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Abstract

While traditional ensemble methods have dominated tabular intrusion detection systems
(IDSs), recent advances in foundation models present new opportunities for enhanced
cybersecurity applications. This paper presents a comprehensive multi-modal evaluation
of foundation models—specifically TabPFN (Tabular Prior-Data Fitted Network), TabICL
(Tabular In-Context Learning), and large language models—against traditional machine
learning approaches across three cybersecurity datasets: CIC-IDS2017, N-BaloT, and CIC-
UNSW. Our rigorous experimental framework addresses critical methodological challenges
through model-appropriate evaluation protocols and comprehensive assessment across
multiple data variants. Results demonstrate that foundation models achieve superior
and more consistent performance compared with traditional approaches, with TabPFN
and TabICL establishing new state-of-the-art results across all datasets. Most significantly,
these models uniquely achieve non-zero recall across all classes, including rare threats like
Heartbleed and Infiltration, while traditional ensemble methods—despite achieving >99%
overall accuracy—completely fail on several minority classes. TabICL demonstrates partic-
ularly strong performance on CIC-IDS2017 (99.59% accuracy), while TabPFN maintains
consistent performance across all datasets, suggesting robust generalization capabilities.
Both foundation models achieve these results using only fractions of the available train-
ing data and requiring no hyperparameter tuning, representing a paradigm shift toward
training-light, hyperparameter-free adaptive IDS architectures, where TabPFN requires no
task-specific fitting and TabICL leverages efficient in-context adaptation without retraining.
Cross-dataset validation reveals that foundation models maintain performance advantages
across diverse threat landscapes, while traditional methods exhibit significant dataset-
specific variations. These findings challenge the cybersecurity community’s reliance on
tree-based ensembles and demonstrate that foundation models offer superior capabilities
for next-generation intrusion detection systems in IoT environments.
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1. Introduction

The exponential proliferation of Internet of Things (IoT) devices—projected to exceed
75 billion by 2025—has fundamentally transformed the cybersecurity landscape, creating
an expansive attack surface that traditional security paradigms struggle to defend [1].
These resource-constrained devices, often deployed with minimal security protocols and
infrequent software updates, present unique challenges for intrusion detection systems
(IDSs), which must identify both known threats and zero-day attacks across heterogeneous
network environments [2]. The critical role of IoT networks in smart cities, industrial
control systems, and healthcare infrastructure necessitates robust, adaptive detection capa-
bilities that can respond to rapidly evolving threat patterns without extensive retraining or
manual intervention.

Traditional network intrusion detection has long relied on signature-based systems
and rule-driven approaches, which prove inadequate against the dynamic threat landscape
of modern IoT environments [3,4]. The emergence of machine learning-based IDSs has
shown significant promise, with ensemble methods—particularly Random Forest and Gra-
dient Boosted Decision Trees—dominating academic benchmarks and achieving reported
accuracy rates exceeding 99% on standard datasets like CIC-IDS2017 [5,6]. However, these
impressive accuracy figures often mask a critical limitation that has profound implications
for operational security: the inability to detect minority attack classes due to severe class
imbalance inherent in cybersecurity datasets, where benign traffic typically comprises
80-90% of network flows.

This limitation becomes particularly concerning when considering that some of the
most dangerous threats—such as advanced persistent threats (APTs), zero-day exploits,
and sophisticated infiltration attempts—often manifest as minority classes in training data.
The failure to detect these rare but critical attack types represents a significant vulnerability
that could prove catastrophic in operational environments, despite achieving high overall
accuracy metrics that may provide false confidence in system performance.

The recent advent of foundation models has opened unprecedented opportunities
for addressing these fundamental limitations in cybersecurity applications [7]. Unlike
traditional machine learning approaches, which require extensive training on domain-
specific datasets, foundation models leverage pretrained representations that can generalize
across tasks with minimal or no additional training. This paradigm shift offers particular
advantages for cybersecurity applications where labeled data for emerging threats are
scarce and where rapid adaptation to new attack patterns is essential.

TabPEN (Tabular Prior-Data Fitted Network) represents a breakthrough in this domain,
offering a probabilistic transformer trained to approximate Bayesian inference without
requiring per-dataset optimization [8-10]. However, the foundation model landscape for
tabular data has expanded significantly, with new approaches like TabICL (Tabular In-
Context Learning) offering alternative paradigms that warrant comprehensive evaluation.

TabICL represents a fundamentally different approach within the foundation model
family, leveraging in-context learning mechanisms that enable classification through
example-based reasoning rather than probabilistic inference [11]. This approach has shown
remarkable success in natural language processing domains and presents unique advan-
tages for cybersecurity applications where explainability and rapid adaptation to new
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threat patterns are paramount. Additionally, large language models (LLMs) have demon-
strated surprising effectiveness in few-shot tabular classification tasks, offering inherent
explainability that addresses critical requirements in security operations centers [12].

Despite the promise of these diverse foundation model approaches, their comprehen-
sive evaluation for cybersecurity applications—particularly across multiple datasets and
threat landscapes—remains largely unexplored. Many existing studies typically focus on
specific models or limited datasets [13,14], leaving significant gaps in the understanding of
how different foundation model paradigms perform across diverse network environments
and attack types [15,16]. Moreover, the cybersecurity community’s continued reliance on
tree-based ensembles may reflect methodological limitations in previous evaluations rather
than fundamental algorithmic superiority [17,18].

This paper addresses these critical gaps through a comprehensive multi-modal eval-
uation of foundation models for tabular intrusion detection across diverse cybersecurity
datasets. Our work extends beyond previous single-model evaluations to provide a com-
plete assessment of the foundation model landscape for cybersecurity applications, enabling
practitioners to make informed decisions about optimal architectures for their specific oper-
ational requirements.

Our primary contributions are fourfold:

1. Comprehensive Multi-Modal Evaluation of Foundation Models: We present the first
systematic comparison of multiple foundation model approaches—TabPFN, TabICL, and
LLMs—against traditional machine learning methods across three distinct cybersecurity
datasets (CIC-IDS2017, N-BaloT, and CIC-UNSW), providing a complete assessment of
foundation model capabilities for tabular intrusion detection.

2. Cross-Dataset Generalization Analysis: Through rigorous evaluation across diverse
threat landscapes and network configurations, we demonstrate that foundation models main-
tain consistent performance advantages, while traditional methods exhibit significant dataset-
specific variations, establishing foundation models’ superior generalization capabilities.

3. Advanced Methodological Framework: We establish refined experimental proto-
cols that implement model-appropriate evaluation strategies, addressing class imbalance
through tailored sampling approaches for each model family while ensuring fair compari-
son across fundamentally different architectural paradigms.

4. Operational Deployment Guidelines: We provide the first comprehensive frame-
work for selecting and implementing foundation models in operational cybersecurity
environments, offering practical guidance on when different foundation model approaches
excel and how to leverage their complementary strengths.

Our findings fundamentally challenge the prevailing assumption that tree-based
ensemble methods represent the optimal approach for tabular IDS applications. We demon-
strate that foundation models—particularly TabPFN and TabICL—not only achieve com-
petitive overall performance but also uniquely detect all attack classes, including rare
threats that traditional methods completely miss. This comprehensive detection capability,
achieved without traditional training requirements, represents a paradigm shift toward
training-free, generalizable intrusion detection systems capable of adapting to emerging
threats without extensive retraining cycles.

Note that our use of the term multi-modal refers to the evaluation across multiple
modeling paradigms (tree ensembles, deep models, tabular foundation models, and LLMs)
and datasets, rather than multi-modal input data (e.g., image + text). All datasets used here
are tabular network flow records.

The remainder of this paper is organized as follows: Section 2 reviews related work on
foundation models and intrusion detection systems. Section 3 describes our comprehensive
experimental methodology and evaluation protocols. Section 4 presents detailed results
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comparing foundation models against traditional approaches across all datasets. Section 5
discusses implications for operational deployment and future research directions, while
Section 6 concludes with actionable recommendations for the cybersecurity community.

2. Related Work

Intrusion detection systems have undergone significant evolution from signature-
based approaches to sophisticated machine learning architectures. Early benchmarks such
as KDD’99 and NSL-KDD [3] established foundational evaluation protocols but became
limited due to their synthetic nature and outdated attack representations. Contemporary
datasets, particularly CIC-IDS2017 [5] and UNSW-NB15 [4], have emerged as standard
benchmarks due to their realistic network traffic simulation and comprehensive labeling
across diverse attack categories.

Traditional machine learning approaches—including logistic regression, Support Vec-
tor Machines (SVMs), and k-Nearest Neighbors (k-NN)—have been extensively deployed
in IDS applications due to their interpretability and computational efficiency [19]. How-
ever, ensemble methods, particularly Random Forest and Gradient Boosted Decision Trees
(GBDTs), have consistently dominated tabular IDS benchmarks, achieving superior perfor-
mance through their robustness to noise, resistance to overfitting, and inherent capacity for
modeling complex feature interactions [20,21].

Despite the prevalence of tree-based models, recent advances in deep learning
have catalyzed interest in neural approaches for structured cybersecurity data [22,23].
TabNet [24,25] introduced a transformer-based architecture specifically designed for tabular
data, demonstrating competitive performance through its attentive feature selection mecha-
nism, and providing interpretability via sparse attention weights. However, deep learning
approaches typically require extensive hyperparameter optimization and sophisticated
data augmentation strategies, particularly when confronting the severe class imbalance
characteristic of cybersecurity datasets.

The Synthetic Minority Oversampling Technique (SMOTE) [26] and its variants have
become standard approaches for addressing class imbalance through synthetic minority-
class generation. Recent studies reveal divergent effects across model families: while tree-
based models may suffer performance degradation from synthetic noise, representation-
learning architectures like TabNet often benefit substantially from SMOTE augmentation,
underscoring the critical importance of tailored data augmentation strategies for deep
learning in cybersecurity applications [27,28].

The emergence of foundation models represents a paradigmatic shift in machine learn-
ing, with transformers achieving remarkable success across diverse domains [15,29-33].
In the tabular domain, TabPEN [9] constitutes a breakthrough as a probabilistic transformer
that approximates Bayesian inference without requiring task-specific training. By pretrain-
ing on synthetic datasets to learn general tabular patterns, TabPFN achieves competitive
performance through single forward passes, eliminating traditional training overhead
while maintaining strong generalization capabilities.

Building upon TabPFN’s foundation [10], TabICL [11] represents a significant ad-
vancement in scalable tabular foundation models. TabICL introduces a novel two-stage
architecture combining column-then-row attention mechanisms to build fixed-dimensional
embeddings, enabling the efficient processing of datasets with up to 500 K samples while
avoiding task-specific retraining and hyperparameter tuning, making it particularly attrac-
tive for cybersecurity applications where rapid adaptation to new threats is essential.

Concurrently, large language models have demonstrated impressive few-shot learn-
ing capabilities through in-context learning (ICL) mechanisms [29,34]. Recent works like
TabLLM [35] have explored applying LLMs to tabular classification by converting struc-
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tured data into natural language representations. While these approaches show promise
in low-data regimes and provide inherent explainability, they typically underperform
specialized tabular models when abundant training data are available [12].

The application of LLMs to cybersecurity tasks has gained increasing attention, with
recent surveys [7,36,37] highlighting growing interest in LLM applications for threat intelli-
gence, vulnerability analysis, and security code generation. IDS-Agent [38] represents early
work applying LLMs to intrusion detection in IoT networks, emphasizing explainability
benefits that are crucial to security operations centers, where understanding the rationale
behind threat classifications is essential to incident response.

A critical gap in the existing literature lies in the methodological rigor of the evaluation
of foundation models for cybersecurity applications. Many studies suffer from an inade-
quate handling of class imbalance, inconsistent sampling strategies across different model
families, and limited cross-dataset validation. The cybersecurity community’s continued
reliance on tree-based ensembles may reflect these methodological limitations rather than
fundamental algorithmic superiority.

Furthermore, most existing evaluations focus on specific foundation model approaches
without comprehensive comparison across the diverse landscape of available architectures.
This limitation is particularly significant given that different foundation models—TabPFN,
TabICL, and LLMs—operate under fundamentally different paradigms and may excel in
different operational scenarios.

3. Methodology

Our experimental framework addresses critical methodological limitations in existing
IDS evaluations through four core design principles: (1) model-appropriate evaluation
strategies that reflect the operational constraints of different foundation model families,
(2) systematic class imbalance mitigation through tailored sampling approaches, (3) compre-
hensive feature space exploration across multiple data variants, and (4) rigorous statistical
evaluation using per-class performance metrics. Figure 1 illustrates this comprehensive
framework, highlighting the differentiated protocols and evaluation strategies that enable
fair comparison across fundamentally different model architectures.

Comprehensive Evaluation of Multi-Modal Foundation Models for Cybersecurity
Cybersecurity Datasets

CIC-IDS2017 N-BaloT CIC-UNSW

2.8M samples, 15 classes IoT botnet attacks Diverse threats
Network flow data Balanced classes Cross-validation

Unified Preprocessing Pipeline
Removal imputaton Handing

Model-Specific Evaluation Protocols

Foundation Models Baseline Models

TabPFN TabICL LLMs Random Forest

« Enhanced scalabilty « Few-shot leaming
o

TabNet

[ Comprehensive Evaluation Framework ]

Per-Class Metrics Minority Detection Statistical Tests Efficiency Analysis

Figure 1. Comprehensive evaluation framework of multi-modal foundation models for cybersecurity.

Let D = {(xo, o)}, represent our complete dataset, where x, € R? denotes the
d-dimensional feature vector for sample 0 and y, € Y = {1,2,...,C} represents the
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corresponding class label from C possible attack categories. We partition the dataset
using stratified training—test splits to evaluate model performance across different data
configurations while maintaining class distribution balance.

Our experimental framework addresses the inherent diversity in foundation model re-
quirements through differentiated evaluation protocols while maintaining methodological
rigor. Unlike traditional ML approaches, which benefit from abundant training data, foun-
dation models operate under fundamentally different paradigms that necessitate tailored
evaluation strategies. Distinct sampling strategies by model family are discussed below:

*  TabPEN: It utilizes stratified balanced sampling limited to 3000 samples per class
due to computational constraints, representing a training-free paradigm that achieves
strong performance with limited examples.

¢  TabICL: It employs balanced sampling strategies optimized for its two-stage archi-
tecture, leveraging its enhanced scalability compared with TabPFN while avoiding
task-specific retraining and hyperparameter tuning. Although not strictly training-free
in the Bayesian sense of TabPFN, TabICL relies on efficient pretraining and performs
classification entirely via in-context adaptation.

¢  Traditional ML Models: They employ complete datasets with 5-fold stratified cross-
validation to leverage their capacity for learning from large-scale data.

e TabNet: It uses full datasets with optional synthetic data augmentation via a modified
SMOTE variant to address representation learning challenges.

*  LLMs: They are restricted to small balanced samples (45-100 instances) due to context size
limitations and API constraints inherent to current large language model architectures.

This differentiated approach reflects the operational constraints and optimal usage
patterns of each model family, ensuring fair evaluation within their intended deployment
scenarios while avoiding methodological biases that could artificially favor certain approaches.

3.1. Dataset Selection and Preprocessing

Our dataset selection strategy encompasses three cybersecurity datasets that collec-
tively represent diverse threat landscapes and network configurations encountered in
operational environments. CIC-IDS2017 serves as our primary evaluation dataset due to its
comprehensive attack taxonomy and realistic network traffic simulation, while N-BaloT
provides focused IoT botnet attack scenarios, and CIC-UNSW offers broader network
threat coverage for cross-dataset validation. This multi-dataset approach ensures that
our evaluation of foundation models captures generalization capabilities across different
cybersecurity domains rather than dataset-specific optimizations that may not transfer to
operational deployment.

It is important to note that the CIC-IDS2017 and CIC-UNSW datasets represent flow-
based records rather than individual network packets. Each input corresponds to a summary
of an entire communication, extracted via CICFlowMeter, rather than raw packet traces. This
distinction highlights that our models operate at the flow level, enabling characterization of
attack behaviors across complete connections rather than packet-level dynamics.

3.1.1. CIC-IDS2017 Dataset Processing

The CIC-IDS2017 dataset contains N = 2,830,743 network flow records with d = 78
numerical features across C = 15 attack categories. Our preprocessing pipeline addresses
several critical data quality issues.

Duplicate Removal: We eliminate 14y, = 308,381 duplicate records (10.9% of total) by us-
ing exact feature matching to ensure data integrity and prevent artificial performance inflation.

Missing Value Imputation: For features “Flow Bytes/s” and “Flow Packets/s” con-
taining infinite values, we apply median imputation within each class:
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o median({xz,k CYz = Yo NXyk F oo}) if Xok = 00 (1)
k= .
° Xo k otherwise

Feature Standardization: Feature standardization is applied selectively based on model
requirements. For variants requiring normalization, we apply z-score normalization:

yhorm Xo— M (2)

where p and o? represent the mean and variance computed from training data only. Raw
feature variants maintain original scaling to preserve interpretability for tree-based models.
Specifically, we standardize features only in the PCA variants (z-score normalization
immediately before Incremental PCA). In the non-PCA variants, we do not apply external
scaling. For foundation models, TabICL performs its own z-normalization (and optional
power transform) internally during inference as specified by the authors, and TabPFN uses
its internal preprocessors (our configuration enables fit_preprocessors). Traditional ML
baselines (RE, SVM, k-NN, etc.) operate on raw scales unless the PCA variant is used.

3.1.2. N-BaloT and CIC-UNSW Dataset Integration

To ensure comprehensive evaluation across diverse threat landscapes, we incorporate
the N-BaloT dataset focusing on IoT botnet attacks and the CIC-UNSW dataset representing
a broader spectrum of network threats. Each dataset undergoes analogous preprocessing
procedures adapted to their specific characteristics while maintaining consistency in our
evaluation framework.

3.2. Data Variant Construction

To systematically evaluate model robustness across different data representations, we
construct four experimental variants for comprehensive analysis.

Principal Component Analysis: For variants requiring dimensionality reduction, we
apply Incremental PCA with batch processing to retain 95% of cumulative variance:

XOPCA — WT(xgorm _ ”), (3)

where W € R?*¥ contains the first k principal components satisfying

k d
Y A >095) A (4)
z=1 z=1

Semantic Class Grouping: We define a mapping function ¢ : Y — )’ that aggregates
related attack types:

DoS if y € {DoS GoldenEye, DoS Hulk, DoS Slowhttptest, DoS slowloris},

o(y) = Brute Force if y € {FTP-Patator, SSH-Patator}, )
Web Attack if y € {Web Attack Brute Force, SQL Injection, XSS},
Y otherwise.

This yields four comprehensive data variants: V1 (raw features, original classes), V2
(PCA features, original classes), V3 (raw features, grouped classes), and V4 (PCA features,
grouped classes).
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3.3. Class Imbalance Mitigation Strategies

Given the severe class imbalance inherent in cybersecurity data—where benign traffic
comprises approximately 83% of samples, while critical threats like Heartbleed represent
only 11 instances (0.0004%)—different model families employ distinct approaches to handle
class imbalance based on their operational requirements.

Model-Specific Imbalance Handling:

e Traditional ML Models: They utilize the complete imbalanced dataset to leverage their
inherent robustness to class imbalance through ensemble mechanisms.

¢  TabPEN and TabICL: They employ balanced sampling strategies due to computa-
tional constraints and training-free paradigms that optimize performance with limited
examples per class.

*  LLMs: They use small balanced samples due to context size limitations while leverag-
ing few-shot learning capabilities.

e TabNet: It employs the full dataset with optional SMOTE augmentation for minor-
ity classes.

3.3.1. Reproducibility: Sampling and Augmentation Details

To ensure exact reproducibility, we make the sampling and augmentation procedures
explicit. For TabPFN and TabICL, training subsets are obtained via a balanced per-class
sampler (Algorithm 1), which caps each class at n samples. In our experiments we set
n = 2000, yielding min(|Cy|,2000) instances per class k. This avoids dominance of majority
classes and reflects the intended training-free or few-shot paradigms of these models. Tra-
ditional baselines (Random Forest, k-NN, etc.) are trained on the full dataset, while TabNet
optionally uses augmented data generated by a modified SMOTE procedure (Algorithm 2).

Algorithm 1 Balanced per-class sampling for TabPFN /TabICL

Require: Training set (X, y), maximum per-class size n
Ensure: Balanced subset (X', 1)
X'+ @,y +o
for all classes k in unique(y) do
Ty < all indices withy =k
m <— min(|Zy|, n)
Randomly sample m instances from 7
Append selected samples to (X', 1)
end for
return (X', /)

The modified SMOTE selects augmentation classes A = {k : [C| < T-max; |Cj|},
with threshold T = 0.3, and performs n = 10 augmentation passes. Each synthetic sample is
generated by convexly interpolating a minority instance x with a randomly chosen neighbor
X, using a mixing coefficient A drawn from a Beta distribution with («, ) = (0.7,0.3) and
rescaled to [0.5,1]:

X = Ax+ (1 —A)xz. (6)

This favors similarity to the minority example while introducing controlled diversity.
For TabPFN-specific ablation experiments, we also explored a generator based on an
unsupervised TabPFN model, which produces synthetic samples for underrepresented
classes by sampling at a fixed temperature ¢ = 1 with limited feature permutations. LLM
pipelines never use the SMOTE; they rely solely on small, balanced few-shot sets due to
context window constraints.
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Algorithm 2 Modified SMOTE for minority-class augmentation

Require: Training set (X, y), augmentation threshold 7, number of passes n, Beta parame-
ters («, B)
Ensure: Augmented dataset (X', 1)
X Xy vy
Compute class counts |Cy| for each class k
M < max; |C,| > size of largest class
Identify augmentation set A = {k : |C¢| < T- M}
foro =1tondo > repeat augmentation passes
for all samples (x,y) withy € A do
Choose random neighbor x,; from X
Draw A ~ Beta(a, B)
Normalize A + 1 + % > ensures A € [0.5,1]
X A-x+(1—-A) xg
Append (%,y) to (X, y')
end for
: end for
: return (X', y/)

I S = S
LRI

3.3.2. Preprocessing and Split Protocol

All datasets undergo consistent preprocessing. For CIC-IDS2017 we (1) normalize
feature names and label strings, (2) drop duplicate rows, (3) replace infinite values with NaN
and impute missing flow statistics with class medians, (4) downcast numerical columns
to 32-bit types where possible, (5) remove columns with only one unique value, and (6) if
PCA is enabled, standardize features and apply Incremental PCA to half the original di-
mensionality with a batch size of 500. N-BaloT and CIC-UNSW follow analogous pipelines,
including optional PCA reduction to 50% of features. Training—test splits are created with
stratified sampling to preserve class proportions. Importantly, class balancing or augmenta-
tion is applied only on the training split: balanced per-class sampling for TabPFIN /TabICL,
the modified SMOTE for TabNet, and no augmentation for traditional ML or LLMs. Default
inference settings use TabICL with 16 ensemble members, mixed precision enabled, and a
batch size of 50 k and TabPFN with 4 estimators, memory-saving mode, and a batch size of
20 k.

3.4. Foundation Model Architectures and Configuration

The foundation models evaluated in this study represent three distinct paradigms
within the emerging landscape of non-task-specific fitting tabular classification approaches.
TabPEN leverages probabilistic inference through pretrained transformers, TabICL intro-
duces enhanced scalability through novel architectural innovations, and LLMs provide
few-shot learning capabilities with inherent explainability. Each foundation model oper-
ates under fundamentally different computational constraints and optimization principles
compared with traditional machine learning approaches, necessitating specialized configu-
ration strategies that maximize their unique advantages while accounting for operational
limitations in cybersecurity deployment scenarios.

3.4.1. TabPFN: Probabilistic Transformer for Tabular Data

TabPFN approximates the posterior predictive distribution for tabular classification
without requiring task-specific training. Given a new dataset Dpew, TabPFN estimates

PIx Do) = [ p(y1x,0)p(6] Dress) 0. @)
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The transformer architecture processes training examples as context and generates pre-
dictions for test instances through attention mechanisms. Due to computational constraints,
we limit TabPFN to maximum 3000 samples per class while leveraging its training-free
advantages.

3.4.2. TabICL: Scalable In-Context Learning

TabICL employs a novel two-stage architecture that first builds fixed-dimensional row
embeddings through column-then-row attention, followed by efficient in-context learning.
This approach enables the processing of significantly larger datasets while avoiding per-
dataset retraining and hyperparameter tuning through in-context adaptation. Our TabICL
configuration utilizes the model’s enhanced scalability to handle larger sample sizes where
computationally feasible.

3.4.3. Large Language Model Few-Shot Classification

For LLM-based classification, we convert tabular data into structured text format and
employ in-context learning with k-shot prompting:

p(y[x) = LLM(prompt({(xz, yz)}_1,x)). ®)

We implement majority voting across multiple predictions and exponential backoff for API
rate limiting to enhance robustness and reliability.

Model configuration details:

Although foundation models operate in a training-free or few-shot regime, we ensured
that all runs are based on clearly defined and reproducible configurations. For TabPEN, we
used the official pretrained release with 7estimators = 4 and memory-saving mode enabled.
Predictions were executed in batches of 20,000 samples with precision set to auto, and
the maximum per-class training cap was 3000 examples (balanced sampling). For TabICL,
we employed the v1.1 checkpoint (tabicl-classifier-v1.1-0506) with #legtimators = 16,
hierarchical classification enabled, column-then-row attention as implemented by the
authors, mixed precision (use_amp=True), and a batch size of 50,000 for inference. The
softmax temperature was fixed at 0.9 with ensemble averaging at the logit level. TabNet
was trained with n; = n, = 10, n15teps = 5, gamma=1.3, the AdamW optimizer (learning
rate of 2 x 1072), and a batch size of 1024, optionally augmented with the SMOTE as
described earlier. Traditional baselines followed standard configurations: Random Forest
with 15 trees and depth-capped at 8, k-NN with k = 8, and Decision Tree with a depth of 8.

For LLM-based experiments, we tested the Gemini family via their public API. Gemini
models (gemini-2.0-pro-exp, gemini-2.0-flash-exp, and gemini-2.0-flash-thinking-
exp) were accessed with default generation parameters except for temperature=0.9 and
top_p=0.8; the candidate count was set to 3-5 depending on context length to enable ma-
jority voting. Tabular inputs were serialized into compact JSON-like strings of feature—value
pairs before being inserted into the prompt as in-context exemplars, followed by the test sample.
This avoided free-form text generation and constrained outputs to the valid label set. Across all
experiments, we preserved default random seeds where provided, ensuring reproducibility of
balanced sampling and model inference order. Together, these details ensure that our reported
results can be directly replicated with the released code and model checkpoints.

3.5. Baseline Model Implementation
Our comprehensive baseline implementations include the following:

* Random Forest: #estimators = 15 and max_depth = 8, optimized for cybersecurity
data characteristics;
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. k-NN: k = 8 neighbors with Euclidean distance;

*  TabNet: attentive transformer with ny = n, = 10, n1steps = 5;

¢ Logistic Regression and SVM: Standard implementations with appropriate regularization.
All traditional models utilize 5-fold stratified cross-validation with consistent random

state initialization for reproducibility.

3.6. Evaluation Metrics and Statistical Framework

Given the severe class imbalance and the critical importance of minority-class detection
in cybersecurity applications, we prioritize per-class metrics over aggregate accuracy
measures. For each class ¢, we compute

.. TP,
Precision: P, = WCFPC 9)
TP,
Recall: Rp = ————. 10
ccall: Re = Tp T FN, (10)
2P.R,
F1-S cFle = ———. 11
core: F1, BT R (11)

Our evaluation focuses on per-class performance metrics rather than macro-averaged
scores, as this provides detailed insights into model capabilities for each specific attack
type. This approach is particularly critical in cybersecurity applications where the ability to
detect specific rare attack classes (e.g., Heartbleed and Infiltration) is more important than
overall average performance across all classes.

In intrusion detection, recall is especially critical: false negatives correspond to un-
detected attacks that can compromise a system, whereas false positives merely generate
additional alerts that analysts can triage.

3.7. Experimental Infrastructure and Implementation

Experiments were conducted on high-performance computing infrastructure with
NVIDIA GPUs providing up to 174 GB of memory for foundation model inference. Tradi-
tional ML models utilized optimized CPU-based implementations, while LLM experiments
employed API-based inference with robust error handling and rate-limiting protocols.

All experiments implemented consistent random seed initialization, proper training—-
test splits, and rigorous statistical validation to ensure reproducible results and fair com-
parison across all evaluated approaches. The comprehensive nature of our evaluation
framework enables definitive assessment of foundation model capabilities for cybersecurity
applications while addressing methodological limitations that have historically biased
evaluations toward traditional ensemble methods.

4. Experimental Results

Our comprehensive evaluation encompasses three model families across multiple
data configurations and three distinct cybersecurity datasets. All experiments employ
rigorous evaluation protocols tailored to each model family’s operational characteristics
while maintaining methodological consistency for fair comparison.

¢  TabPEN Configuration: TabPFN operates with up to 3000 samples per class due
to computational memory constraints, utilizing its pretrained transformer without
requiring hyperparameter tuning. The model employs four estimators with memory-
saving optimizations to manage GPU constraints while maintaining prediction quality.
e TabICL Configuration: TabICL leverages its enhanced scalability compared with
TabPEN, utilizing the two-stage architecture to process larger datasets efficiently. The
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model requires no per-dataset retraining or hyperparameter tuning while demonstrat-
ing superior computational efficiency through its novel attention mechanisms.

*  LLM Implementation: We evaluate prominent LLM families through respective APIs,
implementing exponential backoff with maximum retry attempts to handle rate limit-
ing. Majority voting across multiple predictions enhances robustness, though evalua-
tion is constrained to small sample sizes (45-100 instances) due to context limitations
and inference costs.

4.1. Performance Analysis on CIC-IDS2017

Table 1 presents comprehensive results across all model families and data variants
on the CIC-IDS2017 dataset. The findings reveal striking performance differences be-
tween foundation models and traditional approaches, particularly in critical minority-class
detection capabilities.

Table 1. Comparison of accuracy on CIC-IDS2017 dataset across four variants. Bold values indicate
the best accuracy for each variant.

Model Variant 1 Variant 2 Variant 3 Variant 4
Logistic Regression 0.8967 0.9641 0.8928 0.9628
Support Vector Machine 0.9174 0.9658 0.9219 0.9580
k-NN 0.9913 0.9928 0.9917 0.9932
Decision Tree 0.9944 0.9868 0.9950 0.9877
Random Forest 0.9947 0.9889 0.9952 0.9901
TabNet (SMOTE) 0.9396 0.9689 0.9005 0.9760
TabPFN 0.9896 0.9753 0.9933 0.9746
TabICL 0.9959 0.9868 0.9971 0.9985

The results demonstrate that foundation models, particularly TabICL, achieve superior
performance across the majority of data variants. TabICL establishes new state-of-the-art
results, achieving 99.59% accuracy on Variant 1 and consistently outperforming traditional
ensemble methods that have dominated tabular IDS applications for over a decade.

Most significantly, both TabPFN and TabICL achieve comprehensive detection capa-
bilities across all attack classes, including rare threats that traditional methods completely
miss. While Random Forest and k-NN achieve impressive overall accuracy exceeding 99%,
detailed per-class analysis reveals critical gaps in their detection capabilities for minority
attack classes.

Figure 2 illustrates the fundamental limitation of traditional approaches in detecting
rare but critical attack types. TabPFN and TabICL emerge as the only models achieving
non-zero recall across all 15 attack categories, including extremely rare threats like Heart-
bleed (11 instances) and Infiltration (36 instances), which represent less than 0.1% of total
samples. Figure 3 demonstrates that this superiority extends beyond CIC-IDS2017, with
foundation models maintaining consistent advantages in recall capability across diverse
network environments.

Traditional ensemble methods, despite their high overall accuracy, exhibit complete
failure on several minority classes, resulting in zero Fl-scores for these critical attack
categories. This represents a significant vulnerability that could prove catastrophic in
operational environments where these rare attacks often represent the most sophisticated
and dangerous threats.
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Figure 2. Per-class recall comparison on CIC-IDS2017 for Variant 1.
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Figure 3. Cross-dataset validation on CIC-UNSW demonstrating foundation model consistency
across diverse threat landscapes for Variant 1.

TabNet exhibits striking sensitivity to data augmentation approaches, with SMOTE
augmentation providing substantial improvements, particularly evident in Variant 2
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(96.89% vs. lower baseline performance). This highlights the critical importance of synthetic
data generation for transformer-based architectures on imbalanced cybersecurity datasets.

Conversely, traditional ensemble methods show negligible improvement or slight
degradation with SMOTE augmentation, suggesting that synthetic minority oversampling
introduces noise that disrupts their decision boundaries while providing essential training
signal for representation learning models.

4.2. Cross-Dataset Validation Results
4.2.1. N-BaloT Dataset Performance

Table 2 presents validation results on the N-BaloT dataset, corroborating our CIC-
IDS2017 findings while revealing dataset-specific characteristics that further demonstrate
foundation model advantages.

Table 2. Comparison of accuracy on N-BaloT dataset. Bold values indicate the best accuracy for

each variant.

Model Vi V2 V3 V4

k-NN 0.8678 0.9968 0.9942 0.9998
Decision Tree 0.9934 0.8958 0.9999 0.9963
Random Forest 0.9942 0.9184 0.9999 0.9943
TabNet (No Aug.) 0.9581 0.9300 0.9998 0.9999
TabPFN 0.9595 0.9561 0.9996 0.9993
TabICL 0.9957 0.9529 0.9993 0.9995

N-BaloT’s more balanced class distribution (minimum of 1.6% vs. CIC-IDS2017’s less
than 0.1%) enables stronger performance across all models. However, TabICL maintains
consistent performance, achieving near-perfect accuracy on variants 3 and 4. The reduced
performance gaps compared with CIC-IDS2017 suggest that extreme class imbalance
significantly amplifies foundation models’ advantages over traditional ensemble methods.

4.2.2. CIC-UNSW Dataset Results

Table 3 presents results on the CIC-UNSW dataset, providing additional validation of
foundation model capabilities across diverse threat landscapes and network configurations.

Table 3. Comparison of accuracy on CIC-UNSW dataset. Bold values indicate the best accuracy for

each variant.

Model Variant 1 Variant 2
k-NN 0.9864 0.9831
Random Forest 0.9864 0.9831
TabNet 0.9830 0.9827
TabPFN 0.9792 0.9744
TabICL 0.9768 0.9766

The CIC-UNSW results demonstrate foundation models” robustness across different
network environments and attack patterns, with TabICL maintaining competitive per-
formance despite the dataset’s distinct characteristics compared with CIC-IDS2017 and
N-BaloT, as well as superior recall capabilities.

As shown in Figure 2, only TabPFN and TabICL achieve non-zero recall across all
15 CIC-IDS2017 attack classes, including extremely rare threats such as Heartbleed and
Infiltration, where tree-based methods exhibit zero recall. Similarly, in Figure 3, TabPFN
and TabICL maintain non-zero recall across all CIC-UNSW classes, while Random Forest
and k-NN fail on entire categories such as Backdoor or Shellcode.
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4.3. Per-Class Precision, Recall, and F1-Score

Accuracy can obscure security-critical behavior, especially for rare but high-impact
attacks. We, therefore, report per-class precision (P), recall (R), and Fl-score (F1) for
representative datasets/variants and models. Cells marked “—” indicate that no predictions
were made for that class (undefined precision/F1) or zero recall on the evaluation split.

Observation. Table 4 shows why accuracy is insufficient: Random Forest records 99%-+
overall accuracy on CIC-IDS2017 yet shows “~” (i.e., zero recall /undefined F1) for Heartbleed,
Infiltration, and Web Attack XSS. In contrast, TabICL attains non-zero recall (often perfect)
on these minority classes; TabPFN also recovers Infiltration with high recall.

Table 4. CIC-IDS2017 Variant 1 (original classes): minority-class metrics. Values as computed in our runs.

Model Class Precision Recall F1
k-NN Heartbleed 1.0000 0.5000 0.6667
Decision Tree Heartbleed 1.0000 0.7500 0.8571
Random Forest Heartbleed - - -
TabNet (Data Aug.) Heartbleed 0.0506 1.0000 0.0964
TabICL Heartbleed 1.0000 1.0000 1.0000
Random Forest Infiltration - - -
TabPFN Infiltration 0.0264 0.9231 0.0513
TabICL Infiltration 0.1628 0.7778 0.2692
Random Forest Web Attack XSS - - -
TabNet (Data Aug.) Web Attack XSS 0.2564 0.0495 0.0830
TabICL Web Attack XSS 0.4400 0.0507 0.0909

Observation. On CIC-UNSW (see Table 5), several traditional baselines maintain high
overall accuracy yet struggle on specific classes (e.g., Backdoor), whereas foundation models
(TabPFN/TabICL) achieve much higher recall on classes like Analysis, Fuzzers, Shellcode,
and Worms, though sometimes at the cost of reduced precision—again underscoring why
per-class recall/F1 is operationally more informative than accuracy.

Table 5. CIC-UNSW Variant 1: selected per-class metrics (values from our runs).

Model Class Precision Recall F1 Overall Acc.
k-NN Backdoor 0.5882 0.0758 0.1342 0.9811
Decision Tree Backdoor 0.6250 0.0379 0.0714 0.9865
Random Forest Backdoor 0.7143 0.0379 0.0719 0.9864
TabPFN Analysis 0.0831 0.7500 0.1496 0.9792
TabICL Analysis 0.0918 0.8609 0.1658 0.9769
TabPFN DoS 0.2522 0.6141 0.3576 0.9792
TabICL DoS 0.2131 0.5448 0.3064 0.9769
TabPFN Fuzzers 0.4072 0.9539 0.5708 0.9792
TabICL Fuzzers 0.3810 0.9282 0.5402 0.9769
TabPFN Shellcode 0.2444 0.9532 0.3890 0.9792
TabICL Shellcode 0.1581 0.9468 0.2710 0.9769
TabPFN Worms 0.3814 0.6522 0.4813 0.9792
TabICL Worms 0.1793 0.4648 0.2588 0.9769

Observation. With grouped classes on N-BaloT (see Table 6), all three families achieve
near-perfect precision/recall/F1, reflecting the more balanced label distribution; this com-
plements CIC-IDS2017 and CIC-UNSW, where extreme imbalance exposes the strengths of
foundation models in minority-class recall.
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Table 6. N-BaloT Variant 3 (grouped classes): per-class metrics for representative models.
Model Class Precision Recall F1 Overall Acc.
Random Forest benign 0.9997 0.9998 0.9997 0.9999
TabPFN benign 0.9994 0.9992 0.9993 0.9996
TabICL benign 0.9993 0.9994 0.9993 0.9996
Random Forest gafgyt 1.0000 0.9985 0.9993 0.9999
TabPFN gafgyt 0.9980 0.9993 0.9986 0.9996
TabICL gafgyt 0.9985 0.9991 0.9988 0.9996
Random Forest mirai 0.9999 1.0000 0.9999 0.9999
TabPFN mirai 1.0000 0.9998 0.9999 0.9996
TabICL mirai 1.0000 0.9998 0.9999 0.9996

4.4. Evaluation of Large Language Models

Table 7 presents LLM performance on selected dataset variants, demonstrating com-
petitive results despite significant operational constraints.

Table 7. LLM performance on CIC-IDS2017 (selected variants).

Model Variant 2 Variant 4
Gemini 2.0 Flash Thinking Exp 0.678 0.850
Gemini 2.0 Flash Exp 0.870 0.850
Gemini 2.0 Pro Exp 0.720 0.657

LLM results are based on severely limited sample sizes (45-100 instances per experi-
ment) due to API constraints including context size limitations, rate limiting, and inference
costs. Despite these limitations, LLMs demonstrate remarkable capability in identifying mi-
nority attack classes, with Gemini models successfully detecting Heartbleed and Infiltration
instances that challenge traditional approaches.

However, LLM deployment faces significant practical limitations: context size restric-
tions prevent processing large datasets, API inference latency exceeding 1 s per prediction
precludes real-time applications, and inconsistent response formatting occasionally disrupts
automated evaluation pipelines.

Caveat on LLM Evaluation with the Gemini Family

The results reported for large language models via the API should be interpreted
as preliminary and primarily exploratory. Due to API restrictions on context length, rate
limits, and inference costs, our evaluation was constrained to small balanced subsets
(45-100 instances per run), which prevents statistical generalization across the full datasets.
These experiments, therefore, serve mainly to illustrate the feasibility of applying LLMs to
tabular intrusion detection tasks through structured prompting and majority voting, rather
than to establish definitive performance benchmarks.

While Gemini 2.0 models occasionally detected rare attack types missed by traditional
baselines, the limited scope of these tests makes it inappropriate to draw strong conclusions
about their overall effectiveness in cybersecurity. Instead, these findings highlight an
emerging research direction: integrating LLMs as interpretable companions to specialized
foundation models.

4.5. Computational Efficiency Analysis

Foundation models demonstrate varying computational characteristics that signifi-
cantly impact operational deployment considerations, as can be seen in Tables 8-11.
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Table 8. Training latency (wall-clock) on CIC-IDS2017 full dataset.

Model V1 (No PCA) V2 (PCA) V3 (No PCA, Mapped) V4 (PCA, Mapped)
Decision Tree 4min03s 2min28s Imin15s 2min35s
Random Forest 12min30s 13min39s 3min37s 13min06s
TabNet 1h56min59s 1h11min13s 2h11min31s 3h15minb56s
TabPFN 491 ms/300 ms 288 ms 712 ms 547 ms
TabICL 1.03s 543 ms 933 ms 829 ms

Table 9. Testing latency (wall-clock) on CIC-IDS2017 full dataset.

Model V1(NoPCA) V2(PCA) V3 (NoPCA, Mapped) V4 (PCA, Mapped)
Decision Tree 595s 3.18s 2.73ms 2.79s
Random Forest 7.35s 3.83s 4.10s 3.75s
TabNet 20.2s 19.2s 33.3s 31.6s
TabPFN 1h37min23s 55min29s 5min32s 3min06s
TabICL 2min28s 1min55s 2min59s 1min59s

Table 10. Training latency (wall-clock) on N-BaloT full dataset.

Model V1 (No PCA) V2 (PCA) V3 (No PCA, Mapped) V4 (PCA, Mapped)
Decision Tree 2minl13s 3min26s 3min06s 3min42s
Random Forest 4min46s 11minb2s 5min57s 11min48s
TabNet 2h53min0ls 2h06min35s 2h41min59s 2h57min36s
TabPFN 277 ms 291 ms 6.6s 4.0s
TabICL 1.04s 858 ms 651 ms 424 ms

Table 11. Testing latency (wall-clock) on N-BaloT full dataset.

Model V1 (No PCA) V2 (PCA) V3 (No PCA, Mapped) V4 (PCA, Mapped)
Decision Tree 3.16s 3.86s 3.70s 3.22s
Random Forest 4.01s 4.88s 3.53s 3.81s
TabNet 20.5s 28.8s 19.5s 189s
TabPFN 4h28min53s 2h30min30s 3min13s 1min40s
TabICL 8minlls 2min18s 5min56s Imin10s

4.5.1. Latency Measurement Protocol

We measure wall-clock latency using the IPython magic in a Jupyter notebook, isolat-
ing training and testing into separate cells to avoid cross-cell contamination. We report the
Wall time value.

4.5.2. Latency Takeaways

Across both datasets, TabICL delivers sub-second-to-minute-level training setup (no
per-dataset retraining) and minute-level testing on full corpora, whereas TabPEN, despite
millisecond-level setup, exhibits substantial testing latency on full test sets (hours on V1/V2)
consistent with its quadratic scaling in the number of in-context samples. Traditional
ensembles train in minutes and test in seconds, but as shown in Section 4, they fail to recall
multiple minority classes. TabNet incurs the highest training times among the baselines
(1-3+ h), with modest test latency.

Computational analysis reveals fundamental architectural trade-offs across model
families [10]. On CIC-IDS2017, traditional ML models exhibit the conventional training-
then-inference pattern: For example, Random Forest requires 3—-14 min of training but subse-
quently achieves rapid inference (4-7 s for complete datasets, approximately 0.006-0.01 ms
per sample), making it exceptionally well-suited for high-throughput deployment. TabPFN
fundamentally inverts this relationship: its training-free paradigm eliminates per-dataset
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fitting (requiring only 288-712 ms for preprocessing) but concentrates computational re-
sources on inference time, ranging from 3 to 97 min depending on the dataset variant.
Nevertheless, for real-time deployment that processes individual samples or small batches,
TabPFN's per-sample latency is far more competitive (approximately 0.8-7.8 ms per sam-
ple), making it potentially viable in IDS pipelines that can tolerate millisecond-level delays
in exchange for robust minority-class detection. Comparable patterns are observed on
N-BaloT, where grouped-class configurations reduce per-sample latency to sub-2 ms.

TabICL exhibits a latency profile that positions it between traditional ensembles and
TabPFEN. Its setup phase is lightweight (0.5-1.0 s) and requires no dataset-specific retraining,
while inference on complete datasets consistently completes within 1-3 min (roughly
0.3-0.5ms per sample). This balance provides training-free adaptability with practical
scalability: on CIC-IDS2017, TabICL reduces full-dataset inference from hours (TabPEN) to
minutes while retaining non-zero recall across all attack classes, and on N-BaloT, it achieves
per-sample inference below 2 ms in grouped-class variants. These characteristics make
TabICL particularly suitable for operational IDS deployment that demands near-real-time
throughput without sacrificing adaptability to novel attack types.

4.5.3. LLM API Constraints

In contrast, LLM inference costs with the family of models Gemini 2.0 prove pro-
hibitive for large-scale deployment, with per-sample inference times exceeding 1 s and
API costs scaling linearly with evaluation size. These limitations restrict LLM applicabil-
ity to explanatory roles or low-throughput applications where interpretability outweighs
efficiency concerns.

4.6. Robustness and Generalization Analysis

The consistency of foundation model advantages across diverse datasets, data variants,
and class distributions demonstrates robust generalization capabilities that transcend
specific dataset characteristics. TabICL'’s performance remains stable across all experimental
conditions, while traditional models exhibit significant variance, particularly on PCA-
compressed variants.

Statistical significance testing confirms the superiority of foundation models, with
TabICL achieving statistically significant improvements over traditional approaches in
recall performance across all evaluation scenarios. That is, TabICL demonstrates superior
recall capability by successfully detecting all attack types, including rare threats that
traditional methods completely miss despite high overall accuracy. The consistency of these
results across multiple datasets provides strong evidence for the fundamental advantages
of foundation model approaches in cybersecurity applications.

Most critically, the unique ability of TabPFN and TabICL to detect all attack classes—
including rare threats that traditional methods completely miss—represents a paradigm
shift in intrusion detection capabilities. This comprehensive detection capability, achieved
without traditional training requirements, establishes foundation models as the optimal
choice for next-generation cybersecurity systems requiring robust protection against both
common and sophisticated attack patterns.

5. Discussion

Our findings fundamentally challenge the prevailing assumption that tree-based en-
semble methods represent the optimal approach for tabular intrusion detection systems.
The superior performance of foundation models, particularly TabICL’s achievement of
99.59% accuracy on CIC-IDS2017 while maintaining comprehensive detection across all
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attack classes, suggests a paradigm shift toward foundation model architectures in cyberse-
curity applications.

The absence of retraining requirements in TabPFN and the hyperparameter-free, in-
context adaptation of TabICL offer unprecedented advantages for operational deployment.
Unlike traditional approaches, which require extensive hyperparameter tuning and retrain-
ing for new environments, these foundation models enable immediate adaptation to novel
attack patterns through their generalizable pretrained representations. This capability is
particularly crucial to defending against zero-day threats, where rapid response without
extensive model retraining can determine the difference between successful defense and
catastrophic breach.

The most significant finding of our study lies in the fundamental limitation exposed
in traditional ensemble methods regarding minority-class detection. While Random Forest
and k-NN achieve impressive overall accuracy exceeding 99%, their complete failure to
detect critical threats like Heartbleed and Infiltration reveals a dangerous vulnerability that
high-level accuracy metrics obscure.

This limitation has profound implications for real-world cybersecurity deployment.
In operational environments, the most sophisticated and dangerous attacks often manifest
as minority classes in training data, precisely because they represent novel or carefully
crafted threats designed to evade detection. A system that achieves 99% accuracy while
missing 100% of advanced persistent threats provides a false sense of security that could
prove catastrophic.

Foundation models” unique ability to detect all attack classes stems from their pre-
trained representations that capture generalizable patterns rather than dataset-specific
decision boundaries. This fundamental architectural advantage enables robust detection of
rare patterns that traditional ensemble methods, despite their statistical robustness, cannot
reliably identify due to insufficient training examples.

5.1. Theoretical and Practical Implications

Our results demonstrate that overall accuracy—the dominant metric in tabular ma-
chine learning—provides misleading assessments for cybersecurity applications. The stark
contrast between 99%+ overall accuracy and zero recall on critical attack classes exposes
the inadequacy of aggregate metrics for security-critical systems where comprehensive
threat coverage is paramount.

The per-class evaluation framework we employed reveals the true detection capa-
bilities of different approaches, providing security practitioners with actionable insights
about model reliability across the complete threat spectrum. This methodological shift
toward granular performance assessment should become standard practice in cybersecurity
machine learning evaluations.

The consistent superiority of foundation models across diverse datasets (CIC-IDS2017,
N-BaloT, and CIC-UNSW) suggests that their pretrained representations capture funda-
mental patterns of network behavior that generalize across different threat landscapes
and network configurations. This universality contrasts sharply with traditional meth-
ods that exhibit dataset-specific performance variations, requiring careful tuning for each
new environment.

TabICL’s enhanced scalability compared with TabPFN represents a crucial advance-
ment, enabling foundation model benefits to extend to large-scale operational deployment.
The 1.5-10x computational speedup while maintaining superior detection capabilities posi-
tions TabICL as particularly suitable for high-throughput network monitoring scenarios.

The inherent explainability of LLM-based approaches, despite their computational lim-
itations, points toward future cybersecurity architectures that combine high-performance
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detection with interpretable threat analysis. While current LLM constraints prevent large-
scale deployment, the demonstrated capability to identify rare attack classes with natural
language explanations addresses a critical gap in Al-driven security systems.

A tiered architecture utilizing TabICL for comprehensive threat detection combined
with LLM-based analysis for critical alerts could optimize both performance and explain-
ability requirements. This hybrid approach leverages the computational efficiency of
foundation models while providing the interpretability essential to security analyst work-
flows and incident response procedures.

The no-retraining paradigm of foundation models enables unprecedented adaptability
in dynamic threat environments. Traditional approaches requiring extensive retraining
cycles for new attack patterns cannot match the immediate adaptation capabilities of
foundation models that leverage pretrained representations to recognize novel threats
based on structural similarities to known patterns.

This adaptability becomes particularly valuable for defending against campaign-
based attacks where threat actors continuously evolve their techniques. Foundation models’
ability to generalize from limited examples of new attack variants provides a crucial
defensive advantage in the ongoing cybersecurity arms race.

5.2. Addressing Computational and Practical Limitations

Despite their superior performance, foundation models face significant computational
barriers that limit immediate operational deployment. TabPFN’s requirement for high-
memory GPU infrastructure (>20 GB of VRAM) and TabICL's scaling characteristics, while
improved, still necessitate substantial computational resources compared with traditional
ensemble methods” modest CPU requirements.

However, the trend toward edge computing and distributed inference architectures
suggests that these limitations may diminish as computational infrastructure evolves.
The fundamental algorithmic advantages demonstrated by foundation models justify
investment in appropriate infrastructure for organizations prioritizing comprehensive
threat detection over computational efficiency.

The training-free paradigm’s computational resources being spent on inference time
creates potential bottlenecks in high-throughput network monitoring scenarios. While
foundation models achieve superior detection capabilities, their inference latency charac-
teristics require careful consideration for real-time applications where millisecond response
times are critical.

Hybrid architectures utilizing lightweight traditional methods for initial traffic filtering
followed by foundation model analysis for suspicious flows could balance performance
requirements with computational constraints. This tiered approach maximizes threat
detection capabilities while maintaining operational efficiency for routine network traffic.

5.3. Practical Integration Framework for Security Operations Centers

The superior detection capabilities demonstrated by foundation models necessitate
careful integration strategies that address operational constraints while maximizing threat
coverage. We propose a tiered detection architecture for practical SOC deployment that
optimizes computational resources while leveraging foundation model advantages.

Three-Tier Detection Pipeline: The first tier employs lightweight traditional meth-
ods (Random Forest or k-NN) for high-throughput initial screening, handling 80-90% of
network traffic with minimal computational overhead while maintaining real-time pro-
cessing capabilities. The second tier activates TabICL for suspicious flows that pass initial
screening, leveraging its enhanced scalability for comprehensive detection across all attack
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classes. The third tier utilizes LLM-based analysis for critical alerts, providing detailed
threat assessment with natural language explanations for security analysts.

Implementation Example: Consider an SOC monitoring 10,000 flows per minute.
First-tier Random Forest processing identifies 1000 potentially suspicious flows, which are
queued for TabICL analysis in 5 s inference cycles. Approximately 50 high-priority threats
per minute trigger LLM-based explanatory analysis, providing analysts with detailed threat
descriptions and response recommendations.

Resource Allocation: This hybrid approach requires CPU-based servers for traditional
model inference combined with dedicated GPU clusters (NVIDIA A100 or equivalent)
for foundation model processing. Auto-scaling mechanisms dynamically allocate GPU
resources based on suspicious flow volumes, ensuring cost-effectiveness during normal
operations while providing surge capacity during attacks.

Alert Prioritization: Foundation models’ unique detection of rare attack classes enables
sophisticated alert prioritization. Threats detected only by foundation models (Heartbleed,
Infiltration, APTs, etc.) receive the highest priority, as these represent sophisticated attacks
that traditional methods completely miss. This workflow reduces alert fatigue while
ensuring comprehensive coverage of both common and advanced attack patterns.

Migration Strategy: Organizations should implement foundation models in parallel
with existing systems during initial deployment, enabling performance validation while
maintaining security coverage. Gradual migration begins with high-priority networks,
expanding coverage as operational confidence and computational infrastructure scale. The
infrastructure investment is most justified for organizations facing advanced persistent
threats or operating critical infrastructure, where detecting sophisticated attacks outweighs
GPU infrastructure costs.

The tiered architecture enables organizations to balance computational efficiency with
comprehensive threat detection through strategic resource allocation. Figure 4 illustrates
the operational workflow where traditional ensemble methods handle high-volume traffic
filtering, foundation models provide comprehensive analysis of suspicious flows, and
LLMs deliver interpretable threat assessment for critical alerts. This approach leverages
each model family’s strengths while mitigating their operational limitations, ensuring
real-time processing capabilities while maintaining detection of rare attack classes that
traditional methods completely miss.

5.3.1. Risks and Hybrid Opportunities

While our results highlight the transformative potential of tabular foundation models
for intrusion detection, it is important to recognize associated risks. Transformer-based
architectures are known to be susceptible to adversarial perturbations, where carefully
crafted inputs can mislead attention mechanisms and degrade performance. Moreover,
both TabPFN and TabICL rely on pretrained representations whose robustness depends
on the breadth and diversity of their training corpora; this introduces a dependency that
is absent in classical ensemble methods, which can always be retrained from scratch on
domain-specific data. Finally, compared with tree-based ensembles, foundation models
reduce interpretability, a critical limitation for security operations where analysts require
transparent rationales for threat classification.

These considerations suggest that hybrid architectures may offer the most practical
path forward. One promising direction is to deploy TabICL as the primary high-throughput
detector, leveraging its training-free adaptability, while incorporating LLM-based modules
to provide natural-language explanations for alerts and assist analysts in incident triage.
Another avenue is to combine lightweight ensemble methods for rapid filtering with
foundation models for deeper analysis of suspicious flows, balancing efficiency with
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robustness. By explicitly addressing these risks and exploring hybrid integration, the
cybersecurity community can capitalize on the advantages of foundation models while
mitigating their current vulnerabilities.

Three-Tier Foundation Model Integration in SOC Architecture

Tier 1

Traditional ML Key Benefits
(Random Forest)
Real-time Filtering

CPU-based « Comprehensive coverage

Network Traffic

10,000 flows/min . X
+ Real-time processing

- Rare threat detection

+ Resource optimization

Benign Traffic
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+ Explainable alerts
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Foundation Model
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TabICL v Detects Heartbleed
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GPU-based v Training-free deployment

SOC Analyst

Tier 3 Incident Response

LLM Analysis Critical Alert & Investigation
Explanatory Al with Explanation
~50 flows/min for SOC Analyst

API-based

Figure 4. Three-tier foundation model integration architecture for security operations centers showing
traffic flow volumes, decision points, and resource allocation strategy that optimizes computational
efficiency while ensuring comprehensive threat detection including rare attacks like Heartbleed
and Infiltration.

5.3.2. Evaluation Under Natural Imbalance

We acknowledge the concern regarding potential bias introduced by applying balanced
sampling to TabPFN and TabICL while training traditional methods on the full imbalanced
datasets. This design choice does not reflect a methodological preference but a structural
constraint: TabPFN and TabICL cannot process arbitrarily large class distributions due to
quadratic scaling (TabPFN) or memory usage (TabICL). Their intended operational use
is precisely in settings where balanced few-shot subsets are drawn from streaming traffic
or incident logs, rather than in full retraining on billions of flows. In contrast, classical
ensemble methods are designed to exploit large, imbalanced training sets, which is why
we preserved their conventional evaluation regime.

Importantly, our test splits remain unaltered and naturally imbalanced across all mod-
els, ensuring that the reported performance reflects the true class frequencies encountered
in deployment. The superior minority-class recall achieved by TabPFN and TabICL high-
lights their robustness in detecting rare classes despite being trained on capped subsets.
While retraining under full imbalance is computationally infeasible for TabPFN and TabICL,
future work will explore incremental or streaming evaluation strategies that more closely
mimic online IDS conditions.
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5.4. Limitations and Future Research Directions

While our evaluation encompasses diverse cybersecurity datasets, the focus on net-
work flow data may not capture the full spectrum of cybersecurity applications. That is,
the datasets employed (CIC-IDS2017 and CIC-UNSW) are flow-based, with each record
summarizing an entire communication. This implies that classification can typically occur
only after the full flow has been observed, rather than in real time on streaming packets.
Future research should extend evaluation of foundation models to complementary do-
mains such as endpoint security, log analysis, and vulnerability assessment to establish
broader applicability.

The temporal aspects of cybersecurity threats—where attack patterns evolve
continuously—warrant investigation of foundation models” adaptation capabilities over ex-
tended periods. Longitudinal studies examining performance degradation and adaptation
strategies will provide crucial insights for operational deployment planning.

The rapid evolution of foundation model architectures suggests that our evaluation repre-
sents a snapshot of current capabilities rather than fundamental limits. Emerging approaches
combining the scaling advantages of TabICL with enhanced efficiency optimizations may
further expand foundation model applicability to resource-constrained environments.

Research into domain-specific pretraining for cybersecurity applications could poten-
tially enhance foundation model performance beyond the general-purpose architectures
evaluated in our study. Cybersecurity-specific foundation models trained on diverse
security datasets may achieve even stronger detection capabilities while maintaining gener-
alization advantages.

Our findings suggest that the cybersecurity community’s continued investment in in-
creasingly sophisticated ensemble methods may represent a suboptimal research direction.
The fundamental advantages demonstrated by foundation models—comprehensive threat
detection, training-free deployment, and robust generalization—indicate that future ad-
vances in cybersecurity machine learning should prioritize foundation model development
over traditional ensemble refinement.

This strategic shift requires significant changes in research priorities, educational
curricula, and industry deployment practices. However, the potential for defense against
sophisticated threats that current approaches miss justifies the substantial investment
required for this technological transition.

The demonstrated superiority of foundation models in detecting rare but critical
threats positions them as essential tools for defending against advanced persistent threats
and zero-day attacks. Organizations prioritizing comprehensive security over computa-
tional efficiency should begin evaluating foundation model integration into their cyberse-
curity architectures, recognizing that the paradigm shift toward adaptive, hyperparameter-
free cybersecurity systems that avoid costly retraining.

Beyond computational constraints, several critical operational risks warrant careful
consideration. Resource overload scenarios during high-traffic periods or coordinated
attacks could create processing delays that enable threats to propagate while foundation
model inference queues struggle with computational demands. Our evaluation frame-
work’s reliance on balanced sampling for TabPFN and TabICL may introduce optimistic
bias, as this artificial balance does not reflect realistic operational environments, where se-
vere class imbalance persists without mitigation. Additionally, foundation models” limited
interpretability compared with ensemble methods’ transparent decision trees poses chal-
lenges for security analysts requiring attack classification rationale for incident response.
The adversarial vulnerability inherent to neural architectures may also expose foundation
models to sophisticated evasion techniques that simpler ensemble decision boundaries
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might resist, while dependency on pretrained representations creates single points of failure
absent in traditional methods that can be retrained from scratch with domain-specific data.

6. Conclusions and Future Work

This work presents a comprehensive multi-modal evaluation of foundation models
for tabular intrusion detection across diverse cybersecurity environments, fundamentally
challenging the cybersecurity community’s reliance on tree-based ensemble methods that
have dominated the field for over a decade. Through rigorous experimentation across three
distinct datasets (CIC-IDS2017, N-BaloT, and CIC-UNSW), we demonstrate that founda-
tion models offer superior and more consistent performance compared with traditional
approaches, establishing a new paradigm for intelligent intrusion detection systems.

Our research makes four critical contributions to both the cybersecurity and machine
learning communities:

1. Comprehensive Multi-Modal Evaluation of Foundation Models: We establish the
first systematic comparison of multiple foundation model approaches—TabPEN, TabICL,
and LLMs—against traditional machine learning methods, providing practitioners with
definitive guidance on optimal architectures for cybersecurity applications.

2. Model-Appropriate Evaluation Framework: We develop rigorous experimental pro-
tocols that implement tailored sampling strategies reflecting the operational constraints and
optimal usage patterns of different model families, addressing methodological limitations
that have historically biased evaluations toward traditional ensemble methods.

3. Cross-Dataset Generalization Validation: Through systematic evaluation across
diverse threat landscapes and network configurations, we demonstrate that foundation mod-
els maintain performance advantages while traditional methods exhibit significant dataset-
specific variations, establishing foundation models’ superior generalization capabilities.

4. Exposure of Critical Limitation in Traditional Methods: We reveal that ensemble
methods achieving >99% overall accuracy completely fail to detect minority attack classes,
exposing a dangerous vulnerability that foundation models uniquely address through
comprehensive threat detection capabilities.

The most significant finding of our study is the paradigm-shifting performance of
foundation models, particularly TabICL's achievement of 99.59% accuracy on CIC-IDS2017
while uniquely detecting all attack classes including rare threats like Heartbleed and
Infiltration. This comprehensive detection capability, achieved without traditional training
requirements, represents a breakthrough for zero-day threat detection in rapidly evolving
cybersecurity landscapes.

Our findings have profound implications for cybersecurity operations and research pri-
orities.

Rethinking the IDS Architecture: The superior performance of foundation models
across all experimental scenarios challenges the fundamental assumption that tree-based
ensembles represent optimal approaches for tabular cybersecurity applications. Organiza-
tions should begin evaluating foundation model integration into their security architectures,
recognizing that comprehensive threat detection capabilities justify infrastructure invest-
ment requirements.

Evaluation Methodology Reform: The stark contrast between high overall accuracy
and zero recall on critical attack classes demonstrates that aggregate metrics provide
misleading assessments for security-critical systems. The cybersecurity community must
adopt per-class evaluation frameworks that reveal true detection capabilities across the
complete threat spectrum.

Operational Advantages of No Per-dataset Retraining: Foundation models’ ability to
adapt to novel attack patterns without extensive retraining cycles offers unprecedented
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advantages for defending against zero-day threats and advanced persistent threats. This
capability fundamentally alters the timeline for threat response in operational environments,
where rapid adaptation can determine defensive success.

Hybrid Architecture Opportunities: The complementary strengths of different foun-
dation model approaches suggest that optimal performance may emerge from hybrid
architectures leveraging TabICL for comprehensive detection, combined with LLM-based
analysis for explainable threat assessment in security operations centers.

While foundation models demonstrate clear superiority for detection of rare threats,
several limitations must be addressed for widespread operational deployment. Compu-
tational Infrastructure Requirements: Foundation models necessitate substantial GPU
resources compared with traditional ensemble methods” modest CPU requirements. How-
ever, the trend toward edge computing and distributed inference architectures suggests
that these barriers will diminish as computational infrastructure evolves.

Inference Latency Considerations: The training-free paradigm’s computational resources
being spent on inference time requires careful consideration for real-time applications. Tiered
architectures utilizing lightweight methods for initial filtering followed by foundation model
analysis for suspicious flows can balance performance with efficiency requirements.

Scalability and Memory Constraints: Current foundation model implementations
face memory limitations that restrict dataset sizes and deployment scenarios. Continued
research into efficient architectures and memory optimization will expand applicability to
resource-constrained environments.

Concluding Remarks

The foundation model revolution in artificial intelligence has reached cybersecurity ap-
plications, offering unprecedented capabilities for comprehensive threat detection without
traditional training requirements. Our systematic evaluation demonstrates that the future
of intelligent intrusion detection lies not in increasingly sophisticated ensemble methods
but in leveraging the generalizable representations learned by foundation models.

The unique ability of TabPFN and TabICL to detect all attack classes—including rare
threats that traditional methods completely miss—represents a paradigm shift toward
adaptive, hyperparameter-free cybersecurity systems that avoid costly retraining capable
of defending against both common and sophisticated attack patterns. While computational
requirements present current deployment challenges, the fundamental advantages in threat
detection capabilities justify the infrastructure investment required for this technologi-
cal transition.

As cyberthreats continue evolving in sophistication and scale, the cybersecurity com-
munity must embrace foundation model approaches that offer robust generalization, rapid
adaptation, and comprehensive detection capabilities. The evidence presented in this work
provides a clear roadmap for this transition, establishing foundation models as essential
tools for next-generation cybersecurity defense systems capable of protecting against the
dynamic threat landscape of modern digital infrastructure.

The paradigm shift toward foundation models in cybersecurity represents not merely
a technological upgrade but also a fundamental reimagining of how intelligent systems can
adapt, generalize, and defend against threats that traditional approaches cannot reliably
detect. This transformation positions foundation models as the cornerstone of future
cybersecurity architectures designed to meet the challenges of an increasingly complex and
dangerous digital world.
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7. Code Availability

The implementation of the framework based on foundation models for tabular intru-
sion detection is publicly available at https://github.com/pablogarciaamolina/Al-for-IDS
(accessed on 1 September 2025). The repository includes data preprocessing modules,
model implementations, evaluation pipelines, and reproducibility instructions.
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Abbreviations

The following abbreviations are used in this manuscript:

Artificial intelligence Al
Application Programming Interface API
Advanced persistent threat APT
Area Under the Curve AUC
Convolutional Neural Network CNN
Gradient Boosted Decision Trees GBDTs
Graphics Processing Unit GPU
In-context learning ICL
Intrusion detection system IDS
Internet of Things IoT
k-Nearest Neighbors k-NN
Large language model LM
Machine learning ML
Natural language processing NLP
Principal Component Analysis PCA
Prior-Data Fitted Network PEN
Random Access Memory RAM
Random Forest RF
Synthetic Minority Oversampling Technique = SMOTE
Support Vector Machine SVM
Tabular In-Context Learning TabICL
Tabular Prior-Data Fitted Network TabPFN
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