of Cl4(C).
The solution to obtain compatibility of the above mentioned facts is to describe the
perturbation of the spacetime algebra using either the Lie algebra su(1, 3) ⊕ su(1, 3)
or u(1, 3)⊕ u(1, 3).

2.7 Colored covariant derivative

The covariant derivative for a scalar field is Dµ := ê aµ ∂a, which is given by the co-
tetrad components ê aµ as representatives of the teleparallel translational gauge-like
field φ a

µ . The (non-trivial) co-tetrads and tetrads are given by

êa = ê aµ dx
µ ≈ ea + φ a

µ dx
µ ≈ ea + φa, (53)

êa = êµa∂µ ≈ ea − φµa∂µ ≈ ea − φa, (54)

respectively, where the identities φa = φµa∂µ and φa = φ a
µ dx

µ have been used, and
the identity matrices have been omitted for brevity. For a spinor field Ψ expressed in
the above time-dependent Ansatz, total covariant derivative is Dµ = ê aµ ∂a+ωµ, where
ωµ is the spin connection. Considering weak gravitational field, the spin connection
components are negligible (because they are derivates of φ), minimizing the effects
of local Lorentz transformations on the spinor field. Therefore, we assume that the
primary contributions to the covariant derivative come from the translational gauge
field φ.

In terms of the potential field Aµ of the SU(1,3) gauge, the Eqs. 53 and 54 read

êa ≈ ea + φa ≈ ea +
q

m
Aauµdx

µ ≃ ea − iqA a
µ dx

µ, (55)

êa ≈ ea − φa ≈ ea −
q

m
Aau

µ∂µ ≃ ea + iqAa. (56)
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It follows that the Cartan covariant derivative Dµ coincides with the teleparallel gauge

Dµ ≡ ∂̂µ ≡ êµ = ê aµ ∂a ≈ eµ +
q

m
Aµu

a∂a ≃ ∂µ − iqAµ = ∇µ. (57)

Finally, the expectation equivalence ∇µ ≃ Dµ between the SU(1, 3) gauge derivative
and the teleparallel derivative can be set for each particle-field involved (expectation
value). This equivalence is of major relevance to ensure the consistence of the theory
for non-abelian fields A.

2.8 Colored Gravity Lagrangian density

Due to the equivalence of the covariant derivatives, the 2-form torsion tensor yields
the field strength of the teleparallel translational gauge (Eq. 21), which behaves like a
2-form curvature. Therefore, by introducing the perturbed co-tetrads (Eq. 55) in the
field strength and by applying expectation values (Eq. 34), we obtain the SU(1, 3)
field strength (geometrically, the curvature 2-form):

Fµν := F aµν∂a = [Dµ, Dν ] = (Dµê
a
ν −Dν ê

a
µ )∂a ≈ q

m
Fµνu

a∂a ≃ −iqFµν , (58)

where Fµν := iq−1[∇µ,∇ν ]. From now on, we will refer to A as the Colored Gravity
Field. Moreover, the torsion scalar yields the Yang–Mills scalar

F aµν ≃ q

m
Fµνu

a 7→ F aµνF
µν
a ≃ q2

m2
FµνF

µν , (59)

which is valid for the spinor Ψ.
By introducing the perturbed co-tetrads in the torsion scalar of the TEGR

Lagrangian density (Eq. 24), and by including a source Lagrangian with energy density
ρ, i.e., Lm = −ê ρ, we arrive at

L =
ê

2κ

(
−1

4
F aµνF

µν
a

)
+ Lm ≃ ê

2κ

(
−1

4

q2

m2
FµνF

µν

)
+ Lm . (60)

For a perfect fluid, the source energy is m̂ = Iwm where Iw := (1 + 3w)/(1 + w),
as shown in Eq. A10 of the Appendix A. Therefore, the total energy density is ρ̂ =
Ψ̄IwmΨ, while the proper energy density is ρ = Ψ̄mΨ = I−1

w ρ̂. However, in our case
the source energy is the gauge field A.

Let A(0) be the gauge field evaluated at the position of the test particle, with
four-current q = qγµ and scalar charge q. The total density energy is q • A(0), where
A(0) ≈ q/4πrm is the potential in the particle, which is valid for short distances rm
(see, for instance, [84]). Since our gauge fields behave as perfect fluids with w = 1
(cf. Eq. A8 of the Appendix A), the proper energy density has a factor I−1

w = 1/2.
Moreover, we need to introduce a normalized factor, fm = iγµDµ/m + O, where O

are the other terms related to either the Dirac equation or the Bargmann–Wigner
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equations, i.e.,

ρ = Ψ̄m̂qfmΨ = Ψ̄
1

2
q • ∆A

(
i

m
γµDµ + O

)
Ψ , (61)

where ∆A := A−A(0) ≈ −A(0) and Ψ̄ := Ψ†γ0 is the Dirac adjoint, with Ψ† being
the Hermitian adjoint. On the macroscopic scale, with a large number of particles,
the factor fm should be replaced by fm 7→ 1. Similarly, by changing Ψ̄m̂qΨ(x) 7→
m̂qδ

4(x−y), we obtain a density of the electric energy m̂q at the point y. In addition,
the divergence term of the Ricci scalar,−∂µ(T νµν ê/ κ), is useful for the Einstein–Hilbert
Lagrangian of GR to recover the classical Einstein field equations and the Maxwell’s
equations by considering the matter Lagrangian, Lm = −êρ ≈ 1

2 êq • A(0) (see Sect.
3.4).

By hypothesis, we assume that the minimum distance corresponds to the par-
ticle event horizon rm = 2Gm. This implies that the potential origin is A(0) ≈
q/(8πGm) = q/(κm), thus yielding

L =
ê

2κ

(
−1

4
F aµνF

µν
a

)
− êρ ≃

≃ ê

2κ

(
−1

4

q2

m2
FµνF

µν

)
+

q2ê

2κm
Ψ̄

(
i

m
γµDµ + O

)
Ψ ≃

≃ ê

2κ

q2

m2

(
−1

4
FµνF

µν + Ψ̄ (iγµ∇µ +mO) Ψ

)
, (62)

which produces the same Euler–Lagrange equations than the Yang–Mills Lagrangian,
LF+Ψ (recall Eq. 11). However, this one has a different coupling factor between
fermions and gravity compared to the first-order tetradic Palatini action, whose
Lagrangian density is

L = ê

(
1

2κ
êµaê

ν
bRµν

ab + Ψ̄(iγµDµ −m)Ψ

)
, (63)

where ê := det ê aµ =
√−g, κ = 8πG and Rµν

ab is the curvature of the spin
connection. The interpretation of the different coupling factors is that the SU(1, 3)
Yang–Mills interactions would be particular cases of the colored gravity in which the
spinors are coupled. In other words, due to the spatial gauge choice for the potentials,
the gravitational constant, κ, does not affect in the first order of the perturbative
interactions.
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3 Electromagnetic limit and beyond

3.1 Torsion-free components

Before analyzing the classic limit, it is useful to check some properties of the Lorentz
connection, since particle trajectories can be described by both the TEGR (with tor-
sion) and the GR (without torsion) geodesics of the spacetime-particle field. In fact,
TEGR contorsion can be absorbed as a Riemann curvature effect [44, 85]. Similarly,
electrodynamics can be modeled by torsionless Riemannian geometry because the
gauge group is Abelian. This means that the subgroup U(1) ⊂ SU(1, 3) will be con-
sidered in the following sections to describe the gauge potential A (perturbation of
the metric). The perturbed co-tetrads lead to a perturbed spin connection, whose
(torsionless) components ω ab

µ are (Eq. 16):

ω ab
µ = ê aν

◦

Dêνb = ê aν (∂µê
νb +

◦

Γνσµê
σb)

= 1
2 (∂µê

b
ν − ∂ν ê

b
µ )− 1

2 ê
νb(∂µê

a
ν − ∂ν ê

a
µ )− 1

2 ê
ρaêσb(∂ρêσc − ∂σ êρc)ê

c
µ

≈ 1
2 (∂µê

ab − ∂µê
ba − ∂aê bµ + ∂bê aµ − ηρaησbηcd(∂

aê dσ − ∂bê dρ )δcµ)

≈ −(∂aφ b
µ − ∂bφ a

µ ) ≈ − q
m

(
∂a(Abuµ)− ∂b(Aauµ)

)
. (64)

Two interesting properties of the connection are found for the application to spinors Ψ
and for contractions with γµ (useful for vector fields). Taking into account the Lorentz
generators for spinors, SΨ

ab = i[γa, γb]/4, we obtain

ω ab
µ SΨ

ab ≈
i

4
ω ab
µ [γa, γb]

≈ − i

4
q
m

(
∂a(Abuµ)− ∂b(Aauµ)

)
(γaγb − γbγa) ≈ 0,

(65)

which means that the torsion-free connection does not provide additional terms to
the total covariant derivative, and it requires to take into account derivatives of both
the spin connection and the gauge covariant derivative, e.g., D̂µ = ∂̂µ − iω ab

µ Sab/2 =

∂̂µ + 0 ≃ ∇µ. Alternatively, one can incorporate the contorsion part of the Lorentz
connection, thus obtaining in a natural way the total covariant derivative Dµ ≃ ∇µ.

On the other hand, the connection form for vector fields is obtained by the
contraction with uµ, and it is also useful to obtain the contraction with dxµ

ω ab
µ uµ ≈ − q

m

(
∂aAb − ∂bAa

)
≈ − q

m
F
ab, (66)

ωab := ω ab
µ dxµ ≈ ∂bφa − ∂aφb = − q

m
F
abdτ, (67)

where the equality γµγ
µ = γµγµ = 4 has been used and, in particular, γµ(∂aγµ) = 0.

Moreover, recall that Fab := ∂aAb − ∂bAa are the components of the U(1) field-
strength tensor, that is, the components of the 2-form Faraday curvature F :=
1
2Fµνdx

µ ∧dxν = dA = (∂µAν)dx
µ ∧dxν . Notice that details on possible non-abelian

effects of the sources are lost if the contorsion is not added.
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For a vector field va, the total time derivative Dτ := γ̂µDµ = γµ∂µ behaves well.
Recall that the equation of motion for a free particle is given by Dτv

a = 0 (Eq. 29),
that is,

Dτv
a := γ̂µDµv

a = dτv
a + ηbcω

ac
µ uµvb = 0 ⇒ dτv

a ≈ q

m
F
acvc, (68)

which is the equation of a particle subject to a Lorentz force. As mentioned in the
previous sections, the acceleration of spinless particles can be modelled by both the
torsion tensor (like an external force) and the geodesic equation within the pseudo-
Riemannian geometry. That is to say, the description of the movement is provided by
the Ricci coefficient of rotation and, therefore, it is also into the Ricci tensor.

In local coordinates, since the components of dFa
b are sixteen real functions, the

Lorentz curvature 2-form components are

Rab = dωab + ωac ∧ ωcb ≈ − q

m
dF

a
bdτ +

( q
m

)2
F
a
c ∧ F

c
bdτ

2. (69)

Similarly, applying ê aµ = e aµ + φ a
µ adequately to the Ricci curvature, taking into

account Eq. 64, the first-order Ricci scalar for the Hilbert–Einstein action is

R := Rab ∧ ⋆êab = Rµνabê
µνab =

1

2
(∂µωνab + ω c

µa ωνcb)
(
êµaêνb − êµbêνa

)
≈

≈ − 1
2
q
m∂µ (∂a(Abuν)− ∂b(Aauν))

(
êµaêνb − êµbêνa

)
+ 0 ≈

≈ − q
m∂

a
(
∂a(Abu

b)− ∂b(Aau
b)
)
≈ − 1

m∂
a∂a(Abj

b) (70)

where ∂a∂b(Aau
b) = 0 and jb := qub are considered. This curvature scalar den-

sity is consistent with the electromagnetism prescription, as shown in the following
subsection.

3.2 Physical prescription

According to the above developments, the electrodynamics equations are obtained by
the choice of a potential energy origin, which causes curved geodesics. This subsection
is focused on the description of that idea and its consequences in a classical way, and is
supported by auxiliary calculations in the Appendix A. Of course, electromagnetism is
defined by the Abelian subalgebra u(1) ⊂ su(1, 3). Therefore, the metric perturbation
φ a
µ = Aauµ is now real, isomorphic to the classical linear perturbation in gravity.
Spacetime-particle geodesics. For classical gravitational interactions, the geodesics

generated by a source energy do not depend on the energy (inertial mass) of the point
object in “free fall”. However, the metric perturbed by a gauge potential now differs
from that situation, since it depends on the mass m and the charge q of every “test
particle”, forming a new indivisible entity of spacetime-particle field. In other words,
the interaction energy (qA) is not the same than the inertial energy (m). In order to
ensure continuity in the metric tensor field, g, it is required that all the quantities are
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also fields (constant or not), that is,

gµν(x) ≈ ηµν + 2φµν(x) ≈ ηµν + 2
q(x)

m(x)
Aµ(x)uν(x). (71)

where the fields m and q are not constant due to the dependence on the position of the
particles. The potential vector field, A(x), needs to be the sum of all of the Lienard-
Wiechert-like potentials evaluated at x, including the gauge field generated by the
quantum numbers (q(x)) and any possible external fields.

Two-particle interaction. Consider a system with only two (almost) point particles,
‘1’ and ‘2’. For particle ‘1’, let q1 be its electric charge, u

α
1 be its 4-velocity, y = (t, ~r1) ∈

R4 its location and A1 be the vector field caused by it. Analogously, for the particle
‘2’, let q2 be its electric charge, uα2 be its 4-velocity, m be its mass, x = (t, ~r2) be its
location and A2 be the vector field caused by it, which is assumed to be negligible,
i.e., |A2| ≪ |A1|. Therefore, the total vector field, A(x) ≈ A1(x), is essentially external
and the metric evaluated at x should be interpreted, on a macroscopic scale, in one of
the following two ways,

g (a)
µν ≈ ηµν + 2φ (a)

µν ≈ ηµν + 2
q2
m
A

(2)
1 u2µu2ν , (72)

g (b)
µν ≈ ηµν + 2φ (b)

µν ≈ ηµν + 2
q2
m
A1(µu2ν)m, (73)

where A
(2)
1 ≈ A1γu

γ
2 and A1(µu2ν) := (A1µu2ν + u2µA1ν)/2 = A1(u1µu2ν + u2µu1ν)/2

are defined by a scalar function ζ(r) such that A1γ(r) = q1u1γζ(r), and the relative
distance r := max{|(xµ − yµ)uµ|, rm} is measured with respect to a minimum value
rm. By defining the four-currents as J1ν := q1u1ν and J1ν := q2u2ν , we can identify
the semi-classical perturbation Φαβ :

g
(a)
µν ≈ ηµν +

2

m
ζ(r)Jγ1 J2γu2µu2ν ≈: ηµν + Φ

(a)
µν ⇒ Φ

(a)
µν =

4G

rm
ζ(r)Jγ1 J2γu2µu2ν , (74)

g
(b)
µν ≈ ηµν +

2

m
ζ(r)J1(µJ2ν) ≈: ηµν + Φ

(b)
µν ⇒ Φ

(b)
µν =

4G

rm
ζ(r)J(1µJ2ν), (75)

where the minimum distance (or spatial gauge) has been chosen in the event horizon of
the test particle ‘2’, i.e., rm := 2Gm with w = 1 (see Eqs. A8 and Eq. A13 of Appendix
A). Taking into account the relative distance r, the scalar function is ζ(r) = k/r,
where k = 1/(4π) is the Coulomb constant with permittivity ǫ0 ≡ 1 in natural units.
Now, one can identify a Lienard-Wiechert-like potential Φ from the pertubed metric
(Eq. 75) such as

Φ (b)
µν ≈ 4

G

k
ζmA(1µJ2ν) ≈ 4G ζm

J(1µJ2ν)

r
≈ 4

G

k

kq2
rm

kq1
r
u(1µu2ν)

≈ 4
G

k
A(1µA2ν),

(76)

where ζm := ζ(rm) = k/(2Gm) = 1/(8πGm) = 1/(κm), while A1 := A1(r) and
A2 := A2(rm) := J2ζm, as the reference is at the particle ‘2’.
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3.3 Lorentz force and Maxwell equations

Lorentz force. The electric energy perturbation leads to the Lorentz force. To prove
this, it is enough to use linearized gravity (Eq. A10 of Appendix A) and the metric of
Eq. 72 or Eq. 73. For both metrics, the Lagrangian functional for a test particle ‘2’ is
the same:

L =
m

2
gαβu

α
2u

β
2 ≈ m

2
ηαβu

α
2u

β
2 +Aγ1q2u2γ . (77)

The second-order term of the metric is omitted because its effects are negligible for
point particles (see Appendix B). By defining the Faraday tensor as Fγα := ∂γA1α −
∂αA1γ , the Euler–Lagrange equations (Eq. A11 in Appendix A) are

d

dτ
(mu2α + q2A1α)− q2u

γ
2

∂A1γ

∂xα2
=
d

dτ
(mu2α) + q2u

γ
2

∂A1α

∂xγ2
− q2u

γ
2

∂A1γ

∂xα2

=
d

dτ
(mu2α) + q2u

γ
2Fγα = 0,

(78)

which is the Lorentz force.
Perturbation sources. The Source Analysis (SA) is defined by considering that

the total potential field A(x) is generated only by the source ‘1’ in x = x1, that is,
q(x) = q1(x), J(x) = J1(x) and A(x) = A1(x). Nevertheless, classically it may be
more interesting to consider the Interaction Analysis (IA), with a test particle ‘2’ with
q2 ≪ q1 that is moving parallel to ‘1’ (i.e., u := u1 = u2) to reproduce a stationary
frame. For both cases, the metric of Eq. 74 is equal to Eq. 75, and the IA recovers the
SA when q2 is replaced by q1. For instance, consider the following field:

Φµν ≡ Φ (b)
µν ≈ 4

G

k
ζmA1µJ2ν = 4

G

k
ζmA1µq2uν .

Using the first-order Einstein field equations (Eq. A3 of Appendix A), we find that

R(1)
µν ≈ 8π

(
Pµν −

P

2
gµν

)
=⇒ −1

2
∂γ∂γΦµν ≈ 8πGρ̂quµuν

=⇒ −2
G

k
ζmq2∂

γ∂γ(A1µuν) ≈ 8πGρ̂quµuν,

(79)

where w = 1/3 is required, which corresponds to a perfect fluid, and the total energy
density (including pressure effects and omitting retarded terms) equals to

ρ̂q ≈ −d(Jγ1 J2γζm)

dV
≈ −q2Qζm, (80)

where the (rest) charge density is given by

Q(y) :=
dq1
dV

:≈ q1

∫
δ4(y − x)√−g dτ.

27



Since the test particle appears on both sides of Eq. 79, the dependence on ζmq2
vanishes. As expected, considering the SA instead of the IA, it also vanishes. With
this, the Maxwell equations are obtained in Lorentz gauge formulation:

∂γ∂γA1µ ≈ 4πkjµ, (81)

with jµ := Quµ. Note that the harmonic coordinate condition ∂αΦαβ = 1
2η
αγ∂βΦαγ

for Φαβ ≈ q2ζmAuαuβ is equivalent to the Lorentz gauge (∂γAγ = 0) when the
four-velocity uβ is applied to both sides of the Eq. 79, as A is an electrostatic field
(uβ∂βA = 0) and 0 = ∂γ(uβuβ) = 2uβ∂γuβ. To complete this result, the homogeneous
equation ∇[αFβγ] = ∇[α∇A[βγ]] = 0 is easily obtained from the first Bianchi identity,
Rσ[βγδ] = 0, by applying the identity AσR

σ
βγδ = ∇[γ∇δ]Aβ . This is also trivially found

by using the 2-form representation of the Faraday tensor (F = 1
2Fµνdx

µ∧dxν = dA),
i.e., dF = 0, since the second exterior derivative is zero (d2 ≡ 0).

3.4 First-order Lagrangian density

The Lagrangian density of matter [86] is LM = −ρ√−g, where ρ = I−1
w ρ̂ is the proper

energy, which is related to the effective total energy density. For electromagnetism,
one has ρ̂ ≈ ρ̂q = −j1µJµ2 ζm, where j1µ := Qu1µ is the density of the source four-
current and J2µ := q2u2µ is a test-particle 4-current. With the first-order Ricci tensor,

R
(1)
µν = − 1

2∂γ∂
γΦµν , and Eq. 76, the Einstein–Hilbert Lagrangian density is

L [gµν ] =
√−g

(
gµνRµν
16πG

− ρ

)

≈
√
−g gµν

( −1

8πk
∂γ∂

γ(ζmA(1µJ2ν)) +
1

2
j(1µJ2ν)ζm

)
.

(82)

The Euler–Lagrange equations depend only on the fields gµν . Setting the latter
equal to zero and contracting with respect to the velocity of the test particle uν2 , we
conclude that

1

4πk
∂γ∂

γ(A(1µJ2ν)) = j(1µJ2ν) =⇒ ∂γ∂
γA1µ = 4πkj1µ,

as expected. Observe that electromagnetism is formulated as a particular case of
colored gravity.

3.5 Charge-energy and source-gravity relationships

The integration of Eq. 80 leads to an electrical energy potential with origin in rm,
which is calculated by the displacement of a test particle ‘2’ between rm and r, both
in a stationary reference system. In other words, the electrical energy suffered by ‘2’
(since we take rm in ‘2’) is

mq(r) :≈ Jα1 J2α∆ζ(r) +O(∂ζ2) = Jα1 ∆A2α(r) +O((∂A2)
2), (83)
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where ∆Aα2 (r) := Jα2 (ζ(r) − ζ(rm)) is the hypothetical electromagnetic 4-potential of
‘2’. The possible second order term, O((∂A2)

2), is an electromagnetic self-energy of the
particle ‘2’ (e.g., from the Faraday tensor, FµαF να− 1

4η
µνFαβF

αβ). By comparing to

the limit case of the semi-classical gravity perturbation with w = 1, Φ
(a)
αβ = 4φ(r)uαuα,

it is easy to identify an approach for the gravitational potential:

φ(r) ≈ GJγ1 J2γζm
r

=
G

k
A1µJ

µ
2 ζm =

G

k
Aµ(r)J

µ(r)ζm, (84)

where Aµ(r) and Jµ(r) are the total potential field vector and the 4-current, respec-
tively, evaluated at r. In the SA case, it is found that φ(r) = r2q/(rmr), where
r2q := Gkq2 is the characteristic length scale of the Reissner–Nordström metric, whose
electromagnetic term is φ(r) = r2q/r

2 [87]. To make compatible both metrics, it is
necessary to use the (Kerr–Schild) double-copy solution, i.e.,

Φµν(r) = 4φ(r)uµuν ∼ −2
G

k
ÂµÂν = −κÂµÂν ,

where Âµ := ∆Aµ = Aµ(r) −Aµ(rm). Note that the residual constant is omitted.
Consistently with linearized gravity (Eq. A13 of Appendix A), the electric-based

perturbation energy suffered by ‘2’ is also mq ≈ mIw∆φ(r) = mIw(φ(r) − φ(rm))
when φ(r) is predominantly of electrical origin (Eq. 84 and Eq. A13 of Appendix A).
Setting it equal to Eq. 83, one can easily check that

mq(r) ≈ Jα1 ∆A2α(r) ≈ mIw(φ(r) − φ(rm)). (85)

Since the origin is in the test particle (rm = 2Gm), the total potential energy (r →
∞) of Eq. 85 represents the total source energy with w = 1/3, that is, mq(∞) =
−Jα1 J2αζm = −q1q2ζm = −q1q2/(κm) < 0. For example, assuming that the self-energy
of a q-charged particle is mq(∞) = m, it follows the Planck mass-charge relationship,

κm2 = −q2 . (86)

Therefore, in order to translate some semi-classical results between gravity and
electromagnetism, it is useful to define the application:

T : R · Q → iR (87)

C · q 7→ T (C · q) := C · T (q) := C · i
√

2G
k m = C · i√κm, (88)

where Q is the space of the coupling constants, k = 1/4π and κ = 8πG, while q and
m are the charge and the mass, respectively, of a point particle in natural units (1 =
c = ℏ = ǫ0). Thanks to this transformation, Eq. 84 recovers the classical gravitational
field, φ(r) = −Gm/r < 0, which is a (simple) gravity spacetime perturbation. In fact,
the equivalent energy perturbation for the SA case (with Jγ := Jγ1 = Jγ2 ) is the
equivalence T (mq(∞)) = T (−q2ζm) = m, and Eq. 74 leads to the linearized gravity
with w = 1.
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An important outcome is that the source energy is negative when the total integral
is taken into account (mq(∞) = −JγJγζm = −q2ζm < 0 for the SA). To obtain
positive energy (mass), it is necessary to combine electric charges with different signs
and make quantum-electrodynamic corrections. The effective electrical neutrality of
the matter sources is key in obtaining an effective positive energy.

The classical gravity interaction can be understood as a sum of the effects provided
by the effective energy interactions of the Colored Gravity, which could include all the
other interactions (source effects). As a drawback, the proposed semi-classical theory
cannot predict fundamental parameters, for instance the Coulomb or fine-structure
constants. However, the double-copy solution of the perturbed metric could provide
relevant information on the fundamental interaction, and higher-order corrections can
be analyzed in future work. The most important aspects to be addressed are: i) the
quantization procedure to obtain a quantum field theory of gravity, while being com-
patible with the standard model, and ii) the extension of the model at a cosmological
scale to explore early stages of the Universe.

To extend the spacetime algebra to a cosmological scale, the proposed methodology
can be applied to the hyperconical model of Monjo [88, 89] by using either non-local
or asymptotic symmetries [58, 90]. This is a key at cosmological scales because the
hyperconical model explains phenomenology similar to that presumably due to dark
quantities, but it does not produce photons by itself since it establishes a ‘zero active’
energy [91, 92].

4 Conclusions

This work is based on perturbed tetrads and spacetime generators with a covariant
Wilson-line term (in the Lorentz gauge) representing the modified ground state of the
spacetime generators according to the observer’s frame of reference.

The introduction of that small perturbation to the local coordinates formulates
gauge interaction phenomena for SU(1, 3) Yang–Mills dynamics. In particular, unitary
(gauge) transformations of local phases are equivalent to the change of reference system
from local coordinates to the observer’s reference frame. In fact, the expectation value
of translation gauge-like covariant derivative is set to coincide with the SU(1, 3)-
gauge covariant derivative, and the transformation can be simplified as a change of
the reference frame (like a choice of the gauge potential origin).

As a general output for SU(1, 3) interactions, the metric depends on the field
features (coupling factors) at each position. To ensure continuity in the metric tensor
field, the coupling factors should also be fields, and it is forbidden that two different
features, e.g., two masses, are at the same 4-position (this is similar to the Pauli
exclusion principle in fermionic statistics). In fact, SU(1, 3) can be formulated from
complexified perturbations of the Clifford–Dirac algebra and, therefore, the results of
this paper could provide basic ideas for colored gravity.

As a particular limit, the classical electromagnetism with Lorentz force and
Maxwell equations is recovered from the Einstein Field Equations by using the per-
turbed tetrad. On a macroscopic scale, it is equivalent to setting a spatial gauge, rm,
for the energy origin in the electric 4-potential field. This origin is set in the event
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horizon of each test particle with energy m and the equation of state w = 1, that is,
rm = 2Gm.

In this context, spacetime would present continuous rough fields given by the small
gauge-based perturbations (linked to the coupling constants and the particle quantum
numbers). Moreover, the torsion of the developed metric (g ∼ η + A ⊗ A) can be
interpreted with the picture of a spacetime with a double-helix-like structure based on
pairs A⊗A of entangled virtual su(1, 3) bosons (e.g., photons). These potential fields
are the connection (force carrier or virtual-particle exchange) of a double-copy gauge
transformation, generated by an extended Poincaré algebra R1,3 ⊕ u(1, 3).

In conclusion, future works should inspect further the double-copy gauge viewpoint
of the metric, addressing quantization procedures and Lagrangian density corrections,
as well as on the extension of the perturbed algebra on a cosmological scale. Work in
both directions is currently in progress.
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Appendix A Linearized gravity and
gravitomagnetism

A.1 Linearised gravity for point particles

To support the analysis of the classical limit in a macroscopic scale, in this Appendix
we recall some results of Classical Relativity, especially from the linearized formalism
and the gravitomagnetism solution [9, 93]. Using local coordinates with an affine con-
nection, the Ricci curvature tensor components (Rαβ) are computed from the Riemann
curvature tensor components (Rµαβγ), that is,

Rαβ := Rµαµβ = ∂µΓ
µ
αβ − ∂βΓ

µ
µα + ΓµρµΓ

ρ
αβ − ΓµρβΓ

ρ
αµ, (A1)

where Γµαβ are the Christoffel symbols of the second kind, which for the Levi–Civita

connection ∇̂ satisfy ∇̂g = 0, such that g is free of torsion. Therefore, for a perturbed
metric, gαβ ≈ ηαβ +Φαβ , the first-order Christoffel symbols are

Γµαβ =
1

2
gµν (∂αgνβ + ∂βgαν − ∂νgαβ) ≈

1

2
ηµν (∂αΦνβ + ∂βΦαν − ∂νΦαβ) . (A2)

By using the harmonic coordinates condition, i.e., ηβγ∂γΦαβ = 1
2η
βγ∂αAβγ , the

Einstein field equations with the first order of the Ricci tensor read

R
(1)
αβ ≈ −1

2
∂γ∂

γΦαβ ≈ 8πG

(
Pαβ − P

2
gαβ

)
, (A3)

where G is the Newtonian gravitational constant and Pαβ is the stress-energy tensor.
For a point particle ‘i ’ located at xi = (t, ~ri) with energy mi and 4-velocity uα :=
dxαi /dτ (with respect to the proper time dτ), the 4-momentum is Pα := miu

α. If we
consider a perfect fluid with N particles located at xi ≈ x0 = (t, ~r0 ≡ 0) for all, with
total mass m =

∑
imi and moving in parallel with velocity uα, the density ρ(x) and

the stress-energy Pαβ(x) are [94]:

ρ(x) :=

N∑

i=1

∫
δ4(x− xi(τ))√

|g(x)|
mi dτ ≈ Θ(t− r/c) δ3 (~r) m

Pαβ(x) = ρ̂(x)uαuβ − σ(x)gαβ = ρ(x)((1 + w)uαuβ − wgαβ),

(A4)

where x = (t, ~r) are the measurement coordinates with r := ||~r|| > 0, δn is the

n-dimensional Dirac delta, Θ(t − r/c) ≈ Θ(t) :=
∫ t
−∞ δ(s) ds is the Heaviside step

function by neglecting the retarded term r/c≪ t with c ≡ 1, w := σ/ρ is the equation
of state, and ρ̂ := ρ(x)+σ(x) = ρ(x)(1+w) is the total energy density, which consists
of the rest energy density, ρ(x), and the pressure, σ(x) := n∂ρ(x)/∂n − ρ(x), being
n := dρ/dV the particle number density. Since P = ρ[(1 + w)− 4w] = ρ(1− 3w), the
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matter tensor is

Pαβ := Pαβ − P

2
gαβ ≈ (1 + w)ρ(x)

(
uαuβ −

1

2

(
1− w

1 + w

)
ηαβ

)

︸ ︷︷ ︸
Uαβ(w)

, (A5)

with w ≥ 0 and Uαβ(w) := uαuβ − 1
2

(
1−w
1+w

)
ηαβ . Thus, the solution of the first-order

Einstein equations (Eq. A3) is given by the Green function Φαβ with d’Alembert
operator ∂γ∂

γ whose application is proportional to δ3 (~r) in a similar way to the
Lienard-Wiechert fields, that is,

−∂γ∂γΦαβ (~r, t) ≈ 16πGΘ(t) δ3 (~r) m̂ Uαβ(w) (A6)

Φαβ (~r, t) ≈ −16πG
1

4πr
m̂Uαβ(w) +Kαβ ≈ 4φ(r)Uαβ(w) +Kαβ ,

where φ(r) := −Gm̂/r is the static potential by neglecting the Lienard-Wiechert
retarded term, m̂ := (1 + w)m, and Kαβ are constants of integration. For purely
static dust (w = 0, u0 = 1, ui = 0 for i ∈ {1, 2, 3}), and by recalling that ηαβ =
diag(1,−1,−1,−1), we have the following.

Φ00 = Φii = 2φ(r) +K = −2Gm

r
+K, (A7)

where K := K00 = Kii. Therefore, the Newtonian gravitation field is recovered, and
the perturbation Φαβ . On the other hand, any double-copy perturbation requires that
w = 1, whence

Φαβ ≈ 4φ(r)uαuβ +Kαβ. (A8)

Derivation from the Lagrangian formulation. The classical Newtonian gravity can
be obtained by using the extremal theory for the first order perturbation of the metric
g. Let m and xα be the mass and the position, respectively, of a test point particle
(with state wm) living in a spacetime perturbed by a (source) massM (with state w).
The action functional for this particle is

S =

∫
mdτ =

∫
mdλ

√
gµν

dxµ

dλ

dxν

dλ
≅

∫
m

2
gµνu

µuνdτ, (A9)

where uµ := dxν/dλ and the homomorphism between δ
√• = 0 and 1

2δ• = 0 has

been used. Now, the gravitational field is φ := −GM̂/r < 0, with |gαα| ≤ 1 (classical
spacetime gravity), and the Lagrangian functional is

L =
m

2
gαβu

αuβ ≈ m

2

(
ηαβ + 4φ(r)

(
uαuβ −

(
1− w

1 + w

)
ηαβ
2

))
uαuβ

=
m

2
ηαβu

αuβ +m

(
1 + 3w

1 + w

)
φ(r) =

m

2
ηαβu

αuβ +mIwφ(r),

(A10)
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where Iw := (1 + 3w)/(1 + w). The corresponding Euler–Lagrange equations are the
geodesic equations, duµ/dτ = −Γµαβu

αuβ , but this approach leads to

d

dτ

∂L

∂uα
− ∂L

∂xα
= 0 ⇒ f := m

duα
dτ

= mIw
∂φ(r)

∂xα
. (A11)

which corresponds to the classical Newtonian force at the limit w = 0 (purely dust
particles). By taking spherical coordinates with radius r, the classical gravitational
energy is defined by the work,

m′(r) :=

∫ r

rm

f(r′)dr′ = mIw

∫ r

rm

∂φ(r′)

∂r′
dr′ = mIw∆φ(r), (A12)

where rm is the origin of the energy potential and ∆φ(r) := φ(r) − φ(rm). It is
usual to choose rm → ∞ as the energy origin, but we purposely set rm = GIwm
or rm = GIwM̂ , were w depends on the source M . Therefore, the (semi-)classical
gravitational-energy perturbation is

m′(r) = mIw

(
−GM̂

r
+

GM̂

rm

)
. (A13)

The total potential energy for a test point particle depends on the origin chosen.
If rm = GIwM̂ is set as the source origin, then the semi-classical potential energy,
m′(r) = m+mφ(r), approaches to limr→∞m′(r) = m, i.e., the test particle self-energy.
By changing the origin to the position of the test particle, rm = GIwm, the total
energy, m′(r) =M +mφ(r), represents the total source energy when limr→∞m′(r) =
M . Therefore, for both cases, the total contribution of gravity is zero. In any way,
the kinetic and gravitational energies in GR depend on the reference system or the
connection. For instance, in teleparallel gravities it is found that the total energy of
coupled matter and gravity is proportional to the 3-space Ricci scalar up to a first-order
perturbation [95].

A.2 Linearized gravitomagnetism

Separable perturbation. Let Φαβ(t, r) be a two-particle metric perturbation that
depends on time t and on the relative position of the point particles, r. By assum-
ing that the only dependence in t is given by the 4-velocity, uα = uα(t), the solution
to the first-order Einstein field equations for perfect fluids is quasi-stationary, i.e.,
it is similar to the Eq. A6. This implies that, like the stress-energy source tensor
Pαβ = ρ̂uαuβ − w

1+w ρ̂ηαβ and the source tensor Pαβ − 1
2Pηαβ = ρ̂uαuβ − 1−w

2(1+w) ρ̂ηαβ ,

the metric perturbation can be decomposed into two terms: a term Āαβ proportional
to the 4-velocity tensor, uαuβ (for instance, using a 4-potential, Āβ := Āuβ with static
field Ā := 2

√
−φ), and another term B̄αβ proportional to the flat metric tensor, ηαβ ,

and to another static field, B̄ (see, for instance, Eq. A6). Therefore,

Φαβ ≈ Āαβ + B̄αβ , Āαβ := ĀαĀβ , B̄αβ := −B̄2ηαβ , (A14)
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where one can identify the perturbation Āαβ as in the Kaluza–Kein metric, but in
four dimensions, that is, as a double-copy linearized gravity [27].

Maxwell-like equations. The first order Einstein field equations (Eq. A3) for quasi-
stationary perfect fluids can be split into two parts:

∂γ∂
γĀαβ ≈ −16πGρ̂uαuβ, (A15)

∂γ∂
γB̄αβ ≈ 16πG 1−w

2(w+1) ρ̂ηαβ , (A16)

where the harmonic coordinates condition has been chosen. Taking w = 1, Eq. A15 is
very similar to the Maxwell equations in the Lorentz gauge when replacing the electric
4-current, jµ := ρ̂uµ, by a tensor, Jµν := ρ̂uµuν.

Lorentz-like force. Similar dynamics to the Lorentz force can be obtained from the
geodesic equations at the first order:

duγ

dτ
≈ −Γγαβ

(1)uαuβ ≈ −(Γγαβ
(A) + Γγαβ

(B))uαuβ, (A17)

where Γγαβ
(A) and Γγαβ

(B) are the first order Christoffel symbols for the the metric

perturbations Āαβ and B̄αβ , respectively.
By multiplying uαuβ on both sides of the equations, and by recalling that uγ∂νu

γ =
0 and uα∂αĀ = uα∂αB̄ = 0, where Ā and B̄ are static fields, the following equation
is obtained:

duγ

dτ
≈ ĀµF̄ γ

µ + B̄∂γB̄, (A18)

where F̄βν := ∂βĀν − ∂νĀβ . The case B̄ = 0 is equivalent to the Lorentz force law.
The gravitational Lorentz force can be also obtained by using a Lagrangian functional
with B = 0, that is, φ = −Ā2/2 = −ηαβĀαĀβ/2. In this case, we have

L ≈ m

2
gαβu

αβ ≈ m

2
(1− Ā2)ηαβu

αuβ. (A19)

The corresponding Euler–Lagrange equations (Eq. A11) are

d

dτ

(
muα −mĀĀα

)
+mĀγ

∂Āγ
∂xα

= 0,

d

dτ
(muα)−mĀγ

∂Aα
∂xγ

+mĀγ
∂Āγ
∂xα

=
d

dτ
(muα)−mĀγ F̄γα = 0,

(A20)

where the conditions dĀ/dτ = 0 and d/dτ = uγ∂γ have been used.
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Appendix B Second-order of point Lorentz force

From the exact solution of the metric (Eq. 52), the Lagrangian reads

L =
m

2
gαβu

α
2u

β
2 =

m

2
ηαβu

α
2u

β
2 +Aγ1q2u2γ −

4πG

k
mAγ1A2γ (B21)

The corresponding Euler–Lagrange equations are

d

dτ
(mu2α) + q2u

γ
2

∂A1α

∂xγ2
− q2u

γ
2

∂A1γ

∂xα2
+

4πG

k
m

∂

∂xα2
(Aγ1A2γ)

=
d

dτ
(mu2α) + q2u

γ
2Fγα +

4πG

k
m

∂

∂xα2
(Aγ1A2γ) = 0,

(B22)

which correspond to the second-order correction of the Lorentz force. For instance,
let A2γ = kq2/r be constant when the distance is r = 1m with respect to a proton
(mp = 938MeV, q = 1e) where a Synchrotron is placed. Therefore

∆ (mpu2α) = −q2uγ2Fγα∆τ + 4πG
mp

rc4
q2u2γ

∂Aγ1
∂xα2

∆τ. (B23)

Notice that the light speed c ≡ 1 is highlighted only to conveniently remind the
units, although natural units are chosen in this work. To estimate the order of
magnitude of the correction, one can take for instance a proton accelerated by a
Synchrotron up to mp u2α = 469GeV = 500mp, that is, a relativistic 4-velocity

of u2α = γvα = 500, where vα = 0.999998 and γ = 1/
√
1− v2α. Therefore,

−q2u2γFγα∆τ ∼ q2u2γ∂A
γ
1/∂x

α
2 ∆τ ∼ 500GeV, and the final order of magnitude is

∆ (mpu2α) ∼ −q2uγ2Fγα∆τ
(
1− 4πG

mp

rc4

)
, (B24)

which is a correction by gravity absolutely negligible for the proton.
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[66] Fröhlich, J., Werner, P.: Gauge theory of topological
phases of matter. Europhysics Letters 101(4), 47007 (2013)
https://doi.org/10.1209/0295-5075/101/47007
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