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Abstract

The increasing penetration of renewable energy, and wind power in particular, requires
accurate short-term forecasting to ensure grid stability, reduce operational uncertainty, and
facilitate large-scale integration of intermittent resources. This study evaluates Transformer-
based architectures for wind power forecasting using hourly generation data from Spain
(2020-2024). Time series were segmented into input windows of 12, 24, and 36 h, and
multiple model configurations were systematically tested. For benchmarking, LSTM and
GRU models were trained under identical protocols. The results show that the Transformer
consistently outperformed recurrent baselines across all horizons. The best configuration,
using a 36 h input sequence with moderate dimensionality and shallow depth, achieved
an RMSE of 370.71 MW, MAE of 258.77 MW, and MAPE of 4.92%, reducing error by a
significant margin compared to LSTM and GRU models, whose best performances reached
RMSEs above 395 MW and MAPEs above 5.7%. Beyond predictive accuracy, attention
maps revealed that the Transformer effectively captured short-term fluctuations while also
attending to longer-range dependencies, offering a transparent mechanism for interpreting
the contribution of historical information to forecasts. These findings demonstrate the
superior performance of Transformer-based models in short-term wind power forecasting,
underscoring their capacity to deliver more accurate and interpretable predictions that
support the reliable integration of renewable energy into modern power systems.

Keywords: wind power forecasting; transformer models; deep learning; short-term
forecasting; renewable energy integration; sustainable energy systems

1. Introduction

Wind energy represents a cornerstone in the global transition toward sustainable and
low-carbon power systems due to its environmental benefits, economic competitiveness,
and capacity to mitigate greenhouse gas emissions. Over the past decades, installed wind
power capacity has expanded rapidly worldwide, reflecting both technological progress
and the urgency of reducing reliance on fossil fuels [1]. In Europe, wind power has become
central to achieving climate and energy objectives through large-scale deployment and sup-
portive policy frameworks such as the European Green Deal and the Fit for 55 package [2,3].
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Spain ranks among the leading countries in this field, with production levels comparable to
global benchmarks such as Germany and India. However, the inherent variability of wind
resources poses persistent integration challenges, as forecasting errors can compromise
grid stability, increase operational costs, and limit the sustainable deployment of renewable
energy [4,5].

Accurate short-term wind power forecasting is therefore required for enabling reliable
integration of renewables into modern power systems and supporting the development of
sustainable smart grids. Despite significant progress, existing approaches still face difficul-
ties in capturing the nonlinear and long-range temporal dependencies that characterize
wind power generation. Traditional physical and statistical models, such as numerical
simulations and Autoregressive Integrated Moving Average ARIMA-family methods, of-
fered efficient short-horizon forecasts but were constrained by assumptions of linearity and
stationarity, limiting their effectiveness in highly dynamic environments [4,6,7]. These limi-
tations motivate the exploration of advanced data-driven approaches capable of delivering
accurate and robust forecasts to enhance energy system sustainability.

Machine learning (ML) and deep learning (DL) methods have been increasingly
explored for wind power forecasting, offering notable improvements over traditional statis-
tical approaches. Random Forests, Gradient Boosting, and hybrid decomposition-based
models have demonstrated competitive accuracy by learning from historical data without
rigid assumptions [4,8]. Nevertheless, these methods face practical limitations, as their
performance often depends on large, high-quality datasets and extensive feature engineer-
ing, while recurrent and convolutional networks, despite their advances, still struggle to
fully capture long-range sequential dependencies critical for wind power dynamics [9,10].
Recent developments in attention mechanisms and Transformer architectures provide a
promising alternative by explicitly modeling long-range temporal dependencies. Early ap-
plications in wind forecasting confirm their capacity to leverage complex temporal patterns,
but most rely on high-frequency, turbine-level meteorological inputs [11]. This highlights a
gap in the ability of streamlined forecasting frameworks based on aggregated historical
generation to reflect realistic data availability in many national power systems. Addressing
this gap is important to improve predictive performance while supporting the sustainable
integration of wind energy into smart grids.

In light of the challenges discussed above, this study pursues two primary objectives.
The first is to develop a Transformer-based architecture for short-term wind power forecast-
ing using historical generation data as input. By leveraging the self-attention mechanism,
the approach aims to capture long-range and multi-scale temporal dependencies inherent
in aggregated power series, providing a data-efficient solution suitable for operational con-
texts with limited access to high-resolution meteorological variables. The second objective
is to apply this framework to a case study of hourly wind power generation in Spain during
the 2020-2024 period, using data reported by the European Network of Transmission
System Operators for Electricity (ENTSO-E). The performance of the Transformer model
is benchmarked against two widely adopted DL architectures, LSTM and GRU networks,
in order to assess predictive accuracy and robustness under realistic system constraints.
To guide this analysis, the following research questions (RQs) are formulated:

¢ RQ1: Can Transformer architectures achieve higher accuracy than recurrent models in
short-term wind power forecasting when only historical generation data are available?

¢ RQ2: How do input sequence length and key architectural choices of the Transformer
model affect forecasting performance?

The remainder of this paper is structured as follows. Section 2 provides a background
on the Spanish wind power sector and reviews existing forecasting methodologies, high-
lighting the specific gaps this study addresses. Section 3 details the methodological design,
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including data preprocessing, model architecture, and training strategy. Section 4 reports
the empirical results, focusing on the comparative performance of Transformer, LSTM,
and GRU models under different input configurations. Finally, Section 5 summarizes the
main findings, answers the research questions, and discusses avenues for future research
in the context of sustainable energy systems.

2. Background of Forecasting in the Wind Power Sector
2.1. The Spanish Wind Power Sector

Spain has consolidated its position as one of Europe’s leading countries in wind energy
deployment, with recent years marked by a steady expansion of renewable capacity. By the
end of 2024, the national installed generation capacity reached approximately 129 GW,
with wind accounting for 24.9% and solar photovoltaic slightly ahead at 25.1%. Together
with other renewable sources, this expansion brought the share of renewables to nearly
66% of total capacity, reflecting a rapid acceleration in the country’s energy transition.
The year 2024 alone witnessed an unprecedented addition of 7.3 GW in renewable capac-
ity, much of it from newly commissioned wind installations [12,13]. In terms of actual
generation, wind energy emerged as the leading source of electricity in 2024, contributing
23.2% of national supply, followed by nuclear (20%) and solar photovoltaic (17%) [12].
On average, between August 2024 and July 2025, more than 80% of Spain’s electricity was
generated from low-carbon technologies, including wind, nuclear, solar, and hydropower,
underscoring the central role of clean energy in shaping the country’s electricity mix [14].

Despite these achievements, the Spanish wind sector continues to face persistent
challenges. The heterogeneous geographic distribution of wind farms, spanning coastal
areas, central plateaus, and mountainous regions, results in high spatial and temporal
variability, which complicates system operation and planning [15]. Furthermore, Spain’s
electricity market operates under a day-ahead and intraday structure, where deviations
between forecasted and realized generation translate directly into imbalance costs and
risks for system reliability [16]. These market dynamics create a pressing need for accurate,
robust, and adaptive short-term forecasting tools capable of supporting efficient dispatch
decisions under increasingly tight operational margins. Taken together, these features, high
wind penetration, regional climatic diversity, systemic relevance in the national energy
mix, and dependence on short-term market mechanisms, make Spain an ideal testbed
for evaluating advanced forecasting models. In this context, exploring the potential of
Transformer-based architectures is not only relevant for addressing domestic operational
challenges but also provides transferable insights for other power systems worldwide
seeking to enhance the sustainable integration of renewable energy resources [17].

2.2. Forecasting Approaches for Wind Energy

Early forecasting approaches were primarily based on persistence models, physical
simulations, and statistical techniques such as the ARIMA family. These methods provided
short-term forecasts with reasonable accuracy under stable conditions but were constrained
by assumptions of linearity and stationarity, limiting their ability to represent the highly
volatile and nonlinear dynamics of wind power generation [4,6,7]. While physical models
incorporated atmospheric physics and fluid dynamics [18], their effectiveness depended
strongly on the quality of numerical weather predictions, often struggling to adapt to
site-specific conditions and abrupt fluctuations. To overcome these limitations, ML meth-
ods have been increasingly explored for wind power forecasting. Algorithms such as
Random Forests and Gradient Boosting demonstrated strong predictive performance by au-
tomatically learning from historical data without predefined assumptions [4]. In addition,
hybrid approaches that combine ML with decomposition techniques, such as Empirical
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Mode Decomposition (EMD), achieved superior accuracy by isolating relevant temporal
features [8]. Nevertheless, these methods face important constraints for large-scale deploy-
ment in sustainable energy systems; as their effectiveness depends heavily on access to
large, high-quality datasets, they require extensive feature engineering, and they lack the
capacity to explicitly capture sequential dependencies critical for time series forecasting.

DL techniques have emerged as powerful alternatives to address these challenges,
offering the ability to model complex nonlinearities and temporal dependencies in large-
scale datasets. Within this paradigm, Multilayer Perceptrons (MLPs) have been employed
to capture nonlinear feature interactions [19], while Recurrent Neural Networks (RNNs),
particularly Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) variants,
are widely used for their ability to model sequential dependencies and dynamic temporal
patterns [9,10]. Convolutional Neural Networks (CNNSs), initially designed for spatial
data, have also been adapted to extract local temporal features and spatial correlations
from meteorological inputs. Furthermore, hybrid architectures such as CNN-LSTM have
demonstrated strong performance in multi-step forecasting tasks, particularly in offshore
or geographically diverse contexts where both spatial and temporal heterogeneity are
pronounced [20,21]. Building on these advances, data-driven preprocessing methods have
been proposed to improve the quality of training inputs for DL models. For instance,
adversarial frameworks such as Wasserstein GAN with gradient penalty (WGAN-GP) have
been used to mitigate biases and enhance data representativeness, leading to improved
accuracy in short-term wind power forecasting [22].

More recently, attention mechanisms have been integrated into DL architectures to
enhance their ability to identify and prioritize the most relevant parts of input sequences.
By dynamically weighting temporal features, attention improves both predictive accu-
racy and interpretability, two aspects essential for operational adoption in energy systems.
For example, Marulanda et al. [23] developed an LSTM-attention framework combined
with seasonal decomposition and normalization techniques for the Spanish electricity
market, showing substantial improvements over baseline DL models. Similarly, the AMC-
LSTM model introduced by [24] demonstrated that incorporating attention layers en-
hances accuracy and provides interpretability benefits, which are increasingly valued in the
decision-making processes of system operators. In addition, Belletreche et al. [25] proposed
a hybrid Conv-Dual Attention LSTM (Conv-DA-LSTM) tailored for desert regions, which
achieved high predictive accuracy and outperformed traditional models, underscoring the
adaptability of attention-based approaches to challenging environments.

Beyond attention-augmented recurrent architectures, recent advances in sequence
modeling have led to the application of Transformer-based models in wind forecasting.
Originally developed for natural language processing, Transformers leverage self-attention
to capture long-range dependencies, making them particularly suited to the nonlinear and
multi-scale temporal patterns of wind generation data. Several studies have confirmed their
effectiveness when using high-frequency meteorological variables, such as wind speed
and direction at multiple altitudes, temperature, and atmospheric pressure, together with
historical power output [11]. The Powerformer model, for instance, adapts the Transformer
framework to wind forecasting, achieving competitive performance by enriching feature
representations with turbine-level data. However, reliance on fine-grained exogenous vari-
ables often limits the operational applicability of these approaches. A recent comprehensive
review by [26] reinforces these developments, highlighting the advantages of attention-
based and Transformer models in handling long-range temporal dependencies, while also
identifying open challenges such as data availability, interpretability, and the computational
costs of large-scale implementations. In contrast, the present study addresses this gap by
developing a streamlined Transformer-based forecasting framework trained on historical
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wind power generation aggregated at the national level. This methodology reflects realistic
data availability in many power systems, where turbine-level or high-frequency meteoro-
logical data may not be accessible, and aims to provide an efficient and scalable solution
that supports the sustainable integration of wind energy into modern smart grids.

3. Self-Attention and Transformer Models in Time Series Prediction

The Transformer architecture is a sequence modeling framework that eliminates the
need for recurrence and convolution, relying exclusively on self-attention mechanisms
to capture contextual dependencies. This design allows the model to effectively learn
relationships between all elements within a sequence, independent of their position, and has
proven highly scalable and effective across a wide range of sequence prediction tasks [27].

Formally, let X € RT*? denote an input sequence of length T, where each element is
represented by a d-dimensional feature vector [28]. To compute self-attention, the input
sequence is linearly projected into three distinct representations: the query matrix Q, the key
matrix K, and the value matrix V.

Q=XW?, K=XxWK Vv=xw’, ©)

where W2, WK WY ¢ R4k are trainable parameters, and dj is the latent dimension.
Scaled dot-product attention is then defined as follows:

Attention(Q, K, V) = softmax QK \Y% ()
7 7 \/dik .

This operation produces a weighted combination of the values, where weights reflect
the learned relevance of each position in the sequence. The result is projected back into the
original feature space:

Z = Attention(Q, K, V)W?, 3)

with WO € R%>4_ This allows residual connections and normalization to be applied in
subsequent layers. To further enrich the model’s representational capacity, the Transformer
introduces the multi-head attention mechanism. In this case, instead of computing a single
attention operation, the model projects the input into multiple subspaces and performs
self-attention independently in each [29]. Specifically, for h attention heads, the input is
transformed using & distinct sets of projection matrices:

head; = Attention(XW2,XWK XWY), i=1,...,1, )

where each WZ.Q, WK WY € R™4, with d;, = d/h. These heads capture different types of
dependencies across the sequence. The outputs of all heads are then concatenated and
linearly transformed:

MultiHead(Q, K, V) = Concat(heady, ..., head,, )WO, (5)

where WO € R¥*4 is another learnable matrix. This structure enables the model to jointly
attend to information from diverse representation subspaces at different positions, increas-
ing the expressiveness and flexibility of the attention mechanism without increasing its
computational complexity. The use of multi-head attention has proven to capture complex,
long-range patterns in sequences, particularly in tasks such as time series forecasting where
both short-term fluctuations and long-term trends coexist [30].
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For the present study, which focuses on single-step forecasting, only the encoder stack
of the Transformer is employed. Each encoder layer consists of multi-head self-attention
followed by a position-wise feed-forward network:

Z = LayerNorm(X + MultiHead(Q, K, V)), (6)

X" = LayerNorm(Z + FFN(Z)), 7)

where FFN(-) is a two-layer feed-forward network with ReLU activation:
FFN(z) = max(0,zW; + b;)W; + by. (8)

The final encoder output is aggregated and passed through a linear projection layer to
produce the next value ;41. Unlike multi-step autoregressive decoding, this formulation
avoids the need for a decoder with masked attention, reducing parameters and computation
while aligning with the single-step prediction objective. The architecture adopted in
this study, illustrated in Figure 1, is an encoder-only Transformer tailored for short-term
wind power forecasting. By relying on self-attention, the model captures both short-term
fluctuations and long-range temporal dependencies within the input window. Unlike
language models, no sequence tokens (e.g., start-of-sequence or end-of-sequence markers)
are required, since the task involves continuous numerical values. The representation of
the historical window is directly mapped through a linear output layer to forecast the next
observation, which simplifies the design while preserving the ability to model complex
temporal patterns.

Forecast output

(one-step)
Linear
A
( )
/—>| Add & Norm I
Feed
Forward
A
)
f—>| Add & Norm I
Multi-Head
Attention
A
k_ J
Positional _9
Encoding

Linear

History Data

Wind Power

Figure 1. Architecture of the Transformer model for wind power forecasting, adapted from the
standardized Transformer architecture.
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4. Methodological Framework for Transformer-Based Wind
Power Forecasting

This section presents the methodological framework adopted to forecast wind power
generation using a Transformer-based DL approach. The process is structured into four
main components: data acquisition and preprocessing, formal definition of the forecasting
problem, specification of the Transformer model architecture, and evaluation of predictive
performance. Each component is designed to ensure temporal consistency and compatibil-
ity with the characteristics of time series forecasting. The aim is to provide a reproducible
pipeline that allows for an objective comparison between the Transformer model and
conventional DL baselines, such as LSTM and GRU networks. The following subsections
detail the procedures and decisions adopted at each stage of the methodology.

4.1. Data Source and Preprocessing

The initial phase of the analysis involved the preparation of the historical wind power
generation dataset. Raw data were obtained from the ENTSO-E, covering hourly records
for Spain over the period from January 2020 to December 2024 [31]. These records were
consolidated into a single, chronologically ordered time series to ensure temporal continuity
and facilitate downstream analysis. Special attention was paid to maintaining uniform
temporal granularity throughout the series. During inspection, it was observed that varia-
tions in data frequency emerged at specific intervals, potentially due to internal updates in
the data provider’s reporting mechanisms. To ensure consistency with the majority of the
dataset and compatibility with the Transformer-based forecasting framework, temporal
harmonization procedures were applied. This included aligning all records to an hourly
resolution. Furthermore, data integrity checks were implemented to identify and correct
structural issues, such as duplicated or misaligned timestamps.

Missing values were also addressed during this stage. Anomalies were identified
in correspondence with systemic calendar transitions, particularly daylight saving time
changes, where certain hours were absent due to official time shifts. These gaps were not the
result of sensor or transmission failures but instead stemmed from temporal discontinuities
imposed by the civil time system. To preserve the temporal structure of the dataset and en-
able uninterrupted input sequences for model training, missing values were imputed using
linear interpolation. This method provides a simple yet effective solution for estimating
missing values based on their immediate temporal context, ensuring a smooth transition
between known observations without introducing abrupt fluctuations. Following data
preparation, an exploratory analysis was conducted to characterize the statistical properties
and temporal dynamics of the wind power generation series.

4.2. Problem Formulation

The objective of this study is to forecast wind power generation using a univariate time
series model based exclusively on historical values. Let {y;}]_; denote the time series of ob-
served wind power generation, sampled at hourly intervals. At each time step ¢, the model
receives a fixed-length window of L past observations y;_r 1.+ = {V¢—1+1,...,¥¢} and
produces a prediction #; 1 for the next time step:

Je+1 = fo(ye—r+1:t) 9)

where fy(+) is a nonlinear mapping function parameterized by 6, implemented using a
Transformer-based neural network. This single-step ahead forecast formulation is particu-
larly relevant for real-time grid operation and energy dispatch scenarios, where accurate
short-term predictions are required. Unlike multi-step forecasting approaches that propa-
gate errors across horizons, this formulation avoids compounding uncertainty and allows
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for more stable model evaluation. It also enables the assessment of the model’s ability to
capture short-term temporal dependencies, which is relevant for highly volatile processes
such as wind power generation. The design leverages the Transformer’s self-attention
mechanism to capture both local fluctuations and long-range patterns within the historical
window, without relying on auxiliary or exogenous variables. In this study, the forecasting
task is explicitly framed as a one-step ahead prediction problem on hourly data. The dataset
was partitioned chronologically, with 70% of the data allocated to training, 15% reserved
for validation, and the remaining 15% held out for testing. Standardization parameters
for z-score normalization were computed exclusively on the training split and applied
consistently across validation and test sets to preserve temporal consistency and avoid
information leakage. Sliding windows were constructed independently within each split to
ensure that no input-output pair crossed data boundaries.

4.3. Transformer Model Architecture

Following the theoretical foundations of the Transformer described in Section 3,
the model was adapted to the task of one-step-ahead wind-power forecasting. The hourly
time series was segmented into fixed-length windows (input length L) using a sliding win-
dow approach; each subsequence of length L € 12,24, 36 was employed to predict the im-
mediate next observation. The dataset was partitioned chronologically into 70%/15%/15%
splits for training, validation, and testing, respectively. Standardization parameters for
z-score normalization (mean and standard deviation) were computed exclusively on the
training split and subsequently applied to the validation and test sets. Sliding windows
were constructed independently within each split to ensure that no input—-output pair
crossed the boundaries between training, validation, and testing.

The encoder-only Transformer architecture was implemented with an input projec-
tion, sinusoidal positional encoding, and a stack of N € 2,3 encoder layers. Each en-
coder layer applied multi-head attention with H € 2,4, 8 heads and model dimension
Amodel € 16,32, 64, with dropout rates of 0.1,0.2,0.3 and batch sizes of 16,32, 64. Training
was carried out using the Adam optimizer with a learning rate of 10~ and mean squared
error (MSE) loss [32,33]. Early stopping was applied on the validation loss with a patience
of five epochs and a minimum improvement threshold of 10~*. Randomness was con-
trolled by fixing the seed at 42, and all tensors were represented in torch.float32. All
experiments were executed on CPU. The runs were performed on an Apple Silicon system
(macOS/Darwin 23.4.0, ARM64, 14 physical cores / 14 logical threads, 36 GB RAM). All
models were implemented in Python 3.11.7 (Python Software Foundation, Wilmington,
DE, USA), using PyTorch 2.2.2 (Meta Al, Menlo Park, CA, USA) for deep learning, NumPy
1.26.4 and Pandas 2.3.2 for data processing, Scikit-learn 1.7.0 for auxiliary ML procedures,
and Matplotlib 3.8.0 for visualization (all open-source).

4.4. Evaluation Metrics

To evaluate the performance of the proposed Transformer-based forecasting model,
a comparative analysis is conducted against two widely used DL baselines: LSTM and
GRU networks. These models are known for their ability to capture temporal dependen-
cies and non-linear relationships in sequential data and have been extensively applied
in wind power forecasting tasks. However, their reliance on sequential processing limits
their efficiency in capturing long-range dependencies, particularly for extended input
sequences [34]. In contrast, the Transformer architecture leverages self-attention mecha-
nisms to model global dependencies in parallel, making it a compelling alternative for time
series prediction. As a benchmark, a naive baseline with a lag of 1 h ("¢t = yt — 1) was
included, computed on the same aligned indices as the model predictions. This baseline
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provides a simple yet informative lower bound for assessing the added value of more
complex forecasting models.

To objectively assess the predictive performance and generalization ability of the
models, three standard error metrics are employed: Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). These metrics
provide complementary perspectives on forecast accuracy, MAE offers a direct measure
of average error magnitude, RMSE penalizes larger deviations more heavily, and MAPE
evaluates relative error as a percentage of actual values. The MAE quantifies the average
absolute difference between the predicted values §; and the actual observations y; and is
computed as follows [35]:

1 n
MAE = — Y |9: — y4]. (10)
i3

The RMSE, which emphasizes larger errors due to the squaring operation, is defined

as [36,37]:
RMSE = |1 Y (9 — yi)2 (1)
t=1

Lastly, the MAPE expresses the forecast error as a percentage of the actual value,
offering a scale-independent metric for evaluation [37,38]:

Yt — Ut
e |

MAPE =

100% &
: (12)

t=1

In addition to these three standard metrics, further indicators are incorporated to
capture the final and relative and normalized performance. The normalized RMSE (nRMSE)
expresses the RMSE as a percentage of the mean of the actual values, thus contextualizing
the magnitude of the error with respect to the average generation level [39]:

RMSE

nRMSE = x 100, (13)
where 77 denotes the mean of the actual values. The Mean Absolute Scaled Error (MASE)
evaluates forecast accuracy relative to the 1 h naive baseline, providing a scale-free compar-
ison across models [40]:

MASE = MAE . (14)

o1 Tia [y — i1
Finally, the symmetric Mean Absolute Percentage Error (sMAPE) addresses the asym-

metry of MAPE by normalizing forecast errors with respect to the average of predicted and

actual values [41]:
n Iyt\ + Iytl

5. Experimental Results

Before implementing the forecasting models, an exploratory analysis was conducted
to characterize the statistical properties and temporal dynamics of wind power genera-
tion in Spain. The resulting dataset, composed of 43,848 hourly records spanning five
years, is presented in Table 1. The average generation is approximately 6661 MW, with a
standard deviation of 3867 MW, indicating substantial variability in wind power output.
The distribution is positively skewed, as evidenced by the higher mean compared to the
median (5943 MW), and values range from a minimum of 196 MW to a maximum of
20,321 MW. Figure 2 provides a histogram of wind power generation frequencies, further
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illustrating the right-skewed nature of the data. Most observations fall within the range of
2000 to 8000 MW, while extreme values are less frequent but relevant for understanding
the volatility of the series.

Table 1. Descriptive statistics of hourly wind power generation (in MW).

Statistic Value
Count 43,848
Mean 6661.10
Standard Deviation 3867.57
Minimum 196
25th Percentile 3587.44
Median (50%) 5943
75th Percentile 9119
Maximum 20,321

== Mean: 6661.10 MW
== Median: 5943.00 MW

2000

1750

1500

1250

Frequency
=
] 8
) 8

o
=}
=)

~
o
=1

0 2500 5000 7500 10,000 12,500 15,000 17,500 20,000
Generation (MW)

Figure 2. Distribution of wind power generation in Spain from 2020 to 2025.

To gain deeper insights into the temporal structure of the series, Figure 3 presents a
classical additive decomposition into trend, seasonal, and residual components, with an
annual cycle specified on hourly data. The trend component shows a progressive increase
in wind power generation over the years, reflecting broader structural changes in the energy
mix. The seasonal component highlights recurrent annual cycles, indicating systematic
variability linked to meteorological conditions. At the same time, the residual component
captures high-frequency fluctuations and abrupt changes, pointing to short-term depen-
dencies that characterize the volatility of wind generation. Together, these patterns confirm
that the series exhibits both short-term and long-term dependencies, thereby justifying
the adoption of a Transformer-based architecture capable of capturing temporal dynamics
across multiple scales.

As described in Section 4, the forecasting pipeline was implemented by restructuring
the hourly time series into overlapping input-output pairs using a sliding-window mecha-
nism, thereby enabling temporal dependencies to be learned from fixed-length historical
sequences. To preserve temporal consistency and prevent information leakage, the dataset
was partitioned chronologically into training (70%), validation (15%), and testing (15%)
subsets. Standardization was performed through z-score normalization, with mean and
standard deviation computed exclusively on the training set and subsequently applied
to validation and test data to ensure consistency. To investigate RQ2, the effect of input
resolution and architectural choices on predictive accuracy, three sequence lengths (12, 24,
and 36 h) were evaluated. For each forecasting horizon, the Transformer was trained across
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a grid of hyperparameter settings, including model dimensionality, number of attention
heads, encoder depth, dropout rate, and batch size (see Section 4.3). Standard error metrics
were employed to evaluate all configurations, and for each horizon (12 h, 24 h, and 36 h),
the model with the lowest RMSE on the test set was selected as the best-performing configu-
ration. While RMSE guided this selection due to its sensitivity to large deviations, the final
benchmarking and comparative analysis also report complementary metrics, ensuring a
comprehensive assessment of predictive accuracy across models. The results corresponding
to the 12 h input configuration, where half-daily historical observations were employed to
predict the subsequent value are presented first, with the five best-performing Transformer
models on the test set reported in Table 2.

20,000
15,000
10,000

5000

Generation (MW)

2021 2022 2023 2024

7250

7000

6750

Trend (MW)

6500

6250

6000
2021 2022 2023 2024

7500

5000

2500

—=2500

Seasonality (MW)

—5000

2021 2022 2023 2024

S
= |
@
n
[=}
=4

10,000

5000 |

-5000
—10,000

2021 2022 2023 2024

Figure 3. Decomposition of wind power time series.

Among the evaluated configurations for the 12 h input horizon, the top-performing
Transformer models achieved test RMSE values in the range of 380-382 MW, with corre-
sponding MAE values between 267 and 270 MW and MAPE below 5.3%. The best-ranked
configuration (Dim = 16, heads = 2, layers = 3, dropout = 0.1, and batch = 16) attained a
test RMSE of 380.62 MW, with validation and training RMSE values of 360.16 MW and
336.73 MW, respectively. This relatively narrow gap across splits indicates stable general-
ization and limited overfitting. Other high-performing configurations, such as those with
Dim = 32 and four attention heads, yielded comparable results, reinforcing that model
capacity beyond a certain threshold does not necessarily translate into improved accuracy.
Instead, consistent patterns emerged across the top-ranked models: dropout rates of 0.1,
batch sizes of 16 or 32, and encoder depths of two to three layers. These findings suggest
that moderate regularization and architectural depth are sufficient to achieve robust perfor-
mance under the 12 h horizon. Importantly, increasing the number of attention heads did
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not produce systematic gains, indicating that additional attention diversity offers limited
benefits for relatively short input sequences.

Table 2. Top 5 Transformer models for 12 h input sequence, ranked by test RMSE. Metrics are
reported for the train, validation, and test sets. The model highlighted in grey corresponds to the best
performance on the test set in terms of RMSE.

Dim Heads Layers Dropout Batch Set RMSE MAE MAPE
16 2 3 0.1 16 Train 336.73 244.31 4.70
Val 360.16 254.40 441
Test 380.62 267.61 5.18
16 4 2 0.1 16 Train 337.41 245.25 4.77
Val 361.26 255.71 4.50
Test 380.92 268.71 5.23
32 4 3 0.1 16 Train 337.90 246.04 4.80
Val 361.40 256.19 4.52
Test 381.10 268.21 5.24
16 4 3 0.1 16 Train 337.43 244.50 4.68
Val 361.24 254.35 4.38
Test 381.56 267.79 5.17
32 4 3 0.1 32 Train 341.57 248.27 4.76
Val 364.12 257.55 4.46
Test 381.85 270.16 5.27

Following the analysis of the 12 h input configuration, the performance of Transformer
models trained with a 24 h sequence length was subsequently examined. This setting allows
the model to incorporate a full day of historical wind power generation when predicting
the subsequent value, thereby potentially capturing daily periodicities and longer-term
dependencies that shorter windows may overlook. Table 3 presents the performance of the
five best-performing configurations under this new temporal scope. As in the 12 h setup,
each model reflects a distinct combination of the architectural hyperparameters introduced
in Section 4.3, including dimensionality, number of attention heads, encoder depth, dropout
rate, and batch size. This selection allows for a focused comparison of the most accurate
configurations under the 24 h input scenario.

Among the tested configurations, the best performance for the 24 h input horizon was
achieved by the model with a dimensionality of 16, two attention heads, three encoder
layers, a dropout rate of 0.1, and a batch size of 32. This configuration yielded a test
RMSE of 375.75, MAE of 263.02, and MAPE of 5.08, while also exhibiting balanced results
across training and validation, thus indicating effective generalization. The remaining
top-performing models followed a consistent pattern, relying on relatively compact archi-
tectures with either 16 or 32 dimensions, two to three encoder layers, and predominantly
a dropout rate of 0.1. In terms of batch size, while the 12 h horizon favored configura-
tions with 16, the 24 h setting showed a preference for 32, suggesting that slightly larger
batches contribute to more stable training dynamics when longer input sequences are used.
Interestingly, as in the 12 h horizon, the number of attention heads did not show a clear
performance advantage beyond two or four, suggesting that increasing attention diversity
does not necessarily translate into improved accuracy for short- to medium-range horizons.

Finally, the evaluation of Transformer models trained with a 36 h input sequence is
presented in Table 4. This configuration provides the model with an extended temporal
context, allowing the learning of broader temporal dependencies and delayed effects in
wind generation patterns. However, longer input sequences may also introduce noise or
redundant information, increasing the risk of overfitting if not adequately regularized.
Therefore, assessing the performance under this extended horizon is relevant to determine
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whether the additional historical context leads to tangible improvements or diminishing
returns compared to shorter input lengths. As in the previous cases, the top five performing
configurations under this setting were identified and analyzed based on their predictive
accuracy on the test set.

Table 3. Top 5 Transformer models for 24 h input sequence, ranked by test RMSE. Metrics are
reported for the train, validation, and test sets. The model highlighted in grey corresponds to the best
performance on the test set in terms of RMSE.

Dim Heads Layers Dropout Batch Set RMSE MAE MAPE
16 2 3 0.1 32 Train 334.24 242.49 4.66
Val 360.05 253.97 4.39
Test 375.75 263.02 5.08
16 4 3 0.1 32 Train 334.29 242.86 4.72
Val 359.04 253.99 4.46
Test 375.90 263.01 5.11
32 4 2 0.2 32 Train 338.03 245.95 4.75
Val 361.82 256.63 4.49
Test 376.74 264.82 5.14
32 4 2 0.1 32 Train 332.12 240.25 4.60
Val 357.04 251.49 4.33
Test 377.14 261.20 5.01
32 4 3 0.1 16 Train 335.55 245.06 4.80
Val 359.88 256.51 4.56
Test 377.29 264.31 5.20

Among the 36 h input configurations, the best predictive performance was achieved by
the model with a dimensionality of 32, four attention heads, two encoder layers, a dropout
rate of 0.1, and a batch size of 16. This model reached an RMSE of 370.71, MAE of 258.77,
and MAPE of 4.92% on the test set. Notably, the gap between training and test perfor-
mance (RMSE: 331.52 vs. 371.71) remained narrow, indicating effective generalization and
limited overfitting. Compared to the 12 h configuration, where smaller dimensionality
(16) was generally favored, the results for the 36 h horizon suggest that larger model
dimensionality (32) becomes beneficial when capturing longer temporal dependencies.
Across the top-performing models, relatively shallow architectures with two encoder layers
predominated, indicating that greater depth does not necessarily improve performance
in extended horizons. Dropout values of 0.1 were consistently observed, highlighting the
importance of regularization as the sequence length increases. Furthermore, smaller batch
sizes (mostly 16) continued to be preferred, reinforcing the observation that reduced batch
regimes promote stable convergence across horizons. In addition to its predictive accu-
racy, this configuration also demonstrated strong computational efficiency. Although the
training schedule allowed for a maximum of 50 epochs, convergence was reached after
only 11 epochs due to the application of early stopping, resulting in a total training time
of 439.10 s, with a median epoch duration of 40.02 s. From a deployment perspective,
the model further exhibited low-latency suitability, achieving an average inference time of
3.698 ms (p95 = 4.768 ms) when evaluated on batches of 16 sequences of length 36. These
results show not only the accuracy of the architecture under extended input horizons but
also its ability to achieve rapid convergence and efficient inference, reinforcing its practical
viability for real-world forecasting applications.
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Table 4. Top 5 Transformer models for 36 h input sequence, ranked by test RMSE. Metrics are
reported for the train, validation, and test sets. The model highlighted in grey corresponds to the best
performance on the test set in terms of RMSE.

Dim Heads Layers Dropout Batch Set RMSE MAE MAPE
32 4 2 0.1 16 Train 331.52 240.88 4.64
Val 354.91 251.12 4.35
Test 370.71 258.77 492
32 4 3 0.2 16 Train 333.74 243.08 4.73
Val 357.74 253.73 4.45
Test 372.49 261.47 5.12
32 2 2 0.1 16 Train 330.67 239.73 4.58
Val 355.32 251.03 4.29
Test 373.36 261.64 5.02
16 4 3 0.2 32 Train 333.39 242.43 4.71
Val 357.29 253.26 4.45
Test 374.64 262.39 5.12
32 2 2 0.1 32 Train 332.79 242.06 4.66
Val 358.04 254.44 4.43
Test 374.69 264.94 5.17

Importantly, the attention maps for the 36 h horizon revealed that most heads concen-
trated their weights on the most recent hours, highlighting the dominant role of short-term
dynamics in wind power variability. Nevertheless, certain heads distributed attention more
broadly across intermediate and even earlier positions within the input window, suggesting
that the model simultaneously captured longer-range dependencies. This division of roles
across attention heads indicates a complementary mechanism in which recent fluctuations
are emphasized while broader temporal patterns are also considered (see Figure 4). Con-
sequently, the 36 h input horizon demonstrated that extended context lengths enable the
Transformer to leverage both short- and long-term information.
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Figure 4. Encoder self-attention map for the best Transformer model.

Complementary error stratification further validated the robustness of the 36 h con-
figuration. As reported in Table 5, mean absolute ramp errors increased moderately with
the ramp horizon, from 356 MW at Al h to 377 MW at A6 h. This progression indicates
that, although absolute ramp prediction errors rise with longer intervals, the growth re-
mains limited, which highlights that the model preserves a reasonable capacity to adapt
to temporal ramps of larger magnitude. Under extreme conditions (Table 6), the model
exhibited higher errors, particularly for strong ramps (|Ay| > p90). The largest deviations
occurred at short horizons (A1l h, MAE = 679 MW), reflecting the challenge of anticipating
abrupt fluctuations. At longer horizons (A3 h and A6 h), both MAE and RMSE declined,
showing that broader aggregation intervals mitigate the impact of short-term variability.
Regarding peak generation events (y > p95), errors remained substantial (MAE = 376 MW,
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RMSE = 526 MW), confirming the intrinsic difficulty of accurately forecasting rare and
highly volatile extreme values.

Table 5. Mean absolute ramp error across different horizons.

Horizon (Ah) N MAE Ramp (MW)
1h 6541 356.01
3h 6539 363.05
6h 6536 377.24

Table 6. Error metrics for strong ramps (1 Ay | > p90) and peak generation events (y > p95).

Event Horizon (Ah) MAE (MW) RMSE (MW)

Strong ramps 1h 678.95 798.37
3h 383.92 511.27
6h 330.01 452.92

Peaks - 375.81 525.73

To establish a robust benchmark against the Transformer-based architectures, comple-
mentary experiments were conducted using recurrent neural networks, specifically LSTM
and GRU models. Both architectures were implemented with a comparable design, consist-
ing of stacked recurrent layers, followed by a fully connected output layer to produce point
forecasts. The evaluation protocol was kept identical to that of the Transformer experiments:
chronological data partitioning (70% training, 15% validation, and 15% testing); z-score
normalization based exclusively on the training set; and input sequence lengths of 12, 24,
and 36 h. Model selection was carried out through an exhaustive grid search across key
hyperparameters, including the number of hidden units (16, 32, and 64), the number of
recurrent layers (1, 2, and 3), dropout regularization levels (0.1, 0.2, and 0.3), and batch
sizes (16, 32, and 64). Training was performed using the Adam optimizer with a learning
rate of 1073, and early stopping was applied on the validation loss with a patience of five
epochs and a minimum improvement threshold of 10~#. This procedure ensured that
model complexity, convergence dynamics, and generalization ability were systematically
evaluated under conditions directly comparable to those of the Transformer models.

Table 7 summarizes the best-performing configurations of the Transformer, LSTM,
and GRU architectures across the three input horizons. The Transformer model, trained
with a 36 h input sequence, consistently outperformed the recurrent baselines, achieving
an RMSE of 370.71 MW, MAE of 258.77 MW, and MAPE of 4.92%. These values represent a
substantial improvement over the naive 1 h lag benchmark, whose MAE ranged between
378.08 and 378.39 MW depending on the window length, thus confirming the ability of the
model to capture temporal dependencies beyond short-term persistence. For the recurrent
models, the best LSTM configuration (36h, hidden = 32, layers = 1, dropout = 0.3) reached
an RMSE of 397.59 MW and MAE of 292.37 MW, while the best GRU (36h, hidden = 32,
layers = 1, dropout = 0.1) slightly outperformed the LSTM, with an RMSE of 395.47 MW
and MAE of 289.11 MW. Although both models reduced errors relative to the naive baseline,
their performance lagged behind the Transformer in all error measures, particularly in
MAE and sMAPE, where reductions were less pronounced. The comparison of normalized
errors provides further insights. While the LSTM and GRU achieved nRMSE values around
6.3-6.5%, the Transformer reduced this figure to 5.92%. Similarly, sSMAPE decreased from
5.71-6.09% in the recurrent networks to 4.85% in the Transformer. These differences,
though moderate in relative terms, are significant in operational contexts where small
percentage improvements translate into large absolute reductions in forecast error. Overall,
the results support RQ1 by demonstrating that the Transformer architecture generalizes
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better across horizons, improving not only absolute accuracy (RMSE, MAE, and MAPE) but
also scale-independent and relative metrics (nRMSE, MASE, and sMAPE). The recurrent
baselines exhibited performance gains when provided with extended input windows
(36 h). However, even under their best-performing configurations, they consistently lagged
behind the Transformer, underscoring the latter’s superior capacity to capture long-range

dependencies and complex temporal dynamics.

Table 7. Comparison of the best Transformer (36 h), LSTM, and GRU models across different horizons.
Only error metrics are reported, and architectures are summarized by main hyperparameters. The
model highlighted in grey corresponds to the best performance on the test set in terms of RMSE.

Model Horizon Architecture (Summary) RMSE MAE N{(j,?l;E nIiy)SE MASE SN([(:? )P E
Transformer 36 h Dim = 32, Heads = 4, Layers = 2, Dropout = 0.1, Batch =16 ~ 370.71  258.77 492 5.92 0.68 4.85
LSTM 12h Hidden = 32, Layers = 2, Dropout = 0.1, Batch = 32 412.80 304.11 6.12 6.59 0.80 6.04
LSTM 24 h Hidden = 32, Layers = 1, Dropout = 0.2, Batch = 16 406.69  299.34 6.05 6.49 0.79 5.93
LSTM 36h Hidden = 32, Layers = 1, Dropout = 0.3, Batch = 32 39759  292.37 5.92 6.35 0.77 5.83
GRU 12h Hidden = 32, Layers = 2, Dropout = 0.2, Batch = 32 412.35  304.60 6.22 6.58 0.80 6.09
GRU 24 h Hidden = 16, Layers = 2, Dropout = 0.1, Batch = 16 40495  298.51 6.09 6.46 0.79 5.95
GRU 36 h Hidden = 32, Layers = 1, Dropout = 0.1, Batch = 16 39547  289.11 5.78 6.32 0.76 5.71

To complement the tabular results and provide further insight into model behavior,
Figures 5-7 illustrate the alignment between actual wind power generation and predictions
from the best-performing configurations of Transformer, LSTM, and GRU over a two-month
segment of the test set. The comparison highlights clear differences in the models’ ability to
reproduce temporal variability, especially at peak values. The GRU model, while capable
of capturing overall trends, systematically underpredicts sharp peaks and exhibits lagged
responses to sudden ramps, which reflects the limitations of its simpler recurrent gating
structure. In contrast, the LSTM model reacts more promptly to fluctuations and tracks
moderate variations with reasonable accuracy. Nonetheless, its forecasts occasionally
overshoot during rapid transitions, showing instability under highly volatile conditions.
The Transformer model achieves the closest alignment with the ground truth across the full
range of dynamics, successfully capturing both smooth transitions and abrupt surges in

wind generation.
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Figure 5. Wind power generation forecast for Transformer model, 36 h sequence length.
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Figure 6. Wind power generation forecast for LSTM best model, 36 h sequence length.
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Figure 7. Wind power generation forecast for GRU best model, 36 h sequence length.

6. Discussion of Findings

The empirical results of this study demonstrate that Transformer-based architectures
achieve superior predictive accuracy in short-term wind power forecasting compared to
recurrent models. The best-performing configuration, trained with a 36 h input window and
a compact architecture of two encoder layers, four attention heads, and moderate dropout
(0.1), reached an RMSE of 370.71 MW, MAE of 258.77 MW, and MAPE of 4.92% on the test set.
From a computational standpoint, the model converged efficiently, requiring only 11 epochs
out of a maximum of 50 due to early stopping (total training time of 439.10 s and median
epoch duration of 40.02 s), and exhibited low-latency suitability, with inference averaging
3.698 ms (p95 = 4.768 ms) for batches of 16 sequences. Attention maps showed that, while
most heads concentrated on the most recent lags, others distributed weights across earlier
positions, confirming that the Transformer simultaneously leverages short-term fluctuations
and longer-range dependencies. These results show that performance gains do not stem from
indiscriminate model complexity, but rather from balanced architectures with tuned hyperpa-
rameters that provide an advantageous trade-off between accuracy, and interpretability.

In contrast, the best LSTM and GRU models, both using 36 h input sequences, achieved
higher errors. The LSTM configuration (hidden = 32, layers = 1, dropout = 0.3, and
batch = 32) reached an RMSE of 397.59 MW and MAE of 292.37 MW, while the GRU
(hidden = 32, layers = 1, dropout = 0.1, and batch = 16) slightly outperformed the LSTM
with an RMSE of 395.47 MW and MAE of 289.11 MW. Although both recurrent mod-
els improved substantially over the naive 1 h lag benchmark (MAE ~ 378 MW), they
lagged behind the Transformer in all metrics. Particularly, scale-independent measures
such as nRMSE and sMAPE showed consistent advantages for the Transformer (5.92%
and 4.85%, respectively) compared to the recurrent baselines (nRMSE ~ 6.3-6.6% and
sMAPE = 5.7-6.1%). Visual inspections over a two-month segment of the test set further
confirmed these results, with the GRU systematically underpredicting peaks and lagging
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during ramps, the LSTM tracking moderate fluctuations but occasionally overshooting in
highly volatile conditions, while the Transformer provided the closest alignment across
both gradual and abrupt dynamics.

Placed in the context of the existing literature, these results reinforce recent advances
that highlight the benefits of attention mechanisms and hybrid designs [20-23,25]. Unlike
prior work that relies on meteorological covariates or turbine-level signals, this study
demonstrates that a Transformer trained exclusively on historical, aggregated generation
data can achieve competitive performance. This has practical significance for the Span-
ish power system, where forecasting accuracy directly influences imbalance costs and
operational reliability in day-ahead and intraday markets. The ability of a lightweight
Transformer to deliver accurate forecasts under these constraints provides a scalable tool for
system operators and market agents who may not have access to high-resolution meteoro-
logical data, thereby supporting grid stability and Spain’s broader sustainability objectives
within the European energy transition.

Nevertheless, several limitations should be acknowledged. First, the analysis is re-
stricted to deterministic forecasts at the national level, leaving open questions regarding
regional variability and probabilistic forecasting. As highlighted by recent reviews [26],
interpretability and uncertainty quantification remain pressing challenges for the deploy-
ment of DL models in energy forecasting. Future research could therefore extend this
work by incorporating probabilistic frameworks, attention-based interpretability analyses,
and cross-country validations to test generalization under different system conditions.

7. Conclusions

The increasing penetration of variable renewables, particularly wind power, under-
scores the need for accurate short-term forecasting to support system reliability and efficient
market operation. Using high-resolution Spanish data, this study assessed a Transformer-
based approach to one-step-ahead wind power forecasting and contrasted it against strong
recurrent baselines (LSTM/GRU) under a common, chronologically consistent evalua-
tion protocol.

Three main findings emerged. First, in response to RQ1, the Transformer con-
sistently outperformed LSTM and GRU across absolute and scale-independent metrics.
The best Transformer, trained within the 36 h context, achieved RMSE = 370.71 MW,
MAE = 258.77 MW, and MAPE = 4.92 %, improving upon the 1 h naive persistence base-
line (test MAE_naive ~ 378 MW) and surpassing the best LSTM/GRU configurations
(RMSE =~ 398/395 MW; MAE =~ 292/289 MW). Normalized errors corroborate this ad-
vantage (nRMSE = 5.92 %, sMAPE = 4.85 % versus = 6.3-6.6 % and 5.7-6.1 % for recurrent
models). Second, addressing RQ?2, input resolution, and architectural choices proved to be
relevant. Extending the window to 36 h yielded the most accurate results, while shallow
encoders with two layers, moderate dimensionality of 32, and dropout of 0.1 provided the
best balance between capacity and regularization. Additional attention heads or deeper
stacks did not result in systematic improvements. Third, attention maps revealed a division
of labor across heads, where most emphasized the most recent hours, whereas some attended
to intermediate or earlier lags. This indicates that the Transformer is capable of jointly cap-
turing short-term fluctuations and longer-range patterns. Error stratification also showed a
moderate increase in mean absolute ramp error with ramp horizon, rising from 356 MW at
Al hto 377 MW at A6 h, and highlighted larger errors for strong ramps and peaks, which
reflects the intrinsic difficulty of forecasting rare and highly volatile events.

From an operational standpoint, the preferred Transformer proved computationally
efficient. With a maximum budget of 50 epochs, early stopping led to convergence in
11 epochs (total 439.10 s, median per epoch 40.02 s), and inference was low-latency, with a
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mean of 3.698 ms and a p95 of 4.768 ms for batches of 16 sequences of length 36. These
characteristics make the approach suitable for near-real-time deployment in market and
system-operation workflows, where small percentage improvements imply large absolute
reductions in forecast error. Future work should extend this framework to probabilistic and
multi-step settings, incorporate exogenous meteorological signals and multi-resolution in-
puts, and explore uncertainty quantification and interpretability at finer spatial granularity.
Cross-system validations would test external validity under diverse climatic regimes. Over-
all, the evidence supports the use of compact, well-tuned Transformers as a practical and
scalable tool for short-term wind forecasting, contributing to grid stability and facilitating
the integration of renewables in Spain’s energy transition.
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AMC-LSTM  Attention-based Multi-Component Long Short-Term Memory
ARIMA Autoregressive Integrated Moving Average

CNN Convolutional Neural Network

CNN-LSTM  Convolutional Neural Network—Long Short-Term Memory
DL Deep Learning

EMD Empirical Mode Decomposition

ENTSO-E European Network of Transmission System Operators for Electricity
EU European Union

FEN Feed-Forward Network

f-ARIMA Fractional Autoregressive Integrated Moving Average
GRU Gated Recurrent Unit

IRENA International Renewable Energy Agency

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MASE Mean Absolute Scaled Error

ML Machine Learning

MLP Multilayer Perceptron

MW Megawatt

nRMSE Normalized Root Mean Square Error

RNN Recurrent Neural Network

RMSE Root Mean Square Error

sMAPE Symmetric Mean Absolute Percentage Error
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