COMILLAS

UNIVERSIDAD PONTIFICIA

ICAI ICADE CIHS

Robust Decision-Making for Long-Term
Energy Transitions

Advancing methods to address deep uncertainty in energy system models

by
Antonio F. Rodriguez Matas

supervised by
Prof. Dr. Pedro Linares Llamas
Prof. Dr. Jose Carlos Romero Mora

ICAI ScHOOL OF ENGINEERING
CoMiILLAS PONTIFICAL UNIVERSITY

Madrid, 2025






The future’s name is uncertainty - Edgar Morin

iii



DECLARATION
I declare that this thesis was composed by myself, that the work contained herein is my own except where

explicitly stated otherwise in the text, and that this work has not been submitted for any other degree or pro-
fessional qualification except as specified.

Antonio F. Rodriguez Matas
Madrid, 2025

iv



ACKNOWLEDGEMENT

Writing this acknowledgements section is the final step in a document that condenses nearly five years of
intense work, learning, and growth as a researcher. It is difficult—not only because it marks the end of a pre-
cious chapter in my life, one filled with wonderful people and countless good moments—but also because it
is incredibly hard to capture on paper all the gratitude I owe to so many people without whom this journey
would have been, if not just much harder, simply impossible.

First and foremost, I want to thank my PhD supervisors, Pedro and Checa. Their wisdom, support, and
patience have been absolutely essential in making this thesis possible. They have always treated me with deep
respect and genuine care, not only as a researcher, but as a person. In an academic world where this is far from
common, I feel deeply fortunate and grateful for their extraordinary human qualities.

To my parents, to whom I owe absolutely everything. They gave everything they had to raise me in a home
tull of love and respect, and they planted in me the seeds of curiosity and a love for learning. Those early foun-
dations were essential for what would later become a scientific vocation.

To my life partner, Dasha, whose love and strength have supported me throughout this journey. Your pa-
tience, warmth, and joy made even the hardest days feel lighter. Thank you for being there, always.

To my sister and to little Javi, who remind me that all this effort is worthwhile. They inspire me to believe
that the research we do truly matters, even if it only contributes, in the smallest way, to improve the future and
make the planet a more habitable place.

To Manu, who started out as a PhD colleague and ended up becoming one of the best friends I could have
asked for. We have shared countless adventures, coftees, joys, and frustrations. This journey would have been
infinitely more difficult without him.

To all those who have accompanied me in one way or another throughout this journey: Julio, Natalia, Santi,
Claudia, Shilpa, Nacho, Ana, Nate, and so many others, thank you.

And to everyone I have not mentioned by name but who also deserves my deepest gratitude: thank you so
much.



ABSTRACT

Energy system transitions are increasingly shaped by uncertainty about future technological, climate, eco-
nomic, and social developments. Under such deep uncertainty, traditional energy planning models—typically
based on deterministic or probabilistic assumptions—can produce strategies that are fragile or misaligned with
real-world complexity. This thesis develops and applies a set of methodological frameworks to improve the
robustness, credibility, and decision relevance of long-term energy planning.

A central contribution of the thesis is the development of openMASTER, a modular, open-source, and
structurally detailed national energy system optimization model. openMASTER incorporates advanced fea-
tures such as energy service-based demand, endogenous behavioral dynamics, technology vintages and decom-
missioning, operational flexibility through technology hibernation and reactivation, and raw material con-
straints. The model enables transparent, extensible, and reproducible analyses of transition pathways while
supporting the integration of advanced decision-support methodologies.

Building on this modeling platform, the thesis introduces three methodological approaches. The firstis a hy-
brid optimization algorithm that combines robust optimization and minimax regret, allowing decision-makers
to apply differentiated preferences across uncertainties that affect system feasibility (e.g., demand or resource
availability) and those that affect performance (e.g., costs). This framework avoids both excessive conservatism
regarding economic uncertainty and protection against vulnerability to infeasibility, resulting in more balanced
and credible transition strategies.

The second contribution addresses a common oversimplification in energy models: the assumption of inde-
pendence among uncertain parameters. A PCA-based method is applied to incorporate empirically-informed
correlations between variables such as technology costs and fuel prices into robust planning frameworks. By
preserving the internal structure of uncertainties, this approach significantly alters the design of robust strate-
gies and highlights the importance of modeling structurally consistent futures.

The third methodological advance is a scenario-based decision-support framework to design robust policy
packages across multiple objectives. It combines exploratory modeling, SHAP-based feature importance anal-
ysis, and multi-objective robustness metrics to systematically construct policy portfolios that perform satisfac-
torily even under adverse conditions. Applied to a national case study, this approach identifies coherent policy
combinations—rather than isolated instruments—that support decarbonization, air quality, cost, and energy
security under uncertainty.

Together, these contributions form a coherent and original toolbox for robust energy planning, grounded
in both conceptual innovation and practical applicability. The thesis demonstrates how combining structural
modeling advances with rigorous treatment of uncertainty enhances the robustness, interpretability, and cred-
ibility of decision support. The methodologies developed in this thesis offer significant potential for applica-
tion to pressing real-world challenges, such as the decarbonization of hard-to-abate sectors, the design of robust
strategies for sustainable mobility—including the planning of charging infrastructure, modal shifts, and behav-
ioral transitions under uncertainty—, or the strategic management of dependencies on critical materials. By
bridging methodological innovation and practical decision needs, this work contributes to the development of
more resilient, transparent, and adaptive energy transition strategies capable of withstanding deep and evolving
uncertainty.
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RESUMEN EXTENDIDO

Las transiciones de los sistemas energéticos estdn cada vez mds condicionadas por la incertidumbre sobre la
evolucién futura de las tecnologfas, el clima, la economia y los factores sociales, entre otros. Esta incertidumbre
no se limita a funciones de probabilidad cuantificables, sino que es de carcter epistémico. En este contexto, se
habla de incertidumbre profunda, entendida como la situacién en la que los tomadores de decisiones no tienen
suficiente conocimiento o informacién para describir las probabilidades de ocurrencia de los diferentes futuros
posibles. Esta concepcién contrasta con el concepto cldsico de "estocasticidad”, en el que las probabilidades de
cada posible desenlace son conocidas o pueden ser estimadas con cierta confianza.

La incertidumbre profunda es especialmente relevante en el émbito energético, donde las decisiones de in-
versién en infraestructuras, tecnologfas o politicas publicas tienen horizontes temporales de décadas y com-
prometen trayectorias tecnoldgicas y de descarbonizacion dificiles de revertir. Bajo estas condiciones, el uso de
modelos que dependen de supuestos en distribuciones probabilisticas ajustadas a datos pasados puede conducir
a estrategias frégiles, optimizadas para futuros que pueden no materializarse, y que resultan inadecuadas frente
a escenarios adversos o disruptivos. A pesar del creciente reconocimiento de esta problemdtica, muchos marcos
de planificacién energética siguen sin integrar de forma sistemdtica las herramientas y enfoques desarrollados
en campos como la teorfa de la decisién bajo incertidumbre profunda o el andlisis exploratorio de escenarios.

Esta tesis doctoral se enmarca en este hueco metodolégico, con el objetivo de desarrollar y aplicar un con-
junto de metodologias que permitan mejorar la robustez, la credibilidad y la utilidad prictica de los modelos
de planificacién energética a largo plazo. Se trata de una tesis con una clara orientacién metodolégica, pero
firmemente anclada en problemas reales de decisién. El trabajo se estructura en torno a cuatro grandes blo-
ques, que corresponden a los capitulos centrales de la tesis. El primer bloque aborda el disefio y desarrollo de
openMASTER, una herramienta de modelado del sector energético, concebida para representar de forma real-
ista la evolucién de sistemas energéticos complejos y facilitar la integracién de metodologfas avanzadas de toma
de decisiones. El segundo bloque se centra en la formulacién de un algoritmo hibrido que combina criterios
diferenciados de robustez para representar preferencias especificas frente a distintos tipos de incertidumbre. El
tercer bloque aplica un nuevo enfoque metodolégico para incorporar correlaciones entre pardmetros inciertos
en modelos de planificacién energética, superando la hipétesis convencional de independencia. Finalmente,
el cuarto bloque desarrolla un marco para el disefio sistemdtico de paquetes de politicas robustos, integrando
modelado exploratorio y métricas multiobjetivo para apoyar decisiones bajo multiples fuentes de incertidum-

bre.

DESARROLLO DEL MODELO OPENMASTER

La primera gran contribucién de la tesis es el desarrollo de openMASTER (the open-source Model for the
Analysis of SusTainable Energy Roadmaps), un modelo nacional de optimizacién energética modular y de
cédigo abierto. Este modelo constituye una reescritura profunda y ampliada del modelo MASTER, desarrol-
lado originalmente en GAMS y utilizado en anteriores proyectos de planificacién energética. A diferencia de
su predecesor, que era estdtico y cerrado, openMASTER ha sido reconstruido en Pyomo-Python y cuenta con
una estructura dindmica multianual, lo que permite una mayor transparencia y facilidad de integracién con
nuevas metodologias. Entre las mejoras introducidas destaca una amplia gama de funcionalidades adicionales.
Su disefio responde ala necesidad de contar con un entorno de modelado que permita representar de forma mds
realista la complejidad de los sistemas energéticos modernos —incluyendo sus dindmicas tecnolégicas, compor-
tamentales, y materiales— al mismo tiempo que facilita la integracién de metodologfas avanzadas de toma de
decisiones bajo incertidumbre profunda.

openMASTER se estructura como un modelo de planificacién a largo plazo de tipo bottom-up, con una
resolucién tecnoldgica detallada y un horizonte multianual configurable. El modelo resuelve un problema de
optimizacién lineal (LP), con posibilidad de incorporar incertidumbre mediante conjuntos de escenarios y for-
mulaciones robustas. Su arquitectura ha sido disefiada de forma modular, con distintos bloques funcionales
que permiten representar demanda, conversién, transporte, almacenamiento y balances de energfa y materiales,
asi como la contabilidad de emisiones de distinto tipo. Esta estructura modular no solo favorece la extensibil-
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idad del modelo, sino que facilita su uso, pudiendo adaptar cada bloque sin necesidad de modificar el cédigo
del modelo.

Entre las capacidades avanzadas de openMASTER destacan: la formulacién de la demanda exdgena en tér-
minos de servicios energéticos (lo que permite una mayor coherencia en la competicion técnolégica y uso de en-
ergfas finales); la representacién endégena del comportamiento de usuarios—incluyendo la eleccién modal y la
adopcidn tecnoldgica, asi como dindmicas de comportamiento social que inciden en el consumo energético—;
la incorporacién de tecnologfas con vintages y procesos de retirada, lo que permite capturar los efectos de ob-
solescencia tecnoldgica; la modelizacién de flujos de materiales y su reciclaje en la industria; y la posibilidad de
activar y desactivar tecnologias a lo largo del horizonte de planificacién, reflejando decisiones de hibernacién y
reactivacion.

openMASTER se convierte asf en una herramienta orientada a la comunidad, pensada no solo como un
modelo operativo, sino como un entorno experimental para el desarrollo y validacién de metodologfas de plan-
ificacién energética robusta. Su publicacién como herramienta de c6digo abierto y su documentacién completa
buscan promover la transparencia, la reproducibilidad y la cooperacién entre investigadores, instituciones y re-
sponsables publicos.

ALGORITMO HIBRIDO PARA EL TRATAMIENTO DIFERENCIADO DE LA INCERTIDUMBRE

La segunda gran contribucién metodolégica de la tesis es el desarrollo de un algoritmo hibrido que permite
aplicar diferentes criterios de robustez segin el tipo de incertidumbre presente. Esta idea parte del reconocimiento
de que las incertidumbres no son homogéneas: algunas afectan a las restricciones fisicas o de viabilidad del sis-
tema (como la demanda o la disponibilidad de recursos), mientras que otras inciden sobre el desempefio del
sistema (como los costes del sistema). Sin embargo, la mayorifa de los modelos energéticos aplican, en el caso de
que lo hagan, un tnico criterio de decisién para todas las incertidumbres, lo que puede conducir a estrategias
poco realistas con las preferencias reales de los decisores.

El algoritmo hibrido desarrollado en esta tesis combina la optimizacién robusta propuesta por Bertsimas y
Sim para aquellas incertidumbres que afectan a la viabilidad del sistema, y la minimizacién del arrepentimiento
mdximo (minimax regret) para aquellas que afectan al objetivo de optimizacién (el coste total del sistema, lo
que puede incluir costes sociales como el de las emisiones). Esta integracién se formula en un tnico algoritmo,
resoluble con una carga computacional razonable, que permite reflejar preferencias diferenciadas del decisor y
evita los extremos de conservadurismo econédmico excesivo o de exposicién inaceptable a la inviabilidad.

Los resultados empfiricos muestran que este enfoque conduce a decisiones més equilibradas: se protegen los
elementos criticos del sistema mediante estrategias robustas, mientras se permite cierta exposicién al cambio o
la variabilidad en aspectos como los costes.

INCORPORACION DE CORRELACIONES ENTRE INCERTIDUMBRES

La tercera contribucién metodoldgica se refiere a la representacién estructurada de la incertidumbre. La may-
orfa de los modelos energéticos tratan los pardmetros inciertos como independientes entre si, ya sea por sim-
plicidad analitica o por falta de informacién. Sin embargo, esta asuncién puede conducir a escenarios poco
plausibles o internamente inconsistentes. En la realidad, existen multitud de incertidumbres correladas, como
los precios de combustibles (los precios del gas, el petréleo y el carbén tienden a moverse conjuntamente) o los
costes de tecnologfas renovables que pueden estar influenciados por factores macroeconémicos o por el pre-
cio de materias primas comunes, entre otros. Ignorar estas correlaciones puede generar decisiones que, si bien
parecen robustas sobre el papel, son frigiles en su aplicacién real.

La tesis propone la aplicacién de un enfoque basado en el andlisis de componentes principales (PCA) para
construir conjuntos de incertidumbre que introduzca las correlaciones existentes. El método reduce la dimen-
sion del espacio de incertidumbre a partir de datos histdricos y genera conjuntos poliédricos que pueden inte-
grarse en formulaciones de optimizacién robusta. Este enfoque respeta las relaciones observadas entre pardmet-
ros y se adapta a distintas escalas y dominios de aplicacién.

Aplicado a un caso de estudio nacional, el uso de este método revela que las estrategias cambian significa-
tivamente cuando se incorporan las correlaciones entre incertidumbres. Por ejemplo, en escenarios donde se
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modela una alta correlacién positiva entre precios de combustibles y costes de tecnologfas renovables, el modelo
prioriza tecnologfas con menor dependencia o diversifica la cartera tecnoldgica para amortiguar los efectos de la
correlacién. Esta capacidad para representar las correlaciones entre incertidumbres constituye un avance clave
en la coherencia de los ejercicios de planificacién energética.

DISENO DE PAQUETES DE POLITICAS ROBUSTOS

La cuarta gran aportacion de la tesis se refiere al disefio de paquetes de politicas que sean robustos para malti-
ples objetivos frente a escenarios inciertos. En la prictica, las decisiones politicas no se implementan de forma
aislada: las politicas interacttan, se solapan, se refuerzan o se anulan entre si. Sin embargo, la mayoria de los
modelos aplican andlisis comparativos entre politicas individuales o utilizan combinaciones ad hoc, sin una
l6gica sistemdtica que permita disefiar paquetes coherentes y evaluar su desempefio conjunto.

La metodologia desarrollada en esta tesis combina modelado exploratorio, andlisis de importancia mediante
valores SHAP (Shapley Additive Explanations) y métricas sobre la robustez de las politicas. Esto se traduce en
un nuevo método de decisién que consiste en la generacién de grandes conjuntos de escenarios con diferentes
combinaciones de politicas e incertidumbres exdgenas, el entrenamiento de modelos de aprendizaje automatico
sobre los resultados de los escenarios (en este caso, utilizamos Random Forest), y la identificacién delas politicas
mds influyentes en cada objetivo. A partir de estos datos, se construyen carteras de politicas que ofrecen protec-
cidén frente a escenarios adversos mediante el uso de indicadores agregados sobre la proteccién que aportan las
politicas.

Aplicado a un caso nacional, el enfoque permite identificar combinaciones de politicas que simultineamente
cumplen objetivos de descarbonizacidn, seguridad energética, calidad del aire y coste del sistema. Por ejemplo,
se observa que el impacto de un precio al carbono aumenta con su combinacién con medidas complementarias
como politicas de movilidad urbana. Este tipo de anilisis ofrece a los responsables de politicas una herramienta
util para disefiar estrategias mds coherentes y efectivas.

APLICACIONES, RELEVANCIA PRACTICA Y PROYECCION FUTURA

Mis all de sus contribuciones tedricas y metodoldgicas, esta tesis ofrece un conjunto de herramientas con un
elevado potencial de aplicacién préctica a distintos retos contempordneos de la transicién energética. Aunque
cada una de las metodologfas ha sido aplicada a un caso de estudio nacional con fines ilustrativos y de vali-
dacidn, su disefio es generalizable y su integracién en el modelo openMASTER muestra que es extensible a
otros contextos geograficos, temporales o sectoriales.

Uno de los campos con mayor potencial de aplicacién es la descarbonizacion de sectores dificiles de abatir,
como la industria pesada (acero, cemento, refino, etc.), donde las decisiones de inversién son intensivas en cap-
ital, los horizontes temporales son largos y la incertidumbre sobre tecnologfas y mercados es especialmente
pronunciada.

Otro 4mbito en el que estas metodolégicas pueden aplicarse es la movilidad sostenible, donde la interac-
cién entre avances tecnoldgicos, infraestructuras publicas y politicas reguladoras genera un sistema altamente
dindmico y sujeto a multiples fuentes de incertidumbre. La planificacién de paquetes de politicas robustos
puede aplicarse a estrategias que combinen infraestructuras de recarga, incentivos fiscales, restricciones al uso
del automévil y medidas de planificacién urbana como las zonas de bajas emisiones. Las herramientas de andlisis
desarrolladas permiten evaluar qué combinaciones de politicas son mds eficaces y resilientes.

Un tercer campo de aplicacién es la gestién de la dependencia en materiales criticos, cada vez mds rele-
vante en un contexto de electrificacién acelerada y de tensiones geopoliticas en las cadenas de suministro. Las
metodologias desarrolladas permiten incorporar restricciones sobre disponibilidad de materias primas, explorar
trayectorias tecnoldgicas alternativas y evaluar la robustez de distintas estrategias ante interrupciones o cambios
en los precios relativos.

Por ultimo, existe una oportunidad importante para integrar estas herramientas en marcos de planificacién
mds amplios, que consideren no solo el sistema energético sino su acoplamiento con otros sistemas: agua, uso
del suelo u otros sectores de la economfa. La estructura modular de open MASTER 'y la generalidad de las



metodologias permiten vincularlas con modelos macroeconémicos, de evaluacién integrada (IAMs), o modelos
sectoriales, generando sinergias analiticas de alto valor.

Desde el punto de vista institucional, estas herramientas pueden ser utilizadas por agencias publicas de en-
ergfa, operadores del sistema, reguladores, y organismos de planificacién climdtica para mejorar la calidad del
apoyo a la decisién. También pueden servir de base para procesos participativos y deliberativos, en los que se
requiera explorar alternativas bajo diferentes visiones del futuro y prioridades sociales.

CoONCLUSION

En conjunto, esta tesis contribuye al campo de la planificacion energética bajo incertidumbre profunda medi-
ante el desarrollo de herramientas, innovacién metodoldgica y orientacién prictica. El modelo openMASTER
proporciona una base sélida y flexible sobre la que construir ejercicios de andlisis rigurosos, transparentes y re-
producibles. Las metodologfas desarrolladas —el algoritmo hibrido de robustez, el tratamiento estructurado
de correlaciones, y el disefio de paquetes de politicas robustos— representan avances tanto en términos técnicos
como conceptuales para el tratamiento de incetidumbres en la planificacién energética a largo plazo.

Esta tesis no propone respuestas cerradas ni estrategias dptimas en un sentido cldsico. Mds bien, ofrece in-
strumentos para navegar la incertidumbre de forma informada, plural y adaptativa. Frente a un futuro cada
vez mds incierto y cambiante, no se trata de predecir, sino de prepararse. No se trata de optimizar en base a
futuros poco probables de materializarse, sino de construir decisiones sdlidas, flexibles y capaces de resistir a las
incertidumbres.
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port method that combines minimax regret and robust optimization)

NDC Nationally Determined Contributions
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Neg Negative

NG Natural Gas
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xii



Pos
PP
PRIM
%%
R&D
RAM
RDM
RM
RO
RoR
SCPC
SHAP
ST
TE
Th
Unc
VaR
WFH

Positive

Power Plant
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(Solar) Thermal
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INTRODUCTION

1.1 MOTIVATION

The transition to sustainable energy systems is central to addressing global challenges such as climate change,
energy security, public health, and affordability (United Nations, 2015). Achieving this transition requires coor-
dinated decisions about what types of energy investments are needed, when they should be made, and which
policy instruments can effectively guide them. These decisions must go beyond shaping the energy mix: they
involve navigating a complex interplay of technological trajectories, policy design, social behavior, and market
dynamics—each subject to profound and evolving uncertainty.

Long-term energy planning is particularly difficult due to the structural inertia of energy systems. Invest-
ments in infrastructure and technologies are capital-intensive, long-lived, and difficult to reverse, often lock-
ing in specific technological, economic, and institutional pathways for decades. These decisions carry impli-
cations not only for system performance but also for broader societal outcomes, involving a wide range of ac-
tors—governments, regulators, market operators, firms, and citizens—who operate under diverse constraints
and goals.

Critically, the long-time horizon of energy planning exposes decisions to deep uncertainty about key drivers
such as future demand, resource availability, or technological development. In this context, uncertainty is pre-
dominantly epistemic (Marchau et al., 2019): it stems from limited knowledge about how these factors may
evolve, and from the fact that historical data may not be representative of future dynamics. Consequently, re-
lying on probabilistic forecasts is not appropriate, as it presumes knowledge of probability distributions that
cannot be credibly specified. Instead, planning requires decision-making frameworks that can account for a
wide range of plausible futures and enable the design of robust strategies—that is, strategies that perform sat-
isfactorily even under adverse or unexpected conditions.

Several dimensions of uncertainty are particularly relevant. Climate change introduces long-term environ-
mental risks whose impacts and feedbacks are not fully understood (Shukla et al., 2022). Technological innova-
tion can rapidly reshape the feasibility and cost of transition options, as seen in the recent dramatic cost reduc-
tions in solar PV and wind power (IRENA, 2024). Social, geopolitical, and economic shifts—including changes
in consumer behavior or disruptions in global supply chains—can also destabilize long-term plans (Balcilar et al.,
2019; Schlindwein et al., 2023; Z. Zhao et al., 2023).

To navigate this complexity, energy system optimization models have become essential analytical tools (Pfen-
ninger et al., 2014). These models provide a structured representation of the energy system, capturing its tech-
nological, economic, and environmental dimensions over time. This enables planners to evaluate alternative
strategies, anticipate trade-offs, and identify potential vulnerabilities and opportunities. When properly de-
signed and applied, they help clarify the consequences of decisions, enhance transparency in policy discussions,
and support more informed and structured deliberation among stakeholders (Trutnevyte, 2016).

Yet, despite the growing recognition of uncertainty as a central feature of long-term energy planning, many
modeling efforts continue to fall short in capturing its full scope and implications (Fodstad et al., 2022). This is
not merely a technical shortcoming, but a fundamental limitation that affects the credibility and relevance of
model-based insights. When long-term planning does not adequately account for the scope and structure of
uncertainty surrounding future energy systems, it can lead to recommendations that are overly narrow, frag-
ile, or misaligned with the complex realities that decision-makers must address. In such cases, even carefully
designed strategies may fail if they are based on assumptions that do not hold when confronted with deeply
uncertain or rapidly changing conditions.

For energy system models to truly support strategic planning in this context, they must move beyond static,
deterministic, or probabilistic assumptions and embrace deep uncertainty as a core design consideration. This
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means developing approaches that help identify not just optimal solutions under expected conditions, but
strategies that remain credible across a wide range of plausible futures. Addressing this challenge is not just a
methodological refinement—it is a practical imperative for guiding energy transitions that are inherently un-
certain. As such, improving how energy models represent and respond to uncertainty is a critical step toward
ensuring that long-term energy decisions are both robust and aligned with broader sustainability goals.

1.2 RESEARCH GAPS

Building on the motivation outlined above, this thesis identifies and addresses four key research gaps in the way
long-term energy planning models address deep uncertainty and support robust decision-making. These gaps
are grounded in a critical examination of the existing literature, with a detailed review carried out in each of the
chapters of the thesis. Collectively, they reveal persistent limitations in current modeling tools, in the concep-
tual and operational treatment of uncertainty, and in the integration of policy analysis into robust planning
frameworks.

First, there is a fundamental gap in how energy system models define and implement robustness under
deep uncertainty. Although the literature offers multiple interpretations—such as robustness as performance
under the worst case (Wald) (Majewski, Wirtz, et al., 2017; Majewski, Lampe, et al., 2017), as minimization of re-
gret (Savage) (Ribas et al., 2010; Trachanas et al., 2018; Yokoyama et al., 2014), or as insensitivity to variation across
scenarios (Rabice et al., 2018)—these are rarely distinguished or consistently applied. This conceptual ambi-
guity has methodological consequences. In most energy system models, robustness is typically addressed by
selecting a single decision criterion—often based on worst-case performance—and applying it uniformly to all
considered uncertainties (Moret, Babonneau, et al., 2020a; Patankar et al., 2022). This approach neglects a critical
distinction: not all uncertainties affect the system in the same way, nor do they lead decision-makers to adopt
the same preferences or attitudes toward them. Some uncertainties aftect feasibility constraints (e.g., energy de-
mand levels or resource availability), where the consequences of failure can be severe or unacceptable. In such
cases, conservative strategies may be the most appropriate. Other uncertainties affect the cost-minimization
objective (e.g., investment costs or fuel prices), where decision-makers may consider some performance loss as
tolerable in exchange for greater flexibility or the potential to benefit from favorable outcomes.

Although decision theory has long emphasized this distinction (Lempert et al., 2003; Walker et al., 2003), en-
ergy system models seldom reflect it in practice: a single robustness formulation is applied across all uncer-
tainties, regardless of their function in the system or the nature of the associated trade-ofts. Electricity system
models—particularly in unit commitment, dispatch, and transmission expansion—have pioneered difterenti-
ated treatments of uncertainty, distinguishing between short-term variability (e.g., in renewable output) and
longer-term structural uncertainties (e.g., in investment or demand forecasts) (e.g., Morales et al. (2013) and Ruiz
etal. (2015)). However, these advances remain largely confined to the electricity domain. A systematic and inte-
grated application of differentiated uncertainty treatment across broader multi-energy systems remains largely
absent.

This limits the model’s ability to reflect the differentiated priorities of decision-makers, who may accept
deviations in some outcomes while requiring stricter safeguards in others. Integrated modeling approaches that
can distinguish between uncertainties affecting constraints and those influencing the objective function—and
apply appropriate robustness criteria to each in a consistent and tractable way—remain scarce. Addressing this
gap requires both conceptual clarity and modeling frameworks that can incorporate these distinctions into the
structure and logic of the planning process without sacrificing structural or technological detail.

Second, the widespread assumption of independence among uncertain parameters remains a critical limita-
tion in energy system models, not only for robust approaches but also for scenario-based planning frameworks
more broadly (Abdalla, Abu Adma, et al., 2020; M. Cao et al., 2019). While this assumption simplifies model for-
mulation, it is increasingly incompatible with empirical evidence from energy markets, global supply chains,
and technology manufacturing processes. Key uncertainties—such as fossil fuel prices and investment costs
of energy technologies—are frequently interdependent. These correlations can arise from different circum-
stances, such as the use of common materials or components across multiple technologies (Gailani et al., 2024;
Gerres, 2022), macroeconomic conditions that simultaneously affect several sectors, or the widespread depen-



1.2 Research Gaps

dence on fossil fuels throughout the production, transportation, and deployment of energy technologies (Mensi
etal, 2021).

Although some recent studies have begun to acknowledge and incorporate such correlations, their applica-
tion has been largely restricted to specific subsectors such as electricity generation or transmission expansion
planning (e.g., Roldan et al. (2019) and W. Wang et al. (2021)). These studies often focus on narrow cases, using
simplified correlation structures or limiting the analysis to temporal autocorrelation. As a result, they do not
provide a comprehensive assessment of how interdependencies across multiple uncertain parameters can affect
long-term system behavior and the robustness of transition pathways.

Therefore, most energy system optimization models, when addressing uncertainty, continue to treat them as
independent, without integrating correlations into the structure of the uncertainty space. This simplification
undermines the internal consistency of scenario analysis and may bias the results towards strategies that seem
robust under implausible or internally inconsistent futures. To date, no robust energy planning study has
systematically incorporated multi-dimensional correlation structures within a multi-energy system model, nor
examined how such interdependencies across uncertainties influence planning outcomes. Addressing this gap
is critical to ensure that model-based decision support better reflects the complexity of real-world systems and
provides more credible and policy-relevant insights.

Third, current approaches to energy policy modeling lack systematic frameworks for designing robust policy
packages under deep uncertainty. Although energy transitions in practice depend on interacting combinations
of instruments—such as carbon pricing, subsidies, efficiency standards, and mandates—most energy planning
models continue to evaluate policies in isolation or assume additive effects (Rogge et al., 2016). This limits the
ability to identify synergies, trade-offs, and reinforcing dynamics that shape real-world transitions.

Recent developments have improved the capacity to test predefined strategies under a wide range of futures
(Wessel et al., 2024; Woodard et al., 2023). However, these approaches do not provide a systematic basis for con-
structing and evaluating policy combinations that are robust across multiple objectives and uncertain condi-
tions. Moreover, most applications rely on different modeling frameworks, such as integrated assessment or
macroeconomic models (Campigotto et al., 2024; Wessel et al., 2024), which lack the technological and temporal
resolution needed to capture the detailed implications of policy interaction.

To date, no established decision-support framework combines exploratory modeling techniques with ro-
bustness analysis within energy system optimization to systematically design policy packages that are robust
to a wide range of adverse and uncertain future conditions. Bridging this gap is essential to move from test-
ing individual strategies to proactively identifying policy combinations capable of supporting robust energy
transitions under uncertainty.

Taken together, these gaps point to a broader need for integrated approaches that combine rigorous treat-
ment of uncertainty with energy system models capable of representing the technological, economic, and pol-
icy complexity of long-term transitions. Despite important conceptual advances in the literature on decision-
making under deep uncertainty, their practical application in strategic energy planning remains limited. There
is a pressing need for modeling frameworks that endogenously incorporate robustness criteria, account for in-
terdependencies among uncertainties, and support the design and evaluation of coherent policy packages—ultimately
bridging the gap between methodological innovation and real-world decision support.

Fourth, there is an ongoing lack of open-source energy system optimization models that are structurally
and procedurally equipped to support the kind of robust, uncertainty-aware planning described above (Groiss-
bock, 2019). While a growing number of open-source models exist, most were not designed from the outset to
accommodate the specific methodological requirements of robustness analysis or to endogenously represent
uncertainty-handling mechanisms. Essential modeling capabilities—such as representing exogenous demand
in terms of energy services, endogenously modeling behavioral responses and modal choice, explicitly tracking
technology vintages and retirement processes, and integrating material constraints and recycling processes—are
still largely absent or implemented only in simplified ways.

These capabilities are essential not only for a more realistic energy system representation but also for eval-
uating the dynamic performance of strategies across a wide range of plausible futures. In their absence, many
models rely on fixed input trajectories or externally defined scenarios for key variables, limiting the system’s
ability to respond endogenously to uncertainty and policy interventions. This significantly limits the ability
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to experiment with methodological innovations—such as alternative decision criteria or robustness formula-
tions—and to evaluate their implications.

Advancing robust decision-making under deep uncertainty requires not only conceptual innovation butalso
modelling tools that are structurally and procedurally aligned with these ambitions. While several open-source
energy models are available, few offer the combination of transparency, extensibility, and structural flexibil-
ity needed to represent robustness criteria and uncertainty-handling mechanisms as endogenous components
of the planning process. In practice, limitations related to model architecture, proprietary dependencies, or re-
stricted adaptability can hinder the implementation of alternative formulations and the integration of emerging
decision frameworks. In this context, there is growing value in developing open and modular modelling plat-
forms that can serve both as analytical instruments and as testbeds for methodological innovation—enhancing
reproducibility and supporting more credible, policy-relevant planning under deep uncertainty.

1.3 RESEARCH SCOPE AND OBJECTIVES

The main objective of this thesis is to develop and apply methodological frameworks that enable robust
decision-making in the context of long-term energy planning under deep uncertainty, using energy
system optimization models.

This central objective responds to the need for decision-support approaches that can explicitly account for
the limitations of traditional modeling practices in long-term energy planning under epistemic uncertainty. In
particular, the thesis seeks to improve how energy models represent different types of uncertainty, reflect their
distinct implications for decision-making, and support the formulation of decisions that are robust to a wide
range of plausible and evolving futures.

In line with the research gaps identified, the thesis is organized around the following interrelated research
questions:

1. How can robustness be addressed in energy system optimization models to reflect differenti-
ated decision-making preferences across distinct sources of uncertainty?
This question addresses the core methodological gap identified in the literature: the lack of a consis-
tent framework for representing robustness when uncertainties play different roles in the system. Some
uncertainties may compromise system feasibility and require precautionary strategies, while others pri-
marily affect performance outcomes and may allow for more flexible responses. The objective is to de-
velop an algorithm that integrates multiple robustness formulations within a single optimization pro-
cess, enabling the model to represent diverse decision-making preferences depending on the nature of
each uncertainty.

2. How can correlations between uncertain parameters be systematically integrated into energy
system models, and what is their impact on energy transition pathways?
This question addresses the widespread simplification of treating uncertain parameters as independent,
even in models that aim to support robust decision-making. In practice, key sources of uncertainty
are often interdependent due to structural relationships across technologies, sectors, and supply chains.
The aim is to examine how such correlations can be formally incorporated into the uncertainty space of
energy system models and to assess how their inclusion affects the design of long-term energy transition

pathways.

3. How can combinations of energy policy instruments be designed to protect against adverse fu-
tures across multiple energy transition objectives?
This question stems from the recognition that real-world energy transitions are shaped by interacting
combinations of policy instruments, not isolated measures. However, most existing applications of en-
ergy system optimization models focus on the evaluation of individual policy instruments or predefined
strategies, often overlooking how instruments interact with each other and with uncertainty. The aim
is to explore how energy system models can support the systematic design of policy portfolios that are
robust to uncertainty and capable of achieving satisfactory outcomes across a diverse set of transition
goals.
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In order to explore these questions, an additional objective of the thesis is the development of an open,
extensible, and transparent energy system optimization model that enables robustness-oriented plan-
ning under deep uncertainty. Rather than relying on externally imposed assumptions, the model enables
the endogenous representation of key system dynamics that are essential for analyzing how uncertainty affects
long-term planning—such as demand evolution, behavioral adaptation, technological turnover, and material
constraints. These features, which remain largely absent from existing open-source tools, are necessary to con-
duct the type of detailed and flexible analysis required to address the research questions posed in this thesis.

Together, the objective and questions of this thesis define a coherent research scope that secks to improve
the methodological foundations of robust energy planning. The aim is to contribute to more realistic, flexible,
and transparent modeling approaches that are better aligned with the actual complexity of decision-making in
the context of long-term energy transitions under deep uncertainty.

1.4 CONCEPTUAL AND ANALYTICAL FRAMEWORK

The methodological approach of this thesis is structured around four core research questions that explore how
energy system optimization models can better support robust decision-making under deep uncertainty. Each
chapter develops a specific component of a broader analytical framework, progressively extending the ability
to address difterent dimensions of uncertainty and robustness in energy systems modeling.

Chapter 2 develops the modeling infrastructure of the thesis, responding to the need for a dedicated plat-
form capable of addressing the structural and analytical challenges associated with robustness in energy plan-
ning. The model developed—openMASTER —is a national energy system optimization model, designed to
be open, modular, and extensible, and readily adaptable to other geographic scales. It represents a significantly
enhanced and open-source version of the previous MASTER model, which was implemented in GAMS. In
contrast, openMASTER has been entirely reprogrammed in Python and incorporates several methodologi-
cal and structural advancements. Notably, while MASTER relied on a static formulation, openMASTER
supports dynamic planning, and introduces additional capabilities that are rarely found together in existing
open-source models, including detailed representations of demand in terms of energy services, endogenous be-
havioral and modal choices in transport, technology vintages and decommission processes, and material con-
straints, including material recycling. These structural capabilities allow the model to represent key features
of energy system transitions and to explore how energy decisions interact with complex and deeply uncertain
dynamics. openMASTER serves as the computational foundation for all subsequent chapters and makes it
possible to implement and test the methodological innovations required to answer the three main research
questions of the thesis.

Chapter 3 addresses the first research question: How can robustness be addressed in energy system opti-
mization models to reflect differentiated decision-making preferences across distinct sources of uncertainty?
At the core of this chapter lies the development of a novel algorithm that enables the endogenous application
of multiple robustness formulations within a single decision-making framework. Drawing on decision theory,
the algorithm combines a robust optimization formulation (Bertsimas et al., 2004) to protect against violations
of feasibility constraints, with a minimax regret formulation that captures the desirability of flexibility in cost-
related outcomes. This hybrid framework allows the model to treat different types of uncertainty according to
their systemic role—more conservatively in the case of constraints, and more flexibly in the case of performance
metrics. The algorithm is fully integrated into the energy system model, offering a tractable yet conceptually
rigorous approach for representing differentiated decision-making preferences in long-term energy planning
under deep uncertainty.

Chapter 4 responds to the second research question: How can correlations between uncertain parameters
be systematically integrated into energy system models, and what is their impact on energy transition pathways?
This chapter focuses on the often-overlooked role of interdependencies among uncertain parameters in shap-
ing energy planning outcomes. While most existing models assume that uncertain parameters vary indepen-
dently, this chapter demonstrates how such simplifications can bias the identification of robust decisions. To
address this issue, it applies a principal component analysis (PCA)-based methodology to construct uncertainty
sets that preserve empirically-informed correlation structures across parameters. This is the first application of
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such an approach within a national-scale multi-energy system optimization model. The analysis compares how
robust plans differ under three correlation settings: independence, positively correlated uncertainties (e.g., cost
increases occurring simultaneously across multiple options due to shared drivers), and negatively correlated
uncertainties (e.g., a cost increase in one option being offset by a decrease in another due to trade-ofts or substi-
tutability). By integrating correlations directly into the uncertainty space, this chapter shows how the internal
consistency and credibility of scenario exploration can be significantly improved, and how the resulting path-
ways are affected.

Chapter 5 addresses the third research question: How can combinations of energy policy instruments be
designed to protect against adverse futures across multiple energy transition objectives? The chapter builds on
the foundations established in previous chapters to explore how multiple policy levers—such as carbon pric-
ing, efficiency standards, or renewable energy incentives—can be systematically combined into robust policy
packages. This chapter develops a structured method to explore, evaluate, and select coherent combinations of
policies under uncertainty. The approach leverages exploratory modeling to sample a wide range of uncertainty-
policy combinations, machine learning-based feature importance analysis (e.g., SHAP values) to identify key
policy drivers, and robustness indicators to evaluate performance across multiple objectives—including cost,
emissions, and system reliability—under worst-case outcomes. It involves an iterative procedure to assemble
policy portfolios that are robust to deep uncertainty and capable of delivering satisfactory performance across
competing transition goals.

Taken together, these chapters constitute a coherent analytical framework that progressively builds the method-
ological foundations for robust energy planning. Each chapter addresses a critical gap in the literature, and
together they respond to the thesis’s central objective: improving how energy system models account for deep
uncertainty. By combining conceptual clarity, structural modeling capabilities, and robust analytical meth-
ods, the thesis aims to contribute to more credible and actionable tools for guiding energy transitions under
uncertainty.



2 OPENMASTER: THE OPEN SOURCE MODEL FOR
THE ANALYSIS OF SUSTAINABLE ENERGY
RoADMAPS

This chapter is based on the article entitled “openMASTER: The open-source Model for the Analysis of Sus-
Tainable Energy Roadmaps”, authored by Antonio F. Rodriguez-Matas, Manuel Pérez-Bravo, Pedro Linares,
and Jose Carlos Romero, and published in Energy Strategy Reviews, Volume 54, July 2024, Elsevier. DOI:
10.1016/j.esr.2024.101456.

2.1 INTRODUCTION

The transition to a carbon-neutral energy system represents a complex and urgent challenge that requires both
technological and social transformations. To achieve this goal in a short timeframe, decision-makers must un-
derstand the behaviour of energy systems and anticipate the consequences of their decisions. Analytical tools
such as strategic energy planning models are crucial to enable appropriate decision-making processes.

Although numerous energy models have been developed by academic, business, and institutional entities,
the majority of these models are not publicly accessible. To address this issue, open-source energy models are
being made available and published in peer-reviewed scientific journals, enabling collaboration and use within
the scientific community. Openmod - Open Energy Modelling Initiative (2023) and open ENTRANCE ~ Open ENergy
TRanstion ANalyses for a Low-Carbon Fconomy (2023) are examples of platforms that facilitate and promote the
development of open-source models in the field of energy modelling. Particularly, within the Openmod man-
ifesto, it is stated that “in the context of energy modelling, “open” means for us that data and code are published
and shared”. This perspective coincides with our shared understanding of open models, where “using open
software licenses [... | is an important element®.

Within this framework, this chapter presents openMASTER, the novel open-source version of the Model for
the Analysis of SusTainable Energy Roadmaps (MASTER), designed specifically for strategic energy planning.
The MASTER model was first developed in 2012 by Lopez-Pena et al. (2012) using the GAMS programming lan-
guage. This model has been continuously updated to address emerging needs and changing demands, described
in several scientific works. Now, the open-source version, openMASTER, is implemented in Pyomo, offering
improved usability, accessibility, and additional enhancements compared to prior versions of MASTER.

The remainder of this chapter is organised as follows. In Section 2.2, we examine the contribution of open-
MASTER compared to other open-source strategic energy planning models. In Section 2.3, we provide a de-
tailed description of the model, including its fundamentals and formulation. In Section 2.4, we illustrate the
model’s applications and potential uses. Section 2.5 presents a brief illustrative case study to demostrate how
openMASTER can be used to address real-world energy decision-making problems. Finally, Section 2.6 con-
tains a discussion about the strengths and limitations of openMASTER as a decision-making tool within the
context of the energy transition.

2.2 LITERATURE REVIEW

This section presents an overview of existing open-source strategic energy planning models, and specifically fo-
cuses on the unique contributions offered by open MASTER. To be considered open-source for our purposes,
a model must have publicly accessible code that can be used without any subscription requirements or addi-
tional costs. For instance, we have excluded the TIMES model (Loulou, 2016) from our consideration despite its
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code being accessible, as it operates through a paid environment (VEDA) and a fee-based optimisation software
(GAMS).

Moreover, to ensure comparability with openMASTER’s capacity to facilitate decision-making processes,
our analysis only considers models that incorporate both operation and investment aspects within their scope.
Additionally, we have included models that provide a multisectoral representation, while excluding models
such as Balmorel (Wiese et al., 2018) that do not consider mobility demand.

In this context, we conducted a literature review, using the works of Limpens etal. (2019) and Groissbsck (2019)
as our point of departure. These studies examined energy models using several key attributes for comparability,
including multi-sector representation (including, at least, electricity, heat and mobility sectors), open-source
character, optimisation of operation and/or investment, temporal resolution, and computational characteris-
tics and time.

Our first evaluation focused on extending the temporal scope of the original literature review, initially per-
formed in 2019, to account for potential changes in model characteristics or the emergence of new models
comparable to openMASTER. Our assessment did not reveal any significant changes that would alter the find-
ings of this literature review. Therefore, based on the aforementioned criteria, we have considered three models
as potentially comparable to openMASTER: EnergyScope, Oemof and OSEMOSyS.

Butbesides enlarging the temporal scope of the review, we also expanded its methodological scope considered
by Limpens et al. (2019) and Groissbéck (2019), looking in particular at 12 questions regarding these four models
(including openMASTER ) and extensively reviewed the available documentation to address them. This com-
prehensive comparison allows us to discern modelling gaps and highlight the contributions of openMASTER
within the family of open-source strategic energy planning models.

Notably, this review doesn’t account for the potential capability of these models to incorporate these fea-
tures by introducing the corresponding modifications in the model structure and equations. Undoubtedly,
open-source models offer the advantage of facilitating such changes more readily. However, this review consid-
ers whether there is existing literature evidence supporting the implementation of these advancements in the
models under consideration. Significantly, the advantage of openMASTER is that these changes and features
are already included in the code available. Being open-source, the elements in openMASTER modelling these
features can be easily transferred to other platforms or models, contributing to the open model family and its
collaborative spirit.

The following are the 12 issues upon which these models are analysed:

(i) Does the model have the ability to perform dynamic planning and solve the investment roadmap over
the entire considered timeframe, rather than exclusively focusing on a goal year? The significance of inte-
grating the dynamic character into an energy planning model stems from the fact that decision-making
concerning the investment and operation of energy technologies occurs across the entire temporal pe-
riod. Dynamic models allow planners to account for changes and understand the effects of decisions
over time (Pizzuti et al., 2024).

(i) Can the model effectively handle uncertainties? Does it utilise (a) probabilistic or (b) non-probabilistic
methods? Strategic energy planning involves deciding on necessary energy investments to meet soci-
etal demands, considering factors such as timing and required policies. The extended lifespan of energy
technologies (typically 20 to 50 years) introduces parametric uncertainties, including climate change,
technological advances, and geopolitical stability (Filar et al., 2010). Managing uncertainties in strate-
gic energy models is crucial but challenging in terms of both model formulation and computational
burden (Moret, Babonneau, et al., 2020a). Prior successful applications of uncertainty methodologies in
similar models offer a valuable comparative advantage (DeCarolis et al., 2017). Additionally, distinguish-
ing between probabilistic and non-probabilistic methods is vital, impacting both conceptual consider-
ations and computational aspects, making this differentiation critically important (Moret, Babonneau, et
al., 2020a).

(iii) Does the model define exogenous demand in terms of energy services? Instead of defining energy de-
mand as final energy consumption, there is a better alternative in considering the demand for specific
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services, such as the usage of appliances (e.g., washing machines or refrigerators), lighting or mobility,
among others. This enables to model technological competition, innovation and efficiency improve-
ments in the adoption of end-use technologies, which notably affects energy consumption (/£A4-E7SAP
| Optimization Modeling Documentation 2023).

Does the model have the capability to represent technological and modal choice? In the context of exoge-
nous demand being defined as energy services, technological choice refers to the model’s ability to make
optimal decisions regarding the investment and operation of end-use technologies (e.g., gasoline cars vs
electric cars for providing mobility). Modal choice refers to the ability to make decisions concerning
the distribution of mobility modal shares (e.g., cars, motorcycles, buses, bicycles, or metro), instead of
rigidly specifying predetermined quantities for them. Illustrating the complexity of modal choice, in the
context of urban transport, when an optimisation model aims to minimise costs and determine mobility
modes, it naturally leans toward pedestrian or cyclist-based solutions due to their lower costs and lack
of emissions. Additionally, modal choices depend on various factors, including the availability of differ-
ent transportation modes (e.g., subways, trams, or none for metropolitan distances) and the variations
in modes based on the type of mobility (e.g., interurban distances allowing plane or high-speed train
travel but not all routes, with no option for walking or tram). Incorporating these complexities requires
defining structural aspects of the model to ensure realistic decision-making (see e.g. (Tattini et al., 2018)).

Does the model incorporate an endogenous representation of agent behaviour, enabling modifications
or reductions in energy consumption through behavioural changes (e.g., energy-efficient housing, car-
sharing or remote work)? Considering changes in behaviour in an endogenous and linear manner poses
a challenge in strategic energy planning models (Nguene et al., 2011).

Does the model include non-energy commodities, such as raw materials for the industrial sector? As
emphasised by Fais et al. (2016), “although energy systems models focus on energy flows, it is evident that
materials are an important part of the system, especially in the industry sector”. Some models, like TIMES,
integrate this feature. However, it is an aspect frequently overlooked in open-source models.

Is the model capable of capturing circularities, such as the incorporation of recycled materials? The cir-
cular economy involves optimising resource use across the production chain to achieve a closed loop
in product life cycles, promoting self-regeneration by transforming waste into resources. This contin-
ual increase in recycling and reuse reduces the demand for raw materials, effectively containing waste
(Suzanne et al., 2020). However, incorporating these circular flows into strategic energy planning entails
complexity (Di Leo et al., 2020).

Does the model have the capability to activate and hibernate installed capacity of energy conversion
technologies? For a more realistic modelling approach, the installed capacity of a technology can be
put into hibernation (saving O&M costs but rendering it unusable) and then reactivated (bringing back
O&M costs and making it available for use) with a reactivation cost. Considering this capability is highly
relevant for policy design, as supported by literature and real-world events. For example, the European
Commission’s report (European Commission, 2022) on reactivating lignite-fired power plants in Germany
highlights its significance for energy security, electricity cost, and emissions.

Does the model consider the vintages of demand technologies? This allows for the consideration of
changes in technology characteristics based on their manufacturing year (e.g., cars have different effi-
ciencies or emissions based on their age) (/EA-ETSAP | Optimization Modeling Documentation 2023).

Does the model consider the decommissioning of technologies? As highlighted by Invernizzi et al. (2020),
“decommissioning of existing and future energy infrastructures is constrained by a plethora of technical, eco-
nomic, social and environmental challenges that must be understood and addressed if such infrastructures
are to make a net-positive contribution over their whole life”.
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(xi) Does the model incorporate a realistic representation of the power generation sector? Does it possess
an adequate temporal resolution to effectively incorporate these factors? This may include (a) the in-
tegration of reserve and adequacy constraints and (b) energy storage technologies and/or load shifting
options. These aspects are crucial for realistically modelling the operation and installation of capacity
(Ramos et al., 2022).

(xii) Isit possible to account for and impose carbon budget constraints? Specifically, is it possible to establish
a cumulative limit on carbon emissions for a specified multi-year period? Considering the growing im-
portance of the remaining carbon budget in national policy discussions, its incorporation into strategic
energy planning models is imperative (Matthews et al., 2020).

The extent to which the different models examined respond to these inquiries is shown in the following

Table 2.1.

Table 2.1: Open-source models comparison. Criteria are satisfied (v'), partially satisfied (-), no data were found (blank)

or unsatisfied (X).
Criterion EnergyScope  Oemof OSeMOSYS  openMASTER
(Limpens et al,,  (Hilpert et al., (Gardumi et al,
2019) 2018) 2018)
(i) Dynamic planning X -2 v v
(ii.a) Probabilistic uncertainty X X b X
(ii.b) Non-probabilistic uncertainty ~ v/© X X Ve
(iii) Energy services demand -d -d -d v
(iv) Technological and modal choice ~ X° X _f v
(v)  Endogenous agent behaviour X X X8 v
(vi) Non-energy commodities X v v v
(vii) Circular economy X X X v
(viii) Technology hibernation X X X v
(ix) Technology vintages X X X 4
(x) Technology decommission X -2 v v
(xi.a) Power system reliability X v v v
(xi.b) Storage and load shifting v v v v
(xii) Carbon budget X X v v

* A feature for periodic investment decisions in oemof.solph is work in progress, although it is not part of
any stable release. It includes a lifetime tracking.

b 0SeMOSYS-PulP incorporates a stochastic version (Dreier et al., 2019).

¢ These models incorporate a robust version that addresses uncertainties (Moret, Babonneau, et al., 2020a).

d Integrate the demand for final energy (e.g., electricity and heat) with the demand for energy services (e.g.,
mobility).

¢ Irallows for decision in allocating passenger transport between public and private transportation, as well as
freight transport by train. The model operates within predetermined ranges, excluding modal shift within
private and public transportation.

£ Grosso et al. (2017) introduce a novel approach for origin-destination optimisation in urban mobility, con-
sidering modal choice. Notably, this approach has not been applied to a national-scale system nor for mobil-
ity demand over other distances (metropolitan, inter-city, etc.), and there are no other existing applications
that incorporate modal choice

& Fragnitre etal. (2017) propose coupling OSeMOSYS with a top-down approach (i.c., discrete choice model),
resulting in an exogenous behavioural modelling from the energy planning modelling perspective; Beltramo
(2016) analyse this possibility, pointing out the difficulty of doing so because of the appearance of non-
linearities and the need of further research.
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2.2 Literature review

2.2.1 LimitaTioNs oF oPENMASTER

Although openMASTER ofters several contributions compared to other similar models, as shown in section
2.2.2, this section first introduces its limitations and current problems that warrants consideration. On the
one hand, a notable limitation lies in its absence of spatial modelling for electricity and gas grids, as well as
other critical infrastructures within the energy system. This deficiency hampers the model’s ability to effectively
represent regional or global energy systems with interconnected networks. To address this limitation, future
iterations of openMASTER could explore integrating spatial modelling capabilities, akin to approaches seen in
existing models such as TIMES (Loulou, 2016) or GENeSYS (Loffler et al., 2017). However, implementing spatial
modelling would come at the expense of increased computational complexity due to the addition of variables
required to represent regional interactions and energy flows.

Moreover, openMASTER’s bottom-up approach, coupled with its detailed technological specifications and
temporal resolution, results in a significant number of equations and variables. This intricate structure neces-
sitates a delicate balance between model detail and computational complexity. While openMASTER has been
successfully applied to real-world case studies, such as the Spanish national energy system, as presented in Chap-
ter 3, extending its scope to encompass more complex applications may pose challenges. Such expansions may
require adjustments to temporal resolution and could potentially strain computational resources. Therefore,
future enhancements to openMASTER could focus on optimizing its computational efficiency while main-
taining model fidelity.

Another area of limitation for openMASTER pertains to its lack of exploration into continent-wide or
global applications. While structurally adaptable for such endeavors, openMASTER has yet to undergo com-
prehensive testing and validation on this scale. Additionally, scaling up openMASTER’s application may ne-
cessitate compromises to manage computational demands effectively. Therefore, further research is warranted
to explore the feasibility and performance of openMASTER in broader geographic contexts.

Opverall, while openMASTER demonstrates significant promise in strategic energy planning, its limitations
underscore the need for ongoing refinement and development to maximize its utility and applicability in ad-
dressing complex energy challenges.

2.2.2 THE CONTRIBUTION OF OPENMASTER

As may be seen in Table 2.1, the openMASTER model addresses significant gaps identified in the existing mod-
els.

Firstly, open MASTER is the only reviewed model that introduces all exogenous demand in the form of en-
ergy services (see Table 2.1, criterion iii). By energy service we refer to those activities that require energy, but
which are not expressed in energy terms, but in activity terms (e.g. m2 to be heated, p.km to be travelled, tons
of steel to be produced, etc.). When demand is introduced in this fashion, additional structure needs to be
incorporated in the model to represent how energy is converted into energy services (which will require invest-
ment and operation expenses, and result in different emissions or energy consumption) and more importantly,
how these energy services can be provided by competing technologies, how this competition may evolve with
time, and also how its demand may be affected by changes in behaviour or technology, allowing for the im-
plementation of energy efficiency or behavioral measures and emissions reduction through the investment and
operation of end-use technologies. In this regard, it also enables modal shifts in transportation, a crucial aspect
for eftective decarbonisation of this sector. It is important to emphasise that defining all exogenous demand as
energy services has significant structural implications (see Table 2.1, criterion iv). This approach necessitates the
model to make decisions not only on energy conversion (CE) technologies, but also on end-use (ST) technolo-
gies. It means adding significant complexity in terms of computation, but also defining the processes (which
difters in the case of CE technologies and ST technologies, as will be explained in the following) and input data
(techno-economic characterisation of technologies, etc).

Secondly, our thorough literature review indicates that our proposal is the first to introduce behavioural
changes in an endogenous and linear manner within an open-source energy planning model (see Table 2.1, cri-
terion v). This novel approach allows the model to determine optimal agent behaviour considering intangible
costs such as discomfort, as well as to assess trade-offs, as occurs in the case of remote work, where mobility
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demand is reduced at the cost of an increase in residential energy consumption. Unlike other proposals such
as SOCIO-MARKAL (Nguene et al., 2011), our approach does not rely on virtual technologies, but directly al-
lows to modify the energy services demand through a linear formulation applied in a novel way in this type of
strategic energy models.

Additionally, openMASTER allows for the modelling of non-energy raw material consumption and circu-
lar economy in the industrial sector (see Table 2.1, criterion vii). It should be noted that this is possible because
the industrial sector is also represented, like all other sectors, on the basis of the demand for energy services (in
this case, tons of materials). OpenMASTER not only designs the data input, but also incorporates the formu-
lation defining these technological processes and their relationships, including circular material flows, material
requirements and recycling rates. Therefore, this not only facilitates modelling the reduction in material con-
sumption through recycling but also energy and emissions savings through less energy-intensive processes.

Moreover, our literature review reveals that openMASTER is the first open-source model to incorporate
such technological granularity by considering the vintage of end-use technologies (see Table 2.1, criterion ix).
This approach facilitates the representation of technological innovation, including learning curves for efficiency
improvements and emissions reductions. Consequently, improvements in vehicle emission standards or house-
hold appliances efficiency, among others, can be incorporated along with a detailed definition of technology
decommissioning over their lifecycle.

Lastly, openMASTER offers a more realistic approach to the dynamics of investing in energy conversion
technologies compared to existing literature. Its dynamic, multi-step character, which encompasses invest-
ments and decommissions, is advanced compared to most strategic energy planning models but still simplifies
the real-world decision-making process for energy technologies. Managing energy assets can involve deacti-
vating/hibernating technologies and reactivating them as needed, incurring reactivation costs but achieving
substantial O&M savings. Thus, this attribute, overlooked in open-source strategic energy planning models,
represents a substantial gap addressed by openMASTER (see Table 2.1, criterion viii).

All these modelling elements have been shown to convey significant advantages to energy planning exercises,
as shown by the previous literature summarized in Table 2.1.

2.3 MODEL DESCRIPTION

2.3.1 OVERVIEW

openMASTER is a Pyomo-based model designed for sustainable energy policy analysis. It operates as a dy-
namic, bottom-up, partial equilibrium, linear programming (LP) model, with the primary objective of meet-
ing an exogenously-determined demand of energy services across various sectors. It achieves this by adhering
to technical and policy constraints while minimising a comprehensive objective function. This function in-
cludes the total economic costs of energy supply, the social costs associated with greenhouse gas emissions and
pollutant releases, as well as to intangible costs such as discomfort.

The openMASTER model is structured according to a scheme of processes and flows, which is detailed in
Appendix 2.A. Figure 2.1 provides an overview of the structure of the model, which comprises the entire en-
ergy sector, including the import and domestic consumption of primary energy, energy conversion and storage
technologies for final energy production, energy services supply technologies, and the exogenous demand for
energy services from various sectors of the economy. Additionally, to aid comprehension, green text has been
added as illustrative examples of elements that could constitute each part of this structure.

Regarding the definition of the exogenous energy services demand, itis important to note, as shown in Figure
2.1, that a top-down approach is followed. The exogenous demand is derived from Macro Data (MD), such
as population (passengers) in different environments (e.g., rural or urban), weight of freight to be transported,
dwellings and commercial area categorised by climate zone, and demand for materials. Based on these values,
representative parameters called Demand Characterization (DC) and Activity Factor (AF) are applied for each
sector to define the final demand for energy services.

For the residential and commercial sectors, the DC parameter represents the quotas of dwellings and com-
mercial area classified by efficiency, while the AF parameter indicates the typical energy services demanded per
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2.3 Model description

dwelling and commercial space. In the case of transportation, the DC parameter captures the typical mobil-
ity demand based on distance for freight and passengers according to their residential environment. The AF
parameter corresponds to the passenger vehicle occupancy rate (passengers per vehicle) and the freight vehicle
load factor (tons per vehicle).

This structure has two main goals. Firstly, it aims to provide a transparent and reproducible data framework
for application in different countries and contexts. Secondly, it allows for the endogenous inclusion of be-
havioural changes. Further details about the definition of the exogenous energy services demand can be found
in Appendix 2.B.

Finally, it is important to note that Appendix 2.A also provides comprehensive information on the configu-
ration of the openMASTER model, including the input, output, and visualiser modules. These modules serve
to streamline and standardise tasks related to input data preparation and result extraction, including the rep-
resentation of decision variables in intuitive formats. Designed with a user-friendly approach, these modules
ensure that individuals with varying levels of technical expertise in optimisation can easily utilise the model.
Alongside the model code, users have access to these modules, which play a vital role in guaranteeing interop-
erability, accessibility, and adaptability.

2.3.2 MAIN EQUATIONS

This section describes the main equations that form the basis of the model, providing the reader with an un-
derstanding of its fundamental principles. A current stable version of openMASTER can be found in an open
repository on GitHub (/77-EnergySystemModels/open MASTER 2023).

OBJECTIVE FUNCTION

The model aims to minimise the objective function, which represents the costs of the energy sector. These costs
include (i) the domestic consumption and import of primary energy (PE); (ii) fixed and variable O&M costs of
conversion technologies (CE); (iii) the cost of raw materials (RM) consumed by industrial supply technologies
(ST); (iv) fixed and variable O&M costs of supply technologies (ST); (v) the investment cost of new conversion
technology capacity (CE); (vi) the cost of reactivating hibernated capacity of conversion technologies (CE);
(vii) the investment cost of new supply technology capacity (ST); (viii) the penalty cost of slack variables, which
include unsupplied energy services (ESNS), as well as exceeding emission caps and carbon budget constraints;
and (ix) the cost of agents’ behavioural measures, including both economic costs (such as housing insulation)
and intangible costs (such as discomfort).

BALANCE EQUATIONS

The balance equations are employed to guarantee the conservation of energy (and material within the indus-
trial sector) across all the processes involved. Consequently, the energy transformations taking place in the CE,
ST and TE processes are subject to ensuring that the energy output corresponds to the input, accounting for
efficiency losses. These balances must be metin all the time slices defined by the model. Animportant considera-
tion is the treatment of technologies capable of producing multiple outputs, such as refineries in CE technolo-
gies or vehicles in ST technologies. To provide a realistic modelling approach for these processes, minimum
and maximum quotas are defined for each technology to determine the range of outputs they can produce.
From this perspective, the model can simulate the behaviour of these processes in a more accurate and reliable
manner. For instance, a refinery may vary its production of diesel, gasoline, or kerosene from crude oil within
specified operational boundaries. Similarly, a vehicle can provide different energy services (e.g., metropolitan
and inter-city mobility demands) within realistic ranges. These constraints enable the model to optimise the
operation of these technologies while ensuring that the generated outputs align with practical considerations
and limitations.
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2.3 Model description

STORAGE EQUATIONS

In the particular case of storage technologies, which store and release energy, the energy balance is not con-
ducted on a per-time-slice basis. Rather, it is modelled daily, seasonally or annually. Furthermore, in order to
ensure proper performance, storage technologies must adhere to a capacity restriction that limits their physical
ability to store a specific amount of energy. This restriction must be considered when conducting the energy
balance.

CAPACITY CONSTRAINTS

Capacity constraints are imposed to ensure that sufficient capacity is installed to enable operational function-
ality. Consequently, conversion technologies (CE) and supply technologies (ST) cannot exceed their respective
installed capacity when conducting energy transformation processes.

The dynamic approach of openMASTER enables investment decisions to be made over the entire time hori-
zon under consideration. This is achieved by considering the existing installed capacity and the decommission-
ing of technologies at the end of their operational lifespan on an annual basis. It is important to highlight that
openMASTER incorporates the pre-existing installed capacity in the initial year of calibration, referred to as
brownfield.

However, openMASTER treats the capacity installation of CE and ST technologies differently:

* Conversion Energy (CE) technologies are decommissioned at the end of their lifespan. Additionally,
there is the possibility of decommissioning earlier if the model determines that the technology will no
longer be required. Moreover, CE technologies can be hibernated and reactivated, which means thatifa
technology is not in use, it can be hibernated to save O&M costs. However, it cannot be utilised during
this hibernation period. If the technology needs to be operational again, it can be reactivated.

* Supply technologies (ST) are modelled considering their vintage. This means that their technical char-
acteristics, such as efficiency and emission factors, are subject to the year of manufacture. For instance, a
diesel car manufactured before 2009, following European emission standards, should meet Euro 4 stan-
dards, while in later years, the standard to be met would be higher, such as Euro 5. In addition, modelling
these technologies based on vintages allows for probabilistic decommissioning. In this manner, the en-
tire vehicle fleet is not decommissioned at the end of its lifespan, but rather decommissioned over the
considered period based on the probability of decommissioning.

Furthermore, maximum capacity constraints can be imposed to align the model’s decisions with technical
and policy considerations. For instance, the installation of new hydropower capacity may be restricted by the
country’s topography and water availability, whereas the introduction of new nuclear or coal capacity might
be constrained by policy decisions.

On the other hand, a capacity constraint exists regarding the domestic consumption and import of primary
energy. In this context, the energy resources available to the represented country or region are modelled, taking
into account factors such as the absence of specific resources (e.g., Spain lacking oil resources) and the capacity
for imports (e.g., the presence of gas pipelines or regasification plants for natural gas importation).

Finally, the availability of renewable energy resources is determined by CE technologies’ availability factor.
This factor enables the definition of operating profiles for these technologies across all time slices. For instance,
solar photovoltaic plants operate according to solar irradiation availability. Additionally, the availability factor
allows for considering levels below 100% for technologies not reliant on variable renewable sources, accommo-
dating scheduled maintenance outages, among other factors.

ELECTRICITY GENERATION RELIABILITY CONSTRAINTS

In the operation of large power systems, meeting certain reliability conditions at every time slice is essential
to ensure smooth and secure functioning. For this reason, reserve and adequacy constraints on the electricity
generation capacity are imposed.
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The reserve constraint recognises that there is always uncertainty in the load that generators need to supply,
such as imprecise demand forecasting, power plant failures, and the variability of power generation from renew-
able sources. Therefore, this constraint imposes that certain power plants must be capable of rapidly increasing
their output in the event of a sudden imbalance.

The adequacy constraint ensures enough capacity to meet peak demand and maintain a reserve margin in
power systems. The firmness concept quantifies the reliable capacity of technology. It stipulates that the firm
capacity must exceed the peak demand multiplied by the required reserve margin (e.g., 10% excess capacity).

As previously stated, openMASTER presents a unique approach to defining exogenous demand in terms
of energy services, where final energy consumption is a decision variable representing end-use technology con-
sumption. This approach is particularly relevant for electricity generation reliability constraints as it requires
treating the annual peak electricity demand as a decision variable instead of an input parameter. Although this
introduces potential non-linearity, openMASTER addresses it by developing an auxiliary equation and using
an additional variable.

By incorporating the annual peak electricity demand as a decision variable, openMASTER can provide a
coherent and realistic reserve margin based on optimisation results, eftectively capturing the intricate dynamics
of electricity demand and supply. This feature enhances the accuracy and realism of strategic energy planning by
accommodating evolving consumer preferences and industry trends, such as the growing adoption of electric
vehicles and household electrification.

TECHNOLOGICAL AND MODAL CHOICE CONSTRAINTS

By integrating all exogenous demand as energy services in the model, informed decisions on supply technology
investment and operation can be made, leading to technological competitiveness that allows to improve energy
efficiency and emissions reduction.

In the particular context of the transport sector, supply technologies correspond to vehicles that supply pas-
senger and freight mobility demands based on distance. Various options, such as electric cars, diesel cars, buses,
metro, or bicycles, can be employed to meet the demand for metropolitan mobility. However, optimising the
model to minimise costs would naturally favour lower marginal cost modes like walking or cycling, potentially
overshadowing other modes. To address this, constraints are introduced to regulate the rate of modal shift,
controlling changes in how mobility demand is met across different modes (e.g., car, bus, motorbike, bicycle,
metro). Taking advantage of the dynamic approach of openMASTER, the model allows for annual limita-
tions on the rate of change (e.g., 2 maximum of 2% annual change), preventing drastic shifts. It is important
to note that within each mode, there may still be technological competition. For instance, if the electric car
proves more competitive, it may replace traditional gasoline or diesel cars. Moreover, these constraints account
for changes in mobility demand from year to year, ensuring that the imposed quota is not solely based on the
previous year’s demand, but adjusted for overall mobility growth or decline.

ENDOGENOUS BEHAVIOURAL MEASURES EQUATIONS

The openMASTER model introduces a formulation that incorporates behavioural changes of agents in a lin-
ear and endogenous manner. This is achieved by including additional variables and equations, as detailed in
Appendix 2.C.

This comprehensive approach allows decision-makers to gain valuable insights into the impacts of specific
measures across the energy value chain. The model considers four groups of behavioural measures:

* DPassenger vehicle occupancy rate (passengers per vehicle) and Freight vehicle load factor (tons per vehi-
cle), allowing to include phenomena such as car-sharing or car-pooling.

* Typical mobility demand by distance and passenger type, which could accommodate trends such as re-
mote working, 15-minute cities, or changing delivery patterns.

* Typical demand for energy services by household type and commercial area, considering behaviours such
as adjusting thermostat temperature, using cold water cycles for laundry, or increased remote work.
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* Proportion of dwellings according to efficiency level, primarily representing improvements in building
thermal insulation.

It should be noted that the scope of these behavioural change measures can be limited. However, by con-
sidering the interactions between different measures, the model enables optimal implementation strategies for
behavioural changes. For instance, it allows for trade-off analysis of measures like remote work, which reduces
mobility demand but increases energy services demand at home. The model facilitates determining the optimal
level of remote work, considering investment and operational requirements in transportation and households,
as well as the consumption of energy carriers and associated emissions throughout the energy supply chain.

These behavioural changes significantly impact the objective function, introducing both tangible (e.g., in-
vestment in housing insulation) and intangible costs (e.g., discomfort from reducing space heating tempera-
ture). Future advancements could incorporate income-based modelling to represent intangible costs experi-
enced by different social groups in terms of passenger and household behaviours.

EMISSIONS ACCOUNTING EQUATIONS

The openMASTER model considers emissions of CO,, as well as pollutants such as NO,, S Oy, and PM> 5. By
employing a bottom-up approach, openMASTER enables the calculation of emissions in the energy sector’s
processes with a high level of technological detail. This includes energy conversion (CE), energy transportation
(TE), and final use in supply technologies (ST), ensuring a comprehensive and specific analysis of emissions. In
the case of energy transportation (TE), special attention is given to emissions associated with methane leakages,
which can be accounted for as equivalent CO».

Emissions are quantified by applying emission factors to the involved processes. Both conversion energy
(CE) and supply technologies (ST) consider the fuel consumed when determining emission factors. For ex-
ample, a hybrid plug-in gasoline car that can utilise either electricity or gasoline will have different emissions
associated with the consumption of each fuel. Similarly, a combined cycle power plant may blend natural gas
and biomethane.

Moreover, supply technologies (ST) not only consider emissions related to energy consumption but also take
into account process emissions. These process emissions result from the use of these technologies regardless of
the fuel source. Examples include emissions from tire wear in cars or chemical reactions in cement production.
Consequently, the process emission factor of ST technologies depends on the energy service (ES) generated,
meaning that emissions are calculated per vehicle-kilometre or tonne of cement. This allows for distinguishing
between emissions generated by the same technology in different uses, such as a car emitting more when driving
at higher speeds, resulting in higher emissions factors for inter-city distances than metropolitan ones.

EMISSION CAPS AND CARBON BUDGET CONSTRAINTS

After accounting for emissions, it becomes feasible to establish global and sector-specific limits on emissions,
including CO», NOy, S Oy, and PM> 5. In this regard, the dynamic approach of openMASTER enables the
implementation of annual caps on key sectors, including transportation, industry, residential and commercial
activities, power generation, and refining. Moreover, additional constraints can be readily established, such as
pollution restrictions from the transportation sector could be implemented within urban areas to enhance air
quality.

Moreover, this dynamic approach facilitates the effective implementation of a carbon budget constraint,
which involves tracking the cumulative CO emissions over a specific timeframe.

2.4 APPLICATIONS

The MASTER model, known as such prior to the creation of openMASTER, has been utilised for over a
decade to conduct several research projects across difterent fields of study. On one hand, the MASTER model
has contributed to the publication of scientific papers in high-impact journals. These papers explore a range of
topics, including a comparative analysis of energy efficiency measures versus renewable energy implementation
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Figure 2.2: openMASTER results’ visualizer: Energy Sankey diagram for 2030

(Lopez-Pena et al., 2012), the integration of water considerations into long-term energy planning models (Khan,
Linares, Rutten, et al., 2018), the effects of water constraints on power generation in the face of climate change
scenarios (Khan, Linares, and Garcfa-Gonzilez, 2016), the utilisation of multicriteria decision-making to address
sustainability indicators (Romero and Linares, 2021), the implications of the decarbonisation on energy poverty
(Romero, Linares, etal., 2025), and the treatment of epistemic uncertainties through robust techniques, as shown
in Chapter 3.

In addition, it has been employed in the preparation of public reports, with the objective of providing
decision-makers with insights into the economic, environmental, and technological consequences of different
potential pathways for the energy sector. This analytical tool enables informed discussions among stakeholders,
facilitating the necessary consensus for the energy transition. Notably, these public reports includes an analy-
sis of long-term (2030-2050) scenarios in the Spanish energy sector (Economics for Energy, 2017), strategies for
decarbonising land transport in Spain (Economics for Energy, 2021), and the impact of climate change in water
resource availability for electricity generation (Khan and Linares, 2015). This highlights that openMASTER is a
flexible and adaptable model, making it a valuable tool for a wide range of research applications in the field of
energy planning.

It is important to introduce the openMASTER results’ visualiser, which is publicly accessible along with
the model’s entire code, and provides a user-friendly interface displaying comprehensive information on the
energy system and its emissions. The visualiser allows users to access intuitive data, presented through graphs
that can be customised for specific scenarios and years of interest.

In Figures 2.2, 2.3, 2.4 and 2.5, we showcase some graphs generated by the visualiser, including the Sankey
diagram illustrating energy flows within the processes of the energy system, tracing them to their final con-
sumption across various sectors through end-use technologies. Moreover, the visualiser offers the ability to
track the evolution of primary energy consumption, assess the composition of renewable energy sources, and
examine emission-related indicators such as their temporal changes and technological sources. These graphs are
generated using Plotly, making them interactive and capable of being modified to represent different scenarios
and years via selectors.

Another feature of this visualisation tool is the comparator, which facilitates intuitive comparisons between
different years or scenarios. This empowers decision-makers to gain valuable insights through easily inter-
pretable visualisations. Notably, the model offers comprehensive information related to the decision variables
outlined in Section 2.3. This encompasses a wide range of details, including the evolution of the capacity of
both energy conversion technologies and end-use technologies, the emissions sources, and the operational char-
acteristics of technologies on a time-slice basis, among others.

Regarding the computational load, the model exhibits the features illustrated in Table 2.2. The optimisa-
tion is performed using Gurobi Optimizer version 10.0.1 on a PC equipped with a 64-bit Windows Operating
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Figure 2.5: openMASTER results’ visualizer: Evolution of final energy consumption (2020-2050)

System, an Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz processor, and 128 GB RAM. The findings clearly
indicate that the computational load and solving time are highly reasonable for strategic energy planning, and
comparable to other similar models. In this context, it’s essential to consider the computational load associated
with the temporal resolution of the model. Most common openMASTER applications use configurations of
96 and 672 time slices per year, corresponding to hours in a typical day or week for each season. It’s important
to note that these temporal resolution scale up due to the time horizon in years, reflecting the dynamic charac-
ter of openMASTER. Table 2.2 presents the computational results for utilising 96 time slices per year within
a time horizon spanning from 2020 to 2070, with a representation of 5-year gaps.

Table 2.2: Computational characteristics of the case study (nominal LP case)

Type Variables Equations Solver time [sec]
LP 2,087,907 3,042,005 131.31

2.5 ILLUSTRATIVE CASE STUDY

This section presents a brief illustrative case study to demonstrate how openMASTER can be used to address
real-world energy decision-making problems, and showing some of the results achievable with it. It is essential
to emphasize that the interpretation of the results is not discussed here, but rather the model’s capability to
generate them.

This illustrative case study is calibrated for the Spanish energy system in the year 2020, representing a de-
carbonization scenario conducted under the constraint of annual emissions formulated by the Spanish govern-
ment to achieve climate goals outlined in the Integrated National Energy and Climate Plan. Consequently,
sectorial carbon cap constraints were imposed on all emissions during the 2020-2030 period. Detailed infor-
mation regarding the calibration of this illustrative case study can be found in Appendix 2.D, including data
on fuel prices, energy technology investment costs, technology efficiencies, and installed capacity for the 2020
calibration year.

Table 2.3 presents the installed capacity of conversion energy technologies for the year 2030 compared to the
calibration year of 2020. It illustrates how the model resolves the investment planning of energy technologies
for the years within the study horizon, not only for the electricity sector but for all energy vectors.
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2.5 Illustrative case study

Table 2.3: Installed capacity of conversion energy technologies [GW]

Technology 2020 2030
Nuclear 7.4 3.2
Coal 10.2 0.0
CCGT 26.6 163
CCGT+CCS 0.0 14.6
OCGT 0.0 12.5
OCGT+CCS 0.0 0.0
Fuel Qil 3.7 0.0
Hydro 140 209

Wind Onshore 26.8 67.7
Wind Offshore 0.0 3.0

Solar PV 11.0 79.0
Solar Th 2.3 2.3
Biomass PP 1.4 0.0
Storage 6.4 16.3
CHP 5.3 2.6
TOTAL ELECT 115.0 238.4
Oil Refinery 47.9 26.1
Biofuel 56.2 51.0
Regasification 43.8 83.4

In addition to investment planning in conversion energy technologies, openMASTER also operates and
invests in end-use energy technologies, referred to as supply technologies. In this regard, openMASTER con-
siders three demand sectors (residential & services, industry, and transportation), where demand is defined as
energy services (e.g., passenger and freight mobility, quantity of materials, or energy services in buildings such
as heating, appliances, or lighting).

As an example of the installation of supply technologies, the results in Table 2.4 show the evolution of car
fleet capacity. Similarly, it is worth noting that the model also provides this capacity for supply technologies
of other mobility options (e.g., airplanes, trucks, buses, etc.) and sectors (e.g., gas boilers, heat pumps, or high
and low-efficiency washing machines in residential areas, or various industrial processes such as Hall Heroult
aluminum factories).

Furthermore, regarding Table 2.4, it is important to note that this car fleet corresponds to the total aggregate
of each technology for the years 2020 and 2030, although the model disaggregates these technologies by vin-
tage. Therefore, the number of each type of vehicle is disaggregated by its age, influencing its energy efficiency
and emission factor. This allows for the inclusion of the learning curve, decommissioning after the end of their
useful life, and compliance with environmental regulations of the supply technologies.

On the other hand, the operation of these technologies to meet the demand for energy services is another
crucial aspect of openMASTER. In this regard, Figures 2.6 and 2.7 display the primary energy mix and final
energy mix, respectively. It is noteworthy that the information in these Figures is aggregated for the year 2030
but is available for all time slices that configure the model.

As shown above, these results serve as a sample of the outcomes achievable through the utilization of open-
MASTER. Naturally, openMASTER can yield a diverse range of other results, including but not limited to
CO; emissions, atmospheric pollutants (such as NOy, S Oy, and PM5 5), and behavioural measures, among
others.

This comprehensive suite of outputs enables a holistic understanding of the impacts and implications of
energy policies and scenarios analyzed using the openMASTER model.
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Table 2.4: Car fleet [Million vehicles]

Fuel Type 2020 2030
Gasoline 10.67  9.095
Diesel 8.0063  2.563
CNG 0.0018  0.001
LPG 0.0091  0.003

Hybrid Gasoline  0.0077  4.363
Hybrid Diesel 0.0063  0.002
EV 0.01 1.512

TOTAL 18.711  17.539

Primary Energy Mix 2030

3.0% 0.4%

m Nuclear mCoal m Natural Gas = LNG mOil mHydro mWind ESun HBiomass

Figure 2.6: Primary energy mix for 2030

Final Energy Mix 2030
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Figure 2.7: Final energy mix for 2030
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2.6 Conclusions

2.6 CONCLUSIONS

Over the span of more than a decade, the MASTER model has demonstrated its reliability and adaptability
across various research domains. In this context, we now introduce openMASTER, a valuable open-source
tool for both public discussions about the energy transition and cutting-edge research. Through an extensive
review of the literature, we have shown how openMASTER offers several advantages over similar models. The
publication of the model as an open-source tool serves as an exercise in promoting transparency and replicability
within the scientific community engaged in long-term energy system modelling.

Considerable efforts have been devoted to developing an accessible and modular tool, designed with user-
friendly data treatment and visualisation modules. Additionally, the model offers a visualisation tool that proves
instrumental for decision-makers. Importantly, all auxiliary modules associated with the model are also publicly
available, further enhancing its usability and transparency.

Despite its strengths, the model does have limitations, as addressed in Section 2.2.1. It lacks spatial modelling
for electricity and gas grids, crucial for representing regional or global models with energy interconnections.
This could increase computational complexity. Additionally, the model’s bottom-up approach and high level
of detail entail a significant number of equations and variables, necessitating a trade-off between detail and
computational complexity. While openMASTER has been applied to real-world case studies like the Spanish
national energy system, expanding its scope to continent-wide or global applications remains unexplored and
may require adjustments to temporal detail. Hence, improvement in these areas represents a potential avenue
for enhancing the model’s performance.

Ongoing research involving the openMASTER model is advancing in various directions, such as the consol-
idation of robust planning techniques for dealing with epistemic uncertainties, improving the representation
of the transportation sector, integrating indicators of a just transition, and enhancing the level of detail in pro-
duction processes and the circular economy within the industrial sector. These potential avenues hold promise

for further leveraging the capabilities of the openMASTER model.
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APPENDIX 2.A: OPENMASTER STRUCTURE

The openMASTER model comprises distinct components that describe the different stages of energy conver-

sion, from the utilization of natural resources to the energy services supply:

* Primary Energy (PE) accounts for the aggregate primary energy sources employed, encompassing

both domestic and imported, renewable and non-renewable resources. Examples include uranium, coal,
LNG, and solar irradiation.

Conversion Energy (CE) processes represent the technologies responsible for transforming energy
from one form to another, including storage and release mechanisms. While CE processes encompass
electricity generation, they also incorporate activities like oil refining, biofuel production, and LNG re-
gasification (considered as the transformation of primary energy, LNG, into final energy, natural gas),
among others. This process consists of three subprocesses:

— Primary Conversion Energy (CEp,;) processes, involving technologies that consume primary
energy to produce final energy, such as solar PV, regasification plants, and refineries.

— Secondary Conversion Energy (CEjs,.) processes, involving technologies that consume final
energy to produce another final energy commodity. Examples of such processes include CCGT
or CHP, which may rely on regasified natural gas (originating from LNG) as their fuel source.

— Storage Energy (CEjy,,) processes, involving technologies that store and release final energy, such

as hydro pumping.

Transportation Energy (7T E) pertain to the energy transportation and distribution networks respon-
sible for delivering final energy to end-use technologies (supply technologies, S T). Each TE process
exclusively transports a specific type of final energy, effectively representing the list of considered final
energy types. Examples of TE sources include electricity, gasoline, and biodiesel.

Raw Materials (RM) sources denote non-energy commodities consumed by supply technologies (S T')
within the industrial sector. Examples of such materials encompass bauxite or raw iron.

Supply Technologies (S T') processes represent devices that consume final energy, and in the case of
industrial applications, also utilize raw materials, to deliver energy services. These technologies are de-
signed to fulfill specific functions in various sectors. For instance, lamps utilize electricity to provide illu-
mination, cars consume gasoline for transportation purposes, and boilers employ natural gas for heating
applications.

EXOGENOUS DEMAND CHARACTERIZATION

The characterization of demand within the model involves the implementation of specifically designed blocks

to account for endogenous variables related to agents’ behavioural changes. In this subsection, we will outline

the processes utilized to define the demand:
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* Energy Service (ES) represents the diverse range of energy services required within the modelled econ-

omy. It is important to note that the characterization of energy service demand is achieved by disaggre-
gating the annual demand into distinct time slices using a load profile. This methodical approach enables
amore refined representation of the temporal granularity within the model. Examples of energy services
include demanded tonnes of aluminium, GWh of heating in the residential sector, or vehicles-km for
metropolitan-distance mobility.

Activity Factor (AF) serves as a parameter that characterizes the annual demand across various sectors
of the economy:

— Inthe transportation sector, the activity factor (A Fr,4) corresponds to the vehicle occupancy rate
or load factor. For passenger transportation, this factor indicates the average number of passengers
per vehicle. Similarly, for freight transportation, it represents the tonnes per vehicle.



Appendix 2.4: open MASTER structure

— In the residential and commercial sector, the activity factor (AF gz, reflects the energy service
demand per dwelling (for residential) or per square kilometer (for commercial). It captures the
typical energy services demand for households or commercial spaces. For instance, in the case of
Spain, it could represent the hot water demand for an Atlantic block dwelling, the required lumens
for a Mediterranean single house, or the GWh of heating per square kilometer of continental com-
mercial area.

— In the industrial sector, no AF is applied, as the demand for materials is externally determined
and provided in Macro Data (M D).

* Demand Characterization (DC) serves as an additional factor that characterizes the annual demand
within different sectors of the economy:

— In the transportation sector, the demand characterization (DCr,) factor captures the mobility
demand per passenger and distance. It quantifies the distance, in kilometers, that a passenger de-
mands based on their living context (urban or rural) and the type of travel distance (metropolitan,
inter-city, etc.). For freight transportation, a similar factor is applied, but it represents the demand
in terms of tonnage rather than passengers.

— In the residential and commercial sector, the demand characterization (DC o) factor repre-
sents the percentage of dwellings (for residential) or square kilometers (for commercial) classified
according to their efficiency level compared to the total. Therefore, this parameter quantifies the
proportion of high and low-efficient dwellings based on their typology and climatic zone. For in-
stance, in the case of Spain, 17% of single houses in the Atlantic climatic zone are classified as highly
efficient.

— In the industrial sector, no specific DC factor is applied as the demand for materials is externally
determined and provided through Macro Data (M D).

* Macro Data (M D) is a parameter that provides macro-level values for different sectors:

— In the transportation sector, it encompasses the number of residents in different types of envi-
ronments (e.g. urban or rural).

— Inthe residential and commerecial sector, it defines the total number of dwellings (for residential
areas) and square kilometers (for commercial areas), categorized by climatic zones. In the specific
context of the Spanish energy system, the climatic zones are represented as Mediterranean, At-
lantic, and Continental, although alternative options can be readily applied.

— In the industrial sector, it indicates the demand in terms of tons of materials such as aluminium
or steel.

OPENMASTER MODEL CONFIGURATION

The configuration of the openMASTER model primarily involves accurately and consistently defining the
sets and parameters that constitute the model. On the one hand, the model operates dynamically, requiring the
specification of a time horizon. One approach is to group the years, allowing optimization for representative
years within each group (e.g., 2, 5, or 10 years) instead of optimizing for the entire time horizon, based on the
modeller’s discretion.

Furthermore, the temporal resolution, represented by time slices, must be determined. The model incorpo-
rates three sets for this purpose, representing seasons, days, and hours. Currently, the most commonly used
configuration includes four seasons, seven days of a week, and 24 hours per day. This enables obtaining hourly
granularity for a representative week in each season. Moreover, higher time granularity can be achieved, ranging
from 8760 hours per year to even shorter time slices of 15 or 5 minutes. However, it is crucial to consider the
trade-off between temporal resolution and computational load.

Defining the elements of the sets that represent processes and commodities in the model is essential. For
example, the primary energy (PE) set should encompass all relevant primary energy vectors (e.g., coal, crude
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oil, solar irradiation), while the conversion technologies (CE) set should include corresponding conversion
technologies (e.g., coal power plants, refineries, solar PV plants), and so forth.

Additionally, establishing consistent relationships between interconnected sets involving energy or matter
flows (as illustrated in Figure 2.1) is crucial to avoid inconsistent flows. This is achieved through relational sets,
ensuring that, for instance, a nuclear power plant consumes uranium instead of coal, or an aircraft produces
vehicle-kilometres instead of lumens.

Moreover, subsets represent smaller groups of elements belonging to other sets. For instance, the renewable
primary energy subset comprises renewable energy vectors from the primary energy set, excluding sources such
as crude oil or natural gas. These subsets play a crucial role in defining equations within the model and must
be consistently defined.

Moreover, the parameters’ dimensions are determined based on the sets. For example, the parameter spec-
ifying the capital expenditure (CAPEX) cost of conversion technologies (CE) is defined for each individual
CE technology. Therefore, any alterations made to the CE set must be accurately reflected in the correspond-
ing parameter. Consequently, when making modifications, additions, or removals to a set, the modeller must
ensure that all relevant changes are appropriately implemented across the associated parameters.

However, the openMASTER model has been developed in a modular and easy to use format for all users.
In this way, along with the model code, the input and output modules are also accessible, as well as a viewer
to obtain several visual information about the results. The development of input and output data modules is
crucial for ensuring interoperability, accessibility, and adaptability. These modules serve as a vital link between
the energy optimization model and the data sources, facilitating data transmission and result generation.

INPUT DATA MODULE

To create a user-friendly and versatile solution, we designed the data input and output system to be compatible
with both CSV and Excel file formats. While CSV serves as the primary format for input and output, Excel
offers a convenient means of modifying input data and visualizing output results. However, Excel is not essen-
tial for the model’s functionality. We chose these formats due to their widespread usage and compatibility with
various software applications. Moreover, it is particularly advantageous in environments where users may not
have access to advanced data management tools.

Furthermore, we adopted a modular approach to data processing in Python. This design divides the data
processing into separate modules, enabling easy modification or customization of specific components without
affecting the overall system functionality. To store initial data, we consolidated them into an Excel spreadsheet
with different tabs representing sets and parameters.

The data loading process in our Python model involves a two-step transition from Excel to CSV and then
from CSV to Pyomo. This approach enhances modularity and allows for future modifications to the data
format. Loading data from CSV files is faster and does not require repetition unless new data is created. This
design accommodates changes or expansions in the data structure or format.

We developed a data-loading pipeline that automatically identifies and processes different types of tables
in Excel. The pipeline involves (i) identifying the data type (sets or parameters) based on the sheet name, (ii)
defining table boundaries (by the use of the ~ BOUNDS ~ indicators), (iii) identifying table formats, and (iv)
converting the input data into CSV format for Python processing.

Separating the initial data from the model’s input data enables continuous loading of CSV data while up-
dating or modifying the input. This modular design streamlines the data updating process, enhances flexibility
and robustness, and allows for separate workflows for data preparation and model computation.

However, for the user’s convenience, it is recommended to modify the model’s input data using the
openMASTER_Data.xlsm Excel file. This file includes an input index (INDEX tab) where all sets, subsets,
and parameters are defined, including table dimensions (this information is used for converting this data to
CSV), units, descriptions, and other details. From this tab, users can navigate the data using the CTRL+Q
and CTRL+W commands, as each element has its own sheet in the Excel file. This makes it easier for users to

modify the data.

26



Appendix 2.4: open MASTER structure

OUTPUT DATA MODULE

The data loading process involves sets and parameters as the main data types, while the data output focuses on
variables. Variables represent the results of the model and are used for result visualization and analysis. The
data output can be divided into storing the model’s output data and loading the stored data for visualization.

To store the model’s output data, we reverse the input data pipeline. Information about the indices of param-
eters is obtained from the "INDEX" Excel sheet, while for output variables, it is obtained from the "Out put"
sheet. Python uses this information to understand the indices of each variable. The variables are stored in
separate Python data tables, organized in a dictionary format for easy representation and visualization. Simul-
taneously, the data is exported in CSV format for convenient access. To improve visual interpretation, the CSV
files can be converted to a consolidated Excel format.

Once the model is executed and the results are stored, there is no need for recomputation unless there are
changes in the input data. Loading the data from CSV files is designed to be user-friendly and accessible. A
script iterates over each output file, storing the information in a dictionary for future use. This modular input
and output data system enhances accessibility, adaptability, and streamlines the workflow for managing and
visualizing the model’s outputs.

VISUALIZER

In order to facilitate user-friendly data representation, a series of advanced templates were pre-programmed to
allow for easy visualization of the data, as well as some of the most relevant and standard energy result graphics.

By replacing the data and making simple changes such as the title, axis labels, or units, advanced represen-
tations of future executions can be quickly obtained without the need for advanced technical knowledge. The
pre-programmed graphics include (i) Sankey diagram, (ii) Bar chart and stacked bar chart, (iii) Area chart and
stacked bar chart, (iv) Sectors diagram, and (v) Evolutionary line.

This data representation can be found in the dashboard, an essential component of the openMASTER
toolset, offering an intuitive and interactive interface. It enables users to explore complex energy planning
data across various scenarios and timeframes. Figure 2.8 showcases the dynamic manipulation and compar-
ison of data visualizations, empowering users to generate actionable insights. It highlights key functionalities
of the dashboard, including the ability to customize chart types, zoom in on specific time periods, and switch
between different scenarios. These features enhance the user’s analytical capabilities and facilitate a deeper un-
derstanding of the data.

Additionally, integrating a Plotly dashboard in the openMASTER model facilitates the selection and com-
parison of various scenarios, periods, and graph types, promoting a user-friendly comprehension of the data.
Figure 2.9 emphasizes the significance of the "COMPAR ATOR" tab, which empowers users to compare data
from different scenarios within the same time period and track the evolution of a single scenario across multiple
time periods. This adaptability offers valuable insights for strategic decision-making and policy assessment in
the energy planning domain, enhancing the overall effectiveness of the tool.
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Appendix 2.B: Definition of exogenous energy services demand in openMASTER

APPENDIX 2.B: DEFINITION OF EXOGENOUS ENERGY SERVICES DEMAND IN
OoPENMASTER

According to the disaggregation of openMASTER, the exogenous annual demand for energy services can be
derived by multiplying these parameters (Activity Factor, Demand Characterization and Macro Data).

In the case of the transportation sector, the exogenous annual demand for mobility energy services could
be expressed as follows:

Z (VQESS TESy pAFTraST’ES’SD) > vQSDyp (2.1)
ST,ES
vQSDyp, = > (PDCTragp pyp - PMDyypy ) (2.2)
MD

As depicted in Figure 2.10, the mobility data is derived from the Macro Data (MD) parameter, which rep-
resents the population characterized by their residential environment. Currently, for passenger mobility, this
characterization involves distinguishing between urban and rural populations, as the demand for mobility sig-
nificantly varies between these population types. However, this disaggregation can be further extended by
differentiating populations living in large, medium, or small cities, as well as rural areas with varying degrees of
isolation from urban centres.

The Demand Characterization (DC) parameter indicates the mobility demand in terms of distance for a
typical citizen based on their residential environment. This disaggregation is based on the understanding that a
typical resident in a large city like Madrid or Barcelona requires much longer commuting distances compared to
aresidentin a rural municipality. By multiplying the population (Macro Data) by the typical distance (Demand
Characterization), we obtain the number of kilometres demanded by a passenger for difterent distances, such
as metropolitan or inter-city distances.

Moreover, mobility demand can be met by various modes and technologies. For instance, within a large
city, mobility can be covered by car, moped or metro, while mobility between two cities could be made by car,
train or airplane. As a result, the Activity Factor (AF), which represents the occupancy rate or load factor of
vehicles, varies significantly depending on the technology and type of distance. For example, the occupancy
rate of a car during a metropolitan trip is usually lower compared to an inter-city trip, where it may transport
more passengers. Simultaneously, a bus has the capacity to transport a significantly larger number of passengers
compared to a car.

On the other hand, it is worth noting that the available technologies and modes also differ based on the
environment and distance type. For instance, the metro is not available in rural areas. Moreover, the same
technology can supply to different mobility demands (e.g., a car can be used for metropolitan and inter-city
trips).

For the case of the residential and commercial sector, the idea is similar, being the formulation:

Z VQESs 7 ks y 2 Z (VQSDSD,MD,y ' pAFOthES,SD,MD) (2.3)
ST ST.ES
VQSDSD,MD,y > pDCTraSD’MD . pMDMD’y (2.4)

As illustrated in Figure 2.11, Macro Data (MD) categorize the number of dwellings (or km2 for the commer-
cial sector) by typology (single house and block house) and climatic zone (Mediterranean, Atlantic, and Con-
tinental). The Demand Characterization (DC) factor defines the weights that each of these housing groups
represents in terms of energy efficiency. Thus, we obtain a classification of these households based on typology,
climatic zone, and efficiency. The Activity Factor (AF) determines the energy service demand per household
(or km2) based on this classification. Consequently, the energy service demand is expressed in terms of GWh
for heating, lumens for lighting, or cycles for hot or cold laundry washing, among others.
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Figure 2.10: Structure of the exogenous demand in the transportation sector in openMASTER
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Figure 2.11: Structure of the exogenous demand in the residential sector in openMASTER
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2 openMASTER: The open source Model for the Analysis of SusTainable Energy Roadmaps

ArrENDIX 2.C: ENDOGENOUS BEHAVIOURAL MEASURES LINEAR
FORMULATION

Historically, modifications or reductions in demand within energy models have typically incorporated mea-
sures of changes in agent behaviour through an exogenous approach. This involved creating scenarios of be-
havioural change and calculating the resulting effect on the demand parameter, subsequently implementing
these changes in the input data for model optimization. This novel approach allows for an endogenous and
more integrated representation of behavioural measures within the model framework. It is important to note
that this formulation is possible as all exogenous demand is stated as energy services.

In the case of transportation, and building upon the framework presented in the previous section that elu-
cidated the model structure for representing exogenous demand, we derive the following formulation:

> (VQESsy sy - PAFTragy ps sp) + > vBMTrasz ks sy > vQSDg) (2.5)
ST,ES ST,ES

vBMTraS T.ES,SD.y = Z vBMTrang T.ES,SD.y (26)
vBMTra,s7es.spy 20 Vn (2.7)
vBMTranS T,ES,SD,y < péAFTrang T.ESSD " VQESS T.ES.y Vn (2.8)
vQSDy = > (PDCTrag 4y - PMDyyp ) = D vDMTras p by (2.9)

MD MD
VDMTraSD,MD,y = Z VDMTranSD,MD,y (2.10)

n

vDMTra,spmpy 20 Vn (2.11)

VDMTranSD,MD’y < péDCTranSD,MD -pMD Vn (2.12)

MD.,y

We have introduced two additional sets of variables to the original equations presented in Appendix 2.B. The
first set, denoted as vBMTra,, (Behavioral Measures in Transportation), captures variations in the parameter
pAFTra, which represents the vehicle occupancy rate. The subscript n corresponds to the number of measures
that aim to increase the number of passengers per vehicle, facilitating modelling of phenomena such as car-
sharing or car-pooling.

To maintain linearity in the model, we define this variable using a mathematical formulation that enables
optimization of changes in the parameter. By doing so, we avoid introducing non-linearities that would arise
from directly defining pAFTra as a variable. Additionally, equation 2.8 illustrates that the variable vBMTra,
is bounded by the parameter pd AFTra,, which denotes the maximum allowable change in vehicle occupancy
rate for each measure.

The second set of variables, denoted as vDMTra,, (Demand Shift Measures in Transportation), follows a sim-
ilar mathematical formulation to ensure linearity in the problem. These variables allow the model to optimize
variations in the parameter pDCTra, which represents mobility demand in passenger-kilometers per distance
and environment. In consequence, vDMTra, allows to represent changes related to trends like remote work,
the 15-minute city concept, or delivery trends, among others. The variable is constrained by the parameter
poDCTra,.

These changes significantly impact the objective function, introducing tangible or intangible costs. Future
advancements in the model could incorporate income-based passenger and household modelling to represent
intangible costs experienced by different social groups.

For the residential sector, a similar formulation is applied:
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Appendix 2.C: Endogenous behavioural measures linear formulation

D vQESsr sy = Y (VRSDgp iy - PAFReSss spap) =, VBMResgsspupy  (213)

ST SDMD SDMD
vBMResgs sp.mp,y = Z vBMRes, 5.5 D,MD.y (2.14)
P
vBMRes,es spupy 20 Vn (2.15)
vBMRes, g5 sp,mp,y < poAFRes,£s sp.mD - VQSDSD,MD,y VYn (2.16)
vQSDgp ypy = Y (PDCReSg  yypp - PMD,yyp ) = > vDMResspyp,y (2.17)
MD MD
vDMRess pmpy = ) VDMResuspmpy (2.18)
p
vDMRes,spupy 20 Vn (2.19)
vDMRes, s p.mp,y < poDCResusp.mp - pMDMay Vn (2.20)

In the context of the residential sector, we introduce the variable vBMRes,, which represents behavioral
changes influencing the parameter pAFRes. This parameter quantifies the demand for energy services per
household, considering typology (single house or block), climate zone, and efficiency. Therefore, vBMRes,
enables the incorporation of behavioural adjustments related to household consumption, such as reducing
thermostat temperatures for heating and cooling space, or increasing consumption through remote work.

Additionally, the variable vVDMRes,, affects the parameter pDCRes, which defines the proportion of dwellings
categorized by energy efficiency. This variable allows modeling improvements in building efficiency, including
investments in thermal insulation for dwellings, thereby accounting for associated investment costs.

TRADE-OFFS IN MEASURES: INTERACTIONS AND OPTIMAL IMPLEMENTATION OF
BEHAVIOURAL MEASURES STRATEGIES

This formulation enables to model the relationships between different measures. For instance, we have ob-
served that remote work impacts two potential sets of measures. On one hand, it reduces mobility demand
through the utilization of the variable VDM Tra,, thus decreasing the amount of passenger-kilometers traveled
in metropolitan distances. On the other hand, it increases the demand for energy services at home, as cap-
tured by the variable vVBMRes,,, leading to augmented energy requirements for heating or the use of household
appliances (e.g., computers). To model this relationship, the following lineal formulation is proposed:

Z(VDMTrateleworkS DMD * pTOteleworkES’S D,MD) < VBMReSteleworkES,SD (221)
MD
The parameter pTOtelework represents the trade-off associated with the remote work measure. It defines

the increase in demand for energy services at home per unit reduction in mobility demand. Thus, the model
facilitates the determination of the optimal level of remote work, considering investment and operational re-
quirements in both transportation and households, as well as the consumption of energy carriers and associated
emissions across the entire energy supply chain necessary to fulfill these energy services.
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2 openMASTER: The open source Model for the Analysis of SusTainable Energy Roadmaps

APPENDIX 2.D: ILLUSTRATIVE CASE STUDY CALIBRATION

Section 2.5 of Chapter 2 features an illustrative case study that was conducted to demonstrate some interesting

outputs from openMASTER.

the years 2020 and 2030, respectively. The values for the years within this time period are calculated using a
linear interpolation method. This enables the modeling of learning curves for emerging technologies and the
dynamics of fuel prices, which are subject to regulatory changes and shifts in supply and demand. In order to
represent the variation in the exogenous annual demand, an annual growth rate is applied. Hourly demand is
derived by utilizing a load curve applied to the annual demand.

In the following, some parameters are defined. More information can be found on openMASTER’s GitHub

webpage (/IT-EnergySystemModels/open MASTER 2023).
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The time-varying parameters are specified with their initial and final values, which are set to correspond to

Table 2.5: Fuel cost assumptions for primary energy sources in 2020 and 2030

Primary Energy 2020 Fuel Cost[€/MWh] 2030 Fuel Cost[€/MWh]
Nuclear 2.88 2.88
Imported Coal 10.00 7.00
Natural Gas 18.40 18.40
Liquefied Natural Gas 37.00 37.00
Crude Oil 40.00 30.00
Hydro Run off the River 0.00 0.00
Hydro with Reservoir Capacity 0.00 0.00
Mihi Hydro 0.00 0.00
Wind Onshore 0.00 0.00
Wind Offshore 0.00 0.00
Solar Photovoltaic 0.00 0.00
Solar Thermoelectric 0.00 0.00
Solar Thermal 0.00 0.00
Biomass Energy Crops 21.00 21.00
Biomass Agriculture Waste 17.00 17.00
Biomass Forestry Waste 8.00 8.00
Solid Waste 21.00 21.00
Bioethanol Production Inputs 54.00 54.00
Biodiesel Production Inputs 46.00 46.00
Biogas 104.00 104.00




Appendix 2.D: Illustrative case study calibration

Table 2.6: CAPEX, installed capacity, and conversion losses of conversion technologies (2020-2030)

Conversion Technology 2020 CAPEX 2030 CAPEX Prev. Cap. Losses
[€/kW] [€/kW] [GW] [%]
Nuclear Power 4800 4500 7.40 0.62
Imported Coal Traditional 1450 1450 3.00 0.58
Imported Coal IGCC 1950 1900 3.00 0.52
Imported Coal SCPC 1650 1650 1.00 0.55
Imported Coal SCPC + CCS 3400 2850 0.50 0.64
CCGT Traditional 550 530 26.60 0.42
CCGT + CCS 1750 1500 0.00 0.54
OCGT Traditional 450 450 0.00 0.55
OCGT + CCS 900 750 0.00 0.65
Fuel Qil Traditional 784 784 3.70 0.62
Hydro RoR 1715 1650 2.15 0.00
Hydro w/ Reservoir 2100 2100 12.00 0.00
Hydro Pumping Storage 3804 3804 3.30 0.30
Mini Hydro 1715 1650 0.00 0.00
Wind Onshore 1300 1000 28.00 0.00
Wind Offshore 2800 1900 0.00 0.00
Solar PV Centralised (Tracking) 463 355 8.40 0.00
Solar PV Distributed Industry 645 500 0.00 0.00
Solar PV Distributed Other 645 500 0.00 0.00
Solar Thermoelectric Centralised 3000 2800 2.30 0.00
Solar Thermal Industry 848 848 0.00 0.00
Solar Thermal Other 848 848 0.00 0.00
Biomass Energy Crops Centralised 2517 2517 0.32 0.61
Biomass Agri Waste Centralised 2517 2517 0.68 0.61
Biomass Forestry Waste Centralised 2517 2517 0.00 0.61
Solid Waste 5503 5503 0.70 0.61
CHP Industry (Gas) 1425 1425 2.40 0.26
CHP Other (Gas) 2093 2093 2.40 0.27
CHP Industry (Biomass) 2137.5 2137.5 0.00 0.26
CHP Other (Biomass) 3139.5 3139.5 0.00 0.27
Refinery Low Complexity 114 114 62.20 0.07
Refinery High Complexity 330 330 24.30 0.09
Refinery Very High Complexity 653 653 0.00 0.17
Bioethanol Production Plant 1040 1040 0.40 0.00
Biodiesel Production Plant 510 510 6.70 0.00
Regasification Terminal 35 35 76.00 0.01
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IMPROVING ROBUSTNESS IN STRATEGIC ENERGY
PLANNING: A NOVEL DECISION SUPPORT
METHOD TO DEAL WITH EPISTEMIC
UNCERTAINTIES

This chapter is based on the article entitled “Tmproving robustness in strategic energy planning: A novel decision
support method to deal with epistemic uncertainties”, authored by Antonio F. Rodriguez-Matas, Pedro Linares,
Manuel Pérez-Bravo, and Jose Carlos Romero, and published in Energy, Volume 292, April 2024, Elsevier.
DO 10.1016/j.energy.2024.130463.

3.1 INTRODUCTION

Energy planning consists of deciding the type of energy investments required to provide the energy services
society demands; when these investments are needed; and the policies that may be required for them to take
place. It can be done by central planners, the market itself, or a mixture of both, generally with the aid of
mathematical models (Perez-Arriaga ctal., 2008). This exercise is particularly relevant for decision-making aligned
with the attainment of the 7th Sustainable Development Goal or net-zero targets, among others.

Energy planning models require input parameters typically related to the techno-economic characterization
of energy sources, technologies and service demands, among others. However, the long life of energy tech-
nologies, which usually last between 20 and 50 years, means that energy models should consider a similar time
frame, giving rise to many uncertainties in such along period including climate change, technological advances,
geopolitical stability, social changes, and extreme events. These uncertainties, which are beyond the control of
decision-makers, can be classified as external parametric uncertainties. Moreover, most of these parametric un-
certainties can also be considered epistemic, meaning there is not enough information or knowledge about
them, so their behaviour cannot be reasonably predicted, and probabilistic functions cannot be used.

Dealing with epistemic or non-probabilistic uncertainties is crucial in any decision-making process related
to strategic energy planning, as failure to do so can result in detrimental consequences, such as unnecessary or
obsolete energy investments, or a potential compromise of energy supply security, among other undesirable
outcomes. An appropriate handling of uncertainties involves the use of suitable methodological approaches in
the model. In addition, it is essential to take into account decision-makers’ preferences concerning epistemic
uncertainties, as these preferences can inform the selection of appropriate decision criteria.

An extensive literature review (see Appendix 3.A) has shown that, although there is a significant amount
of literature dealing with probabilistic uncertainties in energy models, in particular stochastic approaches (e.g.
(Kanudia etal., 1998; Usher et al., 2012)), these methods are not able to deal with epistemic, non-probabilistic un-
certainties. These uncertainties have been addressed in the literature mostly with Robust Optimization (RO)
(Moret, Babonneau, et al., 2020a; Patankar et al., 2022), which looks for solutions that are feasible under all the
range of uncertainties considered. However, although RO may be useful (albeit very conservative) in ensuring
for example security of supply, its application to the objective function (i.e., uncertainty in costs) is more ques-
tionable: decision-makers are not generally completely risk-averse, and prefer to minimize maximum regret.
This is indeed the decision-making criterion generally applied in scenario analysis (Marchau et al., 2019), which
in turn has a major drawback, in that it assumes that the preferred decision will be within the set of optimal
solutions for each discrete scenario.
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Therefore, a significant gap has been identified in that no energy planning models or published exercises exist
that are able to apply, in an internally consistent way, these two different decision-making methods to ensure
both feasibility in the constraints and optimality of the objective function, under non-probabilistic uncertainty,
and for the whole range of feasible solutions.

The novel contribution of this chapter is precisely to provide a single algorithm in which these two method-
ologies or decision-making approaches are used jointly in an internally consistent way. Robust Optimization
is applied to ensure feasibility in the constraints, while minimax regret is the criterion employed for achieving
acceptability of the objective function. The algorithm also searches for the minimax regret solution in all the
feasible space, instead of only among discrete scenarios.

Theapplication of the algorithm to a real-sized energy planning exercise shows that first, it can deliver detailed
results within reasonable computing times; and second, that the solution found maintains robust optimization
performance while minimizing maximum regret in the objective function. Therefore, the algorithm preserves
the advantages of each approach without adverse effects or significant impacts on computing time.

The rest of the chapter is structured as follows. As a preamble, Section 3.2 discusses a theoretical framework
about the treatment of uncertainty in energy models and the concept of robustness, and reviews the main
literature on these topics. Section 3.3 introduces the novel robust decision support method. Section 3.4 offers
the results of applying and validating the novel methodology to a real-size strategic energy planning model.
Section 3.5 presents conclusions and future work.

3.2 DEALING WITH UNCERTAINTY IN ENERGY MODELS

Uncertainty can be defined as the distance between the available knowledge and the knowledge required for
optimal decision-making (Marchau et al., 2019). It can be classified into two types: epistemic (Knightian) uncer-
tainty, in which there is no knowledge about the potential value of the uncertain parameters, and probabilistic
(aleatory) uncertainty, which can be modelled using probabilities due to some knowledge about the probability
function that represents the parameter (Hiillermeier et al., 2021).

In such complex conditions where the lack of knowledge is notorious, as in the case of epistemic uncertainty
in strategic energy planning, a decision process aims to adopt a rational choice, but this rationality is different
for each decision-maker. A decision criterion should therefore be chosen in accordance with the subjectivity
of the decision-maker, i.e. the attitude to face different realizations of the environment, which is exogenous
and uncontrollable. This attitude is typically subject to risk aversion, i.e. decision-makers typically prefer, to
a certain degree, to guarantee an adequate performance of an implemented policy or investment rather than
risking a potentially better performance that could end up being a wrong decision.

Consequently, decision-makers’ preferences in environments affected by epistemic uncertainties are gener-
ally identified in the literature as robust decision-making. Nevertheless, if the aim is to find robustness, this
leads to some conceptual questions: How to define robustness? When can a decision be said to be robust?
What does the optimum mean in the presence of epistemic uncertainties?

There is no single definition of robustness. Under one approach, it refers to the best performance decision
in the worst possible environment (Majewski, Wirtz, et al., 2017). Another way of understanding it is as the least
sensitive decision to changes in the environment (Rabice et al.,, 2018). Therefore, the former aims to find the
optimal value of the objective function for a single scenario (the worst realization of uncertain parameters),
while the latter obtains the solution that varies the least when uncertain parameters change, so the objective
function does not need to be optimal under any scenario. A third interpretation would be the minimization
of regret (Trachanas et al., 2018): it looks for the least opportunity cost decision for any environment realization.

These interpretations of a robust decision are often confused in the literature, while significant differences
exist between them. Consequently, the methodologies used to address robustness may differ based on the spe-
cific understanding of this concept. One of the main reasons for the confusion surrounding robustness is the
inconsistent use of the same term to describe different meanings. To help mitigate this issue, the proposed solu-
tion involves assigning distinct names to the different interpretations of robustness, allowing for greater clarity
and differentiation between them:
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* Wald robustness is achieved when the decision corresponds to the best performance solution in the
worst-case scenario. It is related to the Wald (pessimistic) decision-making criterion.

* Sensitivity robustness is achieved when the decision corresponds to the least-sensitive solution to changes
in the environment.

* Savage robustness is achieved when the decision corresponds to the minimum-regret solution to changes
in the environment. It is related to the Savage decision-making criterion.

Itis also essential to notice that epistemic uncertainties lead to a state of ambiguity that challenges the notion
of optimality. If robust decisions are pursued, they do not necessarily have to be aligned with the classic concept
of optimum, under which an objective function is maximized (or minimized) in the expected scenario or under
stochasticity. It may be more appropriate to speak of suboptimal decisions that do not perform as well in the
expected scenario, but guarantee adequate performances in the range of possibilities in which uncertainties can
be revealed. In conclusion, both Sensitive and Savage criteria are not about making the best (optimal) decision
for a particular scenario but about making a decision that performs reasonably well (suboptimal) within the
uncertainty ranges.

3.2.1 METHODOLOGIES FOR DEALING WITH UNCERTAINTIES

In addressing uncertainty, methodologies can be classified into probabilistic and non-probabilistic, according
to both types of uncertainty. Probabilistic methodologies deal with random uncertain parameters that can be
approximated using historical data and expert knowledge through probability distributions. These methods
are based on probabilistic criteria, such as the expected value (Shapiro et al., 2007), although others could also
be used (median, mode, VaR, etc.). Although relatively easy to implement, they are computationally intensive,
limited to a few uncertain parameters, and dependent on large amounts of historical data. The most commonly
used probabilistic methods are stochastic programming and Monte Carlo simulation.

On the other hand, non-probabilistic methodologies are more suitable when addressing epistemic uncertain-
ties, for which no probability functions are known. However, some limitations should be mentioned, such as
obtaining too-conservative outputs. It is noteworthy that both probabilistic and non-probabilistic methods
could be compatible in the same analysis (Soroudi and Amrace, 2013). More detailed information about these
methodologies’ inputs, advantages, disadvantages and applications can be found in Table 3.1.

Historically, the most widespread methodology in energy planning is scenario analysis, which is a suitable
method for backcasting in sectors that may be affected by unprecedented events. For this reason, it is consid-
ered particularly appropriate for energy modelling. Each scenario is defined as a possible realization of uncertain
parameters, resulting in a tree of scenarios which occurrence seems possible but not assured, from which possi-
ble solutions are extracted. The results facilitate understanding the system behaviour and dynamics (Schnaars,
1987). Indeed, one of the crucial issues to be addressed when considering scenario analysis is defining which un-
certainties are included in the model, since a compromise must be found between exhaustivity and the risk of
omission of relevant uncertainties. It is essential to include as few factors as possible, so as not to turn scenario
analysis into a difficult-to-use speculation-based tool, trying to identify a few decisive factors that are not easily
predictable (Moret, Codina Girongs, et al., 2017). However, the interpretation of the results of different scenarios
is always complex.

Recentdevelopmentsin the scientific community have seen an increase in the adoption of alternative method-
ologies, such as robust optimization, due to the significant limitations of scenario analysis. It was first proposed
by Soyster (1973), but its application in different fields is relatively recent. This non-probabilistic methodology
aims to solve the worst-case realization of uncertain parameters to ensure feasibility (Gorissen et al., 2015), there-
fore implicitly applying the Wald pessimistic criterion. This methodology generally looks for a solution where
all constraints are satisfied for any realization of uncertain parameters within their uncertainty range, so feasi-
bility is guaranteed. However, results may be too conservative. To prevent this, Bertsimas et al. (2004) (B&S)
proposed a technique that maintains the linearity of the robust counterpart by using polyhedral uncertainty
sets, and allows controlling the degree of conservatism by introducing a control parameter (7) in the polyhedral
uncertainty set. This parameter guarantees the feasibility of the solution if less than 7 uncertain coefhicients
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change. Moreover, there is a probabilistic guarantee: if more than 7 uncertain coefficients change, the robust
solution will be feasible with high probability.

It is crucial to consider the trade-off between robustness and performance: it is possible to include a large
number of uncertain parameters, so the greater this number, the more robust. But it also means a more pes-
simistic decision, hence a lower performance of the objective function under the average scenario. Resolving
this dilemma is one of the most critical issues when implementing this methodology.

Itis noteworthy to mention that alternative approaches for addressing uncertainties in decision models could
also involve the utilization of machine learning techniques, such as Bayesian networks. These methods could
be particularly useful for modelling systems where the relationships between parameters and variables are not
predetermined, which is often the case in many energy systems. Machine learning techniques can also be used
in conjunction with other methods to provide complementary insights. Relevant examples can be found in
existing works from other fields, including (Tutsoy, 2022).

Moreover, the consideration of deterministic chaotic variation, involving the introduction of a small per-
turbation at the initiation of a prognostic simulation that amplifies due to the use of discrete mathematical
representations of continuous equations, is indeed noteworthy. To the best of current knowledge, this aspect
has not been thoroughly addressed in the existing literature on energy models. Dynamic energy models may
exhibit susceptibility to chaotic variation, wherein minor alterations in parameters, such as demand projec-
tions, can lead to substantial changes by the conclusion of the modeling period. It is important to recognize
that this phenomenon is supplementary and spans both epistemic and probabilistic uncertainty, as it repre-
sents a characteristic inherent to uncertainty in dynamic models, rather than being specific to its epistemic or
non-epistemic nature.

3.2.2 APPLICATIONS TO ENERGY MODELS

Several authors have previously addressed uncertainties in strategic energy planning models using probabilistic
methods. On the one hand, the MARKAL/TIMES family of models developed by ETSAP (IEA) is widely
used in energy system analysis, with variations for different purposes (Loulou and Lehtila, 2016). These mod-
els usually incorporate uncertainty through stochastic programming, with examples such as those developed
for Quebec (Kanudia et al., 1998), the United Kingdom (Usher et al,, 2012), and Belgium (Nijs et al., 2011). Some
models, such as TIAM, have also incorporated stochastic approaches to deal with uncertain parameters (Loulou,
Labriet, etal., 2009). However, models become intractable when they incorporate too many uncertainties, which
has led to alternative proposals such as the TEMOA model (Hunter et al., 2013), which uses a Modeling to Gen-
erate Alternatives (MGA) approach in order to explore near-optimal solutions (Pfenninger et al., 2014). Other
approaches, such as Monte Carlo simulation, have also been used in several models. Some examples can be
found in MESSAGE (Gritsevskii et al., 2000), ESME (Pye et al., 2015) and OSeMOSYS (Dreier et al., 2019). An-
other option is that proposed by trial-and-error models, which has been applied in various case studies, such as
the analysis of Jacobson, Krauland, et al. (2022), which explores the interdependencies among global warming,
air pollution, and energy insecurity. Finally, it is important to highlight the coupling of energy models with cli-
mate models, as exemplified in (Jacobson, Delucchi, et al., 2015). This integration allows for a more sophisticated
incorporation of relationships in the analysis of the climate-energy-economy interaction. The development of
these coupled models is pivotal for comprehending the intricacies of multisectoral relations. In this context,
while defining these relationships may help mitigate some uncertainties, the increased complexity introduced
by such models can also introduce or exacerbate other uncertainties. Appendix 3.A contains a comprehensive
table summarising the literature review on the treatment of uncertainty in the main energy planning models.
However, as mentioned before, probabilistic approaches are inadequate to deal with epistemic uncertainties.
In this regard, robust optimization is an alternative that has been used in some applications for energy mod-
els. To review the literature, the study draws upon the research conducted by Moret, Babonneau, et al. (2020a),
expanding upon their analysis by exploring more features, such as the dynamic approach and decision-making
criteria, and incorporating relevant new studies that have been published since their publication. A compre-
hensive literature review can be found in Appendix 3.B, its key findings being as follows: (i) robust optimiza-
tion continues to be scarcely used within strategic energy planning models, although its use is growing; (ii) the
methodology proposed by Bertsimas et al. (2004) is the most widespread, likely because it provides a significant
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Table 3.1: Overview of methods to handle uncertainty in energy planning

Type Method Input Advantages Disadvantages Applications
Probabilistic ~ Stochastic  Pro- PDF Easy implementation Computationally expensive. Large amountof ~ Huang et al. (2016), Kanudia et
gramming historical data. Able to consider a few uncer- al. (1998), Loulou, Labriet, et
tainties. al. (2009), Loulou and Lehtila
(2016), and Usher et al. (2012)
Monte Carlo PDF Easy implementation Computationally expensive. Large amount of ~ BalezZentis et al. (2017), Koltsak-
historical data. Able to consider a few uncer- lis et al. (2017), and Pilpola et al.
tainties. Slow convergence. (2020)
Point-estimate PDF Very easy implementation Simplistic method. Large amount of historical ~ Sannigrahi et al. (2020)
data.
Possibilistic MF Converting linguistic knowledge to nu-  Compleximplementation. Historicaldataand ~ Erdogan et al. (2016), Kaya et al.
merical values expertise. Ambiguous results. (2019), and Momoh et al. (1995)
Hybrid PDF & MF Dealing with both possibilistic and prob- ~ Computationally expensive. Complex imple- ~ Soroudi (2012) and Soroudi and
abilistic uncertainty types simultaneously ~ mentation. Large amount of historical data. Ehsan (2011)
Non- Interval Analysis Intervals Useful when just an interval is available The correlations among intervals are ne- Z.H.Fuetal (2017) and Shaalan
Probabilistic glected. Conservative. etal. (1993)

Scenarios Analysis

IGDT

Robust Optimiza-
tion

Scenarios set

Forecasted
values

Uncertainty sets

Useful when no PDFs or MF available.
Backcasting: Allows designing paths based

on relevant scenarios.

Robustness. Accurate for severe uncer-
tainties. Useful when no PDFs or MF
available.

Robustness. Accurate for severe uncer-
tainties. Useful when no PDFs or MF
available.

Based on assumptions about uncertainties.
Works as several deterministic scenarios. Lim-
ited to consider a few uncertainties.

Does not find the optimal, but most robust so-
lution. Extremely conservative.

Conservative.

Aghahosseini et al. (2023), Grac-
ceva et al. (2013), Hansen et al.
(2019), and Lopez-Pena Fernan-
dez (2014)

Rabiee et al. (2018)

Moret, Babonneau, et al. (2020a),
Moret, Babonneau, etal. (2020b),
B. Chen et al. (2014), and Zhong
etal. (2021)
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plus for manageability and computational tractability; (iii) the most frequently considered uncertainties in-
clude energy demand, costs and prices; (iv) usually, only a few uncertainties are included, likely because most
models were initially designed to work deterministically, and the inclusion of uncertainties is a significant chal-
lenge in reformulating the problem; (v) applications do not usually include wide-ranging models such as those
for energy planning, but are limited to specific sectors, the most prominent being the electricity sector; (vi) the
majority of the reviewed works have utilized the pessimistic Wald criterion, whereas a relatively small number
have incorporated the Savage criterion; and (vii), several models are multi-stage, but when referring to strategic
energy planning, they are static.

3.2.3 CURRENT STATUS AND CHALLENGES OF ROBUST STRATEGIC ENERGY PLANNING

The studies conducted by Moret, Babonneau, etal. (2020a) and Patankar etal. (2022) have contributed significantly
to the advancement of strategic energy planning models, introducing innovative robust approaches to address
uncertainties in a practical manner.

Moret, Babonneau, et al. (20202) introduced a groundbreaking approach based on the B&S robust optimiza-
tion technique, which was applied to both the objective function and constraints by employing a decision
method called "First feasibility, then optimality”. In a similar vein, Patankar et al. (2022) also used the B&S ro-
bust optimization technique to include uncertainties in fuel prices and technology costs, which directly impact
the minimization-cost objective function. Furthermore, Patankar et al. (2022) addressed the challenge of uncer-
tainties’ autocorrelation, which poses a major obstacle in developing strategic energy planning models that align
with real-world dynamics.

However, there is still room to enhance the methodological approach to eftectively address uncertainties and
achieve robust decisions that align with the preferences of decision-makers. Concurring with Moret, Babonneau,
etal. (2020a), ensuring feasibility through Wald robustness is essential in uncertain environments, as decisions
should consistently avoid constraint violations even under worst-case scenarios. Thus, the use of the B&S tech-
nique is fully justified and brings some significant advantages, as highlighted by Moret, Babonneau, etal. (2020a):
"by increasing the protection level, constraint violations are sharply reduced, both in terms of frequency, and in
terms of mean and standard deviation. [...] constraint violations start to become negligible at low values of the
protection parameter. Thus, to obtain good protection levels it is not needed to be fully robust, which further confirms
the interest of the approach by Bertsimas and Sim”.

However, when it comes to optimality, it is not as critical as feasibility and does not require a similarly con-
servative approach. Therefore, applying robust optimization to uncertainties affecting the objective function
may not be the most suitable option. The choice of methodology should be based on the type of robustness
that better fits the decision-maker preferences. This implies exploring different robustness approaches for both
constraints and objective function uncertainties.

This divergence between decision-makers’ preferences for feasibility and optimality becomes apparent in
both works. Moret, Babonneau, et al. (2020a) find that “solutions obtained at medium uncertainty budgets /... |
offer more stability and protection against unfavorable realizations of uncertainty”. It means that lower standard
deviation solutions are preferred at the expense of higher costs in the average scenario. Similarly, Patankar et al.
(2022) reveal that "a robust strategy that explicitly considers future uncertainty has expected savings in total system
cost of 12% and an 8% reduction in the standard deviation of expected costs relative to a strategy that ignores
uncertainty”. In summary, the stability of decision outcomes becomes a crucial criterion.

Therefore, these methodological approaches do not adequately align with the desired decision criterion.
Despite their goal of enhancing stability by achieving a low-sensitiveness decision, these approaches rely on
robust optimization techniques to handle uncertainties within the objective function. This reliance on robust
optimization implies a dependence on Wald robustness, whereas their true aim is to pursue Sensitive robustness.
Additionally, the application of an ex-post probabilistic analysis to determine the protection level presents a
significant challenge: if the aim is to make a decision that considers epistemic uncertainties and avoids reliance
on probability functions, it is not consistent to employ them in the final decision-making process.

Consequently, uncertainties affecting optimality may be treated with alternative Sensitivity or Savage robustness-
oriented techniques. The IGDT methodology, which maximizes the allowed deviation of uncertainties while
ensuring a reference value for the objective function, could be suitable for Sensitivity robustness (Rabiee et al.,
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2018). However, IGDT can be seen as the dual methodology of robust optimization, maximizing the uncer-
tainty ranges for the worst possible cost (i.e., the reference value) instead of minimizing the cost for the worst
possible realization of uncertainties within their range. Moreover, setting this reference value may be conflict-
ing, considering the existing trade-oft between the minimum value of the objective function to be guaranteed
and the width of the range allowed for the uncertainties. This trade-off is similar to the one affecting robust
optimization. Furthermore, implementing this technique to address uncertainties in the objective function
inevitably leads to non-linearities due to the multiplication of uncertain parameters with decision variables.

An alternative approach for handling uncertainties is Savage robustness, which aims to minimize the max-
imum (minimax) possible regret, i.c., the greatest possible deviation between the chosen decision and the op-
timal decision when uncertainties become known. Regret has been widely used to address cost-related uncer-
tainties and is closely aligned with decision-makers’ preferences for optimality.

However, regret has been conventionally determined through scenario analysis (Trachanas et al., 2018). This
approach involves deriving optimal decisions based on a limited number of discrete scenarios. Subsequently, the
payoft matrix associated with each decision in each scenario is evaluated, thereby allowing for the computation
of a regret matrix. However, this approach restricts the set of potential decisions by solely considering the
optimal solutions in each discrete scenario. This imposes unnecessary limitations since the minimax regret
approach may result in suboptimal outcomes across all those scenarios. Therefore, a procedure to find the
minimax regret solution from a continuous set of alternatives is needed, such as a minimax regret algorithm for
linear programs with interval objective function coeflicients (Inuiguchi et al., 1995).

However, this technique has been up to now applied in isolation, without considering alternative methods
for addressing epistemic uncertainties in the constraints. To address this gap, a joint application of two distinct
methods is required to handle uncertainties in both the objective function and constraints. This integration
ensures that the decision-maker’s preferences are adequately captured during the decision-making process in
the face of uncertainties affecting both the objective function and the constraints.

3.3 A NOVEL DECISION SUPPORT METHOD BASED ON DECISION-MAKER’S
PREFERENCES

This proposal integrates two techniques into a single decision-making method: robust optimization utilizing
the B&S technique to address uncertainties in the constraints, and a minimax regret algorithm for linear pro-
grams with interval coefficients to handle uncertainties in the objective function.

The novelty of the contribution lies in the fact that the proposed methodology, to the best of current knowl-
edge, is the first to combine these two distinct methodologies in an effort to align decision-makers’ preferences
with different notions of robustness. The objective is to incorporate Wald robustness to ensure feasibility even
in the most adverse scenarios, while simultaneously incorporating Savage robustness to minimize the feeling of
economic loss in the face of any environment realization. This enables the implementation of practical energy
modelling exercises that effectively reflect real-world decision-makers’ preferences. Additional demonstrations
regarding the applicability and performance of this novel decision-making method have been presented in Sec-
tion 3.4, employing both a real-size energy model and a simplified version to verify and interpret the results.

3.3.1 ROBUST OPTIMIZATION IN THE CONSTRAINTS

As previously argued, the B&S (Bertsimas et al., 2004) technique appears to be suitable for uncertainties in the
constraints. It is based on the Wald robustness criterion and is known to reduce conservatism. Specifically,
this technique uses a control parameter 7 to indicate the number of uncertain parameters that take their worst
value. Along with this control parameter 7, two additional variables are included, W and P, which are used
to build the robust counterpart. The degree of protection is increased by adding one unit to the value of the
control parameter 7, from 0 (all uncertain parameters at their nominal value) to T (all uncertain parameters at
their worst value).

To ensure a clear understanding of the application of the B&S technique, an example is presented that con-
siders the exogenous energy demand parameter D(s, ) as uncertain, which is usually considered one of the most
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critical uncertainties regarding feasibility. This instance pertains to the implementation of the case study, and
a thorough exposition of its formulation is available in Appendix 3.D.

D Xop(8 D)+ Xens() = Y D(s,f) Vi €TS (3.1)

g€GEN 5€DS

Equation 3.1 would correspond to the energy demand balance at each time slice: the sum of final energy
required by demand sectors D(s, f) should be satisfied by the sum of energy supplied by each generation tech-
nology Xop(g, 1), and the sum of the energy not supplied slack variable Xns(?).

D Xep(8 D)+ Xens(t) = D D(s,) = WD) 1= ) P(s,)20 VieTs (3.2)
g€CE seDS s€eDS
W) + P(s,t) > 6p(s,t) Vs e DS, YVt e TS (3.3)

The energy demand balance constraint 3.1 is transformed into its robust counterpart in 3.2 and 3.3, where
7 is the protection parameter, W and P are additional variables to build the robust counterpart, and dp is
the maximum worst-case deviation of the energy demand from its nominal value, according to its uncertainty
range.

Applying the B&S technique to other uncertain parameters is direct through a similar formulation of other
constraints and would not mean a considerable increase in the computational burden.

3.3.2 MINIMAX REGRET IN THE OBJECTIVE FUNCTION

Inuiguchietal. (1995) proposed an iterative method by which it is possible to obtain the minimax regret for linear
programs with interval objective function coefficients. In this way, they were able to ensure that, for the entire
range of values within the defined uncertainty set, the decision obtained would be the best according to the
minimax regret criterion. Subsequently, Mausser et al. (1998) proposed a new algorithm that solves this problem
more efficiently, using fewer integer variables and reducing the computational burden. For this reason, this is
the algorithm introduced into the novel decision support method.

The minimax regret algorithm proposed by Mausser et al. (1998) is based on a linear maximization problem,
in which uncertain costs are defined as interval coefficients:

ceF:{ceRnlg-SciSEi forlSiSn},

where ¢; and ¢; are the lower and upper bounds, respectively, also known as extremals. The uncertainty set for
uncertain costs can be defined as:

v={i|¢ <zl
The goal is to find x € € that minimizes the maximum regret for the whole uncertain cost interval.

The x-optimality property implies that the maximum regret associated with any cost parameter c is:

R(c.x) = T, _ T\ _ (0N B
(c, x) r;leag((cy cx) (r;leeggcy c x

It immediately follows that y = x,, where X, is the optimal solution under cost vector c.

If
Rmax(x) = marx{R(c, x)}

is the maximum regret for x considering any possible uncertain cost ¢, the objective is to find x* satisfying:

Rinax(X") € Rpax(x)  forall x € Q.

Therefore, x* is the optimal solution to the Minimax Regret problem (MMR) (Mausser et al., 1998).
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MMR can be solved by an iterative relaxation procedure, in which I" is replaced by a finite set of scenarios
C ={c',c?,...,c™M). This relaxation allows obtaining a linear formulation for MMR:

minr
st. Kx+r> ckxck vk e
xeQ

r>0

(3.4)

k

where each constraint ¢*x + r > c¥x« is known as a regret cut. Being £ the solution to MMR, with corre-

sponding regret 7, it is worth noting that 7 < Rpmax(x™) is a non-decreasing lower bound as more regret cuts are

added.

The set of cost scenarios C needs to be built iteratively. The idea consists of finding the cost scenario that
maximizes regret for a candidate solution X. This is done by solving the Candidate Maximum Regret problem
(CMR) (Mausser et al., 1998).

As previously discussed, x* is the solution that minimizes the maximum regret for all x € Q, s0 Ryax (%) >
Rmax(x*) is an upper bound for the MMR problem. Therefore, it is possible to build an iterative algorithm
using MMR to generate candidate solutions whose maximum regret is assessed via CMR, as illustrated in Fig-
ure 3.1. As soon as the CMR upper bound Ryax(X) is equal to or lower than the MMR lower bound 7, the
algorithm has converged to X = x*.

However, a significant issue is that CMR results in a quadratic objective function. Mausser et al. (1998) de-
scribe a mathematical programming procedure—improving upon the original formulation from (Inuiguchi et
al., 1995)—which leads to the following formulation for the CMR problem:

Rmax(X) =max cz—cy

st. xeQ
xX+y—z=2
yi— &b <0 View
G- (Mi—3)(1—b) <0 VieW¥ (3.5)
Zi — Vi = —X Vig¥
Z—yi <M - % Vig¥
v,220
b; €{0,1} VieV

where y; and z; are non-negative variables, and b; are binary variables enforcing the complementarity slack-
ness condition between y; and z; (y;z; = 0). M; is an upper bound for x;.

This formulation uses the c-consistency property (Inuiguchi et al., 1995), which limits the consideration of
uncertain costs ¢ to only their extremal values. Combined with x-optimality, this allows the decision variable
x to be restricted to only those vertices of the feasible region Q that are optimal under such extremal cost real-
izations.

Moreover, c-consistency implies that the additional constraints involving y;, z;, and b; are only required for
i € ¥, since the regret term is already linear for certain cost coefficients. However, for simplicity, the equations
are included for all i. Note that the regret-maximizing cost vector ¢ is set as:

¢ =¢+bi(c—70).
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Set LB=0
XeQ

CMR
Find ¢’ and Rmax(x’)

Rmax(x’) < LB

No

Add regret cut
cx+rz2cx
Yes

MMR
Find r’ and x’
LB=r’

X’ minimizes maximum regret

Figure 3.1: Minimax regret algorithm flowchart, which obtains the minimax regret for linear programs with interval ob-
jective function coefficients: Lower Bound parameter (LB), Minimizing maximum regret decision (x’), Can-
didate Maximum Regret problem (CMR ), Maximizing cost scenario (¢’), Maximum regret (Rmax), Minimax
Regret problem (MMR), Minimax regret (r)

Thus, the minimax regret algorithm integrated into the novel decision-making approach is depicted in Figure
3.1. The algorithm commences with an initial solution and iteratively proposes a candidate solution in the
MMR model. It then identifies the cost scenario that maximizes the regret of that candidate solution in the
CMR model. At each iteration, a regret cut is incorporated into the MMR problem, reducing the feasible
region of the candidate solutions. Consequently, the algorithm ultimately converges by utilizing both models’
upper and lower bounds.

3.3.3 A NOVEL DECISION SUPPORT METHOD BASED ON ROBUST OPTIMIZATION AND MINIMAX
REGRET

The joint application of both methods is not immediate. Combining the minimax regret iterative algorithm
with the B&S technique generates distortions in the results: incorporating the additional variables W and P
(employed in the robust counterparts of the constraints) into the CMR maximization problem leads to an in-
appropriate behaviour of these variables, which adopt values to further minimize the maximum regret, instead
of supporting the uncertain parameters to take their worst realization as the protection level 7 increases. To
prevent this, the model is first solved by applying the B&S technique in the constraints. Afterwards, when ap-
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plying the minimax regret algorithm, these additional variables, W and P, are fixed for the robust counterparts
in the constraints.

Set
Protection parameter t

I

Robust Optimization in
constraints

;

Fix additional variables for
Constraints Robust
Counterpart (P, W)

MMR + RO

Set LB=0
x'e Q

I

CMR
Find ¢’ and Rmax(x’)

!

Rmax(x’) < LB _

No
\ 4

Add regret cut
cx+rzcx

l Yes

MMR
Find r’ and x’
LB=r’

x’ minimizes maximum regret
and guarantees feasibility

Figure 3.2: Flowchart of the decision support method, which enables the determination of the minimax regret decision
for optimality while ensuring feasibility in the constraints: Protection parameter (7), Robust optimization
additional parameters (P, W) Lower Bound parameter (LB), Minimizing maximum regret decision (x’), Can-
didate Maximum Regret problem (CMR ), Maximizing cost scenario (¢’), Maximum regret (Rmax), Minimax
Regret problem (MMR), Minimax regret (r)
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Figure 3.2 shows the final procedure, in which the sequence of steps entails applying robust optimization
(i.e., B&S technique) initially to compute the additional variables W and P for the corresponding protection
level. Subsequently, the minimax regret algorithm is utilized in conjunction with the robust counterpart of the
constraints, in which W and P additional variables have been fixed to the previously determined values. The
approach does not involve prioritizing one criterion over the other, as both criteria are entirely complementary
and implemented concurrently, as shown in section 3.4.

The resulting algorithm allows obtaining a decision that minimizes the maximum regret in the face of un-
certainties in the objective function, such as costs, while also safeguarding against worst-case realizations of
uncertainties in the constraints, such as demand or resource availability. It is crucial to note that this algorithm
can be tailored to the specific preferences of decision-makers, based on their risk aversion, degree of conser-
vatism, or concern for regret. This adaptability can be achieved by adjusting the protection level T and the
uncertainty sets to consider a broader or more restricted range of possibilities, given that both methodologies
rely on uncertainty sets. Regarding the latter, it would allow considering extreme events, such as shocks in de-
mand (e.g., as happened with the COVID-19 pandemic) or energy cost spikes (e.g., as has happened following
the Ukraine war).

The generality of the methodology deserves special attention, as it holds significant implications for its broad
applicability across various domains. Specifically, this methodology can be adapted to any model that requires
a robust energy planning and can incorporate diverse policies and systems in an explicit manner. As a result, it
has the potential to be applied to any country, provided that the necessary data is available (which is a reason-
able assumption for most cases) and there exists adequate expertise to accurately understand the model (which
is also a reasonable assumption). There are no inherent limitations pertaining to the methodology itself. Ac-
tually, its applicability even extends beyond energy planning optimization models and could encompass other
optimization models from diverse disciplinary backgrounds.

3.4 ASSESSMENT OF THE ROBUST, MINIMAX REGRET ALGORITHM PROPOSED

The novel decision support method has been implemented in the context of openMASTER?, a real-size strate-
gic energy planning model similar to MARKAL-TIMES. openMASTER is a bottom-up, partial equilibrium,
linear programming (LP) model that operates to facilitate sustainable energy policy analysis. openMASTER
seeks to minimize an objective function representing the total private economic costs of energy supply, while
conforming to technical and policy limitations, including greenhouse gas emission reduction targets. Further
information about the openMASTER model can be found in Chapter 2.

It is worth noting that since openMASTER is a cost-minimization model, the formulation of the minimax
regret algorithm (based on a maximization model) can easily be replicated by changing the sign of the objective
function coeflicients.

It should also be noted that comparing the results of the new algorithm with those of other previous models
would not be practical, given the differences in scenarios, parameters, or scope of the analysis. Hence, the im-
provements offered by the novel algorithm are shown by comparing it to previous, more limited methodologies
(RO or MMR ) applied to the same model and scenarios.

3.4.1 TESTING THE APPLICABILITY OF THE DECISION SUPPORT METHOD: A CASE STUDY FOR
THE SPANISH ENERGY SYSTEM

In order to prove the applicability of the decision support method in a realistically-sized strategic energy plan-
ning model, a case study has been conducted on the Spanish energy system.

The uncertainties considered in the objective function include (i) the investment costs of energy technolo-
gies and (ii) the price of fuels. Regarding constraints, the uncertainty considered corresponds to the hourly
demand for final energy vectors across demand sectors. For this analysis, the problem is simplified without loss

*Although the original version of this work, published in Energy (Elsevier), referred to the model as MASTER, the model has since
been made publicly available under the name 0penMASTER. The version used here is an initial—and therefore more simplified—
one compared to the extended formulation presented in Chapter 2. In particular, the exogenous demand corresponds to final
energy consumption in each sector.
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of generality by assuming that all uncertainties are defined by a set of £20% variation around nominal values.
Further information about uncertainty set characterization for energy planning models can be found in (Moret,
Codina Girongs, et al., 2017).

The case study was conducted under a constraint of annual emissions of 29 MtC O; from 2050, which aligns
with the Long Term Strategy 2050 formulated by the Spanish government for achieving climate neutrality
(Gobierno de Espafia, 2020). Additionally, a carbon budget constraint was imposed on all emissions during the
2020-2050 period, i.e., cumulative CO, emissions cannot exceed a certain limitation. Detailed information
about the calibration of this case study can be found in Appendix 3.D.

In terms of computational load, incorporating the proposed algorithm increases the size of the model sub-
stantially, but it is still feasible and solvable within reasonable times. The iterative method (named MMR-RO
in Table 3.2), which comprises both MMR and CMR, as presented in section 3.3, results in a larger model size
due to the addition of numerous constraints and variables. The CMR model corresponds to a MIP model,
while the MMR model is an LP model similar in size to the deterministic one. Consequently, the execution
time of the novel method is considerably higher, not only because the models are more intricate, but also due
to the number of iterations required for the convergence.

Interestingly, the number of iterations needed for 7 = 0 is significantly higher than those required for sub-
sequent protection levels, as shown in Table 3.3. This disparity can be attributed to two main factors. Firstly,
the feasible space is comparatively smaller at higher protection levels, and the problem may converge faster.
Secondly, the solver can utilize previous solutions to hasten the convergence rate. However, setting a more
appropriate initial solution can mitigate this second factor.

Table 3.2: Model characteristics

Model Type Variables Equations
Det LP 607,020 452,205

MMR-RO MMR LP 721,596 559,941
CMR MIP 8,954,131 9,064,274

Table 3.3: Execution time and iterations for different levels of protection

Tau  Time (sec) Iterations

Det 117 N/A
=0 196,479 11
T=1 14,506 2
T=2 14,847 2

The results generated in this realistic exercise are reasonable and correspond to the decision criteria intro-
duced. Regarding the cost, an expected increase in the application of protection levels for robust optimization
is observed in Table 3.4. The Price of Robustness (PoR)) indicator, presented in (Bertsimas et al., 2004), shows
the cost of enhancing the robustness of the decision, providing a means to quantify the trade-oft between ro-
bustness and cost. Specifically, the PoR indicator is derived from the objective function value and is calculated
as the difference between the total cost of the robust solution and that of the deterministic nominal case. It s
also quantified as a percentage, allowing for a comprehensive analysis of the relative magnitude of the differ-
ence and enabling researchers and decision-makers to assess the relative significance of the variations and make
informed comparisons between different scenarios or approaches.

The results reveal that, as examined in the subsequent section 3.4.2, this additional cost of robust solutions
(ie., PoR) leads to a remarkable enhancement in performance by substantially mitigating the likelihood of
encountering infeasibilities within the range of uncertainties, while minimizing the opportunity cost. Con-
sequently, it becomes evident that despite their modest 10% increase relative to the nominal case, robust so-
lutions enable a substantial reduction in the overall system cost compared to the worst-case scenario. This
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preliminary insight already offers a glimpse into the advantages of the robust decision-making compared to
Wald-robustness-oriented solutions, such as the deterministic pessimistic case.
p

Table 3.4: Economic indicators in the case study of the Spanish energy system

Economics indicators Total cost [GE] PoR [GE] PoR [%]

Det (nominal case) 574.15 - 0.0%
7=0 575.74 1.60 0.3%
T=1 619.01 44.87 7.8%
T=2 633.54 59.39 10.3%
Det (worst case) 732.63 N/A N/A
Det (best case) 476.39 N/A N/A

On the other hand, there is a positive correlation between the protection level and the installed capacity in-
crease, as shown in Table 3.5. This outcome is expected since the exogenous demand is defined as final energy,
so the model cannot invest in more efficient energy services supply technologies to reduce demand (e.g., ve-
hicles that reduce fuel consumption to meet the same demand for mobility). Therefore, the model increases
conversion capacity as a protective measure to mitigate uncertainty.

When comparing the solutions between the deterministic (Det) nominal case and decision 7 = 0, which
incorporates the minimax regret algorithm, notable distinctions emerge depending on the applied criterion.
This comparison underscores the sensitivity of decision outcomes to decision-makers’ preferences concern-
ing the minimax regret criterion. Remarkably, the decision at 7 = 0 effectively addresses cost uncertainties
by increasing the overall installed capacity. Specifically, it favors investments in gas-based technologies, such as
OCGT for electricity production and regasification terminals for LNG import, over renewable energy sources.
Multiple factors support the rationale behind this decision. Firstly, the significant role of gas prices in deter-
mining the opportunity cost contributes to the justification of this choice. Furthermore, the lower investment
costs associated with gas-based technologies, in contrast to renewables, provide additional influence in shaping
the decision-making process.

In addition, the outcomes for deterministic scenarios, representing both the worst and best realizations of
uncertainties, are included. Within the pessimistic scenario, the optimal decision involves excluding gas from
the energy mix, reaffirming the notable influence of gas prices. Biomass, wind, and solar PV technologies pre-
dominantly replace gas-fuelled systems, with biomass capacity doubling compared to the nominal case. At
this point, it becomes apparent that decisions driven by pessimistic scenarios can result in extreme choices. As
exemplified in this case, such decisions may entail completely excluding an energy vector, relying solely on a
scenario that could potentially prove disastrous if the gas price does not align with the worst-case assumption
or if the investment costs associated with renewable technologies exceed those of other well-established tech-
nologies. This highlights a crucial distinction where the reliance on pessimistic scenarios can lead to drastic
outcomes with potentially adverse consequences. Nevertheless, robust solutions show a diversification of the
energy mix, effectively averting the possibility of making potentially catastrophic decisions. This approach pro-
motes the distribution of resources across multiple avenues, thereby enhancing system resilience and mitigating
the potential negative consequences of relying excessively on a limited range of energy options.

However, it should be noted that the uncertainty ranges defined in this case study were based on a set of
+20% variation around nominal values. Thus, these results may not represent a treatment of uncertainties
consistent with real uncertainty ranges.

In summary, the proposed novel method demonstrates its viability for real-size strategic energy planning
models. Although the execution time is significantly extended, it remains within an acceptable range for strate-
gic energy planning models, which are typically utilized for long-term exercises. Furthermore, these findings
are consistent with previous research, indicating a positive correlation between increased protection and higher
costs. Additionally, the obtained results exhibit favourable attributes, leading to well-diversified decisions.

b7 = 0 involves solving the min-max regret algorithm for uncertainties in the objective function. Thus, Det and 7 = 0 cases do not
match.
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Table 3.5: Capacity for energy conversion technologies in the case study of the Spanish energy system

Conversion energy capacity 2020 2050

[GW] Det(Nom.) 7=0"> 7=1 7=2 Det(Worst) Det(Best)
Biomass 2 23 25 36 38 46 1
CCGT 27 22 23 29 30 0 23
CHP S 28 28 29 30 33 22
Coal 8 - - - - - -
Fuel Oil 4 - - - - - -
Hydro 14 14 14 14 14 14 14
Nuclear 7 - - - - - -
OCGT - 7 12 2 1 0 4
Pumping Storage 3 3 3 3 3 3 3
Solar PV 8 S0 48 45 47 61 42
Solar Th 2 - - - - - -
Wind 28 71 68 82 85 63 56
Refinery 87 15 15 17 17 17 12
Regasification 76 29 45 46 47 0 31
Biofuel 7 8 8 9 9 9 2
TOTAL 277 270 289 311 321 246 226

3.4.2 EVALUATING THE PERFORMANCE OF THE DECISION SUPPORT METHOD

This section aims to assess the feasibility and optimality performance of the proposed decision support method.
Due to the computational complexity of conducting comprehensive analyses based on Monte Carlo simulation
for the detailed problem presented in the case study (section 3.4.1), a simplified version was employed.

The simplified version of the openMASTER model used in this chapter only considers electricity demand
as the final energy carrier and includes four power generation technologies: wind, solar, combined cycle gas
turbines (CCGT), and coal-fired power plants. Notably, emission restrictions were not accounted for in this
simplified version.

FEASIBILITY ANALYSIS

First, a comparison is made to assess the extent to which the comprehensive methodological approach (MMR-
RO in Table 3.6), which integrates both the B&S technique and the minimax regret algorithm, achieves the
same robustness in the constraints as the isolated application of the robust optimization technique (RO in Table
3.6) proposed by B&S. For this, a Monte Carlo simulation (N=10,000) has been carried out. The scenarios were
generated using a uniform distribution within the uncertainty range. This distribution was chosen to capture
the maximum homogeneous diversity of values within the uncertainty set. Nonetheless, it is worth noting that
the present analysis could be reproduced with alternative probability functions, as the goal is to compare both
cases and determine if the combination of robust optimization and the minimax regret algorithm compromises
the feasibility of the decision. Hence, the specific choice of probability function becomes trivial, as long as it
remains consistent across all cases.

These simulations were carried out by fixing the investment variables determined by the model, but leaving
operation variables free under different realizations of the uncertain variables.

On the other hand, it includes different levels of protection to contrast the results with those of the literature,
as well as to expand the comparison and ensure that the conclusions remain valid in case a difterent level of
protection is chosen.

bFor T = 0, the application of RO represents the deterministic case, while the application of MMR-RO involves solving the MMR
algorithm for uncertainties in the objective function. Thus, both cases do not match at the zero-level of protection.
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Table 3.6: Simulation results for feasibility analysis for different levels of protection

=0 =1 T=2 T=3

MMR-RO RO MMR-RO RO MMR-RO RO MMR-RO RO
Infeasibilities [%] 93.20% 93.10% 30.00% 29.90% 5.00% 5.00% 0.00% 0.00%
Mean [k EUR] 206,336 206,262 217,558 217,411 225,490 225,280 228,295 228,061
PoR [k EUR] - - 11,221 (5.4%) 11,149 (5.4%) 19,154 (9.3%) 19,018 (9.2%) 21,959 (10.6%) 21,799 (10.6%)
Std Dev [k EUR] 14,731 14,240 3,720 3,770 2,854 2,892 2,595 2,633
Max [k EUR] 280,728 286,439 244,464 244,290 238,529 238,472 239,552 239,493
Min [k EUR] 190,131 189,915 209,240 208,924 219,878 219,546 223,482 223,138
ENS Mean [MWh] 913,537 914,698 446,891 444,726 300,905 300,905 - -
ENS Std Dev [MWh] 635,941 632,442 254,135 253,752 84,985 84,985 - -

It is important to note that the results in Table 3.6 for the average cost (Mean), price of robustness (PoR),
standard deviation (Std Dev), maximum cost (Max), and minimum cost (Min) have been calculated for fea-
sible outcomes only. Infeasibilities are reflected in a high penalty cost called ENS (Energy Not Supplied slack
variable), rendering the total system cost uninterpretable in these cases.

This analysis shows that robust optimization (RO) and the novel decision support method (MMR-RO)
exhibit very similar behaviour regarding feasibility. Consequently, all the properties achieved through the RO
approach are preserved in MMR-RO: (i) the occurrence of infeasibilities is drastically reduced as the level of
protection increases; (ii) the Price of Robustness (PoR) of obtaining high levels of protection with negligible
infeasibilities is moderate; (iii) the standard deviation is significantly decreased, indicating more stable outcomes
for higher protection; (iv) the maximum cost is reduced, although the average and minimum costs increase, as
expected due to the incorporation of an additional cost for higher levels of protection; (v) the slack variable
ENS, which quantifies the amount of energy that is not supplied to meet demand, reveals that as the level of
protection increases, the magnitude of the infeasibility and its variability are considerably reduced. Therefore,
the protection against infeasibilities not only mitigates their occurrence but also reduces their impact when
they do occur.

Hence, the proposed methodology guarantees the same protection as robust optimization against infeasi-
bilities in the decision-making process. This finding holds for all levels of protection, offering decision-makers
the same flexibility to adjust the level of protection as they would when using only the robust optimization
approach.

Furthermore, this analysis also serves as a valuable tool for illustrating the sensitivity of a decision regard-
ing decision-makers’ preferences. For instance, decision-makers can assess the additional cost associated with
increasing protection (i.e, of being more risk-averse) by quantifying the trade-oft between cost and Wald robust-
ness (i.e., PoR versus Infeasibilities). By referring to the findings presented in Table 3.6, the decision-maker may
find satisfaction in a protection level of 7 = 1, which reduces infeasibilities to a mere 30% while incurring an
extra cost of 5%. Alternatively, they could opt for a higher level of protection, such as 7 = 3, where infeasi-
bilities are nearly eliminated but at the expense of a cost increase of 10%. Consequently, the sensitivity of the
decision, guided by the decision-maker’s preferences, becomes well-defined, showcasing a transparent and clear
approach that allows for the selection of varying levels of protection. It is important to note, as discussed in sec-
tion 3.3, that not only does the degree of protection influence the decision’s sensitivity, but also the definition
of the uncertainty range, wherein wider ranges offer greater protection.

OPTIMALITY ANALYSIS

This analysis aims to verify whether the decision produced by the novel method is the one that results in the
lowest possible maximum regret under all considered ranges of uncertainty, without exception.

According to the c-consistency property, presented in section 3.3, the consideration of uncertain costs ¢ is
limited to their extremal values, i.c., the scenarios of maximum regret will be those in which all uncertainties
take one of the two extreme values of their uncertainty set. These scenarios will be referred to as extreme. Now,
the evaluation of extreme scenarios is a combinatorial problem of size equal to 2T where I is the total number
of uncertainties.
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3.5 Conclusions

The study involves the evaluation of 64 extreme scenarios, which include four uncertain investment costs
and two uncertain fuel costs. Those extreme scenarios yield 64 optimal decisions. Thus, the decision from the
novel method (MMR-RO in Table 3.7) is incorporated, and build the payoft matrix, which in turn yields the
regret matrix.

Table 3.7 presents the Maximum regret, Maximum total cost, and Minimum total cost indicators for differ-
ent levels of protection. The minimum (Min) and maximum (Max) values of these indicators are calculated
from the evaluation of the 65 candidate decisions (64 extreme-scenario decisions plus the MMR-RO decision)
in the 64 extreme scenarios. Additionally, the outcomes for the decision derived from the proposed method
(MMR-RO in Table 3.7) are presented along with its ranking position relative to the other 64 decisions.

Table 3.7: Simulation results for optimality. All decision variables are fixed.

Maximum Regret Maximum Total Cost Minimum Total Cost
T 0 1 2 3 0 1 2 3 0 1 2 3
Min 6,137 6,873 7,241 7,364 245,206 274,631 289,343 294,247 166,139 186,076 196,044 199,367
MMR-RO 6,137 6,873 7,241 7,364 245216 274,642 289,355 294,259 166,148 186,085 196,054 199,377
Max 25,896 29,009 30,548 31,076 256,264 287,019 302,385 307,516 173,421 194,234 204,633 208,106
Ranking (out of 65) 1 1 1 1 5 5 5 5 5 5 5 5

The results show that the novel decision support method achieves the expected outcome of minimizing max-
imum regret for all levels of protection, making it the best decision in terms of this criterion. Additionally, its
performance in both maximum and minimum cost is remarkable, within the 10°% percentile in both cases. Sig-
nificantly, these results confirm the absence of negative effects when combining the minimax regret algorithm
with robust optimization. Moreover, the obtained results are applicable for all levels of protection, emphasiz-
ing that the decision-maker can freely select the desired level of protection without concerns about affecting
the decision’s outcome regarding the Savage criterion.

In conclusion, this decision-making process ensures the best decision regarding the minimax regret criterion
for all levels of protection.

3.5 CONCLUSIONS

In strategic energy planning modelling, as in other fields, it is crucial to deal with epistemic uncertainties af-
fecting the feasibility and optimality of the potential solutions, and to do that according to decision-makers’
preferences. This is particularly relevant now, given the large transformation that energy systems have to face
in the coming years because of the need to decarbonize in a very short time. Large investments will need to
be mobilized in a high-uncertainty environment while still ensuring security of supply, and decision support
methods able to deal with all these elements are much needed.

This chapter contributes to this field by establishing a theoretical framework for robust decision-making in
strategic energy planning. It delves into the distinction between epistemic and probabilistic uncertainties and
explores diverse methodologies for handling uncertainty. It introduces a novel nomenclature—Wald, Sensitiv-
ity, and Savage robustness—proposed for the first time in this study to differentiate various interpretations of
robustness in the literature. Emphasizing the alignment of decision criteria with decision-makers’ preferences,
this study critically evaluates the challenges in current robust strategic energy planning. It calls for an inte-
grated approach, combining diverse methods to handle uncertainties in the objective function and constraints,
providing a robust theoretical foundation for strategic energy planning.

Aligned with this perspective, this chapter introduces a novel decision support method, marking the first pro-
posal to integrate two distinct decision-making methodologies within a single algorithm to handle epistemic
uncertainties. Specifically, it combines a conservative approach for uncertainties affecting constraints with a
minimax regret approach for those impacting the objective function. This approach facilitates energy mod-
elling exercises that can be more closely aligned with real-world decision-makers’ preferences for both feasibil-
ity and optimality. Crucially, this is achieved without resorting to probabilistic approaches, which are deemed
inappropriate for dealing with this type of uncertainty. This combination of methodologies is achieved while
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retaining the separate advantages of each one, without any detrimental eftects of their application together in
a single algorithm.

The practical applicability of the proposed decision support method is demonstrated through its application
to a real-size strategic energy planning model, proving its applicability for use in other similar models (including
others in other disciplines). The ex-post evaluations indicate that this approach maintains the robust optimiza-
tion performance for reducing both the occurrence and magnitude of infeasibilities, while also satistying the
minimax regret criterion for the entire range of uncertainties in the objective function.

Of course, some limitations do remain. The current computing time, while still within reasonable limits,
could be improved further, for which several solutions are currently being explored: a better initial solution
may be provided; it may also be possible to apply a heuristic methodology to speed up the convergence of the
minimax regret algorithm, such as the one proposed in (Mausser et al., 1999).

Looking forward, further research avenues include a deeper exploration of flexibility as a critical preference
for decision-makers facing deep uncertainty and a significant attribute of robust systems. Leveraging the dy-
namic nature of energy models, future investigations can assess decision changeability and adaptability. More-
over, testing the novel methodology with diverse foresight approaches, which often exhibit myopic assessments
of uncertainties, holds promise for advancing the understanding and application of the proposed approach.
The inclusion of a detailed exploration into the correlation among uncertain parameters emerges as a vital as-
pect of future research to enhance the overall robustness of the proposed methodology.
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APPENDIX 3.A: REVIEW OF APPLICATION OF UNCERTAINTY TREATMENT METHODS TO THE MAIN ENERGY MODELS

Authors Model family Method Uncertain parameters Application Time dimension

Kanudia et al. (1998) MARKAL Stochastic programming Carbon mitigation measures imple-  Quebec energy-environment sys-  Multi-stage
mentation tem

Usher etal. (2012) MARKAL Stochastic programming Fossil fuel prices, biomass availability ~ UK energy system Two-stage

Loulouand Lehtila (2016)  TIMES Stochastic programming Demand, capacities, costs National energy systems frame-  Multi-stage

work

Nijs et al. (2011) TIMES Stochastic programming Fuel price Belgium energy system Static

Loulou, Labriet, et al. TIAM Stochastic programming Climate sensitivity Worldwide energy and emissions ~ Static

(2009) market

Hunter et al. (2013) TEMOA Stochastic optimization Import prices of coal, oil, diesel and ~ Utopia energy system Two-stage
gasoline

Gritsevskii et al. (2000) MESSAGE Monte Carlo simulation, Technology costs Global (single-region) energy sys-  Two-stage

Own algorithm tem

Pye et al. (2015) ESME Monte Carlo simulation Costs, prices, resource availability UK energy system Static

Dreier et al. (2019) 0OSeMOSYS Monte Carlo simulation Costs, CO, emissions, electricity and ~ Utopia energy systems Static
diesel consumption

Lopez-Pena  Fernandez MASTER.SO Scenario analysis Electricity generation (firmness), hy-  Spanish energy system Static

(2014) draulicity
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ArrPENDIX 3.B: REVIEW OF APPLICATION OF ROBUST OPTIMIZATION METHODS TO ENERGY MODELS

Authors

Method(s)?

Uncertain parameters

Application and model type®

Criteria and indicator

Time dimension

Mulvey et al. (1995)
Janak et al. (2007)

Babonneau et al. (2010)
Ribas et al. (2010)

Hajimiragha et al. (2011)
Koo etal. (2011)

Jiang et al. (2012)
Parisio et al. (2012)

L. Zhao etal. (2012)
Dongetal. (2013)
Street et al. (2014)
Akbari et al. (2014)
Yokoyama et al. (2014)
Rager (2015)

Grossmann et al. (2015)
Ruiz et al. (2015)

Moret, Bierlaire, et al.

(2016)

Own (scenarios)

Own

BT&N, LDR, Own

Scenarios (Kouvelis et
al., 1997)

B&S

Scenarios (C.-S. Yu et
al., 2000)

B&S, Own
B&S

Own

B&S, Own
ARO

B&S

Own

B&S, Own

LDR
B&S, ARO, Own
B&S

Energy demand

Processing time, demand, prices

Pollutant transfer, demand

Oil production, demand, prices

Electricity prices

Fuel prices, emission targets

Wind power production
Conversion efficiencies
Wind production
Prices, cost, efficiencies
Gen./trans. outages
Demand, fuel costs
Energy demand

Cost, demand, efficiencies

Reserve demand
Demand, generator availability

Fuel prices

Power capacity expansion (LP)

Chemical plant scheduling (MILP)

Environmental and energy planning

(LP)

Oil supply chain planning (LP)

Plug-in Hybrid Electric Vehicles (MILP)
Sustainable energy planning (LP)

Wind/hydro unit commitment (MILP)
Energy hub management (MILP)
Wind unit commitment (MILP)
Energy management planning (FRILP)
Electricity market scheduling (MILP)
Building energy system (MILP)

Energy supply systems (MILP)

Urban energy system (MILP)

Air separation unit scheduling (MILP)
Electricity transmission (bilevel MILP)

Household supply (MILP, conceptual)

Pessimistic Wald (Cost)
Pessimistic Wald (Cost)

Pessimistic Wald (Cost)

Savage

Wald (Profit)
Pessimistic Wald (Cost)
Pessimistic Wald (Cost)

Pessimistic Wald (Cost
Pessimistic Wald (Cost

Pessimistic Wald (Cost

Pessimistic Wald (Cost

(Cost)
(Cost)
(Cost)
Pessimistic Wald (Cost)
(Cost)
Pessimistic Wald (Cost)

Savage

Pessimistic Wald (Cost,

CExD)

Pessimistic Wald (Cost)
Pessimistic Wald (Cost)
Pessimistic Wald (Cost)

and  Pessimistic

Multi-stage

Dynamic
(continuous-time)

Dynamic (3 periods)
Two-stage

Static

Static

Two-stage

Dynamic

Two-stage

Dynamic (3 periods)
Static (1 period)
Static

Static

Static

Multi-stage
Two-stage

Static

(continued on next page)
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(continued from previous page)

Authors Method(s)* Uncertain parameters Application and model type® Criteria and indicator Time dimension-
ing

Sy etal. (2016) Own (Ng & Sy, 2014) Selling prices, demand Polygeneration (MILP) Pessimistic Wald (Profit) Static

Nicolas (2016) B&S Fuel prices, investment cost, cli-  Integrated Assessment Model (LP) Pessimistic Wald (Cost) Dynamic
mate

Gongetal. (2016) Own Feedstock price, biofuel de-  Biomass conversion pathways (MINLP)  Pessimistic Wald (Cost) Two-stage (ARO)
mand

Majewski, Wirtz, et al.  Soyster, Own Demand, fuel prices, emissions ~ Decentralized energy supply (MILP) Pessimistic Wald (Cost) Two-stage

(2017)

Majewski, Lampe, et al.  Soyster, Own Energy demand, fuel prices Decentralized energy supply (MILP) Pessimistic Wald (Cost) Two-stage

(2017)

Ning et al. (2018) AARO, Own Feedstock supply, demand Process network planning (MILP) Bi-criterion: Wald and Sav-  Two-stage

age

Caunhye et al. (2018) ARO Generator outputs Power-grid expansion (MILP) Pessimistic Wald (Cost) Two-stage

Trachanas et al. (2018) Own Energy saving factors Efficiency strategies (LP) Savage Static

C. Chen, Sun, etal. (2019) Own Renewables, multi-load de- Energy hub operation planning Pessimistic Wald (Cost) Two-stage
mand

Moret, Babonneau, et al. B&S Costs, discount, lifetime, de-  Swiss strategic planning (MILP) Pessimistic Wald (Cost) Static

(2020a) mand

Jeong et al. (2020) B&S Capacity, power fluctuation Korean power system planning (LP) Pessimistic Wald (Cost) Static

Y. Cao etal. (2020) B&S Market price EV aggregator (MILP) Pessimistic Wald (Profit) Static

Moret, Babonneau, et al. B&S Costs, lifetime, demand, efi-  European power planning (MILP) Pessimistic Wald (Cost) Static

(2020b) ciency, renewables

Xie etal. (2020) Own (Zeng and L. Load, traffic demand Expansion planning (MINLP) Pessimistic Wald (Cost) Two-stage

Zhao, 2013)

*Abbreviations: BT&N = Ben-Tal and Nemirovski (1999), B&S = Bertsimas and Sim (2004), LDR = Linear Decision Rules, ARO = Adjustable Robust Optimization, AARO = Affinely Adjustable RO.

“Own” indicates custom robust formulation.

"Model types: LP = Linear Programming, MILP = Mixed-Integer Linear Programming, MINLP = Mixed-Integer Nonlinear Programming, FRILP = Fuzzy Radial Interval LP.
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APPENDIX 3.C: THE APPLICATION OF THE MMR-RO ALGORITHM
FORMULATION TO THE CASE STUDY OF THE OPENMASTER MODEL

Below is the mathematical formulation of the main equations that were modified and added to the openMAS-
TER model as part of the proposed methodology. To improve clarity, it should be noted that terms beginning
with the letter p relate to parameters, while those starting with v pertain to variables. Additionally, the su-
perindex denotes different variables or parameters, while the subindex indicates the dimensions (sets). The
additional parameters and variables required to construct the methodology are indicated in bold font.

ROBUST OPTIMIZATION FOR UNCERTAINTIES IN THE CONSTRAINTS

In this particular case study, only uncertainty in the parameter of the exogenous hourly demand for final energy
has been taken into accountin the constraints. Therefore, only the demand balance equation, which guarantees
that demand is met through the energy supply produced by conversion technologies, has been subjected to
modification. The original demand balance equation is as follows:

vGeny, +vENS, > Z pDem, ., Vfe€F VieT (3.6)
deD

where f € F represents the final energy vectors, d € D the demand sectors, and ¢ € T the time slices.
The variable vGen is the final energy produced by conversion technologies and vENS' the non-supplied en-
ergy, while pDem is the parameter for hourly final energy demand across different sectors. After applying the
Bertsimas et al. (2004) method to this balance, the resulting robust counterpart is given by the following two
equations:

D vGeng s+ VENS = ) pDem, = 7-vZsi = > VPra; 20 VfEF VieT  (37)
geG deD deD

VZii+VPras 2 pDeltaDemf’d’ VfeF,VdeD,VteT (3.8)

t

Equations 3.C and 3.C include the control parameter 7, additional variables vZ and vP, and the parameter
pDeltaDem, which represents the maximum deviation of the uncertain parameter from its nominal value.

It should be noted that this methodology can be replicated for other uncertainties that affect different pa-
rameters in other equations, by following a similar formulation.

MINIMAX REGRET ALGORITHM FOR UNCERTAINTIES IN THE OBJECTIVE FUNCTION

The original objective function of the model secks to minimize the overall costs of energy supply, while also
taking into account the penalty associated with slack variables that arise from the failure to supply demanded
energy and exceeding emission cap and carbon budget limits.
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Appendix 3.C: The application of the MMR-RO algorithm formulation to the case study of the openMASTER

model
min vTotCost = Z pDisRate, - (Z pFuelCostm . (VImpp’[ + vDom,, ;)
teT peP

+ Z pFixom ot vTotCap »
geG

+ Z pVarom, .- vGeng, 1,
geG

+ Z pCapex, , - vNewCap,, , (3.9)
geG

+ Z pDecom, ;- vDecCap, ,
g€G

+ > pENS,, - vENSy,
JeF

+ pCO2Exc, - (vCapExc, + VBudgetExct))

where p € P represents the primary energy vectors, g € G the conversion energy technologies, f € F the
final energy vectors, d € D the demand sectors, and ¢ € T the time slices. The subsequent tables outline the
definition of the parameters and variables in the objective function.

Table 3.10: Objective function parameters’ definition

Parameter Description Unit
pDisRate Discount rate -
pFuelCost  Fuel cost €/MWh
pFixom Fixed O&M cost €/kW
pVarom Variable O&M cost €/MWh
pCapex Conversion energy technology CAPEX cost €/kW
pDecom Conversion energy technology Decommission cost €/kW
pENS Energy non-supplied cost €/MWh
pCO2Exc  CO; excess cost €/tCOze
Table 3.11: Objective function variables’ definition
Variable Description Unit
vimp Primary energy importation GWh
vDom Primary energy domestic production GWh
vGen Final energy generation GWh
vTotCap Total conversion energy technology capacity GW
vNewCap New conversion energy technology capacity GW
vDecCap Decommissioned conversion energy technology capacity GW
vENS Energy non-supplied GWh
vCapExc Excess emissions beyond the cap limit tCOse
vBudgetExc  Excess emissions beyond the budget limit tCOse

To apply the iterative minimax regret algorithm, it is necessary to generate the set of equations corresponding
to 3.4 and 3.5 in section 3.3.2 of this Chapter. The implementation of this methodology to the objective
function 3.9 of this version of openMASTER model yields the MMR and CMR models, which are subject
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to algorithmic iterativity. It is important to highlight that uncertainty in the objective function is solely taken

into account for the fuel cost parameter (pCost) and the conversion energy CAPEX cost (pCapex).

CMR

60

s.t.

vCMR = Z pDisRate, - [ Z pFuelCost™™ - (VImpr, +vDom,),)

teT

teT

vDom,,; + vDomg’, - VDom[‘ft = pDom
Y w _
vIotCap, , + vIotCap, , — vIotCap,, = pTotCap
Y W
vGeng s +vGen, ;, = vGen, ., = pGen

vNewCap, , + VN€WCQP§J - vNewCaszJ = pNewCap

vimp , , + VImpI);t - vapXt = pIlmp

max vCMR

Dt
PpEP

. w
+ Z pleomg’t . vTotCapg,[
geG

w
+ Z pVarom of vGen afi
geG

+ Z pCapeth"‘x . vNewCap?;
geG

+ Z pDecom it VDecCapE’/[
geG

+ > pENS,, - vENS},
feF

+ pCO2Exc, - (vCapExc)” + VBudgetExch)]

- Z pDisRate, - [Z pFuelCost?ﬁ“ . (vIrnp;t + vDorn;J)

peP
. Y
+ Z pFixom, , - vIotCap, ,
geG

Y
+ Z pVaromg’f VGeng’f’t
geG

Min Y
+ Z pCapex, " - vNewCap, ,
geG

Y
+ Z pDecom, , - vDecCap, ,
geG

+ > pENS,, - vENS,
feF '

+ pCO2Exc, - (vCapExc! + vBudgetExc! )]

MMR
Dt

MMR
pit

MMR
8!

MMR
g.fit

MMR
&t

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)



Appendix 3.C: The application of the MMR-RO algorithm formulation to the case study of the openMASTER

vDecCap, , + VDecCapgt - VDecCap g pDecCapNHv{R

vENSy,; + VENSY, — vENSY, = pENS}M®

VCapExcl + VCapExctY - VCapExc[W = pCapExciv[MR

vBudgetExc, + vBudgetExc! — vBudgetExc) = pBudgetExc)

Y FuelCost MMR
vappJ —vB pImp <0
Y FuelCost MMR
VDomp’t - VBP pDom <0

W MMR
vGen, ,, vGengft —pGen, ¢,

vENSY, — vENSY, > —pENSYM®

vTotCap . VTotCap - —pTotCapNHv{R

VNewCap;t - VB? pNeWCapMMR <0

vDecCap P VDecCap 42 —pDecCathVIMR

vCapExc —vCapExc > —pCaLpExcl\AMR

vBudgetExc!” — vBudgetExc! > —pBudgetExcMM*

VImpp ;T (pM — pImpMMR) (1- VB;uelCOSt) <0

vDom), — (pM — pDom}M*) - (1 — vBf*<°) < 0

w Y MMR
VGeng’f’[ — VGeng’f’, < pM — pGeng’f’t

vENSY, — vENSY, < pM — pENSYM®

VTotCap;VJ - VTotCap;I < pM - p”l“otCapNHv{R

vNewCap!¥, — (pM — pNewCap!M®) - (1 - vB;*™™) < 0

VDecCap;‘jt - vDecCap;t < pM - pDecCapMMR

MMR

model

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)
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VCapExctW - VCapExctY < pM - pCapExci\AMR (3.37)
vBudgetExc) — vBudgetExc! < pM — pBudgetExcMM* (3.38)
MMR
min vRegret (3.39)
s.t.

vRegret + Z pDisRate, - (Z pFuelCostS}Z[kR . (VImppJ + vDom,, ;)

teT peP
+ Z pFixom, , - vIotCap, , + Z pVarom, .- vGeng, 1,
8€G 2eG
+ Z pCapexg\fkR - vNewCap, , + Z pDecom, , - vDecCap, ,
geG geG
+ Z pENS, - vENS; + pCO2Exc, - (vCapExc, + VBudgetExct))
feF
> Z pDisRate, - (Z pFuelCostl?}t\j[kR . (pImpS}t\j[kR + pDomlC)}Z[kR)
teT PpEP
+ Z pFixom, , - pTotCang;(R + Z pVarom, . - pGengC,I}/ftiP‘k
geG geG . .
+ Z pCapexg?iR . pNeWCapg%(R + Z pDecom ot pDecCapg’%{R
8<G geG
+ Z pENSfJ . pENSfC,I[\iR + pCO2Exc, - (pCapExcf,?’I Ry pBudgetEch,iv[ R))
feF
(3.40)
vRegret > 0 (3.41)

The binary auxiliary variable vB is associated with each uncertain parameter (indicated by its superindex),
while the superscripts Y and W represent additional variables necessary for each variable in the original problem.
The superscripts M MR and CMR denote the values obtained from the previous iteration of these variables in
the CMR and MMR problems, respectively. For instance, in the CMR problem, the parameter plmp%,MR
represents the resulting value of the variable vImp); in the previously solved MMR problem. Similarly, in
the MMR problem, the parameter pl mp%”R corresponds to the resulting value of the variable vimp,; in the
previously solved CMR problem. The parameter pM corresponds to the big M.

Addressing the CMR and MMR models within the iterative algorithm presented in section 3.3 of this Chap-

ter involves the set of equations 3.10-3.38 and 3.39-3.41 respectively.
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Appendix 3.D: Spanish case stucly calibration

APPENDIX 3.D: SPANISH CASE STUDY CALIBRATION

Section 3.4.1 features a case study that was conducted to evaluate the viability of the proposed methodology.
The uncertainties considered in the objective function include the investment costs of energy technologies and
fuel prices. Meanwhile, the uncertainty related to hourly demand for final energy vectors across demand sectors
was factored into the constraints. The values used for these uncertain parameters are outlined below. It should
be noted that the uncertainty ranges for the case study were trivially defined, with a £20% variation around
nominal values. These nominal values are presented in the tables that follow. In addition to the uncertain
parameters, the tables below feature some additional parameters that could provide valuable insights for the
analysis of the results. These parameters, namely the previous installed capacity of the Spanish energy system
and the efficiency losses of the conversion technologies, are not considered uncertain for the case study.

The time-varying parameters are specified with their initial and final values, which are set to correspond to
the years 2020 and 2050, respectively. The values for the years within this time period are calculated using a
linear interpolation method. This enables the modeling of learning curves for emerging technologies and the
dynamics of fuel prices, which are subject to regulatory changes and shifts in supply and demand.

In order to represent the variation in the exogenous annual demand, an annual growth rate is applied. It is
also pertinent to note that the case study’s focus on uncertainty is geared towards hourly demand as opposed
to annual demand. Hourly demand is derived by utilizing a load curve applied to the annual demand.

Table 3.12: Fuel cost assumptions for primary energy sources (2020 and 2050)

Primary Energy 2020 Fuel Cost [€/MWh] 2050 Fuel Cost [€/MWh]
Nuclear 2.88 2.88
Imported Coal 10 7
Natural Gas 18.4 18.4
Liquefied Natural Gas 37 37
Crude Oil 40 30
Hydro Run oft the River 0 0
Hydro with Reservoir Capacity 0 0
Mihi Hydro 0 0
Wind Onshore 0 0
Wind Offshore 0 0
Solar Photovoltaic 0 0
Solar Thermoelectric 0 0
Solar Thermal 0 0
Biomass Energy Crops 21 21
Biomass Agriculture Waste 17 17
Biomass Forestry Waste 8 8
Solid Waste 21 21
Bioethanol Production Inputs 54 54
Biodiesel Production Inputs 46 46
Biogas 104 104
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uncertainties

Table 3.13: Assumptions for conversion technologies

Conversion Technology 2020 2050 Installed Conversion
CAPEX CAPEX Capacity Losses [%)]
[€/kW] [€/kW] [GW]
Nuclear Power 4800 4500 7.4 0.62
Imported Coal Traditional 1450 1450 3 0.58
Imported Coal IGCC 1950 1900 3 0.52
Imported Coal SCPC 1650 1650 1 0.55
Imported Coal SCPC with CCS 3400 2850 0.5 0.64
CCGT Traditional 550 530 26.6 0.42
CCGT with CCS 1750 1500 0 0.54
OCGT Traditional 450 450 0 0.55
OCGT with CCS 9200 750 0 0.65
Fuel Oil Traditional 784 784 3.7 0.62
Hydro Run off the River 1715 1650 2.15 0
Hydro with Reservoir Capacity 2100 2100 12 0
Hydro with Pumping Storage 3804 3804 3.3 0.3
Mini Hydro 1715 1650 0 0
Wind Onshore 1300 1000 28 0
Wind Offshore 2800 1900 0 0
Solar PV Centralised w/ Tracking 463 355 8.4 0
Solar PV Distributed in Industry 645 500 0 0
Solar PV Distributed in Other Uses 645 500 0 0
Solar Thermoelectric Centralised 3000 2800 2.3 0
Solar Thermal in Industry 848 848 0 0
Solar Thermal in Other Uses 848 848 0 0
Biomass Energy Crops Centralised 2517 2517 0.32 0.61
Biomass Agri. Waste Centralised 2517 2517 0.68 0.61
Biomass Forestry Waste Centralised 2517 2517 0 0.61
Solid Waste 5503 5503 0.7 0.61
Cogeneration Industry (NG) 1425 1425 2.4 0.26
Cogeneration Other Uses (NG) 2093 2093 2.4 0.27
Cogeneration Industry (Biomass) 2137.5 2137.5 0 0.26
Cogeneration Other Uses (Biomass) ~ 3139.5 3139.5 0 0.27
Refinery Low Complexity 114 114 62.2 0.07
Refinery High Complexity 330 330 24.3 0.09
Refinery Very High Complexity 653 653 0 0.17
Bioethanol Production Plant 1040 1040 0.4 0
Biodiesel Production Plant 510 510 6.7 0
Regasification Terminal 35 35 76 0.01
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Appendix 3.D: Spanish case stucly calibration

Table 3.14: 2020 Annual final energy demand by sector and vector [GWh/year]

Vector Industry: Industry:  Industry: Primary Resid. Serv. Transp. Transp. Transp.
Chemical Mining, Other Sector Sector Sector Air Land  Sea

Construc-

tions and

Materials
Biodiesel 4.4 172 233 48.4 - 97.2 - 9476 5.3
Bioethanol 4.4 172 233 48.4 - 97.2 - 9476 5.3
Biomass 57.8 3220 14345 952 29303 1332 - - -
Coal 1414 9039 295 862 755 - - - -
Electricity 6131 25462 19045 4804 51087 50197 - 3937 -
Heat Distributed 3065 12731 9522 2402 25543 25098 - - -
Natural Gas 30158 44330 23372 2632 34997 27014 - 2777 -
Diesel 477 10069 3619 24032 17355 11860 - 250000 5494
Fuel Oil 404 2076 1133 145 56.1 101 - 6565 -
Gasoline - - 24 332 - 406 61.5 62894 -
Kerosene - - - - - - 84475 - -
LPG 65.7 946 656 696 10471 2154 - 1129 -
Oil Product Other - 14362 - - - - - - -
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4 HOwW ENERGY STRATEGIES ARE SHAPED BY THE
CORRELATION OF UNCERTAINTIES

This chapter is based on the article entitled “How energy strategies are shaped by the correlation of uncertainties”,
authored by Antonio F. Rodriguez-Matas, Carlos Ruiz, Pedro Linares, and Manuel Pérez-Bravo, and published
in Applied Energy, Volume 382, March 2025, Elsevier. DOI: 10.1016/j.apenergy.2024.125257.

The work presented in this chapter was conducted in collaboration with Professor Carlos Ruiz as part of a
national research stay at Universidad Carlos III de Madrid.

4.1 INTRODUCTION

In response to the global climate crisis, numerous countries have pledged to achieve climate neutrality by 2050
as outlined in their Nationally Determined Contributions (NDC). This goal requires a profound transition
from fossil fuels to renewable energy sources (Shukla et al., 2022). To meet this target, decision-makers must un-
derstand energy systems dynamics and anticipate the consequences of their actions. Strategic energy planning
models are crucial for this task (Gambhir, 2019).

However, the energy transition faces significant uncertainties, including the development of key decarboniza-
tion technologies (Probst et al., 2021; Way et al.,, 2022), changes in energy demand behavior (Barrett et al., 2022),
geopolitical instability affecting energy and material access (Ruhnau et al., 2023), or climate change impacts
(Yalew etal., 2020; Craigetal.,, 2022). Accounting for these uncertainties in long-term energy planning is essential
to avoid wrong decisions and potential lock-ins.

Many planning exercises have tried to address these uncertainties, through different approaches. However,
most consider uncertainties as independent factors, which may result in significant errors. Relevant variables in
energy planning are usually correlated, making it essential to incorporate these correlations to create coherent
scenarios. A significant case is the correlation between uncertain primary energy prices and uncertain invest-
ment costs for energy technologies.

On the one hand, primary energy prices, such as natural gas and crude oil, often exhibit high positive corre-
lations due to their substitutability and market indexation (D. Zhang et al., 2018). Therefore, it is important to
consider scenarios where fuel prices align with their historical covariance. Ignoring these correlations may lead
to incoherent pathway recommendations, such as favoring CNG and LNG as transport fuel substitutes dur-
ing high petroleum prices, which is unlikely to be an optimal option since crude oil prices significantly impact
natural gas prices (Mensi et al., 2021).

Similarly, the investment cost of energy conversion technologies is typically correlated due to shared materials
or manufacturing processes. For instance, the use of steam turbines in both combined cycle and nuclear plants
mean that an increase in their production costs, driven by rising steel prices, could impact investment costs
for both technologies simultaneously. Conversely, technological advancements or economies of scale could
reduce costs for both. This interdependency also applies to other technologies sharing components, materials,
or manufacturing processes.

Lastly, cross-correlations between primary energy prices and investment costs of energy technologies mainly
arise from the use of fossil fuels in various stages of technology production. Fossil fuels are involved in pro-
ducing basic materials (Gerres, 2022), high-temperature industrial processes (Gailani et al., 2024), transporting
technologies (e.g., sea transport from a Chinese factory to a photovoltaic plant site in Spain), and installation
(e.g., ships and platforms for offshore wind). Including these cross-correlations provides a more comprehensive
consideration of costs across supply chains, adding significant value and coherence to the analysis. Following
previous examples, crude oil significantly affects natural gas prices, which in turn impacts steel production costs,

67


https://doi.org/10.1016/j.apenergy.2024.125257

4 How energy strategies are shaped by the correlation of uncertainties

affecting the investment costs for both nuclear and combined cycle plants through their reliance on steam tur-
bines.

Thus, incorporating these correlations is crucial for capturing real market dynamics and cascading effects
often ignored or treated as independent in energy planning, and hence to design consistent planning strategies.

Thisimportance has already been recognized by several studies in the literature. For instance, Abdalla, Abu Adma,
etal. (2020) highlights that including correlations between uncertainties can lead to less conservative outcomes
and reduced generation expansion costs. Similarly, M. Cao et al. (2019) emphasizes that assuming independent
uncertain parameters, as done in most studies, may lead to suboptimal results, underlining the need to con-
sider correlations to ensure optimal solutions. Furthermore, Roldan et al. (2019) and W. Wang et al. (2021) also
discuss the relevance of addressing correlated uncertainties in transmission network planning and the interplay
between demand response and renewable energy sources, respectively. Collectively, these studies reinforce the
necessity of incorporating correlations to improve the coherence and accuracy of energy planning scenarios.

Despite the importance of considering the correlation between uncertain parameters, the literature review
(detailed in Appendix 4.A) shows that most existing energy-related works focusing on them address single sub-
sectors such as electricity: generation expansion planning (Abdalla, Abu Adma, et al., 2020; Abdalla, Smiece, et al.,
2020; Dehghan et al., 20165 Lei et al., 2020; Saxena et al., 2018), transmission network expansion planning (Roldan
etal, 2019; S. Zhang et al,, 2018), demand response planning (Zeng, Y. Liu, et al., 2021), and energy storage plan-
ning (M. Cao etal,, 2019; Q. Wang et al., 2022). Notably, the work from Patankar et al. (2022) represents the first
and only attempt to introduce correlations in strategic energy planning across the entire energy sector. Despite
the significant gap this work addresses and its excellent methodological development, it only considers the au-
tocorrelation of uncertainties, i.e., the correlation of a single parameter with its historical values (e.g., natural
gas actual price with its past prices). It does not account for correlations between different parameters (e.g.,
crude oil and natural gas prices) or their cross-correlations (e.g., natural gas prices and combined cycle plant
investment costs). It is worth noting that there are also other types of analyses and techniques used in the en-
ergy sector to explore relationships and interactions between energy sectors. For example, Input-Output (I0)
analysis is one of the techniques used, which helps in understanding economic trends and interdependencies
across various industries, providing valuable insights into how sectors influence each other (Shang et al., 2024).
However, while these methods are effective for capturing relationships in sectoral dynamics, they do not di-
rectly apply to the optimization models typically used in long-term energy planning. Thus, no prior research
has incorporated correlations between different uncertain parameters in a strategic energy planning model for
multiple energy vectors. This gap likely exists due to the increased complexity of such optimization models and
the traditional focus on minimizing computational complexity in energy planning.

Regarding the type of correlations considered in the literature, the vast majority considers uncertainties be-
tween (i) renewable generation and electricity demand (Dehghan et al., 2016; Lei et al., 2020; Saxena et al., 2018;
Roldan etal., 2019; S. Zhang et al,, 2018; Zeng, Y. Liu, et al., 2021; M. Cao et al., 2019; W. Wang et al., 2021; Y. Fu et al.,
20215 H. Yu et al,, 2022; L. Yu et al., 2020); and (ii.a) renewable generation from different plants (e.g., two PV
plants in a different location) (Abdalla, Smieee, et al., 20205 Qiu et al., 2019; Xu et al., 2020), or (ii.b) the generation
of different renewable technologies (i.e. PV and wind production) (Abdalla, Abu Adma, et al., 20205 Q. Wang
etal,, 2022; Zhu etal,, 2020). However, correlations between fuel prices and energy technology investment costs
have not been studied, despite their significant impact on the energy supply chain.

This study aims to address these gaps by analyzing the effects of incorporating correlations between primary
energy prices and investment costs of energy technologies in energy planning. Uncertainties are incorporated
in the model by a Robust Optimization (RO) approach. This technique is specifically designed to find optimal
solutions that guarantee their feasibility for all possible realization of the uncertain parameters within an un-
certainty set Ben-Tal etal. (1998). We focus on polyhedral uncertainty sets Soyster (1973) and Bertsimas et al. (2004)
because they are versatile enough to model correlations and uncertainties among historical data, but also be-
cause they enable the obtention of tractable deterministic counterparts. However, the most typical data-driven
polyhedral uncertainty sets, either fail to capture correlations (e.g. “box” or “budget” uncertainty sets) ren-
dering over-conservative solutions, or result in larger counterpart formulations (e.g. “convex hull” uncertainty
set), which are difficult to solve. To this end, in this chapter we employ the methodology proposed by Cheramin
et al. (2021) which proposes to reduce the dimension of the polyhedral data driven uncertainty set, and hence
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improving its computational performance, while keeping the maximum amount of information regarding data
correlations. In particular, they propose to use Principal Component Analysis (PCA), a well stablished linear
dimensionality reduction technique Wold et al. (1987), that allows identifying the components of the data with
that explain most of its variability. Moreover, Cheramin et al. (2021) show how the level of conservatism in the
robust solution can be adjusted by including more or less PCA components to define the polyhedral uncer-
tainty set. A case study focused on the decarbonization of the Spanish energy system by 2030 (Gobierno de
Espafia, 2021) illustrates the impact of considering these correlations. This case study shows the applicability of
this analysis to real-size countries or regions. Furthermore, it addresses an additional complexity arising from
the long-term evolution of these correlations: while fossil fuel prices and energy technology investment costs
may remain correlated, technological and market developments might allow for their decoupling over time. By
modifying these correlations into three scenarios, the study aims to explore how the degree of correlation affects
decision strategies, and the impact of fossil fuel prices on renewable energy deployment.
We summarize the key contributions of this chapter as follows:

1. We apply an innovative robust optimization technique based on PCA to a strategic energy planning
model, incorporating correlations between different uncertain parameters. According to the literature
review, this research is the first to systematically incorporate these correlations within a strategic energy
planning model that accounts for several energy vectors.

2. We present a case study focused on the decarbonization of the Spanish energy system in 2030, introduc-
ing for the first time the correlations between uncertain fuel prices and energy technology investment
costs.

3. By varying the degree of these correlations, we assess the sensitivity of decisions to these correlations and
evaluate their impact on the potential decoupling of fossil fuel prices from renewable energy costs.

4.2 METHODS

4.2.1 THE ENERGY MODEL: OPENMASTER

This study has been conducted within the framework of openMASTER, an open-source strategic energy plan-
ning model. This model can be used as a tool for supporting decision-making about designing public policies
and investment pathways in the energy sector. It is especially useful for understanding the functioning of the
energy sector as a whole, its vulnerabilities, opportunities, and trade-offs.

openMASTER is a Pyomo-based model. It operates as a dynamic (multi-stage), bottom-up, partial equilib-
rium, linear programming (LP) model, aiming to meet an exogenous demand for energy services across various
sectors. It achieves this by adhering to technical and policy constraints while minimizing a comprehensive ob-
jective function that includes total economic costs of energy supply, social costs of greenhouse gas emissions
and pollutants, and intangible costs such as discomfort of transport.

The model is built according to a scheme of processes and flows detailed in Figure 2.1 encompassing the en-
tire energy sector, including primary energy import and domestic consumption, energy conversion and storage
technologies for final energy production, and supply technologies to provide energy services. The energy ser-
vices’ exogenous demand is characterized using several parameters, including Activity Factors, Demand Char-
acterization, and Macro Data.

The main equations of openMASTER include the objective function, balance equations, storage equations,
capacity constraints, and electricity generation reliability constraints. Balance equations ensure the conser-
vation of energy across all processes, while storage and capacity constraints ensure proper performance and
operational functionality. The model also integrates constraints to ensure reliability in electricity generation
and considers endogenous behavioral measures, capturing the impact of specific social measures across the en-
ergy value chain. Emissions accounting and constraints on emissions and carbon budgets further enhance the
model’s capability for comprehensive energy policy analysis. For a more comprehensive understanding of the
openMASTER model, readers are encouraged to refer to Chapter 2.
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For this study, a version of openMASTER that incorporates an algorithm based on robust optimization for
handling uncertainties (Rodriguez-Matas, Linares, et al., 2024) has been used as a starting point. The model was
then modified to include correlations based on the approach by Cheramin et al. (2021), as further explained in
the next subsection.

4.2.2 A DATA-DRIVEN ROBUST OPTIMIZATION TECHNIQUE FOR INCLUDING CORRELATIONS

Historically, various methodologies have been employed to address uncertainties in energy planning models.
Prominent among these is scenario analysis, which constructs narratives for qualitatively studying uncertain-
ties (Aghahosseini et al., 2023; Gracceva et al., 2013; Hansen et al., 2019; Lopez-Pena Fernandez, 2014); stochastic
programming, which assigns probabilities to different potential scenarios (Huang et al., 2016; Loulou, Labriet, et
al., 2009; Loulou and Lehtila, 2016); and robust optimization, which develops solutions based on worst-case sce-
narios, minimax regret, or least sensitivity (Rodriguez-Matas, Linares, et al., 2024; B. Chen et al., 2014; C. Chen, Li,
etal,, 20125 Zhong et al., 2021). Each approach, despite its merits, relies on constructing representative scenarios,
or uncertainty sets, to support decisions but, in general, it is not straightforward to systematically incorporate
the inherent correlations between multiple uncertainties. This often results in treating uncertainties as inde-
pendent phenomena or requires manual handling, such as in scenario analysis.

The literature review shows that some studies have attempted to include correlations through various method-
ologies. However, none have applied these methods to different parameters in long-term energy planning mod-
els, especially in the crucial case of the correlation between fuel prices and technology costs. Popular approaches
include the Cholesky Decomposition (Saxena et al., 2018; H. Yu et al., 2022), a mathematical technique that de-
composes a covariance matrix into the product of a lower triangular matrix and its transpose, allowing for the
construction of a set of correlated random variables. It is mainly reserved for sensitivity analysis and statistical
applications, such as Monte Carlo simulations, to explore the range of possible outcomes and assess decision
robustness under different scenarios. Additionally, some works utilize Copula functions to generate a joint
probability function for two uncertainties initially modeled with independent probability functions (Q. Wang
etal,,2022; Y. Fuetal,, 2021; L. Yuetal,, 2020; Qiu et al., 2019; Zhu et al., 2020; Mu et al., 2022). This approach could
be applicable in models based on Distributionally Robust Optimization (Namakshenas et al., 2019), which ex-
tends the robust optimization approach by considering the uncertainty of a parameter’s distribution function
rather than its specific values. However, this technique is less suitable for dealing with epistemic uncertainties
found in long-term energy planning, as these involve incomplete knowledge about the future, which traditional
probabilistic methods cannot capture. Epistemic uncertainties encompass fundamental gaps in understanding
the evolution of complex systems, making it difficult for past behaviors to represent future outcomes accurately.

Lastly, robust optimization, based on the Wald decision criterion, prepares for the most adverse scenarios. A
critical requirement within this methodology is the definition of uncertainty sets, outlining the potential range
of values for uncertain parameters (Moret, Codina Girongs, et al.,, 2017). The challenge in incorporating corre-
lations lies precisely in the intricate design of these uncertainty sets. The first robust optimization approach,
proposed by Soyster (1973), relies on box uncertainty sets (refer to the black rectangle in Figure 4.1), which rep-
resent uncertainties within a rectangular space, resulting in overly conservative outcomes due to the limited
correlation space captured. Since then, various techniques have emerged, each attempting to mitigate the con-
servatism associated with this methodology. One widely adopted approach, proposed by Bertsimas et al. (2004),
relies on budget uncertainty sets (refer to the green lozenge in Figure 4.1), which introduce a control param-
eter to balance robustness and conservativeness, reducing the number of uncertain parameters at their worst
realization, but still do not consider correlations between uncertainties. A proposal aiming to incorporate cor-
relations involves defining convex hull uncertainty sets (refer to the red polygon in Figure 4.1), which represent
the smallest convex set encompassing all possible scenarios, capturing correlations but at a high computational
cost, making them unsuitable for real-size strategic energy models.

A novel methodology, previously unapplied to energy models, presents an opportunity to reconcile reason-
able computational costs with the integration of correlations among uncertain parameters. This innovative
approach, proposed by Cheramin et al. (2021), is based on Principal Component Analysis (PCA). Unlike tradi-
tional robust optimization techniques based on box or budget uncertainty sets, this approach can use historical
data to capture the interdependencies among uncertainties to build a more nuanced representation of the un-

70



4.2 Methods

40

35

T

30

b

20 I I I | | | |
14 16 18 20 22 24 26 28

Figure 4.1: Definition of uncertainty sets for two correlated uncertain parameters. Black: Box (Soyster, 1973); Green:
Budget (Bertsimas et al., 2004); Red: Convex hull; Blue: PCA-based uncertainty set including correlation
(Cheramin et al., 2021). Source:(Cheramin et al., 2021)

certainty set (refer to the blue rectangle in Figure 4.1). Data-driven techniques have gained increasing popularity
across various fields, including energy systems, where they enable more precise decision-making under uncer-
tainty Kong et al. (2021), Z. Liu et al. (2023), Ma et al. (2022), and Yin et al. (2022). Therefore, PCA helps develop
data-driven polyhedral uncertainty sets that address the limitations of conventional polyhedral sets by capturing
the correlations and allowing direct trade-ofts between tractability and conservativeness: incorporating more
principal components can pose additional challenges in computational complexity, but in exchange, it yields a
more robust solution.

Therefore, this PCA-based technique offers the potential to design robust decisions that address uncertain-
ties while incorporating inherent correlations and maintaining computational feasibility. However, due to its
novelty, it has only been used illustratively in the original work by Cheramin et al. (2021) showing simple exam-
ples of the formulation for the knapsack problem and the power grid problem. It has never been applied in
a real case study analysis of investment uncertainty, or in a full-scale energy model. This study aims to bridge
this gap by applying it to achieve robust decisions in strategic energy planning, aligning this methodological
advance with its practical application.

Applying this method to the openMASTER model involves making the necessary modifications for its
implementation. These modifications involved applying the scenario-induced uncertainty set proposed by
Cheramin et al. (2021)*:

m

_ < w; w; Wi+ w; ,
Upea(S.m1) = {u fu= s+;(m(md,~)+<1 —a,»)(md,»))+ 2 gy de O ais L viemly,

i=my+1

where

_ N S_/'O'di} N {st'di}
w; = max €R, and w,=min €R,
' j=1{ IId;]| = =t il

*Following notation from Cheramin etal. (2021), we denote scalar values by non-bold symbols, e.g., m;, while we represent vectors
by bold symbols in the column form (e.g.,# = (uy, ..., u,)"). Italic subscripts represent indices, e.g., ¢, while non-italic subscripts
indicate simplified specifications, e.g., Upca. Symbol || - || denotes the Euclidean norm. The number of uncertain parameters, i.e.,
the size of random variable vector, is denoted by mand u = (uy, ... ., uy,)' €R™ represents the random variable vector. We adopt N
to denote the number of available scenarios for u. Symbol S represents the set of the N scenarios, where each scenario is denoted by
s; €R"ie,s; €8, Vj € [N]. The number of utilized principal components in the scenario-induced uncertainty set is indicated

byml.
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meaning (ﬁd,-) and (ﬁdi) are the largest and smallest projected centered scenarios onto the principal
direction d;, respectively. The sample mean § is added to Uypca (S, m1) because the scenarios have already been
centered at §.

This uncertainty set is applied to the uncertain parameters of primary energy prices and investment costs
of energy technologies. These parameters are part of the objective function. Thus, Equation 4.1 has been
modified, representing the annual cost variable affected by these uncertainties. This annual cost variable is
integrated into the objective function in the openMASTER model:

vUncCost, = pYrGap - Z pUnc ey (vQPEImp ey T vQPEDompe,y,S’ d,h) + Z pUnc, ey vCENewCap,, ey (4.1)

pe,s.d,h ce

where pUnc represents both the primary energy price for the subset pe (i.e., Primary Energy) and the in-
vestment cost of energy technologies ce (i.c., Conversion Energy technologies). As these two subsets are part
of the same parameter, they are indicated by subscripts in the equation. The parameter pYrGap is a scalar
representing the year gap for which each representative year of the model is solved, and for which operating
costs, including the primary energy consumed, must be summed. In this case study, the gap used is 5 years.
Regarding the variables, vVQPEImp and vQPEDom are the imported and domestically consumed primary en-
ergy, respectively. The variable vCENewCap is the newly installed capacity of energy conversion technologies.
The subscripts y, s, d, and & represent the temporal subsets year, season, day, and hour, respectively, given that
openMASTER has been configured to work for this case study with a temporal horizon from 2020 to 2030,
with four seasons and one representative day per season with 24 hours. In total, 288 time slices.

The following provides a step-by-step development of the mathematical formulation resulting from the ap-

plication of the PCA-based uncertainty set (refer to Equations 4.3 and 4.4) to the uncertainties in Equation

4.2 of the objective function®.

o pYrGap- pZ” pUnc,, - (vQPEImp,, .. +vQPEDom, ., .)+ Z pUnc,, - vVCENewCap,, , (42)
S.t.
mp M
Wy = Supe + Z(amyi‘nﬁm +(1 - am)yi’f,w,c) + Z Prmune> unc € (pe U ce) (4.3)
m=1 m=m)+1
0<a,<1 (4.4)

where ¥phne = (%di) and y% = (ﬁd,)

[ unc m,unc lld;ll

The following maximization problem is obtained by applying 4.3 to 4.2:

mp

M
max pYrGap - D Gt D (@il + =@y, )+ " pupe) - VQPEImp,, )
" pe,s.d,h m=1 m=mj+1

(4.5)
my M
+vQPEDom,, ;) + ZG“’ + Z((xmyfn{’(,e +(1- am)y:i‘;.e) + Z Pmce) - VCENewCap,, |

m=1 m=mj+1

Factoring out @, we obtain the following equation with only the elements that depend on this variable:

"The following equations are shown to illustrate the key mathematical modifications introduced to incorporate the PCA-based un-
certainty set. They represent only the modified or additional constraints required to define the robust formulation under correlated
uncertainties. These expressions do not constitute the complete energy system optimization model, which also includes energy bal-
ances, investment dynamics, and operational constraints, among many other equations. For a full understanding of the model’s
mathematical structure, readers are referred to Chapter 2, which presents the core formulation of openMASTER. The complete
code and mathematical formulation are publicly available in the project’s open repository.
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mi
max Z @ - (pYrGap - Z (yj‘,,’ipe - )/,jn‘fpy) . (vQPEImppe’y, sant vQPEDompe,y’S’ an) + Z(yﬁfce + —7;1:(,»6) . vCENewCapCM)
m=1 ce

am

pe,s,d,h

(4.6)
Considering the dual problem of minimizing the negative of equation 4.6, including constraint 4.4, results
in:
max 3, (4.7)
s.t.

~Bw < —(pYrGap - Z (yrun,,)pe - 7z:,)pg) - (vVQPEImp peyusdh T VQPEDompe,)',.r,d,h) + Z(%uﬂ,;'e + _%dn{,)ce) ’ VCENewcapmy)
pe.sd.h ce

(4.8)

Bn=0 (4.9)

Applying the Strong Duality Theorem:

mj mp

D Bu= ) an- (pYrGap- Y (G, - vie,) - (VQPEImp,, ), + vQPEDom,, . )+ Y (Vif,, + ~Yi,) - vCENewCap,, )
m=1 m=1

pe.s.d.h ce

(4.10)

0<a,<1 (4.11)

B = (pYrGap - Z Vorpe = 7,‘1,’;,5) -(VQPEImp,,,  ,, + VQPEDom,, )+ Z(yﬁi{fm + —yjln'fve) . vCENewCapm),) (4.12)

pe.s.d,h

Substituting into the original problem, the following equations result from applying the PCA-based uncer-
tainty set:

mp

mp M
vUncCost, = Z B + (pYrGap - Z (Spe + Z yi‘fpe + Z Pmpe) - VQPEImp ., + vQPEDom,, ;)
m=1

m= e,s,d,h m=m
1 pe,s. 1+1 (413)
my M
+ ) Geet ). Yol + D Puce) - VCENewCap,, )
ce m=1 m=mj+1
S.t.

B > (pYrGap - Z Y = ¥2,) - (vQPEImp,, . +vQPEDom ,  ,.)+ Z(y,‘;fw + ~Yatke) - VCENewCap,,. ) (4 14)

pe.s.d,h ce
Bnz0 (4.15)

Thus, Equation 4.13 is integrated into the objective function. Additionally, Equations 4.14 and 4.15 are
constraints that have been incorporated into the model as a result of the mathematical development stemming
from the application of the PCA-based uncertainty set.

4.2.3 METHODOLOGICAL PROCEDURE TO APPLY THE PCA-BASED UNCERTAINTY SET TO AN
ENERGY MODEL

The application’s steps are shown in the flowchart in Figure 4.2. Starting with the correlated data, historical
data must be collected and preprocessed in order to apply PCA, which reduces the dimensionality of the data
matrix and generates the covariance matrix, eigenvectors, and eigenvalues. At this point, the number of prin-
cipal components is determined to introduce the appropriate uncertainty set into the model. As mentioned
earlier, the decision on the number of components allows the decision-maker to balance the trade-off between
tractability and conservativeness: incorporating more principal components can increase computational com-
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plexity, but in return, it provides a more robust solution. This uncertainty set, with the selected number of
principal components, is then incorporated into the energy model. In our case, which considers correlated
uncertainties in the objective function, this equation is modified as detailed in the step-by-step formulation in
the previous subsection. Once the results of applying this methodology are obtained, the analysis may prompt
the decision-maker to consider increasing the number of principal components based on their conclusions.
This process can be repeated, modifying the number of components as needed. In this way, a robust strategy
is developed that not only protects against uncertainties but also accounts for the correlations between them.
It is important to note that during the data preprocessing stage, two key modifications can be applied to
tailor the methodology to future trends. First, the correlation matrix can be adjusted to reflect updated corre-
lation levels between pairs of uncertain parameters, allowing for the incorporation of potential changes in their
relationships. Second, the mean values used to construct the uncertainty set, represented by the parameter § ¢,
can be updated based on projected trends, ensuring the methodology aligns with forward-looking scenarios.

4.3 CASE STUDY

The case study examines the correlations between fuel prices and investment costs in energy technologies. Al-
though the correlations of all fuels and technologies are considered, the study places special emphasis on fossil
fuels and renewable technologies, as these are modified to create scenarios based on different levels of correla-
tion. The objective is to understand how accounting for these correlations affects decision-making and how
changes in these correlations impact the deployment of renewable energy sources.

While the analysis could be applied to any country or region, it focuses on the decarbonization of the Spanish
energy system, which, in our opinion, provides a very interesting setting for this analysis. Spain features a
relatively large and diverse energy system, rich in renewable resources, thus helping to show the applicability
of our methodology to a real national energy planning exercise, and also showing the interactions among the
many different technologies that may play a role in the energy transition. This, we believe, helps in generalizing
the conclusions obtained in the study to other regions. Furthermore, Spain is already undergoing an ambitious
transformation of its energy system, with a large share of renewables, and so the interactions and correlations,
and their impacts, are better observed compared to other countries with lower shares of these technologies.

This case study aligns with the national CO; emission targets for 2030 as outlined in the Spanish National
Energy and Climate Plan (NECP). The base year for calibration is 2020, with detailed calibration information
provided in Appendix 4.B. As noted earlier, the data preprocessing stage allows for tailoring the methodol-
ogy to future trends by updating the mean values and correlation levels. For this case study, the mean values
used to construct the correlated uncertainty sets (§,,¢) have been updated to reflect the expected projections of
uncertainties for 2030. The number of principal components m; is 10.

The correlation matrix has also been adjusted to explore three different scenarios, capturing varying levels
of correlation between uncertain parameters and evaluating their impact on investment strategies (correlation
values are provided in Appendix 4.C):

* Uncorrelated scenario: This scenario uses the budget-based robust optimization technique proposed
by Bertsimas et al. (2004), assuming no correlations. It serves as a baseline for comparison with other
scenarios, providing a reference point to evaluate the impact of accounting for correlations.

* Dositive correlation scenario: Historical data point to a positive correlation between primary energy
prices and technology investment costs. In this scenario, this correlation is adjusted with a coefficient
of 0.5. This scenario assumes that increases (or decreases) in fossil fuel prices lead to corresponding
increases (or decreases) in renewable investment costs due to higher (or lower) costs associated with ma-
terials, production, transportation, and installation processes reliant on fossil fuels.

* Negative correlation scenario: This approach sets correlation coefficients to -0.5, indicating an inverse
relationship: High (or low) fossil fuel prices accelerate (or slow down) the learning curve of renewables,
reducing (or increasing) their costs and enhancing (or worsening) their competitiveness through greater
(or lesser) R&D efforts.
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Figure 4.2: Flowchart illustrating the step-by-step application of PCA-based uncertainty set in an energy model

Please note that while these scenarios offer a basic framework, real-world correlations are more nuanced, with
coefficients ranging from -1 to 1. The selected correlation coefficients are designed to be representative of their
corresponding scenarios and provide meaningful insights. Additionally, we ran other scenarios with different
correlation levels, and the results did not show significant differences to justify their inclusion for interpreting
the differences between positive, negative, and no correlation scenarios. Therefore, to facilitate the analysis and
the drawing of conclusions, these additional scenarios were not included.
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4 How energy strategies are shaped by the correlation of uncertainties

Therefore, these scenarios provide a comprehensive view of how different correlations can influence the
deployment of renewable energy technologies for achieving the decarbonization goals of Spain by 2030.

4.4 RESULTS

The uncorrelated scenario serves as a baseline for comparison, with results for positive and negative correlations
presented against it. However, common elements across scenarios are worth analyzing, as they reveal consistent
patterns and useful insights regardless of correlation assumptions.

On the one hand, Table 4.1 highlights a significant reliance on gas power plants across all scenarios. This
dependence on fossil fuel technologies can be attributed to reduced nuclear capacity in all scenarios, falling
below 2 GW, and to the firmness and adequacy constraints of the openMASTER model, which require backup
forincreased variable capacity from wind and solar sources. To mitigate emissions from the electric mix, Carbon
Capture and Storage (CCS) technologies play a notable role in reducing emissions from gas-based technologies
in all scenarios.

Regarding renewable energies, hydroelectric capacity shows minimal expansion due to geographical con-
straints on maximum capacity. Pumped hydro also increases marginally across all scenarios, likely due to high
costs of new capacity, which reduce its competitiveness compared to gas power plants, a trend expected to con-
tinue through 2030. Additionally, all three scenarios show a clear preference for wind power over solar. This
preference may stem from the better adaptation of wind power’s generation profile to demand, hence reducing
the need for backup.

Concerning CO; emissions in 2030, total emissions are nearly identical across scenarios, around 100 Mt,
complying with the emission cap set, as depicted in Figure 4.5. However, significant differences exist in the
sectoral distribution of these emissions, particularly affecting the energy generation and transportation sectors.

Under the scenario in which we assume a positive correlation, the strategy varies notably from the uncor-
related baseline. It exhibits higher crude oil refinery capacity and minimal biofuel refining capacity, indicating
a greater reliance on oil derivatives. This is supported by higher consumption of oil derivatives and natural
gas, which together account for nearly 60% of the final energy mix, as depicted in Figure 4.3. In contrast, the
uncorrelated baseline scenario relies more on biofuels, displacing both fossil fuels and conventional electricity
generation.

In the transportation sector, which accounts for the highest greenhouse gas emissions in Spain, the total
final energy consumption indicates a strong preference for emission reduction through natural gas and electri-
fication over biofuels, as shown in Figure 4.4. However, it exhibits around 10 TWh higher consumption of oil
derivatives compared to the uncorrelated baseline, as well as the highest natural gas consumption, leading to the
highest emissions in this sector. This underscores the greater competitiveness of fossil fuels in a scenario where

Neg Nul Pos 0.5%
7.9% 0.4% 0.5% S o
18.2%
23.4% 25.3% 26.4%
27.1% 22.3%
32.5%

m Coal = Qil Derivatives ' Natural Gas m Electricity = Bio

Figure 4.3: Final energy mix in 2030 as a percentage of total final energy consumption. Final energy vectors are aggregated
into categories
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4.4 Results

Conversion energy capacity 2030
[GW] 2020

Neg Unc Pos
Nuclear 7.4 1.9 1.9 1.9
Coal 10.2 0 0 0
CCGT 26.6
CCGT+CCS - 7.7
OCGT - 6
OCGT+CCS - 0 0 0
Fuel Oil 3.7 0 0 0
Hydro 14 14 14 14
Wind Onshore 267 908 676 757
Wind Offshore - 3 3 0
Solar PV 11 [403 307 187
Solar Th 2.3 0 0 0.6
Biomass PP 1.4 0 0 0
Pumping storage 6.4 6.5 6.5 6.5
CHP S.5 0 0 0
TOTAL ELECT 15 198 153.7 152
Oil Refinery 28
Biofuel 7
Regasification 76

Table 4.1: Capacity of installed energy conversion technologies (GW). The heatmap colors facilitate comparison between
the three scenarios (Neg: Negative correlation scenario; Unc: Uncorrelation scenario; Pos: Positive correlation
scenario) by highlighting the relative capacities within each technology using an orange gradient. Abbrevia-
tions: Spanish National Energy and Climate Plan (NECP), Combined Cycle Gas Turbine (CCGT), Carbon
Capture and Storage (CCS), Open Cycle Gas Turbine (OCGT), Photovoltaic (PV), Thermosolar (Th), Power
Plant (PP), Combined Heat and Power (CHP), Total electricity generation capacity (TOTAL ELECT).

Final energy 2030
[TWh] Neg Unc Pos

Coal 3.0 3.0 3.0
Fuel Oil
Diesel

Gasoline

Kerosene
LPG

Qil Others
Natural Gas
Biomass
Biofuel
Electricity

Table 4.2: Total annual consumption detailed for final energy vectors for 2030 (TWh). The heatmap colors facilitate
comparison between the three scenarios (Neg: Negative correlation scenario; Unc: Uncorrelation scenarios
Pos: Positive correlation scenario) by highlighting the relative capacities within each technology using an orange
gradient. Abbreviations: Liquified Petroleum Gas (LPG), Other petroleum derivatives (Oil Others).
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Figure 4.4: Annual consumption of final aggregated energy vectors in the transportation demand sector for 2030 (T'Wh).

the costs of renewables increase in tandem with them: EVs become more expensive to operate if the renewable
electricity mix also becomes costlier, transmitting these costs and giving fossil fuels a competitive advantage.
This translates directly to the car fleet, with a preference for PHEVs to electrify part of the mobility and greater
use of natural gas in ICEVs. On the contrary, the reliance on biofuels in the uncorrelated baseline scenario
represents a clear preference for ICEV.

Renewable energy deploymentin this scenario is the lowest, with a combined wind and solar capacity of 94.4
GW, compared to 101.3 GW in the uncorrelated baseline, as observed in Table 4.1. Paradoxically, it accounts
for the lowest emissions in the energy generation sector. This can be attributed to the electricity consumption
being approximately 45 TWh lower than in the negative correlation scenario, reducing overall emissions de-
spite a lower renewable share. Additionally, a greater share of CCS provides lower-emission electricity backup,
especially important given the reduced nuclear capacity and minimal hydropower growth. This adjustment
in the electricity sector compensates for higher emissions in the transportation sector, which heavily relies on
fossil fuels, thus meeting the 2030 emissions target.

An interesting phenomenon when assuming a positive correlation is the absence of offshore wind, in con-
trast to the other two scenarios where the maximum allowed capacity of 3 GW is installed, aligned with NECP
planning due to licensing constraints (Gobierno de Esparia, 2021). This can be explained by the significant corre-
lation between offshore wind deployment and crude oil prices (Energy, 2020): offshore wind and oil industries
compete for vessels, oil majors’ investments in offshore wind are negatively driven by the price of oil, and the
price of oil influences the cost of transport fuel, steel, and copper. This, again, underscores the importance of
considering correlations and their impact on decision-making.

If a negative correlation scenario is assumed, the investment strategy contrasts sharply with both the uncor-
related and positive correlation scenarios. It features the highest level of electrification, approaching nearly 300
TWh annually, as observed in Table 4.2. This electrification strategy is strongly complemented by the highest
deployment of wind and solar at 134.1 GW aggregated, marking a nearly 40 GW difference compared to the
other scenarios, as presented in Table 4.1. However, higher capacity in combined cycle gas turbines enhances
firm capacity and supports increased variable installed capacity, resulting in the highest total installed capacity
in the electricity sector among the scenarios. This is consistent with the greater electrification of demand in this
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Car fleet 2030
[Million vehicles] Neg Unc Pos

ICEV 11.7 11.7
PHEV 03 0.0
EV 56 00 35

Table 4.3: Car fleet in 2030 (Millions of Vehicles). The heatmap colors facilitate comparison between the three scenar-
ios (Neg: Negative correlation scenario; Unc: Uncorrelation scenario; Pos: Positive correlation scenario) by
highlighting the relative number of vehicles within each row using an orange gradient. Abbreviations: Internal
Combustion Engine Vehicle (ICEV), Plug-In Hybrid Electric Vehicle (PHEV), Electric Vehicle (EV).

scenario. Nevertheless, this scenario exhibits the highest emissions in the energy generation sector, primarily
due to the lower capacity of CCS for backup and significantly higher electricity consumption: despite having
the largest share of renewables in the electricity mix, it is not enough to offset the increased generation.

This electrification, when assuming this negative correlation scenario, primarily occurs in the transportation
sector, resulting in a more diversified mix of energy vectors. Specifically, natural gas and biofuels, though less
prevalent than in other scenarios, play significant roles. The car fleet predominantly favors EVs over PHEVs.
Additionally, ICEVs increase the use of natural gas and biofuels, which is consistent with the overall energy
consumption patterns of the transportation sector.
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Figure 4.5: Annual sectorial CO; emissions for 2030 (Mt).

4.5 CONCLUSIONS AND FUTURE WORK

This study is the first to incorporate correlations between uncertain parameters into a strategic energy plan-
ning model. Using a novel PCA-based methodology, correlations between fuel prices and energy technology
investment costs are examined in a case study on the decarbonization of the Spanish energy system, aligned with
the 2030 CO; emission reduction targets. By developing scenarios with varying levels of correlation between
fossil fuel prices and renewable energy costs, the impact on decision-making processes and the deployment of
renewable energy technologies is assessed.

The case study results reveal that decarbonization strategies vary significantly with the level of correlation.
When assuming an uncorrelated scenario, a key finding is that greater decarbonization in the transportation
sector is achieved by heavily investing in biofuels rather than electrification. This outcome can largely be at-
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4 How energy strategies are shaped by the correlation of uncertainties

tributed to vehicle fleet inertia, where only vehicles at the end of their life cycle are replaced. Consequently,
while electric vehicle adoption is slow by 2030, the existing ICEV fleet can still reduce emissions through bio-
fuels. This underscores the potential role of biofuels in the transitional decarbonization of transportation as
EVs gradually replace ICEVs under this assumption.

If the correlation between fossil fuel prices and renewable energy costs is positive, and beyond initial adoption
barriers of EVs, such as investment cost, home-based charging, and vehicle range, higher renewable electricity
costs make EV operation more expensive, hindering this transition. This finding could be transferable to other
electrifiable demands, such as those using heat pumps or electrified industrial processes, which are key contrib-
utors to emissions reduction. A particularly sensible technology in this regard is oftshore wind energy, which
is deeply linked with the fossil fuel industry, and hence subject to its fluctuations.

Our results have significant policy implications for the energy transition. First, it shows the relevance of
including these correlations into energy planning and the design of transition strategies. Policymakers, when
deciding upon decarbonization strategies, should take into account the correlation between uncertain param-
eters in order to produce robust and consistent pathways. The energy mix changes markedly across scenarios,
suggesting that strategies based on wrong correlation assumptions may lead to inefficient investments and po-
tential lock-ins. Therefore, introducing correlations into energy planning, and accurately understanding the
expected sign and value of those correlations, is crucial to produce robust and consistent strategies and to min-
imize costly mistakes.

Second, policymakers should deploy policies that may help in decoupling unwanted correlations. For ex-
ample, decoupling renewable energy costs and fossil fuel prices can be done by investing in R&D to reduce
the dependence of renewable energy technologies on fossil fuels (e.g., by developing green steel or concrete).
Promoting a circular economy for materials can also help achieve the same goal.

Additionally, faster green electrification of the production processes through which transition technologies
(renewables, batteries, etc.) are produced can also help decouple their costs from fossil fuel prices. This electrifi-
cation should then be given priority in the decarbonization of industry. Another policy that would help reduce
the unwanted impacts of correlations would be to use alternative fuels, not that dependent on fossil fuels for
their manufacturing: biofuels may play an important role in making decarbonization strategies more robust in
the presence of uncertain correlations.

Third, our results show thata positive correlation between fossil fuel prices and renewable energy costs makes
it more difficult to electrify transportation, residential, or industrial demands. Therefore, support policies may
be needed to address this reduced competitiveness (unless this positive correlation has been minimized through
other policies, as mentioned above). This may call for a larger use of carbon pricing (which separates further
the fossil fuel price and renewable energy cost), or for stronger support systems for low-carbon technologies
(such as subsidies for electric vehicles or renewable energy generation).

In this regard, it is worth noting that carbon prices, when determined in emissions markets, are typically
set by fossil fuel prices (typically the opportunity cost of shifting to natural gas). Therefore, there is also a
correlation between fossil fuel prices and carbon prices in markets, which must be taken into account, and
which generally goes against the original sign of the correlation. Emissions markets can, therefore, play an
interesting role as "mitigators” of the correlations analyzed in the study.

Finally, the existence of a correlation (positive or negative) between fossil fuel prices and renewable energy
costs should be accounted for by designing support systems for renewables which are indexed to fossil fuel
prices, as has already been done in some countries (e.g. Germany).

Moreover, this methodology has potential applications beyond the energy sector and can be extended to ex-
plore interdependencies in other contexts. For instance, the approach could be adapted to assess correlations
in sectors such as water or agriculture, where similar dynamics of resource dependencies exist (X. Cao et al,
2022). Additionally, it could support integrated planning across interdependent systems, such as those with
water-energy-food, by capturing cross-sectoral correlations. From a regional perspective, the methodology can
provide insights into localized correlation dynamics, informing tailored policies for regions with distinct eco-
nomic structures, resource dependencies, or decarbonization challenges.

Despite its contributions, the study has limitations that suggest directions for future research. The method-
ology considers the level of correlation during the data preprocessing phase, using these correlations to generate
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the necessary parameters, such as eigenvalues and eigenvectors, for constructing the uncertainty set. Conse-
quently, modifying the level of correlation dynamically over time is not directly feasible within the current op-
timization framework. However, a potential avenue for future research could involve combining this method-
ology with adaptive optimization techniques. For example, implementing a rolling horizon approach could en-
able the consecutive optimization of subperiods, where the uncertainty set would be updated to reflect varying
levels of correlation over time. Although it would represent a challenge both computationally and method-
ologically, this could provide a more flexible framework for addressing evolving trends driven by market trans-
formations, policy shifts, and technological innovation, particularly in analyses that extend toward long-term
horizons. Furthermore, future work could also explore correlations and interdependencies beyond fuel prices
and technology costs, expanding the applicability of the methodology to capture broader interdependencies.
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APPENDIX 4.A: A LITERATURE REVIEW OF STUDIES INCORPORATING CORRELATION BETWEEN UNCERTAINTIES IN
ENERGY-RELATED MODELS

Table 4.4: Literature review of studies incorporating correlation between uncertainties in energy-related models

Authors Model Correlation Correlated Application
Methodology Uncertainties
W. Wangetal. (2021)  Energy Hub (EH) Multidimensional RES (wind speed Electric-Heat-Gas coupled
Planning Model parallelepiped interval and light intensity) ~ energy system planning
model. A correlation and demand
coeficient is used to response, through
describe the correlation electricity price
between two interval
variables
Abdalla, Abu Adma, GEP Model Polyhedral uncertainty set Uncertainty among ~ Generation Expansion
etal. (2020) based on the estimated different RES plants ~ Planning (GEP). Egyptian
correlation matrix (Onshore wind, electric system
offshore wind, PV,
CSP and Hydro)
Roldan et al. (2019) Two-stage adaptive  Ellipsoidal uncertainty set  Spatial correlations ~ Transmission network
RO model relying on their of RES and demand  expansion planning.

Saxena et al. (2018)

IEEE-30 bus system

variance-covariance matrix

A correlation matrix is
used to apply Cholesky
Decomposition to obtain
random scenarios with
correlation

Spatial correlations
of load and
generation (wind

speed)

Spanish electric system

Coordinated Generation
and Expansion planning

Continued on next page
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Table 4.4 — continued from previous page

Authors Model Correlation Correlated Application
Methodology Uncertainties

Dehghan etal. (2016)  Garber 6-bus test Bounded intervals, Demand and wind ~ Expansion planning
system, IEEE through a polyhedral power generation
24-bus y IEEE uncertainty set
73-bus reliability
test systems (RTS)

Y. Fuetal. (2021) Two-stage stochastic ~ Copula function is Energy demand and  Integrated Energy Systems
programming introduced to get the joint  solar radiation (IESs)
model probability distribution

Qiu etal. (2019)

Zhu etal. (2020)

L. Yuetal. (2020)

Mu etal. (2022)

Multi-energy
complementary
power generation
system (MECP)

CFIP-WEN model

Park-level integrated

energy system
(PIES) model

function

Scenario generation
method through Copula

function

Copula-based interval
full-infinite programming
(CIFP) method

Copula-based fuzzy
interval-random
programming method

Copula function to
construct the joint
distribution function.
Random scenarios
considering correlation are
generated with Monte
Carlo

Wind farms
generation in
different locations

Wind and solar
power generation
binary joint
distribution
function

‘Water resources
availability and
electricity
consumption

Natural gas and
electricity prices

Power system with wind/
hydrogen production

South China Sea island
power system supply

Water-energy nexus system
of Henan Province, China

A grid-connected PIES in
the USA

Continued on next page
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Table 4.4 — continued from previous page

Authors Model Correlation Correlated Application
Methodology Uncertainties
S.Zhangetal. (2018) ~ CCP-based Pearson correlation Wind speed, light Distributed generation
multi-objective coeflicient matrix (normal  intensity and load planning in distribution
distributed distributed variables). demand network

Zeng, Y. Liu, et al.
(2021)

H. Yuetal. (2022)

Q. Wang et al. (2022)

Abdalla, Smieee, et al.

(2020)

generation planning
model.
Minimization of
both cost and risk.

Combined heat and
power based
multi-energy system
model

Triangle Splitting
(TSA) bi-objective
operation
optimization model
Bayesian
distributionally RO
model

Two-stage robust
GEP model

Spearman rank correlation
coefficient matrix
(non-normal distributed
variables)

Scenario-based stochastic
programming formulation
to explicitly capture the
correlations among
uncertainties

Cholesky decomposition

Copula function to obtain
the joint probability
function. Generation of
low-dimensional scenario
set

Polyhedral uncertainty set
based on its
variance-covariance matrix

Customers’
responsiveness,
energy demand and
RES generation

Cooling demand,
electric demand,
and solar radiation

Wind and solar
generation

Spatial and
temporal
correlations among
different wind farm
sites

Optimal demand response
in renewable-based energy
systems

Community integrated
energy systems (CIES) in
China

Energy storage planning.
Storage sizing model.

Generation Expansion
Planning

Continued on next page
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Table 4.4 — continued from previous page

Authors Model Correlation Correlated Application
Methodology Uncertainties
M. Cao et al. (2019) Chance-constrained  Correlation matrix. Wind farms and Storage sizing model.
optimization model load at different Isolated grid application.
buses

Lei et al. (2020)

Xuetal. (2020)

Patankar et al. (2022)

Multi-objective
bi-level stochastic
model

Risk-averse
two-stage stochastic
optimization model

Temoa

Multi-dimensional
correlated scenario sets
(MDCS) generation
method. Considers time
sequence, autocorrelation y
cross-correlation of RES
and multi-energy loads.

Ellipsoidal uncertainty sets.
Minimum volume
enclosing ellipsoid
(MVEE) algorithm.

Robust optimization
technique based on
(Bertsimas et al., 2004), but
incorporating temporal
auto-correlation

Renewable energy
and multi-energy

loads

Power outputs of
geographically-close

wind farms

Fuel costs and
technology capital
cost

Expansion Planning.
Regional integrated energy
system (RIES). Yangzhong
City (China).

Integrated energy and
reserve dispatch problem.

U.S. decarbonization
pathways
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4 How energy strategies are shaped by the correlation of uncertainties

APPENDIX 4.B: CASE STUDY CALIBRATION

The time-varying parameters are defined with initial values corresponding to the year 2020 and final values for
the year 2030. Intermediate values within this period are determined using linear interpolation. This approach
facilitates the modeling of learning curves for emerging technologies and the fluctuations in fuel prices driven by
regulatory changes and variations in supply and demand. To account for changes in annual demand, an annual
growth rate is applied. Hourly demand is then calculated using a load curve applied to the annual demand. In
the following, the most significant parameters for this case study are defined. More information can be found

on openMASTER’s GitHub webpage and on Chapter 2.
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Primary energy Fuel price [EUR/MWh]
Nuclear 2.88
Imported Coal 8
Natural Gas 18.4
Liquefied Natural Gas 37
Crude Oil 40
Hydro Run off the River 0
Hydro with Reservoir Capacity 0
Mihi Hydro 0
Wind Onshore 0
Wind Offshore 0
Solar Photovoltaic 0
Solar Thermoelectric 0
Solar Thermal 0
Biomass Energy Crops 21
Biomass Agriculture Waste 17
Biomass Forestry Waste 8
Solid Waste 21
Bioethanol Production Inputs 54
Biodiesel Production Inputs 46
Biogas 104

Table 4.5: Fuel prices for primary energy vectors in EUR per MWh.



Appendix 4.B: Case studly calibration

Energy Technologies Investment Cost [EUR/kW]
Nuclear Power 4800
Imported Coal Traditional 1450
Imported Coal Integrated Gasification Combined Cycle 1950
Imported Coal Super-critical Pulverised Coal 1650
Imported Coal Super-critical Pulverised Coal with CCS 3400
Combined Cycle Gas Turbine Traditional 550
Combined Cycle Gas Turbine with CCS 1750
Open Cycle Gas Turbine Traditional 450
Open Cycle Gas Turbine with CCS 900
Fuel QOil Traditional 784
Hydro Run off the River 1715
Hydro with Reservoir Capacity 2100
Hydro with Pumping Storage 3804
Mini Hydro 1715
Wind Onshore 1300
Wind Offshore 2800
Solar Photovoltaic Centralised with Tracking 463
Solar PV Distributed w/o Tracking (Industrial Sector) 645
Solar PV Distributed w/o Tracking (Other Uses Sector) 645
Solar Thermoelectric Centralised 3000
Solar Thermal Distributed Industry 848
Solar Thermal Distributed Other Uses 848
Biomass Electricity Centralised 2517
Solid Waste 5503
Cogeneration in Industry (Natural Gas) 1425
Cogeneration in Other Uses (Natural Gas) 2093
Cogeneration in Industry (Biomass) 2137.5
Cogeneration in Other Uses (Biomass) 3139.5
Refinery Low Complexity 114
Refinery High Complexity 330
Refinery Very High Complexity 653
Bioethanol Production Plant 1040
Biodiesel Production Plant 510
Regasification Terminal 35

Table 4.6: Investment costs for energy technologies in EUR per kW.
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Table 4.7: Previous installed capacity and conversion losses for different energy technologies.

Energy Technologies Previous Installed Ca- Conversion
pacity [GW] Losses [%)]

Nuclear Power 7.4 0.62
Imported Coal Traditional 3.0 0.58
Imported Coal Integrated Gasification Combined Cycle 3.0 0.52
Imported Coal Super-critical Pulverised Coal 1.0 0.55
Imported Coal Super-critical Pulverised Coal with CCS 0.5 0.64
Combined Cycle Gas Turbine Traditional 26.6 0.42
Combined Cycle Gas Turbine with CCS 0.0 0.54
Open Cycle Gas Turbine Traditional 0.0 0.55
Open Cycle Gas Turbine with CCS 0.0 0.65
Fuel Oil Traditional 3.7 0.62
Hydro Run oft the River 215 0.0
Hydro with Reservoir Capacity 12.0 0.0
Hydro with Pumping Storage 3.3 0.30
Mini Hydro 0.0 0.0
Wind Onshore 28.0 0.0
Wind Offshore 0.0 0.0
Solar Photovoltaic Centralised with Tracking 8.4 0.0
Solar Photovoltaic Distributed without Tracking (Industrial Sector) 0.0 0.0
Solar Photovoltaic Distributed without Tracking (Other Uses Sector) 0.0 0.0
Solar Thermoelectric Centralised 2.3 0.0
Solar Thermal Distributed Industry 0.0 0.0
Solar Thermal Distributed Other Uses 0.0 0.0
Biomass Energy Crops Centralised 0.32 0.61
Biomass Agriculture Waste Centralised 0.68 0.61
Biomass Forestry Waste Centralised 0.0 0.61
Solid Waste 0.7 0.61
Cogeneration in Industry (Natural Gas) 2.4 0.26
Cogeneration in Other Uses (Natural Gas) 2.4 0.27
Cogeneration in Industry (Biomass) 0.0 0.26
Cogeneration in Other Uses (Biomass) 0.0 0.27
Refinery Low Complexity 62.2 0.07
Refinery High Complexity 24.3 0.09
Refinery Very High Complexity 0.4 0.17
Bioethanol Production Plant 0.4 0.0
Biodiesel Production Plant 6.7 0.01
Regasification Terminal 76.0 0.01
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Appendix 4.C: Correlation matrix for the case study

APPENDIX 4.C: CORRELATION MATRIX FOR THE CASE STUDY

The correlation matrices utilized are presented in the following tables. These correlations have been calculated
based on historical data from various sources and normalized using the z-score technique.

These sources include (i) BloombergNEF: investment costs of non-renewable energy technologies (nuclear,
CHP, coal and gas-fired power plants), onshore and offshore wind, solar PV, and biomass power plants; (ii)
IRENA renewable power generation costs 2022 report (IRENA, 2023): investment costs of hydroelectric tech-
nologies; (iii) ESA Atomic (European Commission, 2024): natural uranium price; (iv) MIBGAS (MIBGAS,
2024): natural gas and LNG prices; (v) Brent market (Nasdaq, 2024): crude oil price; (vi) AVEBIOM (AVE-
BIOM, 2024): biomass price.

The data from BloombergNEF is subscription-based and not publicly available, so it is not shown in this
work. The remaining sources can be consulted in the references provided.

Regarding the correlation levels between fossil fuel prices and renewable energy technology investment costs,
the values of L in Table 4.10 are adjusted by 0.5 for the positive correlation scenario and -0.5 for the negative
correlation scenario.

It is important to note that the objective of this study is not to empirically determine the actual level of
correlation between uncertain parameters, but rather to explore how different correlation structures—positive,
zero, or negative—influence the design of robust energy strategies. To this end, the analysis explicitly considers
multiple scenarios for the correlation level parameter L. Although the PCA method is grounded in historical
data, its primary role in this context is to enable the construction of internally consistent uncertainty sets under
varying structural assumptions. Future research could complement this approach by statistically validating the
relevance of specific correlation patterns across different empirical datasets.
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Table 4.8: Correlations between primary energy prices
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Correlations between the investment cost of energy technologies

Table 4.9

Appendix 4.C: Correlation matrix for the case study
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Table 4.10: Cross-correlations between primary energy prices and investment cost of energy technologies
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S DESIGNING ROBUST ENERGY POLICY PACKAGES
UNDER DEEP UNCERTAINTY: A MULTI-METRIC
DECISION SUPPORT FRAMEWORK

This chapter is based on the article entitled “Designing robust energy policy packages under deep uncertainty: A
multi-metric decision support framework”, authored by Antonio F. Rodriguez-Matas, Thomas B. Wild, Pedro
Linares, Jonathan R. Lamontagne, and David Dominguez-Barbero. The manuscript is currently under review
in Energy Policy, Elsevier, at the time of submission of this thesis.

The work presented in this chapter was developed during international research stays at the Pacific North-
west National Laboratory (PNNL) and Tufts University, in collaboration with Earth Scientist Thomas B. Wild
and Associate Professor Jonathan R. Lamontagne, respectively.

S.1 INTRODUCTION

The energy transition is a pivotal process in addressing some of the most pressing global challenges, includ-
ing climate change, energy security, public health, and energy affordability. This transition involves shifting
from fossil fuel-based energy systems to more sustainable and renewable energy sources, through changes in
both supply and demand. The importance of this shift is multifaceted: it aims to reduce greenhouse gas emis-
sions, decrease dependency on imported fossil fuels, improve air quality to enhance public health, and ensure
affordable energy access for all.

Given the complexity of energy transitions and the long-term nature of infrastructure investments, policies
play a fundamental role in shaping the direction and pace of change. Policymakers must design and implement
effective policy packages that balance environmental, economic, and social objectives while ensuring a resilient
energy system. Different policy levers—such as carbon pricing, renewable energy incentives, or energy efficiency
standards—can significantly influence investment decisions, technology deployment, and consumer behavior,
ultimately determining the success or failure of transition strategies.

However, the effectiveness of these policies is heavily influenced by the uncertainties inherent in the energy
transition itself. Technological advancements, socio-economic changes, and climate impacts introduce pro-
found uncertainty—often so deep that assigning probabilities becomes infeasible (Knight, 1921; Walker et al.,
2003). These uncertainties shape not only how the system evolves but also how policies perform; promising
strategies that seem effective under certain assumptions may fail when conditions change.

Long-term energy planning models play a crucial role in navigating this uncertainty. These models—ranging
from energy system optimization models like TIMES to simulation-optimization frameworks such as GCAM
and agent-based models (Fodstad et al., 2022)—serve as essential tools for designing and assessing policies aimed
at effectively guiding this transition. They enable the anticipation of economic, technical, and environmental
effects of specific policy levers, offering insights into emissions, costs, and system resilience.

Yet, traditional modeling approaches often fall short when facing deep uncertainty because they rely on a
limited set of predefined scenarios. Addressing this challenge requires exploratory modeling techniques capa-
ble of systematically sampling a wide range of plausible futures to uncover key drivers, interactions, and vulner-
abilities. Scenario discovery is one such approach, oftering valuable tools for identifying the combinations of
uncertainties and policy levers that critically shape outcomes (Bryant et al., 2010; Lamontagne et al., 2018; Lempert,
2002).
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Theliterature® applying exploratory modeling techniques to energy systems has primarily focused on charac-
terizing system behavior under uncertainty and identifying critical drivers of transition dynamics. Early work
by McJeon et al. (2011) applied Patient Rule Induction Method (PRIM) analysis to the GCAM model after
threshold identification to understand high-cost scenarios in global emission stabilization pathways. Subse-
quent studies have developed more sophisticated methodological combinations: hierarchical clustering with
Classification and Regression Trees (CART) in agent-based models (Gerst et al., 2013), Gaussian mixture mod-
els with PRIM for regional energy planning (Moksnes et al., 2019), and recently, the integration of Modeling to
Generate Alternatives with tree-based ensemble methods and marginal effects analysis (Sasse et al., 2023). The
evolution of methods shows increasing sophistication in handling complex energy system dynamics.

These studies have progressively expanded the scope of uncertain parameters and metrics considered. From
early focuses on specific technology parameters (McJeon et al., 2011) to comprehensive analyses incorporating
numerous uncertainties: Woodard et al. (2023) examined 12 socioeconomic factors, Wessel et al. (2024) analyzed
11 transition-related parameters, and Campigotto etal. (2024) incorporated 107 parameters in their analysis. The
metrics evaluated have also broadened from single objectives like costs (McJeon et al., 2011) to multiple criteria
including emissions, economic impacts, and social factors (Campigotto et al., 2024; Wessel et al., 2024).

While this body of work has been instrumental in characterizing system behavior under uncertainty and
identifying key drivers, it has generally not aimed to support the explicit design of robust policy packages. In
particular, few approaches systematically explore how combinations of policy levers can be designed to prevent
unacceptable outcomes and manage trade-ofts across multiple objectives under deep uncertainty.

Within the broader Decision Making under Deep Uncertainty (DMDU) literature, Robust Decision Mak-
ing (RDM) has emerged as an iterative framework to identify decisions that remain effective across a wide range
of plausible futures, typically through vulnerability and trade-oft analyses (Paredes-Vergara et al., 2024). RDM
has been extensively applied in water and transport planning, with fewer applications to energy systems. For
instance, Groves et al. (2020) applied RDM to assess Costa Rica’s decarbonization strategy, Benavides et al. (2021)
evaluated carbon neutrality pathways in Chile, and Sridharan etal. (2019) studied the resilience of Eastern Africa’s
electricity sector. Earlier examples include Isley et al. (2013) exploring the political sustainability of emission
control policies and Popper et al. (2009) analyzing natural gas strategies for Isracl. These studies illustrate the
potential of RDM to inform energy policy, yet they typically focus on testing the vulnerability of predefined
strategies rather than systematically identifying policy combinations that maximize robustness across multiple
objectives.

Another prominent DMDU approach is Dynamic Adaptive Policy Pathways (DAPP), focusing on the de-
sign of adaptive roadmaps and sequences of actions that evolve over time in response to observed conditions
(Haasnoot et al., 2013). DAPP has proven particularly effective in long-term infrastructure and climate adapta-
tion planning, where the timing of interventions and the identification of adaptation tipping points are central.
Nonetheless, its application to macro-energy system transitions remains limited. This may be partly attributed
to the methodological challenges of embedding complex techno-economic system representations and large
combinatorial policy spaces—common in macro-energy systems—into flexible decision-making frameworks.
These characteristics complicate the construction of adaptive pathways in the energy domain, particularly when
the goal is to design robust policy packages rather than time-staged sequences of contingent actions. Moreover,
our approach also differs from DAPP in its conceptualization of robustness, focusing specifically on protection
against worst-case outcomes rather than adaptive flexibility.

At this point, it is important to clarify that robustness can be understood in different ways, each reflect-
ing a distinct approach to decision-making under uncertainty. As discussed in recent literature, three main
interpretations can be distinguished (Rodriguez-Matas, Linares, et al., 2024): Wald robustness, which seeks the
best-performing solution under the worst-case scenario (aligned with the Wald pessimistic criterion); sensitiv-
ity robustness, which focuses on finding the solution that is least affected by changes in uncertain parameters;
and Savage robustness, which aims to minimize regret across possible realizations of uncertainty (following
the Savage criterion). These interpretations are often confused in the literature, yet they imply different an-
alytical choices and policy priorities. In this study, we adopt a satisficing robustness perspective, specifically
grounded in Wald’s maximin criterion: our objective is to identify policy packages that prevent worst-case out-

*A comprehensive review of the literature is provided in detail in Appendix S.A.
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comes across multiple objectives, prioritizing the ability of energy transition policies to remain acceptable even
under the most adverse conditions.

Another important gap lies in the type of modeling frameworks used to analyze policy effects. Previous stud-
ies—relying on macroeconomic models (Campigotto et al., 2024) and integrated assessment models (IAM) like
GCAM (Wessel etal., 2024; Woodard etal., 2023)—offer valuable insights but differ substantially from energy sys-
tem optimization models in their analytical capabilities. Macroeconomic models focus on broader economic
impacts and social indicators, while IAMs provide aggregate representations of energy-economy-climate inter-
actions. Our approach, based on openMASTER (Rodriguez-Matas, Perez-Bravo, et al., 2024), a detailed energy
system optimization model, enables a granular analysis of the technology-specific implications of policy choices.
This comprehensive technological representation across the entire energy value chain allows us to evaluate how
policy packages shape the energy mix and associated technology pathways. This detailed insight is critical for
understanding the real-world consequences that policy choices could have on the evolution of the energy sys-
tem. For decision-makers, mapping these pathways is valuable not only to anticipate potential trade-offs and
synergies but also as a monitoring tool to track whether the system is following the expected transition tra-
jectory or deviating in ways that may require additional actions. While our framework focuses on the design
of robust policy packages rather than adaptive sequencing, this pathway-based analysis offers relevant informa-
tion that could support future policy adaptation—contributing to broader decision-support processes inspired
by approaches such as Dynamic Adaptive Policy Pathways (DAPP). Such insights are generally not accessible
through more aggregate modeling approaches. Compared to previous applications of exploratory modeling
with energy optimization models—such as Moksnes et al. (2019), which focused on electricity infrastructure and
two cost metrics—our approach leverages the full granularity of the model to map policy decisions to detailed
energy and technological transitions.

To address these gaps, this study makes the following contributions:

* We develop a systematic framework for designing robust policy packages across multiple energy tran-
sition objectives under uncertainty. The framework combines exploratory modeling with an iterative
Robust Decision Making (RDM) approach to systematically identify the combinations of policy levers
that offer balanced robustness across competing objectives. Exploratory modeling is used to explore
the space of uncertainties and policy options, informing the iterative selection of robust policy pack-
ages. The framework introduces a novel multi-metric robustness measure that guides decision-making
towards policies that prevent worst-case performance across a wide range of futures.

* We leverage the technological detail of energy system optimization models not simply to understand
policy effects but to operationalize the monitoring and management of energy transitions. By producing
explicit energy system pathways associated with robust policy packages, our framework enables decision-
makers to anticipate required infrastructure investments, detect deviations from planned trajectories,
and identify when adaptive interventions may be necessary. This practical forward-looking capability
supports active governance of the energy transition process.

* We demonstrate the application of this framework using openMASTER, an open-source energy system
optimization model, analyzing four key policy levers across six critical uncertainties affecting the energy
transition. Our results provide practical guidance for policymakers by identifying a robust policy pack-
age and its associated technological pathways for achieving multiple energy transition objectives.

Through these contributions, our work advances both the methodological approaches for analyzing energy
transition policies under uncertainty and the practical understanding of how to design robust policy portfolios
that effectively manage uncertainties while balancing multiple objectives.

The remainder of this chapter is structured as follows. Section 5.2 presents our novel decision support
method, detailing the systematic approach for designing robust policy portfolios that maximize protection
across multiple objectives under uncertainty. Section 5.3 applies this methodology to an illustrative case study
of the Spanish energy system, demonstrating how the framework can be used to evaluate and select robust
policy combinations, and analyzes the technological and energy pathways that emerge from implementing the
identified robust policies, providing detailed insights into the mechanisms through which these policies achieve
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their objectives. Finally, Section 5.4 discusses the broader implications of our findings for energy transition pol-
icy design and suggests directions for future research.

5.2 A NOVEL DECISION SUPPORT METHOD

We propose a systematic decision support method for designing robust policy portfolios that maximize robust-
ness across multiple objectives under uncertainty. This approach integrates energy system optimization with an
indicator-based decision method leveraging scenario discovery techniques to identify policy combinations that
mitigate adverse outcomes while revealing their underlying energy and technological mechanisms. The method
consists of four key steps, presented in Figure 5.1. The rationale, assumptions, and technical implementation
of each step—as well as the key concepts used—are detailed in the subsections that follow.

5.2.1 EXPERIMENTAL DESIGN

Our method is based on generating a diverse set of scenarios to systematically explore how uncertainties and
policy interventions shape energy transition outcomes. This large ensemble of scenarios provides the foun-
dation for identifying robust policy packages by assessing policy performance across a wide range of plausible
futures.

We follow the XLRM framework (Lempert et al., 2003) which structures the analysis around four key com-
ponents: Uncertainties (X), Policy Levers (L), Relationships (R), and Metrics (M).

* Uncertainties (X) represent external factors beyond the control of decision-makers that influence the
system, such as technological developments, fuel prices, or demand growth.

* DPolicy Levers (L) are the decisions available to shape system outcomes, including instruments like carbon
pricing, energy efficiency standards, or public transit promotion.

* Relationships (R) describe how uncertainties and policy levers interact within the system to influence
results. These relationships are modeled using an energy system optimization framework.

* Metrics (M) define the performance criteria used to assess outcomes, such as emissions, costs, or energy

dependency.

Typically, the definition of Uncertainties (X) and Policy Levers (L) in XLRM analysis is informed by ex-
pert judgment, literature insights, and stakeholder engagement to ensure relevance and completeness. Using
a full factorial design, we generate a large ensemble of scenarios representing all possible combinations of the
uncertainties and policies interventions under consideration.. This enables a comprehensive exploration of po-
tential futures and their implications for system performance, providing a solid foundation for assessing the
robustness of alternative policy packages.

The Relationships (R) component is operationalized through an energy system optimization model, which
computes least-cost system configurations for each scenario while satisfying technical and policy constraints.
The optimization problem is formulated as a cost minimization—including social costs such as emissions—but
it is not a multi-objective formulation. In our illustrative case study (described in Section 5.3), we use open-
MASTER (Rodriguez-Matas, Perez-Bravo, et al., 2024), an open-source energy system optimization model de-
signed for long-term strategic planning. Nevertheless, the proposed method remains compatible with other
optimization tools that offer comparable levels of technological detail and support large-scale scenario explo-
ration.

Metrics (M) are calculated ex-post based on the endogenous decision variables of the optimization model,
even if they are not directly included in the objective function. This allows the assessment of trade-ofts and the
evaluation of policy robustness across multiple dimensions such as emissions, costs, and energy dependency.
Further details on the optimization model are provided in the illustrative case study section.
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Figure 5.1: Flowchart of the proposed decision support method.
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5.2.2 CANDIDATE POLICY PACKAGE SCREENING

The first analytical step involves identifying the most influential policy levers P from an initial set P,, in order to
reduce the policy space and focus the robustness assessment on those levers most relevant for shaping transition
outcomes.

To achieve this, we perform a feature importance analysis to quantify how individual factors—both policy
levers and external uncertainties—contribute to variations in key system performance metrics. Building on the
approach described by Wessel et al. (2024), we adopt a Random Forest model (Breiman, 2001) combined with
normalized SHAP (Shapley Additive Explanations) values. SHAP values are chosen for their solid theoretical
foundation in cooperative game theory, allowing a fair allocation of the marginal contribution of each feature
to model predictions. Normalization ensures consistent comparison across features, enabling evaluation on a
common scale despite differing units or ranges.

Our use of Random Forest and SHAP values aligns with the broader exploratory modeling and scenario
discovery literature, as it leverages a large ensemble of scenarios to systematically explore how uncertainties
and policy levers shape system performance. While this differs from traditional scenario discovery methods
focused on extracting decision rules or vulnerability regions (e.g., PRIM), it serves a similar purpose: identifying
the most influential drivers of system outcomes and guiding the selection of candidate policies for robustness
assessment.

In this context, feature importance provides a first indication of each policy lever’s potential contribution
to robustness. By quantifying how strongly a policy influences performance metrics across the entire outcome
space, we identify levers that have a consistent and significant impact on key objectives. Policies with low feature
importance are unlikely to substantially improve system performance or prevent extreme outcomes, and can
therefore be deprioritized. Conversely, policies with high importance are retained as candidates because their
ability to shape system behavior suggests greater potential to enhance robustness in subsequent worst-case anal-
ysis.

This screening step is critical to our framework. It improves computational efficiency by narrowing down
the policy space and ensures that the iterative robustness assessment focuses on levers with real potential to con-
tribute to robust policy packages. Additionally, this step creates an opportunity for refining the experimental
design in future iterations, based on the identified key drivers.

5.2.3 ROBUST POLICY PACKAGE DESIGN

In deep uncertainty contexts, such as the energy transition, policy evaluation must go beyond average impacts
to assess their ability to mitigate adverse outcomes. This becomes even more critical when pursuing objec-
tives across multiple dimensions. While the feature importance analysis conducted during the screening phase
provides a first indication of effectiveness—Dby identifying policy levers that consistently influence system per-
formance across the outcome space—this is only a preliminary step. Assessing the worst-case robustness of
policies remains essential to designing robust policy packages.

Within this framework, policy levers are modeled as binary decisions, meaning that each policy is represented
by two discrete states. This binary structure does not necessarily refer to the mere existence or absence of a policy
but can also capture choices between two predefined levels of ambition (e.g., a higher versus lower carbon price).

To formalize this evaluation, we propose a Normalized Worst-Case Protection Indicator p,, ,», which quan-
tifies how much a policy lever improves the worst possible outcome for a given metric m. Here, protection is
defined as the extent to which activating a policy lever mitigates extreme negative outcomes compared to when
the policy is inactive. This measure focuses specifically on worst-case conditions rather than average perfor-
mance, ensuring that policies enhance system resilience under the most adverse scenarios. The Normalized
Worst-Case Protection Indicator p,,,, is computed as:

, ma),( Vm’pinactive’plll -, ma),( vm»pacrivesp,H
P'EP, p'#p  peP p'#p :
Ppm = such thatp,, , € [-1,1] (5.1)
’ max vy, ’
pep PPl

where:
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*  Max V..., is the worst-case outcome for metric m when policy p is inactive, considering all
p,EP, p,¢p »Pinactive-P

possible combinations of other policies p’.

* MAaxX V. p,u.p, IS the worst-case outcome for metric m when policy p is active, considering all pos-
p,EP, p,¢p >PactivesP )

sible combinations of other policies p’.

* The denominator term max Vinp!, 18 the worst-case outcome for metric m when policy p is active, con-
p'eP a

sidering all possible combinations of other policies p’.
Since this metric is normalized, it takes values in the range [-1, 1]:

* ppn > 0 — The policy reduces worst-case risks (protective eftect).

* ppm < 0 — The policy increases worst-case risks (vulnerability-inducing effect).

This normalization acknowledges the complex reality that activating a policy lever can have multidirectional
effects. A policy intervention might simultaneously mitigate worst-case outcomes in some metrics while po-
tentially introducing new vulnerabilities in others.

It is important to note that our conceptual approach is grounded in the worst-case criterion, consistent with
Wald’s robustness principle, as it directly focuses on minimizing extreme negative outcomes under deep uncer-
tainty. However, we acknowledge that relying strictly on worst-case values may introduce noise or instability,
especially in cases where extreme outcomes are driven by outliers or specific modeling assumptions. For such
situations, a practical alternative could be to compute protection based on high-percentile values (e.g., the 95th
percentile) instead of absolute worst-case outcomes. This would provide a more stable estimate of adverse im-
pacts while still capturing the tail behavior of the outcome distribution.

Assessing the normalized worst-case protection indicator for each policy lever and metric provides a prelim-
inary identification of trade-offs, which is crucial for designing a robust package of policy levers. However,
the analytical complexity increases exponentially as additional policy levers and metrics are incorporated or as
more ambiguous trade-offs emerge. Furthermore, policymakers’ preferences regarding the relative importance
of different metrics introduce an additional layer of complexity, as these preferences directly influence the pri-
oritization of policy measures in worst-case scenarios.

Given these challenges, the development of a comprehensive protection indicator becomes essential for a
decision-support framework aimed at designing robust policy configurations. Such an indicator would enable
a systematic comparison of policy effectiveness across multiple dimensions, facilitating the selection of policy
packages that offer strong performance under adverse conditions while balancing competing objectives.

To this end, we define an Aggregated Protection Indicator A, for each policy lever, which integrates its
performance across all relevant metrics:

Ap= D (@n-Ppm) VD EP\ Prctive, Y¥me M (5.2)
meM

where p), , represents the worst-case protection of policy p for metric m, and w,, is the weight reflecting the
policymaker’s preference for each metric, with 3}, w,, = 1. Itisimportant to note that vulnerabilities (negative
contributions) reduce the overall protection value. The Aggregated Protection Indicator A, provides a single,
weighted protection score for each policy lever, enabling a unified assessment of its performance across multiple
metrics.

The assignment of these weights depends on the policymakers’ priorities for protecting against worst-case
outcomes across different metrics. It is also important to consider the range and variability of each metric, par-
ticularly when normalizing results prior to aggregation. For example, a metric with the potential to exceed crit-
ical thresholds may justifiably receive a higher weight. Additionally, normalization can interact with weighting:
metrics with narrower ranges may exhibit proportionally larger normalized variations, potentially amplifying
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their influence relative to metrics with wider ranges. While our framework allows for flexible weighting to re-
flect policy priorities, it also makes this interaction transparent, enabling users to adjust weights accordingly if
needed.

While weighting provides a structured approach to incorporating stakeholder preferences for metric impor-
tance, our approach also enables the visualization of trade-offs between policy levers and performance metrics.
In particular, radar plots, as presented in the illustrative case study in the following section (Figures 5.5, 5.6,
and 5.7), provide a complementary means of examining the multidimensional effects of different policy con-
figurations, offering a more transparent representation of potential trade-offs.

Following this, the iterative selection process continues. The policy lever with the highest aggregated protec-
tion is added to the active policy package if its aggregated protection A, meets a minimum required threshold:

ml?x Ap 2 T'Threshold (S 3)

The threshold Trhyeshold Serves as a lower bound for the additional protection a new policy must provide to
justify its inclusion. By default, we suggest setting Trhreshold = 0, which implies that any policy offering net
positive protection is selected. Higher threshold values can reflect more demanding criteria, indicating that only
policies with a sufficiently strong marginal contribution to worst-case protection are included. This threshold
can be qualitatively interpreted as a proxy for the minimum acceptable improvement in system resilience under
worst-case conditions.

If a policy meets this criterion, it is activated, and a new iteration begins. In each iteration, the policy lever
with the highest aggregated protection A, is selected first, provided it exceeds the threshold Trhreshold- Once a
policy is added to the active package, the robustness evaluation is updated to reflect its fixed state. The remain-
ing policies are then reassessed based on the updated package of active policies, requiring a recalculation of their
normalized worst-case protection indicators. At this stage, only scenarios where the already activated policies

remain fixed in their active state are considered, reducing the number of scenarios from 2P t02P-P

ative g5 poli-
cies are activated and fixed in the package, where P,y is the number of activated policies and 2 represents
the binary state (active/inactive) of each policy lever. The iteration stops once no remaining policy meets the
threshold requirement, yielding a robust policy package that maximizes aggregate protection across all selected
metrics.

It is important to note that worst-case protection indicators are normalized using the original range of all
policy levers to maintain a consistent reference scale across iterations. This approach preserves the magnitude
of protection effects relative to the initial policy space, where all policy lever states were considered. Conse-
quently, protection values in subsequent iterations may exceed the [—1, 1] range, as they could reflect greater
(de)protection relative to this fixed reference. By maintaining this reference scale, we can meaningfully com-
pare the incremental protection offered by each policy lever across iterations and identify interaction eftects
that may be overlooked in isolated policy analysis.

5.2.4 MAPPING TECHNOLOGY AND ENERGY PATHWAYS

The final step of our methodology focuses on understanding how robust policy packages translate into specific
energy system transformations. By leveraging the detailed technological representation of the energy optimiza-
tion model, this analysis provides insight into how policy choices shape the energy mix, technology deployment,
and sectoral dynamics.

While the robustness assessment identifies which policy combinations prevent worst-case outcomes under
uncertainty, this step helps policymakers understand the mechanisms through which robustness is achieved.
Specifically, it allows us to trace how the robust policy package influences the deployment of key technolo-
gies, shifts in energy carriers, and structural changes in the energy system. For example, the analysis can reveal
whether robustness is primarily delivered through increased electrification, the diversification of energy sources,
or the adoption of specific technologies.

This pathway mapping is relevant for decision-makers because it helps anticipate system-level consequences
of policy packages, identify potential implementation challenges, and monitor whether the energy system is
evolving as expected. By tracking how the energy sector changes over time, policymakers can assess whether the
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transition aligns with strategic objectives and design adaptive mechanisms if deviations occur. Additionally,
the analysis highlights possible barriers or synergies between technologies, offering guidance on complementary
policies needed to support the robust package’s effective implementation.

Rather than serving purely as an illustration, this step enhances the decision-support process by translating
abstract policy combinations into concrete system-level changes, providing valuable information for monitor-
ing, adjustment, and strategic planning during the energy transition.

5.3 AN ILLUSTRATIVE CASE STUDY

In this section, we present an illustrative case study to showcase the practical application of the decision support
method outlined in this chapter. By applying the steps of our approach, we demonstrate how the method can
be used to evaluate and design robust policy portfolios under uncertainty. This case study serves to highlight the
effectiveness of the method in a real-world context, providing insights into its utility for policymakers aiming
to navigate complex decision-making processes in energy system planning and policy design.

5.3.1 EXPERIMENTAL DESIGN

The experimental design for this illustrative case study explores the interaction between four key policy inter-
ventions and six critical external uncertainties affecting the energy transition. In this study, since the focus is on
methodological development and the case study is illustrative, uncertainties and policy levers were defined by
the research team based on expert knowledge and existing literature. The policy levers represent distinct policy
options currently under debate or implementation in many energy systems:

¢ Carbon pricing policy — Moderate versus high carbon price level applied to energy-related emissions.

* Urban mobility transition policy — Compares a limited intervention versus a strong modal shift toward
public and active transport, combined with measures to reduce urban mobility demand (e.g., remote
working programs, last-mile logistics solutions, and delivery optimization).

* Building energy efficiency policy — Contrasts moderate retrofitting programs with ambitious large-scale
building renovation strategies aimed at improving energy efficiency.

* Industrial decarbonization pathway policy — Compares pathways prioritizing electrification of indus-
trial processes versus those favoring the deployment of renewable gases as decarbonization vectors. For
this policy, a preference for higher electrification over renewable gas adoption will be considered as the
“active” level.

These policies are combined with uncertainties related to future energy demand patterns, technology costs,
and fuel prices:

* Residential and Service demand — Uncertainty in building stock and commercial space by climatic zone,
driven by urbanization and demographic trends.

* Transport demand — Uncertainty in passenger and freight volumes due to population shifts and eco-
nomic activity.

* Industrial growth — Uncertainty in industrial output influenced by economic trends, automation, and
trade.

* Fossil fuel prices — Market-driven fluctuations in coal, oil, and gas prices.

* Electrification technology costs — Uncertainty in EVs and heat pump costs due to learning curves and
material constraints.

* Renewable technology costs — Uncertainty in wind, solar, and storage costs driven by technological
progress, material availability, and social acceptance.
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A full factorial design is applied, resulting in 1,024 scenarios (219 representing all possible combinations of

binary levels for policy levers and uncertainties’.

Policy levers

) . Buildin Industrial
Carbon price Urban mobility . B
efficiency pathway
Active Active Active Active
Inactive Inactive Inactive Inactive

External uncertainties

' . e Renewable
Transport Industrial Fossil fuel Electrification
R&S demand ) technology
demand growth prices technology costs
costs
High High High High High High
Low Low Low Low Low Low

Figure 5.2: Summary of Policy Lever (L) and External Uncertainty (X) levels explored in the 2'°=1,024 scenarios.

It is important to note that this exploratory modeling exercise is designed to assess the robustness of differ-
ent policy combinations under uncertainty, rather than to evaluate their direct cost-effectiveness. Therefore,
the direct costs of implementing specific policy measures—such as subsidies for building retrofitting or invest-
ments in public transport infrastructure—are not explicitly included in the model. These costs are considered
exogenous to the energy system optimization, which focuses instead on the endogenous system responses to
the presence or absence of each policy lever under multiple uncertain futures. The aim is to understand how
different strategies perform across a wide range of plausible conditions, rather than to determine their financial
teasibility or prioritize them based on implementation cost.

The Spanish national energy system serves as our case study, offering an ideal testing ground due to its diverse
energy mix, abundant renewable resources, and ambitious decarbonization policies. While specific to Spain,
the qualitative insights from this analysis may inform similar energy systems facing complex transitions under
uncertainty. Generalizing results to other contexts should, however, consider structural differences in energy
systems and policy environments.

The analysis employs openMASTER, an open-source strategic energy planning model (Rodriguez-Matas,
Perez-Bravo, et al., 2024), to evaluate system performance across multiple metrics:

¢ Cumulative CO; emissions (2020-2050) — Cumulative carbon dioxide emissions from energy use over
the study period, expressed in MtCO».

* Air quality impacts (2020-2050) — Cumulative emissions of regulated air pollutants (NOy, S Oy, and
PM;s).

* Cumulative energy transition costs (2020-2050) — Total system costs including investments, fuel ex-
penditures, and operation and maintenance costs, expressed in net present value using a social discount
rate

b A detailed description of the experimental design is provided in Appendix 5.B.
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* Energy dependency in 2050 — Defined as the share of primary energy supply met through imports from
outside the national territory.

While not exhaustive, these metrics represent a balanced mix of environmental, economic, and energy secu-
rity objectives commonly considered in energy transition planning. They provide a suitable set for demonstrat-
ing the method’s capacity to navigate trade-offs and support robust policy design.

Itis important to clarify that, while security of supply is not included as an explicit output metric in this set,
itis nonetheless accounted for within the optimization framework. In particular, the model penalizes unserved
energy—representing situations where supply cannot meet demand—through the inclusion of an Ezergy Not
Supplied (ENS) variable with a very high cost. This penalty reflects the substantial social and economic impacts
associated with supply shortages, in line with standard practices in power system planning. By doing so, the
model strongly discourages solutions that result in supply interruptions, thereby ensuring that energy security
considerations are embedded within the optimization process. Although this approach does not generate an
output indicator such as "loss of load expectation” or "hours of supply shortage,” it implicitly enforces a high
level of supply adequacy across scenarios.
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Figure 5.3: Distribution of metrics across the 1024 scenarios: Violin plots with percentile ranges. Each subplot shows the
distribution of a specific metric, with quartile and mean values as depicted by the boxplot.

Figure 5.3 illustrates the distribution of performance metrics across all scenarios, revealing the considerable
variability in potential outcomes. The violin plots, enhanced with percentile ranges, demonstrate how differ-
ent combinations of policy levers and uncertainties shape key transition metrics. This visualization underscores
the importance of robust policy design, as it shows how different policy combinations can lead to significantly
different outcomes. Notably, the distribution of energy dependency in 2050 displays a near-binary pattern,
indicating that certain policy combinations shift the system between two distinct regimes—either a high re-
liance on imported energy or a predominantly domestic energy supply. This highlights the system’s sensitivity
to specific levers and the potential for policies to fundamentally alter long-term strategic dependencies.

5.3.2 CANDIDATE POLICY PACKAGE SCREENING

The analysis of the 1,024 scenarios reveals distinct patterns in how policy levers and uncertainties influence key
energy transition metrics. Figure 5.4 presents the feature importance analysis based on SHAP values, providing
a quantitative assessment of the relative contribution of each policy lever to the outcomes.

Carbon pricing emerges as the dominant driver across multiple dimensions, being the highest influence on
CO; and NO; emissions, transition costs, and energy dependency. This finding underscores its central role
in shaping system-wide decarbonization dynamics. Notably, for air quality indicators such as S O and PM> 5
emissions, while carbon pricing remains a significant determinant, industrial growth emerges as the primary
driver, highlighting the sector-specific nature of certain environmental impacts.
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Urban mobility policies also play a critical role, particularly in determining transition costsand CO and S Oy
emissions. Their strong feature importance suggests that interventions in the transportation sector significantly
shape both economic and environmental outcomes.

Among the policy levers analyzed, Building energy efficiency and Industrial decarbonization pathways ex-
hibit limited influence on achieving the modeled objectives. Their low feature importance suggests that, within
the current scenario framework, they contribute minimally to shaping transition outcomes on average. Based
on this preliminary screening, these policy levers could be excluded from further analysis to streamline the se-
lection of a robust policy package. However, for this illustrative case study, we retain them to ensure a broader
policy space for robustness evaluation, allowing a more comprehensive assessment of potential synergies and
interactions among policies.
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Figure 5.4: Heatmap of normalized SHAP values for each metric. The heatmap visualizes the normalized SHAP values,
which represent the relative importance of each feature in predicting the outcome for each metric. The color
intensity reflects the magnitude of the impact each feature has on the Random Forest model’s predictions,
with higher values indicating greater importance.

5.3.3 ROBUST POLICY PACKAGE DESIGN

To assess the robustness of policy options, we begin by calculating the normalized worst-case protection p,,
for each policy lever and corresponding metric in the first iteration. Figure 5.5 provides a comprehensive vi-
sualization of these measures, illustrating the trade-ofts involved in applying the four policy levers across the
different metrics.

Carbon pricing emerges as a highly influential individual policy lever, providing robust protection, particu-
larly for emissions-related metrics, including CO», NOy, and S Oy, and energy dependency. However, under
worst-case conditions, this intervention can lead to the highest levels of system costs and particulate matter
(PM> 5) emissions. This increase in PM> 5 emissions could occur primarily due to the carbon pricing mech-
anism incentivizing a scenario with a significant shift towards biomass—while biomass is carbon-neutral, its
combustion typically generates higher particulate matter emissions compared to alternatives like natural gas.
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Figure 5.5: Normalized worst-case protection of policy levers on metrics for the first iteration. Higher values indicate
greater protection across all metrics.

This unintended consequence reveals the potential of a single policy to introduce new vulnerabilities, high-
lighting the critical importance of a multi-metric analytical approach.

Similarly, higher system costs under worst-case conditions reflect the significant economic effort required to
decarbonize the energy system in adverse scenarios. This cost increase is primarily associated with the rapid de-
ployment of low-carbon technologies and infrastructure adjustments necessary to comply with carbon pricing
constraints, as well as the explicit accounting for higher social costs of carbon emissions.

Urban mobility improvement shows a more balanced protective effect across metrics. This policy lever pro-
vides safeguarding capabilities for transition costs, CO» emissions, and energy dependency. Its ability to en-
hance the worst-case affordability of the transition underscores its strategic versatility, making it a potential
complement to carbon pricing strategies.

Building energy efficiency and industrial pathway policies exhibit similar protection patterns, characterized
by moderate protective intensity across most metrics. A nuanced observation emerges from the analysis: while
carbon pricing and urban mobility improvements show some complementary effects in mitigating worst-case
scenarios, the protective coverage of building efficiency and industrial policies is encompassed within the pro-
tective range of urban mobility. This suggests urban mobility is the dominant policy lever among these three
in terms of worst-case protection, with the potential to enhance carbon pricing effectiveness.

To calculate the Aggregated Protection for each policy lever, we first define the weights that reflect policy-
makers’ relative priorities for protecting against worst-case scenarios across different metrics. For this case study,
the distribution of metrics, as shown in Figure 5.3, would be analyzed to identify which metrics may exceed
undesirable thresholds or exhibit high variability. However, since these weights ultimately depend on the poli-
cymakers’ preferences and the specific context of each case study, we have decided to assign equal importance to
the four groups of metrics—cost, dependency, CO; emissions, and air quality—for this illustrative case study.

Given that air quality is represented by three distinct metrics (NOy, S Oy, and PM> 5 emissions), we allocate
the total weight for air quality equally across these three metrics by adjusting the weight for air quality to one-
third for each type of emission. Consequently, the relative weights for each group of metrics are as follows: 1
for cost, 1 for dependency, 1 for CO; emissions, and § for air quality (with each air quality metric receiving 3

of the air quality weight), as presented in Table 5.1.
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Table 5.1: Metric weights used for the protection evaluation.

Cost Dependency CO, NO, SO, PMjs
Weights 0.25 0.25 0.25 0.083 0.083 0.083

According to these weights, the aggregated protection indicators for each policy lever are:

Table 5.2: Aggregated protection indicators for each policy lever in iteration 1.

Policy Lever Aggregated Protection
Buildings energy efficiency -0.082920
Carbon pricing 0.333333
Industrial decarbonization pathway —0.144 359
Urban mobility improvement 0.163 007

According to Table 5.2, negative values of the aggregated protection indicator for Building energy efficiency
and Industrial decarbonization pathway indicate that, under worst-case conditions, activating these policy
levers increases the system’s exposure to adverse outcomes rather than reducing it. This occurs when the neg-
ative contributions of the policy—i.e., increased worst-case outcomes in one or more metrics—outweigh its
protective effects in the aggregated calculation, considering the weights assigned to each metric.

Meanwhile, the policy lever offering the highest aggregated protection in Table 5.2 is Carbon pricing, and
since its value exceeds the threshold Trhreshold > 0, it is selected as part of the active policy package.

Following the decision algorithm illustrated in Figure 5.1, the process enters the second iteration. In this
iteration, we recalculate the worst-case protection parameters (presented in Figure 5.6), considering only the
subset of 512 scenarios where Carbon pricing is active.

Energy dependency 7 Energy transition cost Policy Levers

T Buildings energy efficiency
2 Industrial decarbonization pathway
Urban mobility improvement

Cumulative CO2 emissi : 4 ‘Cumulative PM 2.5 emissions

Cumulative NOx emissions Cumulative SOx emissions

Figure 5.6: Normalized worst-case protection of policy levers on metrics for the second iteration. Higher values indicate
g p policy g
greater protection across all metrics.

It is worth highlighting how the additional protection provided by policy levers changes when we consider
them as additional candidates for a policy package where policy levers are already active. Compared to the
worst-case protection presented in Figure 5.5, where Buildings energy efficiency and Industrial decarbonization
pathways were both completely contained within the area of Urban mobility improvement—suggesting the
latter was dominant in providing worst-case protection—we now see that Building energy efficiency provides
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greater protection in certain metrics (energy dependency and NO, emissions) than Urban mobility improve-
ment when these policies are considered in combination with Carbon pricing. This reveals the importance of
considering policy lever combinations when evaluating their impacts, rather than considering them individu-
ally, as their behavior may not be linear when combined, potentially presenting effects that amplify or reduce
individual impacts.

Calculating the aggregated protection of each policy lever for the second iteration:

Table 5.3: Aggregated protection indicators for each policy lever in iteration 2.

Policy Lever Aggregated Protection
Buildings energy efficiency 0.056117
Industrial decarbonization pathway -0.034 362
Urban mobility improvement 0.159531

Results from the second iteration reveal a notable shift in policy robustness, as presented in Table 5.3. Build-
ing energy efficiency, when combined with Carbon pricing, demonstrates positive additional protection—a
reversal from its negative aggregated protection in the first iteration (Table 5.2).

This result highlights the importance of analyzing policies in combination, as some may only provide protec-
tion when implemented alongside complementary interventions. The iterative structure of the method cap-
tures these dynamics, showing that policies initially performing poorly in isolation can contribute positively
once certain robust policies are in place—or, conversely, that some policies may lose protective value depend-
ing on the evolving policy package.

In this iteration, Urban Mobility Improvement emerges as the policy lever with the highest aggregated pro-
tection, exceeding the threshold value of 0, and is consequently incorporated into the active policy package
alongside Carbon price.

Following the algorithm described in Figure 5.1, the process proceeds to the third iteration. In this step,
worst-case protection indicators are recalculated for the remaining policy levers and metrics, as presented in
Figure 5.7. As previously discussed, normalized worst-case protection values may extend beyond the [~1, 1]
range, since normalization is referenced to first-iteration worst-case protection to maintain a consistent scale for
comparative analysis. This is evidenced in PM> 5 emissions, where protection values fall below -1, indicating
that policy combinations generate effects that amplify vulnerability beyond individual policy impacts. Such
outcomes highlight significant interaction effects that are not discernible when policies are analyzed in isolation.

Energy dependency Energy transition cost Policy Levers
: e Buildings energy efficiency
Industrial decarbonization pathway

Cumulative CO2 emissions - - } 'Cumulative PM 2.5 emissions

Cumulative NOx emissions Cumulative SOx emissions

Figure 5.7: Normalized worst-case protection of policy levers on metrics for the third iteration. Higher values indicate
greater protection across all metrics.
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The aggregated protection results shown in Table 5.4 indicate that neither of the remaining policy levers
provides positive additional protection. Consequently, the policy package that maximizes protection against
worst-case outcomes consists of the combination of Carbon pricing and Urban mobility improvement.

Table 5.4: Aggregated protection indicators for each policy lever in iteration 3.

Policy Lever Aggregated Protection
Buildings energy efficiency -0.007 660
Industrial decarbonization pathway -0.220 368

5.3.4 MAPPING TECHNOLOGY AND ENERGY PATHWAYS

This final step analyzes how the robust policy package—carbon pricing and urban mobility improvement—translates
into specific technological and energy system transformations. While the previous steps focused on identifying
which policy combinations prevent worst-case outcomes across multiple objectives, this analysis shifts the focus
toward understanding how those robust outcomes are achieved in terms of system-level changes. Specifically,

we examine the technological pathways associated with scenarios in which the robust policy package is active.

It is important to clarify that the analysis here does not assess the robustness of individual technologies
across alternative policy combinations. Instead, it evaluates the system’s technological response to residual
uncertainty—that is, the uncertainty that remains after fixing the robust policy package. This residual un-
certainty stems from unresolved external factors (e.g., fuel prices, demand levels, technology costs) and from
endogenous interactions not fully controlled by the policy levers. By exploring the variability in outcomes
across these scenarios, we assess whether key decarbonization trends—such as electrification or renewable pen-
etration—emerge consistently under the robust policy package, or whether certain technological dimensions
remain highly sensitive to external conditions.

The analysis of primary energy consumption (Fig. 5.8) shows a consistent shift towards renewable energy
sources across scenarios. Both solar and wind expand significantly, with both technologies exhibiting high vari-
ability—close to 200 TWh—Dby 2050 across scenarios. This level of variability may reflect the system’s flex-
ibility to meet decarbonization targets through different renewable mixes and could indicate potential com-
plementarity between solar and wind, as the system adjusts their deployment in response to how uncertainties
unfold.

Biomass consumption remains remarkably stable around 200 TWh by 2050, indicating that its role is struc-
turally robust within the transition, likely reflecting its importance in hard-to-electrify sectors. In contrast,
natural gas exhibits significant variability in the medium term but declines sharply by 2050, reflecting the con-
sistent long-term pressure the policy package exerts on phasing out fossil fuels.

Final energy consumption (Fig. 5.9) patterns reveal electrification as a stable and robust outcome of the
policy package, characterized by consistent growth and low variability across scenarios and years. Hydrogen
demand increases notably from 2040 onwards, suggesting that while not explicitly targeted by the policies,
hydrogen emerges organically as a robust component of the decarbonization pathway in later stages.

The analysis of energy conversion technologies (Fig. 5.10) further confirms the system’s flexibility observed
in the primary energy mix, with renewable capacity deployment—particularly solar and wind—showing high
variability by 2050, reflecting the ability to adapt to different scenario conditions. Notably, bioenergy infras-
tructure—such as biogas and biomethane upgrading facilities—exceeds SO TWh by 2050 in most scenarios.
This indicates that the robust policy package creates conditions that naturally support alternative fuels where
direct electrification may be challenging.

End-use technology adoption (Fig. 5.11) shows distinct patterns emerging from our policy package. Electric
vehicles (EV) follow an S-curve pattern, with rapid growth in the 2030s (from approximately 40% to 80% adop-
tion) reaching near-complete penetration by 2050. In contrast, heat pump adoption shows greater variability,
particularly in 2040, ultimately reaching around 60% penetration by 2050. This more moderate and variable
adoption rate suggests that the transformation of the building sector responds differently to our core policies
compared to transport electrification. The larger deployment of electric vehicles compared to heat pumps is
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Figure 5.8: Temporal evolution of the distribution of primary energy consumption results in scenarios corresponding to
the active package of robust policies.
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Figure 5.9: Temporal evolution of the distribution of final energy consumption results in scenarios corresponding to the
active package of robust policies.
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Figure 5.10: Temporal evolution of the distribution of conversion energy capacity results in scenarios corresponding to
the active package of robust policies.
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Figure 5.11: Temporal evolution of the adoption of electric vehicles (EVs) and heat pumps in scenarios corresponding to
the active package of robust policies. Each line represents a scenario, with the dark-colored line representing
the mean across scenarios.

likely influenced by the Urban mobility improvement policy, which has a direct impact on the transportation
sector.

This pathway analysis provides valuable information for policymakers by:

* Confirming which system-level transformations are robust and where residual uncertainties
generate variability: Large-scale electrification of final energy demand emerges as a robust outcome of
the combined carbon pricing and urban mobility policies, consistently observed across scenarios despite
uncertainty. This reinforces electrification—particularly in the transport sector—as a cornerstone of
Spain’s energy transition. In contrast, significant residual variability remains in the balance between
solar and wind capacity by 2050, indicating that both technologies will expand, but their relative shares
may depend on how specific uncertainties unfold.

* Identifying critical sectors or technologies that may require additional policy support: The
residential sector stands out as an area where electrification outcomes are more sensitive to uncertainty.
While electric vehicle adoption follows a consistent and robust trajectory across scenarios, heat pump
deployment—critical for decarbonizing buildings—exhibits greater variability. This suggests that, under
the current policy package, residential electrification may not be sufficiently robust, highlighting the
potential value of exploring complementary or more targeted measures to reinforce outcomes in this
sector.

* Enabling monitoring of transition pathways to ensure alignment with strategic goals: Partic-
ular attention should be given to the phasing out of natural gas and the evolving role of biomass and
hydrogen. Monitoring these elements over time will be essential to assess whether the energy system
is progressing as expected or if adaptive policy adjustments are needed to stay on track with long-term
decarbonization objectives. This use of pathway information complements elements of the Dynamic
Adaptive Policy Pathways (DAPP) framework, particularly its emphasis on monitoring system evolu-
tion and identifying conditions under which additional actions may be required.

Rather than serving merely as an illustration, this analysis enhances the decision-support process by trans-
lating the robust policy package into concrete and monitorable energy system pathways.
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S.4 CONCLUSIONS

This study presents a systematic decision support framework for designing robust energy transition policy
packages under deep uncertainty. The approach complements existing uncertainty-informed decision support
methods by aligning with core principles of Robust Decision Making (RDM)—multi-objective evaluation,
iterative refinement, and explicit consideration of deep uncertainties.

The framework advances robustness analysis by quantifying how policy packages protect against extreme
adverse outcomes across multiple metrics. This enables decision-makers to identify not only which policies are
robust individually but also how they interact, generate trade-offs, or reinforce each other when confronted
with uncertainty. The iterative algorithm progressively builds the robust policy package by selecting policy
levers based on their marginal contribution to worst-case protection.

A key strength of the framework is its ability to translate abstract policy combinations into concrete tech-
nological and sectoral pathways, providing insight into the mechanisms through which robustness is achieved.
By leveraging detailed energy system optimization models, the method supports strategic planning, implemen-
tation monitoring, and adaptive management by mapping technology deployment, energy mix evolution, and
sector-specific transitions.

The illustrative application to the Spanish energy system demonstrates the practical value of the framework.
Spain provides a relevant test case due to its diverse energy mix, ambitious decarbonization targets, and signif-
icant renewable resource potential—characteristics shared by many countries undergoing similar transitions.
The case study shows how the method identifies robust policy packages—specifically, a combination of carbon
pricing and urban mobility improvements—and reveals their technological implications. While the primary
contribution of this chapter is methodological, the qualitative insights from the Spanish case may be transfer-
able to other energy systems facing comparable challenges.

Several promising avenues for future research emerge. First, while the framework focuses on worst-case pro-
tection, exploring alternative robustness criteria—such as percentile-based approaches—could enhance its flex-
ibility. Second, extending the method to incorporate multi-level policy levers would enable analysis of how vary-
ing levels of policy ambition affect robustness, moving beyond binary formulations. Third, explicitly modeling
policy sequencing and timing could improve implementation strategies. In this regard, future extensions could
explore synergies with the Dynamic Adaptive Policy Pathways (DAPP) framework, particularly by leveraging
our method’s ability to monitor energy system trajectories under uncertainty as a basis for designing dynamic
policy sequences. Fourth, incorporating additional metrics—such as social impacts, distributional eftects, and
just transition considerations—would broaden the assessment scope. Finally, future applications could inte-
grate stakeholder engagement to co-define objectives, policy options, and uncertainties, while refining trade-
offs and enhancing policy relevance.

In conclusion, this chapter provides a practical, transparent, and systematic framework for designing robust
energy transition policies under deep uncertainty. By combining multi-metric robustness assessment with de-
tailed technological representation, the method offers actionable insights for policymakers tasked with manag-
ing complex energy system transformations. Beyond energy, the framework holds potential for application in
other domains where uncertainty, complexity, and multi-objective decision-making converge.
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APPENDIX 5.A: LITERATURE REVIEW APPLICATION OF EXPLORATORY MODELING METHODS TO ENERGY-RELATED MODELS

Table 5.5: Review of application of Scenario Discovery methods to Energy Planning models

Authors Model Method Uncertain parameters Application Metrics
Gerst et al. ENGAGE Multidimensional scenario discovery 200 simulations representing 4 scenarios (baseline  Annual household
(2013) (Agent-based  first uses hierarchical clustering of stochastic realizations. Predictor and carbon tax w/ consumption and
model) model simulations to identify groups  variables: relative efficacy of R&D, difterent policies) levelized annual
with similar outcomes over multiple  technology innovation, technology carbon emissions
attributes. These serve as candidate experience per household
scenarios that, in a second step, are
turther refined using classification
and regression tree (CART) analysis
to identify common scenario drivers.
Moksnesetal.  OSeMOSYS  Clustered into groups using a 324 scenarios: (1) electricity demand, ~ South American Two cost
(2019) South Gaussian mixture model (GMM). (2) fossil fuel price, (3) renewable electricity dimensions (capital
America Base  Then, what key determinants best technology learning curves, (4) infrastructure. and variable costs)
(SAMBA) explain the cost parameters of each discount rate (cost of capital), (5) 2013-2063 period

group, by using the Patient Rule
Induction Method (PRIM)

COs-emission cap and (6) the effects
of climate change on hydropower
(water availability). Between 2 and 3
levels

Continued on next page
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Table 5.5 - continued from previous page

Authors Model Method Uncertain parameters Application Metrics
Sahlbergetal.  OnSSET, the 1. Generate data from a simulation 1944 electrification simulations were  Electrification of Average electricity
(2021) Open Source  model 2. Use Patient Rule Induction  constructed for Burkina Faso froma  Burkina Faso LCOE
Spatial Elec- ~ Method (PRIM) to identify combination of seven input levers: 1.
trification candidate scenarios: 3. Choose the Solar PV cost; 2. Grid electricity
Tool. scenario or set of scenarios with high ~ generation cost; 3. Short-term grid
GIS-based quality measures expansion limit; 4. Discount rate
(cost of capital); 5. Mini-grid policy
environment; 6. Demand levels; 7.
Grid-extension strategy
Woodardetal. GCAM CART analysis 4,096 scenarios by varying 12 Global Solar and wind
(2023) different socioeconomic factors at decarbonization generation in 2050

high and low levels: Fossil fuel costs,
Emissions, Bioenergy constraint,
Nuclear costs, Carbon capture and
storage (CCS), Wind & solar
backups, Wind storage costs, Wind
tech costs, Solar storage costs, Solar
tech costs, Energy demand,
Electrification

Continued on next page
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Table 5.5 - continued from previous page

Authors Model Method Uncertain parameters Application Metrics

Campigotto Eurogreen Sensitivity analysis and Random 16,000 simulation runs. In each Just transition 4 criteria: (1)

etal. (2024) model: Post-  Forests simulation, 107 parameters are applied to France: reducing
Keynesian randomly drawn from a wide range of  What policy greenhouse gas
economic possible values (given distribution): combinations can emissions; (2)
theory; warming scenarios, carbon tax, reduce carbon reducing income
combines output constraints, depreciation rate  emissions while inequality (Gini
system of fixed capital, working hours per promoting income  coefficient of net
dynamics year, pension-to-wage, etc. equality income); (3)
and reducing emissions
stock-flow and inequality; (4)
consistent reducing emissions
methods and inequality while

increasing GDP
McJeonetal. ~ GCAM First, set a threshold (cost exceeds 768 runs, based on 384 different Global Searches for a

(2011)

80th percentile), and then PRIM

combinations of assumptions about
the future performance of
technologies (solar, wind, CCS,
nuclear, buildings, transportation
and industry) and two CO,
stabilization goals.

combination of a
small number of
technology
assumptions that
best explain these
high-cost cases

STT

Continued on next page
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Table 5.5 - continued from previous page

Authors Model Method Uncertain parameters Application Metrics
de Wildtetal.  (Not First, EMA (Exploratory Modelling Resource level of the entire Development of Conflict between
(2020) specified) and Analysis). Second, Patient Rule population, education, suitable decentralised energy  Trust and Thought
Agent-based  Induction Method (PRIM) housing for decentralised energy systems. Potential
model production. occurrence of
energy capability
conflicts (life and
bodily integrity,
emotions, senses,
trust, etc.) between
households in one
type of
neighbourhood
Wessel et al. GCAM Random Forest 5,760 scenarios: emissions constraint;  Global energy Electricity price;
(2024) land use change emissions sinks; transition under electricity share in
population and GDP; institutional national emissions final energy;
factors; wind and solar capital costs;  pledges stranded assets;
direct air capture cost; advanced capacity
hydrogen; industry energy efhiciency; investments; energy
buildings energy efficiency; transport burden; level CO;

electrification; climate impacts on
demand.

removal; land use
change emissions

Continued on next page
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Table 5.5 - continued from previous page

Authors Model Method Uncertain parameters Application Metrics
Sasse et al. EXPANSE Modeling to Generate Alternatives 5,090 alternative cost-effective European regional Regional electricity
(2023) electricity (MGA), tree-based ensemble scenarios representing a narrow range  interdependencies system
system model  method. Extraltees, a method to of cost-optimal and nearly of cost-effectively infrastructure
quantify the interactions of inputsin  cost-optimal scenarios, with implementing capacities,

models (assess the relative importance
of individual regional and EU targets
toward the variance of regional
electricity system infrastructure,
emissions, and costs). PRIM to
quantify specific ranges of regional
electricity system infrastructure
capacities, GHG emissions, and total
system costs associated with specific
regional targets. Marginal effects:
quantify the marginal effect of
individual regional and EU targets on
regional electricity system
infrastructure, GHG emissions, and
total system costs

alternative implementations of
electricity system infrastructures and
targets

European electricity
sector targets for
renewable electricity
and GHG emissions
in 2035

greenhouse gas
emissions, and total
system costs
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5 Designing robust energy policy packages under deep uncertainty: A multi-metric decision support framework

APPENDIX S.B: EXPERIMENTAL DESIGN

We designed a comprehensive methodological framework that combines energy system optimization modeling
with scenario discovery techniques. This section describes our experimental design using the XLRM frame-
work, which offers a systematic way to evaluate the interplay between key elements that shape the outcomes of
policy decisions, especially under conditions of deep uncertainty. It is particularly suited for studying the com-
plexities of energy systems, where numerous factors, ranging from market dynamics to socioeconomic changes
and technological innovation, interact over extended time horizons.

The specific data used to construct the experimental design are provided in the Excel file Experimental_Design.xlsx,
provided as an electronic supplementary file of the published manuscript on which this chapter is based. This
file contains the precise values used to define the binary states—active/inactive for policy levers and high/low
for uncertainties—as well as the detailed values of all parameters involved in the analysis. The table specifies
the parameter name, values by year (e.g., y2020, y2025, ..., y2050), or a constant value labeled as y0000 in the
case of time-invariant parameters. The Excel file also documents sources, references, and assumptions used to
define parameter values, where applicable.

UNCERTAINTIES (X)

These represent external factors beyond the control of policymakers but which have significant impacts on the
system. In our analysis, these uncertainties span various domains:

Residential and Service demand (R&S): Measured by the number of dwellings (for residential) and com-
mercial surface (for service) by climatic zone (Mediterranean, Atlantic, and Continental). For residential, fur-
ther disaggregated by dwelling type (single-house and block). This uncertainty arises from urbanization pat-
terns, population shifts, housing type preferences, and evolving commercial trends.

Transport demand: Number of passengers (in millions) in urban and rural areas, and freight demand (in
millions of tons). Mobility demand reflects shifts in population distribution, economic activity, and freight
logistics.

Industrial growth: Industrial growth for all subsectors. Industrial activity is influenced by global and re-
gional economic trends, advancements in automation, and shifting trade patterns.

Fossil fuel prices: Correlated fluctuations in coal, oil, and gas prices caused by market dynamics and geopo-
litical factors.

Electrification technology costs: Capital costs for electrification technologies such as electric vehicles
(EVs) and heat pumps are influenced by learning curves, material availability, and geopolitical factors.

Renewable technology costs: Capital costs for wind (onshore and offshore), photovoltaics (PV), and bat-
tery storage technologies are driven by technological advancements and maturity, influenced by material con-
straints, geopolitical issues, land use policies, and societal acceptance of infrastructure projects.

LevERs (L)

These are policy instruments and interventions that decision-makers can deploy to shape outcomes. For this
study the following are considered:

Carbon price policy: Changes in CO, emissions prices are driven by policies such as raising (or reducing)
the price or cap of emissions in carbon markets.

Urban mobility transition: Changes in passenger demand across urban and rural environments for urban
(short-)distance and the maximum allowed annual modal shift (e.g., from private vehicles to buses or metros).
Policies like low-emission zones (LEZs), work-from-home (WFH) programs, and investments in public trans-
port redefine these mobility patterns.

Building energy efficiency: Improvements in the number of energy-efficient dwellings by type (single-
house and block) and climatic zone (Mediterranean, Atlantic, and Continental), driven by policies such as
building retrofit incentives, energy performance standards, and subsidies for energy-efficient renovations.

Industrial decarbonization pathway: Decision-makers face trade-offs between electrification and hydro-
gen adoption for industrial processes. Support mechanisms such as production tax credits for green hydrogen
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Appendix 5.B: Experimental Design

or incentives for electrification technologies can tip the balance toward one pathway or another, with scenar-
ios representing varying levels of electrification and hydrogen penetration across industrial subsectors. For this
policy, a preference for higher electrification over hydrogen adoption will be considered as the “active” level.

REeLATIONSHIPS (R)

These are the interconnections within the system that translate the impacts of uncertainties and levers into
measurable outcomes. This study has been conducted within openMASTER, an open-source strategic energy
planning model.

openMASTER is a dynamic (multi-stage), linear programming (LP) model that operates on a bottom-up,
partial equilibrium basis. Its primary aim is to enable comprehensive analysis of sustainable energy policies. The
model addresses exogenous energy service demands across all sectors while adhering to technical and policy
constraints, such as greenhouse gas emission reduction targets. Its central objective is to minimize a defined
cost function representing the aggregate private economic costs associated with energy supply. Implemented
using Pyomo and solved with the Gurobi optimization solver, openMASTER provides a robust framework
to explore the relationships between uncertainties and policy levers in shaping energy system outcomes. For
further details on openMASTER, readers are encouraged to consult Chapter 2.

METRICS (M)

These capture the system’s performance in achieving the desired outcomes:

Cumulative CO; emissions: This metric represents the total CO; emissions accumulated over the period
from 2020 to 2050. Itis closely tied to the concept of the carbon budget, which defines the allowable emissions
to meet global climate targets (e.g., 1.5°C or 2°C).

Air quality impacts: These metrics measure the cumulative emissions of key pollutants (NOy, S Oy, and
PM, 5) during the period 2020-2050. They are important due to their directlink to human health, particularly
through respiratory and cardiovascular diseases caused by these pollutants.

Energy transition cost: The cumulative cost of the energy transition from 2020 to 2050, encompassing
investments in infrastructure, technology, and operating expenses. This metric is critical for assessing financial
feasibility and energy affordability during the energy transition.

Energy dependency in 2050: The share of primary energy demand that must be imported in 2050. This
metric assesses energy security, self-sufficiency, and the effectiveness of domestic renewable energy deployment.

By integrating these components, the XLRM framework provides a robust foundation for assessing how
different policies interact with uncertainties to shape the energy transition’s outcomes. This approach enables
the identification of robust strategies that perform well across a wide range of future scenarios.

THE CASE STUDY

To systematically explore the combined effects of policy levers and external uncertainties, we constructed a set
of 1024 scenarios using a full factorial design (see Fig. 5.2). Each scenario results from a unique combination of
four policy levers, which can be either active or inactive, and six uncertainties, each taking a high or low value.
This leads to a total of 210 = 1024 scenarios, covering a broad spectrum of possible futures for the energy
transition. The scenario set was then evaluated using multiple performance metrics to assess key dimensions of
energy system outcomes.
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6 CONCLUSIONS, LIMITATIONS AND FUTURE
WoRk

This final chapter summarizes the main findings of the thesis, discusses their implications for policy and prac-
tice, and outlines limitations and directions for future research. The central goal of the thesis was to improve
how long-term energy planning can support robust decision-making under deep uncertainty, by developing
novel methods and tools within energy system optimization models. The thesis has addressed this goal through
four research questions.

6.1 CONCLUSIONS

6.1.1 How CAN ROBUSTNESS BE ADDRESSED IN ENERGY SYSTEM OPTIMIZATION MODELS TO
REFLECT DIFFERENTIATED DECISION-MAKING PREFERENCES ACROSS DISTINCT SOURCES
OF UNCERTAINTY?

This thesis demonstrates that differentiated treatment of uncertainties within energy system optimization is
not only conceptually justified but also practically implementable without compromising tractability. By in-
tegrating robust optimization for feasibility-related uncertainties and minimax regret for performance-related
uncertainties into a single coherent framework, the hybrid method developed in Chapter 3 introduces a new
level of flexibility and realism into strategic energy planning.

The results show that treating uncertainties differently—according to whether they endanger system feasi-
bility or merely affect costs—Ileads to more balanced and decision-relevant strategies. In particular, the hybrid
framework avoids the main drawback of conventional robust optimization: the excessive conservatism when all
uncertainties are treated alike. Instead, it allows planners to protect critical system functions while maintaining
flexibility where appropriate.

Moreover, the empirical results from the illustrative case study reveal that differentiated robustness influences
not just the cost or emissions outcomes, but the very structure of transition pathways. Investment patterns,
technology choices, and sectoral strategies difter substantially when decision criteria are aligned with the nature
of uncertainty. This demonstrates that improving robustness is not simply a technical refinement, but has
profound implications for how energy strategies unfold under deep uncertainty. This implies that planners
can prioritize safeguarding essential system functions while remaining adaptable where uncertainties are not
critical, leading to more efficient and realistic investment decisions.

Thus, beyond proposing a novel algorithm, this work lays methodological foundations for developing more
realistic, interpretable, and decision-relevant energy models in contexts where the future cannot be credibly
characterized by probability distributions. In practical terms, this enhances the strategic value of energy plan-
ning tools by enabling more targeted and robust responses to uncertainty.

6.1.2 HOW CAN CORRELATIONS BETWEEN UNCERTAIN PARAMETERS BE SYSTEMATICALLY
INTEGRATED INTO ENERGY SYSTEM MODELS, AND WHAT IS THEIR IMPACT ON ENERGY
TRANSITION PATHWAYS?

Chapter 4 shows that explicitly incorporating empirical correlations among uncertain parameters transforms
the design of robust energy strategies. Using a PCA-based approach to build tractable, data-driven uncertainty
sets, this thesis provides the first national-scale demonstration of how correlation structures—not just the mag-
nitude of uncertainty—can fundamentally shape transition outcomes.
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6 Conclusions, Limitations and Future Work

The findings reveal that neglecting correlations leads to systematically distorted planning recommendations.
Strategies that appear robust when uncertainties are assumed independent may fail under plausible joint evo-
lutions of key drivers. Correlations influence not only technological competitiveness—such as the trade-ofts
between electrification and carbon capture pathways—but also the diversification and timing of investments.

By demonstrating how empirical structures among uncertainties affect robust strategies, this work extends
robust energy planning beyond the conventional focus on scenario analysis toward a more rigorous treatment
of internal consistency. It shows that credible robustness analysis requires not only exploring a wide range of
futures but ensuring that these futures reflect the structural realities of uncertainty dynamics. This has criti-
cal implications for policy, as overlooking structural relationships such as the co-evolution of fuel prices and
technology costs can result in plans that appear feasible on paper but are fragile in practice.

The application of the PCA-based method offers a practical pathway to enhance the realism of uncertainty
modeling without sacrificing computational tractability. It contributes a new tool for improving the credibility,
coherence, and policy relevance of robust energy system planning under deep epistemic uncertainty.

6.1.3 HoOw CAN COMBINATIONS OF ENERGY POLICY INSTRUMENTS BE DESIGNED TO PROTECT
AGAINST ADVERSE FUTURES ACROSS MULTIPLE ENERGY TRANSITION OBJECTIVES?

Chapter 5 develops a multi-metric, scenario-based decision support framework that systematically designs ro-
bust policy packages under deep uncertainty. By integrating exploratory modeling, SHAP-based feature im-
portance analysis, and normalized worst-case robustness indicators, the framework enables identifying not just
effective individual policies, but coherent combinations that complement each other in mitigating vulnera-
bilities—understood here as the exposure to worst-case outcomes across key transition metrics such as cost,
emissions, or energy security—across multiple objectives.

The application to the Spanish energy system demonstrates its capacity to uncover policy synergies that
would not emerge from traditional approaches. For instance, the joint implementation of high carbon pric-
ing and ambitious urban mobility interventions outperforms isolated policies by ensuring robustness across
emissions, cost, and energy security metrics.

This offers a powerful tool for policy-making: instead of selecting predefined policy combinations, decision-
makers can generate and evaluate coherent portfolios that reinforce each other and maintain performance even
under adverse conditions. This improves the resilience of strategies, reduces the risk of policy failure, and sup-
ports prioritization when resources are limited.

Beyond this case study, the framework offers a versatile and transparent methodology adaptable to different
sectors, scales, and transition objectives. Its modular design allows tailoring metric selection and weighting to
diverse policy contexts or stakeholder priorities, and its scenario-based structure facilitates extension to inte-
grated multi-system transitions, such as water-energy-food planning.

Moreover, the framework can serve as a foundation for participatory decision processes, linking exploratory
modeling with policy co-design through transparent evaluation of trade-offs. By bridging analytical rigor with
actionable guidance, it contributes a practical tool for designing transition strategies that are robust, adaptive,
and sensitive to real-world decision complexities.

6.1.4 THE DEVELOPMENT OF AN OPEN, EXTENSIBLE, AND TRANSPARENT ENERGY SYSTEM
OPTIMIZATION MODEL THAT ENABLES ROBUSTNESS-ORIENTED PLANNING UNDER DEEP
UNCERTAINTY

The development of openMASTER represents a foundational contribution of this thesis, building upon and
substantially extending the earlier MASTER model. Originally implemented in GAMS, MASTER has been
re-engineered into a fully open-source Python-based platform, enabling broader accessibility and extensibility.
In addition to this technological shift, openMASTER introduces significant methodological advances, pro-
viding a structurally practical and flexible platform to support robust energy transition planning under deep
uncertainty. The model integrates features essential for capturing the complexity of real-world energy systems,
including demand formulations based on energy services, endogenous behavioral adaptations, technological
vintages and decommissioning processes, and raw material flows.

122



6.1 Conclusions

These structural capabilities are not directly aimed at implementing uncertainty treatments, but are crucial
for characterizing how energy systems evolve and respond to profound, interdependent uncertainties. By in-
corporating key features often neglected in traditional models, openMASTER enhances the credibility and
relevance of scenario exploration and robustness analyses, allowing energy transitions to be assessed in a way
that more accurately reflects the structural complexity of real-world energy systems.

Importantly, openMASTER was designed from its conception with a modular and extensible architecture,
explicitly intended to enable the incorporation of methodological innovations in uncertainty modeling. Its
formulation supports the integration of robustness criteria, correlated uncertainty structures, and exploratory
scenario frameworks without requiring structural simplifications.

In doing so, openMASTER bridges a critical gap in the energy modeling landscape: providing a transpar-
ent, reproducible, and adaptable platform that can serve both as a decision support tool for robust long-term
planning and as a foundation for further methodological developments. As energy transitions confront increas-
ing complexity and uncertainty, openMASTER offers a contribution to the scientific community, equipping
researchers and policymakers with an open-source tool capable of addressing the strategic challenges ahead.

Although each methodological proposal developed in this thesis addresses a distinct and independent as-
pect of robust energy planning under deep uncertainty, together they define a complementary set of tools for
improving the robustness of long-term decision support. The differentiated treatment of uncertainties, the
integration of uncertainty correlations, and the design of robust policy packages each respond to specific gaps
in existing modeling practices, and can be applied separately depending on the decision context and available
information. While the thesis has not proposed an integrated application of these approaches, their concep-
tual compatibility and structural alignment within a flexible modeling framework suggest opportunities for
future research to explore their combined potential. As a whole, the thesis advances a modular and extensible
vision for robust energy system modeling, capable of adapting to the complexity and epistemic uncertainty that
characterize contemporary energy transitions.

6.1.5 SUMMARY OF MAIN CONTRIBUTIONS

This thesis has proposed and tested novel methodological approaches to address key challenges in energy plan-
ning under deep uncertainty. Specifically, it has produced three independent and complementary methodolog-
ical contributions:

1. Differentiated robustness treatments: A hybrid optimization framework combining robust opti-
mization with minimax regret to support decision-making under epistemic uncertainty. This approach
enables the planner to identify strategies that are not only cost-effective on average but also minimize
regret under adverse futures.

2. Correlation-aware uncertainty modeling: The application of a novel method to incorporate correla-
tions between uncertain parameters, improving the internal consistency of uncertainty representations.

3. Robust policy package design: A framework for constructing and evaluating packages of policy instru-
ments that perform well across a large ensemble of scenarios. This method reveals trade-offs, synergies,
and potential conflicts between multiple policy objectives under uncertainty.

These contributions have been developed and validated independently using the open-source energy system
optimization model openMASTER, which has been extended to support each methodological innovation.
6.1.6 SciENTIFIC OUTPUTS AND PUBLICATIONS

The research has led to the following scientific outputs, which consolidate and disseminate the contributions
of the thesis:

¢ AF. Rodriguez-Matas, C. Ruiz, P. Linares, M. Perez-Bravo. How energy strategies are shaped by the cor-
relation of uncertainties. Applied Energy. Vol. 382, p. 125257, Mar. 2025. [Online: January 2025]
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6 Conclusions, Limitations and Future Work

* AF. Rodriguez-Matas, M. Pérez-Bravo, P. Linares, ].C. Romero. open MASTER: the open source model

for the analysis of sustainable energy roadmaps. Energy Strategy Reviews. Vol. 54, pp. 101456-1 -
101456-12, July 2024. [Online: July 2024]

* A.F. Rodriguez-Matas, P. Linares, M. Pérez-Bravo, ].C. Romero. Improving robustness in strategic energy

planning: a novel decision support method to deal with epistemic uncertainties. Energy. Vol. 292, pp.
130463-1 - 130463-12, April 2024. [Online: January 2024]

* A.F. Rodriguez-Matas, T. Wild, P. Linares, J. Lamontagne, David Dominguez-Barbero. Designing ro-

bust energy policy packages under deep uncertainty: A multi-metric decision support framework. Under
Review in Energy Policy at the time of thesis submission.

¢ AF. Rodriguez-Matas, ].C. Romero, M. Pérez-Bravo. El tratamiento de incertidumbres en modelos de

planificacion energetica: un caso de estudio sobre el presupuesto de carbono espariol para el objetivo climdtico
de 1,5 °C (Managing uncertainties in energy planning models: A case study on the Spanish carbon budget
for the 1.5°C climate target). Papeles de Energia. Ne. 19, pp. 7 - 50, December 2022.

* AF. Rodriguez-Matas, P. Linares. Andlisis de escenarios energeticos para Esparia (Scenario analysis for

Spain). Papeles de Economia Espaiiola. Ne. 174, pp. 2 - 21, December 2022.

6.2 LIMITATIONS AND FUTURE RESEARCH DIRECTIONS

While the methodologies developed in this thesis advance the capacity to support robust energy transition

planning under deep uncertainty, several limitations and future research directions must be acknowledged:

6.2.1 INTEGRATING THE THREE METHODOLOGICAL CONTRIBUTIONS

While the three contributions have been developed independently, they are not mutually exclusive. In fact, their

integration holds significant potential to strengthen the analytical coherence and policy relevance of robust

planning frameworks.
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* Correlation-aware uncertainty in robust optimization: The correlation structures developed can

be integrated into the uncertainty sets used in the hybrid minimax regret-robust optimization algorithm.
This would enhance the realism and internal coherence of robustness assessments by explicitly captur-
ing interdependencies between uncertain parameters. It is important to note, however, that these corre-
lated uncertainty sets are only applicable to uncertainties treated within the robust optimization frame-
work—i.e., those that affect model constraints. Incorporating correlations among uncertainties that
affect the objective function, particularly under the minimax regret criterion, would require solving a
non-trivial mathematical challenge and remains an open question for future research.

Correlation-aware scenario generation for policy design: The large scenario ensembles used in ro-
bust policy package design could benefit significantly from incorporating correlation structures among
uncertain parameters. Doing so would improve the credibility and interpretability of the exploratory
scenario space by avoiding implausible combinations of extremes that may distort the assessment of pol-
icy robustness. Moreover, modeling joint dynamics across key drivers (e.g., energy prices, demand levels,
technology diffusion) enables the identification of structural vulnerabilities and cross-sectoral depen-
dencies that may otherwise be overlooked. However, the integration of correlations into scenario gen-
eration raises methodological and computational challenges. It requires selecting appropriate statistical
or expert-derived correlation structures, ensuring that the resulting ensembles span a sufficiently diverse
but plausible space, and maintaining tractability when evaluating large numbers of scenario-policy com-
binations.



6.2 Limitations and Future research directions

* Sequential combination of the hybrid algorithm and policy design: The process of designing ro-
bust policy packages could build upon the results obtained from the hybrid optimization approach. For
instance, the investment strategies identified as robust under the minimax regret-robust optimization
criterion can serve as a starting point to define policy-relevant constraints—such as investment ranges,
technology targets, or sectoral priorities—in the scenario exploration phase. This would help ensure that
the exploratory analysis remains grounded in strategies that are already known to perform well under un-
certainty. Combining these two approaches could have several advantages. It links two complementary
perspectives: the hybrid algorithm provides clear guidance on which strategies minimize risks across fu-
tures, while policy package design allows for broader exploration of combinations of instruments and in-
stitutional settings. Together, they can support more realistic and actionable transition planning. How-
ever, this combination also brings some challenges. It requires careful coordination: the outputs of the
hybrid algorithm must be translated into a form that is usable for the exploratory phase, without be-
coming overly rigid or limiting the space of possible policies. Moreover, the assumptions made in each
stage (e.g., which uncertainties are included, what time horizons are considered) need to be aligned to
avoid inconsistencies. Despite these challenges, this kind of sequential integration is a promising path
for real-world robust policy design.

Future research could systematize these integrations and develop formalized architectures to combine them
dynamically within unified planning frameworks.

6.2.2 COMPUTATIONAL TRACTABILITY

Computational tractability remains a relevant constraint, particularly when aiming to scale robust formula-
tions and policy package design frameworks toward applications with greater geographical or temporal detail.
Extending the current approaches to more disaggregated models—e.g., including finer spatial or temporal res-
olution—would require methodological innovations such as decomposition algorithms or high-performance
computing to ensure practical feasibility.

In its current implementation, the openMASTER model comprises over 2 million variables and 3 million
constraints for a national-scale case study covering a 50-year horizon with 5-year time steps and 96 represen-
tative time slices per year. Including additional layers of structural realism—such as explicit representation of
power and gas networks, or unit commitment constraints—would significantly increase both the number of
variables and the mathematical complexity of the problem, likely requiring a shift from linear to mixed-integer
programming.

While such extensions are technically feasible and conceptually desirable, they would entail non-trivial trade-
offs between structural detail and computational burden. Future work could explore strategies to enable such
enhancements, including model aggregation-disaggregation schemes, Benders decomposition, or parallel solu-
tion strategies. These developments would broaden the applicability of openMASTER to multi-scale problems
and operational planning tasks, while preserving the ability to conduct robust and policy-relevant long-term
energy analyses.

6.2.3 GEOGRAPHICAL DISAGGREGATION AND INTEGRATED MULTI-MODEL FRAMEWORKS

In terms of modeling capabilities, openMASTER currently operates as a single-node, national-scale energy sys-
tem model. Incorporating higher geographical disaggregation—allowing explicit modeling of infrastructures
and regional network constraints—would significantly enhance its applicability to real-world planning exer-
cises, especially where spatial factors and transmission systems play a critical role. However, the computational
burden of such disaggregation is substantial. A promising strategy to address this challenge is model coupling:
linking openMASTER with specialized models through soft or tighter integrations.

To date, an initial experience of soft-linking openMASTER with the power system expansion model SPLODER
has been tested in a real-world application for a private company. However, this exercise was conducted in a
deterministic setting, without incorporating any formal treatment of uncertainty. The models exchanged in-
vestment trajectories and operational constraints derived under nominal conditions, which provided useful
coordination but lacked robustness to adverse conditions.
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Looking ahead, model coupling under uncertainty requires more than sequential runs: it demands consis-
tency in how uncertainty is represented and propagated across models. This implies defining clear interfacing
functions—such as policy-induced investment envelopes, technology cost trajectories, or regional reliability
targets—that preserve the logic of the uncertainty treatment, whether robust, stochastic, or scenario-based.
For example, if openMASTER applies a minimax regret criterion to evaluate investment plans under deep un-
certainty, the corresponding input to a power system model must retain this structure, for instance by passing
cost-regret profiles or sets of constrained futures rather than single-point estimates.

Future developments could expand this coupling not only for finer spatial resolution but also for integrating
macroeconomic models (Rodrigues et al., 2014), Integrated Assessment Models (IAMs) (Henke et al., 2024), or
sector-specific models (Tattini et al., 2018), enabling complementary analyses across energy, economy, and cli-
mate domains. In all these cases, the ability to represent uncertainty coherently across models is essential for
producing meaningful and decision-relevant outcomes. Ultimately, this type of multi-model interoperability
could support the development of next-generation planning frameworks—modular, uncertainty-aware, and
grounded in the structural complexities of real-world transitions.

6.2.4 PERFECT FORESIGHT ASSUMPTION

Another structural characteristic of openMASTER is its assumption of perfect foresight over the planning
horizon. Although preliminary tests using a rolling horizon approach to introduce decision-maker myopia
have been successtully conducted, a fully stable version of the model incorporating this capability has not yet
been developed. Advancing this functionality would allow the model to represent more realistically how plan-
ning decisions are made under deep uncertainty, by limiting the information available to decision-makers and
enabling the simulation of adaptive, staged strategies. In particular, it would provide a natural framework to
explore how path dependencies, investment lock-ins, and sequential responses emerge as uncertainties are pro-
gressively revealed over time.

6.2.5 FLEXIBILITY IN DECISION-MAKING

Building on this, a critical area for future research is enhancing the flexibility of decision-making frameworks
themselves. While the robust methods developed in this thesis provide protection across a wide range of futures,
they do not yet systematically account for the opportunity to adapt decisions as new information emerges. Ex-
tending the frameworks to explicitly introduce decision flexibility—through mechanisms such as wait-and-see
variables, sequential decision pathways, or embedded options for future adjustment—would allow planning
processes to preserve optionality, avoid premature lock-ins, and better accommodate the evolving nature of
uncertainties. Such developments would move beyond static robustness toward dynamic and adaptive robust-
ness, better aligned with the realities of long-term transition governance under deep uncertainty.

6.2.6 WALD AND SAVAGE CRITERIA LIMITATIONS

While robustness criteria such as Wald and Savage are commonly used in energy planning under deep uncer-
tainty, they have been criticized from the perspective of utility theory and behavioral decision-making. For ex-
ample, regret-based methods may violate the independence of irrelevant alternatives axiom. Although these
criteria are valuable from a normative standpoint, future research could explore their empirical validity by
comparing model-based decisions with observed preferences or stakeholder behavior. This would help assess
whether such criteria align with actual decision-making under uncertainty in energy policy contexts.

6.2.7 ROLE OF CORRELATION ASSUMPTIONS IN THE PCA-BASED METHOD

A relevant clarification regarding the PCA-based robust optimization method presented in Chapter 4 concerns
the role of correlation assumptions in the construction of uncertainty sets. The objective of this analysis is not
to empirically identify the "true” correlation structure among uncertain parameters such as fuel prices or tech-
nology investment costs. Instead, the primary aim is to explore how different structural assumptions—positive,
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zero, or negative correlations— can be incorporated to energy modeling exercises and how they shape the re-
sulting robust energy strategies.

To this end, the study introduces multiple correlation scenarios by varying the parameter L, which deter-
mines the directionality of the assumed relationships. This scenario-based design enables a systematic inves-
tigation of how correlation structures affect model outcomes and policy recommendations. While the PCA
procedure is informed by historical data, its role in this context is methodological: it supports the construction
of internally consistent, lower-dimensional uncertainty sets that reflect a given correlation structure, rather than
aiming to replicate historical co-movements.

Itis also worth noting thatsome of the historical data used to inform the PCA were obtained from subscription-
based commercial databases. As a result, the raw datasets cannot be published openly, which limits the trans-
parency and reproducibility of the specific empirical inputs used in this case study. However, the methodologi-
cal framework itself is generalizable, and all the computational procedures are openly documented and available
for replication with alternative datasets.

Future research could extend this approach in two directions. First, by expanding the dataset and applying
formal statistical tests, researchers could assess which correlation patterns are most representative of empiri-
cal energy-economic dynamics. Second, visualizations and empirical diagnostics (e.g., pairwise scatter plots,
eigenvalue distributions) could be developed to improve the interpretability and transparency of PCA-based
uncertainty representations for decision-makers.

6.2.8 BEHAVIORAL MEASURES AND THE REPRESENTATION OF INTANGIBLE COSTS

The model includes a set of behavioral measures that are endogenously optimized within the system-level
cost minimization framework. These measures entail both tangible costs—such as investments in building
retrofits—and intangible costs, such as the discomfort associated with reducing indoor temperatures, shifting
travel behavior, or altering daily routines. These costs are incorporated directly into the objective function,
enabling the model to explore trade-offs across a broad range of policy options.

The goal of this formulation is not to simulate behavioral dynamics through an agent-based or microeco-
nomic framework, but rather to allow the model to compare behavioral-policy instruments (e.g., subsidies for
retrofitting, public awareness campaigns, incentive schemes) with more conventional energy policy interven-
tions. By assigning a cost to behavioral shifts, the model can endogenously determine whether and under what
conditions these measures become cost-effective components of a robust transition strategy.

However, akey challenge of this approach lies in the calibration of the associated behavioral costs—particularly
the intangible components, which are inherently difficult to quantify and highly sensitive to modeling assump-
tions. Future research could focus on estimating the perceived burden of specific behavioral changes, develop-
ing income-dependent or group-specific discomfort functions, or validating these assumptions against survey
or experimental data. Moreover, a dedicated case study could be developed to systematically analyze the role,
opportunities, and limitations of behavior-oriented policy instruments in long-term energy planning under
uncertainty.

6.2.9 LIMITED EXPANSION OF STORAGE TECHNOLOGIES IN OPENMASTER

A relevant outcome of the empirical applications is the limited deployment of electricity storage technologies,
despite their prominence in current Spanish energy transition scenarios. This apparent inconsistency can be
attributed to several factors:

* Modeling objective: The robust optimization criteria (especially minimax regret) emphasize avoiding
Worst-case outcomes across scenarios. In many cases, robust strategies rely more on overbuilding renew-
ables or backup generation than on storage, particularly if the latter is expensive or underperforms in
certain futures.

¢ Temporal resolution: Although the model currently represents seasonal and daily variability, the tem-
poral granularity may not fully capture the balancing needs where storage technologies play a crucial
role. Hence, the value of storage may be underestimated.
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These results highlight the need for caution in interpreting storage expansion as universally optimal, and em-
phasize the importance of modeling uncertainty, system interactions, and behavioral dynamics when assessing
technology roles.

6.2.10 APPLICATION TO EMERGING HIGH-IMPACT CHALLENGES
The methodologies developed in this thesis can support the design of resilient strategies for several critical do-

mains:

* Industrial decarbonization: Planning robust transition pathways for sectors like steel, cement, or
chemicals, under high technology and resource uncertainty.

* Transport-energy systems: Assessing strategies that jointly address electrification, modal shifts, infras-
tructure interdependencies, and behavioral change, as explored in recent resilience assessments (Yeh etal.,
2024; Perez-Bravo et al., 2025).

* Critical material supply chains: Designing robust strategies to manage disruptions in supply chains
for key materials, incorporating inter-sectoral correlations and geopolitical uncertainties.

* Shock resilience: Evaluating system robustness to systemic shocks, including market crises, extreme
weather, or cascading infrastructure failures.

These directions would extend the methodological frontier and reinforce the policy relevance of robust plan-
ning approaches.
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