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Extended Abstract 

 

 

 

Eco-driving and operation design, including energy recovery systems such 

as regenerative braking, are key techniques for improving efficiency in 

railway systems. These strategies, combined with advanced optimisation 

models, have demonstrated significant potential in several railway 

scenarios, as highlighted in the following studies. 

The first part of the research study positions eco-driving as a cornerstone of 

energy reduction in the railway sector and a vital tool for advancing the 

Sustainable Development Goals in transportation. However, its application 

in real-world scenarios is often impacted by uncertainties arising from 

climatological factors, which are frequently disregarded in train driving 

optimisation models. This work introduces an eco-driving model developed 

to generate efficient driving commands while accounting for climatological 

uncertainties, such as temperature, pressure and wind. These uncertainties 

are modelled using fuzzy numbers, and the optimisation problem is solved 

with a Genetic Algorithm employing fuzzy parameters, utilising an accurate 

railway simulator. Applied to a realistic high-speed railway scenario in 

Spain, the model demonstrates that energy savings can increase from 

29.76% to 34.70% when climatological factors are considered for the summer 

scenario. Moreover, an energy variation of 5.31% is observed between 

summer and winter scenarios, while punctuality constraints are fully 

satisfied. This model provides operators with an effective tool to better 

estimate and optimise energy consumption by adapting driving commands 

to prevailing climate conditions. 

The following part of the thesis addresses metropolitan railway operation. 

This type of system, so widely used in large cities, is a significant energy 

consumer and a promising target for the implementation of energy 

efficiency techniques. This work integrates three main strategies: eco-

driving, timetable design and regenerative braking, into a simulation-based 

model to optimise operation while minimising energy consumption. 

Additionally, the model incorporates the rolling stock required to meet 
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service demand, given its substantial impact on operational costs. Efficient 

driving commands are developed using a MOPSO (Multi-Objective Particle 

Swarm Optimisation) algorithm and timetable optimisation is achieved by 

considering the proposed energy regeneration model and the number of 

trains required for periodic service. Applied to the Madrid Underground, 

the model achieves energy savings of up to 24.79% compared to the fastest 

cycle time, while adhering to operational criteria such as time margins for 

delay recovery. The study further demonstrates that the GLMO-NSGA-III 

(Grouped and Linked Mutation Operator – Nondominated Sorting Genetic 

Algorithm III) algorithm is the most effective for timetable design in this 

context. 

Together, these studies illustrate the significant benefits of combining eco-

driving, operational planning, and energy regeneration techniques in 

railway systems, ranging from high-speed networks to metropolitan lines, 

maximizing energy efficiency and enhancing sustainability. 
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Resumen 

 

 

 

La conducción eficiente (eco-driving) y el diseño de la operación, 

incluyendo sistemas de recuperación de energía como el frenado 

regenerativo, son técnicas clave para mejorar la eficiencia en los sistemas 

ferroviarios. Estas estrategias, combinadas con modelos avanzados de 

optimización, han demostrado un gran potencial en diversos escenarios 

ferroviarios, como se destaca en los estudios presentados a continuación. 

La primera parte del estudio de investigación posiciona la conducción 

eficiente como un pilar fundamental para la reducción del consumo 

energético en el sector ferroviario y como una herramienta vital para 

avanzar en los Objetivos de Desarrollo Sostenible en el ámbito del 

transporte. Sin embargo, su aplicación en escenarios reales se ve 

frecuentemente afectada por incertidumbres derivadas de factores 

climatológicos, que a menudo son ignoradas en los modelos de 

optimización de la conducción de trenes. Este trabajo presenta un modelo 

de eco-driving desarrollado para generar consignas de conducción 

eficientes teniendo en cuenta dichas incertidumbres climatológicas, como la 

temperatura, presión y viento. Estas incertidumbres se modelan mediante 

números borrosos (lógica borrosa), y el problema de optimización se 

resuelve utilizando un Algoritmo Genético con parámetros borrosos, junto 

con un simulador ferroviario. Aplicado a un escenario realista de Alta 

Velocidad en España, el modelo demuestra que los ahorros energéticos 

pueden aumentar del 29.76 % al 34.70 % cuando se consideran los factores 

climatológicos en condiciones de verano. Además, se observa una variación 

del 5.31 % en el consumo energético entre los escenarios de verano e 

invierno, cumpliendo en ambos casos con las restricciones de puntualidad. 

Este modelo proporciona a los operadores una herramienta eficaz para 

estimar y optimizar mejor el consumo energético, adaptando las consignas 

de conducción a las condiciones climáticas predominantes. 
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La segunda parte de la tesis aborda la operación ferroviaria metropolitana. 

Este tipo de sistema, ampliamente utilizado en grandes ciudades, representa 

un alto consumo de energía y es un objetivo prometedor para la 

implementación de técnicas de eficiencia energética. Este trabajo integra tres 

estrategias principales: eco-driving, diseño de horarios y frenado 

regenerativo, en un modelo basado en simulación para optimizar la 

operación minimizando el consumo de energía. Además, el modelo 

incorpora el material rodante necesario para cubrir la demanda del servicio, 

dado su impacto significativo en los costes operativos. Las consignas de 

conducción eficientes se desarrollan utilizando el algoritmo MOPSO (Multi-

Objective Particle Swarm Optimisation), y la optimización del horario se 

logra considerando el modelo propuesto de regeneración de energía y el 

número de trenes requeridos para el servicio periódico. Aplicado a la red de 

Metro de Madrid, el modelo alcanza ahorros energéticos de hasta el 24.79 % 

en comparación con el tiempo de ciclo más rápido, cumpliendo además con 

criterios operativos como los márgenes de tiempo para la recuperación de 

retrasos. El estudio demuestra además que el algoritmo GLMO-NSGA-III 

(Grouped and Linked Mutation Operator – Nondominated Sorting Genetic 

Algorithm III) es el más eficaz para el diseño de horarios en este contexto. 

En conjunto, estos estudios ilustran los beneficios de combinar técnicas de 

conducción eficiente, planificación del tráfico y regeneración de energía en 

los sistemas ferroviarios, tanto en Alta Velocidad como en líneas 

metropolitanas, maximizando la eficiencia energética y fomentando la 

sostenibilidad. 
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CHAPTER 1 

INTRODUCTION AND MOTIVATION OF THE THESIS 

 

 

 

 

 

 

The growing need for sustainable economic development is prompting 

developed countries to consider climate-related aspects and possible future 

scenarios resulting from previous industrial development. Similarly, the 

population trend in all countries is to concentrate in large metropolitan 

areas. This demographic shift is particularly evident in developed countries, 

where societies are increasingly concentrated in huge metropolis. In the 

current context of optimising energy efficiency and supporting the use of 

renewable energy it is important to develop technologies that enable the 

rational and efficient use of the resources. This paradigm, combined with 

increased environmental awareness, positions the transportation sector as 

one of the main strategies for sustainable development. The efficient 

generation and utilisation of energy are central to the effort focused on 

sustainable development.  

Specifically, the transportation sector is one of the largest energy consumers 

globally, alongside the industry, commercial and public services and the 

residential sector [1]. On a global scale, this sector accounts for a large share 

of energy demand, making energy efficiency improvements crucial. The 

rational use of energy is particularly relevant for the transport sector 

because of the massive amount of energy required in developed countries 

[2], especially when the trend is towards unification into an electrified 

system.  

Also, the transportation sector is responsible for a significant share of 

emissions, accounting for around 21% of global carbon dioxide (CO₂) 

emissions, rising to 24% when considering only CO₂ emissions from energy 
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use. Road transport is the dominant source, generating approximately 75% 

of transport-related emissions. Within this, passenger vehicles—including 

cars and buses—contribute 45.1%, while freight trucks account for 29.4%. As 

a result, road transport alone represents about 15% of total global CO₂ 

emissions. In contrast, rail transport contributes a comparatively small 

share, with rail travel and freight accounting for only 1% of transport 

emissions, making it the most energy-efficient mode of land transport. 

Aviation is responsible for 11.6% of transport emissions (around 2.5% of 

total global CO₂ emissions), while international shipping accounts for 10.6%. 

Other transport methods, such as pipelines used to move materials like 

water, oil and gas, contribute 2.2% [3].  

Rail transport has significantly improved its energy efficiency, reducing 

energy consumption per transported unit by 23.9% in 2021. It remains the 

most energy-efficient mode, consuming less than a third of the energy 

required by other transport modes. Specifically, it is 2.4 times more efficient 

than road transport for passengers and 4.6 times more efficient for freight, 

reinforcing its role as the most sustainable land transport alternative [4].  

This highlights the importance of rationalising and making energy use more 

efficient across all sectors and transportation modes to minimise pollutant 

emissions. Within the transport sector, rail transport is characterised by high 

energy efficiency, as it consumes less energy per transported load compared 

to other modes of transport, and this efficiency is even more pronounced 

due to the increase in electrified traffic [4]. Even so, they still present 

significant opportunities for improvement [5]. Railways play a vital role in 

connecting large metropolitan areas, facilitating mobility between urban 

centres and promoting sustainable transportation. As the demand for 

efficient and low-emission transport solutions increases, rail networks are 

expected to play an increasingly important role in the future of urban and 

inter-urban mobility [6]. 

Urban and intercity railway mobility systems provide a valuable 

opportunity to transition toward more efficient and sustainable 

transportation modes. They offer enhanced comfort and speed for 

passengers while delivering significant energy savings and environmental 

benefits [7]. Metropolitan rail transport plays a crucial role in ensuring 

mobility within large cities, while long-distance railway connections are 

essential for maintaining strong intercity links. In this context, high-speed 

rail transport becomes highly relevant, positioning itself as a fast, efficient, 



 

9 
 

safe and comfortable mode of transportation with potential environmental 

benefits [8]. High-speed railway has significantly contributed to enhancing 

long-distance mobility while reducing dependence on private vehicles. This 

type of transport system has emerged as a significant competitor to other 

mobility options between major urban centres, aligning with sustainable 

development goals and helping mitigate the negative effects of road and air 

transportation [9]. The expansion of railway capacity to meet the growing 

demand for passenger services, and to a lesser extent, freight operations, has 

resulted in an equivalent increase in traction energy consumption for trains 

and other services related to railway operations. Therefore, it is crucial to 

implement measures for the efficient use of energy in railway systems to 

ensure the development of rail transport while progressing towards 

sustainability goals [10]. 

Europe has taken the lead in the decarbonisation of the transport sector, 

energy generation and industry. This leadership is driven by emission 

reduction policies establishing a framework for action in this area [11]. 

Within this framework, the rail sector focuses on the development and 

application of technology aimed at improving the efficiency of the systems 

involved. Innovation and development have the potential to improve 

energy efficiency reducing energy consumption without reducing the 

quality of service, offering multiple benefits, such as lower energy 

generation demand, lower operating costs and reducing negative 

environmental impact [5]. 

In addition to technological advances, it is vital to increase the attractiveness 

of rail transport for both passengers and freight. Increased rail traffic can 

relieve road congestion and reduce the pollution associated with road 

transport. High-speed railways, in particular, responds effectively to long-

distance mobility demands while minimising greenhouse gas emissions, 

making it a key element of sustainable transport networks. The transition to 

a more efficient and sustainable rail system depends on collaborative efforts 

between stakeholders, including policy makers, technology innovators, 

research institutions, infrastructure managers and rail operators. These 

actors are key to implementing technologies that reduce energy 

consumption, improve operational efficiency and ensure passenger 

satisfaction [12]. 

Despite its inherent efficiency, the railway sector remains a major energy 

consumer. Therefore, the continuous exploration of innovative solutions is 
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essential to further optimise its operations. As electrification becomes the 

dominant paradigm in transport, rail is in a unique position to lead the 

transition to a sustainable and energy efficient future. This aligns with global 

sustainability goals, particularly in the European context, where railway 

development is a strategic component of decarbonisation policies. By 

integrating cutting-edge technology with coordinated policy and research, 

the rail sector can serve as a global model for addressing mobility challenges 

within the framework of sustainable development [13]. 

Technological and innovation solutions for improving energy efficiency in 

railway systems can be categorised into three key areas: infrastructure, 

rolling stock and operation. In the case of infrastructure, there are different 

areas that can play an important role enabling some improvements in the 

operation. Some of them are the electrification of lines without electric 

power supply, the use of materials with better mechanical properties, an 

optimal track design, the integration of renewable energy sources [14] and 

the utilisation of energy storage systems [15]. For rolling stock, the reduction 

of train weight, aerodynamic optimisation [16], the use of regenerative 

braking [17] and the integration of on-board systems with new signalling 

systems contribute to reducing the energy needs without compromising the 

performance of the operation ([18], [19]). With this last improvement 

possibility, significant energy savings can be achieved by adapting the 

efficient driving of the train in real-time to the operational conditions. 

Operational improvement strategies, such as driving optimisation 

techniques, timetable optimisation, automation and traffic regulation 

systems, mean that energy consumption is reduced, ensure passenger 

comfort, punctuality of service and safety during operation. Also, the use of 

new technologies applied to traction power generation, such as hydrogen 

generation [20], is an option for improving the efficiency of the railway 

system reducing total gas emission.  

 

1.1. PROBLEM STATEMENT AND APPROACH 

The railway sector includes three main areas where research efforts can be 

directed to improve efficiency and sustainability: infrastructure, rolling 

stock and operation. Although significant progress has been made in all 

three areas, this thesis specifically focuses on improving railway operation 

by applying techniques to improve the efficiency of the system. Among the 
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various potential improvements to increase the energy efficiency of railway 

systems, two key operational optimisations stand out: eco-driving design 

and timetable optimisation. 

Economic driving, or eco-driving [21], is the driving that involves 

identifying the most energy-efficient driving strategy for a train by 

generating an optimal speed profile for a specific route that minimises 

energy consumption over a predetermined running time [22]. This process 

takes into account constraints related to passenger comfort, the established 

schedule and operational limitations. The theory applied to efficient driving 

indicates that the best pattern for designing the speed profile consists of an 

initial start with maximum acceleration, followed by speed regulation, and 

ending the travel profile with a coasting phase, that is, without applying 

traction or braking, and a final braking phase with maximum deceleration 

until the stopping point, where the train completes the speed profile [21]. 

On the other hand, timetable optimisation consists of determining the 

optimal running times between stations and the appropriate dwell times at 

each stop, with the goal of minimising overall energy consumption while 

adhering to comfort and operational constraints [23]. 

Operational improvements, particularly in eco-driving techniques and 

timetabling, offer cost-effective solutions that do not require substantial 

financial investments in new infrastructure or replacing existing trains with 

more efficient models. Instead, these strategies rely on the application of 

advanced optimisation methods and computational techniques. Once these 

solutions are developed, their implementation typically involves minimal 

costs, as they mainly depend on the integration of software programs and 

operator training rather than large-scale physical upgrades. 

A key element of these solutions is their generation through simulation 

models, algorithms and computational techniques, which allow efficient 

driving commands and schedules to be designed and tested in a virtual 

environment before deployment. These tools enable the exploration of 

numerous scenarios and the identification of optimal solutions that can then 

be quickly and effectively applied to real railway systems. This rapid 

applicability is a significant advantage, as it minimises downtime and 

resource allocation while achieving immediate benefits in energy efficiency 

and operational performance. In this context, rail transport also benefits 

from emerging technologies, including artificial intelligence, which can 

enhance efficiency, safety and sustainability [24]. 
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In this context, fuzzy logic [25] has been introduced to handle uncertainty in 

railway systems, such as variations in track conditions, weather, or 

measurement errors in stopping times. Fuzzy logic allows these uncertain 

parameters to be modelled more realistically, which improves decision 

making under variable conditions. This methodology assigns degrees of 

membership to values instead of assigning only a true or false value, 

allowing vague or uncertain aspects in operational data to be dealt with in 

a quantified manner. 

The integration of fuzzy logic into optimization models allows for more 

robust and adaptable solutions to be created, as a wider range of uncertain 

variables affecting railway operation can be considered. This improves the 

flexibility of decisions made, especially in unpredictable or changing 

situations. By using fuzzy logic, models become more capable of adjusting 

to real operating conditions, optimizing both energy efficiency and 

operational reliability. 

The implementation of eco-driving techniques provides tangible benefits in 

reducing energy consumption for a given running time without 

compromising passenger comfort or the quality of railway services. 

Similarly, the application of efficient timetabling strategies ensures reduced 

energy consumption during operations while maintaining compliance with 

predefined schedules. These results highlight the ability of operational 

improvements to balance energy efficiency with service reliability and 

customer satisfaction. 

Eco-driving leverages computational models and real-time data to adapt 

driving behaviours to specific conditions such as gradients, speed limits, 

and energy recovery systems. Likewise, train service management, 

incorporating timetable optimisation and regenerative braking 

coordination, aims to enhance operational efficiency and energy utilisation 

by ensuring synchronised operations across the network. 

The choice to focus on operational solutions is due to their scalability, 

adaptability and immediate impact. Unlike infrastructure improvements, 

which often require long-term planning and substantial financial resources, 

or rolling stock upgrades, which are constrained by manufacturing 

timelines and acquisition budgets, operational strategies can be rapidly 

implemented within existing systems. Moreover, operational optimisation 

is compatible with advancements in other areas, making it a complementary 
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approach that maximises the overall efficiency of the railway network. This 

approach stands out for its unique advantages, particularly in contrast to the 

high costs associated with infrastructure or rolling stock improvements, as 

well as its rapid applicability to real systems. 

By addressing railway efficiency from an operational perspective, this thesis 

contributes to the broader goal of sustainable transportation. It provides a 

pathway to achieving energy savings and operational improvements 

without requiring large economic investments, aligning with the 

overarching objectives of reducing greenhouse gas emissions and 

supporting global sustainable development initiatives. 

 

1.1.1. ECO-DRIVING IN LONG-DISTANCE SCENARIOS 

Long-distance or high-speed rail operation has a series of particular 

characteristics, differentiating it from other types of operation, such as 

metropolitan rail operation.  

One key distinction lies in the level of automation currently being 

implemented in high-speed rail systems [26]. Automatic driving systems are 

under development and implementation in high-speed trains, although in 

general, driving continues to be carried out by the driver, with this driving 

being adjusted during the operation according to the needs and specific 

conditions of the service [27]. Automation not only makes it possible to 

optimise energy consumption in real time, but also introduces a new level 

of complexity, as the driving design must adapt dynamically in case of 

delays or deviations from the timetable. 

The basic efficient driving strategy for long-distance or high-speed trains is 

speed regulation. Speed regulation consists of the application of traction to 

keep the train speed constant to the driving command speed. This approach 

minimises excessive acceleration and braking, preserving passenger 

comfort. The route can be divided into several sections where the driving 

instructions are varied to achieve a certain regulation speed. Even if the 

route can be divided into several regulation sections, there should not be too 

many of them, as this would impair the driver's driving performance. A 

refinement and more efficient approach is speed regulation without the use 

of brakes, which prevents braking when the train naturally accelerates 
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beyond the regulation speed due to favourable gradients ([28], [29]). In this 

case, the established speed limit is respected, but it is not necessary to 

respect the regulation speed, thus achieving additional energy savings in 

sections where the train does not need to consume more traction energy to 

obtain a higher speed. 

Figure 1 shows the application of an efficient driving command. The train 

follows this speed command by allowing the speed to be exceeded when 

there is a gradient that allows the speed to be increased, while respecting the 

speed limits.  

 

Figure 1. Regulation speed without braking. 

Additionally, mixed traffic operation is a common characteristic, where 

different passenger services and freight trains coexist on the same tracks. It 

may be common for different passenger services to share the same track on 

different trains and for freight trains with different commercial speeds and 

restrictions [30]. This peculiarity implies an added effort in the design of the 

driving and for the regulation of traffic that tries to minimise the impact and 

delays caused during the service by conflicts between trains [31]. 

In this context, the application of efficient driving to long-distance or high-

speed lines becomes a key element in energy savings both in the operation 

planning phase and in real-time traffic regulation. During the planning 

phase, efficient driving strategies are designed with consideration for 

running times, scheduled stops and punctuality criteria. During operation, 

eco-driving strategies should be applied dynamically when deviations 

occur or when conditions differ from the initial plan. 
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In order to achieve accurate results, simulation and optimisation models 

must consider all parameters influencing railway operations. En general, 

para el diseño de la conducción no se incluye la influencia de parámetros 

externos a la propia operación. However, previous studies incorporate the 

impact of some external factors and their associated uncertainty. In [32] the 

variation in passenger mass is included, in [33] the uncertainty in manual 

driving is considered and in [34] the uncertainty in delays is taken into 

account for the eco-driving design. Among these factors, weather conditions 

significantly affect the energy consumption of trains and, to a lesser extent, 

the running times. Studies that have addressed climatic aspects typically 

focus on winter and snowy scenarios, aiming to predict delays or traffic 

disruptions [35]. Nevertheless, railway operators tend to exclude climatic 

factors from their models, considering them highly random and 

unpredictable variables. 

In the context of high-speed railway services, it is crucial to assess the 

influence of wind and aerodynamic resistance [36]. Regarding wind effects, 

both its direction relative to train movement and its velocity must be 

analysed, as it can either assist or hinder train operation by altering its 

relative speed. Additionally, aerodynamic resistance is strongly influenced 

by the density of the surrounding air, which, in turn, depends on 

atmospheric pressure and temperature. This component becomes 

increasingly relevant at higher operating speeds since it is proportional to 

the square of the velocity. 

Given the inherent variability of climatic parameters, their analysis requires 

methods that account for the associated uncertainty. While uncertainty in 

certain parameters has been addressed using fuzzy logic [25], the literature 

has not specifically examined the uncertainty of climatic factors. Chapter 2 

considers the influence of meteorological variables and their uncertainty, 

modelled using fuzzy numbers, integrating them into the efficient driving 

optimization model. The results highlight the significance of these factors in 

driving optimization. 
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1.1.2. ECO-DRIVING IN METROPOLITAN SCENARIOS 

Just like in long-distance or high-speed railway operations, metropolitan 

railway operation has its own characteristics that determine the energy-

saving techniques that can be applied.   

Metropolitan operation is mostly carried out automatically through 

Automatic Train Operation (ATO) systems although manual driving is 

also used in certain lines [37]. The journeys between stations in metro-type 

systems are numerous and much shorter compared to long-distance travel 

and the ATO driving patterns applied are pre-programmed in the onboard 

systems. Since trains share the same line and follow the same type of routes 

and stops, the possible driving patterns designed for the trains are shared 

by all trains on the line.   

Typically, railway operators usually consider four possible ATO driving 

patterns to be executed by the train. The first is the fastest possible run, 

taking into account the characteristics of the train and the track, used for 

delay recovery. The second is the nominal run, which is used under normal 

conditions while following the timetable. The remaining two patterns are 

progressively slower and are used when the train needs to be delayed for 

traffic regulation purposes.   

Therefore, efficient driving can be applied to automatic operation through 

the speed regulation technique or the coasting/re-motoring technique 

considering both time and energy-saving criteria [38]. Coasting/re-

motoring technique consists of the application of traction by the train until 

the speed reaches the established upper limit. Once the speed reaches this 

limit, the coasting phase is applied until the speed reaches the lower limit. 

When the speed reaches the lower limit, the traction phase starts again. 

Coasting/re-motoring technique becomes more relevant in metro-type 

systems, where higher accelerations are allowed compared to long-

distance or high-speed trains, taking advantage of the optimal full-throttle 

regime and the application of coasting, where energy consumption is zero.   

Figure 2 shows an example of coasting/re-motoring driving technique. 
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Figure 2. Coasting/remotoring speed profile. 

Eco-driving is applied similarly in the timetable phase of long-distance or 

high-speed services. However, metropolitan railway operations are 

frequently subject to deviations from the planned schedule, making the 

application of efficient driving during the traffic regulation phase 

particularly relevant. In the regulation phase, the operator aims to correct 

deviations from nominal conditions by assigning one of the possible 

driving patterns to each train based on delays, dwell times and train 

headways [39]. This communication from the control centre to the trains 

can be done intermittently through trackside beacons and signalling 

systems or continuously via radio, as with the CBTC (Communications-

Based Train Control) system [40]. When communication with trains is 

continuous, the complexity of decision-making regarding the action’s 

trains should take increases significantly, making computing techniques 

and processing speed highly relevant. 

 

1.1.3. TIMETABLE DESIGN 

The efficient planning and management of railway timetables is a key 

aspect of optimising operations and improving system performance. 

Timetable design in metropolitan and long-distance railway systems is 

conducted as a preliminary step before the commercial operation of a line. 

Considering energy-saving criteria, timetabling enables the 

implementation of energy efficiency techniques such as eco-driving [41], 

the utilization of regenerative braking [42] and the optimisation of dwell 

times at stations [43]. In long-distance, high-speed and metro-type 

railways, timetabling may incorporate eco-driving strategies to minimise 

total energy consumption. In metro-type systems, timetables can be 
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designed to synchronise headways and integrate technologies such as 

regenerative braking or energy storage systems to enhance system 

efficiency. Additionally, commercial running times between stations 

include time margins to account for contingencies. 

Previous studies have addressed timetabling in metropolitan scenarios, 

considering running and dwell times to optimise synchronisation between 

trains [44]. Some have incorporated efficient driving strategies, while 

others have analysed the number of trains required to fulfil the service [45], 

treating this variable as an optimisation factor alongside operational cost. 

However, no study has yet integrated all these variables simultaneously. 

For this reason, Chapter 3 integrates a two-level optimisation model for 

train operation on a Madrid metro line. On the first level, driving is 

optimised for each route of the line. On the second level, the timetable is 

optimised by distributing station stopping times to synchronise 

accelerating and braking trains, maximising the use of regenerated energy. 

Additionally, different algorithms have been compared and rolling stock 

constraints have been considered by penalising the use of a greater number 

of trains to balance operational efficiency and energy savings.  

 

1.1.4. REGENERATIVE BRAKING 

Regenerative braking is a key technology for improving the energy 

efficiency of railway systems, particularly in metropolitan and high-

frequency networks [17]. It works by harnessing the train's kinetic energy 

during braking, converting it into electricity through electric motors that 

function as generators. This energy can be used to power the train’s 

auxiliary systems, be transferred to other trains within the same electrical 

sector, or, in some cases, be fed back into the power grid.   

However, regenerative braking is not a stand-alone solution; it must be 

complemented by efficient driving strategies and proper traffic planning 

[46]. Its effectiveness depends on operational conditions and the 

responsiveness of the infrastructure. While it helps save a portion of the 

energy that would otherwise be lost, the extent of this energy recovery 

varies depending on circumstances. When properly coordinated with 

other strategies, such as eco-driving and timetable optimisation, 

regenerative braking maximises its impact, particularly during station 

approaches and sections where high speeds need to be reduced.   
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This combination of energy recovery and optimization strategies not only 

enhances operational efficiency but also contributes to the overall 

sustainability of the railway system. In metro-type networks, timetabling 

can take advantage of energy recovery by synchronizing trains that 

regenerate energy during braking with those accelerating at the same time. 

This coordination optimizes energy flows across the network, minimizing 

waste and increasing the effectiveness of regenerative braking. 

 

1.1.5. ALGORITHMS AND OPTIMISATION MODELS 

Improving the efficiency of railway systems by improving train driving and 

timetables is based on solving optimisation models through algorithms. 

❖ Eco-driving 

For solving the eco-driving problem different methods and algorithms have 

been applied. Initially, the work carried out in this sense was done by 

applying the Pontryagin Maximum Principle by Ichikawa in 1968 [21] to 

determine the optimal driving regimes. This approach has been the basis 

from which subsequent research has been carried out. The methods 

developed can be classified into analytical methods and numerical methods. 

In analytical methods, the resolution of the problem is based on the 

mathematical and detailed formulation of the problem. In many cases, 

Pontryagin's Maximum Principle is used to find the optimality conditions 

necessary to subsequently apply the resolution algorithm considering 

minimizing or maximizing the variable of interest. These methods are 

characterized by their ability to obtain exact solutions under ideal 

mathematical conditions. However, their application is limited to relatively 

simple systems or to scenarios in which certain simplifications can be made, 

such as the linearisation of the equations or the simplification of the 

operating restrictions. 

Some examples are constructive algorithms [47], dynamic programming 

[48] or sequential quadratic programming [49]. Constructive algorithms 

allow precise and fast solutions to be found in relation to the computing 

speed. However, the application of this type of algorithm is restricted due 

to the simplifications made in the models of both the train and the operating 

conditions. 
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On the other hand, numerical methods allow working with much more 

detailed models, without the need to simplify the problem conditions. This 

resolution approach is based on the search for approximate solutions in an 

iterative manner until it meets the search requirements. 

Genetic Algorithms (GA) are a prominent example of numerical methods. 

These algorithms are inspired by natural selection and evolution processes, 

where a population of possible solutions evolves through selection, 

crossover and mutation processes. GAs efficiently explore large solution 

spaces and are particularly useful in complex optimization problems, such 

as speed profile optimization in railway environments, where possible input 

values can be numerous and non-linear [50]. GAs allow finding high-quality 

approximate solutions without the need to know the explicit formulation of 

the objective function, which gives them great flexibility to adapt to different 

train models and operating conditions. Within the numerical methods, we 

also find Particle Swarm Optimization (PSO), which is inspired by the 

collective behaviour of natural systems, such as swarms of birds or schools 

of fish. PSO adjusts solutions through collaboration between particles, 

seeking the best solution based on their evaluations. Like GA, PSO is 

effective in handling complex problems without the need for specific 

formulations, making it suitable for highly complex railway systems [51]. 

The combination of these methods, both analytical and numerical, together 

with the integration of fuzzy logic [34], allows for the creation of detailed 

models that can be implemented in advanced simulators. These simulators 

allow for accurate representation of train characteristics, track conditions 

and signalling systems, facilitating the evaluation of different driving 

strategies and their impact on energy consumption and service punctuality. 

By integrating these models into a simulation environment, various 

solutions can be tested before being implemented in real operation, 

improving the efficiency and reliability of the railway system in real time. 

❖ Timetabling 

Different methods and algorithms have been used to solve the timetabling 

problem. These methods can be classified into different main categories. 

First, there are heuristic and metaheuristic algorithms, such as the Genetic 

Algorithm (GA) and the Allocation Algorithm ([52], [53]), the Nested 

Heuristic Genetic Algorithm [54] and the Particle Swarm Algorithm (PSO) 
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[45], which are commonly used for resource optimisation and solving 

complex optimisation problems. 

Secondly, mathematical and programming methods, including Mixed 

Integer Linear Programming (MILP) ([55], [56]), are used to address 

combinatorial optimisation problems, providing exact solutions in contexts 

where the variables are integers and the relationships between them are 

linear. 

In addition, control and optimisation methods have been employed, such as 

the Matrix Control Algorithm [46], applied to the optimisation of speed and 

energy efficiency in railway systems, and Pontryagin's Maximum Principle 

[42], used in the optimisation of dynamic systems to determine optimal 

control strategies. 

On the other hand, multi-step and spectral optimisation methods are 

applied, where the Pseudospectral Method (PSM) is compared with 

Dynamic Programming (DP) [57] to assess the validity of the proposed 

solutions in optimal control problems. 

Finally, some studies resort to hybrid approaches, such as data-driven bi-

objective metaheuristic [58], which combines exact mathematical techniques 

with heuristic strategies to solve complex optimisation problems by 

considering multiple objectives simultaneously. 

 

1.2. OBJECTIVES 

1.2.1. MAIN OBJECTIVE 

The main objective of the thesis is to develop optimisation models for train 

driving and timetabling in both metropolitan and long-distance railway 

systems. These models are based on detailed simulations of train kinematics 

and dynamics, incorporating all operational parameters, constraints related 

to passenger comfort and uncertainties inherent in railway operations. 

Additionally, the research considers factors that influence the overall 

efficiency of railway systems, including timetable constraints, the utilisation 

of regenerated energy by trains during braking and the characteristics of the 

rolling stock. By integrating these elements, the proposed models aim to 

optimise operational strategies while maintaining system reliability and 

service quality. Through the application of advanced computational 
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techniques and simulation frameworks, this thesis seeks to address critical 

challenges in railway operations, contributing to the broader goals of energy 

efficiency and sustainable mobility. 

 

1.2.2. SPECIFIC OBJECTIVE 

The specific objectives of the development of this doctoral thesis are 

described in detail. The main goal is the application of the eco-driving 

technique to reduce energy consumption during operation, taking into 

account the particularities of each case. 

 

• Objective 1: Design of efficient driving strategies for high-speed 

trains considering the uncertainty associated with climatic 

conditions. 

The design of efficient railway driving strategies is a problem extensively 

addressed in the literature; however, the impact of climatic conditions on 

railway operations and driving strategies has not been considered until 

now. The effects of wind and variations in air density can significantly 

influence the resistance that the train must overcome. The methodologies 

for identifying optimal solutions are diverse, and among them are nature-

inspired algorithms. 

To address this problem, a Genetic Algorithm is used alongside a detailed 

train movement simulator to optimise the proposed eco-driving model. 

Travel time and energy consumption are evaluated using a fitness function, 

with each parameter weighted by a specific factor. The resolution model 

incorporates pressure, temperature, air density, wind direction and speed 

as fuzzy parameters (fuzzy logic), thereby accounting for their associated 

uncertainty. In this way, the driving commands that must be executed by 

the high-speed train are determined to minimise energy consumption while 

meeting a specific travel time under given climatic conditions. 

The proposed model and its results provide a reference framework for 

railway operators to evaluate the impact of external factors that were 

previously difficult to quantify.  

The tasks to be completed to achieve Objective 1 are as follows: 
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o Task 1: Review of previous literature related to efficient driving 

strategies and the algorithms that can be employed for optimisation. 

Examination of prior studies addressing the role of climatic 

conditions in railway operations. 

o Task 2: Development of the driving simulation model and the 

climatic model with fuzzy parameters. The climatic model includes 

the effects of wind (direction and speed) and variations in air density 

due to changes in temperature and pressure along the route. 

Development of the optimisation model for efficient driving 

commands, integrating the Genetic Algorithm and the climatic 

model with fuzzy parameters. 

o Task 3: Application of the simulation and optimisation model to a 

real-world case study of a high-speed railway line in Spain, 

obtaining conclusions, and proposing future research directions. 

 

• Objective 2: Optimisation of ATO Driving Commands and 

Operation for Metropolitan Railway Lines Considering Rolling 

Stock and Regenerated Energy During Braking. 

The design of automatic driving commands (ATO) and proper operational 

planning are the primary challenges to address in the operation of 

metropolitan railway lines. To this end, an optimisation model is proposed 

that integrates the design of automatic driving commands and operational 

planning, considering the synchronisation of trains to leverage the energy 

flow generated by regenerative braking. 

The first level of ATO driving design obtains Pareto frontiers for each 

interstation section using a MOPSO algorithm, where each solution 

represents the driving profile that achieves minimum energy consumption 

for a given travel time. The second optimisation level uses the solutions from 

the first level to maximise the use of regenerated braking energy and 

optimally distribute existing time margins to recover potential delays. At 

this level, the performance of various algorithms is compared: FDV (Fuzzy 

Decision Variable) [59], GLMO-NSGA-III (Grouped and Linked Mutation 

Operator – Non-dominated Sorting Genetic Algorithm III) ([60], [61]), LCSA 

(Linear Combination-based Search Algorithm) [62] and WOF (Weighted 

Optimisation Framework) [63]. The algorithm yielding the best results for 

the case study is selected. 
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The results obtained through the new model can serve as a tool for timetable 

design on metropolitan lines, meeting the nominal operational 

requirements typically imposed by railway operators. 

o Task 1. Review of previous literature related to ATO driving 

commands and operational planning for metropolitan lines, as well 

as prior studies on the computational techniques used [38]. 

o Task 2. Development of the optimisation model integrating the ATO 

driving calculation level using a multi-objective algorithm and the 

global timetable optimisation level, where several algorithms will be 

compared. The model will account for regenerated energy during 

braking, including an energy loss function during transmission. 

Additionally, the rolling stock required to meet the designed 

operation will be considered. 

o Task 3. Application of the model to a real case study of Metro de 

Madrid, taking into account the minimum number of trains required 

to satisfy the designed timetable and avoiding costs associated with 

rolling stock. Conclusions will be drawn based on the results. 

 

The development and achievement of the objectives outlined will be 

described in the following chapters.  

 

1.3. STRUCTURE OF THE THESIS 

The thesis document is structured as follows: 

o Chapter 1 has introduced the thesis work, presented the motivation 

for the present work, the approach and focus of the problem and 

objectives to be completed and its contribution. 

o Chapter 2 presents the problem of efficient driving design when 

considering climatic parameters and their uncertainty. The problem 

is also solved by means of a genetic algorithm modelling the 

uncertainty using fuzzy logic. 

o In Chapter 3 a two-level timetable planning model for metropolitan 

services is developed. In a first stage, the efficient driving is designed 

for each route of a metro line. Then, the planning problem is solved 

by considering the energy regenerated during braking and the 

number of trains needed to satisfy the rail service. 
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o Chapter 4 lists the conclusions obtained, the contributions of the 

thesis, the articles published in high impact journals and, finally, 

comments on the possible lines of work and future development. 

 

The document ends with the bibliographical citations that have served for 

the correct development of the thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

26 
 

 

CHAPTER 2 

ECO-DRIVING CONSIDERING CLIMATIC 

UNCERTAINTY 

 

 

 

 

 

 

 

 

2.1. INTRODUCTION 

Eco-driving is one of the most popular methods for optimising energy 

consumption in railway operations because it can be applied in the short 

term, providing important energy reduction results [22]. Eco-driving is the 

obtention of the speed profile with the minimum energy consumption 

associated. The eco-driving speed profile is calculated for a specific target 

running time considering the previously designed timetable ([5], [44], [64], 

[65], [66], [67], [68], [69]). 

Different eco-driving strategies have been analysed in the academic 

literature. In some simple scenarios, driving through speed regulation has 

been simulated ([2], [70], [71], [72]). Other studies have proposed design by 

coasting/re-motoring cycles, having upper and lower speed limits ([73], [74], 

[75]) or considering coasting points along the railway line ([21], [47], [50], 

[76], [77]). Coast-remotoring strategy is appropriate for short routes on 

metro lines but are not very efficient for longer railway lines as the HSR 

lines. The speed regulation without braking has been demonstrated as an 

efficient and easily executed eco-driving strategy for high-speed railway 

lines ([28], [29]). 

The production of speed profiles with the minimum energy consumption 

requires an optimisation model that can return the best combination of eco-

driving strategies. In study [21], the initial study on eco-driving was 
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developed. This work applies Pontryagin’s Maximum Principle to a 

simplified train dynamics model, obtaining optimal driving modes as 

maximum acceleration, cruising, coasting and maximum braking. The 

studies developed subsequently to [21] have improved the dynamic model 

of simulation, and the different optimisation techniques implemented are 

classified in study [78] as analytical and numerical methods. 

Most of the analytical methods are developed based on the optimal control 

theory. Pontryagin’s Maximum Principle is used in these methods to find 

the best energy efficiency solutions and apply algorithms to obtain the 

optimal switching points between the efficient regimes. These algorithms 

are based on Dynamic Programming ([48], [79], [80], [81]), constructive 

algorithms ([2], [47], [82], [83]), Sequential Quadratic Programming [49], 

and the method of Lagrange Multipliers over the discretised problem [84]. 

Other methods transform the situation into a non-linear problem [85]. The 

analytical methods are used to provide the optimal solution but, considering 

the complexity of the problem to be solved, a series of simplifications have 

to be made in the train model. Due to the simplifications, inaccuracies can 

be obtained in the results generated, and may require recalculations in real 

applications [71]. 

On the other hand, numerical methods have been used for solving the 

problem of efficient driving in railway operations as well. These methods 

are flexible enough to be used without reducing the complexity of the train 

model by using detailed simulation models, adjusting the comfort and 

driving requirements. Thus, these methods can be used to fulfil any need or 

constraint in real situations. 

Among these numerical methods are Artificial Neural Networks, being 

used for the optimisation of the coasting points [86], the optimisation of the 

coasting speed for a Mass Rapid Transit System considering energy cost and 

travelling time cost [87], and for calculating a new indicator to characterise 

a railway traffic driving smoothness [88]. Nature-inspired optimisation 

algorithms such as Genetic Algorithm (GA) have been widely applied for 

determining the speed profile which minimise the energy consumption [89], 

the optimal coasting points [50], and the optimum train speed along the 

journey [79]. A single optimise train trajectory considering net energy 

between adjacent DC substations is described in [90]. In study [91], it is 

jointly optimised by means of a GA for the timetable and the speed profile. 

A coasting point control method is developed in ([92], [93], [94]) based on 
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GA to determine its number and position. Multi-population Genetic 

Algorithm (GA) is used in [95] to reduce energy consumption in a subway 

system with multiple stations, and in [96] in order to determine the 

acceleration, cruising and coasting points. GA combined with fuzzy logic is 

used in [74] to optimise energy traction by trading-off reductions in energy 

against time, in study [28] to find the economical pattern for an HSR 

balancing energy and running time, and used in studies ([27], [34]) to 

calculate optimal speed profiles considering uncertainty in manual driving. 

Direct search algorithms have been applied to minimise energy traction in 

[97] while Brute Force algorithm is used in [98] to minimise energy 

consumption in substations. A Monte Carlo Simulation model was 

proposed to determine the system energy flow considering regenerative 

braking trains [99]. Differential Evolution has been presented in [100] to 

optimise railway operation. Optimisation by minimising energy traction is 

carried out by Simulated Annealing in [101] and searching optimal coasting 

points in [102]. On the other hand, multi-objective models have been 

developed using numerical methods. Among them, Indicator Based 

Evolutionary Algorithm (IBEA) was proposed to optimise both the running 

time and energy consumption [103]. Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) is used in [104] to design ATO CBTC speed profiles 

to minimise energy traction and in [38], its performance is compared with 

MOPSO generating the Pareto curve for real cases of the Madrid 

Underground. Ant Colony Optimisation can be seen in [79], proposing a 

distance-based train trajectory optimising the train trajectory, and in [105] 

to achieve the optimal driving strategy. Finally, a MOPSO algorithm is used 

in [51] to design efficient speed profiles for the ATO of the trains of a metro 

line. 

With the purpose to obtain accurate results, it is important not only to use 

detailed simulation models but also to take into account the possible 

uncertainties that emerge from the HSR operation. These uncertainties can 

be classified in three groups: limitations in the movement authority 

produced by signals or preceding trains ([106], [33]), variability in the 

manual operation of the train [27], and the climate conditions. While the first 

two uncertainty sources have been widely studied, climate conditions have 

not been deeply considered in the eco-driving problem. 

Most academic works focus on winter scenarios in Northern Europe to 

forecast delays or disruptions in traffic operation. Some studies have 
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reviewed the issues during winter railway operations caused by snow and 

ice in Nordic countries [35]. In study [107], impact of humidity, temperature, 

ice, and snow depth on the occurrence of delays in high-speed operation in 

Sweden has been analysed through a Cox model and Markov chain model. 

A train delay prediction model with weather data has been designed in [108] 

and tested on two high-speed railway lines in China. The Nordland railway 

line has been assessed in [109], where extreme cold weather is a crucial 

factor related to delays and low punctuality. Other studies have focused on 

service delay time and its exposure time to bad weather [110]. A 

combination of fuzzy theory and rough sets under adverse weather 

conditions has been used to contribute to the forewarning method for train 

operation in [111]. Causal relationships between extreme weather patterns 

and derailments on railway turnouts have been investigated by means of 

Fuzzy Bayesian Network model [112]. The impact on freight railways in 

winter weather in Northern Europe has been discussed [113]. In study [114], 

an estimation of the effects of weather conditions on railway operator 

performance of passenger train services has been carried out, focusing on 

infrastructure disruptions. In study [115], a model to capture the cascade 

dynamics of delay propagation on railway networks under inclement 

weather has been presented. 

As a general rule, climatological factors are considered random variables 

and instantly excluded from the models considered by railway operators. 

However, in HSR, the running resistance is the major factor determining the 

trains’ energy consumption. Climatic conditions such as wind or air density 

can produce significant variations in running resistance value. Therefore, 

climatology plays an important role in the energy that high-speed trains 

demand. Previous reasons motivate this work to generate a new model to 

quantify the climatological affection in railway operation, both in energy 

consumption and in running time. Climatology has a great variability due 

to the impossibility of having complete knowledge of all the variables that 

model its behaviour. Therefore, climatic conditions such as pressure, 

temperature, and wind have been modelled by means of fuzzy logic [116]. 

This way, this affection is included in the running resistance, given the 

vagueness in the knowledge of these variables. 

The main advantage of fuzzy logic modelling is the ability to handle 

imprecise or in-complete information. Additionally, a positive feature is its 

flexibility and simplicity to be developed and implemented to obtain 
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efficient calculations. That is why many studies have applied fuzzy logic in 

train operation models. In study [117], the train service provider and the 

infrastructure provider have been modelled as software agents, and the 

negotiation for a train schedule and the associated track access charge as a 

prioritised fuzzy constrain satisfaction problem. In study [118], predictive 

fuzzy control is used for carrying out the train dwell-time control in an 

event-driven framework. A methodology for predictive fuzzy control in an 

event-driven environment for multi-objective decision making on DC 

railway systems has been presented in [119]. In study [120], an approach 

within the fuzzy framework for tackling the complexity of 

multidimensional service evaluations and the judgment on the goodness of 

the schedule has been proposed. In study [121], the authors investigated a 

passenger train timetable problem with fuzzy passenger demand. The pa-

per presented by [122] exposed a framework to evaluate the logistics 

performance of inter-modal freight transportation by applying fuzzy set 

techniques. A multileveled distributed railway traffic fuzzy control system 

is proposed in [123]. An assistant support system for railway traffic control 

is described in [124] making use of fuzzy knowledge. A fuzzy optimisation 

model for rescheduling high-speed timetables is proposed in [69], focusing 

this work on punctuality and passengers’ affection without considering 

energy minimisation. In studies ([125], [126]), a fuzzy model is proposed for 

an Automatic Train Control system. In studies ([27], [33]), uncertainty in the 

manual driving application of the speed regulation command is modelled 

using fuzzy numbers. In study [74], the optimal speed profile in urban DC 

railways is found with a GA, where the energy consumption and the 

running time are the fuzzy results. A fuzzy model of delays and punctuality 

constraints is proposed in [34] for the offline design of timetables when 

efficient driving is applied. The algorithm proposed in [104] is used for 

urban ATO operation including uncertainty in the mass, generating optimal 

energy–time Pareto curves of speed profiles. Fuzzy logic is applied in [127] 

to detect the railway wheelset conicity as a measure of the deterioration. In 

study [128], a fuzzy model is used to evaluate the potential risks of railway 

crossings. As can be seen, climatological parameters and their associated 

uncertainty have not been modelled previously; therefore, this possible 

affection to the railway operation has not been considered. 

The main contribution of this chapter is the introduction of climatological 

parameters in the eco-driving optimisation model. The proposed model 

allows an efficient driving design considering the uncertainty due to climate 
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conditions by means of fuzzy modelling. Climatological parameters are not 

typically considered in the design of speed profiles, and they could affect 

the running time and energy consumption. 

The optimisation model is based on a Genetic Algorithm combined with 

fuzzy parameters. This algorithm applies a search process that optimises a 

driving holding speed without a braking commands set that can be easily 

applied by human drivers. Applying these commands generates the 

efficient driving with punctuality requirements at the destination. Using a 

detailed simulation platform makes solving all possible scenarios possible 

when the climatological parameters vary according to the proposed model. 

This methodology can also be applied to quantify the error obtained in the 

expected energy saving if climate conditions are not initially considered in 

the optimisation of the railway operation. The model has been applied in a 

simulation test based on real data of a Spanish HSR, to compare scenarios 

where different wind and air pressure conditions are considered. 

This chapter is organised as follows: Section 2.2 describes the simulation 

model in which the weather parameters are included. The uncertainty 

associated with the climatological parameters is modelled in Section 2.3. 

Section 2.4 is a description of the optimisation model developed to generate 

efficient driving. Section 2.5 analyses the case study and presents the results 

obtained for a real high-speed railway line using the models proposed in 

previous sections. A discussion of the proposed procedure and the results 

are presented in Section 2.6. At the end of the document, the bibliographical 

references and previous academic studies from which information for the 

present analysis has been obtained are presented. 

References and previous work related to eco-driving and the treatment of 

climatic parameters in railway operations are listed in Table 1. 
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Table 1. Literature review. 

 

Reference 

 

Algorithm  

or method 

applied 

Optimisation and 

simulation target 

Uncertainty 

 treatment  

Fuzzy  

logic 

 Railway  

line 
Objective 

[2] 
Pontryagin’s 

Principle 

Energy  

consumption 
No No Conventional Eco-driving 

[5] Simulation Speed profile No No Conventional Eco-driving 

[21] 

Pontryagin's  

Maximum  

Principle 

Driving regimes No No Conventional 

Dynamic  

model for optimal  

driving 

[22] - - No No - 

Overview of 

energy-saving  

technologies  

[27] 
Genetic  

Algorithm 
Speed profile 

Yes (manual  

driving variability) 
Yes  Conventional 

Speed profile  

under driving 

variability 

[28] 

Fuzzy c-Means and  

Genetic  

Algorithm 

Multi-objective:  

energy and running  

time  

Yes (fuzzy  

rule-based  

control) 

Yes  High-Speed 
Optimise energy-time 

trade-off control 

[29] Simulation Speed profile No No High-Speed 
Eco-driving  

without braking 

[33] 

Multi-Objective 

Optimisation  

Algorithm 

Energy consumption 

and delay 

Yes (manual  

driving) 
Yes High-Speed 

Eco-driving and 

delay recovery 

[34] 
Genetic  

Algorithm 

Timetable and 

energy 

Yes (delays and  

manual  

driving variability) 

Yes  High-Speed 

Eco-driving and  

timetable design  

under delay  

uncertainty 

[35] 
Statistical  

Analysis 

Impact of weather  

on operation 

Yes (climatic  

conditions) 
No 

Conventional / 

High-Speed 

Delay/disruption  

prediction under  

weather conditions 

[38] 

NSGA-II  

and 

MOPSO 

Optimisation of  

Pareto curves 
No No 

Mass Rapid 

Transit 

Algorithm 

comparison for 

metro operations 

[44] 
Genetic  

Algorithm 

Regenerative  

energy 
No No 

Mass Rapid 

Transit 

Synchronize trains  

to maximise regenerative  

energy 

[47] 

Pontryagin’s  

Maximum  

Principle 

Energy  

consumption 
No No Conventional 

Explore energy savings 

in parts of train journeys 

[48] 
Dynamic  

Programming 
Speed profile No No 

Mass Rapid  

Transit 

Speed optimisation 

for traffic  

management 

[49] 

Sequential  

Quadratic  

Programming 

Speed profile No No Conventional 
Speed profile 

optimisation 

[50] 
Genetic  

Algorithm 
Coasting strategy No No Conventional 

Coasting point  

optimisation 

[51] MOPSO Speed profile No No 
Mass Rapid 

Transit 

ATO speed  

profile design 
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[64] 

Variable  

Neighbourhood  

Search 

Timetable and  

passenger demand 
No No 

Mass Rapid  

Transit 

Timetable  

optimisation 

[65] 

Mixed Integer 

Linear 

Programming  

Profits  

for high-speed  

railway operators 

No No High-Speed 
Timetable  

optimisation 

[66] 

Mixed Integer 

Linear 

Programming 

 with VNS 

Passenger  

travel time 
No No 

Mass Rapid 

Transit 

Timetabling to enhance  

passenger experience 

[67] 
Distributed Search 

and GRASP 

Total train  

running time  
No No Conventional 

          Efficient train  

timetabling  

[68] 

Variable  

Neighborhood 

Search 

Energy  

consumption 

Yes (variability in 

 acceleration and  

braking times) 

No 
Mass Rapid  

Transit 

Energy-efficient 

timetable design 

[69] 

Fuzzy Mixed 

Integer  

Programming 

Mismatch between  

timetable and  

passenger  

demand 

Yes (passenger 

demand) 
Yes High-Speed 

Timetable optimisation  

considering uncertainty 

[70] 

Parametric  

Evaluation and  

Optimisation  

Modelling 

Energy  

consumption 
No No Conventional 

Formation scales  

and traction  

capacities study 

[71] 

Pontryagin’s  

Maximum  

Principle 

Energy  

consumption 
No No Conventional 

Energy-optimal  

driving design 

[72] 

Heuristic and  

rule-based  

algorithms 

Speed profile  

considering  

constraints  

No No Conventional 

Develop algorithms  

to automatically generate 

 speed profiles 

[73] 

Pontryagin’s  

Maximum  

Principle 

Energy  

consumption 
No No Conventional 

Energy-optimal  

driving strategies 

[74] 
Dynamic  

Programming 

Energy  

consumption 
No No 

Mass Rapid  

Transit 

Energy-efficient  

driving strategies  

for DC systems 

[75] 
Optimisation  

Algorithms 

Energy  

consumption in ATO  

metro system 

No No 
Mass Rapid  

Transit 

Energy-efficient  

ATO speed profile  

design 

[76] 
Nonlinear Train 

Dynamics  

Energy 

consumption 
No No Conventional 

Trajectory 

optimisation 

[77] 

Coasting Board  

Strategies /  

Optimal Control 

Approaches 

Energy efficiency  

and operational  

performance 

No No Conventional 

Coasting board and 

optimal control for 

minimising energy  

use  

[78] Review - No No Conventional 

Classification of  

analytical and  

numerical methods 

[79] 

Dynamic  

Programming / 

GA / ACO 

Train trajectory  No No Conventional Eco-driving 

[80] Dynamic  Energy  No No Conventional Eco-driving 
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Programming /  

Gradient Method / 

Sequential Quadratic  

Programming 

consumption 

[81] 
Sequential Quadratic 

Programming 

Energy  

consumption  

considering energy  

storage device  

No No Conventional 

Eco-driving with  

energy storage  

system 

[82] 
Optimal Control 

Theory 

Energy consumption 

minimisation 
No No Conventional Eco-driving 

[83] 
Statistical  

Analysis 

Urban development  

potential near metro  

stations 

No No 
Mass Rapid 

Transit 

Evaluate urban  

rail densification 

[84] 
Lagrange  

Multipliers 

Optimisation of 

discretised problem 
No No Conventional 

Lagrangian  

approach to energy optimisation 

[85] 
Non-linear  

optimisation 
Speed profile No No Conventional 

Optimization with  

non-linear model 

[86] 
Artificial Neural  

Network 
Coasting strategy No No 

Mass Rapid 

Transit 

Coasting points 

optimisation 

[87] 
Artificial Neural  

Network 

Coasting  

speed 
No No 

Mass Rapid 

Transit 

 Coasting speed  

optimisation  

[88] 
Artificial Neural  

Network 

Driving  

smoothness indicator 
No No 

Mass Rapid 

Transit 

Driving behaviour  

characterisation 

[89] 
Genetic  

Algorithm  
Speed profile No No Conventional 

Minimise energy  

consumption 

[90] 
Genetic  

Algorithm 
Net energy No No Conventional 

Optimisation of  

energy between  

substations 

[91] 
Genetic  

Algorithm 

Timetable + speed  

profile 
No No Conventional 

Timetable 

 and speed  

profile optimisation 

[92] 
Genetic  

Algorithm 
Coasting points No No 

Mass Rapid 

Transit 

Energy minimisation 

optimising coasting  

points 

[93] 
Comparative Search  

Methods 
Coasting points No No 

Mass Rapid 

Transit 

Traction energy  

reduction via 

coasting control 

[94] 

Mixed Integer 

Programming and  

Heuristic Search 

Running time 

and 

efficiency 

No No Conventional 
Minimisation of  

total running time 

[95] 

Multi-pop  

Genetic  

Algorithm 

Speed and coasting 

 points 
No No 

Mass Rapid 

Transit 

Energy reduction 

in subway networks 

[96] 
Multi-population 

Genetic Algorithm 
Energy consumption No No 

Mass Rapid 

Transit 

Train energy-saving 

control with fixed  

running time 

[97] Direct Search Traction energy No No Conventional Eco-driving  

[98] Brute Force Substation energy No No Conventional 
Substation  

energy consumption 

[99] 
Monte Carlo 

Simulation 

Energy flow  

estimation 
No No Conventional 

Simulation with 

regenerative  
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braking 

[100] 
Differential Evolution 

Algorithm 

Trade-off  

optimisation: time  

and energy  

No No Conventional 

Energy-time  

trade-off under  

different 

 track profiles 

[101] 
Simulated  

Annealing 
Traction energy No No 

Mass Rapid 

Transit 

Eco-driving under  

punctuality  

constraints 

[102] 
Simulated  

Annealing 
Coasting strategy No No Conventional 

Coasting points 

optimisation 

[103] IBEA 
Multi-objective:  

energy and time 
No No Conventional 

Energy-time  

optimisation 

[104] NSGA-II 
Multi-objective:  

energy and time 

Yes (train  

mass variability) 
Yes  

Mass Rapid 

Transit 

ATO speed profile 

optimisation 

[105] 
MAX-MIN Ant  

System Algorithm 

Energy consumption  

between stations 
No No 

Mass Rapid 

Transit 

Online optimisation  

of train operation  

modes 

[106] 

Multi-Phase  

Optimal Control  

Formulation 

Energy consumption 

and delay 
No No Conventional Eco-driving 

[107] 
Statistical  

Analysis 
Delay patterns  

Yes (delay  

prediction) 
No High-Speed 

Investigate how  

winter climate  

affects punctuality 

[108] 
Recurrent Neural 

Networks 

Delays under  

weather conditions 

Yes (data  

variability) 
No 

Conventional / 

Mass Rapid  

Transit 

Develop data-driven  

models for  

delay prediction  

[109] 
Statistical Regression 

Analysis 

Delays from weather 

variables 

Yes (punctuality 

impact) 
No Conventional 

Quantify the impact 

of weather  

conditions on  

punctuality 

[110] 
Correlation  

Analysis 

Delays and  

weather exposure 

Yes (weather  

exposure) 
No Conventional 

Quantify correlation  

between weather 

 and delays  

[111] 

Fuzzy C-Means  

+  

Rough Sets 

Early warnings  

for delays   

Yes (disruption 

forecast) 
Yes High-Speed 

Improve 

forecasting of delay  

risk under weather  

conditions 

[112] 
Bayesian 

Networks 

Derailment  

probability 

Yes (derailment  

risk) 
No Conventional 

Analyse the  

probability 

of derailments  

under 

weather conditions 

[113] 
Empirical  

Analysis 

Vulnerability of  

freight railways 

to weather 

Yes (freight  

disruption) 
No Conventional 

Examine the  

operational impact 

and risk of weather 

on freight rail  

services 

[114] 
Econometric  

Modelling  

Weather 

 disturbances 

Yes (infrastructure 

failures) 
No Conventional 

Weather impact on  

operation 

and infrastructure 

[115] Network Modelling Cascading failures  Yes (cascade  No Conventional Weather disruption  
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and Dynamic 

Simulation 

simulation effects) propagation  

modelling 

[116] Fuzzy Modelling - - -  - 

Foundational theory 

of fuzzy  

decision-making 

[117] 

Prioritised Fuzzy 

Constraint Satisfaction 

Approach 

Timetable and  

track access charge 

Yes (service 

provider and 

infrastructure 

provider 

negotiation) 

Yes Conventional 

Timetabling through  

fuzzy constraint  

negotiation 

[118] 
Predictive Fuzzy 

Control 

Dwell time  

and scheduling  

decisions 

Yes (dwell time 

and  

decision-making)  

Yes 
Mass Rapid  

Transit 

Optimising dwell  

time to improve  

operation 

[119] 
Predictive Fuzzy 

Control 

Energy, regularity 

and dwell time 

Yes  

(decision-making 

and control) 

Yes Conventional 
Optimise DC operation 

using fuzzy control 

[120] 
Fuzzy Analytical  

Hierarchy Process 

Waiting time  

variables  

Yes (timetable  

evaluation and  

decision-making) 

Yes Conventional 
Timetable selection 

optimisation 

[121] 
Branch-and-Bound 

Algorithm 

Passenger time and 

Delay 

Yes (passenger 

demand) 
Yes Conventional 

Timetable design 

under uncertainty 

[122] 

Fuzzy Analytical  

Hierarchy Process 

+ 

Fuzzy Multi-Criteria  

Decision Making 

Performance scores  

and criteria weights 

Yes (subjective 

evaluation) 
Yes Conventional 

Evaluate intermodal 

logistics performance 

[123] 

Fuzzy Distributed  

Decision-Making 

Control 

Real-time train 

dispatching and 

schedule recovery 

Yes (priority 

rating and delay) 
Yes Conventional 

Real-time 

 traffic optimisation 

[124] 
Fuzzy Petri  

Nets 

Traffic quality and 

response to  

disturbances 

Yes (expert 

dispatching  

knowledge) 

Yes Conventional 

Support train  

dispatching with  

expert knowledge 

[125] 
Fuzzy Logic 

Control 
ATC system control 

Yes (system  

variability) 

 

Yes  

 

Mass Rapid 

Transit 

Automatic train  

control under 

uncertainty 

[126] 

Pareto-based 

Differential  

Evolution  

Energy, punctuality 

and comfort  

Yes (Fuzzy 

memberships 

functions) 

Yes 
Mass Rapid 

Transit 

Tune fuzzy ATO  

for optimal train  

operation  

[127] 
Fuzzy Diagnostic  

Model 
Conicity detection No 

 

Yes  

 

Conventional 

Wheelset  

deterioration  

detection 

[128] 
Fuzzy Risk  

Evaluation 

Risk assessment  

at crossings 
No 

 

Yes  

 

Conventional 

Railway  

crossings  

risk analysis 

[123] 
Fuzzy Multiattribute 

Decision-Making 

Traffic control 

strategy 

Yes  

(decision-making 

attributes) 

Yes Conventional 
Develop a distributed  

traffic control system 
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2.2. SIMULATION 

2.2.1. SIMULATION AND CLIMATOLOGICAL PARAMETERS  

 
Table 2. Simulation model parameters. 

𝑭𝒎 Motor force (kN) 

𝑭𝒓 Running resistance (kN) 

𝑭𝒈 Force due to the railway grades (kN) 

𝑭𝒄 Force due to track curvature (kN) 

𝒎𝒆𝒒 Equivalent mass (tons) 

𝒕 Time (s) 

𝒂 Acceleration (m/s2) 

𝒗𝒕𝒓𝒂𝒊𝒏 Speed of the train (m/s) 

𝒎𝟎 Empty train mass (tons) 

𝝀 Rotating mass factor 

𝒎𝒍 Load mass (tons) 

𝒈 Gravity acceleration (m/s2) 

𝜽 Slope angle 

𝒑 Gradient of the track (𝑚𝑚/𝑚 or ‰) 

𝑲𝒓 Constant defined by track gauge (m) 

𝒓𝒄 Radius of track curvature (m) 

𝑨 Constant related to the mechanical resistance to the motion (kN) 

𝑩 
Constant related to the resistance due to the air inlet in  

the train (kN/(m∙s)) 

𝑪 Constant related to the aerodynamic resistance (kN/(m∙s)2) 

𝒌 Tunnel factor 

𝑬𝒑𝒂𝒏𝒕𝒐𝒈𝒓𝒂𝒑𝒉(𝒕) 
Energy consumed by the train measured at the pantograph (W∙s) 

at instant 𝑡 (W) 

𝑷𝒑𝒂𝒏𝒕𝒐𝒈𝒓𝒂𝒑𝒉(𝒕) 
Electrical power consumed at instant 𝑡 by the train measured at the 

pantograph (W) 

𝑬𝒔𝒖𝒃𝒔𝒕𝒂𝒕𝒊𝒐𝒏(𝒕) 
Energy consumption estimated at the electrical substation at  

instant 𝑡 (Ws) 

𝑷𝒔𝒖𝒃𝒔𝒕𝒂𝒕𝒊𝒐𝒏(𝒕) Power consumed at the substation at instant 𝑡 (W) 

𝑷𝒎𝒆𝒄(𝒕) Mechanical power at instant 𝑡 (W) 

𝜼𝑻 Electrical chain efficiency for the traction case (%) 

𝑷𝒂𝒖𝒙 Power consumed by the auxiliary systems (W) 

𝒏𝒛𝒔𝒕𝒂𝒓𝒕 Initial position of every neutral electrical zone (m) 
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𝒏𝒛𝒆𝒏𝒅 Final position of every neutral electrical zone (m) 

𝒔(𝒕) Position of the train at every moment (m) 

𝜼𝑩 Electrical chain efficiency for the braking case (%) 

𝒓(𝒔) Electrical line resistance in the position s (Ω) 

𝑽 Nominal line voltage (V) 

𝒄𝒐𝒔𝝋 Power factor 
 

 
Table 3. Climatological model parameters. 

𝑭𝒅 Drag force (N) 

𝒗 Speed (m/s) 

𝑪𝑫 Drag coefficient 

𝝆𝑰𝑺𝑨 Density of the air under standard conditions (kg/m3) 

𝝆 Density of the air 𝜌 (kg/m3) 

𝑺 Cross-sectional area (m2) 

𝒑 Pressure (N/m2) 

𝑹 Ideal gas constant (J/(kg∙K)) 

𝑻 Temperature (K) 

𝝓 , 𝜷 Angles defined by the velocities (Figure 4) 

𝝋𝒓𝒂𝒊𝒍 , 𝝋𝒘𝒊𝒏𝒅 Track and wind angles with respect to the north (Figure 4) 

𝒗𝒓𝒆𝒍 Train speed relative to the wind (m/s) 

𝒗𝒘𝒊𝒏𝒅 Velocity of the wind (m/s) 

𝑪(𝝆, 𝜷) Value of 𝑪 considering air density variation and wind effects (kN/(m∙s)2) 

𝑭𝒕𝒖𝒏𝒏𝒆𝒍 Running resistance when the train travels through a tunnel (kN) 
 

2.2.2. SIMULATION MODEL 

The simulation model is described in this section. This model is detailed in 

[27] and the results provided by the simulation were compared with real 

data of a Spanish HSR to validate the simulator. Differences of 1.2% for the 

running time and differences of 0.4% when compared with the energy 

consumption were shown. The model was used from [27] to design eco-

driving in a high-speed line, and measurements were recorded. As a result, 

energy savings between 20% and 34% were measured in commercial 

services. It was a detailed discrete event deterministic simulation model, 

that combines next-event and fixed-discrete time steps for advancing the 

simulation clock ([129], [130]). The simulation model takes several input 
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data related to the rolling stock involved in the operation and related to the 

railway line: 

❖ Rolling stock. 

i. Physical parameters: mass of the train, the mass of the load, 

length, maximum speed, rotatory inertia, and adhesion traction. 

ii. Traction effort curve, braking effort curve, running resistance 

coefficients, energetic and power systems and auxiliary systems 

consumptions. 

❖ Railway line. Includes Kilometric Points of relevant information as 

stations (K.P.), grades, track curvatures, speed limits, tunnels, and 

grade transitions considering the length of the train and the electric 

neutral zones. 

The equation that models the motion of the train at each simulation step 

considering the forces acting on the train is: 

𝐹𝑚 − (𝐹𝑟 + 𝐹𝑔 + 𝐹𝑐) = 𝑚𝑒𝑞 · 𝑎 (1) 

where 𝐹𝑚 is the motor force (kN), 𝐹𝑟  is the running resistance of the train 

(kN) defined by the Davis formula (Equation (7)), 𝐹𝑔 is the force due to the 

railway grades (kN), 𝐹𝑐 is the force due to track curvature (kN), 𝑚𝑒𝑞 is the 

equivalent mass (tons) and 𝑎 is the acceleration of the train (m/s2). 

By definition, the acceleration of the train in every step of the simulation is: 

𝑎 =
𝑑

𝑑𝑡
(𝑣𝑡𝑟𝑎𝑖𝑛) (2) 

where 𝑣𝑡𝑟𝑎𝑖𝑛 is the speed of the train (m/s). 

The equivalent mass, effective mass or inertial mass can be calculated by: 

𝑚𝑒𝑞 = 𝑚0 · (1 + 𝜆) + 𝑚𝑙 (3) 

where 𝑚0 is the empty train mass (tons), 𝑚𝑙 is the load mass (tons) and 𝜆 

is the dimensionless rotating mass factor. 
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Force due to gradient (Equation (4)) shows acceleration due to gravity effect, 

considering uphill or downhill motion. Therefore, the force due to gradient 

profile can be written as: 

𝐹𝑔 = (𝑚0 +𝑚𝑙) · 𝑔 · 𝑠𝑖𝑛 (𝜃) (4) 

where 𝑔 is the gravity acceleration (m/s2) and 𝜃 is the slope angle. 

Given the small values of slope angle in typical railway tracks, Equation (4) 

can be written as: 

𝐹𝑔 = (𝑚0 +𝑚𝑙) · 𝑔 ·
𝑝

1000
 (5) 

where 𝑝 is the gradient of the track (mm/m or ‰). 

Likewise, the force due to the track curvature can be expressed as follows: 

𝐹𝑐 = (𝑚0 +𝑚𝑙) · 𝑔 ·
𝐾𝑟
𝑟

 (6) 

where 𝐾𝑟  is an empirical constant defined by track gauge (m) and 𝑟𝑐 is the 

radius of track curvature (m). 

The traction effort or motor force (𝐹𝑚) is bounded by a maximum value of 

the electrical traction effort curve and a maximum electrical braking effort 

curve both dependent on the train speed. The simulation model considers 

at every moment the speed limits established along the rail track by the 

railway administration. Speed limits are defined by stretches along the 

railway where the train must drive respecting the maximum speed limit 

considering the total length of the train. When a train passes through a 

neutral zone, auxiliary systems cannot be fed from a catenary, and motors 

apply at least a constant braking effort to maintain the charge of the batteries 

that feed auxiliary systems along neutral zones. 

Running resistance is the model that defines and groups a series of 

resistances opposing the train’s movement. These include mechanical 

resistances (rolling and internal friction), air intake resistances (for engine 

cooling and passenger air renewal), and aero-dynamic resistance [85]. The 

running resistance is modelled with a second-degree equation dependent 

on the instantaneous velocity and defined by the Davis expression [86]: 
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𝐹𝑟 = 𝐴 + 𝐵 · 𝑣𝑡𝑟𝑎𝑖𝑛 + 𝐶 · 𝑘 · 𝑣𝑡𝑟𝑎𝑖𝑛
2  (7) 

where 𝐴 is a constant related to the mechanical resistance to the motion 

(kN), 𝐵 is a constant related to the resistance due to the air inlet in the train 

(
𝑘𝑁
𝑚

𝑠

), 𝐶 is a constant related to the aerodynamic resistance (
𝑘𝑁

(
𝑚

𝑠
)
2), 𝑘 is the 

tunnel factor and 𝑣𝑡𝑟𝑎𝑖𝑛 is the velocity of the train (m/s2). 

The Davis formulae and similar expressions of a polynomial nature are 

models of reality. Each term of this equation refers to different physical 

components of the total running resistance. However, it must be considered 

that these polynomials are fitted models of highly complex phenomena that 

interact themselves. Therefore, although for general purposes certain 

approximations can be estimated, in reality, they are not completely 

accurate and do not represent reality in its entirety. Likewise, within the 

running resistance model, there are parameterised coefficients (𝐴, 𝐵 and 𝐶) 

that represent different oppositions to the movement of the train. These 

values are experimental, complex to define, and depend on the physical 

characteristics of the rolling stock. In order to obtain them, manufacturers 

test their trains and their relationships with the resistances generated. These 

coefficients are the nominal values, so they have been evaluated under 

standard conditions of pressure and temperature given by the International 

Standard Atmosphere, ISA (ISO, 1975: 𝑇 = 15 oC; 𝜌 = 1.225 kg/m3). 

The term of the running resistance model (Equation (7)) that is not related 

to the effect of the air outside the train is called mechanical resistance. In this 

term, the coefficient 𝐴 is involved. In the most general case, it is derived 

from the frictional resistance between mechanical components, rail-to-wheel 

contact, track irregularities, and energy losses in the traction and suspension 

equipment of the vehicles due to the oscillating or parasitic movements of 

the suspended mass. 

The term of the train speed-dependent running resistance corresponds, 

mainly, to the resistance caused by the air intake of the train. In trains, there 

is a constant and noticeable air flow, necessary for cooling engines and other 

equipment as well as that required for air renewal for passengers. This term 

is related to the 𝐵 coefficient of the running resistance model. 

The so-called aerodynamic running resistance is the longitudinal force that 

opposes the train’s movement as a consequence of the interaction between 



 

42 
 

the train and the surrounding air with which it collides and envelops it. The 

coefficient 𝐶 is responsible for modelling this resistance. 

The tunnel factor 𝑘 increases the quadratic term of the running resistance 

model when the train runs through a tunnel due to the increased air friction 

against the outer surface of the train. When a tunnel is not involved in the 

simulation, the factor takes the value 1. 

Equations (1) – (7) describe the motion of the train in next-event and fixed-

discrete simulation steps, limited by speed limits, calculating braking curves 

to stop at the arrival point or station point with comfort and safety 

requirements. 

The model related to the energy consumed by the train measured at the 

pantograph at instant 𝑡 (Ws) (𝐸𝑝𝑎𝑛𝑡𝑜𝑔𝑟𝑎𝑝ℎ) is expressed as shown in Equation 

(8) while the train energy consumption estimated at the electrical substation 

at instant 𝑡 (Ws) (𝐸𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛) is defined by means of Equation (9): 

𝐸𝑝𝑎𝑛𝑡𝑜𝑔𝑟𝑎𝑝ℎ = ∫ 𝑃𝑝𝑎𝑛𝑡𝑜𝑔𝑟𝑎𝑝ℎ(𝑡)
𝑡

0

· 𝑑𝑡 (8) 

𝐸𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛 = ∫ 𝑃𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛(𝑡)
𝑡

0

· 𝑑𝑡 (9) 

where 𝑃𝑝𝑎𝑛𝑡𝑜𝑔𝑟𝑎𝑝ℎ is the electrical power consumed at instant 𝑡 by the train 

measured at the pantograph (W) and 𝑃𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛  is the estimation of the 

power consumed at the substation at instant 𝑡 (W). 

Previous calculus requires some other equations to complete the model: 

 

𝑃𝑚𝑒𝑐 = 𝐹𝑚 · 𝑣𝑡𝑟𝑎𝑖𝑛  (10) 
 

𝑃𝑝𝑎𝑛𝑡𝑜𝑔𝑟𝑎𝑝ℎ =
𝑃𝑚𝑒𝑐
𝜂𝑇

+ 𝑃𝑎𝑢𝑥  𝑖𝑓  𝑃𝑚𝑒𝑐 ≥ 0 𝑎𝑛𝑑 𝑛𝑜𝑡 (𝑛𝑧𝑠𝑡𝑎𝑟𝑡 ≤ 𝑠 ≤ 𝑛𝑧𝑒𝑛𝑑)            (11) 

  

𝑃𝑝𝑎𝑛𝑡𝑜𝑔𝑟𝑎𝑝ℎ = 𝑃𝑚𝑒𝑐 · 𝜂𝐵 + 𝑃𝑎𝑢𝑥  𝑖𝑓  𝑃𝑚𝑒𝑐 < 0 𝑎𝑛𝑑 𝑛𝑜𝑡 (𝑛𝑧𝑠𝑡𝑎𝑟𝑡 ≤ 𝑠 ≤ 𝑛𝑧𝑒𝑛𝑑)     (12) 
 

𝑃𝑝𝑎𝑛𝑡𝑜𝑔𝑟𝑎𝑝ℎ = 0  𝑖𝑓 𝑛𝑧𝑠𝑡𝑎𝑟𝑡 ≤ 𝑠 ≤ 𝑛𝑧𝑒𝑛𝑑       (13) 
 

𝑃𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑃𝑝𝑎𝑛𝑡𝑜𝑔𝑟𝑎𝑝ℎ + 𝑟 · (
𝑃𝑝𝑎𝑛𝑡𝑜𝑔𝑟𝑎𝑝ℎ

𝑉 · 𝑐𝑜𝑠 𝜑
)
2

  𝑖𝑓 𝑛𝑜𝑡 (𝑛𝑧𝑠𝑡𝑎𝑟𝑡 ≤ 𝑠 ≤ 𝑛𝑧𝑒𝑛𝑑)       (14) 
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where 𝑃𝑚𝑒𝑐  is the mechanical power at instant 𝑡  (W), 𝑃𝑎𝑢𝑥  is the power 

consumed by the auxiliary systems (W), 𝜂𝑇 is the electrical chain efficiency 

for the traction case (%), 𝜂𝐵 is the electrical chain efficiency for the braking 

case (%), 𝑉 is the nominal line voltage (V), cos 𝜑 is the power factor, 𝑟 is the 

electrical line resistance in the position 𝑠  (Ω), 𝑛𝑧𝑠𝑡𝑎𝑟𝑡  and 𝑛𝑧𝑒𝑛𝑑  are the 

initial and final position of every neutral electrical zone (m) and 𝑠 is the 

position of the train (m). 

 

2.2.3. CLIMATOLOGICAL MODEL 

The following section focuses on the running resistance variation when the 

railway operation is developed under real climatological circumstances. 

Initially, the influence of the variation of density along the railway line due 

to altitude changes has been modelled. Then, the wind’s influence on the 

running resistance model is incorporated. When motion equations are 

applied (Equations (1) – (7)) for simulating the train’s driving in a railway 

line, it is supposed that pressure and temperature values are constant along 

the whole line under standard conditions, given by the International 

Standard Atmosphere [131]. Thus, Equation (7) is just modified by the 

velocity of the train and it incorporates coefficients B and C given by the 

manufacturer. For that reason, previous coefficients are also constant along 

the railway operation in absence of wind and they are always the same for 

each line, no matter the geographical location and the season of the year 

considered for the railway operation. The purpose of this section is to 

include in the simulation model the influences on the running resistance 

with climatological considerations of pressure, temperature and wind. 

The railway operation can occur between points of different altitudes, and 

it is, therefore, to be expected that the model must deal with this variation 

along the railway line. In summary, throughout the journey, the air density 

will vary due to the change in altitude and this variation will modify the 

running resistance equation according to the model described below. When 

the train runs on a line without wind, the running resistance term can be 

defined by Equation (7). In the running resistance model, lineal and 

quadratic terms vary as a function of train speed.  

The following expression relates the drag force (N) (𝐹𝑑) to the parameter 𝐶 

in Equation (7) [132]:  
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𝐹𝑑 =  𝐶 · 𝑣2 =
1

2
· 𝐶𝐷  · 𝜌𝐼𝑆𝐴 · 𝑆 · 𝑣

2 (15) 

where 𝑣 is the speed (m/s), 𝐶𝐷 is the drag coefficient, 𝜌𝐼𝑆𝐴 is the density of 

the air under standard conditions (kg/m3) [89] and 𝑆 is the cross-sectional 

area (m2). 

From Equation (15), it is deduced that factor 𝐶  of the Davis formula is 

linearly dependent on the density of the air 𝜌 (kg/m3) and, therefore, the 

coefficient 𝐶 is parameterised as a function of density as follows considering 

standard weather conditions as a reference [89]: 

𝐶(𝜌) = 𝐶 ·
𝜌

𝜌𝐼𝑆𝐴
 (16) 

Finally, when all information related is considered, the running resistance 

model can be written as follows. However, this equation models the 

situation where the train is running without being influenced by the wind: 

𝐹𝑟 = 𝐴 + 𝐵 · 𝑣𝑡𝑟𝑎𝑖𝑛 + 𝐶(𝜌) · 𝑘 · 𝑣𝑡𝑟𝑎𝑖𝑛
2  (17) 

In this manner, a main and essential task is to know the air density at every 

point or analyse the stretch along the railway line. The density is a function 

of the temperature and pressure of the air, and its relationship can be 

expressed by the equation of state defined in the ideal gas law as follows: 

𝜌 =
𝑝

𝑅 · 𝑇
 (18) 

where 𝜌 is the density (kg/m3), 𝑝 is the pressure (N/m2), 𝑅 is the ideal gas 

constant (
𝐽

𝑘𝑔∙𝐾
) and 𝑇 is the temperature (K). 

Pressure and temperature values strongly depend on the meteorological 

conditions given a specific area due to its geographical characteristics and 

the year’s season. Therefore, considering the climatological model, they can 

be significantly different from one area to another. This work analyses these 

differences, which are present in the variations along the railway line. 

On the other side, the running resistance force is also significantly affected 

by the wind and its variation along the route. The influence of the wind is 
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modelled by the combination of its intensity, or wind speed, and the angle 

of incidence in each stretch relative to the train (𝜙) ([132], [133], [134]). The 

train speed relative to the wind is the train speed minus the wind speed 

vectors, as it can be seen in Figure 3. Figure 4 shows the reference frame 

considered in this work where angle 𝜙  (Equation (19)) is the principal 

parameter to model the wind influence in the railway operation. 

 

Figure 3. Velocities diagram. 

 

 

 Figure 4. Reference frame. 

𝜙 = 𝜑𝑟𝑎𝑖𝑙 − 𝜑𝑤𝑖𝑛𝑑  (19) 

where 𝛽 and 𝜙 are the angles defined by the velocities, 𝑣𝑤𝑖𝑛𝑑 is the velocity 

of the wind (m/s) and 𝑣𝑟𝑒𝑙 is the relative speed of the train with respect to 

the wind (m/s), graphically defined in Figure 3. 

Running resistance model, given by Equation (7), is valid just when the 

wind has not been considered, so the model has to be modified, now 
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influenced by the speed of the train and wind vectors, as shown in Figure 3. 

The modification consists of replacing the train speed 𝑣𝑡𝑟𝑎𝑖𝑛 in Equation (7) 

by the train speed relative to the wind 𝑣𝑟𝑒𝑙 , which is equivalent to 

considering zero wind in the original equation: 

𝐹𝑟 = 𝐴 + 𝐵 · 𝑣𝑟𝑒𝑙 + 𝐶 · 𝑘 · 𝑣𝑟𝑒𝑙
2  (20) 

Besides and in addition to the previous model, it has to be considered that 

factor 𝐶 also depends on the angle 𝛽 as shown in Figure 3. Yaw angle can be 

calculated using Equation (21): 

𝛽 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑣𝑤𝑖𝑛𝑑 · 𝑠𝑖𝑛 𝜙

𝑣𝑡𝑟𝑎𝑖𝑛 + 𝑣𝑤𝑖𝑛𝑑 · 𝑐𝑜𝑠 𝜙
) (21) 

To get the final model for the running resistance of a train, the relative train 

speed must be calculated, determining the simulation model as follows: 

𝑣𝑟𝑒𝑙 = √𝑣𝑡𝑟𝑎𝑖𝑛
2 + 𝑣𝑤𝑖𝑛𝑑

2 + 2 · 𝑣𝑡𝑟𝑎𝑖𝑛 ·  𝑣𝑤𝑖𝑛𝑑 · 𝑐𝑜𝑠 𝜙 (22) 

Equation (23) is proposed in [135]. This expression establishes the variation 

of the constant 𝐶  according to the angle 𝛽 . This expression becomes 

meaningless when 𝛽 > 30°. An angle with such magnitude for typical speed 

values in operation would imply extreme winds, which would affect the 

train operation or could lead to the total suspension of the service. 

𝐶(𝜌, 𝛽) = 𝐶(𝜌) · (1 + 0.02 · 𝛽) (23) 

where 𝐶(𝜌)  is the value of 𝐶  when density variation is considered 

according to Equation (16). 

Finally, the variable running resistance considering climatological factors is 

modelled as: 

𝐹𝑟 = 𝑎 + 𝑏 · 𝑣𝑟𝑒𝑙 + 𝑐(𝜌, 𝛽) · 𝑣𝑟𝑒𝑙
2  (24) 

When the train runs through a tunnel, the force exerted by the influence of 

the wind shall not be considered. Therefore, for the sections simulated in a 

tunnel, the expression for the running resistance must be modelled with an 
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expression that considers the train speed as input data, including the tunnel 

factor in the quadratic term. As applicable, it is used a 𝑘 parameter as the 

tunnel factor: 

𝐹𝑡𝑢𝑛𝑛𝑒𝑙 = 𝐴 + 𝐵 · 𝑣𝑡𝑟𝑎𝑖𝑛 + 𝑘 · 𝐶 · 𝑣𝑡𝑟𝑎𝑖𝑛
2  (25) 

Pressure, temperature and wind models have been discretised along the 

railway line. If the altitude suffers any variation along the journey, the 

model can deal with the change by measuring the impact of the air density 

variance. Two different reasons have justified the division or discretisation 

along the railway line. Firstly, the variability of the wind makes necessary a 

partition along the line where the climatological and geographical 

characteristics determine the main direction in which the wind blows. And 

secondly, the change of directions taken by the train along the railway line 

has been dealt implementing stretches where it can be supposed that the 

relative angle between the wind and the train movement is approximately 

constant along a straight line. Hence, the proposed wind model considers 

both the railway track angle and the incidence wind angle to be 

parametrised. In conclusion, previous considerations allow the simulation 

model of the train movement to deal with the wind behaviour’s complexity 

without compromising the final results’ accuracy. 

 

2.3. FUZZY CLIMATOLOGICAL MODEL 

2.3.1. FUZZY PARAMETERS  

 
Table 4. Fuzzy model parameters. 

𝒑̂ Fuzzy pressure (N/m2) 

𝑻̂ Fuzzy temperature (K) 

𝒗̂𝒘𝒊𝒏𝒅 Fuzzy wind speed (m/s) 

𝝓̂ Fuzzy angle of incidence (o) 

𝑻̂𝒓 Punctuality constraint (s) 

𝒕𝒐𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 Objective running time (s) 

𝜶𝒑 Measure of the possibility 

𝒏𝒑 Required necessity 

𝑵 Possibility measure 
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This study quantifies the relevance of the climatological factors and their 

variation by modelling them with their associated uncertainty during 

railway operation by means of a climate fuzzy model. 

The parameters modelled by fuzzy numbers [92] are defined in Section 2.2.2: 

the pressure and temperature defining, consequently, the density, and the 

intensity and the angle of incidence of the wind. 

Among the many possibilities for the membership function of the fuzzy 

numbers: piece-wise linear [93], linear, hyperbolic, exponential and S-

shaped ([138], [139]), climatological factors have been defined as triangular 

fuzzy numbers. But the model proposed in this chapter would be applicable 

if any other shape is utilised to model climatological parameters’ 

uncertainty. Each of the fuzzy numbers, the temperature, barometric 

pressure, air density, wind intensity (or speed) and the angle of incidence of 

wind are defined by the shape shown in Figure 5. Therefore, a fuzzy number 

is defined by its core, its lower limit and its upper limit of the support. 

 

Figure 5. Triangular fuzzy number. 

Fuzzy pressure (𝑝̂), fuzzy temperature (𝑇̂), fuzzy wind speed (𝑣𝑤𝑖𝑛𝑑) and 

fuzzy angle of incidence (𝜙̂) have been defined for every division realised 

along the railway line in order to get a more detailed climatological model 

on railway track sections as explained in Section 2.2.2. 

The running time is calculated from the indicated fuzzy parameters and the 

model input data (train and railway line, Section 2.2.1). This result will be a 

fuzzy parameter due to the uncertainty associated with some of the 

calculation parameters. In the proposed fuzzy model, the punctuality 
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constraint is imposed on the fuzzy running time, which must be less or equal 

to the objective running time: 

𝑇̂𝑟 ≤ 𝑡𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 (26) 

The punctuality constraint can be expressed either as a measure of the 

possibility of arriving at the scheduled time or as a measure of the necessity 

of fulfilling that objective. Thus, if it is expressed as a measure of the 

possibility 𝛼𝑝, the expression is: 

𝛱 (𝑇̂𝑟 ≤ 𝑡𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒) = 𝛼𝑝 (27) 

The corresponding necessity measure, in this case, is 0: 𝑁 (𝑇̂𝑟 ≤ 𝑡𝑜𝑏𝑗) = 0. 

If the punctuality constraint is expressed as a measure of the required 

necessity 𝑛𝑝, (Figure 6) the expression is: 

𝑁 (𝑇̂𝑟 ≤ 𝑡𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒) = 𝑛𝑝 = 1 −  𝛼 (28) 

The corresponding possibility measure, in this case, is 1:  

𝑁 (𝑇̂𝑟 ≤ 𝑡𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒) = 1 (29) 

 

Figure 6. Fuzzy running time. 
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2.4. ECO-DRIVING OPTIMISATION WITH FUZZY PARAMETERS  

Having introduced the climatological fuzzy model and how it affects the 

train motion simulation model, the objective is now to present the driving 

optimisation model. This optimal driving will be constructed as a 

combination of efficient commands considering coasting points known as 

Command Matrix (𝐶𝑚). Then, the problem and proposed algorithm for the 

problem resolution will be presented: Genetic Algorithm with Fuzzy 

Parameters (GA-F). 

 

2.4.1. EFFICIENT DRIVING COMMANDS 

In order to design the eco-driving, it is necessary to make use of efficient 

commands. In this chapter the driving commands are based on the coasting 

application and the speed regulation without braking strategy. This driving 

strategy is the efficient version of the speed regulation strategy and it is 

easily applied by the drivers on long distance and high-speed railway lines. 

To execute this strategy, the constant regulation speed is applied as long as 

it is needed for the traction. It occurs in horizontal or non-steep track 

alignment. Moreover, braking is not applied if needed to maintain the 

cruising speed and the maximum speed limits allow it [23, 24]. It occurs in 

steep downhill alignments. This way, the train uses the track grades to 

increase speed without consuming energy. It allows gaining time that can 

be used to drive the train at a lower speed at other track sections where 

energy is needed to maintain the cruising speed. Braking is applied just to 

observe maximum speed limitations and braking curves up to reductions of 

maximum speed profile or up to stopping points. 

Commands are modelled in the form of Command Matrix (𝐶𝑚) [29]. The 

matrix is the result of the optimisation process and means the division of the 

railway line where the driver is required to apply certain driving 

commands. The 𝐶𝑚  is defined as a matrix formed with the values of the 

points where every stretch end and the value of the regulation speed 

without braking are applied in every section. The end (Kilometric Point) of 

the divisions forms the first column, and the regulation speed value without 

braking forms the second column. Thus, the initial point of a division is the 

end of the previous section except for the first division, where the initial 

point is the journey starting position. Furthermore, the end of the last 
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division will be the coasting section’s starting point until the braking curve 

is reached up to the station. The numbers of rows of the matrix plus 1 are 

the number of the sections defined. 

Table 5 shows the Command Matrix that can be applied by the train driver 

or the automatic train operation system. 

Table 5. Command matrix. 

 Command Matrix, 𝑪𝒎  

Initial K.P. Final K.P. Speed (km/h) 

𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑥1 𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙 
𝑥1 𝑥2 𝑣1 
… … … 
𝑥𝑛−2 𝑥𝑛−1 𝑣𝑛−1 
𝑥𝑛−1 𝑥𝑛 𝑣𝑛 
𝑥𝑛 𝑥𝑓𝑖𝑛𝑎𝑙 𝐶𝑜𝑎𝑠𝑡𝑖𝑛𝑔 𝑎𝑛𝑑 𝑏𝑟𝑎𝑘𝑖𝑛𝑔 

Figure 7 shows the application of the driving previously design in Table 1 

by the divisions along the railway line where the speed regulation without 

braking is applied. 

 

Figure 7. Command sections. 

The application of the Command Matrix calculated considers the 

operational requirements as the speed limits and the stopping points at the 

stations. Moreover, the optimisation model includes comfort demands for 

the passengers and punctuality constraints. Hence, the Command Matrix 

(𝐶𝑚 ) obtained as a solution to the problem will be efficient, safe and 

comfortable driving. 

The solutions given by the algorithm are feasible and easily understood, and 

executed by the driver because they represent realistic driving. The number 

of driving commands to be executed by the driver is a choice to be made by 

the railway operator according to the desired complexity during the railway 
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operation. The definition of driving must consider that the more divisions 

are taken, the more complicated it will be to execute the eco-driving strategy. 

 

2.4.2. GENETIC ALGORITHM WITH FUZZY PARAMETERS: GA-F 

Once the fuzzy numbers of the climatological model are given, the driving 

simulated will have an associated fuzzy energy consumption (𝐸̂ ) and a 

fuzzy running time (𝑇̂𝑟). When the efficient driving is designed, the objective 

is to find the set of commands that will produce the minimum value of 

energy consumption for the required running time (𝑡𝑜𝑏𝑗). 

The fitness function 𝐹̂ ( 𝑇̂𝑟 , 𝐸̂ ) is shown in Equation (29) and defines the 

evaluation of both the running time and energy consumption affected by the 

weighting factors considered (𝑤𝑒 , 𝑤𝑡) to minimise the energy consumption 

considering a design or target running time. Energy consumption associated 

with the fastest possible driving along the railway line with operational 

constraints is called 𝐸𝑓𝑙𝑎𝑡−𝑜𝑢𝑡. 

𝐹̂(𝑇̂𝑟 , 𝐸̂)  =

{
 
 

 
 𝑤𝑒 ·

𝐸̂

𝐸𝑓𝑙𝑎𝑡−𝑜𝑢𝑡
+ 𝑤𝑡 ·

𝑇̂𝑟
𝑡𝑜𝑏𝑗

   𝑖𝑓   𝑇̂𝑟 > 𝑡𝑜𝑏𝑗

𝑤𝑒 ·
𝐸̂

𝐸𝑓𝑙𝑎𝑡−𝑜𝑢𝑡
+ 𝑤𝑡 ·

𝑡𝑜𝑏𝑗

𝑇̂𝑟
   𝑖𝑓    𝑇̂𝑟 ≤ 𝑡𝑜𝑏𝑗

 (29) 

 

where, 𝑤𝑒  and 𝑤𝑡  are weighting factors, 𝐸𝑓𝑙𝑎𝑡−𝑜𝑢𝑡  is the energy 

consumption when the flat-out driving is applied and 𝑡𝑜𝑏𝑗  is the target 

running time. 

The Genetic Algorithm (GA) used to solve the problem evolves a population 

of possible solutions (individuals) by means of iterations. An elite group, 

with the fittest solutions, survives from one generation to the next while the 

process is moving forward using 𝐶𝑚  as the genome of the individuals. 

Additionally, crossover and mutation operators are applied to generate and 

offspring of individuals from the elite group at each iteration. The fuzzy 

optimisation algorithm is the procedure for the calculation of the driving 

commands when the fuzzy parameters are included. The GA-F process is 

graphically described in Figure 8 and it is explained as follows: 



 

53 
 

1. First random generation of individuals (𝐶𝑚) equal to the population 

size 𝑁𝑝𝑜𝑝. 

2. Simulation of command matrix of the population. This step generates 

a running time 𝑇̂𝑟  and an energy consumption 𝐸̂  associated to each 

individual. 

3. Evaluation of each individual by the fitness function (Equation (29)). 

4. Sorting of each individual in increasing order by means of their fitness 

value. 

5. Elite group selection. The first individuals  𝑁𝑒  survive in the next 

iteration population and the rest are eliminated. 

6. Offspring generation. Mutation and crossover operators are applied to 

the elite group to generate new individuals until the population 

reaches its size 𝑁𝑝𝑜𝑝 . In this step, a number of mutations 𝑁𝑚  and a 

number of crossovers 𝑁𝑐 are applied. 

7. The process is repeated from step 2 until the iteration number (𝑖𝑡) is 

equal to the maximum numbers of iterations defined (𝑖𝑡𝑚𝑎𝑥), giving the 

best solution to the fittest in the last population. 

 

Figure 8. Flowchart of the GA. 

The proposed algorithm can be expressed in terms of the α-cuts of the fuzzy 

numbers [96]. As shown in Figure 6, if the punctuality requirement is 

expressed as a necessity measure 𝑛𝑝 , the upper limit of the α-cuts of the 

fuzzy running time (equivalent to the upper limit of the α-cuts of the fuzzy 



 

54 
 

running time) is necessary for the evaluation of the punctuality constraint. 

For this upper limit to be obtained, given the fuzzy numbers associated with 

the climatological parameters, it has to be analysed whether the running 

time is an increasing or a decreasing function in each of them. 

As discussed in the model, the running time and energy consumption are 

dependent on the running resistance model. The running resistance force is 

a function of the fuzzy parameters introduced in this model: the air density 

and the wind during operation. In turn, the density is a function of the 

pressure and the temperature. The wind has been modelled by its intensity 

or speed and their angle of incidence related to the train’s movement. 

With equal 𝐶𝑚, train and railway track data, the running time calculated is 

a function of the uncertainties considered: pressure (𝑝̂), temperature (𝑇̂), 

velocity of the wind (𝑣𝑤𝑖𝑛𝑑), and angle of incidence of the wind (𝜙̂). All 

climatological factors, running time, and energy consumption are defined 

as fuzzy parameters. 

𝑇̂𝑟 = 𝐹1(𝑝̂, 𝑇̂, 𝑣𝑤𝑖𝑛𝑑 , 𝜙̂) (30) 

Function 𝐹1  (Equation (30)) is monotonous with all climatological 

parameters. The greater the running resistance, the lower the acceleration 

and the greater the running time as a result. In that sense, function 𝐹1  is 

increasing with the air density, and thus, according to Equation (18), it is 

monotonically increasing with the pressure ( 𝑝̂ ) and monotonically 

decreasing with the temperature (𝑇̂).  

Regarding the angle of incidence of the wind (𝜙̂), it is necessary to analyse 

every division of the railway line (explained at the end of Section 2.2). In this 

case, and taking Figure 3 as a reference, 𝐹1 is defined differently depending 

on the situation. Moreover, the presence of the angle of incidence in 

Equation (22) has to be considered in order to analyse the behaviour of the 

function 𝐹1. In this way, the variation of the angle and, therefore, the change 

of cos 𝜙 in the term of Equation (22) determines the different situations in 

the high-speed railway scenario. If the angle of incidence lies between: 

 

(1) 0° < 𝜙̂ < 180° then 𝐹1 is monotonically decreasing with the angle 𝜙. 

(2) 180° < 𝜙̂ < 360° then 𝐹1 is monotonically increasing with the angle 𝜙. 
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After considering the term of the angle of incidence, the speed is another 

factor related to the wind and its contribution to the railway operation. 

Considering Figure 3, the behaviour is as follows: 

(1) 0° < 𝜙̂ < 90°  or 270° < 𝜙̂ < 360°  then 𝐹1  is monotonically 

increasing with the velocity of the wind. 

(2) 90° < 𝜙̂ < 270°  then 𝐹1  is monotonically decreasing with the 

velocity of the wind. 

Likewise, the energy consumption associated to the railway operation is also 

a function of the climatological parameters: 

𝐸̂ = 𝐹2(𝑝̂, 𝑇̂, 𝑣𝑤𝑖𝑛𝑑 , 𝜙̂), (31) 

Function 𝐹2  (Equation (31)) is monotonous with all climatological 

parameters as 𝐹1  which permits the application of α-cut calculations. 

Moreover, the dependence of 𝐹2  with these parameters is the same as 𝐹1 

because the greater the running resistance, the greater the traction effort and 

energy consumption. 

In conclusion, the upper and lower limits of 𝑇̂𝑟 α-cuts, and the upper and 

lower limits of 𝐸̂ α-cuts can be calculated by means of the alfa-cut of the 

parameters. Equations (32) – (39) show the corresponding formulas for the 

4 quadrants of the angle of incidence as follows, considering the situations 

presented previously: 

• For 0° < 𝜙̂ < 90°: 

𝑇𝑟
𝛼 , 𝐸𝛼 = 𝐹1, 𝐹2(𝑝

𝛼 , 𝑇𝛼 , 𝑣𝑤𝑖𝑛𝑑
𝛼 , 𝜙𝛼) (32) 

𝑇𝑟
𝛼
, 𝐸𝛼 = 𝐹1, 𝐹2(𝑝

𝛼 , 𝑇𝛼 , 𝑣𝑤𝑖𝑛𝑑
𝛼

, 𝜙𝛼) (33) 

• For 90° < 𝜙̂ < 180°: 

𝑇𝑟
𝛼 , 𝐸𝛼 = 𝐹1, 𝐹2(𝑝

𝛼 , 𝑇𝛼 , 𝑣𝑤𝑖𝑛𝑑
𝛼

, 𝜙𝛼) (34) 

𝑇𝑟
𝛼
, 𝐸𝛼 = 𝐹1, 𝐹2(𝑝

𝛼 , 𝑇𝛼 , 𝑣𝑤𝑖𝑛𝑑
𝛼 , 𝜙𝛼) (35) 

• For 180° < 𝜙̂ < 270°: 

𝑇𝑟
𝛼 , 𝐸𝛼 = 𝐹1, 𝐹2(𝑝

𝛼 , 𝑇𝛼 , 𝑣𝑤𝑖𝑛𝑑
𝛼

, 𝜙𝛼) (36) 
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𝑇𝑟
𝛼
, 𝐸𝛼 = 𝐹1, 𝐹2(𝑝

𝛼 , 𝑇𝛼 , 𝑣𝑤𝑖𝑛𝑑
𝛼 , 𝜙𝛼) (37) 

• For 270° < 𝜙̂ < 360°: 

𝑇𝑟
𝛼 , 𝐸𝛼 = 𝐹1, 𝐹2(𝑝

𝛼 , 𝑇𝛼 , 𝑣𝑤𝑖𝑛𝑑
𝛼 , 𝜙𝛼) (38) 

𝑇𝑟
𝛼
, 𝐸𝛼 = 𝐹1, 𝐹2(𝑝

𝛼 , 𝑇𝛼 , 𝑣𝑤𝑖𝑛𝑑
𝛼

, 𝜙𝛼) (39) 

Figure 9 shows an example corresponding to the case 180° < 𝜙̂ < 270° of 

how the climatological fuzzy parameters are considered and the results 

associated with a specific necessity level of punctuality. 

 

Figure 9. Climatological fuzzy parameters and fuzzy results. 

Therefore, the proposed problem can be solved with the application of the 

GA-F by means of α-cuts with 𝛼 = 1 − 𝑛𝑝. The parameter 𝑛𝑝 is the imposed 

punctuality constraint. The algorithm will search for the solution in the form 

of a Command Matrix with a fuzzy running time associated. Its upper α-cut 

gives the objective running time as a result, considering punctuality 

requirements and minimising the energy consumption. 

 

2.5. CASE STUDY 

2.5.1. INTRODUCTION 

Real commercial service and infrastructure data of a Spanish high-speed 

railway line have been analysed in this section. The railway line is operated 

by a train with an unladen mass of 322 t, a length of 200 m, a maximum 

traction effort of 200 kN and a maximum speed of 300 km/h. 

This line has been divided as shown in the following figures to elaborate an 

appropriate data analysis as explained at the end of Section 2.2.2. The 

railway line has been divided into zones where the wind is considered 
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constant as can be seen in Figure 10a, and into sections where the angle of 

the track 𝜑𝑟𝑎𝑖𝑙 (Table 1) is considered constant as shown in Figure 10b. 

  

(a) (b) 

Figure 10. (a) Wind zones; (b) Constant trip directions zones. 

 

Table 6. Angle of the railway track. 

Initial K.P.–Final K.P. Angle of the Rail Track (o) 

0 – 45 65 

45 – 135 48 

135 – 200 59 

200 – 245 57 

245 – 275 41 

275 – 335 114 

335 – 435 82 

435 – 495 117 

495 – 515 161 

515 – 580 62 

580 – 621 145 

 

2.5.2. FUZZY CLIMATOLOGICAL PARAMETERS 

The climatological parameters have been modelled taking into account the 

temperature, the wind intensity, and its angle of incidence collected by the 

State Meteorological Agency of the Spanish Government [97] in every one 

of the closest weather stations to the railway line for this case study, and the 

pressure is a function of the track altitude according to the International 

Standard Atmosphere [131]. 

The following tables collect the fuzzy climatological numbers modelled: 

temperature, pressure, intensity, and angle of incidence of the wind (Table 

7, Table 8, Table 9 and Table 10, respectively). 
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Table 7. Fuzzy temperature, 𝑇̂. 

Fuzzy Temperature 

Initial K.P. 
Summer (°C) 

Lower Limit Core Upper Limit 

0  28.25 34.31 40.37 

95 27.86 33.30 38.74 

170 24.14 32.38 40.61 

240 25.10 33.11 41.12 

330 25.21 32.07 38.93 

400 26.89 33.63 40.37 

475 27.03 31.39 35.75 

Initial K.P. 
Winter (°C) 

Lower Limit Core Upper Limit 

0  5.46 11.77 18.09 

95 4.90 11.35 17.80 

170 5.00 11.47 17.93 

240 3.54 11.71 19.87 

330 3.85 11.22 18.59 

400 1.10 10.69 20.27 

475 9.55 15.35 21.14 

 

Table 8. Fuzzy pressure, 𝑝̂. 

Fuzzy Pressure 

Initial K.P. 
Pressure (mbar) 

Lower Limit Core Upper Limit 

0  927.91 941.17 954.44 

45 929.15 942.42 955.68 

95 916.55 929.58 942.60 

170 931.78 945.25 958.72 

240 968.48 983.10 997.72 

330 956.92 971.09 985.25 

400 976.49 991.22 1005.94 

475 990.38 1004.74 1019.11 

500 995.28 1009.65 1024.01 
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Table 9. Fuzzy intensity of the wind, 𝑣̂𝑤𝑖𝑛𝑑. 

Fuzzy Intensity of the Wind / Summer and Winter (m/s) 

Initial K.P.–Final K.P. Lower Limit Core Upper Limit 

0–45 0.6 3.2 5.8 

45–200 1.4 4 6.6 

200–240 0 2.8 5.6 

240–330 0 3.6 7.9 

330–400 0 3.9 8.8 

400–475 0 2.5 5.4 

475–500 1.6 4.5 7.4 

500–550 0.4 3.3 6.2 

550–580 0 3.7 7.4 

580–621 0 3 6.7 
 

 

 

 

 

 

 

Table 10. Fuzzy angle of incidence of the wind, 𝜙̂. 

Fuzzy Angle of Incidence of the Wind (°) / Summer 

Initial K.P.–Final K.P. Lower Limit Core Upper Limit Type of Wind 

0–45 215 230 245 Unfavourable 

45–135 55 70 85 

Favourable 135–200 59 70 85 

200–240 25 40 55 

240–330 295 310 325 

Unfavourable 
330–335 245 260 275 

335–400 245 260 262 

400–475 245 260 275 

475–495 103 110 125 

Favourable 

495–500 95 110 125 

500–515 125 140 155 

515–550 125 140 152 

550–580 62 70 85 

580–621 145 160 175 
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Fuzzy Angle of Incidence of the Wind (°) / Winter 

Initial K.P.–Final K.P. Lower Limit Core Upper Limit Type of Wind 

0–45 5 20 35 Unfavourable 

45–135 55 70 85 

Favourable 135–200 59 70 85 

200–240 25 40 55 

240–330 295 310 325 

Unfavourable 
330–335 245 260 275 

335–400 245 260 262 

400–475 245 260 275 

475–495 103 110 125 

Favourable 

495–500 95 110 125 

500–515 265 280 295 

515–550 265 280 295 

550–580 62 70 85 

580–621 145 160 175 

 

2.5.3. RESULTS  

2.5.3.1. FLAT-OUT DRIVING 

Initially, the flat-out driving simulations are presented for the Initial Case 

scenario, with no climatological parameters, and also for the scenarios when 

the climatological parameters are considered (both in winter and summer). 

The flat-out driving is the fastest possible in the journey fulfilling the speed 

limitations of the line. This type of driving has the fastest running time and 

the associated highest energy consumption. 

The running time in the simulated Initial Case (no climatological 

parameters) is 2:18:49, and the associated energy consumption is 10.804 

MWh. Table 11 presents the results. 
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Table 11. Flat-out driving results. 

Scenario 
Energy Consumption 

(MWh) 

Running Time 

(hh:mm:ss) 

Initial Case 10.804 2:18:49 

Winter 10.603 2:18:48 

Summer 10.061 2:18:40 

Figure 11 shows the speed profile of the train for the Initial Case, when the 

flat-out driving is applied and climatological parameters are not impacting 

the operation. 

 

Figure 11. Flat-out speed profile. 

The running time and the energy consumption shown in Table 11 for winter 

and summer climatological conditions, correspond to the value calculated 

for the core of the fuzzy sets of temperature, pressure, wind intensity, and 

angle of incidence. 

Figures 12 and 13 show the energy consumption of the flat-out driving and 

the associated running time when the uncertainty in the climatological 

parameters are included. 

The impact of climatological parameters on energy consumption is more 

important than on the running time. In the summer scenario shown in 

Figure 12, the variation of energy consumption for the minimum and 

maximum values (support of the fuzzy numbers) is 14.8% in summer and 

13.2% in winter, relative to the minimum value. To analyse the impact of 

winter and summer conditions on the energy consumption, the core of the 

fuzzy energy consumption in summer and winter can be compared; this 

comparison shows that the energy consumption is 5.4% less in summer than 

in winter. 
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On the other hand, the impact on the running times is less significant (Figure 

13). In summer, the variation is 0.18%, and 0.88% in winter, both relative to 

the minimum value in each case. The variation between summer and winter 

conditions (core values) shows a difference of 0.10%, approximately. 

 

Figure 12. Fuzzy energy consumption applying flat-out driving. 

 

 

Figure 13. Fuzzy running time applying flat-out driving. 
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2.5.3.2. ECO-DRIVING DESIGN WITHOUT CLIMATOLOGICAL 

PARAMETERS 

After analysing the impact of weather conditions on the flat-out driving, the 

driving optimisation model is run to design the eco-driving without taking 

into account the weather conditions, which is solved by means of a GA. This 

would be the typical approach to solving the problem and will serve as a 

basis for comparison with the model proposed in this article. The objective 

travel time for the journey is 2 h and 45 min. 

The result of the optimisation is the Command Matrix to apply to obtain the 

optimal driving, shown in Table 12. 

Table 12. Command Matrix. 

 Command Matrix  

Initial K.P. Final K.P. Speed (km/h) 

0  271.08 244.73 

271.08 422.03 230.16 

422.03 621 240.17 

Figure 14 shows the speed profile for the eco-driving obtained from the 

optimisation model. The driving commands produce the nominal driving 

and define the commercial eco-driving designed in a specific railway 

operation. This driving produces an energy consumption of 7.589 MWh. 

 

Figure 14. Eco-driving speed profile. 

In Table 13, the energy consumption obtained by the eco-driving design and 

the associated energy saving compared to the flat-out driving can be seen. 

Thus, following this typical procedure, the energy saving that the railway 
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operator would expect would be 29.76%. The substantial and significant 

energy saving is achieved due to the slack time included in the timetable 

(necessary to satisfy punctuality when a delay arises), and due to the eco-

driving design to use the slack time optimally to minimise the energy 

consumption. Other studies show similar energy savings, 31.27% in [74] and 

35.54% in [86]. 

Table 13. Energy savings with no weather conditions. 

Energy 

Consumption 

Flat-Out 

(MWh) 

Eco-Driving 

(MWh) 
Saving 

Initial Case 10.804 7.589 29.76% 

 

2.5.3.3. ECO-DRIVING WITH FUZZY CLIMATOLOGICAL 

PARAMETERS APPLYING GA-F 

The next step is the execution of the proposed GA-F model to optimise the 

driving considering the fuzzy climatological parameters (Tables 7–10) with 

an objective running time of 2:45:00. The punctuality constraint is expressed 

as a necessity measure 𝑛𝑝 = 0.5. The fuzzy optimisation model has been 

applied for the summer and winter scenarios. 

Table 14 collects the results (energy consumption and running time) 

obtained by simulating for different α-cut with the eco-driving commands 

obtained with the optimisation model. Specifically, the lower and upper 

limits of the α-cuts with α = 0 and with α = 0.5 are shown, as well as the core 

(α = 1). 

Table 14. Fuzzy results obtained with the eco-driving design applying GA-F with np = 0.5 in winter 

and in summer. 

Season Winter Summer 

Value α 
Energy 

(MWh) 

Running Time 

(hh:mm:ss) 
α 

Energy 

(MWh) 

Running Time 

(hh:mm:ss) 

Lower 
0 6.989 2:44:06 0 6.550 2:44:13 

0.5 7.221 2:44:25 0.5 6.801 2:44:31 

Core 1 7.451 2:44:43 1 7.055 2:44:46 

Upper 
0.5 7.710 2:45:00 0.5 7.335 2:45:00 

0 7.957 2:45:14 0 7.603 2:45:12 
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For the fuzzy energy consumption results, the difference between the core 

values in summer and winter is 5.31%. The variation between the lower limit 

of α-cut = 0 and the upper limit of α-cut = 0 in winter is 12.16% and 13.85% 

in summer. On the other hand, the variation related to the running time is 

00:01:08 hh:mm:ss for the winter scenario (0.69%) and 0:00:59 for the 

summer scenario (0.60%). 

Figures 15 and 16 are the fuzzy energy consumption and the fuzzy running 

times obtained by applying the proposed GA-F model with fuzzy 

climatological parameters. Figure 16 shows that the objective running time 

is achieved when 𝛼 = 0.5 as the necessity measure for punctuality imposed 

was np = 0.5 = 1 − 𝛼. 

 

Figure 15. Fuzzy energy consumption applying GA-F with np = 0.5 in winter and in summer. 

 

Figure 16. Fuzzy running time applying GA-F with np = 0.5 in winter and in summer. 
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To conclude, the typical eco-driving design procedure where weather 

conditions are not considered would provide expected energy savings of 

29.76%, as previously indicated. With the application of the proposed GA-F 

model with fuzzy climatological parameters, the energy consumption of the 

new eco-driving designs is lower, and thus, the expected energy savings are 

higher (34.70% in summer and 31.03% in winter). Weather conditions have 

a significant impact on energy consumption and to a lesser extent, on 

journey time, and it is worth incorporating this information into the model 

in order to adapt driving to these pressure, temperature and wind 

conditions on the journey under analysis.  

 

2.6. CONCLUSIONS AND CONTRIBUTIONS 

This chapter proposes a new model to design eco-driving in railway lines 

taking into account climatological conditions. The climatological parameters 

affecting the model are the temperature, pressure, the wind intensity and its 

angle of incidence. The uncertainty associated with these climatological 

parameters is modelled by fuzzy numbers, and the optimisation problem is 

solved by means of a GA-F, Genetic Algorithm with fuzzy parameters. The 

analysis of the energy consumption and running time functions depending 

on these parameters permits an efficient calculation and resolution of the 

problem applying α-cut simulations. 

The proposed model has been applied to a real Spanish high-speed railway 

line. First, the flat-out driving has been simulated and the important impact 

that the climatological parameters have on the energy consumption of the 

train and to a lesser extent on the running times have been shown. 

Then, the efficient driving is designed without and with climatological 

parameters (applying the proposed GA-F). The eco-driving design is based 

on applying coasting commands and speed regulation without braking 

commands. In this case study, it has been shown that the expected energy 

savings obtained in this process are underestimated when eco-driving is 

designed without considering climatological parameters. 

Of course, depending on the specific characteristics of the railway line under 

study, the climatological conditions could be less or more favourable. 

However, it can be concluded that weather conditions have a significant 

impact on energy consumption and to a lesser extent, on journey time, and 



 

67 
 

it is worth incorporating this information into the model in order to adapt 

driving to the pressure, temperature, and wind conditions on the journey 

under analysis. The final aim is to maximise energy savings considering as 

much as possible parameterised data involved in the rail traffic operations. 

In conclusion, the results obtained show that the expected energy savings 

without considering climatological factors is 29.76%, while, if these are 

considered, the savings can increase up to 34.7% in summer conditions. 

With the proposed model, a variation in energy consumption of 5.31% is 

obtained between the summer and winter scenarios (core values), in both 

cases complying with the punctuality restrictions. On the other hand, 

although weather conditions have a significant impact on energy 

consumption, their effect on travel time is practically negligible, with a 

difference of only 0.03% between the two scenarios (core values). This 

demonstrates that the model allows the operator to more accurately estimate 

energy consumption, offering optimised driving adapted to real weather 

conditions. Future developments will be oriented to the application of the 

model in real-time to adapt the optimal driving to the current climatological 

conditions and include other sources of uncertainty related to the traffic 

conditions. 

The main contribution of this chapter is the proposal of an innovative model 

of efficient driving for High-Speed trains, which incorporates weather 

conditions through fuzzy logic. Unlike previous studies, parameters such as 

pressure, temperature, air density and wind are explicitly considered as 

fuzzy variables, allowing their uncertainty to be represented and their 

impact on energy consumption and travel time to be analysed. The model 

combines a genetic algorithm with a detailed simulation of the train's 

movement to optimise driving profiles in different weather scenarios, 

ensuring that journey times are met. It has been validated by simulation on 

a real High-Speed line in Spain, demonstrating relevant improvements in 

the estimation of energy consumption and providing a practical approach 

for railway operators seeking more efficient strategies adapted to real 

conditions. 
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CHAPTER 3 

EFFICIENT MASS TRANSIT OPERATION: ECO-DRIVING, 

REGENERATIVE ENERGY AND ROLLING STOCK 

OPTIMISATION 

 

 

 

 

 

 

 

 

3.1. INTRODUCTION 

The benefits of eco-driving implementation in mass transit lines have been 

demonstrated in several studies under different scenarios. Efficient driving 

achieved by GA (Genetic Algorithm) and PSO (Particle Swarm 

Optimization) was validated in the case of the Istanbul metro achieving 

energy savings with manual operation between 20% and 30% [37]. In [17], 

the authors consider the regenerated energy and storage devices in the 

design of ATO driving commands obtaining a result of 11% of energy 

savings. The ATO speed profiles search with MOPSO in [38] provide energy 

savings of 15% and it can be combined with robustness conditions to obtain 

driving commands considering mass variation [51]. 

The authors in [142] present a speed trajectory optimisation using nature-

inspired algorithms for the Istanbul M3 subway line considering a variable 

number of passengers. The algorithms used are a GA, Simulated Annealing 

algorithm (SA), PSO and the Marine Predators Algorithm. The solution was 

tested in the real line achieving energy savings of 21.27%. 

The first study related to the calculation of efficient driving applied to 

railways was carried out in [21] applying Pontryagin's Maximum Principle. 

Ichikawa considers the analysis as a bounded state variable problem taking 

into account the speed limits and obtained for the first time the optimal 
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regimes: maximum acceleration, holding speed, coasting and maximum 

deceleration. Applying the same principle, Howlett in [143] considers 

energy minimisation to find the optimal driving strategy. Different 

simulation methods and optimisation techniques are used applying the 

results of the Maximum Principle to solve different cases proposed in the 

literature.  

Solutions from constructive algorithms are achieved in [73] where coast and 

maximum power phases are alternated to obtain the optimal driving 

strategy. Variable speed restrictions, grade profile, traction and brake force 

and running time are constraints to optimal driving pattern calculation in 

[82] with the Maximum Principle analysis. In [2] the analytical solution 

offers the sequence of optimal train control. An optimisation and control of 

speed and dwell time are given in [48].  

Apart from constructive algorithms, different mathematical models have 

been applied to obtain the optimal solution for efficient driving such as 

Dynamic Programming (DP) [48], Mixed-Integer programming [65], 

Sequential Quadratic Programming [80] or Lagrange Multipliers [84]. A 

mixed-integer non-linear programming problem is solved in [17] 

minimising passengers travel time and traction energy consumption in 

urban rail transit systems. 

Previous methods obtain the analytical eco-driving solution but, when the 

model includes details such as automatic driving logic, the nonlinearities 

introduced require the application of different techniques. In contrast to 

mainlines, mass transit lines are highly automated exploitations where the 

trains are automatically driven by ATO equipment. Therefore, it is 

important to develop simulation models that include ATO characteristics in 

eco-driving models for mass transit lines and to combine them with 

optimisation algorithms [144] to obtain applicable solutions. 

Artificial Neural Networks (ANN) are used in [87] for optimising coasting 

speed in Mass Rapid Transit (MRT) systems while in [86] are found the 

optimal coasting positions. GA have been frequently used for eco-driving as 

in [74] for a Direct Current (DC) metropolitan railway line, in [50] to find the 

optimal coasting points and in [79] to calculate the efficient speed. In [43] is 

used the GA to minimise energy consumption considering the headway, 

running time and dwell times. A multi-population GA is used in [95] to 

minimise traction energy taking into account driving strategy and trip time. 
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Fuzzy logic [116] and GA can be combined to consider uncertainty in any of 

the parameters that affect railway operation. An example is presented in 

[145] where eco-driving is calculated and adapted to operational conditions 

considering variability in climatological conditions for a high-speed railway 

with a GA. NSGA-II [146] (Non-Dominated Sorting Genetic Algorithm II) is 

applied in [147] to optimise traction systems while, in [104], is combined 

with fuzzy logic to calculate ATO driving in metro lines considering 

variability in the load of passengers. In [148] a dynamic version of NSGA-II 

was applied to re-calculate the train speed profiles during its journey.  In 

[27] a fuzzy manual driving model and a GA are combined to solve eco-

driving. Other alternatives to GA have been proposed in the literature to 

solve the energy minimisation problem in train driving such as Brute Force 

in [98], Monte Carlo [149] simulation in [99], Differential Evolution in [100], 

Genetic Simulated Annealing in [101], Indicator Based Evolutionary 

Algorithm [150] (IBEA) in [103] and Ant Colony Optimisation (ACO) [151] 

in [79]. 

In contrast to previous studies, approaches that combine timetabling and 

eco-driving problems can be found in the literature to minimise the global 

traction energy consumption of traffic operation. Thus, the focused is in the 

complete line instead of minimising the consumption of each interstation 

separately. The running times between stations and dwell times can be 

optimised jointly with the eco-driving to spend the time where it is more 

beneficial reducing the traction energy for operation.  

Driving and timetable are optimised with a combined PSO-GA in [41] for 

energy efficiency purposes. Eco-driving and timetable levels are solved in 

[152] by DP and the SA algorithm, respectively, adding a substation-based 

energy consumption model. Timetable is also calculated in [32] by applying 

ATO efficient driving when the mass transported is considered as a fuzzy 

variable. Optimal design in [153] focuses on the capacity of the timetable to 

remain robust when possible disruptions arise during operation. 

On the other hand, it is important to take into account not only the traction 

energy, but also the use of regenerative energy to reduce as much as possible 

the energy consumption in a railway line. This is even more important in 

mass transit line where the power system is a DC system where returning 

energy from the railway grid to the utility grid is difficult [154]. 

Regenerative braking is a technology that allows the trains equipped with it 

to produce energy during the braking processes. This energy is, firstly used 
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to feed the auxiliary equipment of the train that produces it and, the rest, 

can be sent back to the catenary. This way, other trains can use it reducing 

the energy demanded from substations. The regenerated energy produced 

by a train can be used by another train that requires traction in DC systems 

when the trains share the same electrical section. If there is not enough 

energy demand in the section, the regenerated energy must be wasted in on-

board rheostats of the braking train to prevent an undesired increase of the 

catenary voltage. 

Taking into account the previous concepts, there are authors who seek to 

reduce the total substation demand of the train traffic by synchronising 

accelerating and braking trains [44] taking into account the power-saving 

factor between each pair of trains. In this case, an energy saving of 7% is 

achieved in a Madrid Underground case study just by the increase in 

regenerated energy use. Timetable is optimised in [155] maximising the 

overlapping time between the accelerating and braking trains by means of 

an integer programming model and solving it with a GA.  

The application of eco-driving decreases consumption but the use of 

regenerated energy decreases as well. The higher the speed, the higher the 

use of regenerated brake energy when trains arrive at the stopping points. 

So, there is a balance between efficient driving design and the ability to 

maximise the use of regenerated energy during braking considering also the 

density of rail traffic [90]. In [156] the driving is designed and timetable is 

then optimised considering regenerative braking exchange only when trains 

arrive and depart from stations with no consideration of motors efficiency 

or transmission losses. 

In [157] a resolution model is used to synchronise trains where the 

overlapping time of accelerating and braking trains (at the start-up and 

arrival at stations) is maximised and the travel time of a user and of all 

passengers globally is minimised, taking into account passenger transfers. 

In order to reuse the regenerated energy, this work takes into account the 

start-up and arrival of trains at stations without considering possible 

traction and braking that may occur during driving between stations. This 

study does not consider the use of regenerated energy but the overlapping 

time, does not add the losses suffered during energy transmission and does 

not carry out an eco-driving design included in the model. Furthermore, the 

timetable is designed in such a way as to be periodic because, although 

flexibility is lost in adjusting starts and braking to maximise the use of 
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regenerated energy, comfort and the perception of good service on the line 

are gained.  

In the study carried out in [52] the timetabling and coordination of trains 

during starting and braking, controlling dwell times, are proposed to take 

advantage of regenerated energy on the Beijing Metro Yizhuang Line. The 

results obtained show annual energy savings of 6.97% compared to the 

current planning. In this article, the speed profiles used are the real ones of 

the trains on the line analysed and the transmission loss coefficient is 

considered as constant.  

The analysis in [53] aims to maximise the use of regenerated energy while 

at the same time shortening passenger waiting time. It is formulated a two-

objective integer programming model with headway time and dwell time 

control and then, it is designed a genetic algorithm to find the optimal 

solution. Transmission loss data are estimated using historical data.  

An integrated method to maximise regenerative energy is presented in [158] 

by optimizing train speed and timetables. Additionally, it minimises 

simultaneous acceleration or braking within the same electric zone. 

Simulations of Istanbul's M3 subway using genetic and simulated annealing 

algorithms show traction energy savings.  

In [55] the design of the timetable is carried out considering the 

synchronisation between trains as in the previous work but now minimising 

power peaks. Possible delays and how they affect the timetable are analysed 

by means of the Monte Carlo method.  

In [54] a two-step approach to timetable design is proposed. The first phase 

aims to reduce passenger waiting time and the second phase to reduce total 

consumption. The speed profile of the trains is divided into six zones for 

traction, coasting and braking. Regenerated energy is only taken into 

account during the overlap between acceleration and braking. In [46] a 

Chongqing metro line is studied for which the objective is to minimise the 

total energy consumed by taking into account the energy regenerated by 

accelerating and braking trains in the same power supply section. They use 

a matrix resolution model for searching the global solution although with a 

higher computational cost by taking the speed profiles of the trains. A bi-

objective algorithm is proposed in [58] to obtain efficient timetables where 
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the consumption and passenger travel time are considered using real 

historical data of a railway network taking simplifications. 

In the literature it is found real-time timetable optimisation by means of 

train control as in [159]. The synchronisation of the trains is taken into 

account to take advantage of the regenerated energy when the whole DC 

power supply system is connected in all the sections although the scenario 

where sections are disconnected is also considered. The response of the 

timetable is analysed against delays and the speed profiles to be executed 

by the trains are adjusted by means of the strategy presented in [160]. 

In [57] it is proposed a timetable optimisation and train control method to 

minimise substation energy consumption on a metro line with a DC 

electrical system equipped with reversible substations. In this case the 

limitations of regenerative energy exchange are relaxed because reversible 

substations allow the flow of regenerative energy from catenary to the utility 

grid. The train speed profile is included along with the timetable 

optimisation. 

In the literature, different studies on energy efficient train timetabling can 

be found, but has rarely been taken into account train circulation plan, that 

is, the use of rolling stock (trains) required to provide the rail services 

defined in the timetable. However, the timetable design has an important 

impact on the use of the available rolling stock. When the timetable is 

optimised to save energy, it may be very costly to match the train circulation 

plan to the timetable due to an inadequate connection between train services 

[45]. Authors in [56] suggested that the train circulation plan should be 

taken into account in the optimisation of the train schedule, but they did not 

focus on the energy-efficient timetabling problem. 

In particular, depending on how the timetable is designed, the number of 

trains (rolling stock) needed to provide the service may be different, which 

has a significant impact on investment and operation. 

In [45] a synchronisation between trains is carried out for timetabling taking 

into account different electrical sections. The authors consider the possible 

synchronisation of energy regenerated/consumed along the interstation, 

and not only at arrival / departure. They optimize the timetable considering 

the energy saving and the train circulation plan for an urban rail line, by 

means of a mono-objective PSO optimisation algorithm. However, they do 
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not design the eco-driving at each interstation taking into account the 

characteristics of the ATO equipment, the number of trains associated to the 

timetable is not calculated, and some simplifications are assumed in the 

train model. 

The main objective and contribution of the present work is a multi-objective 

method based on detailed simulation to design the optimal ATO driving 

commands of a metro line and, as a result, define the traffic operation that 

minimises the energy consumption considering the rolling stock required to 

provide the service. This is achieved by integrating the optimisation of the 

speed profiles and the optimisation of the timetable adding the contribution 

of the energy regenerated by braking trains during all the train journey. The 

number of trains required to provide the service associated to the timetable 

are also considered to quantify costs related to rolling stock. In particular, it 

can be highlighted the following contributions: 

• An integrated multi-objective approach to design the ATO driving 

commands and timetable of a metro line including: the minimisation 

of energy consumption, the maximisation of regenerative energy usage 

and the minimisation of the rolling stock required to operate. This 

method can assist train operators to decide the timetable taking into 

account the trade-offs between commercial speed and the costs of 

energy and rolling stock. 

• The integrated optimisation model is a two-level optimisation 

procedure where the local eco-driving level finds the set of efficient 

speed profiles at each interstation and the global timetable level finds 

the Pareto front of timetables. The local level is solved using a MOPSO 

algorithm which has demonstrated its performance in literature. The 

global timetable level is solved comparing four different algorithms, 

proving that GLMO-NSGA-III is the most effective for this 

optimisation model.  

• The model includes constraints associated to realistic ATO equipment 

at the local level and constraints associated to the reverse manoeuvre 

in terminal stations in order to avoid solutions that cannot be applied 

in real installations or that can require a greater number of trains. 

• A Madrid Underground case study is carried out to prove the benefits 

of the optimisation model proposed. The results illustrate that the 
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integrated optimisation achieves energy savings of 24.8% compared to 

the typical criteria used by operators to design the timetable. 

References and previous work related to eco-driving and timetable design 

are listed in Table 15. As a summary, many studies in the literature ([52], 

[56], [155], [157]) compared with the proposed model do not include an 

integrated optimisation method with timetable and eco-driving. Literature 

models do not take into account constraints associated to ATO driving logic 

as the model proposed except for [32] and [46]. However, in reference [32] 

the regenerated energy is not considered and in [32] and [46] the rolling 

stock is not included as a goal. Regarding the regenerated energy, in [32], 

[41], [56], [142], [152], [161] and the regenerated energy is not modelled. In 

([52], [53], [54], [90], [155], [156], [157] and [158]) the use of regenerated 

energy is improved indirectly by maximizing the coincidences of trains’ 

departures and arrivals. In [45], [46], [55], [57] and [159] and a similar 

approach to the model proposed in this chapter is used to calculate the total 

regenerated energy transferred among trains. However, except for [45] the 

rolling stock is not taken into account. The cost associated to the rolling stock 

is only included in the model in [45] and [56]. In both cases, the approach is 

to include the rolling stock cost as the total running time and the connection 

time. In the present chapter, the approach is to directly calculate the number 

of trains needed to provide the service with the designed timetable and 

include it as a penalty in the objective function. 

This chapter is organised as follows: Section 3.2 describes the design 

objective for the optimal efficient operation of a metro line.  In Section 3.3 

the timetabling model is presented. Section 3.4 defines the eco-driving ATO 

design model for each interstation and the train simulator it uses to evaluate 

solutions. In Section 3.5 the method is applied to a case study of Madrid 

Underground. Section 3.6 presents the conclusions and a discussion of the 

proposed method. 
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Table 15. Literature review. 

 

Reference 

 

Eco-driving  

consideration 

ATO  

consideration 

Regenerated  

energy  

consideration 

Rolling stock  

consideration 

[23] Yes No No No 

[42] Yes No Fully considered No 

[52] No No 
Traction/Braking 

synchronisation 
No 

[53] Yes No 
Traction/Braking 

synchronisation 
No 

[54] Yes No 
Traction/Braking 

synchronisation 
No 

[55] Yes No Fully considered No 

[57] Yes No Fully considered No 

[58] Yes No No No 

[142] Yes No No No 

[152] Yes No No No 

[155] No No 
Traction/Braking 

synchronisation 
No 

[156] Yes No 
Traction/Braking 

synchronisation 
No 

[157] No No 
Traction/Braking 

synchronisation 
No 

[158] Yes No 
Traction/Braking 

synchronisation 
No 

[162] Yes Yes No No 

[163] Yes No 
Traction/Braking 

synchronisation 
No 

[164] Yes Yes Fully considered No 

[165]  Yes No Fully considered Yes 

[166]  No No No Yes 

 

 

3.2. DESIGN OF THE OPTIMAL ATO OPERATION OF A RAILWAY 

LINE 

The model presented in this chapter considers a typical topology of a mass 

transit railway line, a two-track line between terminal stations. The line is 

composed of 𝑁𝑠 stations and equipped with ATO systems. All the electrical 
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sections are supposed to be connected although regeneration will be more 

efficiently used by trains running close to the regenerating one, as electrical 

losses are modelled. Energy regenerated by a train running upwards can be 

consumed by a nearby train running in the same direction or in downwards 

direction. 

Sections 3.2.1, 3.2.2, and 3.2.3 list the parameters, intermediate variables and 

functions and decision variables used in the chapter in Table 13, Table 14 

and Table 15, respectively. 

3.2.1. PARAMETERS  

 

Table 16. Parameters. 

𝒉 Headway (s) 

𝑵𝒔 Number of stations 

𝒕𝒎𝒊𝒏 Minimum dwell time (s) 

𝑷 Penalty for the use of an additional train (kW) 

𝝈 Transmission loss model dependent on train position 

𝒎𝟎 Empty train mass (tons) 

𝒎𝒍 Load mass (tons) 

𝒎𝒆𝒒 Equivalent mass of the train 

𝑭𝒎𝒂𝒙 Maximum traction effort according to the motor characteristics 

𝒋𝒎𝒂𝒙 Maximum variation of traction/braking effort 

𝑨 Constant related to the mechanical resistance to the motion 

𝑩 Constant related to the resistance due to the air inlet in the train 

𝑪 Constant related to the aerodynamic resistance 

𝒈 Gravitational acceleration (m/𝑠2) 

𝑷𝒕𝒓𝒂𝒄𝒌 Equivalent gradient of the track in the train position 

𝑰𝒎𝒂𝒙 Maximum current 

𝑼𝒄𝒂𝒕 Nominal catenary voltage 

𝜼 Motor efficiency (%) 
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3.2.2. INTERMEDIATE VARIABLES 

 

Table 17. Intermediate variables. 

𝑹𝑻(𝒙𝒈, 𝒕𝒈) Global running time of the timetable (s) 

𝑪(𝒙𝒈, 𝒕𝒈) Cost function (kWh) 

𝑵𝒕 Number of trains 

𝒕𝟏 Running time on track 1 (s) 

𝒕𝟐 Running time on track 2 (s) 

𝑻𝟏 
Time difference between the arrival and departure of consecutive 

services in station 1 (s) 

𝒇𝟏(𝒙𝒏) Running time evaluation function for interstation 𝒏 (s) 

𝒇𝟐(𝒙𝒏) Energy consumption evaluation function for interstation 𝒏 (kWh) 

𝑬𝑫𝑪𝒏 Set of the efficient ATO driving commands of interstation 𝒏 

𝒔𝒊 Position of train i (m) 

𝝈𝒋𝒊 
Value of transmission losses for the regenerating train j and the 

accelerating train i (kWh) 

𝒏𝒄 Number of trains consuming energy 

𝒏𝒓 Number of trains regenerating energy 

𝑬𝒊 Energy consumption used for traction by train i (kWh) 

𝑹𝒋 Energy regenerated by train j (kWh) 

𝑹𝒋𝒊 Energy regenerated by train j and transmitted to train i (kWh) 

t Time (s) 

𝒂 Acceleration (m/s2) 

𝑭𝒈 Force due to the railway grades (kN) 

𝑭𝒄 Force due to track curvature (kN) 

𝑭𝒓 Running resistance (kN) 

𝒂𝒓𝒆𝒇 Traction/braking demand for the train (m/𝑠2) 

𝑲𝒕𝒓𝒂𝒄𝒕𝒊𝒐𝒏 Constant of the proportional controller for the traction mode (s/m) 

𝑲𝒂𝒄𝒄 Constant for the pre-fed acceleration (s2/m) 

𝒗𝒕𝒂𝒓𝒈𝒆𝒕 
Minimum value between the maximum speed at the position of the 

train and the driving command ℎ𝑠 (holding speed) (m/s) 

𝒗𝒕𝒓𝒂𝒊𝒏 Speed of the train (m/s) 

𝒂𝒈𝒓𝒂𝒅𝒊𝒆𝒏𝒕 Acceleration due to the gradients at the position of the train (m/s2) 

𝑲𝒃𝒓𝒂𝒌𝒊𝒏𝒈 Constant of the proportional controller for the braking mode (s/m) 

𝑭𝒎 Motor force (kN) 
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𝑷𝒕𝒓𝒂𝒄 Traction electric power (kW) 

𝑷𝒓𝒆𝒈 Regenerative electric power (kW) 
 

3.2.3. DECISION VARIABLES 

 

Table 18. Decision variables. 

𝒙𝒈 ATO driving commands for all the interstations of the entire metro line 

𝒕𝒈 Dwell time at every station in the railway line (s) 

𝒙𝒏 Vector with the ATO driving parameters for the interstation 𝑛 (component of 𝒙𝒈) 

𝒕𝒏 Dwell time at station 𝒏 (component of 𝒕𝒈) (s) 

𝒙𝑵𝒔 ATO driving commands for interstation Ns 

𝒕𝑵𝒔 Dwell time at station Ns (s) 

𝒄 Speed at which coasting is applied (component of 𝒙𝒏) (m/s) 

 𝒓 Speed at which traction is applied (component of 𝒙𝒏) (m/s) 

𝒉𝒔 Holding speed (component of 𝒙𝒏) (m/s) 

𝒃 Braking rate (component of 𝒙𝒏) (m/𝑠2) 
 

 

3.2.4. OPTIMAL ATO PROBLEM 

The problem to solve is the design of the optimal ATO driving commands 

of a metropolitan railway line for a specific operational period. With this 

objective, the model designs jointly the efficient driving at each interstation 

and a periodic efficient timetable for the operational period.  

The model includes a penalty associated to the number of trains (rolling 

stock) required to provide the rail services of the timetable. This way, 

timetables with a lower number of trains required will be preferred. 

A multi-objective model is defined to propose the most efficient solutions 

for different total travel times of the line. As the travel time and energy 

consumption are conflicting objectives, the result will be the set of non-

dominated solutions; i.e., those that cannot be improved in energy 

consumption and travel time simultaneously. This way, the operator can 

select the commercial running time of the line (i.e., the travel time to run the 

line completely) in view of the trade-off with the energy consumption and 

considering the number of trains required. The travel time is the sum of the 

running time of the speed profiles produced by the designed ATO driving 
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commands for each interstation stretch, and the selected dwell time at each 

station. To optimise the energy consumption of the line, for each total travel 

time the proposed model takes into account the set of optimal ATO driving 

commands in each interstation (that produces eco-driving speed profiles), 

the distribution of time margins along the route to make it efficient and also 

the energy transferred between trains in the braking processes which, 

depending on the design of the timetables of all trains, makes it possible to 

reduce the overall energy consumption. In this study, a two-level resolution 

model is proposed (Figure 17). First, at the eco-driving level, a local Pareto 

front of driving commands is obtained for each interstation, providing for 

each running time the eco-driving (ATO driving with the minimum energy 

consumption). 

Then, at the timetable level, a global Pareto front of optimal timetable 

solutions (i.e., a driving command for each interstation and a dwell time for 

each station) is obtained taking into account the exchange of regenerative 

energy among trains on the entire metro line in order to maximise its use, as 

well as the time distribution along the line to minimise the total energy 

consumption of the system.  

 

 

Figure 17. Proposed model for the efficient operation of a metro line. 
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3.3. TIMETABLE DESIGN LEVEL 

This section presents the optimisation of the timetable at the global level. 

The inputs received at this level are the eco-driving profiles designed by the 

Local eco-driving multi-objective optimisation model (Section 4). A series of 

preconditions have been established to design the timetable for a specific 

operational period. A periodic timetable has been considered with all trains 

performing the same running time for the same route and the same stopping 

times for the same stations considering that the interval between trains is 

constant. Therefore, by calculating the timetable for each train in each period 

of time, the entire timetable is calculated. 

When the timetable design problem is solved, a new global Pareto front is 

obtained where each solution has associated the total energy consumption 

and running time of the cycle for the entire line, considering that the trains 

are using the efficient driving calculated in the eco-driving level. Thus, each 

solution represents a specific set of efficient ATO driving parameters at each 

interstation (which provide the running times at interstations) and the dwell 

times at the stations of the line. For each solution, the total operating cycle 

time of the entire line is thus defined. In this way, the optimal timetable is 

established by defining the time of arrival and departure at stations and 

thus, the associated stopping times. 

 

3.3.1. GLOBAL OPTIMISATION MODEL 

At the global level, the objective is to maximise the use of energy regenerated 

by trains during braking avoiding waste through rheostats and to distribute 

the time margins by reducing the running time at the interstations where 

greater traction energy reduction can be obtained. The energy regenerated 

by a train is firstly used for auxiliary systems. The remaining regenerated 

energy is transmitted to other trains that are accelerating nearby the train or 

transmitted to rheostats if there is no demand to avoid voltage surges in the 

catenary. To design the efficient timetable, the input parameters are the 

headway and the set of efficient eco-driving parameters obtained for each 

interstation at local level. The proposed optimisation model will modify the 

arrival / departures in order to synchronize trains improving the use of 

regenerated energy in braking. In this way, a braking train transmits as 

much energy as possible to nearby accelerating trains.  
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In the proposed model, the consumption profile on the route of each 

interstation is used to synchronise not only the braking on arrival at the 

station but also at any other moment that may occur, such as, for example 

due to speed limits along the route. In addition, every timetable on a railway 

line has an associated number of trains required to provide that service. The 

model proposed imposes a penalty for timetables with similar running time 

and energy consumption that require an extra train to provide the service. 

Thus, the objective function of the multi-objective optimisation problem of 

designing the line operation that can be expressed as:  

 

𝑚𝑖𝑛 𝑓𝑔(𝑥𝑔, 𝑡𝑔) = (𝑅𝑇(𝑥𝑔, 𝑡𝑔) , 𝐶(𝑥𝑔, 𝑡𝑔))      (40) 

Where, 𝑅𝑇  is the total running time (s) for the mass transit line, 𝐶  is the cost 

function that includes the total energy consumption (kWh) and the penalty 

in the number of trains (kWh), 𝑥𝑔 is the ATO driving commands for all the 

interstations of the entire metro line with 𝑥𝑔 = (𝑥1, 𝑥2, … , 𝑥𝑁𝑠) being 𝑁𝑠 the 

number of stations along the metro line and 𝑡𝑔 are the values of dwell time 

(s) at every station in the line with 𝑡𝑔 = (𝑡1, 𝑡2, … , 𝑡𝑁𝑠). 

The driving commands contained in 𝑥𝑔 will be restricted by the following 

condition: 

𝑥𝑛 ∈ 𝐸𝐷𝐶𝑛      (41) 

where 𝑥𝑛 is the component 𝑛 of 𝑥𝑔 (i.e., the ATO driving command of the 

interstation 𝑛) and 𝐸𝐷𝐶𝑛 is the set of the efficient ATO driving commands 

of interstation 𝑛 (i.e., the Pareto front obtained in the local eco-driving level 

for interstation 𝑛). 

Moreover, the dwell times will be restricted by a minimum value that 

ensures that the passengers have enough time to get on board the train: 

𝑡𝑛 ≥ 𝑡𝑚𝑖𝑛      (42) 

where 𝑡𝑛 es the dwell time (s) at station 𝑛, and 𝑡𝑚𝑖𝑛 is the minimum dwell 

time (s). The global running time of the timetable model 𝑅𝑇(𝑥𝑔, 𝑡𝑔) , 



 

83 
 

presented in Equation 43, is calculated as the sum of the running time and 

the stopping time at each station 𝑛: 

𝑅𝑇(𝑥𝑔, 𝑡𝑔) = ∑  (𝑓1(𝑥𝑛) + 𝑡𝑛) 

𝑁𝑠

𝑛=1

      (43) 

 

where 𝑓1(𝑥𝑛)  is the running time (s) of interstation n.  

The cost function 𝐶(𝑥𝑔, 𝑡𝑔), shown in Equation 44, is calculated knowing at 

each moment 𝑡 the consumption of the traction trains, the energy returned 

by braking trains and the distance between trains to take into account the 

electrical losses in the energy transmission between regenerating trains and 

accelerating trains. In addition, this function includes a penalty for each 

extra train required in the solution to satisfy the timetable:  

 

𝐶(𝑥𝑔, 𝑡𝑔) =∑ 

(

 ∑𝐸𝑖 − ∑∑𝑅𝑗𝑖 ∙ 𝜎𝑗𝑖

𝑛𝑟

𝑗=1
𝑗≠𝑖

𝑛𝑐

𝑖=1

𝑛𝑐

𝑖=1
)

 + 𝑃 ∙ 𝑁𝑡

ℎ

𝑡=0

    (44) 

 

where 𝑗  is the train that transmits regenerated energy, 𝑖  is the train that 

receives regenerated energy, 𝑛𝑐 is the number of trains consuming energy, 

𝑛𝑟 is the number of trains regenerating energy, ℎ is the headway (s), 𝐸𝑖 is the 

energy consumption (kWh) used for traction by train 𝑖 , 𝑅𝑗𝑖  is the energy 

regenerated (kWh) by train 𝑗 and transmitted to train 𝑖 at a specific instant, 

𝜎 models the electrical losses and represents the percentage of regenerated 

energy that is transmitted from a braking train and utilised by a traction 

train. This function is dependent on the distance (m) between the 

regenerating train 𝑗  and the train 𝑖  receiving the energy as shown in 

Equation 45. An example is shown in Figure 18 although different shapes 

can be obtained depending on the characteristics of the specific railway 

line. 𝑃 is the penalty (kWh) whereby the solution with the lowest number of 

trains satisfying the timetable is prioritised and 𝑁𝑡 is the number of trains 

required to fulfil the timetable.  

𝜎𝑗𝑖 = 𝜎 ∙ (|𝑠𝑖 − 𝑠𝑗|) 

 
   (45) 
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where 𝑠𝑖 and 𝑠𝑗 are the kilometric position (m) of train 𝑖 and 𝑗 respectively. 

 

Figure 18. σ function. 

Cost function 𝐶 (Equation 44) is calculated as the sum of consumption at 

each instant of time t, over an interval equal to the headway. It is sufficient 

to calculate it in a headway since, as the timetable is periodic, it is repeated 

every headway h. 

In Equation 44, the value of the energy consumption (E) of a train cannot be 

a negative value. A negative value would mean that the train would be 

braking, regenerating and transmitting energy, so instead, this value would 

be included in R. Similarly, the energy regeneration R of a train cannot be a 

negative value (in that case, the train would be consumed and should be 

modelled by means of E).  

In addition, there are a series of restrictions to complete the model for the 

use of regenerated energy. The first expression (Equation 46) indicates that 

the reuse of the regenerated energy is maximised offering the greatest 

possible amount of energy to the nearest trains with the highest utilisation 

percentage (Figure 18): 

𝑚𝑎𝑥∑𝑅𝑗𝑖

𝑛𝑐

𝑖=1

∙ 𝜎𝑗𝑖      (46) 
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The energy regenerated will always be higher than the energy received by 

the other trains for reuse due to the losses introduced in the calculation: 

𝑅𝑗 >∑𝑅𝑗𝑖

𝑛𝑐

𝑖=1

      (47) 

 

The total regenerated energy received by trains cannot exceed the energy 

required for their operation so energy is only transmitted to trains that are 

accelerating: 

∑𝜎𝑗𝑖 ∙ 𝑅𝑗𝑖

𝑛𝑐

𝑖=1

≤ 𝐸𝑖       (48) 

 

In addition, in the cost function (Equation 44), a penalty is introduced 

associated to the number of trains (rolling stock) required to provide the 

service of the designed timetable. In this way, the optimal solution can be 

obtained with the lowest number of associated trains while reducing related 

costs. 

The calculation of the number of trains is solved by means of Equations 49 

and 50. 𝑇1 is the result of the timetable optimisation and represents the time 

difference between the arrival and departure of consecutive services in 

terminal station 1. If this time is equal to or greater than minimum dwell 

time, 𝑡𝑚𝑖𝑛,  that means the same rolling stock can perform both services. In 

this case, the number of trains is calculated by Equation 49, by considering 

the dwell time at terminal station 2 equal to the minimum and rounding the 

result to the greater closest integer value. That means that the dwell time at 

terminal station 2 is the needed value to obtain an integer value of trains 

subject to the minimum stopping time: 

𝐼𝑓 𝑇1 ≥ 𝑡𝑚𝑖𝑛  → 𝑁𝑡 = 𝑐𝑒𝑖𝑙 (
𝑡1 + 𝑡2 + 𝑇1 + 𝑡𝑚𝑖𝑛

ℎ
)      (49) 

 

If this time is lower than minimum dwell time (𝑡𝑚𝑖𝑛), that means the same 

rolling stock cannot perform both services. That means that when a train 

arrives to terminal station 1, there is other train ready to start the service in 

the opposite direction. Therefore, the train that arrives to terminal station 1 



 

86 
 

has to wait 𝑇1 plus an interval ℎ to start the service in the opposite direction 

(Figure 19). The impact of this extra-time is that an additional train is needed 

to provide the service. In this case, the number of trains is calculated by 

Equation 50: 

       𝐼𝑓 𝑇1 < 𝑡𝑚𝑖𝑛  → 𝑁𝑡 = 𝑐𝑒𝑖𝑙 (
𝑡1 + 𝑡2 + 𝑇1 + ℎ + 𝑡𝑚𝑖𝑛

ℎ
)      (50) 

 

where 𝑇1  is the dwell time (s) calculated in terminal station 1, 𝑡𝑚𝑖𝑛  is the 

minimum dwell time (s) in terminal station, 𝑡1 is the running time (s) on 

track 1 and 𝑡2 is the running time (s) on track 2. 

 

Figure 19. Dwell time at Terminal station 1. 

 

The number of trains necessary for the operation is calculated as the 

complete cycle running time associated with a specific timetable divided by 

the headway between trains. For a given timetable it is analysed whether 

the time at the terminal station is greater than the minimum time necessary 

for the manoeuvre (or if more margin time is desired for delay recovery). 

Otherwise, if the result is less than the minimum time, it means that the train 

arriving at that terminal station must connect with the next timetable which 

starts a time equals to one headway later. As a consequence, in this case an 

extra train is needed to provide the service. 

A Non-Sorted Genetic Algorithm III [167] that uses the Grouped Linked 

Polynomial Mutation Operator [60] (GLMO-NSGA-III) algorithm is 

proposed in this work to solve the multi-objective optimisation problem 
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defined in the timetable level due to its performance in terms of diversity 

and optimality of the solutions obtained in complex problems. 

 

3.3.2. GLMO-NSGA-III ALGORITHM  

The parameters related to the GLMO-NSGA-III algorithm are presented in 

Table 19. 

Table 19. GLMO-NSGA-III parameters. 

𝒔⃗  Set of solutions 

𝒔𝒊 Solution 𝑖 of 𝑠  

𝝁 Distribution Index 

𝒎⃗⃗⃗  Mutated Solution 

  𝒎𝒊 Mutated solution 𝒊 of 𝑚⃗⃗  

𝒓⃗  Variables that are to be mutated chosen based on variable grouping 

𝒏𝒈 Group index 

𝒓𝒏𝒈 Variables with group index 𝑛𝑔 

𝒋 Random group index 

𝒉 Random value between (0, 1) 

𝒓𝒋 Group 𝑟 with index 𝑗 

𝒔𝒊,𝒎𝒊𝒏 Minimum value of 𝑠  

𝒔𝒊,𝒎𝒂𝒙 Maximum value of 𝑠  

    𝝉𝟏, 𝝉𝒒, 𝝉𝟐 Intermediate variable calculation 

GLMO-NSGA-III algorithm is the proposed method for solving the efficient 

timetable calculation model. The Grouped Linked Polynomial Mutation 

Operator (GLMO) [60] is based on the following mutation techniques: 

Linked Polynomial Mutation and Grouped Polynomial Mutation. These 

two procedures are based on Polynomial Mutation and are explained below. 

▪ Polynomial Mutation: This mutation operator is designed to modify 

the value of a variable based on a distribution around the value at that time. 

Two parameters are used to perform the mutation: the mutation 

probability and the distribution index. The probability is used to decide for 

each variable whether or not it undergoes mutation. The index determines 

the distribution from which the new value will be calculated, the 

probability of the new value being more similar to the current value when 
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this index takes large values. When deciding whether a variable will 

mutate, another parameter ℎ  is taken from a uniform distribution 

indicating how the mutated variable will change. If the result of the 

mutation exceeds the limits of the distribution around which the original 

value is modified, this new value is placed at the limit of the distribution. 

 

▪ Linked Polynomial Mutation: This operator follows a similar idea to 

the Polynomial Mutation but the parameter 𝑢  remains constant for all 

variables. The Linked Polynomial Mutation is a version of the Polynomial 

Mutation in which a connection is established between variables that are 

susceptible to change. The procedure by which the connection is 

established is by keeping the relative amount of change of a variable fixed 

for each mutation and the same for each solution. With this change, all 

variables that undergo mutation considering a specific value of probability 

are mutated by the same amount. 

 

▪ Grouped Polynomial Mutation: In this modification the variables are 

separated into different groups and the mutation is applied to these 

groups, varying each variable in the same group equally. The decision of 

which variables mutate changes from a randomised procedure to a 

procedure designed for that purpose assuming that the clustering method 

makes the appropriate decision of which variables interact and should be 

modified simultaneously. In this case the mutation probability is not 

necessary. In this operator, the variables are arbitrarily divided into groups 

and the variables in any of these groups will be susceptible to polynomial 

mutation. For each of the variables in the group, a value ℎ is taken defining 

the mutation. The variables of the rest of the groups do not change. 

 

▪ Grouped Linked Polynomial Mutation Operator (GLMO): This case 

is a combination of the two previous ones. The distribution parameter 

together with the grouping mechanism are the input information for this 

procedure. The selection of the group to mutate is done in a similar way to 

the Grouped Polynomial Mutation operator. In this case the value of the 

parameter ℎ is previously selected as in the Linked Polynomial Mutation. 

In comparison to the Linked Polynomial Mutation, it is now assumed that 

the interacting variables are modified simultaneously and equally when 
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they are in the same group. GLMO operator is used within the NSGA-III 

optimisation algorithm [167] to improve the adaptability, the diversity and 

the convergence of the algorithm. 

GLMO pseudocode is as follows: 

Input:     Solution 𝑠 , the Grouping Mechanism and Distribution Index 𝜇 

Output:  Mutated Solution 𝑚⃗⃗   

1. {𝑟1, … , 𝑟𝑛𝑔} ← 𝐴𝑝𝑝𝑙𝑦 𝐺𝑟𝑜𝑢𝑝𝑖𝑛𝑔 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 𝑡𝑜 𝑟  𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔 𝑛𝑔 𝑔𝑟𝑜𝑢𝑝𝑠  

2. 𝑗 ← 𝑃𝑖𝑐𝑘 𝑎 𝑔𝑟𝑜𝑢𝑝 𝑖𝑛𝑑𝑒𝑥 𝑎𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑟𝑜𝑚 {1, … , 𝑛𝑔}  

3. ℎ ← 𝑡𝑎𝑘𝑒𝑠 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑙𝑢𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 (0,1)  

4. 𝑙𝑜𝑜𝑝 𝑠𝑖  𝑣𝑎𝑙𝑢𝑒𝑠 𝑏𝑒𝑙𝑜𝑛𝑔𝑖𝑛𝑔 𝑡𝑜 𝑟𝑗  𝑑𝑜 

5. 𝑖𝑓 ℎ ≤ 0.5 𝑡ℎ𝑒𝑛 

6.     𝜏1 =
𝑠𝑖−𝑠𝑖,𝑚𝑖𝑛

𝑠𝑖,𝑚𝑎𝑥−𝑠𝑖,𝑚𝑖𝑛
 

7.     𝜏𝑞 = (2 ∙ ℎ + (1 − 2 ∙ ℎ) ∙ (1 − 𝜏1)
𝜇+1)

1

𝜇+1 − 1 

8. 𝑒𝑙𝑠𝑒 

9.       𝜏2 =
𝑠𝑖,𝑚𝑎𝑥−𝑠𝑖

𝑠𝑖,𝑚𝑎𝑥−𝑠𝑖,𝑚𝑖𝑛
 

10.       𝜏𝑞 = 1 − (2 ∙ (1 − ℎ) + 2 ∙ (ℎ − 0.5) ∙ (1 − 𝜏2)
µ+1)

1

µ+1 

11. 𝑒𝑛𝑑 𝑖𝑓 

12.      𝑚𝑖 = 𝑠𝑖 +  𝜏𝑞 ∙ (𝑠𝑖,𝑚𝑎𝑥 − 𝑠𝑖,𝑚𝑖𝑛) 

13.      𝑟𝑒𝑝𝑎𝑖𝑟(𝑚𝑖) 

14. 𝑒𝑛𝑑 𝑙𝑜𝑜𝑝 

15. 𝑙𝑜𝑜𝑝 𝑠𝑖  𝑣𝑎𝑙𝑢𝑒𝑠 𝑛𝑜𝑡 𝑏𝑒𝑙𝑜𝑛𝑔𝑖𝑛𝑔 𝑡𝑜 𝑟𝑗  𝑑𝑜  

16.      𝑚𝑖 = 𝑠𝑖 

17. 𝑒𝑛𝑑 𝑙𝑜𝑜𝑝  

18. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑚⃗⃗    

Finally, NSGA-III optimisation algorithm flowchart is shown in Figure 20. 

The NSGA-III is an evolutionary algorithm where individuals evolve during 

iterations at the end of which the best fitted survives. The initial step of the 

algorithm is the randomly generation of the parent population. The global 

travel time and cost of the members of parent population are evaluated 

using Equations 43 and 44. Then, offspring population is generated 

applying the GLMO operator to individuals in the parent population. This 

offspring population is evaluated and a result population is generated 

joining parent and offspring population. The dominance of the solutions in 

the result population is calculated. As a result, the selection criterion chooses 
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the members of the result population that will survive depending on the 

domination level. Thus, firstly the group of non-dominated solutions are 

saved. After that, the group of solutions that are dominated just by one 

solution is saved and the process is repeated with the following groups of 

solutions. If a group cannot be saved completely because the size of the 

population is achieved, the crowding distance operator is applied to select 

the solutions of the last group that will survive.  

 

Figure 20. NSGA-III flowchart. 

 

3.4. LOCAL ECO-DRIVING MULTI-OBJECTIVE OPTIMISATION 

MODEL 

As previously described, the local optimisation model provides a Pareto 

front of solutions for each interstation. Each solution of a Pareto front 

represents the set of optimal ATO driving parameters for the interstation 

with the running time and energy consumption associated. 
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At this level of model resolution, which is the eco-driving level executed for 

each interstation of the line, the search of optimal solutions is modelled as a 

multi-objective problem where the aim is to minimise running time and 

energy consumption at the interstation. The evaluation function for 

interstation n is: 

𝑚𝑖𝑛 𝑓(𝑥𝑛) = (𝑓1(𝑥𝑛) , 𝑓2(𝑥𝑛)) (51) 

where 𝑓1(𝑥𝑛) is the objective function that defines the running time (s) 

between stations when a specific set of ATO driving parameters is executed, 

𝑓2(𝑥𝑛) is the objective function that defines the energy consumption (kWh) 

associated to each driving and 𝑥𝑛 is the vector that contains the ATO driving 

parameters for the interstation n. The driving parameters are defined 

following the driving model presented in [168]. 

𝑥𝑛 = (𝑐, 𝑟, ℎ𝑠, 𝑏) (52) 

where 𝑐 is the speed at which coasting is applied (km/h), 𝑟 is the speed at 

which traction is applied (km/h) (re-motor), ℎ𝑠 is the holding speed (km/h) 

and 𝑏 is the braking rate (m/𝑠2). 

Figure 21 shows an example of ATO speed profile where the eco-driving 

strategy is the regulation speed. In this case, the main driving parameter is 

ℎ𝑠 and the coasting speed and re-motoring speed are equal to 0. When a 

regulation speed is greater than 0, the train aims to maintain the speed 

defined by 𝑐. On the other hand, Figure 22 shows a coasting/re-motoring 

case. Coasting/re-motoring strategies are characterized by two main 

parameters 𝑐 and 𝑟 while the holding speed ℎ𝑠 is 0. In this case, the train 

tractions until its speed achieves the value of 𝑐 and, then, it coasts until it 

reduces its speed 𝑟 km/h that it is the moment when the train tractions again 

and the cycle is repeated. In both cases (regulation and coasting/re-

motoring) the speed limitations are observed and the deceleration up to the 

stop in the station is defined by 𝑏. 
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Figure 21. Regulation speed profile. 

 

Figure 22. Coasting / re-motoring speed profile. 

Efficient ATO driving must meet comfort requirements, otherwise are 

discarded. The requirements to be fulfilled are: avoid traction cut-off on a 

ramp, avoid too many cut-off and re-motor cycles between interstations, 

and avoid low operating speeds and maintaining traction for a minimum 

time. In addition, accelerations and decelerations must be kept within a 

certain comfort range by controlling the rate of change of acceleration. 

Another desirable requirement is that the driving can be kept stable facing 

changes in the mass of passengers avoiding large variations in running time 

and consumption [169]. For instance, the efficient ATO speed profiles 

generated in [51] considers load variations. 

It is important to note that the passenger load can vary during the journey 

and, in the proposed model, it is possible to configure a different passenger 

mass for each interstation. This way, the model takes into account the impact 

of the mass variation in the design of the eco-driving and in the use of 
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regenerated energy. On the other hand, the objective is to provide a periodic 

timetable with a constant headway and with the same stopping regime for 

a specific time period (for instance, peak-hours). In this kind of operation, 

the model considers that trains run with similar passenger load at the same 

stations. Therefore, the passenger mass used for the design of the ATO 

should be an average mass value for each interstation.  

 

3.4.1. MOPSO ALGORITHM   

The parameters involved in the MOPSO algorithm section are presented in 

Table 15. 

Table 20. MOPSO parameters. 

𝒙𝒊 Position of the particle 

𝒏 Iteration number 

𝒗𝒊 Velocity of the particle 

𝒘 Inertial weight of the particle 

𝒄𝟏, 𝒄𝟐 Parameters that determine individual and collective influence 

𝒓𝟏, 𝒓𝟐 Parameters that take a random value chosen between 0 and 1 

𝒑𝒊 Vector where the previously local best result of the i particle is stored 

𝒑𝒈 Vector where the previously global best result is stored 
 

For the search of these possible solutions, a MOPSO algorithm has been 

chosen because it has been proven that provides better results for the eco-

driving problem compared to other widely used algorithms [168]. MOPSO 

algorithm is based on the PSO method, resembling the behaviour of a 

multitude of individuals present in nature [170]. MOPSO algorithm is a 

particle swarm optimisation technique for solving multi-objective 

optimisation problems. In MOPSO, each particle represents a potential 

solution to the optimisation problem and moves in a multidimensional 

search space. The goal of the algorithm is to find a set of optimal solutions 

that are as close as possible to the Pareto front. To achieve this, MOPSO uses 

a technique called “Pareto dominance”, which allows solutions to be 

compared in terms of their quality across multiple goals. The algorithm 

adjusts the speed and direction of each particle based on its own previous 

experience and that of neighbouring particles, in an iterative process that 

seeks to continuously improve solutions. 
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The MOPSO algorithm presented in this chapter uses the train simulation 

model presented in Section 3.4.2 to evaluate the fitness function in Equation 

(51) and the comfort criteria.  

The PSO algorithm searches for an optimal solution by allowing an initial 

population to move through the search space according to mathematical 

rules. The movement of the particles is conditioned by the best local 

solutions, at the level of each particle, and at the global level, by the 

population as a whole. The PSO method is a relatively simple and effective 

algorithm, which makes use of the characteristic movement of particles 

through the search hyperspace by rapidly converging on better solutions. It 

makes use of a process similar to crossover, used in Genetic Algorithms, and 

the concept of fitness. MOPSO allows dealing with multi-objective 

optimisation problems. In this case, it is used the Pareto front concept [171]. 

The history of the best solutions found by a particle can be used to store 

previously generated non-dominated solutions. The use of attraction 

mechanisms combined with non-dominated solution vectors would trigger 

convergence to globally non-dominated solutions. Therefore, in each cycle, 

the past experience of each particle is saved. In addition, it is used the 

technique inspired by the external archive used in PAES [172] (Pareto 

Archive Evolution Strategy). Here, the information stored by the particles is 

updated based on the values of the objective function for each of the 

particles. The previously stored information is used by each individual to 

choose the leader to guide the search. 

MOPSO algorithm is described by the following steps: 

1. Initialise randomly the position and velocity of the particles. 

2. The particles are evaluated in running time and energy consumption 

and those that do not fulfil comfort criteria are directly marked as 

dominated solutions. 

3. Local best is initialised as the current position of each particle. 

4. Non-dominated solutions are stored in the archive. 

5. Global best is initialised selecting randomly a non-dominated 

solution. 

6. Update the position and velocity values for each of the particles by 

means of the following equations: 

 

𝑥𝑖(𝑛) = 𝑥𝑖 ∙ (𝑛 − 1) + 𝑣𝑖(𝑛)      (53) 
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𝑣𝑖(𝑛) = 𝑤 ∙ 𝑣𝑖 ∙ (𝑛 − 1) + 𝑐1 ∙ 𝑟1 ∙ (𝑝𝑖 − 𝑥𝑖 ∙ (𝑛 − 1)) + 𝑐2 ∙ 𝑟2 ∙ (𝑝𝑔 − 𝑥𝑖 ∙ (𝑛 − 1))      (54) 

 

where 𝑥𝑖 is the position of the particle, 𝑣𝑖 is the velocity of the particle, 𝑛 

is the number of the iteration, 𝑤 is the inertial weight of the particle and 

allows particles to find local optimal solutions based on global solutions 

at the outset, 𝑐1  and 𝑐2  are parameters that determine individual and 

collective influence, 𝑟1 and 𝑟2 are parameters that take a random value 

chosen between 0 and 1, 𝑝𝑔 is the vector where the previously global best 

result is stored and it is the best position found by the swarm during all 

the iterations of the algorithm, 𝑝𝑖 is the vector where the previously local 

best result of the i particle is stored and it is the best position found by 

the specific particle during all the iterations of the algorithm. 

7. Calculate the consumption and travel time by evaluating the 

particles. Subsequently, comfort criteria can be applied to mark as 

dominated those driving that do not meet them. 

8. The archive is updated including the new non-dominated solutions 

found and discarding those particles that are dominated by the new 

ones. 

9. Update local best for each solution. If the local best and the current 

particle position are mutually non-dominated, then the local best will be 

maintained or updated by the new particle position randomly. 

10. Calculate the crowding distance (CD) of each solution in the archive.  

11. Update the global best result from the solutions of the archive. 

Solutions with higher value of CD will have higher probability of being 

selected as global best to promote diversity. Thus, the archive will be 

divided into two groups: the group with higher values of CD and the 

rest. The first group is composed by the fraction of the archive with 

higher values of CD according to the “Top select” parameter. Then, a 

solution is randomly selected from the top group or from the rest with a 

probability defined by the “Top select probability” parameter. 

12. Repeat steps 6 to 11 until the maximum number of iterations is 

achieved. 
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3.4.2. TRAIN SIMULATION MODEL   

The train simulation model is used to evaluate the solutions generated by 

MOPSO algorithm. A detailed description of this simulation model and its 

validation can be found in [75]. It is composed by several modules that 

represent the ATO logic, the traction/braking system, the train dynamics 

and the energy consumption calculation. The line characterisation used by 

the simulation model includes location of stations (kilometric point), grades, 

grade transitions curves, track curvatures and speed limits. Moreover, the 

train characterisation includes mass of the train, the mass of the load, length 

of the train, maximum speed, rotatory inertia, adhesion traction, traction 

effort curve, braking effort curve, running resistance coefficients, auxiliary 

systems consumptions and the ATO equipment configuration. 

The simulation model works calculating, at constant time steps, the state 

variables of the train motion. At each step, the process starts with the ATO 

module to obtain the traction/braking demand (𝑎𝑟𝑒𝑓 ) for the train. This 

demand, is the ratio between the effort that the traction/braking system has 

to apply and the maximum traction/braking effort. 

The ATO module receives as inputs the speed and position of the train, the 

maximum speed profile, the gradient profile and the position of the arrival 

station. With this information, the ATO modules differentiate 3 scenarios: 

• The train is in traction mode and does not need to brake to observe 

maximum speed reduction or to the station arrival. In this case, the 

ATO calculates its output by means of a proportional controller 

using as a speed reference (𝑣𝑡𝑎𝑟𝑔𝑒𝑡) the minimum value between the 

maximum speed at the position of the train and the driving 

command ℎ𝑠 (in case the train is driven in holding speed mode). The 

result of the control is corrected with the gradient acceleration as 

shown in Equation (55). 

 

𝑎𝑟𝑒𝑓 = 𝐾𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ∙ (𝑣𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑣𝑡𝑟𝑎𝑖𝑛) + 𝐾𝑎𝑐𝑐 ∙ 𝑎𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 

 

     (55) 

where 𝐾𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is the constant of the proportional controller (s/m) for 

the traction mode, 𝑣𝑡𝑟𝑎𝑖𝑛 is the current train speed (m/s), 𝐾𝑎𝑐𝑐 is the 

constant for the pre-fed acceleration (s2/m) and 𝑎𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡  is the 

acceleration (m/s2) due to the gradients at the position of the train. 
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• The train is in braking mode to observe a speed restriction. At each 

simulation step, the ATO logic evaluates by means of a braking 

detection curve [173] if it is necessary to reduce the speed because of 

a maximum speed reduction. When the braking detection curve 

intersects the maximum speed profile, the ATO braking logic is 

started. In the braking mode, the output of the ATO is calculated by 

the proportional controller represented in Equation (56). This 

controller is corrected not only with the gradient acceleration (as the 

previous case) but also with the target acceleration 𝑎𝑡𝑎𝑟𝑔𝑒𝑡  (m/s2). 

The target acceleration (𝑎𝑡𝑎𝑟𝑔𝑒𝑡) is calculated as a braking curve from 

the current train position, the speed of the position where the 

maximum speed is reduced and the new maximum speed value. The 

speed reference 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 (m/s) in this case is the speed of the braking 

curve in the next time step. 

 

𝑎𝑟𝑒𝑓 = 𝐾𝑏𝑟𝑎𝑘𝑖𝑛𝑔 ∙ (𝑣𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑣𝑡𝑟𝑎𝑖𝑛) + 𝐾𝑎𝑐𝑐 ∙ (−𝑎𝑡𝑎𝑟𝑔𝑒𝑡 + 𝑎𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡) 

 
     (56) 

where 𝐾𝑏𝑟𝑎𝑘𝑖𝑛𝑔 is the constant of the proportional controller (s/m) for 

the braking mode that depends on the train speed. 

 

• The train is in final braking mode to brake up to the arrival station. 

At the beginning of the simulation, the braking curve up to the stop 

in the arrival station is calculated between the arrival point up to the 

initial point using the driving commands deceleration (𝑏). When the 

train speed and position intersect this braking curve, the ATO final 

braking is started. In the final braking mode, the proportional 

controlled represented in Equation (56) is applied where the target 

acceleration (m/s2) is 𝑏 and the speed reference (𝑣𝑡𝑎𝑟𝑔𝑒𝑡) is the speed 

(km/h) of the final braking curve in the next time step. 

The ATO traction/braking demand 𝑎𝑟𝑒𝑓 previously calculated is bounded 

by [-1,1] and hysteresis is applied to minimise that the train changes for 

traction to braking continuously. Besides, if the train is driven with 

coasting/re-motoring driving commands, 𝑎𝑟𝑒𝑓  will be bounded by a 

maximum value of 0 when the train is in traction mode and the speed has 

previously reached the coasting speed (𝑐) and it is over the re-motoring 

speed (𝑟). 



 

98 
 

Once the ATO output is calculated, the effort provided by traction/braking 

system is calculated using Equation (57). 

 

𝐹𝑚 = 𝑎𝑟𝑒𝑓 ∙ 𝐹𝑚𝑎𝑥 

 

     (57) 

where 𝐹𝑚  is the traction/braking effort of the train (kN) and 𝐹𝑚𝑎𝑥  is the 

maximum traction effort (kN) according to the motors characteristics, if 

𝑎𝑟𝑒𝑓 ≥ 0, or the maximum braking effort according to the braking system 

characteristics, if 𝑎𝑟𝑒𝑓 < 0. Both, maximum traction and maximum braking 

effort curves are dependent on the train speed. 

The traction/braking system limits abrupt changes in the train effort applied. 

Therefore, the previously calculated traction/braking effort will be 

constrained applying a limitation as show in Equation (58). 

 

−𝑗𝑚𝑎𝑥 <
𝑑𝐹𝑚
𝑑𝑡

< 𝑗𝑚𝑎𝑥 

 

     (58) 

where  𝑗𝑚𝑎𝑥 is the maximum variation of traction/braking effort (
𝑘𝑁

𝑠
) value 

configured. 

The traction/braking effort will be the input for the dynamics module that 

will calculate firstly the train acceleration (𝑎) using the Newton’s second 

motion law as shown in Equation (59). 

 

𝑎 =
𝐹𝑚 − 𝐹𝑔 − 𝐹𝑐 − 𝐹𝑟

𝑚𝑒𝑞

 
     (59) 

 

where 𝐹𝑔 (kN) and 𝐹𝑐  (kN) are defined in Equation (5) and Equation (6), 

respectively, 𝐹𝑟  is the running resistance (kN) and 𝑚𝑒𝑞  is the equivalent 

mass of the train (tons), including the rotatory inertia (Equation (3)). 
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The running resistance 𝐹𝑟 can be calculated using Equation (60): 

𝐹𝑟 = 𝐴 + 𝐵 ∙ 𝑣𝑡𝑟𝑎𝑖𝑛 + 𝐶 ∙ 𝑣𝑡𝑟𝑎𝑖𝑛
2       (60) 

where 𝐴 (kN), 𝐵 (
𝑘𝑁
𝑚

𝑠

)  and 𝐶 (
𝑘𝑁

(
𝑚

𝑠
)
2) are coefficients that depend on the train 

characteristics. 

The position 𝑠𝑡𝑟𝑎𝑖𝑛 (m) and speed of the train (
𝑚

𝑠
) can be updated using the 

train acceleration and Equations (62) and (63). 

𝑑𝑣𝑡𝑟𝑎𝑖𝑛
𝑑𝑡

= 𝑎 
     (62) 

  
𝑑𝑠𝑡𝑟𝑎𝑖𝑛
𝑑𝑡

= 𝑣𝑡𝑟𝑎𝑖𝑛 
     (63) 

 

Finally, the traction electric power 𝑃𝑡𝑟𝑎𝑐  (kW) and regenerative electric 

power 𝑃𝑟𝑒𝑔 (kW) consumptions are calculated using Equations (64) and (65). 

With the power, the traction energy consumption can be calculated 

integrating the traction electric power. 

 

𝑃𝑡𝑟𝑎𝑐 = 𝐼𝑚𝑎𝑥 ∙
𝐹𝑡𝑟𝑎𝑖𝑛
𝐹𝑚𝑎𝑥

∙ 𝑈𝑐𝑎𝑡 ∙
1

𝜂
        𝑖𝑓   𝐹𝑚 ≥ 0 

     (64) 

 

 

𝑃𝑟𝑒𝑔 = 𝐼𝑚𝑎𝑥 ∙
𝐹𝑡𝑟𝑎𝑖𝑛
𝐹𝑚𝑎𝑥

∙ 𝑈𝑐𝑎𝑡 ∙ 𝜂         𝑖𝑓   𝐹𝑚 < 0 
     (65) 

where 𝐼𝑚𝑎𝑥 is the maximum current (A) according to the motor 

characteristics that is associated to the maximum effort of traction or 

braking, 𝐹𝑚𝑎𝑥  (kN), 𝑈𝑐𝑎𝑡  is the nominal catenary voltage (V) and 𝜂  is the 

motor efficiency (%) that depends on the working load level (i.e., depends 

on the ratio between 𝐹𝑚 and 𝐹𝑚𝑎𝑥). 

 

3.5. CASE STUDY 

This section presents a case study where the proposed model is applied to a 

line of Madrid Underground. The metro line consists of 16 interstations and 

two terminal stations spread over 14 kilometres and its infrastructure is 
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modelled by means of gradients and curves. The characteristics of the train 

are: 160 t, 78 t of passenger load, a length of 90 m and the maximum power 

offered is 1500 kW. The electric system is a 1.5 kV DC. Speed limits set by 

the railway operator are respected at all times. The dynamic simulation of 

the train taking into account the above parameters is carried out by means 

of a detailed model of the train movement and execution of the on-board 

ATO driving parameters. The minimum dwell time (𝑡𝑚𝑖𝑛) takes a value of 

20 seconds. 

The variations of the possible values of the ATO driving parameters and 

their maximum and minimum limits are defined according to Table 21. 

Table 21. ATO driving parameters settings. 

 Deceleration  

rate (m/s2) 

Regulation  

speed (km/h) 

Coasting  

speed (km/h)  

Re-motoring  

speed (km/h) 

Minimum 0.60 30 30 5 

Maximum 0.80 80 80 50 

Increase 0.05 0.25 0.50 1 

The headway of the timetable to be designed is 420 seconds (7 min). 

For the analysis of the case study, the process described in Section 3.4 is 

carried out searching for the optimal driving (Equation 51) for each 

interstation with MOPSO optimisation algorithm.  

MOPSO parameters used in to generate the local eco-driving Pareto curves 

are listed in Table 22. 

Table 22. MOPSO parameters. 

Swarm 

size 
Iterations c1 c2 w 

Top 

select (%) 

Top select 

probability (%) 

40 1000 1 1 0.9               6% 98 

 

The result of this process is a Pareto front for each interstation and is the 

input information used for the following optimisation procedure. Figure 23 

shows an example of solutions after the local eco-driving calculation 

process. Each point of a Pareto curve represents a specific ATO 
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parametrisation that produces the most efficient driving for the 

corresponding running time at that interstation. 

 

As previously described, the procedure continues with the timetable 

optimisation (Equation 40) and the global Pareto front is obtained. Each 

solution of this global front represents the set of efficient ATO driving 

parameters at each interstation of the entire railway line and stopping times. 

The obtained selection of running times and stopping times leads to 

synchronised braking and tractioning trains to maximise the use of 

regenerative energy. 

The timetable optimisation problem is solved by the proposed algorithm 

GLMO-NSGA-III. In the following, this solution is compared as well with 

other algorithms: WOF [174] (Weighted Optimization Framework), LCSA 

[175] (Linear Combination-based Search Algorithm), FDV [59] (Fuzzy 

Decision Variable) and NSGA-III. 

The optimisation process using the FDV algorithm is divided into two 

distinct parts, fuzzy evolution and precise evolution. In the first one, fuzzy 

evolution substages are added and the fuzzy operation is performed once 

the offspring has been generated at the beginning with the MOEA (Multi- 

Objective Evolutionary Algorithm) that has been chosen, being in this case 

the LMOCSO [176] (Large-Scale Multi-Objective Optimization Competitive 

Swarm Optimizer). In the second phase, offspring generation operations are 

carried out. The next population generation is examined by means of 

LMOCSO. The fuzzy evolution phase in turn consists of: fuzzy evolution 

Figure 23. Examples of Pareto front of interstations 1 and 5: designed eco-driving, running time / energy consumption. 
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sub-stages division and fuzzy operation. The purpose of the first of the 

above phases is to make the algorithm's solution more accurate by dividing 

the fuzzy evolution into multiple phases in which the level of fuzzification 

decreases. In the second phase, the degree of fuzzification of the solution is 

determined. 

LCSA algorithm is a procedure in which solutions of the optimisation 

problem are formed by linear combination of previous results to improve 

the quality of solutions in multi-objective problems. A population of 

coefficient vectors is formed and optimised by a metaheuristic procedure to 

improve the search for solutions. The algorithm starts with the optimisation 

of the population with any multi-objective method. The first non-dominated 

solution front of the existing population is used to form a solution matrix. 

Then, a random population of the linear combination of solution vectors is 

formed. These vectors are optimised through an arbitrary procedure, 

storing this result. Finally, the previous result is combined with the initial 

population and the process is started again. In this case study, the multi-

objective optimisation algorithm applied has been the NSGA-III. 

WOF algorithm has been designed as a metaheuristic procedure to be 

incorporated in a population-based optimisation mechanism. This method 

is based on the grouping and optimisation of the weighting variables to be 

applied, and applies the weighting variables for cases where the objectives 

are multiple. In WOF algorithm the decision vector is divided into smaller 

vectors. The corresponding weighting factor is applied to each of these 

vectors. The whole process is divided into two different phases. Initially, an 

optimisation is performed with any of the following randomly chosen 

algorithms: SMPSO (Speed-constrained Multi-objective Particle Swarm 

Optimisation), MOEA/D (Multi-Objective Evolutionary Algorithm based on 

Decomposition), NSGA-II, NSGA-III. After this, a certain number of 

solutions are chosen from the current population and a new optimisation is 

performed with the NSGA-III algorithm and taking into account the 

corresponding reduced decision vector. 

Table 23 presents the parameters of the algorithms used for the optimisation. 

All algorithms have been executed with 220 generations and a population 

size of 100. Additionally, the random seed is initialized for the generation of 

the initial random population in all cases, and for all executed and compared 

algorithms. This uniformity in the initialisation process and parameters 

further ensures a fair comparison of the algorithms' performance. 
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Table 23. Algorithm configuration parameters. 

FDV 

Fuzzy evolution rate Step acceleration Optimiser Aggregation function - 

0.8 0.4 LMOCSO 
Penalty based Boundary 

Intersection  
- 

GLMO-

NSGAIII 

Grouping method Variable groups Optimiser - - 

Ordered 4 NSGA-III - - 

LCSA 
- - Optimiser - - 

- - NSGA-III - - 

NSGAIII 

Simulated binary 

crossover 

probability** 

Crossover 

distribution index 

(𝜼𝒄) 

Mutation distribution 

index (𝜼𝒎) 

Polynomial mutation 

probability 
- 

1 30 20 
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
 - 

WOF 

 

Grouping method 

Variable 

groups 

Transformation 

function 

Evaluations 

(original/transformed 

problem) 

Fraction of function 

evaluations for the 

alternating weight-

optimisation phase 

Ordered 4 Interval 1000/500 0.5 

Figure 24 presents the behaviour of the algorithms after the global 

optimisation process considering the electrical loss function. 

 

Figure 24. Pareto fronts comparison. 

For the resolution and optimisation of the timetable as the second part of the 

problem, the GLMO-NSGA-III has been chosen due to its good results after 

the comparison with the rest of the algorithms. When NSGA-III is combined 
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with the GLMO operator, the algorithm provides better solutions. It can be 

observed that GLMO-NSGA-III obtains better solutions in the range 

between 3100 seconds and 3600 seconds. After that, the LCSA algorithm 

provides more solutions. However, in the design of railway timetables the 

time margin that is usually given above the minimum time is between 3.5% 

and 10%, so the range for the running time is up to 500 seconds. Therefore, 

solutions provided by GLMO-NSGA-III are adequate from the operational 

point of view. 

In the following, the proposed model is firstly executed without introducing 

the penalty on the number of trains to analyse the obtained results. The 

design of the timetable is carried out in two different cases depending on 

whether regenerated energy is considered or not in the optimisation model. 

The first case will refer to the optimal design of the timetable when the 

energy regenerated by the trains is ignored in the analysis. The second case 

will consider the energy regenerated during braking being more faithful to 

reality by adding the losses given during transmission. These losses are 

modelled by means of a function dependent on the distance that separates 

the train that is regenerating energy and the train that receives and uses the 

energy (Figure 18).  

Figure 25 plots the optimisation scenarios representing each of them as the 

corresponding Pareto front. As expected, the driving with the highest 

associated consumption correspond to the scenario where the regenerated 

energy is not reused. 
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Figure 25. GLMO-NSGA-III optimisation cases. 

Results in Figure 25 are the Pareto curves obtained by the optimisation 

algorithm in these cases. However, in reality, when the solutions obtained 

by the algorithm are tested on the line (by simulation) there is regenerated 

energy and the transmission of this energy between trains has associated 

losses that depend on the distance between trains. Therefore, the result of 

simulating the above Pareto fronts on a line with regenerated power 

transmission with losses according to the defined loss model is presented 

below in Figure 26. It can be seen in Figure 26 that the curve that was 

optimised taking into account the regenerated energy and σ function has a 

better behaviour in terms of consumption as it has been tried to 

preferentially synchronise accelerating and braking trains. 

Figure 26 shows the optimisation result when regeneration is considered 

with the loss function and the result when regeneration is not considered in 

the optimisation, both simulated in the case where regeneration with losses 

during transmission is added. 
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Figure 26. Optimisation results simulated considering σ function. 

As can be seen in Figure 26 a better result is obtained for the optimised case 

where regeneration and the loss function are considered. The graph 

highlights the points corresponding to the fastest possible set of driving for 

the whole metro line and the same for a set of 4.52% slower driving with 

respect to the optimised case in the two optimised cases. Comparing the 

result of both optimisations for what could be the nominal set of driving 

shows an energy saving of 5.42% with the optimisation when regeneration 

and σ function are considered. 

Previous results do not take into consideration the number of trains required 

to meet the demand. Firstly, the number of trains are calculated as a further 

step to the optimisation (Equation 49 and 50) and the results are shown in 

Figure 27. In this case no penalty has been introduced in the objective 

function. This is why the solutions between the 8-train and 9-train case 

overlap in some areas of the graph. As shown in the figure, the Pareto front 

contains similar solutions that are optimal in terms of energy and running 

time, but with different number of trains required to give the associated 

service. With the same consumption and running times some solutions 

require 8 trains and others require 9 trains, which impact critically on the 

investments and operation. The results of Figure 27 present the energy 

X: 3122 s 

Y: 5979 kWh 

X: 3263 s 

Y: 4426 kWh 

X: 3260 s 

Y: 4186 kWh 
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consumption vs the commercial running time. The commercial running 

time is the commercial speed experienced by the passengers, so the time 

spent by the trains at stops in terminal stations is excluded. This time is used 

by the trains for the reverse manoeuvres, to unload and load passengers, 

and as a buffer to absorb delays. However, it is also crucial to determine the 

synchronisation of ascending and descending trains to use regenerated 

energy as was studied in [177]. Therefore, solutions with the same 

commercial running time could present different cycle time in the line and 

different number of trains to operate the timetable. 

 

Figure 27. Timetable optimisation without penalty for the number of trains. 

Figure 28 shows the optimisation after including in the objective function 

(Equation 40) a penalty or additional cost of 25 kWh for each extra train 

required in the achieved solution. This penalty is expressed in the term 𝑃 ∙

𝑁𝑡 of the Equation 44. Hence, the areas of the 8-train and 9-train cases are 

clearly differentiated.  
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Figure 28. Timetable optimisation introducing penalty for the number of trains. 

In this case, a timetable can be chosen with a running time around 5% slower 

than that associated with the flat-out driving between stations following the 

railway operator's criteria of setting a time margin for the design of the 

timetable. In this way, an energy saving in relation to the cost function of 

1372 kWh is achieved, which represents a saving of 24.79%, not being 

necessary to include more trains on the line ensuring the fulfilment of the 

service. 

Figure 29 compares the energy that would be consumed in rheostats in the 

results obtained in Figure 26. Both cases have been simulated when 

considering the regenerated energy and the losses associated with its 

transmission. Orange bars show the result when the optimisation is carried 

out without considering the energy regenerated during braking and the blue 

bars show the result when the energy regenerated during braking is 

considered with the associated transmission losses. 

 

X: 3116 s 

Y: 5535 kWh 

X: 3275 s 

Y: 4163 kWh 
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Figure 29. Energy dissipation in rheostats at interstations. 

It can be seen from the result that synchronisation improves the use of 

regenerated energy in every interstation. The energy that would be wasted 

in the case where regeneration was not taken into account would be 279 

kWh while this wasted energy drops to 33 kWh when the driving and 

synchronisation are designed taking regeneration into account. 

Figure 30 and Figure 31 show the two optimised speed profiles for the cases 

compared for track 1 and track 2, respectively: 

 

Figure 30. Speed profiles for track 1. 
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Figure 31. Speed profiles for track 2. 

Table 24 and Table 25 show the arrival and dwell times for the compared 

cases, in track 1 and track 2. These figures have been obtained for a train that 

arrives to the first station in time equals to 0. As can be seen, when no 

regeneration is considered all the dwell times are the minimum value except 

for the reverse time in the first station that is 287s. However, when 

considering regeneration with σ function, there are cases where the dwell 

time is above the 20s (station S8 for instance) and both reverse times are 

greater than the minimum value (45s in S1 and 38s in S18). This is because 

the algorithm is synchronizing accelerating and braking trains to increase 

the use of regenerated energy. 

 

Table 24. Arrival and dwell times for track 1. 

 
Optimisation: 

considering 𝝈 

Optimisation:  

no regeneration 

 

Station 

 

 

Arrival 

time (s) 

 

 

Departure 

time (s) 

 

 

Arrival 

time (s) 

 

 

Departure  

time (s) 

 

S1 0 45 0 287 

S2 183 203 423 443 

S3 303 323 544 564 

S4 415 435 649 669 

S5 528 548 766 786 

S6 614 634 848 868 
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S7 731 751 966 986 

S8 864 885 1087 1107 

S9 959 979 1181 1201 

S10 1039 1059 1264 1284 

S11 1133 1153 1363 1383 

S12 1210 1230 1441 1461 

S13 1322 1342 1553 1573 

S14 1397 1417 1629 1649 

S15 1478 1498 1712 1732 

S16 1550 1570 1789 1809 

S17 1624 1644 1865 1885 
 

 
Table 25. Arrival and dwell times for track 2. 

 
Optimisation:  

considering 𝝈 

Optimisation:  

no regeneration 

 

Station 

 

 

Arrival  

time (s) 

 

 

Departure 

time (s) 

 

 

Arrival  

time (s) 

 

 

Departure  

time (s) 

 

S18 1693 1731 1934 1954 

S17 1780 1800 2004 2024 

S16 1854 1874 2078 2098 

S15 1926 1946 2150 2170 

S14 2010 2030 2235 2255 

S13 2082 2102 2307 2327 

S12 2193 2213 2418 2438 

S11 2269 2289 2495 2515 

S10 2365 2385 2591 2611 

S9 2443 2463 2670 2690 

S8 2541 2561 2765 2785 

S7 2657 2677 2884 2904 

S6 2765 2785 2992 3012 

S5 2852 2872 3079 3099 

S4 2972 2992 3200 3220 

S3 3074 3094 3301 3321 

S2 3188 3208 3414 3434 
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3.6. CONCLUSIONS AND CONTRIBUTIONS 

Chapter 3 presents a procedure for optimal timetable design considering 

efficient driving for a metropolitan railway line based on detailed 

simulation. The objective is to design the optimal operation, minimising the 

energy consumption and considering the rolling stock required to provide 

the service. This is achieved by integrating the optimisation of the ATO 

driving parameters and the optimisation of the timetable adding the 

contribution of the energy regenerated by braking trains. The procedure 

described has been applied to a line of Madrid Underground. The optimal 

design has been carried out in two different scenarios: ignoring regenerated 

energy and considering regenerated braking with transmission losses to 

show the importance of including regenerated energy use calculation in the 

optimisation model. 

The presented analysis supports the conclusion that the proposed model is 

effective in reducing energy consumption on metropolitan railway lines by 

integrating efficient driving design, timetable optimisation, and the use of 

regenerated energy. Its application to a real case on the Madrid Metro 

network has validated the approach, achieving a total energy saving of 

24.79% compared to the fastest possible driving strategy. Furthermore, it has 

been demonstrated that including regeneration in the timetable 

optimisation yields an additional 5.42% improvement in efficiency. The new 

timetable design meets punctuality requirements while providing sufficient 

time margins to recover from potential delays. In addition, the model 

optimises the number of trains required to operate the service, considering 

their associated operating costs. Finally, it has been shown that 

synchronisation between trains significantly improves the use of 

regenerated energy across all interstation segments: while 279 kWh would 

be wasted if regeneration were not considered, this value is reduced to just 

33 kWh when the new model is applied—representing a reduction in energy 

waste to 11.83% compared to the optimisation without energy regeneration. 

Likewise, the calculated driving meets the railway operator's design criteria, 

giving a margin time for the nominal operation and offering an accurate 

reference for metro railway operators. 

A key contribution of this chapter is the integration of a two-level 

optimisation model: first, the design of eco-driving parameters for all 

interstation runs of the line, and second, the global timetable optimisation, 

which includes station dwell times and synchronisation of traction and 
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braking trains to maximise regenerative energy transfer. The number of 

trains required to fulfil the timetable are included in the model to consider 

costs associated with rolling stock. This allows the model to select the 

solution that satisfies the timetable with the minimum number of active 

trains, achieving energy efficiency while considering operational cost. The 

model starts with the design of the ATO eco-driving parameters for the 

whole line where the energy consumption is minimised as function of 

running time. The search for efficient driving has been carried out by means 

of the MOPSO algorithm and the solutions form a Pareto front where 

running time and consumption are conflicting objectives. These ATO 

parameters satisfy realistic operating conditions easing its implementation 

in real conditions. The timetable is then designed by optimising the time 

margin distribution, the stopping times at each station and synchronising 

traction and braking trains during their journey on the whole line to 

maximise the use of regenerated energy. Several optimisation algorithms 

have been tested for the efficient timetable design, including WOF, LCSA, 

NSGA-III, GLMO-NSGA-III and FDV. In this study, GLMO-NSGA-III has 

been found to be the best performing algorithm. Furthermore, it allows 

evaluating the impact of commercial speed decisions on fleet size and 

energy usage, providing a solution that simultaneously minimises the 

number of trains in use and total energy consumed. 

Future developments will focus on real-time energy and traffic optimisation 

in metro systems, integrating rolling stock management and improving the 

use of regenerated energy, supported by advanced communications and 

high-performance computing. 
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CHAPTER 4 

CONCLUSIONS, CONTRIBUTIONS, PUBLICATIONS AND 

FUTURE DEVELOPMENTS 

 

 

 

 

 

 

 

 

 

4.1. CONCLUSIONS AND CONTRIBUTIONS 

The importance of increasing efficiency in railway operations lies in the 

growing use of services of high-speed trains and mass transit transport 

systems. These systems consume a significant amount of energy, and it is 

necessary to provide technological solutions that enable better energy use, 

which could potentially result in benefits for the passengers. For this reason, 

this thesis is based on the application of energy efficiency techniques in 

railway systems from the perspective of train operation. The main 

techniques for achieving efficient operation include driving design and 

timetable optimisation.  

Efficient driving design in railway systems has been the subject of study for 

decades, with research focusing on the design of driving strategies, planning 

and regulation of rail traffic. Several computational techniques and 

optimisation algorithms have been used to solve the efficient driving models 

proposed in the literature. The application of these techniques covers long-

distance, high-speed railway systems and metropolitan transport networks. 

However, the effectiveness of these strategies depends not only on their 

design but also on the accurate consideration of external factors influencing 

train operation. 
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In railway operation, various factors directly affect energy consumption and 

journey times, which are generally not considered in designs due to the 

difficulty of addressing them in simulations. The relevance of these factors 

lies in the uncertainty inherent in their nature, which complicates their 

quantification and, consequently, their integration into models without 

appropriate treatment. To address this complexity, fuzzy logic can be used 

to model and quantify these uncertainties, providing a flexible 

representation of variations and unforeseen factors affecting railway 

operation. This ensures that the application of the model and the validity of 

the results remain consistent with actual operating conditions. 

Previous studies have considered the uncertainty of certain driving-related 

parameters, such as the variability in driving styles and the drive’s 

behaviour during manual driving in high-speed rail services. However, 

climatological factors have often been overlooked. Driving strategies are 

conventionally designed based on nominal conditions, omitting the 

consideration of external environmental factors, including fluctuations in air 

properties along the route and the influence of wind, which can critically 

affect train performance. 

Therefore, in Chapter 2, the impact of climatological uncertainty on railway 

operations—and consequently, on the design of efficient driving for high-

speed services—has been analysed. The parameters subject to uncertainty, 

modelled by means of fuzzy logic, have been air density, which is influenced 

by pressure and temperature, wind intensity and the wind incidence angle 

relative to the train's direction of travel. These fuzzy parameters influence 

the aerodynamic resistance of the train, which acts as an opposing force to 

its motion. Thus, climatological conditions directly affect the train’s traction 

energy consumption and the total running time required to complete the 

journey. 

To solve the efficient driving problem, a genetic algorithm (NSGA-II) has 

been used, integrating the parameters modelled through fuzzy logic. The 

efficient driving model also incorporates punctuality requirements. This 

punctuality constraint has been modelled as a necessity level, representing 

the requirement to meet the scheduled arrival time under given climatic 

conditions.  

In this way, efficient driving has been designed for high-speed rail service 

on a Spanish railway line, considering uncertainty associated with 
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climatological conditions and punctuality requirements. The case where the 

driving is carried out under nominal conditions, i.e., without taking climatic 

factors into account, has been compared with the case where the driving has 

been designed considering these factors. Finally, the solutions of the model 

have been compared for a typical summer case and a typical winter case. 

The conclusions derived from the research focused on the development of 

eco-driving optimisation for high-speed trains under climate uncertainty - 

where climate parameters are modelled using fuzzy logic - are presented 

below: 

• Taking climatological conditions into account when optimising eco-

driving strategies has a relevant impact on the expected energy 

savings for a railway line. In the case study, the difference reached 

approximately 5%, increasing the expected energy savings from 

29.76% to 34.70% under summer conditions. This highlights the 

significant potential of incorporating weather variability into 

energy-saving models. 

 

• The model reveals a seasonal variation in energy consumption of 

5.31% between summer and winter scenarios, despite maintaining 

compliance with punctuality constraints in both cases. This 

underlines the importance of adapting strategies to different 

weather conditions. This point underlines the importance of 

tailoring eco-driving strategies to seasonal changes to achieve 

optimal performance year-round. 

  

• Although climatic conditions influence energy consumption, their 

impact on running time is practically negligible. The results show a 

variation of only 0.03% between the optimised summer and winter 

scenarios, confirming that energy optimisation does not 

compromise punctuality. The balance between efficiency and service 

reliability is critical for practical implementation.  

 

• Adapting train driving strategies to real climatological conditions 

leads to a more accurate estimation of energy consumption. The 

proposed model was successfully simulated in a real high-speed 

railway line in Spain, demonstrating its effectiveness and practical 

applicability. 
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• The optimisation case that does not consider climatological 

parameters shows a behaviour more similar to the winter scenario 

than to the summer one. Specifically, the expected energy savings 

without weather consideration (29.76%) are much closer to those 

obtained under winter conditions (31.03%) than to those achieved in 

summer (34.70%). This suggests that traditional eco-driving 

strategies might unintentionally approximate winter conditions, as 

the simulation results of the initial case and the winter scenario are 

more similar, reinforcing the value of including weather data to 

maximise efficiency under varying climates. Therefore, ignoring 

climatological variability could lead to suboptimal energy savings 

during more favourable conditions, such as in summer. 

 

The main contributions of this work on eco-driving for high-speed trains 

under climatic uncertainty are listed below: 

• A new eco-driving model for railway lines, incorporating 

climatological conditions such as temperature, pressure, wind 

intensity and its angle of incidence. By integrating these 

environmental factors, the model captures the interaction between 

climate and train dynamics, allowing for an adaptative optimisation. 

The incorporation of climatological data into the optimisation model 

allows for maximizing energy savings, achieving additional traction 

energy reductions. 

 

• The incorporation of the uncertainty of the climatological 

parameters through the application of fuzzy logic, facilitating the 

treatment of their variability. This approach provides a flexible and 

robust framework that can handle inaccurate or incomplete 

meteorological data, reflecting the unpredictability in a real case.  

 

• The optimisation problem is solved using a Genetic Algorithm with 

fuzzy parameters (GA-F), integrating fuzzy logic to account for the 

impact of climatological uncertainty on railway operations. This 

approach enables the derivation of driving commands that are better 

adapted to real-world conditions and consider punctuality 

constraints. As a result, the method achieves a balance between 

energy efficiency and operational reliability, essential aspects for its 

practical implementation.  
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• The application of the model to a high-speed railway line in Spain 

demonstrating that climatological parameters have a significant 

impact on energy consumption and a lesser effect on running times. 

These findings underscore the importance of incorporating 

meteorological data into eco-driving strategies to optimise 

performance under diverse climate scenarios. 

 

• A comparison has been carried out between the case where it is not 

considered climatological conditions and the cases where they are 

considered, showing that neglecting these factors underestimates 

potential energy savings. Additionally, summer and winter 

scenarios are compared. This comparison highlights the risk of 

relying on traditional models that do not account for climate 

variability, which can lead to missed opportunities for efficiency 

improvements during more favourable weather conditions. 

Metropolitan railways, metro-type systems or mass rapid transit (MRT) are 

characterized as passenger rail transport with the capacity to move a large 

number of people with a high frequency service. Additionally, this system 

can connect a large part of the city with its metropolitan areas, with each line 

having multiple stops along its route. In these reasons, along with the 

potential benefits or drawbacks for passengers, lies the importance of an 

effective timetable design for these type of railway services. 

An essential distinction between this type of railway transport and long-

distance transport is its high degree of automation. While in long-distance 

trains the driver is responsible for the manual operation of the train, 

metropolitan systems are increasingly automated, with most trains 

equipped with ATO systems. Just like high-speed rail operations, 

metropolitan systems are major energy consumers and are therefore 

suitable for the application of technology and techniques to achieve energy 

savings. 

The high level of automation in these types of railway lines allows for the 

application of efficient driving techniques where the driver loses 

significance. In this case, the train's movements are programmed in the 

onboard and track-side systems. These automatic driving can be designed 

considering energy-saving and comfort criteria, taking into account running 

times between stations, dwell times at stations and headways. 
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One of the most relevant technologies for optimizing energy use in metro-

type systems is the regenerative braking. The energy produced during the 

braking of trains can be used by other trains that are being powered, 

returned to the grid through electrical substations or stored in accumulators 

located along the track. 

Thus, Chapter 3 presents a procedure for optimal timetable design in 

metropolitan railway lines, focusing on minimising energy consumption 

while considering the rolling stock required for the service. The model 

integrates the optimisation of ATO driving parameters based on real data 

and the design of the timetable, taking into account the energy regenerated 

by braking trains. The optimisation process starts with the design of the 

efficient ATO parameters for the entire line, where energy consumption is 

minimised as a function of running time. The search for efficient driving is 

carried out using MOPSO algorithm, which generates one Pareto front for 

each interstation that balances the conflicting objectives of running time and 

energy consumption. 

The timetable optimisation process determines the dwell times at each 

station considering the previous eco-driving design and synchronising 

traction and braking trains along the entire route to maximise the use of 

regenerated energy. Several optimisation algorithms were tested, including 

WOF, LCSA, NSGA-III, GLMO-NSGA-III and FDV. The procedure was 

applied to the Madrid Underground, where two scenarios were considered: 

the first one that ignored regenerated energy and the second one that 

accounted for regenerative braking considering transmission losses.  

The integration of eco-driving, timetable optimisation, and the use of 

regenerated energy into a single model has enabled a coordinated and 

effective approach to reducing energy consumption in metropolitan 

railway systems. Based on this proposal, the following conclusions have 

been reached: 

• The application of the model to a real case on the Madrid Metro 

railway network has validated its effectiveness, achieving an energy 

saving of 24.79% compared to the fastest possible driving scenario. 

This result demonstrates the practical applicability of the 

methodology in real operational environments. 

 

• The inclusion of the rolling stock required to provide the service and 
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its operational costs within the model has allowed the selection of 

solutions that require a lower number of trains, thereby optimising 

not only energy consumption but also material and economic 

resources. Specifically, for the case study presented, it has been 

observed that, for the same energy consumption and commercial 

running time, there are solutions that allow the operation of the line 

with 8 trains instead of 9, representing a significant reduction in 

investment and operating costs. This difference becomes clearly 

visible when a penalty associated with the number of trains is 

introduced in the objective function, reinforcing the model's 

usefulness in supporting efficient operational decision-making. 

 

• The inclusion of regenerative braking in timetable optimisation has 

led to an additional energy saving of 5.42% compared to the case in 

which regenerated energy is not considered, confirming that 

coordination between braking and traction phases is key to 

maximising energy efficiency. 

 

• The model has succeeded in significantly reducing energy losses: 

from 279 kWh to only 33 kWh, which represents just 11.83% of the 

initially wasted energy. This result highlights the importance of train 

synchronisation to enhance the use of regenerated energy and 

increase overall system efficiency. 

 

• Finally, as a more general conclusion, it is evident that integrating 

multiple strategies into the planning and optimisation of railway 

operations —including eco-driving, timetable design, energy 

regeneration management and rolling stock allocation— enables 

more comprehensive, sustainable, and realistic solutions. The more 

relevant factors are incorporated into the optimisation model, the 

greater the potential for improvement in energy, operational, and 

economic efficiency, making this integrated approach a key tool for 

better design of metropolitan railway systems. 

The main contributions of this study are summarised as follows: 

• The design of an optimal timetable procedure for a metropolitan 

railway line, integrating the optimization of ATO driving 

parameters and the use of energy regenerated by braking trains. This 
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integration ensures an approach that seeks to balance energy 

efficiency and operational performance. 

 

• The simultaneous optimization of energy consumption and running 

time through the incorporation of ATO driving parameters, using 

the MOPSO algorithm to obtain the Pareto front between these two 

objectives. This multi-objective method allows for evaluating and 

selecting solutions that optimize both energy efficiency and 

punctuality. 

 

• The incorporation of rolling stock costs into the model, by 

considering the number of trains required to meet the timetable and 

the associated costs, enabling a more comprehensive and realistic 

analysis of the operation. This economic dimension strengthens the 

model’s applicability for sustainable and cost-effective railway 

planning.  

 

• The detailed optimization of the timetable through the proper 

distribution of time margins, dwell times, and the synchronization 

of traction and braking trains to maximize the use of regenerated 

energy. This fine coordination between acceleration and braking 

phases is key to reducing energy losses. 

 

• The evaluation of several optimization algorithms, highlighting that 

GLMO-NSGA-III showed the best performance for efficient 

timetable design. The rigorous comparison of methods ensures the 

selection of the most suitable technique for the problem at hand. 

 

• The application of the model to a real line scenario, demonstrating 

energy savings considering energy regeneration and confirming that 

the design meets the railway operator’s criteria, providing a margin 

for nominal operation. This validates the practical feasibility of the 

approach and its alignment with real operational requirements. 

 

 

4.2. PUBLICATIONS 

The main content and development the doctoral thesis work and its results 

have been collected in the next articles and published in academic journals.  
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Initially, the outcome of the work in Chapter 2 is reflected in an article 

published in the journal Sustainability: 

Blanco-Castillo, M.; Fernández-Rodríguez, A.; Fernández-Cardador, A.; 

Cucala, A.P. Eco-Driving in Railway Lines Considering the Uncertainty 

Associated with Climatological Conditions. Sustainability 2022, 14, 

8645. https://doi.org/10.3390/su14148645 

 

The result of the work in Chapter 3 is then published in an article in the 

journal Engineering Optimisation: 

Blanco-Castillo, M., Fernández-Rodríguez, A., Su, S., Fernández-

Cardador, A., & Cucala, A. P. (2024). Efficient automatic operation of a 

metro line: eco-driving design with optimized use of regenerative 

energy and rolling stock consideration. Engineering Optimization, 1–33. 

https://doi.org/10.1080/0305215X.2024.2385583 

 

4.3. FUTURE DEVELOPMENTS 

At this point, possible ideas for future work on the topic discussed during 

this work are discussed. The development of previous works and the 

current thesis led to the consideration of possible lines of research and future 

work.  

4.3.1. ENHANCEMENTS ECO-DRIVING FOR HIGH-SPEED 

OPERATIONS UNDER CLIMATIC INFLUENCE  

Future research could explore how high-speed train eco-driving strategies 

can be further optimized by incorporating real-time weather data and 

environmental variability. Current models could be extended to include 

uncertain or fluctuating meteorological parameters. By integrating on-board 

sensors and improved data acquisition, ATO systems could dynamically 

adjust speed profiles to minimise energy usage without compromising 

punctuality. Furthermore, computational advances will support faster 

recalculations of speed commands in response to weather changes, allowing 

the control strategy to evolve continuously during the journey. 

 

https://doi.org/10.1080/0305215X.2024.2385583
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4.3.2. METROPOLITAN OPERATION AND REGENERATIVE 

ENERGY OPTIMISATION  

For metro and suburban railway systems, future research could focus on 

refining energy-saving strategies through regenerative braking 

optimisation. This involves not only optimising driving profiles or 

maximising regenerated energy between trains, but also enhancing power 

flows and overall energy efficiency through the integration with other 

technologies. In particular, research could also expand into system-level 

energy management, where energy flows are directed not only between 

trains but also toward stationary storage systems or auxiliary station 

services. The increasing deployment of communications systems as CBTC 

allows more flexible and responsive driving strategies, which can be further 

leveraged by multi-objective optimisation to balance energy, punctuality 

and headway constraints in real-time.  
 

4.3.3. ENERGY-EFFICIENCY, CAPACITY OPTIMISATION AND 

VIRTUAL COUPLING  

While the optimisation of railway capacity has traditionally focused on 

increasing train frequency and minimising conflicts, future developments 

may increasingly consider energy-efficiency constraints in the formulation 

of operational capacity models. Given the limited infrastructure in many 

metropolitan and intercity lines, a promising line of research is the joint 

optimization of capacity and energy consumption, especially under high-

density traffic scenarios. 

Modern capacity assessment techniques based on timetable compression 

(UIC 406) allow for a detailed representation of track occupancy, signalling 

constraints, and rolling stock performance. These approaches can be 

extended to explicitly incorporate energy-related parameters, such as 

braking and traction power demands, regeneration opportunities and 

dynamic headways dependent on train energy profiles. 

In this context, the concept of virtual coupling (VC) emerges as a potentially 

disruptive technology. By enabling reduced headways through continuous 

communication between trains, VC can unlock additional capacity without 

the need for major infrastructure expansion. However, the dynamic 

coordination required by VC also presents a unique opportunity to 
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synchronise traction and braking phases of neighbouring trains to maximise 

the transfer or storage of regenerative energy. 

Thus, future work could explore multi-objective optimisation models that 

simultaneously aim to: 

• Maximise capacity utilisation. 

• Minimise total energy consumption. 

• Enhance regenerative energy use through coordinated control of 

virtually coupled trains. 

These models could build upon existing simulation tools and real-time 

traffic management algorithms, offering a path forward for sustainable and 

high-capacity railway operations. 

4.3.4. REAL-TIME SIMULATION, DECISION SUPPORT AND 

ALGORITHMIC ENHANCEMENT  

Further advancements can be made in the speed, robustness and 

adaptability of simulation tools and real-time optimisation algorithms used 

in railway operations. The integration of real-time data input, including 

train diagnostics, weather information and network traffic, would allow 

dynamic re-optimisation of train trajectories during commercial service. 

Moreover, on-board computing systems could benefit from algorithmic 

improvements, such as metaheuristic acceleration, parallel processing or 

reduced-order modelling, to produce rapid solutions that are deployable in 

operational settings. These improvements would be critical for real-time 

ATO decision-making, dispatching support systems, and adaptive energy-

efficient control across varying traffic scenarios. 
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