Syllabus 2025 - 2026

GENERAL INFORMATION

Data of the subject	
Subject name	Unstructured Data Analysis
Subject code	DTC-MBD-522
Mainprogram	Master in Big Data Technologies and Advanced Analytics
Credits	6,0 ECTS
Туре	Obligatoria
Department	Department of Telematics and Computer Sciencies

Teacher Information		
Teacher		
Name	Ana Laguna Pradas	
Department	Department of Telematics and Computer Sciencies	
EMail	alaguna@icai.comillas.edu	
Teacher		
Name	Cristina Puente Águeda	
Department	Department of Telematics and Computer Sciencies	
Office	Alberto Aguilera 25	
EMail	cristina.puente@icai.comillas.edu	
Phone	4268	

DESCRIPTION OF THE SUBJECT

Contextualization of the subject

Course contents

Contents
ogs
ntro to Data Logs Analysis
Acquiring Data Logs
Pre-processing Data Logs
MAGE

Syllabus 2025 - 2026

Intro to Computer Vision
Basic Image Processing
Handcrafted feature extraction and Machine Learning
Deep Learning (CNNs, Data augmentation, Transfer learning)
Transfer learning (Feature extraction and Fine tuning)
Advanced Deep Learning: Feature maps Visualization
Generative Deep Learning, Stable diffusion models
AUDIO
Intro to Sound Data
Audio Data Pre-processing (Sound properties, Audio data characteristics, etc.)
Feature Extraction (MFCCs, Spectrograms, etc.)
Data Exploration and Audio Visualization (Clustering, etc.)
Deep Learning with Audio data
Generative Deep Learning, Speech-to-Text, Text-to-Audio
TEXT
Intro to Natural Language Processing (tokenization, lemmatization, POS, NER, etc.)
Feature extraction. One hot encoding. Document representation
Dimensionality Reduction. Words Embeddings. Machine Learning with NLP
Deep Learning applied to sequence data (RNN, LSTM, etc.)
Generative Deep Learning, Transformers, GPT, Reinforcement Learning
GRAPHS

Intro to Network Analysis and Graph theory

Syllabus 2025 - 2026

The use of AI to produce full assignments or substantial parts thereof, without proper citation of the source or tool used, or without explicit permission in the assignment instructions, will be considered plagiarism and therefore subject to the University's General Regulations.

Grading

Assessment Activities Criteria Weight

Realization of exams: Tests

- At the end of each topic
- Final Exam
 - Understanding of concepts.
 - Application of concepts to the resolution of practical problems.
 - Presentation and structure.

Weight: 40%

Laboratory practices

- Understanding of concepts.
- Application of concepts to the resolution of practical problems.
- Presentation and structure.
- Laboratory Practices Report

Weight: 60%

BIBLIOGRAPHY AND RESOURCES

In compliance with current regulations on the **protection of personal data**, we would like to inform you that you may consult the aspects related to privacy and data <u>that you have accepted on your registration form</u> by entering this website and clicking on "download"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792