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Nonsmooth Nonholonomic Reduction for Mechanical Systems with Collisions*

Alvaro Rodriguez Abellat and Leonardo J. Colombo?

Abstract. This paper studies nonsmooth variational problems on principal bundles for nonholonomic systems
with collisions taking place in the boundary of the configuration space of the nonholonomic sys-
tem. In particular, we first extend to a nonsmooth context appropriate for collisions the variational
principle for nonholonomic implicit Lagrangian systems to obtain implicit Lagrange—d’Alembert—
Pontryagin equations for nonholonomic systems with collisions. After introducing the notion of
connection on a principal bundle, we consider Lagrange—Poincaré-Pointryagin reduction by symme-
tries for systems with collisions.
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1. Introduction. Reduction theory is one of the fundamental tools in the study of mechan-
ical systems with symmetries, and it essentially concerns the removal of superfluous degrees
of freedom by using the symmetries of the system and relating the resulting equations to the
conservation laws given by the Noether theorem. Such symmetries arise when the Lagrangian
of the system L :7T'Q — R is invariant under (the tangent lift of) the action of a Lie group G
on the configuration manifold ). There are two possibilities for the configuration manifold
and, thus, for the corresponding reduction theory:

1. Euler—Poincaré reduction, i.e., when the configuration manifold is the group itself,
@ = G, and the action is given by left translations. Hence, the original Lagrangian
may be dropped to the quotient space £ : (T'G)/G ~ g — R, where g denotes the Lie
algebra of G. The reduced dynamics is governed by a system of first order ODEs
known as the Euler—Poincaré equations (cf. [5, 26]):

d (50N _ . (8¢
i (5e) = (5).
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This system, together with the reconstruction equation &(t) = g~ (¢)g(t), is equivalent
to the Euler-Lagrange equations on G.

2. Lagrange—Poincaré reduction, i.e., when @) is an arbitrary manifold and G acts freely
and properly on it. In that case, the Hamilton variational principle on @ can be
dropped to ¥ = Q/G with the aid of a principal connection w on 7y : @ — X. Such
a connection defines a bundle isomorphism:

(1.1) (TQ)/)G—=TEDg, [vgar (Tymqs(vy),[q,we(ve)lc),

where @ denotes the fibered direct sum over ¥, g = (Q x g)/G is the adjoint bundle of
7Q,%, and [-]¢ denotes the equivalence class. Therefore, the reduced Lagrangian reads
0:TY. ®g— R. Similarly, a curve q: [to, t1] — @ can be decomposed into its horizontal
part, 0 = Tgx 0 q: [to,t1] — %, and its vertical part, ¢ = [q,w(q)]g : [to,t1] — §. The
reduced dynamics is governed by the so-called Lagrange—Poincaré equations (cf. [10]):

V—(Z—adié—{:O,
at 5C "5
oL Ve o ( ~
= c'er)v

5o dt o6 o
where F* is the reduced curvature of w, and V¥*/dt and V>*/dt denote the covariant
derivatives on the coadjoint and the cotangent bundles, respectively.

Nonholonomic systems. Some mechanical systems, known as constrained systems, have a
restriction on the configurations or velocities that they may assume. In particular, nonholo-
nomic systems [4, 27] are, roughly speaking, mechanical systems with constraints on their
velocities that are not derivable from position constraints. They arise, for instance, in sys-
tems that have rolling contact (e.g., the rolling of wheels without slipping) or certain kinds
of sliding contact (such as the sliding of skates). There are some differences between non-
holonomic systems and standard Hamiltonian or Lagrangian systems. Among them, we have
the following: nonholonomic systems arise from the Lagrange—d’Alembert principle and not
from the Hamilton principle; they may preserve the energy of the system as Hamiltonian or
Lagrangian systems, but they are not, in general, time-reversible; they do not preserve, in
general, the momentum for systems with symmetries (i.e., Noether’s theorem does not apply,
in general). A reduction theory for nonholonomic systems was first introduced in [25] for both
cases: Q = G and (@ is general smooth manifold; and the corresponding Lagrangian version
was developed in [7, 8, 9].

Reduction of implicit systems with nonholonomic constraints. Implicit systems are those for
which the dynamical equations governing their behavior are implicit differential equations.
In the context of geometric mechanics, they appear when the Lagrangian or Hamiltonian of
the system is degenerate, as well as in the theory of interconnection, which provides models
for multiphysical systems by aggregating simpler subsystems. A unifying framework for the
formulation and analysis of implicit Lagrangian systems with nonholonomic constraints was
introduced in [33] making use of Dirac structures. The equivalent variational formulation was
presented in [34]. In this context, the analogue of the Euler—Poincaré reduction for implicit
systems was developed in [35] for both unconstrained and nonholonomic systems, yielding the
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NONHOLONOMIC REDUCTION FOR SYSTEMS WITH COLLISIONS 579

Table 1
Types of Lagrangian reduction. In this work, we develop the bottom right cell, i.e., implicit nonholonomic
Lagrange—Poincaré reduction. In addition, we utilize the nonsmooth variational approach to address elastic
impacts.

Reduction Lie group Lie group with advection Principal bundle
Original L:TG—R L:TGxV*—R L:TQ—R
Lagrangian

Reduced l:g—R L:gxV* =R £:TYeg—R
Lagrangian

Unconstrained Euler—Poincaré [26] Euler-Poincaré with Lagrange—Poincaré [10]

advected param. [22]

Unconstrained Implicit Implicit Euler—Poincaré Implicit
(implicit) Euler—Poincaré [35] with advected param. [19]  Lagrange—Poincaré [36]
Implicit and Implicit Euler— Implicit Implicit nonholonomic
nonholonomic Poincaré—Suslov Euler—Poincaré—Suslov Lagrange—Poincaré

[35] with advected param. [19]

so-called implicit Euler—Poincaré and implicit Euler—Poincaré—Suslov equations, respectively.
The Lagrange—Poincaré reduction, i.e., the principal bundle reduction, for implicit systems
was given in [36] only for the unconstrained case. A further generalization was presented [19] to
account for nonholonomic systems on Lie groups with broken symmetries, yielding the implicit
Euler—Poincaré—Suslov equations with advected parameters. Nevertheless, a general principal
bundle reduction theory for implicit Lagrangian systems with nonholonomic constraints is still
missing. The different Lagrangian reduction schemes found in the literature are summarized
in Table 1.

Mechanical systems with collisions. Systems undergoing collisions constitute a type of hy-
brid system where the dynamics is confined within a region with boundary. Elastic collisions
with that boundary activate constraints on the momentum and energy before and after the
impact. Systems with collisions have been extensively treated in the literature since the early
days of mechanics (see [6] and references therein for a comprehensive review). More recently,
much work has been done on the rigorous mathematical foundation of impact problems [21, 12].
Some applications include bipedal locomotion [32] and convex rigid bodies bouncing on the
horizontal plane due to gravity [31]. Nonholonomic systems subject to impacts or impulse
effects have been previously studied in [11, 13]. In this paper, we follow the approach of [17],
where a nonsmooth variational formulation of Lagrangian systems is provided.

Reduction of systems with collisions. Several types of reduction have been investigated for
hybrid systems and, in particular, for systems with impacts. For instance, a Routh reduction
scheme for Lagrangian systems was introduced in [2] and further developed in [1] to gain
a better understanding of bipedal walking models. This approach was extended to account
for cyclic variables in [15] and for time-dependent systems in [14]. Similarly, a symplectic
reduction for Hamiltonian and Lagrangian systems was investigated in [16]. Nevertheless,
Euler—Poincaré and Lagrange—Poincaré reduction schemes in the context of systems with
collisions cannot be found in the previous literature.
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1.1. Contributions and plan of the paper. The purpose of the present paper is twofold.
First, we provide a general reduction scheme for implicit Lagrangian systems with non-
holonomic constraints. The nonholonomic dynamics obtained through the reduction of the
Hamilton—Pontryagin principle gives rise to a set of second-order implicit ordinary differential
equations. Second, the continuous setting for implicit Lagrangian systems with nonholonomic
constraints introduced in [34] is extended to the nonsmooth setting following the approach
in [17] to account for elastic impacts. By gathering both goals, we obtain a principal bundle
reduction theory for nonholonomic implicit Lagrangian system with collisions from a non-
smooth variational mechanics viewpoint. Therefore, we close the gap of Lagrange—Poincaré
reduction theories (i.e., principal bundle reduction theories) for nonholonomic implicit systems
with elastic collisions.

This problem has several motivations. Implicit mechanical systems naturally arise when
dealing with degenerate Lagrangians or performing interconnections. Furthermore, nonholo-
nomic constraints are ubiquitous in such systems, and collisions frequently occur in physical-
world applications, as the system’s allowed states are restricted to specific regions of the
configuration space. Robotics applications, such as bipedal walking [1], integrate all these
features. In that context, we provide the appropriate framework to model such systems and
perform reduction by symmetries, thus simplifying the equations and obtaining conserved
quantities.

The remainder of the paper is structured as follows. In section 2 we recall the main facts
about implicit nonholonomic Lagrangian systems. Next, in section 3 we present a nonsmooth
variational framework to formulate implicit Lagrangian systems with collisions. Some prelim-
inary results in that direction were introduced in [29]. The core of the paper is in section 4,
where the Lagrange—Poincaré reduction theory for implicit nonholonomic systems with colli-
sions is developed. The theoretical results are illustrated by several examples, including the
formulation of the original and reduced dynamics of a spherical pendulum hitting a cylindrical
surface. Lastly, in section 5 we suggest some future lines of research.

2. Implicit nonholonomic systems. Let @) be a smooth manifold with dim(Q) = n and
(¢") be a particular choice of local coordinates on this manifold. In the following, TQ denotes
the tangent bundle of @), with T;() being the tangent space at each point ¢ € ) and v, € T,Q
being a vector. In addition, the coordinate chart (¢) induces a natural coordinate chart on
TQ denoted by (q*,¢"). Similarly, let T*Q be the cotangent bundle of @, with T7°Q bging the
cotangent space at ¢ € Q. The coordinate chart (¢*) induces a coordinate chart (¢*,p;) on
T*(Q consisting of the positions and momenta of the system.

A k-dimensional distribution on @ is a vector subbundle Ag C T'Q with k-dimensional
fiber; i.e., Ag(q) C T,Q is a k-dimensional subspace for each g € Q. Moreover, Ag is smooth
if there exist a neighborhood U of each point ¢ € @ and local vector fields X;,..., X, € X(U)
such that Ag(q) =span{Xi(q),...,Xx(q)} for all g€ U.

Analogously, a k-dimensional codistribution on @ is a vector subbundle /A\Q/Q Cc T*Q with k-
dimensional fiber. Given the concept of codistribution, it is possible to define the annihilator
of a distribution Ag C T'Q; namely, it is the codistribution given by AZ)(Q) ={a e T;Q |
(o, v) =0Vv € Ag(q)} for each g € Q, where (-,-) denotes the dual pairing.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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Linear constraints on the velocities are locally given by equations of the form ¢%(¢*, %) =
u?(q)qi = 0,1 < a < m, depending, in general, on the configuration coordinates and their
velocities. From an intrinsic point of view, the linear constraints are defined by a distribution
Ag on @ of constant rank n —m such that the annihilator of Ag is locally given by A‘é(q) =
span {,ua (q)=pldg' |1<a< m}, where the 1-forms p® are linearly independent at each g € Q.
When the constraint distribution Ag is nonintegrable, the linear constraints are said to be
nonholonomic.

In addition to these constraints, the dynamical evolution of the system is specified by
fixing a Lagrangian function L: T'(Q — R. The central concepts permitting the extension
of mechanics from the Newtonian point of view to the Lagrangian one are the notions of
virtual displacements and virtual work. These concepts were formulated in the developments
of mechanics and in their application to statics. In nonholonomic dynamics, the procedure
is given by the Lagrange—d’Alembert principle, which determines the set of possible values
of the constraint forces from the set Ag of admissible kinematic states alone. The resulting

equations of motion are
d (0L oL .
— ) — — | d¢"' = 1<i<
[dt <aq'z> aq%} =0 d=isn

where (§¢’) denote the virtual displacements and verify pdg’ = 0, 1 < a < m. By using
Lagrange multipliers, we obtain

d [ OL oL
2.1 S % e 1<i<n.
(2.1) dt(aq,) o =i i<n

The term on the right-hand side represents the constraint force, also known as reaction force,
induced by the constraints. The functions A\, are the so-called Lagrange multipliers, which,
after being computed using the constraint equations, yield a set of second-order differential
equations.

Alternatively to the use of Lagrange multipliers, the phase space may be enlarged to the

Pontryagin bundle T'Q & T*@Q and the Lagrange—d’Alembert—Pontryagin principle may be
considered. This variational principle is given by

t1
5 [ (w000 + (0,0 = v(0)) de =,
to

where v(t) € Ag(q(t)) and the variations (dq(t),0v(t),0p(t)) are such that dq(t) € Ag(q(t))
and vanish at the endpoints. The stationary condition for a curve (q(t),v(t),p(t)) yields the
implicit Lagrange—d’Alembert equations on 7'Q & T*Q (see [34]):

— 2 G=veA y— = e A% (q).
p=go G=vE olq), » 8q€ 0(9)

2.1. Reduction of implicit nonholonomic systems. Let G be a (finite dimensional) Lie
group and @ : G x @ — @ be a left action of G on @, i.e., ®(e,q) = q, where e € G denotes the
identity element, and ®(g, ®(h,q)) = ®(gh,q) for each ¢ € Q and g,h € G. In particular, for
each g € G, the map ®,:Q — @ defined as ®4(q) := ®(g,q), is a diffeomorphism.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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The infinitesimal generator corresponding to £ € g, where g = TG is the Lie algebra of
G, is the field {g € X(Q) defined as {g(q) = d/dt|;—oP(exp(t€),q), where exp : g — G denotes
the exponential map. In addition, the Lie bracket on g is denoted by [-,:]. For each £ € g,
the adjoint map ad¢ : g — g is defined as ad¢(n) = [¢,n] for all n € g. Similarly, the map
adg : g — g* denotes the co-adjoint operator and is defined as (adg(u),n) = (i, adg(n)) for all
negand ueE g

Euler—Poincaré reduction. Consider the particular case of the Lie group acting on itself
by left multiplication, i.e., ® : G x G — G defined as ®(g,h) = Ly(h) = gh for all g,h € G.
For G-invariant nonholonomic (possibly degenerate) Lagrangian systems on Lie groups, the
reduced Lagrangian is denoted by ¢: g — R, and the reduction of the Lagrange—d’Alembert
equations (2.1) yields

oL
n= (57”],
where 0 C g is the reduced constraint and 0° C g* denotes its annihilator. These equations
are the implicit analogue of the Euler—Poincaré—Suslov equations [4]. For this reason, they
are called the implicit Euler-Poincaré-Suslov equations [19, 35].

Lagrange—Poincaré reduction. For the general case of a free and proper action ® : GXQ — Q,
the quotient projection defines a principal bundle, 7¢g 5, : Q@ — X, where ¥ = Q/G is known as
the shape space and is endowed with the unique manifold structure making g s a submersion
(see, for example, [24]). With the aid of a principal connection on mgy (recall (1.1)), the
reduced Lagrangian corresponding to a G-invariant, (possibly degenerate) Lagrangian on @,
reads £: TY & g — R. For the unconstrained case, the implicit Lagrange-Poincaré equations
become [36]

(2.2) e=ned,  ji—adi(u) e,

vy ot *.(%F”» o=u,

dt 50_'0
Y4 - _
y:(si’ 5277,
LOu
pr—ad’t(*) 5 9t
a eeV) =57

As explained in the introduction, the problem of implicit nonholonomic Lagrange—Poincaré
reduction has not been considered in the previous literature. Specifically, [35] and [19] dealt
with implicit Euler—Poincaré—Suslov reduction for the entire group and for semidirect prod-
ucts, respectively, whereas [36] explored implicit nonholonomic Lagrange—Poincaré reduction
for systems without constraints.

3. Nonholonomic implicit Lagrangian mechanics with collisions. In the following, the
dynamics with impacts is addressed from the nonsmooth variational approach presented in
[17]. Let @ be a smooth manifold with boundary, denoted by 0Q, L:TQ — R be a (possibly
degenerate) Lagrangian, and Ag C T'Q) be a (possibly nonholonomic) constraint distribution.
According to section 2, the annihilator of Ag is denoted by AOQ cT*Q.

3.1. Configuration space and phase space. Given [y, 71] C R and 7 € [rp, 1], the path
space with a unique collision (at T=7) is defined as Q(Q,7) =T x Q(7), where

T ={areC™([rn,n]) | ap(r) >0, 7 € [10,71]}

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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and
(3.1) Q(7) ={aqg € C%([r,m],Q) | ag(F) € 0Q,

ag is piecewise C? and has only one singularity at T}

We only consider one singularity at 7 = 7 for brevity, but similar results hold for a finite
number of singularities, {7; |1 <i < N} C [r,71].

Remark 3.1 (Zeno behavior). Systems with collisions are a particular instance of hybrid
systems. For systems with elastic impacts, the guard is given by S = {v, € T,Q | ¢ €
0Q, g(vq,ng) >0}, where g is a Riemannian metric on @) and n is the outward-pointing, unit,
normal vector field on the boundary. Similarly, the reset map is given by R(v,) = vg — v;-,
where v;- = g(vg,ng) ng and vy = vy — vql € T,0Q. Recall that hybrid systems may experience
Zeno behavior if a trajectory undergoes infinitely many impacts in finite time. In order to
avoid this situation, we ask the system to satisfy two conditions (cf. [20, Remark 2.1]):

1. SNR(S) =0, where R(S) is the closure of R(S) C TQ. This condition is clearly satisfied
in our case. Indeed, for each v, € S we have Uql # 0 and, thus, || R(vg) —vg |[g=2 ||
vz [lg> 0, with || - || being the norm induced by the metric g.

2. The set of collision times is closed and discrete. This condition, which depends on
the topology of the configuration manifold, prevents the existence of an accumulation
point and will be assumed in the following.

Under these assumptions, our development is valid in a neighborhood of each collision.

Lemma 3.2. ([17, Corollary 2.3]). Q(Q,7T) =T x Q(7) is a smooth manifold.

Remark 3.3. Given ar € T, we denote [tg,t1] = ar([70,71]) and, in order to distinguish
between 7-derivatives and ¢-derivatives, we use different symbols; namely, o/, = dop/dr and
apt = dag'/dt, where ap' : [to,t1] — [r0,71] is the inverse of ar. Analogously, we denote
EZ OéT(7~' ) .

The tangent space of Q(7) at ag € Q(7) is given by

(3.2) To, Q(F) = {1/% € C%([10, 1), TQ) | g = T7Q © Vag, Vag (7) € T, (700,

Vg, i piecewise C? and has only one singularity at %},

Q

where mrg : T'Q) — (@ is the natural projection. In order to incorporate the constraint distri-
bution, we define the following subspace at each ag € Q(7):

AQ(%)(O‘Q) = {VaQ € Ta, Q(7) | Vag [0, 1] = AQ} '

As usual, we denote T'Q(7) = |,,co(7) Tae Q(F) and Ag(z) =L, cor) Do) (aq)-

Let 77, Q(7) = {¢aq : TagQ(7) = R | @, is linear and continuous} be the topological
dual of T,,,Q(7). Since Q(7) is an infinite dimensional manifold, its topological cotangent
bundle is too large to formulate mechanics. For that reason, we will restrict ourselves to the
vector subbundle where the Legendre transform of the Lagrangian lies; i.e., we consider a
vector subbundle T*Q(7) C T'Q(7) such that FL o vy, € T*Q(7)) for each vq, € To,Q(7),
where FL : TQ — T*Q is the Legendre transform of L.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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Lemma 3.4. For each ag € Q(7), the vector space

(33) TJQQ(%) = {7704@ c CO([TO7T1]7T*Q) | QQ =TT7+Q O TMag; Tag (7:) € T;Q(T)8Q7

T, 5 piecewise C? and has only one singularity at %},

Q
where Tp-q 1 T*Q — Q is the natural projection, is a vector subspace of the topological dual of

To,Q(T) by means of the following L?-dual pairing:

(T Vay) = / oo (7) - Vag (7) dr,

where - represents the pairing between T*Q) and T'Q). Furthermore, this pairing is nondegen-
erate.

Note that, in general, {FLova, € T3 Q(7) | Vaq € Taq Q(7)} & T3, Q(7), as the Lagrangian
is possibly degenerate. As a straightforward consequence of the prev10us lemma, the vector
bundle

|_| 15,9(7) = Q(T), Tag — @,
aQGQ )

is a vector subbundle of the topological cotangent bundle of Q(7).
In the same vein, for each vq, € To, Q(7) and mq, € T3, Q(7), the iterated bundles are
given by

Ty (TQ() = {80 € C[r0, 1], T(TQ)) | Ve = Tr(rQ) © Vg
51/@@ (’7—) € TVQQ (7) (TaQ)7

0Vq, is piecewise C? and has only one singularity at %},
where mp(rg) : T(TQ) — T'Q is the natural projection, and

T,y (T"Q(7)) = {7ag € C*([70,71], T(T*Q)) | Ty = 71(r-) © e

571'0(@ (%) € TrraQ (7) (T*@Q),

0Tq, is piecewise C? and has only one singularity at %},

where 7p(7.q) : T(T*Q) — T*Q is the natural projection. In particular, we consider the
constrained iterated bundle,

(3.4) Ao (Vag) = {5% €T, (TQ(F)) | drrq 0 6va, € CO(70,71], AQ)} .

3.2. Nonholonomic implicit Euler-Lagrange equations with collisions. Given a path
a=(ar,aq9) € AQ,T), the associated curve is defined as

(3.5) qo - [t07t1] —Q, t—qa(t)= (aQ o O‘;l) (t).

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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Similarly, given v, € To, Q(7) and ma, € T, ,Q(7), we set

Vot [to, 1] > TQ,  tva(t) = (Vag 0 ap’) (1),
Do [to,t1] = T*Q, trpa(t) = (WQQ o a;l) (t).

It is clear that m7q 0 Vo = T7+Q © Pa = Ga-
By regarding Q(Q,7) as a trivial vector bundle over Q(7) with the projection onto the
second factor, the Lagrange—d’Alembert—Pontryagin action functional,

S:Q(Q,7) x o) (TQ(F) & T*Q(7)) = R,

where X gz denotes the fibered product over Q(7), is defined as

S (@00 e) = [ (L(0a(0) + pa(0) - (da(t) — va(t))

= /T1 L (I/aQ (7')) + Tag (1) - a?(T) — Vag (1) OééF(T) dr.
o arp(7)

The equality between the first and the second expressions can be easily checked by considering
the change of variable t = ap (7). By recalling that the energy of the system is given by

(3.6) E:TQoT'Q— R, (vg,Pq) = E(vg,Dq) = pq - vqg — L(vg),

the action functional may be rewritten as
t1
S (aa VCKQ77TOLQ) = / (pa(t) : Qa(t) - E(Ua(t)apa(t)) dt
to

= /T1 <7raQ (1) - a?(T) —F (VaQ (T),WaQ (T))) arm(T)dr.

arp(T)

Definition 3.5 (Hamilton—d'Alembert—Pontryagin principle). A path
c=((a7,0Q), Vag:Tag) € AQ,T) X o) (Ao @ T*Q(7))
is stationary (or critical) for the action functional S if it satisfies
dS(c)(dec) =0

Jor every variation §c= ((6ar,000), Vay,0Ta,) € TaQ(Q,7) X Arg(s) (Vag) X Tx.,, (T*Q(7))
such that dor(19) = dar (1) =0, dag (o) =dag(m) =0, and

(3.7) dmrQ © 0Va, = AT+ © 6o, = 00rQ.

In order to give an intrinsic expression for the dynamical equations, we fix a linear con-
nection on the tangent bundle of Q, V2 : X(Q) — QY(Q,TQ), as well as its dual, which is a
linear connection on the cotangent bundle of Q, V@* : Q1(Q) — QY(Q,T*Q). These connec-
tions enable us to compute the vertical part of the variations. For instance, given ag € Q(7),
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Vag € TagQ(T), and dva, € Ty, (T'Q(7)), we write 6ag = (0ag)" € Ta, Q(F), where the
superscript v denotes the vertical part given by V€, and analogously for the dual connec-
tion, 69*. Additionally, the covariant derivatives induced by these connections are denoted
by V@ /dr and V@*/dr, respectively.

The partial functional derivatives of the Lagrangian are denoted by

6L . 6L d

TvqTQg)T Q, T%(Uq)-’u)q: % S:OL(Uq+qu),
oL . Y4 _d h
(Tq-TQ%T Q, @(”q)‘wq—gszo (Lo%q> (s),

for each v, wy € T,Q, q € Q, where v: (—€,€) = @ is a curve such that d/ds|,—oy = wy and
'yﬁq : (—€,€) — T'Q is the horizontal lift at v, given by V¥. Observe that the first one is a
vertical (fiber) derivative, whereas the second one is a horizontal derivative and depends on
the choice of the connection.

Theorem 3.6 (nonholonomic implicit Euler-Lagrange equations with collisions). A path

(7, 0Q), Vag > Tag) € UQ,T) X o) (Ao ®T*Q(T))

s critical for the action functional S if and only if it satisfies the implicit Euler—Lagrange
equations, or Lagrange—d’Alembert—Pontryagin equations

V*Tao 0L

o —ozT(S—q(VaQ)GAEQ(O[Q)7 E’(VaQ,zraQ)ZO,
oL Qg
ﬂaQ:(sT)q(VaQ)v VOCQZQEAQ(O‘Q%

on [10,7) U (7, 71], together with the conditions for the elastic impact,

{ Moo~ Tag € (Tag»9Q N AQ(aq(7)))” = (Tag(r9Q)° + Aj(ag (7)),
Ewl .ot Y=E(v, 7, ),

aQ’) aq ag’ ag

+

where the annihilators are with respect to T'Q) and we denote 7y, (7)) = Mo €le.

Proof. First, (3.7) ensures that the horizontal part of the variations is dag € Agz)(aq)-
As a result, the variation of the action functional reads

n (oL oL ay
dS(a, Vo, Ty ) (5@,5VQQ,57TQQ) :/ <8q 0o + a—vq . 5anQ + 5Q*7raQ . <042,2 - I/aQ>

§Qal,  aldady
e ( A 5%"@) ) e

T1 a,
+ / L+ 7, - —,Q — Vag Sl dr,
To aT

where the Lagrangian and its partial derivatives are evaluated at v, (7). Note that

V@ V@ VY a
Q. _ Q ) r_ ag ) Q
§*ag T (Tag - 0Q) — dag + Ta,, F
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By using this, splitting the integration domain, [r9,71] — {7} = [70,7) U (7, 71], integrating by
parts on each subinterval, and regrouping terms, we may rewrite the previous expression as

dS(, Vagy, Tag ) (504,51/%,57@(9) =Z(10,7) + Z(7,71) + B(70,77) + B(FT, 1),

where for each a,b € R, a < b, we set

b Q*
0L V¥'m, oL
Z(a,b) _/ ( <a/T5q - d77'TQ) -dag + o <(5vq —7Ta@> '5Q’/acz

/

«
+ 5Q*7raQ (? - I/aQ> o+ E 5aT> dr,
Qp

T=b

B(a,b) = [aq(7) - daq(r) = Bdar(r)] _,

T=a
where the energy is evaluated at (v, (7),Ta,,(7)). Since the previous expression vanishes for
arbitrary variations dar € To, T and dag € Ag(z)(aq) vanishing at the endpoints, as well as
arbitrary variations (5Qan € To, Q(7), 5Q*7raQ eTx QQ(?), we obtain the desired equations,
together with the impact conditions. |

By using the change of variable ¢t = ar(7), we have ¢, = oy /a7 and po =7, /arp. Then,
the implicit Euler—Lagrange equations for a curve (va,pq) : [to, t1] = TQ @ T*Q take the form

Vep, 6L R .
P — —(va) €A%(4a); E(va;pa) =0,
(3.8) dt 5T oq
Pa = W(Ua)a Vo = (o € AQ(Qa)y

on [to,f ) U (f,tl}. Similarly, the conditions for the elastic impact read

(3.9) pi =i € (T, (500N 2q (aa (0)) = (T,.59Q) + 2% (4 (7).
E(vy,py) =E (va,03)
(3.10) Vo = 4o €Aq (g (1)),

where we denote po (£7) =pf, ete.

For unconstrained systems, i.e., Ag = T'Q, the Hamilton-d’Alembert-Pontryagin principle
reduces to the Hamilton—Pontryagin principle, and the implicit Euler—Lagrange equations of
motion read as

Vp, 0L :
dt - 57(](”04)7 E(vavpoc) _07
_ 57[/( ) — 4

Pa = Su Va )y Vo = qa-

q

Remark 3.7 (energy balance). The conservation of the energy, E(vq,ps) =0, is redundant,
as it may be obtained from the remaining equations:
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Blvapa) = Vo2 g g, Yo¥a 0L L Vi,
ar)Pa) = dt a T Pa dt 5q qo 5vq dt

- VQ*pa oL -
= —— | *va=0,
dt oq

where the last equality follows from the fact that v, € Ag(ga) while V@*p,/dt — §L/5q €
Acé(qa). Consequently, this equation may be omitted.

3.3. Example: The rolling disk hitting a circular surface. Let us consider a disk rolling
without slipping, as in [33, section 7.1] or [3, section VI], that is confined to move in a solid
circle. The configuration space is thus given by

Q={(z,y,0,p) €ER* x S' x S| (x + Rcosp)? + (y + Rsiny)? <1},

where (z,y) denotes the contact point of the disk with the ground, 6 denotes the angle
of rotation, and ¢ denotes the heading angle of the disk with respect to the z-axis. The
Lagrangian L :TQ — R is given by

1 1
L($7y597@;vxavyav9yvtp) = §m (/U‘% _f"Ug) + 5 (I’Ug + JU?D) y

where m,I,J € R" are the mass and the moments of inertia of the disk, respectively. For each
(vqapq) = ('7:7 Y, 0, ©; Vg, Uy, Vg, U<p§pxapyap97ptp) ceTQaoT*Q, the energy reads

1 1
E(vg,pq) = P Vg + Py vy + po vy +pwv¢—§m(v%+vg) -3 (IU§+JUi).

In addition, the nonslipping condition reads v, = Rvgcos ¢, v, = Rvgsing, where R € RY is
the radius of the disk, thus yielding the following nonholonomic constraint:

Agq =span{dy + Rcosp 0, + Rsinpdy,0,}, Ag =span{dr — Rcospdf,dy — Rsinpdo}.
On the other hand, the boundary of the configuration manifold is given by
0Q = {(2,y,0,0) €ER? x S x S| (x + Rcosp)? + (y + Rsingp)* =1}.
Hence, the tangent bundle of the boundary reads

T0Q
=span{R(zsinp — ycos )0, + (x + Rcos )0y, R(xsinp — ycos )0y + (y + Rsiny)0,, 0g},

and its annihilator is given by
(T0Q)° =span{(z + Rcosp)dx + (y + Rsinp)dy + R(—xsinp + ycos p)dp}.

Lastly, since S! is a Lie group, its tangent bundle is trivial, and, thus, the canonical flat
connection on the tangent bundle of Q may be chosen, i.e., V& /dt = d/dt. By gathering all,
the implicit Euler-Lagrange equations (3.8) for a curve

(xyy,eu90§Uzy”ya”@vvaxypyap&,pap) : [t()utl] — TQ ©® T*Q
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read

pz = M1, py = K2,

Pg=—p1 Rcosp — pp Rsing,  p, =0,

Pz =M Uy, Dy = TN Uy,

po = 1 vy, pgozjvgm

vy =2 = pu3 Rcosy, vy =19 = pu3 Rsiny,

U9:9:M3, ’Ulngbzlu’lb

on [to,t1] — {f}, where p1, po, 13, s € R are the Lagrange multipliers. The impact condition
at t =1 given in (3.9) reads

{ pi —p, =Xo(z + Rcosp) + A1, pg—pe_:—/\choscp—)\gRsingo,
Py —py =Xo(y+ Rsing) + o, pb —p, = o R(—zsinp +ycosp),

where we denote p; = p, (t~+), etc., and Ag, A1, A2 € R are the Lagrange multipliers. Similarly,
the condition (3.10) reads

U::_:)‘3RCOS()0’ U;_:)\gRSiHQD, U;:)‘& U;:)\4,

where v} = v, (1), etc., and A3, \s € R are the Lagrange multipliers.

3.4. Example: The spherical pendulum hitting a cylindrical surface. Let us consider
a spherical pendulum (cf. [16, section 5.1]) hitting a cylindrical surface. The configuration
space of the system and its boundary are given by

Q={(0,p) € S*| Lsinh <1}, 0Q =1{(0,9) € S*| Lsinf =1},
where 0 < L <1 is the length of the pendulum, and the Lagrangian reads
1
(3.11) L(0,p;v9,v,) = imLz(vg + vi sin? ) — mgL cosf,

where m, g € R™ are the mass of the pendulum and the gravitational acceleration, respectively.
Let us suppose that the polar and azimuthal velocities are proportionally related by a function
depending only on the polar angle, i.e., v, = f(8)vg with f(6) > 0 for each # € R. This results
in the following nonholonomic constraint:

(3.12) Ag =span{dy + f(0)0,}, A% =span{ f(0)d0 — dip}.
In addition, the tangent bundle of the reduced space and the corresponding annihilator read
T0Q =span{0d,}, (TOQ)° = span{df}.

By considering the flat connection in these coordinates, the implicit Euler—Lagrange equations
(3.8) for a curve

(0, 039,05 00,Py)  [to, 1] = TQ & T*Q
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read

po —mLsin0(Lv} cos+ g) = pof(0), Py =—po
po = mL*vp, pp =mL?v,sin’0,
vg =0 = p, v =@ = f(0)u1,

on [to,t1] — {f}, where 19, 11 € R are the Lagrange multipliers. The impact condition at t =¢
given in (3.9) reads

Py —pg =X+ f(OA,  pf—p,=—X,

where we denote p;r = Dy (f+), etc., and A\g, A1 € R are the Lagrange multipliers. Similarly,
the condition (3.10) reads

v =0T =X,  vi=¢T=f(0)As,

where v; =y (f’L), etc., and A3 € R is the Lagrange multiplier.

4. Nonholonomic implicit Lagrange—Poincaré reduction with collisions. Let G be a Lie
group and ® : G x Q — @ be a free and proper left action. The corresponding quotient,
which is a smooth manifold, is denoted by ¥ = Q/G. Furthermore, the quotient projection,
mQ,» : @ — X, is a principal G-bundle. As usual, we denote ®(g,q) = ®4(q) = g - ¢ for each
(9,9) € G x Q. Henceforth, the equivalence classes induced by the G-action on the different
spaces are denoted by square brackets [-]g, e.g., [¢lg € X for each ¢ € Q and [v4]¢ € (TQ)/G
for each v, € TQ.

Remark 4.1. Since ®4: Q — @ is a diffeomorphism for each g € G, it leaves the boundary
invariant, i.e., ®,(0Q) = 0Q. Therefore, ® induces a left G-action on the boundary, ®5 =
Plaxag 1 G x 0Q — 0Q. This action is again free and proper, and, thus, the quotient is a
smooth manifold, (0Q)/G. In fact, this quotient is nothing but the boundary of ¥ = Q/G,
i.e., 0¥ =(0Q)/G. Observe that, in particular, we have that dim G < dim Q.

The moment map induced by this action, J : T*Q — g*, is denoted by the condition

J(pq)gzpqu;, qEQapqu*Qagega

where £* € X(Q) denotes the infinitesimal generator (or fundamental vector field) of &, i.e.,
& = d/dt|i=o exp(t£)-q, with exp : g — G being the exponential map. In addition, the G-action
may be lifted to the tangent and the cotangent bundles of Q,

(4.1) { GxTQ=TQ,  (9.0,) (d%,), (v,

GxT*Q—=T*Q, (9,pq) (d@gﬂ)g.q (pq),
where (dq>g71);q 1 TyQ — T,.,Q is the adjoint map of (dq)g*l)g.q 1 Ty.qQ — T3Q. In turn,
these actions may be lifted to the iterated bundles, yielding G x T(TQ) — T(TQ) and
G xT(T*Q)—=T(T*Q).
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4.1. Reduced configuration space and reduced constraint distribution. Let w € Q1(Q, g)
be a principal connection on gy : @ — ¥, where g is the Lie algebra of G. Let us denote
by @ = 77572 (T'Y) the pullback of the tangent bundle of ¥ by the quotient projection. In

the same fashion, we denote Q* = THs (T*%). The principal connection thus induces the
following trivializations of the tangent and the cotangent bundles of Q:

(4.2) { TQ~ sz 9, Vg = (¢, (dmQ,5)q(vq)), wq(vq)) ,
T*Q ~Q* x g*, pq— ((¢,H;(pg)), I (pq))
where Hj : T7Q) — 17X is the dual map of the horizontal lift induced by w, H, : 7,3 — T30,

where 0 = 79 »1(¢). Under these identifications, it is easy to check that the G-actions (4.1)

read as
(43) { 9-((0,00):6) = ((9-4,05),Ady(€)),  (q:05) €Q, E €,
' 9-((a,06),p) = (9 ¢:ps), Ady-1(p)), (a,ps) EQ™, pEG",

for each g € G, where Ad : G — Aut(g) and Ad* : G — Aut(g*) denote the adjoint and the
coadjoint representations of G, respectively. As a result, we have the following identifications
for the quotient spaces:

(4.4) { (TQ)/G=TE g, [vg] = ((dm@,5)q(vq), [4:wq(vg)] ) 5
' (T*Q)/G=T"T@ ", [pdcr (Hy(pg): 0. I(py)lc)

where g = (Q x g)/G and g* = (Q x g*)/G are the adjoint and coadjoint bundles, respectively.

Given [r9, 1] C R and 7 € [r9, 1], path spaces analogous to (3.1), (3.2), and (3.3) may be
defined by exchanging @ by Y. Such spaces are denoted by 3(7), To,3(7), and Tj 3(7),
respectively, where ay € 3(7). Hence, the reduced path space is given by Q(X,7) =T x X(7).
In the same vein, we define

g(%)az = {ga): E CO ([7-0,7—1],@) | 7r§ ° ga): = az?
oy 1S plecewise C? and has only one singularity at 7}

where 73 : g — X is the natural projection, and analogously for §*(7)as. As a result, we
obtain two vector bundles over X(7); namely, §(7) = ||, exz) 8(Fas — E(7) and g*(7) =
UQEGE(%) g* (7:)112 - 2(%)

Lastly, let Ag CTQ be a G-equivariant constraint distribution, i.e.,

AQ(g-9) = (dPy)(AQ(9)),  9€G,qeq.
Hence, it may be dropped to a distribution on the reduced bundle, [Agle C (TQ)/G. By
means of (4.4), we may write
(4.5) [Agle ~As & Ay CTE @ g,
where Ay, and Aj are the horizontal and the vertical reduced constraint distributions. This
way, constrained paths may be considered:
AE(,;)(OQ;) = {Vaz S TQEE(%) ’ Vas - [7‘0,7’1] — AE},
Az (as) ={fas € 8(T)ax [Sas : [10, 1] = Ag}

for each ax, € 3(7). Note that we obtain vector subbundles Axz) C T3(7) and Agz) C §(7).
The following lemma is now straightforward.
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Lemma 4.2. In the above conditions, let
c= ((aT, CYQ), VaQ,ﬂaQ) S Q(Q,f') XQ(;.) (AQ(;—) D T*Q(f'» .

Then the reduced path is given by
€l (07, 05). (Vg s ) (T ) € Q. F) x50 (i) g0 ST BRI (7).

where ax = [agla, (Vas,&ax) = [Vaole and (Tay, pas) = [Tagla-

Note that the reduced path may be split into the horizontal reduced path,
[c]t; = (a7, %), Vag: Tay, ) € AE.T) x5(7) (Axe) © TE(7)),
and the vertical reduced path,
[c]&: = ((ar, as), fay, Pas) € UB,T) Xx(5) (Agz) © §7°(7))-
At last, given ax. € X(7), Vay, € Tax X(7), and ma,, € T,y 3(7), the spaces T, (T%(7)) and

Tx., (T*3(7)) are defined in the same vein as T, (T'Q(7)) and Tr, (17 Q(7)) by exchanging
@ with . In addition, for each &,,. € g(7)a,, we denote

Te,, 8(7) = {06as € OO0, 1], T6) | €as = 15 © O,

6&,,, is piecewise C? and has only one singularity at ?},

where 775 : Tg — @ is the natural projection. Analogously, we denote T, g*(7) for each
Pos. € 8 (T)ay. In order to incorporate the constraint distribution, we set ATE(;)(VQE) as in
(3.4) by exchanging @ by .

4.2. Nonholonomic implicit Lagrange—Poincaré equations with collisions. Let L:TQ —
R be a (possibly degenerate) G-invariant Lagrangian, i.e.,

L(vg) = L((d®g)n(vg)),  9€G, q€@Q, v €T)Q.
The reduced or dropped Lagrangian is defined as
0 (TQ))G=TEdg—R, [vc~(ve,&) = (vs,E&) = L(vy),

where identification (4.4) has been used. As the energy of the system (3.6) is also G-invariant,
the reduced energy may be defined as

e:(TExg)d(T*"Exg") =R, ((v0,80); (Do Po)) 7 Do - Vo + Po - §o — L(V5,65),

where the identification (7Q & T*Q)/G ~ (TX x g) ® (T*X x g*) has been used.
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4.2.1. Reduced variational principle. Given a path &= (ap,ay) € Q(X,7), its associated
curve is defined as

05 =03 0 a;l :[to, t1] — 2.

Additionally, for the paths (Vay,&as) € Tas 2(T) B §(T)ay and (Tay: Pas) € To B(T) DG (T)as,
we set

Ug = Vay 0 Ot 2 [to, 1] = TE, Ya = Tax 0 't [to, t1] = T3,
Ea=Cayoaq t[to,t1] = @, Pa = Pas © a7 : [to, t1] = §*.

Observe that mpy 0o ug =750 &5 = Tr+x 0 Ya = T+ © Pg = Ta-

Remark 4.3. As we will see below, given o = (a7, aqg) € Q(Q,7) and the corresponding
reduced path & = (ar,as = [agle) € Q(E,7), we set 74, = [ag,w o agle. The change of
variable t = ar(7) yields §o = ag, /a7, which together with (3.5) yields

Na = Nas, © a%l = (O/T o a%l) [¢a,w o daa-

By using the reduced Lagrangian, we may define the reduced action functional,
S:QE,T) X5 ((Az(%) S Ag(z) © (T7%5(7) ﬁ*(%))) X5(7) 8(7) = R,
as follows:
(a7, %), (Vas: §as ), (Tas s Pas ) Nas)

( ) + ya(t) - (a(t) — ua(t)) +pa(t) ((’7“) - @(t))) dt

o0z )0
- < 7)o >>+wa2<f>-<j§§3—uaz<7>) o

# bty (25~ oun)) ) )

arp(7)

As for the unreduced case, the equality for the first and the second expressions comes from
the change of variables t = avp(7). Furthermore, the reduced action functional may be written
in terms of the reduced energy,

6((0&7“,0(2), (1/04276003)7 (Wazapaz)vnaz)

:/t 1<ya(t).d@<t)+pa(t).m —e((u&(t),gd(t)),(y&(t)7p&(t)))> "

:/ ) (”‘“E o Zﬁjg F st Z«Of((:)) e ((vau(7): Sas (7)) (Mo (7); P <T>>>) olp(7) dr.

In order to reduce the variational principle and obtain the reduced equations, we need to
introduce linear connections on the reduced spaces. More specifically, recall that w induces
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a linear connection on the adjoint bundle, V¥ : I'(§) — Q'(2,g). The dual of V¥, which is
a linear connection on the coadjoint bundle, is denoted by V¥* : T'(g*) — Q(%, §*). We also
consider a linear connection on the tangent bundle of ¥, V> : X(X) — QL(X, TY), as well as its
dual, which is a linear connection on the cotangent bundle of 3, V¥* : Q1(%) — QY(X, T*%).
These connections allow for computing the vertical parts of the variations. For instance, given
ax € X(7), {ax, € 8(T)ay, and 68, € Te, 8(7), we denote

5w§0¢2 = (55@2)1) € g(%)az7

where the superscript v denotes the vertical part computed with V¥, and analogously for the
other connections: 6>, §*, and 6>*. The covariant derivatives induced by these connections
are denoted by V¥ /dr, V= /dr, V¥* /dr, and V*>*/dr, respectively.

In the following, the (fiberwise) adjoint representation of g is denoted by ade, : go — o
for each &, € g,, 0 € . Likewise, the (fiberwise) coadjoint representation, i.e., minus the
adjoint of the adjoint representation, is denoted by adza : g5 — g5. In addition, the reduced
curvature of the principal connection w € Q(Q, g) is denoted by Fve 02(%, g).

Theorem 4.4 (reduced Hamilton—d'Alembert—Pontryagin principle). Let
c=((a1,0Q); Vag: Tag) € UQ,T) X o) (Ao @ T*Q(7))
be a path,
[l (07, 09), (Vazs as s (T £0)) €O 7) w3 (Do) © Agir)) © (T2(7) @ §%(7)
be the corresponding reduced path, as in Lemma 4.2, and
Nas = [aQ,w 0 aglc € 8(7)as-
Then c is critical for the action functional S (recall Definition 3.5) if and only if

d6([c]a; nas) (0[], 0nas) =0,

for every variation

5[C]G = (((50[{[‘, 5a2)’ (5V06275§a2)7 (57ra>:a5poc>:>)
€ Tlaran)UE, T) X (Ars ) (Vay) ® T, (7)) X (T, (T*E(7)) ©Tp, 8°(7)),

such that dar () = dar () =0, dax (1) =dax(1) =0, and
(4.6) d?TTE o 51/042 = dﬂ'@ o (5&12 = dﬂ'T*Z o 57T0£2 = dﬂ'@* O Pay = 5&/2,
and for every variation 0nay € Ty, @(7) such that

V¥
47 8Ty = 2
( ) 77 = dT

where V¥ /d1 denotes the covariant derivative induced by V¥, for arbitrary paths fas, € 8(7)as
such that Mo (T0) = Nax (T1) = 0.

+ ady, (Tlas) + F* (80, 0%) € 8(7)as,
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Proof. To begin with, note that S(c) = &([c|g, Ny ) by construction. Now let
{c‘" = ((a%,aég),uiQ,an) €QQ,7) xg() (Do) ®@TQ(7)) |s € (—e,e)}

be a variation of ¢ such that dc = d/ds|s—oc® = ((5aT,5aQ),(5VaQ,57raQ). Then the reduced
variation is computed from (4.4), leading to

SeJa=—| [la

= % ((a%ﬂO‘SE)v(nggaggg)v(ﬂigjpzz))

s=0
d *
= ds ((a%vﬂ—Q»E ° aSQ)7 (dﬂQ,E © V2Q7 [0‘527(") © V(iQ]G’)a (H © WZW [astJ ° WZQ]G))
s=0

= ((5QT7 5&2), (57/&27550@)7 (57‘('&2,5[)&2)),

where we have denoted day; = dmg x 0 dag, dva,, =d(drg ) o oy, 0Tay, = dH* 0 074, and

d . 5 d
% o0 [aQ7wOVaQ]G7 pocz - %

0€as = [ag,Jomg, ]G

s=0

It is now clear that free variations dag, dva,, and dm,,, induce free variations das, 6&qs,
0Tay, and 0pa,. Note that, although we have the restriction dv,, € Arg(Va,, ), the condition
(3.4) does not restrict d&,,,. This may be checked locally, where dvq,, = (o, v,0c,0v) and the
restriction reads da € Ag(z)(aq), but §&,,, only depends on dv, which is free.

Next, we have

( d
drry, 0 0V, = 7s Try 0 dmQ,s 0 Vg, = dTQ,5 0 dTTQ © 0Vayq,
s=0
d
dmgo0bay = s Oﬂg olag,wovy, o =drqgys odag=das,
s=
d
dnpsy 00Ty = 7s mrex oH* omg, = dmqn 0 dp@ 0 0Tay,,
s=0
d
dTge © Pay, = s 07r§* o [ozSQ,J o V;Q]G =dngx o dag =day,
.

where we have used that 7y odmg y» =gy omrg and 7.y oH* = mg vy omp+q. From the first
equality, we conclude that the condition dva,, € Arg(7)(Va,) yields 6vay € Ars(7)(Vay ), Where
we have used (4.4) and (4.5). Moreover, a straightforward check shows that the condition (3.7)
reduces to (4.6).

The second part is a straightforward consequence of [10, Theorem 3.3.1], which can be
applied independently on [19,7) and (7, 71]. Recall that in our case the parameter of the paths
is 7 instead of t¢. |
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4.2.2. Reduced equations. The fiber derivatives of the reduced Lagrangian are denoted
by

50 V. d
ETE@Q—)T E, E(’l}o—,go—)‘wo—— % SZOE(UU—}_SU}O—’&J)’
of ot d

X Yo, — =

560 Dg—g, 5{0 (Umga) To ds o ﬁ(va,fa + 3770)

for each (vs,&5), (Wo,Ns) € ToX @ §o, 0 € X. Moreover, the horizontal derivative of the
reduced Lagrangian is defined by using the linear connection V> @ V¥ on TS @ g as

ol ol d (E . V?fu,,,g(,)) (s)

Y rsegorye, L Wy =

do v8 ’ do (Vo:&o) - wo ds
for each (vy,&r) € ToX @ g, and w, € T3, where v : (—€,€) — X is a curve such that
d/ds|s=0y(s) = w, and 7&0 e (—€,€) = TX @ g is its horizontal lift at (v,,&,) given by the
linear connection V* @& V¥.

s=0

Theorem 4.5 (reduced nonholonomic implicit Euler-Lagrange equations with collisions). Let
c=((ar,0Q),Vag, Tag) € UQ,T) Xo(5) (AQ(;) ®T*Q(7)) be a path and

[da = ((ar,ax), (Vas: €as): (Tas, Pas)) € U, T) X5(7) ((Az(%) © Ags) © (T7%(T) @ ﬁ*(%))>

be the reduced path (recall Lemma 4.2). Then the following statements are equivalent:

1. ¢ is stationary for the Hamilton—d’Alembert—Pontryagin variational principle intro-
duced in Definition 3.5.

2. ¢ satisfies the nonholonomic implicit Euler—Lagrange equations with collisions given
in Theorem 3.6.

3. [dJa and nay = [ag,w o agle satisfy the reduced Hamilton-d’Alembert-Pontryagin
variational principle given in Theorem 4.4.

4. [cde and nay, = [ag,w o agle satisfy the nonholonomic implicit Lagrange-Poincaré
equations with collisions, which consists of the horizontal equations on [19,7) U (7, 11],

vz*ﬂ'az 5€ . ~ o

dT - %(VOJEJS(XE)OZ’II"_"_/)QE . (Za’EF > EAE(O[E)7
aj o0
ﬁ:VQEGAZ(OZE)7 EOjO@?gaz):ﬂ'a):»

where iy : Q2(X,8) — QY(X,3) denotes the left interior product by U € X(X), the
vertical equations on [19,7) U (7,71],

VW o
dp =a Mo (pOé):))
T ) 50
77003
O‘{T :gaz EAQ(O‘E)a (ng (Vaz,faz)zpaz,

and the reduced energy conservation on [y, 7) U (7, 71|,

el((yamgoo:)7 (77'0427pa);)) =0,
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together with the reduced conditions for the elastic impact,

{ 7'(';52 — Moy € (Taz(;—)az N Az(az(%)))o = (Taz(;)é)E)o + A%(Ozz(f')),
(Vo €aw ) (Tay: 04,)) = (Vo €00 (T ),

where we have denoted o, (77) =77 _,

etc.

Proof. The equivalences between 1 and 2, and between 1 and 3 were established in The-
orems 3.6 and 4.4. To conclude, let us show the equivalence between 3 and 4. To that end,
Theorem 4.4 is used, and the reduced variations are decomposed into its horizontal and verti-
cal parts by means of the linear connections V¥, V*, V¥* and V>*. Note that (4.6) ensures

that the horizontal part of all the variations is das € Ax(z)(ax). Therefore,

d6 ([c]a; Nas) (Olc], 0Mas)

R 8¢ 5 . o
S AT S U

T
52 / r5al
+ oy - ?Z B Oéz/OtT YO 770;2 —
o (af)? o
0“Na, 7704:50/7“ /
. = — — o d
+ Pas < O/T (04’/11)2 5042 arpaT

m 0/2 Nas, /
+ / J4 + Tas, * 7 Vas + Pas, * 7 gaz 6aT dTa
7o ar ar

where the reduced Lagrangian and its partial derivatives are evaluated at

(Voéz (T)7 goc): (T))
Note that

V¥sax
dr

Vsax

520/ —
= dr ’

(77-042 ’ (SOZE)/ =

(Vz*ﬂ'az

I )'60[2-}-71',12-

By using this, splitting the integration domain, [11,7) U (7, 71], integrating by parts on each
subinterval, and regrouping terms, the previous expression leads to

d6 ([c]G, Mas) (3[cle, 0nas) = Z(70,7) + Z(7,71) + B(ro, 77) + B(FF, 1),

where for each a,b € R, a < b, we set

b P
5, V. 50
I(a, b) = / ( (50_0['/1—' — d:-> . 60[2 + O/T (61} — 7Ta2> . 6EVQE

Y4 /
+ O/T <5£ - paz) : 5w§az +52*7r0¢2 ’ <ZlZ - Vaz) O"{T
o T

+ 0 pas, - (7(7;2 — §a2> A+ Pos, + 0Nay, + € 50@) dr,
T=b

T
B(a,b) = [mz () - Sas(r) — €5OzT(7')] ,

T=a
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with the reduced energy evaluated at ((Vay(7),&as (7)), (Tas (7); Pax (7))). The reduced con-
ditions for the elastic impact are straightforwardly obtained by recalling that dar is free,
das, € Asyz)(ax), and both of them vanish at the endpoints.

Next, we use (4.7), as well as integration by parts, to write

b ik
Y4 \% - ol
I((I,b) :/ < ((So'a{r — d:az — P, - (ia/EFW)> <oy + a’fl‘ ((S’U — 7Ta2> . 52Va2

ol ol n
/ — — Da .o o 52* SO -y . / 5w* S as o
+ ar <5€O_ P 2> g z:+ Tas <a/T Vas, aT+ Pas O/T § s | &

Ver as * ~
(Tt )+ )

The reduced equations are now straightforward by using that dax € Asz)(ax), Vs, €
TanX(7), 6“Eas € 8(T)as, 5 Tas €T3 E( )s 0" pas € 8" (Tax, Max € 8(7), and dar € Ty, T
are free variations. |

As for the original (unreduced) equations, by using the change of variable t = ap(7), the
nonholonomic implicit Lagrange—Poincaré equations for a curve

((ua:€a) » Wa,Pa)Ma) :[to, 1] > (TS @ §) ® (TS D g*) D §

read
VE*y~ Y4 ( g~) +P (z Fw) EAO (O'~)
dt o @ (5(16 e ek
05 =ug € Ax(0s), 5o Um%)*y&,
(4.8) Vs e 7

Ca=E5€0g(0a), 5 (ua,€5) = Pa
¢ ((ua,€z) , (Yarpa)) =0,

where we have used Remark 4.3 and denoted (5 = 75/(c) o az'). Moreover, the reduced
conditions for the elastic impact read

(4.9) vt —va € (1,050 85 (0a (1)) = (T,.5)9%) +A2% (0 ()

e((ui) . (d72)) =e((va8a) (3. 7))
by =ui€hs(oa (D). Ca=Eichy(oa(D).

where we have denoted yg (1) =y, ete.

(4.10)

Remark 4.6. For the unconstrained case, i.e., Ay, =T and Aj = g, we recover the implicit
Lagrange—Poincaré equations presented in [36].
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4.3. Example: The spherical pendulum hitting a cylindrical surface. Let us continue
with the example of section 3.4. This system is invariant by rotations about the vertical
axis; that is, the Lagrangian (3.11) and the constraint distribution (3.12) are invariant by the
(tangent lift of) following action: SO(2) x Q@ = Q, (¢,(0,¢)) — (6,0 + ).

Note that this action is free and proper except when 6 = kx for some k € Z. Hence, the
following is only valid for trajectories not passing through those configurations. The reduced
configuration space and its boundary are given by

Y=Q/S0(2)~{ec S| Lsind<1}, 9S={0cS'|Lsind=1}.

Hence, the tangent bundle and its annihilator are given by T0%X = 0, (T0%)° = span{df} =
T*03. Since we are working locally, s0(2) =3 x s0(2) =X x R, and we may choose the trivial
principal connection on ) — 3, whence

(TQ)/SO(2) =TE ®s50(2) =TE xR, [0, 509, v4]s0(2) + (0,095 =)
The reduced Lagrangian thus reads
08,09, =vy) = %mLQ(vg + &% sin% 0) — mgL cosf,
and analogously for the reduced constraint distributions,
Ay =span{0p} =TX,  Ag2) =span{f(0)0,}.

The corresponding annihilators vanish Ay, =0 and A7 @) = 0.
By gathering all, the implicit Lagrange—Poincaré equations (4.8) for a curve

(97U97p9a£ :Ugmp:p(p’é.) : [toatl] — (TZ 2 T*E) XRxRXR

read

po =mLsinO(LE2 cosh + g),
0 = vg, Py = mL*vp,

p=0,
C=E&=nof(0), p=mL?¢sin® 0,

on [to,t1] — {f}, where po € R is the Lagrange multiplier. The impact condition at ¢ = ¢
given in (4.9) reads p(j — Py = Ao, where we denote p(;" = Dy (f*), etc., and \g € R is the
Lagrange multiplier. Similarly, the condition (4.10) reads 6T =vy, (T =¢T =X f(6), where
9t =0 ("), etc., and A is the Lagrange multiplier.

5. Conclusions and future work. In this paper, the Lagrange—d’Alembert—Pontryagin
action functional has been extended to the nonsmooth setting to account for nonholonomic
systems undergoing elastic collisions. The configuration space of these systems is a smooth
manifold with boundary and the impact takes place when the trajectory of the system reaches
the boundary. The dynamical equations thus obtained are known as the implicit Euler—
Lagrange equations with collisions and naturally include the energy conservation, as well as
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the appropriate conditions for the impact. Furthermore, for systems with symmetries, the
geometric structures describing the system are reduced, yielding the nonholonomic implicit
Lagrange—Poincaré equations with collisions, which consist of the horizontal equations, the
vertical equations, and the conditions for the impact. Both in the original and reduced
formulations, the equations are first obtained by applying the variational principle with an
auxiliary parameter 7, and then they are reparametrized so that they may be rewritten in
terms of the time . Lastly, the theory is illustrated through some examples.
For future work, we would like to explore the following lines:

1.

[9] H.

[10] H.

=
o W

Symmetry breaking appears when the system is not invariant by the action of the entire
Lie group, but only by its restriction to a subgroup. This situation, which is particu-
larly relevant in fluid dynamics [18], is related to systems whose symmetry group is a
semidirect product and leads to advected parameters in the reduced equations [19].

. Variational integrators. A discrete counterpart of this theory would be highly desirable

in order to obtain numerical schemes that preserve the geometric structures underlying
the dynamical equations, thus leading to well-behaved simulations even for long times
[17, 30, 31].

. Interconnection for Lagrange-Dirac systems [23, 28] may be extended to the non-

smooth setting. The collisions are expected to be transferred between subsystems due
to the coupling, thus yielding impacts on systems that originally have no collisions.

. Nonelastic impacts may be modeled by introducing a restitution coefficient in the reset

map [6], which will allow for treating a wider number of physical systems.
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