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Extended Abstract

Eco-driving and operation design, including energy recovery systems such
as regenerative braking, are key techniques for improving efficiency in
railway systems. These strategies, combined with advanced optimisation
models, have demonstrated significant potential in several railway
scenarios, as highlighted in the following studies.

The first part of the research study positions eco-driving as a cornerstone of
energy reduction in the railway sector and a vital tool for advancing the
Sustainable Development Goals in transportation. However, its application
in real-world scenarios is often impacted by uncertainties arising from
climatological factors, which are frequently disregarded in train driving
optimisation models. This work introduces an eco-driving model developed
to generate efficient driving commands while accounting for climatological
uncertainties, such as temperature, pressure and wind. These uncertainties
are modelled using fuzzy numbers, and the optimisation problem is solved
with a Genetic Algorithm employing fuzzy parameters, utilising an accurate
railway simulator. Applied to a realistic high-speed railway scenario in
Spain, the model demonstrates that energy savings can increase from
29.76% to 34.70% when climatological factors are considered for the summer
scenario. Moreover, an energy variation of 5.31% is observed between
summer and winter scenarios, while punctuality constraints are fully
satisfied. This model provides operators with an effective tool to better
estimate and optimise energy consumption by adapting driving commands
to prevailing climate conditions.

The following part of the thesis addresses metropolitan railway operation.
This type of system, so widely used in large cities, is a significant energy
consumer and a promising target for the implementation of energy
efficiency techniques. This work integrates three main strategies: eco-
driving, timetable design and regenerative braking, into a simulation-based
model to optimise operation while minimising energy consumption.
Additionally, the model incorporates the rolling stock required to meet

3



3
copiLLAS

service demand, given its substantial impact on operational costs. Efficient
driving commands are developed using a MOPSO (Multi-Objective Particle
Swarm Optimisation) algorithm and timetable optimisation is achieved by
considering the proposed energy regeneration model and the number of
trains required for periodic service. Applied to the Madrid Underground,
the model achieves energy savings of up to 24.79% compared to the fastest
cycle time, while adhering to operational criteria such as time margins for
delay recovery. The study further demonstrates that the GLMO-NSGA-III
(Grouped and Linked Mutation Operator — Nondominated Sorting Genetic
Algorithm III) algorithm is the most effective for timetable design in this
context.

Together, these studies illustrate the significant benefits of combining eco-
driving, operational planning, and energy regeneration techniques in
railway systems, ranging from high-speed networks to metropolitan lines,
maximizing energy efficiency and enhancing sustainability.
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Resumen

La conduccion eficiente (eco-driving) y el diseho de la operacion,
incluyendo sistemas de recuperacion de energia como el frenado
regenerativo, son técnicas clave para mejorar la eficiencia en los sistemas
ferroviarios. Estas estrategias, combinadas con modelos avanzados de
optimizacion, han demostrado un gran potencial en diversos escenarios
ferroviarios, como se destaca en los estudios presentados a continuacion.

La primera parte del estudio de investigacion posiciona la conduccion
eficiente como un pilar fundamental para la reduccion del consumo
energético en el sector ferroviario y como una herramienta vital para
avanzar en los Objetivos de Desarrollo Sostenible en el ambito del
transporte. Sin embargo, su aplicacion en escenarios reales se ve
frecuentemente afectada por incertidumbres derivadas de factores
climatologicos, que a menudo son ignoradas en los modelos de
optimizacion de la conduccion de trenes. Este trabajo presenta un modelo
de eco-driving desarrollado para generar consignas de conduccion
eficientes teniendo en cuenta dichas incertidumbres climatologicas, como la
temperatura, presion y viento. Estas incertidumbres se modelan mediante
numeros borrosos (légica borrosa), y el problema de optimizacion se
resuelve utilizando un Algoritmo Genético con parametros borrosos, junto
con un simulador ferroviario. Aplicado a un escenario realista de Alta
Velocidad en Espafia, el modelo demuestra que los ahorros energéticos
pueden aumentar del 29.76 % al 34.70 % cuando se consideran los factores
climatologicos en condiciones de verano. Ademas, se observa una variacion
del 5.31% en el consumo energético entre los escenarios de verano e
invierno, cumpliendo en ambos casos con las restricciones de puntualidad.
Este modelo proporciona a los operadores una herramienta eficaz para
estimar y optimizar mejor el consumo energético, adaptando las consignas
de conduccidn a las condiciones climaticas predominantes.
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La segunda parte de la tesis aborda la operacion ferroviaria metropolitana.
Este tipo de sistema, ampliamente utilizado en grandes ciudades, representa
un alto consumo de energia y es un objetivo prometedor para la
implementacion de técnicas de eficiencia energética. Este trabajo integra tres
estrategias principales: eco-driving, disenio de horarios y frenado
regenerativo, en un modelo basado en simulacion para optimizar la
operacion minimizando el consumo de energia. Ademads, el modelo
incorpora el material rodante necesario para cubrir la demanda del servicio,
dado su impacto significativo en los costes operativos. Las consignas de
conduccion eficientes se desarrollan utilizando el algoritmo MOPSO (Multi-
Objective Particle Swarm Optimisation), y la optimizacion del horario se
logra considerando el modelo propuesto de regeneracion de energia y el
numero de trenes requeridos para el servicio periddico. Aplicado a la red de
Metro de Madrid, el modelo alcanza ahorros energéticos de hasta el 24.79 %
en comparacion con el tiempo de ciclo mas rapido, cumpliendo ademas con
criterios operativos como los mérgenes de tiempo para la recuperacion de
retrasos. El estudio demuestra ademads que el algoritmo GLMO-NSGA-III
(Grouped and Linked Mutation Operator — Nondominated Sorting Genetic
Algorithm III) es el mas eficaz para el disefio de horarios en este contexto.

En conjunto, estos estudios ilustran los beneficios de combinar técnicas de
conduccion eficiente, planificacion del trafico y regeneracion de energia en
los sistemas ferroviarios, tanto en Alta Velocidad como en lineas
metropolitanas, maximizando la eficiencia energética y fomentando la
sostenibilidad.
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CHAPTER 1

INTRODUCTION AND MOTIVATION OF THE THESIS

The growing need for sustainable economic development is prompting
developed countries to consider climate-related aspects and possible future
scenarios resulting from previous industrial development. Similarly, the
population trend in all countries is to concentrate in large metropolitan
areas. This demographic shift is particularly evident in developed countries,
where societies are increasingly concentrated in huge metropolis. In the
current context of optimising energy efficiency and supporting the use of
renewable energy it is important to develop technologies that enable the
rational and efficient use of the resources. This paradigm, combined with
increased environmental awareness, positions the transportation sector as
one of the main strategies for sustainable development. The efficient
generation and utilisation of energy are central to the effort focused on
sustainable development.

Specifically, the transportation sector is one of the largest energy consumers
globally, alongside the industry, commercial and public services and the
residential sector [1]. On a global scale, this sector accounts for a large share
of energy demand, making energy efficiency improvements crucial. The
rational use of energy is particularly relevant for the transport sector
because of the massive amount of energy required in developed countries
[2], especially when the trend is towards unification into an electrified
system.

Also, the transportation sector is responsible for a significant share of
emissions, accounting for around 21% of global carbon dioxide (CO,)
emissions, rising to 24% when considering only CO, emissions from energy
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use. Road transport is the dominant source, generating approximately 75%
of transport-related emissions. Within this, passenger vehicles—including
cars and buses—contribute 45.1%, while freight trucks account for 29.4%. As
a result, road transport alone represents about 15% of total global CO,
emissions. In contrast, rail transport contributes a comparatively small
share, with rail travel and freight accounting for only 1% of transport
emissions, making it the most energy-efficient mode of land transport.
Aviation is responsible for 11.6% of transport emissions (around 2.5% of
total global CO, emissions), while international shipping accounts for 10.6%.
Other transport methods, such as pipelines used to move materials like
water, oil and gas, contribute 2.2% [3].

Rail transport has significantly improved its energy efficiency, reducing
energy consumption per transported unit by 23.9% in 2021. It remains the
most energy-efficient mode, consuming less than a third of the energy
required by other transport modes. Specifically, it is 2.4 times more efficient
than road transport for passengers and 4.6 times more efficient for freight,
reinforcing its role as the most sustainable land transport alternative [4].

This highlights the importance of rationalising and making energy use more
efficient across all sectors and transportation modes to minimise pollutant
emissions. Within the transport sector, rail transport is characterised by high
energy efficiency, as it consumes less energy per transported load compared
to other modes of transport, and this efficiency is even more pronounced
due to the increase in electrified traffic [4]. Even so, they still present
significant opportunities for improvement [5]. Railways play a vital role in
connecting large metropolitan areas, facilitating mobility between urban
centres and promoting sustainable transportation. As the demand for
efficient and low-emission transport solutions increases, rail networks are
expected to play an increasingly important role in the future of urban and
inter-urban mobility [6].

Urban and intercity railway mobility systems provide a valuable
opportunity to transition toward more efficient and sustainable
transportation modes. They offer enhanced comfort and speed for
passengers while delivering significant energy savings and environmental
benefits [7]. Metropolitan rail transport plays a crucial role in ensuring
mobility within large cities, while long-distance railway connections are
essential for maintaining strong intercity links. In this context, high-speed
rail transport becomes highly relevant, positioning itself as a fast, efficient,

8
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safe and comfortable mode of transportation with potential environmental
benefits [8]. High-speed railway has significantly contributed to enhancing
long-distance mobility while reducing dependence on private vehicles. This
type of transport system has emerged as a significant competitor to other
mobility options between major urban centres, aligning with sustainable
development goals and helping mitigate the negative effects of road and air
transportation [9]. The expansion of railway capacity to meet the growing
demand for passenger services, and to a lesser extent, freight operations, has
resulted in an equivalent increase in traction energy consumption for trains
and other services related to railway operations. Therefore, it is crucial to
implement measures for the efficient use of energy in railway systems to
ensure the development of rail transport while progressing towards
sustainability goals [10].

Europe has taken the lead in the decarbonisation of the transport sector,
energy generation and industry. This leadership is driven by emission
reduction policies establishing a framework for action in this area [11].
Within this framework, the rail sector focuses on the development and
application of technology aimed at improving the efficiency of the systems
involved. Innovation and development have the potential to improve
energy efficiency reducing energy consumption without reducing the
quality of service, offering multiple benefits, such as lower energy
generation demand, lower operating costs and reducing negative
environmental impact [5].

In addition to technological advances, it is vital to increase the attractiveness
of rail transport for both passengers and freight. Increased rail traffic can
relieve road congestion and reduce the pollution associated with road
transport. High-speed railways, in particular, responds effectively to long-
distance mobility demands while minimising greenhouse gas emissions,
making it a key element of sustainable transport networks. The transition to
a more efficient and sustainable rail system depends on collaborative efforts
between stakeholders, including policy makers, technology innovators,
research institutions, infrastructure managers and rail operators. These
actors are key to implementing technologies that reduce energy
consumption, improve operational efficiency and ensure passenger
satisfaction [12].

Despite its inherent efficiency, the railway sector remains a major energy
consumer. Therefore, the continuous exploration of innovative solutions is

9
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essential to further optimise its operations. As electrification becomes the
dominant paradigm in transport, rail is in a unique position to lead the
transition to a sustainable and energy efficient future. This aligns with global
sustainability goals, particularly in the European context, where railway
development is a strategic component of decarbonisation policies. By
integrating cutting-edge technology with coordinated policy and research,
the rail sector can serve as a global model for addressing mobility challenges
within the framework of sustainable development [13].

Technological and innovation solutions for improving energy efficiency in
railway systems can be categorised into three key areas: infrastructure,
rolling stock and operation. In the case of infrastructure, there are different
areas that can play an important role enabling some improvements in the
operation. Some of them are the electrification of lines without electric
power supply, the use of materials with better mechanical properties, an
optimal track design, the integration of renewable energy sources [14] and
the utilisation of energy storage systems [15]. For rolling stock, the reduction
of train weight, aerodynamic optimisation [16], the use of regenerative
braking [17] and the integration of on-board systems with new signalling
systems contribute to reducing the energy needs without compromising the
performance of the operation ([18], [19]). With this last improvement
possibility, significant energy savings can be achieved by adapting the
efficient driving of the train in real-time to the operational conditions.
Operational improvement strategies, such as driving optimisation
techniques, timetable optimisation, automation and traffic regulation
systems, mean that energy consumption is reduced, ensure passenger
comfort, punctuality of service and safety during operation. Also, the use of
new technologies applied to traction power generation, such as hydrogen
generation [20], is an option for improving the efficiency of the railway
system reducing total gas emission.

1.1. PROBLEM STATEMENT AND APPROACH

The railway sector includes three main areas where research efforts can be
directed to improve efficiency and sustainability: infrastructure, rolling
stock and operation. Although significant progress has been made in all
three areas, this thesis specifically focuses on improving railway operation
by applying techniques to improve the efficiency of the system. Among the

10
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various potential improvements to increase the energy efficiency of railway
systems, two key operational optimisations stand out: eco-driving design

and timetable optimisation.

Economic driving, or eco-driving [21], is the driving that involves
identifying the most energy-efficient driving strategy for a train by
generating an optimal speed profile for a specific route that minimises
energy consumption over a predetermined running time [22]. This process
takes into account constraints related to passenger comfort, the established
schedule and operational limitations. The theory applied to efficient driving
indicates that the best pattern for designing the speed profile consists of an
initial start with maximum acceleration, followed by speed regulation, and
ending the travel profile with a coasting phase, that is, without applying
traction or braking, and a final braking phase with maximum deceleration
until the stopping point, where the train completes the speed profile [21].
On the other hand, timetable optimisation consists of determining the
optimal running times between stations and the appropriate dwell times at
each stop, with the goal of minimising overall energy consumption while
adhering to comfort and operational constraints [23].

Operational improvements, particularly in eco-driving techniques and
timetabling, offer cost-effective solutions that do not require substantial
financial investments in new infrastructure or replacing existing trains with
more efficient models. Instead, these strategies rely on the application of
advanced optimisation methods and computational techniques. Once these
solutions are developed, their implementation typically involves minimal
costs, as they mainly depend on the integration of software programs and
operator training rather than large-scale physical upgrades.

A key element of these solutions is their generation through simulation
models, algorithms and computational techniques, which allow efficient
driving commands and schedules to be designed and tested in a virtual
environment before deployment. These tools enable the exploration of
numerous scenarios and the identification of optimal solutions that can then
be quickly and effectively applied to real railway systems. This rapid
applicability is a significant advantage, as it minimises downtime and
resource allocation while achieving immediate benefits in energy efficiency
and operational performance. In this context, rail transport also benefits
from emerging technologies, including artificial intelligence, which can
enhance efficiency, safety and sustainability [24].

11
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In this context, fuzzy logic [25] has been introduced to handle uncertainty in
railway systems, such as variations in track conditions, weather, or
measurement errors in stopping times. Fuzzy logic allows these uncertain
parameters to be modelled more realistically, which improves decision
making under variable conditions. This methodology assigns degrees of
membership to values instead of assigning only a true or false value,
allowing vague or uncertain aspects in operational data to be dealt with in
a quantified manner.

The integration of fuzzy logic into optimization models allows for more
robust and adaptable solutions to be created, as a wider range of uncertain
variables affecting railway operation can be considered. This improves the
flexibility of decisions made, especially in unpredictable or changing
situations. By using fuzzy logic, models become more capable of adjusting
to real operating conditions, optimizing both energy efficiency and
operational reliability.

The implementation of eco-driving techniques provides tangible benefits in
reducing energy consumption for a given running time without
compromising passenger comfort or the quality of railway services.
Similarly, the application of efficient timetabling strategies ensures reduced
energy consumption during operations while maintaining compliance with
predefined schedules. These results highlight the ability of operational
improvements to balance energy efficiency with service reliability and
customer satisfaction.

Eco-driving leverages computational models and real-time data to adapt
driving behaviours to specific conditions such as gradients, speed limits,
and energy recovery systems. Likewise, train service management,
incorporating timetable optimisation and regenerative braking
coordination, aims to enhance operational efficiency and energy utilisation
by ensuring synchronised operations across the network.

The choice to focus on operational solutions is due to their scalability,
adaptability and immediate impact. Unlike infrastructure improvements,
which often require long-term planning and substantial financial resources,
or rolling stock upgrades, which are constrained by manufacturing
timelines and acquisition budgets, operational strategies can be rapidly
implemented within existing systems. Moreover, operational optimisation
is compatible with advancements in other areas, making it a complementary

12
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approach that maximises the overall efficiency of the railway network. This
approach stands out for its unique advantages, particularly in contrast to the
high costs associated with infrastructure or rolling stock improvements, as

well as its rapid applicability to real systems.

By addressing railway efficiency from an operational perspective, this thesis
contributes to the broader goal of sustainable transportation. It provides a
pathway to achieving energy savings and operational improvements
without requiring large economic investments, aligning with the
overarching objectives of reducing greenhouse gas emissions and
supporting global sustainable development initiatives.

1.1.1. ECO-DRIVING IN LONG-DISTANCE SCENARIOS

Long-distance or high-speed rail operation has a series of particular
characteristics, differentiating it from other types of operation, such as
metropolitan rail operation.

One key distinction lies in the level of automation currently being
implemented in high-speed rail systems [26]. Automatic driving systems are
under development and implementation in high-speed trains, although in
general, driving continues to be carried out by the driver, with this driving
being adjusted during the operation according to the needs and specific
conditions of the service [27]. Automation not only makes it possible to
optimise energy consumption in real time, but also introduces a new level
of complexity, as the driving design must adapt dynamically in case of
delays or deviations from the timetable.

The basic efficient driving strategy for long-distance or high-speed trains is
speed regulation. Speed regulation consists of the application of traction to
keep the train speed constant to the driving command speed. This approach
minimises excessive acceleration and braking, preserving passenger
comfort. The route can be divided into several sections where the driving
instructions are varied to achieve a certain regulation speed. Even if the
route can be divided into several regulation sections, there should not be too
many of them, as this would impair the driver's driving performance. A
refinement and more efficient approach is speed regulation without the use
of brakes, which prevents braking when the train naturally accelerates

13
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beyond the regulation speed due to favourable gradients ([28], [29]). In this
case, the established speed limit is respected, but it is not necessary to
respect the regulation speed, thus achieving additional energy savings in
sections where the train does not need to consume more traction energy to

obtain a higher speed.

Figure 1 shows the application of an efficient driving command. The train
follows this speed command by allowing the speed to be exceeded when
there is a gradient that allows the speed to be increased, while respecting the
speed limits.
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Figure 1. Regulation speed without braking.

Additionally, mixed traffic operation is a common characteristic, where
different passenger services and freight trains coexist on the same tracks. It
may be common for different passenger services to share the same track on
different trains and for freight trains with different commercial speeds and
restrictions [30]. This peculiarity implies an added effort in the design of the
driving and for the regulation of traffic that tries to minimise the impact and
delays caused during the service by conflicts between trains [31].

In this context, the application of efficient driving to long-distance or high-
speed lines becomes a key element in energy savings both in the operation
planning phase and in real-time traffic regulation. During the planning
phase, efficient driving strategies are designed with consideration for
running times, scheduled stops and punctuality criteria. During operation,
eco-driving strategies should be applied dynamically when deviations
occur or when conditions differ from the initial plan.
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In order to achieve accurate results, simulation and optimisation models
must consider all parameters influencing railway operations. En general,
para el disefio de la conduccion no se incluye la influencia de parametros
externos a la propia operacion. However, previous studies incorporate the
impact of some external factors and their associated uncertainty. In [32] the
variation in passenger mass is included, in [33] the uncertainty in manual
driving is considered and in [34] the uncertainty in delays is taken into
account for the eco-driving design. Among these factors, weather conditions
significantly affect the energy consumption of trains and, to a lesser extent,
the running times. Studies that have addressed climatic aspects typically
focus on winter and snowy scenarios, aiming to predict delays or traffic
disruptions [35]. Nevertheless, railway operators tend to exclude climatic
factors from their models, considering them highly random and
unpredictable variables.

In the context of high-speed railway services, it is crucial to assess the
influence of wind and aerodynamic resistance [36]. Regarding wind effects,
both its direction relative to train movement and its velocity must be
analysed, as it can either assist or hinder train operation by altering its
relative speed. Additionally, aerodynamic resistance is strongly influenced
by the density of the surrounding air, which, in turn, depends on
atmospheric pressure and temperature. This component becomes
increasingly relevant at higher operating speeds since it is proportional to
the square of the velocity.

Given the inherent variability of climatic parameters, their analysis requires
methods that account for the associated uncertainty. While uncertainty in
certain parameters has been addressed using fuzzy logic [25], the literature
has not specifically examined the uncertainty of climatic factors. Chapter 2
considers the influence of meteorological variables and their uncertainty,
modelled using fuzzy numbers, integrating them into the efficient driving
optimization model. The results highlight the significance of these factors in
driving optimization.

15



ENP
B
COMILLAS

ICAI

1.1.2. ECO-DRIVING IN METROPOLITAN SCENARIOS

Just like in long-distance or high-speed railway operations, metropolitan
railway operation has its own characteristics that determine the energy-
saving techniques that can be applied.

Metropolitan operation is mostly carried out automatically through
Automatic Train Operation (ATO) systems although manual driving is
also used in certain lines [37]. The journeys between stations in metro-type
systems are numerous and much shorter compared to long-distance travel
and the ATO driving patterns applied are pre-programmed in the onboard
systems. Since trains share the same line and follow the same type of routes
and stops, the possible driving patterns designed for the trains are shared
by all trains on the line.

Typically, railway operators usually consider four possible ATO driving
patterns to be executed by the train. The first is the fastest possible run,
taking into account the characteristics of the train and the track, used for
delay recovery. The second is the nominal run, which is used under normal
conditions while following the timetable. The remaining two patterns are
progressively slower and are used when the train needs to be delayed for
traffic regulation purposes.

Therefore, efficient driving can be applied to automatic operation through
the speed regulation technique or the coasting/re-motoring technique
considering both time and energy-saving criteria [38]. Coasting/re-
motoring technique consists of the application of traction by the train until
the speed reaches the established upper limit. Once the speed reaches this
limit, the coasting phase is applied until the speed reaches the lower limit.
When the speed reaches the lower limit, the traction phase starts again.
Coasting/re-motoring technique becomes more relevant in metro-type
systems, where higher accelerations are allowed compared to long-
distance or high-speed trains, taking advantage of the optimal full-throttle
regime and the application of coasting, where energy consumption is zero.

Figure 2 shows an example of coasting/re-motoring driving technique.
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Figure 2. Coasting/remotoring speed profile.

Eco-driving is applied similarly in the timetable phase of long-distance or
high-speed services. However, metropolitan railway operations are
frequently subject to deviations from the planned schedule, making the
application of efficient driving during the traffic regulation phase
particularly relevant. In the regulation phase, the operator aims to correct
deviations from nominal conditions by assigning one of the possible
driving patterns to each train based on delays, dwell times and train
headways [39]. This communication from the control centre to the trains
can be done intermittently through trackside beacons and signalling
systems or continuously via radio, as with the CBTC (Communications-
Based Train Control) system [40]. When communication with trains is
continuous, the complexity of decision-making regarding the action’s
trains should take increases significantly, making computing techniques
and processing speed highly relevant.

1.1.3. TIMETABLE DESIGN

The efficient planning and management of railway timetables is a key
aspect of optimising operations and improving system performance.
Timetable design in metropolitan and long-distance railway systems is
conducted as a preliminary step before the commercial operation of a line.

Considering  energy-saving  criteria, timetabling enables the
implementation of energy efficiency techniques such as eco-driving [41],
the utilization of regenerative braking [42] and the optimisation of dwell
times at stations [43]. In long-distance, high-speed and metro-type
railways, timetabling may incorporate eco-driving strategies to minimise
total energy consumption. In metro-type systems, timetables can be
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designed to synchronise headways and integrate technologies such as
regenerative braking or energy storage systems to enhance system
efficiency. Additionally, commercial running times between stations

include time margins to account for contingencies.

Previous studies have addressed timetabling in metropolitan scenarios,
considering running and dwell times to optimise synchronisation between
trains [44]. Some have incorporated efficient driving strategies, while
others have analysed the number of trains required to fulfil the service [45],
treating this variable as an optimisation factor alongside operational cost.
However, no study has yet integrated all these variables simultaneously.

For this reason, Chapter 3 integrates a two-level optimisation model for
train operation on a Madrid metro line. On the first level, driving is
optimised for each route of the line. On the second level, the timetable is
optimised by distributing station stopping times to synchronise
accelerating and braking trains, maximising the use of regenerated energy.
Additionally, different algorithms have been compared and rolling stock
constraints have been considered by penalising the use of a greater number
of trains to balance operational efficiency and energy savings.

1.1.4. REGENERATIVE BRAKING

Regenerative braking is a key technology for improving the energy
efficiency of railway systems, particularly in metropolitan and high-
frequency networks [17]. It works by harnessing the train's kinetic energy
during braking, converting it into electricity through electric motors that
function as generators. This energy can be used to power the train’s
auxiliary systems, be transferred to other trains within the same electrical
sector, or, in some cases, be fed back into the power grid.

However, regenerative braking is not a stand-alone solution; it must be
complemented by efficient driving strategies and proper traffic planning
[46]. Its effectiveness depends on operational conditions and the
responsiveness of the infrastructure. While it helps save a portion of the
energy that would otherwise be lost, the extent of this energy recovery
varies depending on circumstances. When properly coordinated with
other strategies, such as eco-driving and timetable optimisation,
regenerative braking maximises its impact, particularly during station
approaches and sections where high speeds need to be reduced.
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This combination of energy recovery and optimization strategies not only
enhances operational efficiency but also contributes to the overall
sustainability of the railway system. In metro-type networks, timetabling
can take advantage of energy recovery by synchronizing trains that
regenerate energy during braking with those accelerating at the same time.
This coordination optimizes energy flows across the network, minimizing
waste and increasing the effectiveness of regenerative braking.

1.1.5. ALGORITHMS AND OPTIMISATION MODELS

Improving the efficiency of railway systems by improving train driving and
timetables is based on solving optimisation models through algorithms.

% Eco-driving

For solving the eco-driving problem different methods and algorithms have
been applied. Initially, the work carried out in this sense was done by
applying the Pontryagin Maximum Principle by Ichikawa in 1968 [21] to
determine the optimal driving regimes. This approach has been the basis
from which subsequent research has been carried out. The methods
developed can be classified into analytical methods and numerical methods.

In analytical methods, the resolution of the problem is based on the
mathematical and detailed formulation of the problem. In many cases,
Pontryagin's Maximum Principle is used to find the optimality conditions
necessary to subsequently apply the resolution algorithm considering
minimizing or maximizing the variable of interest. These methods are
characterized by their ability to obtain exact solutions under ideal
mathematical conditions. However, their application is limited to relatively
simple systems or to scenarios in which certain simplifications can be made,
such as the linearisation of the equations or the simplification of the
operating restrictions.

Some examples are constructive algorithms [47], dynamic programming
[48] or sequential quadratic programming [49]. Constructive algorithms
allow precise and fast solutions to be found in relation to the computing
speed. However, the application of this type of algorithm is restricted due
to the simplifications made in the models of both the train and the operating
conditions.
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On the other hand, numerical methods allow working with much more
detailed models, without the need to simplify the problem conditions. This
resolution approach is based on the search for approximate solutions in an

iterative manner until it meets the search requirements.

Genetic Algorithms (GA) are a prominent example of numerical methods.
These algorithms are inspired by natural selection and evolution processes,
where a population of possible solutions evolves through selection,
crossover and mutation processes. GAs efficiently explore large solution
spaces and are particularly useful in complex optimization problems, such
as speed profile optimization in railway environments, where possible input
values can be numerous and non-linear [50]. GAs allow finding high-quality
approximate solutions without the need to know the explicit formulation of
the objective function, which gives them great flexibility to adapt to different
train models and operating conditions. Within the numerical methods, we
also find Particle Swarm Optimization (PSO), which is inspired by the
collective behaviour of natural systems, such as swarms of birds or schools
of fish. PSO adjusts solutions through collaboration between particles,
seeking the best solution based on their evaluations. Like GA, PSO is
effective in handling complex problems without the need for specific
formulations, making it suitable for highly complex railway systems [51].

The combination of these methods, both analytical and numerical, together
with the integration of fuzzy logic [34], allows for the creation of detailed
models that can be implemented in advanced simulators. These simulators
allow for accurate representation of train characteristics, track conditions
and signalling systems, facilitating the evaluation of different driving
strategies and their impact on energy consumption and service punctuality.
By integrating these models into a simulation environment, various
solutions can be tested before being implemented in real operation,
improving the efficiency and reliability of the railway system in real time.

% Timetabling

Ditferent methods and algorithms have been used to solve the timetabling
problem. These methods can be classified into different main categories.
First, there are heuristic and metaheuristic algorithms, such as the Genetic
Algorithm (GA) and the Allocation Algorithm ([52], [53]), the Nested
Heuristic Genetic Algorithm [54] and the Particle Swarm Algorithm (PSO)
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[45], which are commonly used for resource optimisation and solving
complex optimisation problems.

Secondly, mathematical and programming methods, including Mixed
Integer Linear Programming (MILP) ([55], [56]), are used to address
combinatorial optimisation problems, providing exact solutions in contexts
where the variables are integers and the relationships between them are
linear.

In addition, control and optimisation methods have been employed, such as
the Matrix Control Algorithm [46], applied to the optimisation of speed and
energy efficiency in railway systems, and Pontryagin's Maximum Principle
[42], used in the optimisation of dynamic systems to determine optimal
control strategies.

On the other hand, multi-step and spectral optimisation methods are
applied, where the Pseudospectral Method (PSM) is compared with
Dynamic Programming (DP) [57] to assess the validity of the proposed
solutions in optimal control problems.

Finally, some studies resort to hybrid approaches, such as data-driven bi-
objective metaheuristic [58], which combines exact mathematical techniques
with heuristic strategies to solve complex optimisation problems by
considering multiple objectives simultaneously.

1.2. OBJECTIVES
1.2.1. MAIN OBJECTIVE

The main objective of the thesis is to develop optimisation models for train
driving and timetabling in both metropolitan and long-distance railway
systems. These models are based on detailed simulations of train kinematics
and dynamics, incorporating all operational parameters, constraints related
to passenger comfort and uncertainties inherent in railway operations.
Additionally, the research considers factors that influence the overall
efficiency of railway systems, including timetable constraints, the utilisation
of regenerated energy by trains during braking and the characteristics of the
rolling stock. By integrating these elements, the proposed models aim to
optimise operational strategies while maintaining system reliability and
service quality. Through the application of advanced computational
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techniques and simulation frameworks, this thesis seeks to address critical
challenges in railway operations, contributing to the broader goals of energy

efficiency and sustainable mobility.

1.2.2. SPECIFIC OBJECTIVE

The specific objectives of the development of this doctoral thesis are
described in detail. The main goal is the application of the eco-driving
technique to reduce energy consumption during operation, taking into
account the particularities of each case.

e Objective 1: Design of efficient driving strategies for high-speed
trains considering the wuncertainty associated with climatic
conditions.

The design of efficient railway driving strategies is a problem extensively
addressed in the literature; however, the impact of climatic conditions on
railway operations and driving strategies has not been considered until
now. The effects of wind and variations in air density can significantly
influence the resistance that the train must overcome. The methodologies
for identifying optimal solutions are diverse, and among them are nature-
inspired algorithms.

To address this problem, a Genetic Algorithm is used alongside a detailed
train movement simulator to optimise the proposed eco-driving model.
Travel time and energy consumption are evaluated using a fitness function,
with each parameter weighted by a specific factor. The resolution model
incorporates pressure, temperature, air density, wind direction and speed
as fuzzy parameters (fuzzy logic), thereby accounting for their associated
uncertainty. In this way, the driving commands that must be executed by
the high-speed train are determined to minimise energy consumption while
meeting a specific travel time under given climatic conditions.

The proposed model and its results provide a reference framework for
railway operators to evaluate the impact of external factors that were
previously difficult to quantify.

The tasks to be completed to achieve Objective 1 are as follows:
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o Task 1: Review of previous literature related to efficient driving
strategies and the algorithms that can be employed for optimisation.
Examination of prior studies addressing the role of climatic

conditions in railway operations.

o Task 2: Development of the driving simulation model and the
climatic model with fuzzy parameters. The climatic model includes
the effects of wind (direction and speed) and variations in air density
due to changes in temperature and pressure along the route.
Development of the optimisation model for efficient driving
commands, integrating the Genetic Algorithm and the climatic
model with fuzzy parameters.

o Task 3: Application of the simulation and optimisation model to a
real-world case study of a high-speed railway line in Spain,
obtaining conclusions, and proposing future research directions.

e Objective 2: Optimisation of ATO Driving Commands and
Operation for Metropolitan Railway Lines Considering Rolling
Stock and Regenerated Energy During Braking.

The design of automatic driving commands (ATO) and proper operational
planning are the primary challenges to address in the operation of
metropolitan railway lines. To this end, an optimisation model is proposed
that integrates the design of automatic driving commands and operational
planning, considering the synchronisation of trains to leverage the energy
flow generated by regenerative braking.

The first level of ATO driving design obtains Pareto frontiers for each
interstation section using a MOPSO algorithm, where each solution
represents the driving profile that achieves minimum energy consumption
for a given travel time. The second optimisation level uses the solutions from
the first level to maximise the use of regenerated braking energy and
optimally distribute existing time margins to recover potential delays. At
this level, the performance of various algorithms is compared: FDV (Fuzzy
Decision Variable) [59], GLMO-NSGA-III (Grouped and Linked Mutation
Operator — Non-dominated Sorting Genetic Algorithm III) ([60], [61]), LCSA
(Linear Combination-based Search Algorithm) [62] and WOF (Weighted
Optimisation Framework) [63]. The algorithm yielding the best results for
the case study is selected.
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The results obtained through the new model can serve as a tool for timetable
design on metropolitan lines, meeting the nominal operational
requirements typically imposed by railway operators.

o

The

Task 1. Review of previous literature related to ATO driving
commands and operational planning for metropolitan lines, as well
as prior studies on the computational techniques used [38].

Task 2. Development of the optimisation model integrating the ATO
driving calculation level using a multi-objective algorithm and the
global timetable optimisation level, where several algorithms will be
compared. The model will account for regenerated energy during
braking, including an energy loss function during transmission.
Additionally, the rolling stock required to meet the designed
operation will be considered.

Task 3. Application of the model to a real case study of Metro de
Madrid, taking into account the minimum number of trains required
to satisfy the designed timetable and avoiding costs associated with
rolling stock. Conclusions will be drawn based on the results.

development and achievement of the objectives outlined will be

described in the following chapters.

1.3.

STRUCTURE OF THE THESIS

The thesis document is structured as follows:

@)

Chapter 1 has introduced the thesis work, presented the motivation
for the present work, the approach and focus of the problem and
objectives to be completed and its contribution.

Chapter 2 presents the problem of efficient driving design when
considering climatic parameters and their uncertainty. The problem
is also solved by means of a genetic algorithm modelling the
uncertainty using fuzzy logic.

In Chapter 3 a two-level timetable planning model for metropolitan
services is developed. In a first stage, the efficient driving is designed
for each route of a metro line. Then, the planning problem is solved
by considering the energy regenerated during braking and the
number of trains needed to satisfy the rail service.
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o Chapter 4 lists the conclusions obtained, the contributions of the
thesis, the articles published in high impact journals and, finally,

comments on the possible lines of work and future development.

The document ends with the bibliographical citations that have served for
the correct development of the thesis.
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CHAPTER 2

ECO-DRIVING CONSIDERING CLIMATIC
UNCERTAINTY

2.1. INTRODUCTION

Eco-driving is one of the most popular methods for optimising energy
consumption in railway operations because it can be applied in the short
term, providing important energy reduction results [22]. Eco-driving is the
obtention of the speed profile with the minimum energy consumption
associated. The eco-driving speed profile is calculated for a specific target
running time considering the previously designed timetable ([5], [44], [64],
[65], [66], [67], [68], [69]).

Different eco-driving strategies have been analysed in the academic
literature. In some simple scenarios, driving through speed regulation has
been simulated ([2], [70], [71], [72]). Other studies have proposed design by
coasting/re-motoring cycles, having upper and lower speed limits ([73], [74],
[75]) or considering coasting points along the railway line ([21], [47], [50],
[76], [77]). Coast-remotoring strategy is appropriate for short routes on
metro lines but are not very efficient for longer railway lines as the HSR
lines. The speed regulation without braking has been demonstrated as an
efficient and easily executed eco-driving strategy for high-speed railway
lines ([28], [29]).

The production of speed profiles with the minimum energy consumption
requires an optimisation model that can return the best combination of eco-
driving strategies. In study [21], the initial study on eco-driving was
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developed. This work applies Pontryagin’s Maximum Principle to a
simplified train dynamics model, obtaining optimal driving modes as
maximum acceleration, cruising, coasting and maximum braking. The
studies developed subsequently to [21] have improved the dynamic model
of simulation, and the different optimisation techniques implemented are

classified in study [78] as analytical and numerical methods.

Most of the analytical methods are developed based on the optimal control
theory. Pontryagin’s Maximum Principle is used in these methods to find
the best energy efficiency solutions and apply algorithms to obtain the
optimal switching points between the efficient regimes. These algorithms
are based on Dynamic Programming ([48], [79], [80], [81]), constructive
algorithms ([2], [47], [82], [83]), Sequential Quadratic Programming [49],
and the method of Lagrange Multipliers over the discretised problem [84].
Other methods transform the situation into a non-linear problem [85]. The
analytical methods are used to provide the optimal solution but, considering
the complexity of the problem to be solved, a series of simplifications have
to be made in the train model. Due to the simplifications, inaccuracies can
be obtained in the results generated, and may require recalculations in real
applications [71].

On the other hand, numerical methods have been used for solving the
problem of efficient driving in railway operations as well. These methods
are flexible enough to be used without reducing the complexity of the train
model by using detailed simulation models, adjusting the comfort and
driving requirements. Thus, these methods can be used to fulfil any need or
constraint in real situations.

Among these numerical methods are Artificial Neural Networks, being
used for the optimisation of the coasting points [86], the optimisation of the
coasting speed for a Mass Rapid Transit System considering energy cost and
travelling time cost [87], and for calculating a new indicator to characterise
a railway traffic driving smoothness [88]. Nature-inspired optimisation
algorithms such as Genetic Algorithm (GA) have been widely applied for
determining the speed profile which minimise the energy consumption [89],
the optimal coasting points [50], and the optimum train speed along the
journey [79]. A single optimise train trajectory considering net energy
between adjacent DC substations is described in [90]. In study [91], it is
jointly optimised by means of a GA for the timetable and the speed profile.
A coasting point control method is developed in ([92], [93], [94]) based on
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GA to determine its number and position. Multi-population Genetic
Algorithm (GA) is used in [95] to reduce energy consumption in a subway
system with multiple stations, and in [96] in order to determine the
acceleration, cruising and coasting points. GA combined with fuzzy logic is
used in [74] to optimise energy traction by trading-off reductions in energy
against time, in study [28] to find the economical pattern for an HSR
balancing energy and running time, and used in studies ([27], [34]) to
calculate optimal speed profiles considering uncertainty in manual driving.
Direct search algorithms have been applied to minimise energy traction in
[97] while Brute Force algorithm is used in [98] to minimise energy
consumption in substations. A Monte Carlo Simulation model was
proposed to determine the system energy flow considering regenerative
braking trains [99]. Differential Evolution has been presented in [100] to
optimise railway operation. Optimisation by minimising energy traction is
carried out by Simulated Annealing in [101] and searching optimal coasting
points in [102]. On the other hand, multi-objective models have been
developed using numerical methods. Among them, Indicator Based
Evolutionary Algorithm (IBEA) was proposed to optimise both the running
time and energy consumption [103]. Non-dominated Sorting Genetic
Algorithm II (NSGA-II) is used in [104] to design ATO CBTC speed profiles
to minimise energy traction and in [38], its performance is compared with
MOPSO generating the Pareto curve for real cases of the Madrid
Underground. Ant Colony Optimisation can be seen in [79], proposing a
distance-based train trajectory optimising the train trajectory, and in [105]
to achieve the optimal driving strategy. Finally, a MOPSO algorithm is used
in [51] to design efficient speed profiles for the ATO of the trains of a metro
line.

With the purpose to obtain accurate results, it is important not only to use
detailed simulation models but also to take into account the possible
uncertainties that emerge from the HSR operation. These uncertainties can
be classified in three groups: limitations in the movement authority
produced by signals or preceding trains ([106], [33]), variability in the
manual operation of the train [27], and the climate conditions. While the first
two uncertainty sources have been widely studied, climate conditions have
not been deeply considered in the eco-driving problem.

Most academic works focus on winter scenarios in Northern Europe to
forecast delays or disruptions in traffic operation. Some studies have
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reviewed the issues during winter railway operations caused by snow and
ice in Nordic countries [35]. In study [107], impact of humidity, temperature,
ice, and snow depth on the occurrence of delays in high-speed operation in
Sweden has been analysed through a Cox model and Markov chain model.
A train delay prediction model with weather data has been designed in [108]
and tested on two high-speed railway lines in China. The Nordland railway
line has been assessed in [109], where extreme cold weather is a crucial
factor related to delays and low punctuality. Other studies have focused on
service delay time and its exposure time to bad weather [110]. A
combination of fuzzy theory and rough sets under adverse weather
conditions has been used to contribute to the forewarning method for train
operation in [111]. Causal relationships between extreme weather patterns
and derailments on railway turnouts have been investigated by means of
Fuzzy Bayesian Network model [112]. The impact on freight railways in
winter weather in Northern Europe has been discussed [113]. In study [114],
an estimation of the effects of weather conditions on railway operator
performance of passenger train services has been carried out, focusing on
infrastructure disruptions. In study [115], a model to capture the cascade
dynamics of delay propagation on railway networks under inclement
weather has been presented.

As a general rule, climatological factors are considered random variables
and instantly excluded from the models considered by railway operators.
However, in HSR, the running resistance is the major factor determining the
trains’ energy consumption. Climatic conditions such as wind or air density
can produce significant variations in running resistance value. Therefore,
climatology plays an important role in the energy that high-speed trains
demand. Previous reasons motivate this work to generate a new model to
quantify the climatological affection in railway operation, both in energy
consumption and in running time. Climatology has a great variability due
to the impossibility of having complete knowledge of all the variables that
model its behaviour. Therefore, climatic conditions such as pressure,
temperature, and wind have been modelled by means of fuzzy logic [116].
This way, this affection is included in the running resistance, given the
vagueness in the knowledge of these variables.

The main advantage of fuzzy logic modelling is the ability to handle
imprecise or in-complete information. Additionally, a positive feature is its
flexibility and simplicity to be developed and implemented to obtain
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efficient calculations. That is why many studies have applied fuzzy logic in
train operation models. In study [117], the train service provider and the
infrastructure provider have been modelled as software agents, and the
negotiation for a train schedule and the associated track access charge as a
prioritised fuzzy constrain satisfaction problem. In study [118], predictive
fuzzy control is used for carrying out the train dwell-time control in an
event-driven framework. A methodology for predictive fuzzy control in an
event-driven environment for multi-objective decision making on DC
railway systems has been presented in [119]. In study [120], an approach
within the fuzzy framework for tackling the complexity of
multidimensional service evaluations and the judgment on the goodness of
the schedule has been proposed. In study [121], the authors investigated a
passenger train timetable problem with fuzzy passenger demand. The pa-
per presented by [122] exposed a framework to evaluate the logistics
performance of inter-modal freight transportation by applying fuzzy set
techniques. A multileveled distributed railway traffic fuzzy control system
is proposed in [123]. An assistant support system for railway traffic control
is described in [124] making use of fuzzy knowledge. A fuzzy optimisation
model for rescheduling high-speed timetables is proposed in [69], focusing
this work on punctuality and passengers’ affection without considering
energy minimisation. In studies ([125], [126]), a fuzzy model is proposed for
an Automatic Train Control system. In studies ([27], [33]), uncertainty in the
manual driving application of the speed regulation command is modelled
using fuzzy numbers. In study [74], the optimal speed profile in urban DC
railways is found with a GA, where the energy consumption and the
running time are the fuzzy results. A fuzzy model of delays and punctuality
constraints is proposed in [34] for the offline design of timetables when
efficient driving is applied. The algorithm proposed in [104] is used for
urban ATO operation including uncertainty in the mass, generating optimal
energy—time Pareto curves of speed profiles. Fuzzy logic is applied in [127]
to detect the railway wheelset conicity as a measure of the deterioration. In
study [128], a fuzzy model is used to evaluate the potential risks of railway
crossings. As can be seen, climatological parameters and their associated
uncertainty have not been modelled previously; therefore, this possible
affection to the railway operation has not been considered.

The main contribution of this chapter is the introduction of climatological
parameters in the eco-driving optimisation model. The proposed model
allows an efficient driving design considering the uncertainty due to climate
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conditions by means of fuzzy modelling. Climatological parameters are not
typically considered in the design of speed profiles, and they could affect

the running time and energy consumption.

The optimisation model is based on a Genetic Algorithm combined with
fuzzy parameters. This algorithm applies a search process that optimises a
driving holding speed without a braking commands set that can be easily
applied by human drivers. Applying these commands generates the
efficient driving with punctuality requirements at the destination. Using a
detailed simulation platform makes solving all possible scenarios possible
when the climatological parameters vary according to the proposed model.
This methodology can also be applied to quantify the error obtained in the
expected energy saving if climate conditions are not initially considered in
the optimisation of the railway operation. The model has been applied in a
simulation test based on real data of a Spanish HSR, to compare scenarios
where different wind and air pressure conditions are considered.

This chapter is organised as follows: Section 2.2 describes the simulation
model in which the weather parameters are included. The uncertainty
associated with the climatological parameters is modelled in Section 2.3.
Section 2.4 is a description of the optimisation model developed to generate
efficient driving. Section 2.5 analyses the case study and presents the results
obtained for a real high-speed railway line using the models proposed in
previous sections. A discussion of the proposed procedure and the results
are presented in Section 2.6. At the end of the document, the bibliographical
references and previous academic studies from which information for the
present analysis has been obtained are presented.

References and previous work related to eco-driving and the treatment of
climatic parameters in railway operations are listed in Table 1.
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2.2. SIMULATION
2.2.1. SIMULATION AND CLIMATOLOGICAL PARAMETERS

Table 2. Simulation model parameters.

ﬁ
3

:11 th :11

3

Q =~

Vtrain

~ 3

Xe on 3

=
o =

=0 T

Epantograph (t)
Ppantograph (t)

E substation (t)

P substation(t)
I mec(t)
Nr
|

NZgare

Motor force (kN)

Running resistance (kN)

Force due to the railway grades (kN)

Force due to track curvature (kIN)

Equivalent mass (tons)

Time (s)

Acceleration (m/s?)

Speed of the train (m/s)

Empty train mass (tons)

Rotating mass factor

Load mass (tons)

Gravity acceleration (m/s?)

Slope angle

Gradient of the track (mm/m or %o)

Constant defined by track gauge (m)

Radius of track curvature (m)

Constant related to the mechanical resistance to the motion (kN)
Constant related to the resistance due to the air inlet in

the train (kN/(m-s))

Constant related to the aerodynamic resistance (kIN/(m-s)?)
Tunnel factor

Energy consumed by the train measured at the pantograph (W-s)
at instant t (W)

Electrical power consumed at instant ¢ by the train measured at the
pantograph (W)

Energy consumption estimated at the electrical substation at
instant t (Ws)

Power consumed at the substation at instant t (W)
Mechanical power at instant t (W)

Electrical chain efficiency for the traction case (%)

Power consumed by the auxiliary systems (W)

Initial position of every neutral electrical zone (m)
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NZ.p4 Final position of every neutral electrical zone (m)

s(t) Position of the train at every moment (m)

Np Electrical chain efficiency for the braking case (%)
r(s) Electrical line resistance in the position s (€)
% Nominal line voltage (V)
cos @ Power factor
Table 3. Climatological model parameters.
Fg4 Drag force (N)
v Speed (m/s)
Cp Drag coefficient
Pisa Density of the air under standard conditions (kg/m?3)
P Density of the air p (kg/m?3)
S Cross-sectional area (m?)
P Pressure (N/m?)
R Ideal gas constant (J/(kg-K))
T Temperature (K)
d.B Angles defined by the velocities (Figure 4)
Prail » Pwina Track and wind angles with respect to the north (Figure 4)
Vyel Train speed relative to the wind (m/s)
Vwind Velocity of the wind (m/s)
C(p,B) Value of C considering air density variation and wind effects (kN/(m-s)?)
F tunnet Running resistance when the train travels through a tunnel (kN)

2.2.2. SIMULATION MODEL

The simulation model is described in this section. This model is detailed in
[27] and the results provided by the simulation were compared with real
data of a Spanish HSR to validate the simulator. Ditferences of 1.2% for the
running time and differences of 0.4% when compared with the energy
consumption were shown. The model was used from [27] to design eco-

driving in a high-speed line, and measurements were recorded. As a result,

energy savings between 20% and 34% were measured in commercial

services. It was a detailed discrete event deterministic simulation model,

that combines next-event and fixed-discrete time steps for advancing the
simulation clock ([129], [130]). The simulation model takes several input
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data related to the rolling stock involved in the operation and related to the
railway line:

< Rolling stock.

i.  Physical parameters: mass of the train, the mass of the load,
length, maximum speed, rotatory inertia, and adhesion traction.

ii.  Traction effort curve, braking effort curve, running resistance
coefficients, energetic and power systems and auxiliary systems
consumptions.

% Railway line. Includes Kilometric Points of relevant information as
stations (K.P.), grades, track curvatures, speed limits, tunnels, and
grade transitions considering the length of the train and the electric
neutral zones.

The equation that models the motion of the train at each simulation step
considering the forces acting on the train is:

Fn—(F+E+E)=my-a (1)

where F,, is the motor force (kN), E, is the running resistance of the train
(kN) defined by the Davis formula (Equation (7)), F; is the force due to the
railway grades (kN), F, is the force due to track curvature (kN), m,, is the
equivalent mass (tons) and a is the acceleration of the train (m/s?).

By definition, the acceleration of the train in every step of the simulation is:

d

a= E (Utrain) (2)

where v, is the speed of the train (m/s).
The equivalent mass, effective mass or inertial mass can be calculated by:
Meg =my-(1+4) +my (3)

where m, is the empty train mass (tons), m,; is the load mass (tons) and A
is the dimensionless rotating mass factor.
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Force due to gradient (Equation (4)) shows acceleration due to gravity effect,
considering uphill or downhill motion. Therefore, the force due to gradient

profile can be written as:

Fy = (mo+m,) - g -sin (6) @)
where g is the gravity acceleration (m/s?) and 6 is the slope angle.

Given the small values of slope angle in typical railway tracks, Equation (4)
can be written as:

p
Fg=(mo+mz)'g'm (5)

where p is the gradient of the track (mm/m or %o).

Likewise, the force due to the track curvature can be expressed as follows:

K
FC=(m0+ml)-g-Tr (6)

where K, is an empirical constant defined by track gauge (m) and 7 is the
radius of track curvature (m).

The traction effort or motor force (F,;,) is bounded by a maximum value of
the electrical traction effort curve and a maximum electrical braking effort
curve both dependent on the train speed. The simulation model considers
at every moment the speed limits established along the rail track by the
railway administration. Speed limits are defined by stretches along the
railway where the train must drive respecting the maximum speed limit
considering the total length of the train. When a train passes through a
neutral zone, auxiliary systems cannot be fed from a catenary, and motors
apply at least a constant braking effort to maintain the charge of the batteries
that feed auxiliary systems along neutral zones.

Running resistance is the model that defines and groups a series of
resistances opposing the train’s movement. These include mechanical
resistances (rolling and internal friction), air intake resistances (for engine
cooling and passenger air renewal), and aero-dynamic resistance [85]. The
running resistance is modelled with a second-degree equation dependent
on the instantaneous velocity and defined by the Davis expression [86]:
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Fr=A+B'vtrain+C°k°vt2rain (7)

where 4 is a constant related to the mechanical resistance to the motion
(kN), B is a constant related to the resistance due to the air inlet in the train

(%), C is a constant related to the aerodynamic resistance <%>, k is the
s s
tunnel factor and vy,.4;,, is the velocity of the train (m/s?).

The Davis formulae and similar expressions of a polynomial nature are
models of reality. Each term of this equation refers to different physical
components of the total running resistance. However, it must be considered
that these polynomials are fitted models of highly complex phenomena that
interact themselves. Therefore, although for general purposes certain
approximations can be estimated, in reality, they are not completely
accurate and do not represent reality in its entirety. Likewise, within the
running resistance model, there are parameterised coefficients (4, B and ()
that represent different oppositions to the movement of the train. These
values are experimental, complex to define, and depend on the physical
characteristics of the rolling stock. In order to obtain them, manufacturers
test their trains and their relationships with the resistances generated. These
coefficients are the nominal values, so they have been evaluated under
standard conditions of pressure and temperature given by the International
Standard Atmosphere, ISA (ISO, 1975: T = 15 °C; p = 1.225 kg/m?).

The term of the running resistance model (Equation (7)) that is not related
to the effect of the air outside the train is called mechanical resistance. In this
term, the coefficient 4 is involved. In the most general case, it is derived
from the frictional resistance between mechanical components, rail-to-wheel
contact, track irregularities, and energy losses in the traction and suspension
equipment of the vehicles due to the oscillating or parasitic movements of
the suspended mass.

The term of the train speed-dependent running resistance corresponds,
mainly, to the resistance caused by the air intake of the train. In trains, there
is a constant and noticeable air flow, necessary for cooling engines and other
equipment as well as that required for air renewal for passengers. This term
is related to the B coefficient of the running resistance model.

The so-called aerodynamic running resistance is the longitudinal force that
opposes the train’s movement as a consequence of the interaction between
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the train and the surrounding air with which it collides and envelops it. The
coefficient C is responsible for modelling this resistance.

The tunnel factor k increases the quadratic term of the running resistance
model when the train runs through a tunnel due to the increased air friction
against the outer surface of the train. When a tunnel is not involved in the
simulation, the factor takes the value 1.

Equations (1) — (7) describe the motion of the train in next-event and fixed-
discrete simulation steps, limited by speed limits, calculating braking curves
to stop at the arrival point or station point with comfort and safety
requirements.

The model related to the energy consumed by the train measured at the
pantograph atinstant t (Ws) (Epantograpn) is expressed as shown in Equation
(8) while the train energy consumption estimated at the electrical substation
at instant t (Ws) (Esypstation) 1S defined by means of Equation (9):

t

Epantograph = f Ppantograph (t) -dt (8)
0
t

Esupstation = f Psubstation(t) -dt 9)
0

where Ppgnrograpn 18 the electrical power consumed at instant ¢ by the train
measured at the pantograph (W) and Psypstarion 1S the estimation of the
power consumed at the substation at instant t (W).

Previous calculus requires some other equations to complete the model:

Pmec ‘m * Vtrain

Prec .
Ppantograph = 1 + Poux if Prec = 0 and not (nZstart <=s= nzend)
T

Ppantograph = Pmec ‘MB + Paux lf Pmec <0 and not (nzstart <s< nzend)
Ppantograph =0 lf NZstart = S < NZeng

Ppantograph

V-cose ) if not MZseare < S < NZenq)

Psubstation = pantograph +7- (
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where P, is the mechanical power at instant t (W), P,,, is the power
consumed by the auxiliary systems (W), 17 is the electrical chain efficiency
for the traction case (%), 115 is the electrical chain efficiency for the braking
case (%), V is the nominal line voltage (V), cos ¢ is the power factor, r is the
electrical line resistance in the position s (Q), nzs.¢ and nz,,, are the
initial and final position of every neutral electrical zone (m) and s is the
position of the train (m).

2.2.3. CLIMATOLOGICAL MODEL

The following section focuses on the running resistance variation when the
railway operation is developed under real climatological circumstances.
Initially, the influence of the variation of density along the railway line due
to altitude changes has been modelled. Then, the wind’s influence on the
running resistance model is incorporated. When motion equations are
applied (Equations (1) — (7)) for simulating the train’s driving in a railway
line, it is supposed that pressure and temperature values are constant along
the whole line under standard conditions, given by the International
Standard Atmosphere [131]. Thus, Equation (7) is just modified by the
velocity of the train and it incorporates coefficients B and C given by the
manufacturer. For that reason, previous coefficients are also constant along
the railway operation in absence of wind and they are always the same for
each line, no matter the geographical location and the season of the year
considered for the railway operation. The purpose of this section is to
include in the simulation model the influences on the running resistance
with climatological considerations of pressure, temperature and wind.

The railway operation can occur between points of different altitudes, and
it is, therefore, to be expected that the model must deal with this variation
along the railway line. In summary, throughout the journey, the air density
will vary due to the change in altitude and this variation will modify the
running resistance equation according to the model described below. When
the train runs on a line without wind, the running resistance term can be
defined by Equation (7). In the running resistance model, lineal and
quadratic terms vary as a function of train speed.

The following expression relates the drag force (N) (Fj) to the parameter C
in Equation (7) [132]:
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1
Fd=C‘v2=§'CD‘P15A‘S'UZ (15)
where v is the speed (m/s), Cp, is the drag coefficient, p;s, is the density of
the air under standard conditions (kg/m?3) [89] and S is the cross-sectional
area (m?).

From Equation (15), it is deduced that factor C of the Davis formula is
linearly dependent on the density of the air p (kg/m?® and, therefore, the
coefficient C is parameterised as a function of density as follows considering
standard weather conditions as a reference [89]:

cp)=c - (16)

Pirsa

Finally, when all information related is considered, the running resistance
model can be written as follows. However, this equation models the
situation where the train is running without being influenced by the wind:

F.=A+ B Vyqin + C(p) k- 171,?rain (17)

In this manner, a main and essential task is to know the air density at every
point or analyse the stretch along the railway line. The density is a function
of the temperature and pressure of the air, and its relationship can be
expressed by the equation of state defined in the ideal gas law as follows:

p

“RT 49

p

where p is the density (kg/m?3), p is the pressure (N/m?), R is the ideal gas

constant (kgLK) and T is the temperature (K).
Pressure and temperature values strongly depend on the meteorological
conditions given a specific area due to its geographical characteristics and
the year’s season. Therefore, considering the climatological model, they can
be significantly different from one area to another. This work analyses these
differences, which are present in the variations along the railway line.

On the other side, the running resistance force is also significantly affected
by the wind and its variation along the route. The influence of the wind is
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modelled by the combination of its intensity, or wind speed, and the angle
of incidence in each stretch relative to the train (¢) ([132], [133], [134]). The
train speed relative to the wind is the train speed minus the wind speed
vectors, as it can be seen in Figure 3. Figure 4 shows the reference frame

considered in this work where angle ¢ (Equation (19)) is the principal
parameter to model the wind influence in the railway operation.

Verain

Figure 3. Velocities diagram.

N

Figure 4. Reference frame.
¢ = Orait — Pwina (19)

where £ and ¢ are the angles defined by the velocities, v,,;,,4 is the velocity
of the wind (m/s) and v, is the relative speed of the train with respect to
the wind (m/s), graphically defined in Figure 3.

Running resistance model, given by Equation (7), is valid just when the
wind has not been considered, so the model has to be modified, now
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influenced by the speed of the train and wind vectors, as shown in Figure 3.
The modification consists of replacing the train speed v;,4;, in Equation (7)
by the train speed relative to the wind v,,, which is equivalent to

considering zero wind in the original equation:
Fr=A+B-Urel+C-k-vEel (20)
Besides and in addition to the previous model, it has to be considered that

factor C also depends on the angle § as shown in Figure 3. Yaw angle can be
calculated using Equation (21):

Vwind * sin ¢ )

B = arctan(
Virain T Vwing * €COS ¢

(21)

To get the final model for the running resistance of a train, the relative train
speed must be calculated, determining the simulation model as follows:

— 2 2
Vyer = \/vtrain + Vwind +2- Vtrain ° Vwind ° €OS ¢ (22)

Equation (23) is proposed in [135]. This expression establishes the variation
of the constant C according to the angle . This expression becomes
meaningless when f >30°. An angle with such magnitude for typical speed
values in operation would imply extreme winds, which would affect the
train operation or could lead to the total suspension of the service.

C(p,B) =C(p)-(1+0.02-p) (23)

where C(p) is the value of C when density variation is considered
according to Equation (16).

Finally, the variable running resistance considering climatological factors is
modelled as:

Fr:a+b'vrel+c(p;,8)'v1%el (24)

When the train runs through a tunnel, the force exerted by the influence of
the wind shall not be considered. Therefore, for the sections simulated in a
tunnel, the expression for the running resistance must be modelled with an
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expression that considers the train speed as input data, including the tunnel
factor in the quadratic term. As applicable, it is used a k parameter as the

tunnel factor:
Fomnet = A+ B - Vppgin + k- C - v?rain (25)

Pressure, temperature and wind models have been discretised along the
railway line. If the altitude suffers any variation along the journey, the
model can deal with the change by measuring the impact of the air density
variance. Two different reasons have justified the division or discretisation
along the railway line. Firstly, the variability of the wind makes necessary a
partition along the line where the climatological and geographical
characteristics determine the main direction in which the wind blows. And
secondly, the change of directions taken by the train along the railway line
has been dealt implementing stretches where it can be supposed that the
relative angle between the wind and the train movement is approximately
constant along a straight line. Hence, the proposed wind model considers
both the railway track angle and the incidence wind angle to be
parametrised. In conclusion, previous considerations allow the simulation
model of the train movement to deal with the wind behaviour’s complexity
without compromising the final results” accuracy.

2.3.FUZZY CLIMATOLOGICAL MODEL
2.3.1. FUZZY PARAMETERS

Table 4. Fuzzy model parameters.

p Fuzzy pressure (N/m?)

T Fuzzy temperature (K)
Vyind Fuzzy wind speed (m/s)

¢ Fuzzy angle of incidence (°)

T, Punctuality constraint (s)

tobjective ~ Objective running time (s)

a, Measure of the possibility
n, Required necessity
N Possibility measure
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This study quantifies the relevance of the climatological factors and their
variation by modelling them with their associated uncertainty during

railway operation by means of a climate fuzzy model.

The parameters modelled by fuzzy numbers [92] are defined in Section 2.2.2:
the pressure and temperature defining, consequently, the density, and the
intensity and the angle of incidence of the wind.

Among the many possibilities for the membership function of the fuzzy
numbers: piece-wise linear [93], linear, hyperbolic, exponential and S-
shaped ([138], [139]), climatological factors have been defined as triangular
fuzzy numbers. But the model proposed in this chapter would be applicable
if any other shape is utilised to model climatological parameters’
uncertainty. Each of the fuzzy numbers, the temperature, barometric
pressure, air density, wind intensity (or speed) and the angle of incidence of
wind are defined by the shape shown in Figure 5. Therefore, a fuzzy number
is defined by its core, its lower limit and its upper limit of the support.
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Figure 5. Triangular fuzzy number.

Fuzzy pressure (p), fuzzy temperature (T), fuzzy wind speed (,,inq) and
fuzzy angle of incidence (¢) have been defined for every division realised
along the railway line in order to get a more detailed climatological model
on railway track sections as explained in Section 2.2.2.

The running time is calculated from the indicated fuzzy parameters and the
model input data (train and railway line, Section 2.2.1). This result will be a
fuzzy parameter due to the uncertainty associated with some of the
calculation parameters. In the proposed fuzzy model, the punctuality

48



NCYS
B
COMILLAS

ICAI

constraint is imposed on the fuzzy running time, which must be less or equal
to the objective running time:

7\"'r < tobjective (26)

The punctuality constraint can be expressed either as a measure of the
possibility of arriving at the scheduled time or as a measure of the necessity
of fulfilling that objective. Thus, if it is expressed as a measure of the
possibility a,, the expression is:

11 (Tr = tobjective) = ay (27)

The corresponding necessity measure, in this case, is 0: N (T, < ¢, i) =0.

If the punctuality constraint is expressed as a measure of the required
necessity n,,, (Figure 6) the expression is:

N (Tr < tobjective) = np =1l-«a (28)
The corresponding possibility measure, in this case, is 1:

N (Tr < tobjective) =1 (29)

Tlp

|
:
:
I
l
I
¥

tobjective

Figure 6. Fuzzy running time.
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2.4. ECO-DRIVING OPTIMISATION WITH FUZZY PARAMETERS

Having introduced the climatological fuzzy model and how it affects the
train motion simulation model, the objective is now to present the driving
optimisation model. This optimal driving will be constructed as a
combination of efficient commands considering coasting points known as
Command Matrix (C,,). Then, the problem and proposed algorithm for the
problem resolution will be presented: Genetic Algorithm with Fuzzy
Parameters (GA-F).

2.4.1. EFFICIENT DRIVING COMMANDS

In order to design the eco-driving, it is necessary to make use of efficient
commands. In this chapter the driving commands are based on the coasting
application and the speed regulation without braking strategy. This driving
strategy is the efficient version of the speed regulation strategy and it is
easily applied by the drivers on long distance and high-speed railway lines.
To execute this strategy, the constant regulation speed is applied as long as
it is needed for the traction. It occurs in horizontal or non-steep track
alignment. Moreover, braking is not applied if needed to maintain the
cruising speed and the maximum speed limits allow it [23, 24]. It occurs in
steep downhill alignments. This way, the train uses the track grades to
increase speed without consuming energy. It allows gaining time that can
be used to drive the train at a lower speed at other track sections where
energy is needed to maintain the cruising speed. Braking is applied just to
observe maximum speed limitations and braking curves up to reductions of
maximum speed profile or up to stopping points.

Commands are modelled in the form of Command Matrix (C,;,) [29]. The
matrix is the result of the optimisation process and means the division of the
railway line where the driver is required to apply certain driving
commands. The C,, is defined as a matrix formed with the values of the
points where every stretch end and the value of the regulation speed
without braking are applied in every section. The end (Kilometric Point) of
the divisions forms the first column, and the regulation speed value without
braking forms the second column. Thus, the initial point of a division is the
end of the previous section except for the first division, where the initial
point is the journey starting position. Furthermore, the end of the last
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division will be the coasting section’s starting point until the braking curve
is reached up to the station. The numbers of rows of the matrix plus 1 are

the number of the sections defined.

Table 5 shows the Command Matrix that can be applied by the train driver
or the automatic train operation system.

Table 5. Command matrix.

Command Matrix, C,,

Initial K.P. Final K.P. Speed (km/h)
Xinitial X1 Vinitial
X1 X2 (1
Xn-2 Xn-1 Up-1
xn—l xTL vn
Xp Xfinal Coasting and braking

Figure 7 shows the application of the driving previously design in Table 1
by the divisions along the railway line where the speed regulation without
braking is applied.

Vinitial
i i Un—1
' i v,
. Y
- |
. | ! Coastingand  Final
Initial i | ) . )
Poi i ' : i | i braking section Ppint
oint ! : : ; i ! N
-
Xinitial X1 X2 Xp-2 Xn-1 Xn Xrinal

Figure 7. Command sections.

The application of the Command Matrix calculated considers the
operational requirements as the speed limits and the stopping points at the
stations. Moreover, the optimisation model includes comfort demands for
the passengers and punctuality constraints. Hence, the Command Matrix
(C,,) obtained as a solution to the problem will be efficient, safe and
comfortable driving.

The solutions given by the algorithm are feasible and easily understood, and
executed by the driver because they represent realistic driving. The number
of driving commands to be executed by the driver is a choice to be made by
the railway operator according to the desired complexity during the railway
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operation. The definition of driving must consider that the more divisions
are taken, the more complicated it will be to execute the eco-driving strategy.

2.4.2. GENETIC ALGORITHM WITH FUZZY PARAMETERS: GA-F

Once the fuzzy numbers of the climatological model are given, the driving
simulated will have an associated fuzzy energy consumption (£) and a
fuzzy running time (T,.). When the efficient driving is designed, the objective
is to find the set of commands that will produce the minimum value of
energy consumption for the required running time (t,y ;).

The fitness function F(7,,E) is shown in Equation (29) and defines the
evaluation of both the running time and energy consumption affected by the
weighting factors considered (w,, w;) to minimise the energy consumption
considering a design or target running time. Energy consumption associated
with the fastest possible driving along the railway line with operational
constraints is called Efjq¢—gy¢-

~ ~

( E T. .
Iwe-E—+wt-t if T.>top;
F(Tr, E.) — 4 flaAt—out obj (29)
TR
We 01T W " — l = i
L ¢ Eflat—out ‘ Tr " ob]

where, w, and w, are weighting factors, Efjqi_oye iS the energy
consumption when the flat-out driving is applied and t,,; is the target
running time.

The Genetic Algorithm (GA) used to solve the problem evolves a population
of possible solutions (individuals) by means of iterations. An elite group,
with the fittest solutions, survives from one generation to the next while the
process is moving forward using C,, as the genome of the individuals.
Additionally, crossover and mutation operators are applied to generate and
offspring of individuals from the elite group at each iteration. The fuzzy
optimisation algorithm is the procedure for the calculation of the driving
commands when the fuzzy parameters are included. The GA-F process is
graphically described in Figure 8 and it is explained as follows:
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1. First random generation of individuals (C,,) equal to the population
size Nyop-

2. Simulation of command matrix of the population. This step generates
a running time 7, and an energy consumption £ associated to each
individual.

3. Evaluation of each individual by the fitness function (Equation (29)).

4. Sorting of each individual in increasing order by means of their fitness
value.

5. Elite group selection. The first individuals N, survive in the next
iteration population and the rest are eliminated.

6. Offspring generation. Mutation and crossover operators are applied to
the elite group to generate new individuals until the population

reaches its size N,,,. In this step, a number of mutations N,, and a
number of crossovers N, are applied.

7. The process is repeated from step 2 until the iteration number (it) is
equal to the maximum numbers of iterations defined (it,,,), giving the

best solution to the fittest in the last population.

I 1. First random generation, Npap |

-
-

| 2. Simulation I

I 3. Fitness evaluation |

I 4. Sorting | Eﬂ
v

I 5. Elite selection |

v

6. Offspring generation, N,
N, mutations and N, crossovers

m No o Yes

Figure 8. Flowchart of the GA.

The proposed algorithm can be expressed in terms of the a-cuts of the fuzzy
numbers [96]. As shown in Figure 6, if the punctuality requirement is
expressed as a necessity measure n,,, the upper limit of the a-cuts of the
fuzzy running time (equivalent to the upper limit of the a-cuts of the fuzzy
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running time) is necessary for the evaluation of the punctuality constraint.
For this upper limit to be obtained, given the fuzzy numbers associated with
the climatological parameters, it has to be analysed whether the running

time is an increasing or a decreasing function in each of them.

As discussed in the model, the running time and energy consumption are
dependent on the running resistance model. The running resistance force is
a function of the fuzzy parameters introduced in this model: the air density
and the wind during operation. In turn, the density is a function of the
pressure and the temperature. The wind has been modelled by its intensity
or speed and their angle of incidence related to the train’s movement.

With equal C,,, train and railway track data, the running time calculated is
a function of the uncertainties considered: pressure (p), temperature (T),
velocity of the wind (?ynq), and angle of incidence of the wind (¢). All
climatological factors, running time, and energy consumption are defined
as fuzzy parameters.

T, = Fi(®,T, Dwina ) (30)

Function F; (Equation (30)) is monotonous with all climatological
parameters. The greater the running resistance, the lower the acceleration
and the greater the running time as a result. In that sense, function F; is
increasing with the air density, and thus, according to Equation (18), it is
monotonically increasing with the pressure (p ) and monotonically
decreasing with the temperature (T).

Regarding the angle of incidence of the wind (¢), it is necessary to analyse
every division of the railway line (explained at the end of Section 2.2). In this
case, and taking Figure 3 as a reference, F; is defined differently depending
on the situation. Moreover, the presence of the angle of incidence in
Equation (22) has to be considered in order to analyse the behaviour of the
function F;. In this way, the variation of the angle and, therefore, the change
of cos ¢ in the term of Equation (22) determines the different situations in
the high-speed railway scenario. If the angle of incidence lies between:

(1) 0°< ¢ < 180° then F, is monotonically decreasing with the angle ¢.
(2) 180° < ¢ < 360° then F, is monotonically increasing with the angle ¢.
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After considering the term of the angle of incidence, the speed is another
factor related to the wind and its contribution to the railway operation.

Considering Figure 3, the behaviour is as follows:

(1) 0°<¢p<90° or 270°< ¢ <360° then F, is monotonically
increasing with the velocity of the wind.

(2) 90° < ¢ < 270° then F; is monotonically decreasing with the
velocity of the wind.

Likewise, the energy consumption associated to the railway operation is also
a function of the climatological parameters:

E = FZ (ﬁ’ T! ﬁwind: $)' (31)

Function F, (Equation (31)) is monotonous with all climatological
parameters as F; which permits the application of a-cut calculations.
Moreover, the dependence of F, with these parameters is the same as F;
because the greater the running resistance, the greater the traction effort and
energy consumption.

In conclusion, the upper and lower limits of ’T"r a-cuts, and the upper and
lower limits of £ a-cuts can be calculated by means of the alfa-cut of the
parameters. Equations (32) — (39) show the corresponding formulas for the
4 quadrants of the angle of incidence as follows, considering the situations
presented previously:

e For 0° < ¢ < 90°:

T%E® = Fy, K, (p% TS, 0iing, $%) (32)
TS ES = F, F,(0%, T v, ., $%) (33)

e For90° < ¢ < 180°:

TS E® = Fy, F,(p%, TS, vv%ind’ ¢2) (34)
T ES = By, B (0% T% Vijing, %) (35)

e For 180° < ¢ < 270°:

TTE, Ea = Fl! F2 (Pa, TQ, vgind, Qba) (36)

w
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a

T, E€=F,F, (pg, TS, vgindr qbg) (37)

r

e For 270° < ¢ < 360°:

T8, E® = Fy, Fy(p% T% vising, $%) (38)
T ES = Fy, B (p%, T vsy, 1 %) (39)

Figure 9 shows an example corresponding to the case 180° < ¢ < 270° of
how the climatological fuzzy parameters are considered and the results
associated with a specific necessity level of punctuality.

Inputs I outputs
Climatological parameters I Results

—_———— e e — — —

Figure 9. Climatological fuzzy parameters and fuzzy results.

Therefore, the proposed problem can be solved with the application of the
GA-F by means of a-cuts with @ = 1 — n,,. The parameter n,, is the imposed
punctuality constraint. The algorithm will search for the solution in the form
of a Command Matrix with a fuzzy running time associated. Its upper a-cut
gives the objective running time as a result, considering punctuality
requirements and minimising the energy consumption.

2.5. CASE STUDY
2.5.1. INTRODUCTION

Real commercial service and infrastructure data of a Spanish high-speed
railway line have been analysed in this section. The railway line is operated
by a train with an unladen mass of 322 t, a length of 200 m, a maximum
traction effort of 200 kN and a maximum speed of 300 km/h.

This line has been divided as shown in the following figures to elaborate an
appropriate data analysis as explained at the end of Section 2.2.2. The
railway line has been divided into zones where the wind is considered
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constant as can be seen in Figure 10a, and into sections where the angle of
the track ¢,4;; (Table 1) is considered constant as shown in Figure 10b.

Station3  Station4 j Station3  ctationa
O 50y 7 Lan
= i 1 ol A o g ‘\“;\/»\u
{  Station6 Mo e ? Station 6
Station 5 Station 2/ Station 5
o,

Station 2
Station 1577

;
Station 13+

(a) (b)

Figure 10. (a) Wind zones; (b) Constant trip directions zones.

Table 6. Angle of the railway track.

Initial K.P.-Final K.P. Angle of the Rail Track (°)
0-45 65
45-135 48
135 -200 59
200 — 245 57
245 - 275 41
275-335 114
335 - 435 82
435 — 495 117
495 - 515 161
515 - 580 62
580 — 621 145

2.5.2. FUZZY CLIMATOLOGICAL PARAMETERS

The climatological parameters have been modelled taking into account the
temperature, the wind intensity, and its angle of incidence collected by the
State Meteorological Agency of the Spanish Government [97] in every one
of the closest weather stations to the railway line for this case study, and the
pressure is a function of the track altitude according to the International
Standard Atmosphere [131].

The following tables collect the fuzzy climatological numbers modelled:
temperature, pressure, intensity, and angle of incidence of the wind (Table
7, Table 8, Table 9 and Table 10, respectively).
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Table 7. Fuzzy temperature, T.

Fuzzy Temperature

Summer (°C)

Initial K.P.

Lower Limit Core Upper Limit
0 28.25 34.31 40.37
95 27.86 33.30 38.74
170 24.14 32.38 40.61
240 25.10 33.11 41.12
330 25.21 32.07 38.93
400 26.89 33.63 40.37
475 27.03 31.39 35.75
Initial K.P. ___ Winter (C) —
Lower Limit Core Upper Limit
0 5.46 11.77 18.09
95 4.90 11.35 17.80
170 5.00 11.47 17.93
240 3.54 11.71 19.87
330 3.85 11.22 18.59
400 1.10 10.69 20.27
475 9.55 15.35 21.14
Table 8. Fuzzy pressure, p.
Fuzzy Pressure
Initial K.P. __ Pressure (mbar) _
Lower Limit Core Upper Limit
0 927.91 941.17 954.44
45 929.15 942.42 955.68
95 916.55 929.58 942.60
170 931.78 945.25 958.72
240 968.48 983.10 997.72
330 956.92 971.09 985.25
400 976.49 991.22 1005.94
475 990.38 1004.74 1019.11

500 995.28 1009.65 1024.01
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Table 9. Fuzzy intensity of the wind, ¥y,in4.

Fuzzy Intensity of the Wind / Summer and Winter (m/s)

Initial K.P.—Final K.P. Lower Limit Core Upper Limit

045 0.6 3.2 5.8
45-200 1.4 4 6.6
200-240 0 2.8 5.6
240-330 0 3.6 7.9
330-400 0 3.9 8.8
400-475 0 2.5 5.4
475-500 1.6 4.5 7.4
500-550 0.4 3.3 6.2
550-580 0 3.7 7.4
580-621 0 3 6.7

Table 10. Fuzzy angle of incidence of the wind, ¢.

Fuzzy Angle of Incidence of the Wind (°) / Summer

Initial K.P.-Final K.P. Lower Limit Core Upper Limit Type of Wind

0-45 215 230 245 Unfavourable
45-135 55 70 85
135-200 59 70 85 Favourable
200-240 25 40 55
240-330 295 310 325
330-335 245 260 275 Unfavourable
335-400 245 260 262
400-475 245 260 275
475-495 103 110 125
495-500 95 110 125
500-515 125 140 155 Favourable
515-550 125 140 152
550-580 62 70 85

580-621 145 160 175
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Fuzzy Angle of Incidence of the Wind (°) / Winter

Initial K.P.-Final K.P. Lower Limit Core Upper Limit Type of Wind

0-45 5 20 35 Unfavourable
45-135 55 70 85
135-200 59 70 85 Favourable
200-240 25 40 55
240-330 295 310 325
330-335 245 260 275 Unfavourable
335-400 245 260 262
400-475 245 260 275
475-495 103 110 125
495-500 95 110 125
500-515 265 280 295 Favourable
515-550 265 280 295
550-580 62 70 85
580-621 145 160 175

2.5.3. RESULTS
2.5.3.1. FLAT-OUT DRIVING

Initially, the flat-out driving simulations are presented for the Initial Case
scenario, with no climatological parameters, and also for the scenarios when
the climatological parameters are considered (both in winter and summer).
The flat-out driving is the fastest possible in the journey fulfilling the speed
limitations of the line. This type of driving has the fastest running time and
the associated highest energy consumption.

The running time in the simulated Initial Case (no climatological
parameters) is 2:18:49, and the associated energy consumption is 10.804
MWh. Table 11 presents the results.
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Table 11. Flat-out driving results.

) Energy Consumption Running Time
Scenario gy(MWh) ’ (hh:mrgn:ss)
Initial Case 10.804 2:18:49

Winter 10.603 2:18:48
Summer 10.061 2:18:40

Figure 11 shows the speed profile of the train for the Initial Case, when the
flat-out driving is applied and climatological parameters are not impacting
the operation.

1380
300 \/ I N——— Wﬁ_“_,qﬂ N
: i . | 1180
__ 250 | 930
-
£ 200 ( I 730
g 150 580
Q. ' |
a 100 W 380
50 180
0 20
0 100 200 300 400 500 600

Kilometer Points (K.P.)

—— Train speed (km/h) Speed limit (km/h) Height (m)

Figure 11. Flat-out speed profile.

The running time and the energy consumption shown in Table 11 for winter
and summer climatological conditions, correspond to the value calculated
for the core of the fuzzy sets of temperature, pressure, wind intensity, and
angle of incidence.

Figures 12 and 13 show the energy consumption of the flat-out driving and
the associated running time when the uncertainty in the climatological
parameters are included.

The impact of climatological parameters on energy consumption is more
important than on the running time. In the summer scenario shown in
Figure 12, the variation of energy consumption for the minimum and
maximum values (support of the fuzzy numbers) is 14.8% in summer and
13.2% in winter, relative to the minimum value. To analyse the impact of
winter and summer conditions on the energy consumption, the core of the
fuzzy energy consumption in summer and winter can be compared; this
comparison shows that the energy consumption is 5.4% less in summer than
in winter.
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On the other hand, the impact on the running times is less significant (Figure
13). In summer, the variation is 0.18%, and 0.88% in winter, both relative to
the minimum value in each case. The variation between summer and winter
conditions (core values) shows a difference of 0.10%, approximately.

Energy consumption
1 10.061 10.603 ~ 10.804

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Summer

X

Winter

Initial Case

9.383 9.965 10.770 11.277
MWh

Figure 12. Fuzzy energy consumption applying flat-out driving.

Running time
2:18:40  2:18:48 —2:18:49

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Summer

84

Winter

Initial Case

2:18:34 2:18:43 2:18:49 2:18:56
hh:mm:ss

Figure 13. Fuzzy running time applying flat-out driving.
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2.5.3.2. ECO-DRIVING DESIGN WITHOUT CLIMATOLOGICAL
PARAMETERS

After analysing the impact of weather conditions on the flat-out driving, the
driving optimisation model is run to design the eco-driving without taking
into account the weather conditions, which is solved by means of a GA. This
would be the typical approach to solving the problem and will serve as a
basis for comparison with the model proposed in this article. The objective
travel time for the journey is 2 h and 45 min.

The result of the optimisation is the Command Matrix to apply to obtain the
optimal driving, shown in Table 12.

Table 12. Command Matrix.

Command Matrix

Initial K.P. Final K.P. Speed (km/h)
0 271.08 244.73
271.08 422.03 230.16
422.03 621 240.17

Figure 14 shows the speed profile for the eco-driving obtained from the
optimisation model. The driving commands produce the nominal driving
and define the commercial eco-driving designed in a specific railway
operation. This driving produces an energy consumption of 7.589 MWh.
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= =
g 200 780 £
T 150 | 580 2
& | T

v 100 | - 380

50 180

0 l -20

0 100 200 300 400 500 600
Kilometer Points (K.P.)
Train speed (km/h) Speed limit (km/h) Command Height (m)

Figure 14. Eco-driving speed profile.

In Table 13, the energy consumption obtained by the eco-driving design and
the associated energy saving compared to the flat-out driving can be seen.
Thus, following this typical procedure, the energy saving that the railway
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operator would expect would be 29.76%. The substantial and significant
energy saving is achieved due to the slack time included in the timetable
(necessary to satisfy punctuality when a delay arises), and due to the eco-

driving design to use the slack time optimally to minimise the energy
consumption. Other studies show similar energy savings, 31.27% in [74] and

35.54% in [86].
Table 13. Energy savings with no weather conditions.
Energy Flat-Out  Eco-Driving .
. Saving
Consumption (MWh) (MWh)
Initial Case 10.804 7.589 29.76%

25.3.3. ECO-DRIVING WITH FUZZY CLIMATOLOGICAL
PARAMETERS APPLYING GA-F

The next step is the execution of the proposed GA-F model to optimise the
driving considering the fuzzy climatological parameters (Tables 7-10) with
an objective running time of 2:45:00. The punctuality constraint is expressed
as a necessity measure np = 0.5. The fuzzy optimisation model has been
applied for the summer and winter scenarios.

Table 14 collects the results (energy consumption and running time)
obtained by simulating for different a-cut with the eco-driving commands
obtained with the optimisation model. Specifically, the lower and upper
limits of the a-cuts with a = 0 and with a = 0.5 are shown, as well as the core
(a=1).

Table 14. Fuzzy results obtained with the eco-driving design applying GA-F with np = 0.5 in winter
and in summer.

Season Winter Summer
Ener Running Time Ener Running Time
Value a (Mwi}; (hh:mlgn:ss) a (Mwi}; (hh:mrgn:ss)
Lower 0 6.989 2:44:06 0 6.550 2:44:13
0.5 7.221 2:44:25 0.5 6.801 2:44:31
Core 1 7.451 2:44:43 1 7.055 2:44:46
Upper 0.5 7.710 2:45:00 0.5 7.335 2:45:00
0 7.957 2:45:14 0 7.603 2:45:12
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For the fuzzy energy consumption results, the difference between the core
values in summer and winter is 5.31%. The variation between the lower limit
of a-cut = 0 and the upper limit of a-cut = 0 in winter is 12.16% and 13.85%
in summer. On the other hand, the variation related to the running time is
00:01:08 hh:mm:ss for the winter scenario (0.69%) and 0:00:59 for the
summer scenario (0.60%).

Figures 15 and 16 are the fuzzy energy consumption and the fuzzy running
times obtained by applying the proposed GA-F model with fuzzy
climatological parameters. Figure 16 shows that the objective running time
is achieved when a = 0.5 as the necessity measure for punctuality imposed
wasnp=05=1-a.

Energy consumption
1.0

0.9
0.8

0.7 Winter
06 GA-F

0.4 Summer

GA-F
0.3

0.2
0.1

0.0
6.550 6.989 MWh 7.603 7.957

Figure 15. Fuzzy energy consumption applying GA-F with np = 0.5 in winter and in summer.

o Running time 9-45-00
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Figure 16. Fuzzy running time applying GA-F with np = 0.5 in winter and in summer.
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To conclude, the typical eco-driving design procedure where weather
conditions are not considered would provide expected energy savings of
29.76%, as previously indicated. With the application of the proposed GA-F
model with fuzzy climatological parameters, the energy consumption of the
new eco-driving designs is lower, and thus, the expected energy savings are
higher (34.70% in summer and 31.03% in winter). Weather conditions have
a significant impact on energy consumption and to a lesser extent, on
journey time, and it is worth incorporating this information into the model
in order to adapt driving to these pressure, temperature and wind
conditions on the journey under analysis.

2.6. CONCLUSIONS AND CONTRIBUTIONS

This chapter proposes a new model to design eco-driving in railway lines
taking into account climatological conditions. The climatological parameters
affecting the model are the temperature, pressure, the wind intensity and its
angle of incidence. The uncertainty associated with these climatological
parameters is modelled by fuzzy numbers, and the optimisation problem is
solved by means of a GA-F, Genetic Algorithm with fuzzy parameters. The
analysis of the energy consumption and running time functions depending
on these parameters permits an efficient calculation and resolution of the
problem applying a-cut simulations.

The proposed model has been applied to a real Spanish high-speed railway
line. First, the flat-out driving has been simulated and the important impact
that the climatological parameters have on the energy consumption of the
train and to a lesser extent on the running times have been shown.
Then, the efficient driving is designed without and with climatological
parameters (applying the proposed GA-F). The eco-driving design is based
on applying coasting commands and speed regulation without braking
commands. In this case study, it has been shown that the expected energy
savings obtained in this process are underestimated when eco-driving is
designed without considering climatological parameters.

Of course, depending on the specific characteristics of the railway line under
study, the climatological conditions could be less or more favourable.
However, it can be concluded that weather conditions have a significant
impact on energy consumption and to a lesser extent, on journey time, and
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it is worth incorporating this information into the model in order to adapt
driving to the pressure, temperature, and wind conditions on the journey
under analysis. The final aim is to maximise energy savings considering as

much as possible parameterised data involved in the rail traffic operations.

In conclusion, the results obtained show that the expected energy savings
without considering climatological factors is 29.76%, while, if these are
considered, the savings can increase up to 34.7% in summer conditions.
With the proposed model, a variation in energy consumption of 5.31% is
obtained between the summer and winter scenarios (core values), in both
cases complying with the punctuality restrictions. On the other hand,
although weather conditions have a significant impact on energy
consumption, their effect on travel time is practically negligible, with a
difference of only 0.03% between the two scenarios (core values). This
demonstrates that the model allows the operator to more accurately estimate
energy consumption, offering optimised driving adapted to real weather
conditions. Future developments will be oriented to the application of the
model in real-time to adapt the optimal driving to the current climatological
conditions and include other sources of uncertainty related to the traffic
conditions.

The main contribution of this chapter is the proposal of an innovative model
of efficient driving for High-Speed trains, which incorporates weather
conditions through fuzzy logic. Unlike previous studies, parameters such as
pressure, temperature, air density and wind are explicitly considered as
fuzzy variables, allowing their uncertainty to be represented and their
impact on energy consumption and travel time to be analysed. The model
combines a genetic algorithm with a detailed simulation of the train's
movement to optimise driving profiles in different weather scenarios,
ensuring that journey times are met. It has been validated by simulation on
a real High-Speed line in Spain, demonstrating relevant improvements in
the estimation of energy consumption and providing a practical approach
for railway operators seeking more efficient strategies adapted to real
conditions.
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CHAPTER 3

EFFICIENT MASS TRANSIT OPERATION: ECO-DRIVING,
REGENERATIVE ENERGY AND ROLLING STOCK
OPTIMISATION

3.1. INTRODUCTION

The benefits of eco-driving implementation in mass transit lines have been
demonstrated in several studies under different scenarios. Efficient driving
achieved by GA (Genetic Algorithm) and PSO (Particle Swarm
Optimization) was validated in the case of the Istanbul metro achieving
energy savings with manual operation between 20% and 30% [37]. In [17],
the authors consider the regenerated energy and storage devices in the
design of ATO driving commands obtaining a result of 11% of energy
savings. The ATO speed profiles search with MOPSO in [38] provide energy
savings of 15% and it can be combined with robustness conditions to obtain
driving commands considering mass variation [51].

The authors in [142] present a speed trajectory optimisation using nature-
inspired algorithms for the Istanbul M3 subway line considering a variable
number of passengers. The algorithms used are a GA, Simulated Annealing
algorithm (SA), PSO and the Marine Predators Algorithm. The solution was
tested in the real line achieving energy savings of 21.27%.

The first study related to the calculation of efficient driving applied to
railways was carried out in [21] applying Pontryagin's Maximum Principle.
Ichikawa considers the analysis as a bounded state variable problem taking
into account the speed limits and obtained for the first time the optimal
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regimes: maximum acceleration, holding speed, coasting and maximum
deceleration. Applying the same principle, Howlett in [143] considers
energy minimisation to find the optimal driving strategy. Different
simulation methods and optimisation techniques are used applying the
results of the Maximum Principle to solve different cases proposed in the
literature.

Solutions from constructive algorithms are achieved in [73] where coast and
maximum power phases are alternated to obtain the optimal driving
strategy. Variable speed restrictions, grade profile, traction and brake force
and running time are constraints to optimal driving pattern calculation in
[82] with the Maximum Principle analysis. In [2] the analytical solution
offers the sequence of optimal train control. An optimisation and control of
speed and dwell time are given in [48].

Apart from constructive algorithms, different mathematical models have
been applied to obtain the optimal solution for efficient driving such as
Dynamic Programming (DP) [48], Mixed-Integer programming [65],
Sequential Quadratic Programming [80] or Lagrange Multipliers [84]. A
mixed-integer non-linear programming problem is solved in [17]
minimising passengers travel time and traction energy consumption in
urban rail transit systems.

Previous methods obtain the analytical eco-driving solution but, when the
model includes details such as automatic driving logic, the nonlinearities
introduced require the application of different techniques. In contrast to
mainlines, mass transit lines are highly automated exploitations where the
trains are automatically driven by ATO equipment. Therefore, it is
important to develop simulation models that include ATO characteristics in
eco-driving models for mass transit lines and to combine them with
optimisation algorithms [144] to obtain applicable solutions.

Artificial Neural Networks (ANN) are used in [87] for optimising coasting
speed in Mass Rapid Transit (MRT) systems while in [86] are found the
optimal coasting positions. GA have been frequently used for eco-driving as
in [74] for a Direct Current (DC) metropolitan railway line, in [50] to find the
optimal coasting points and in [79] to calculate the efficient speed. In [43] is
used the GA to minimise energy consumption considering the headway,
running time and dwell times. A multi-population GA is used in [95] to
minimise traction energy taking into account driving strategy and trip time.
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Fuzzy logic [116] and GA can be combined to consider uncertainty in any of
the parameters that affect railway operation. An example is presented in
[145] where eco-driving is calculated and adapted to operational conditions
considering variability in climatological conditions for a high-speed railway
with a GA. NSGA-II [146] (Non-Dominated Sorting Genetic Algorithm II) is
applied in [147] to optimise traction systems while, in [104], is combined
with fuzzy logic to calculate ATO driving in metro lines considering
variability in the load of passengers. In [148] a dynamic version of NSGA-II
was applied to re-calculate the train speed profiles during its journey. In
[27] a fuzzy manual driving model and a GA are combined to solve eco-
driving. Other alternatives to GA have been proposed in the literature to
solve the energy minimisation problem in train driving such as Brute Force
in [98], Monte Carlo [149] simulation in [99], Differential Evolution in [100],
Genetic Simulated Annealing in [101], Indicator Based Evolutionary
Algorithm [150] (IBEA) in [103] and Ant Colony Optimisation (ACO) [151]
in [79].

In contrast to previous studies, approaches that combine timetabling and
eco-driving problems can be found in the literature to minimise the global
traction energy consumption of traffic operation. Thus, the focused is in the
complete line instead of minimising the consumption of each interstation
separately. The running times between stations and dwell times can be
optimised jointly with the eco-driving to spend the time where it is more
beneficial reducing the traction energy for operation.

Driving and timetable are optimised with a combined PSO-GA in [41] for
energy efficiency purposes. Eco-driving and timetable levels are solved in
[152] by DP and the SA algorithm, respectively, adding a substation-based
energy consumption model. Timetable is also calculated in [32] by applying
ATO efficient driving when the mass transported is considered as a fuzzy
variable. Optimal design in [153] focuses on the capacity of the timetable to
remain robust when possible disruptions arise during operation.

On the other hand, it is important to take into account not only the traction
energy, but also the use of regenerative energy to reduce as much as possible
the energy consumption in a railway line. This is even more important in
mass transit line where the power system is a DC system where returning
energy from the railway grid to the utility grid is difficult [154].
Regenerative braking is a technology that allows the trains equipped with it
to produce energy during the braking processes. This energy is, firstly used

70



3
copiLLAS

to feed the auxiliary equipment of the train that produces it and, the rest,
can be sent back to the catenary. This way, other trains can use it reducing
the energy demanded from substations. The regenerated energy produced
by a train can be used by another train that requires traction in DC systems
when the trains share the same electrical section. If there is not enough
energy demand in the section, the regenerated energy must be wasted in on-
board rheostats of the braking train to prevent an undesired increase of the
catenary voltage.

Taking into account the previous concepts, there are authors who seek to
reduce the total substation demand of the train traffic by synchronising
accelerating and braking trains [44] taking into account the power-saving
factor between each pair of trains. In this case, an energy saving of 7% is
achieved in a Madrid Underground case study just by the increase in
regenerated energy use. Timetable is optimised in [155] maximising the
overlapping time between the accelerating and braking trains by means of
an integer programming model and solving it with a GA.

The application of eco-driving decreases consumption but the use of
regenerated energy decreases as well. The higher the speed, the higher the
use of regenerated brake energy when trains arrive at the stopping points.
So, there is a balance between efficient driving design and the ability to
maximise the use of regenerated energy during braking considering also the
density of rail traffic [90]. In [156] the driving is designed and timetable is
then optimised considering regenerative braking exchange only when trains
arrive and depart from stations with no consideration of motors efficiency
or transmission losses.

In [157] a resolution model is used to synchronise trains where the
overlapping time of accelerating and braking trains (at the start-up and
arrival at stations) is maximised and the travel time of a user and of all
passengers globally is minimised, taking into account passenger transfers.
In order to reuse the regenerated energy, this work takes into account the
start-up and arrival of trains at stations without considering possible
traction and braking that may occur during driving between stations. This
study does not consider the use of regenerated energy but the overlapping
time, does not add the losses suffered during energy transmission and does
not carry out an eco-driving design included in the model. Furthermore, the
timetable is designed in such a way as to be periodic because, although
flexibility is lost in adjusting starts and braking to maximise the use of
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regenerated energy, comfort and the perception of good service on the line
are gained.

In the study carried out in [52] the timetabling and coordination of trains
during starting and braking, controlling dwell times, are proposed to take
advantage of regenerated energy on the Beijing Metro Yizhuang Line. The
results obtained show annual energy savings of 6.97% compared to the
current planning. In this article, the speed profiles used are the real ones of
the trains on the line analysed and the transmission loss coefficient is
considered as constant.

The analysis in [53] aims to maximise the use of regenerated energy while
at the same time shortening passenger waiting time. It is formulated a two-
objective integer programming model with headway time and dwell time
control and then, it is designed a genetic algorithm to find the optimal
solution. Transmission loss data are estimated using historical data.

An integrated method to maximise regenerative energy is presented in [158]
by optimizing train speed and timetables. Additionally, it minimises
simultaneous acceleration or braking within the same electric zone.
Simulations of Istanbul's M3 subway using genetic and simulated annealing
algorithms show traction energy savings.

In [55] the design of the timetable is carried out considering the
synchronisation between trains as in the previous work but now minimising
power peaks. Possible delays and how they affect the timetable are analysed
by means of the Monte Carlo method.

In [54] a two-step approach to timetable design is proposed. The first phase
aims to reduce passenger waiting time and the second phase to reduce total
consumption. The speed profile of the trains is divided into six zones for
traction, coasting and braking. Regenerated energy is only taken into
account during the overlap between acceleration and braking. In [46] a
Chongging metro line is studied for which the objective is to minimise the
total energy consumed by taking into account the energy regenerated by
accelerating and braking trains in the same power supply section. They use
a matrix resolution model for searching the global solution although with a
higher computational cost by taking the speed profiles of the trains. A bi-
objective algorithm is proposed in [58] to obtain efficient timetables where
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the consumption and passenger travel time are considered using real
historical data of a railway network taking simplifications.

In the literature it is found real-time timetable optimisation by means of
train control as in [159]. The synchronisation of the trains is taken into
account to take advantage of the regenerated energy when the whole DC
power supply system is connected in all the sections although the scenario
where sections are disconnected is also considered. The response of the
timetable is analysed against delays and the speed profiles to be executed
by the trains are adjusted by means of the strategy presented in [160].

In [57] it is proposed a timetable optimisation and train control method to
minimise substation energy consumption on a metro line with a DC
electrical system equipped with reversible substations. In this case the
limitations of regenerative energy exchange are relaxed because reversible
substations allow the flow of regenerative energy from catenary to the utility
grid. The train speed profile is included along with the timetable
optimisation.

In the literature, different studies on energy efficient train timetabling can
be found, but has rarely been taken into account train circulation plan, that
is, the use of rolling stock (trains) required to provide the rail services
defined in the timetable. However, the timetable design has an important
impact on the use of the available rolling stock. When the timetable is
optimised to save energy, it may be very costly to match the train circulation
plan to the timetable due to an inadequate connection between train services
[45]. Authors in [56] suggested that the train circulation plan should be
taken into account in the optimisation of the train schedule, but they did not
focus on the energy-efficient timetabling problem.

In particular, depending on how the timetable is designed, the number of
trains (rolling stock) needed to provide the service may be different, which
has a significant impact on investment and operation.

In [45] a synchronisation between trains is carried out for timetabling taking
into account different electrical sections. The authors consider the possible
synchronisation of energy regenerated/consumed along the interstation,
and not only at arrival / departure. They optimize the timetable considering
the energy saving and the train circulation plan for an urban rail line, by
means of a mono-objective PSO optimisation algorithm. However, they do
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not design the eco-driving at each interstation taking into account the
characteristics of the ATO equipment, the number of trains associated to the
timetable is not calculated, and some simplifications are assumed in the

train model.

The main objective and contribution of the present work is a multi-objective
method based on detailed simulation to design the optimal ATO driving
commands of a metro line and, as a result, define the traffic operation that
minimises the energy consumption considering the rolling stock required to
provide the service. This is achieved by integrating the optimisation of the
speed profiles and the optimisation of the timetable adding the contribution
of the energy regenerated by braking trains during all the train journey. The
number of trains required to provide the service associated to the timetable
are also considered to quantify costs related to rolling stock. In particular, it
can be highlighted the following contributions:

¢ An integrated multi-objective approach to design the ATO driving
commands and timetable of a metro line including: the minimisation
of energy consumption, the maximisation of regenerative energy usage
and the minimisation of the rolling stock required to operate. This
method can assist train operators to decide the timetable taking into
account the trade-offs between commercial speed and the costs of
energy and rolling stock.

* The integrated optimisation model is a two-level optimisation
procedure where the local eco-driving level finds the set of efficient
speed profiles at each interstation and the global timetable level finds
the Pareto front of timetables. The local level is solved using a MOPSO
algorithm which has demonstrated its performance in literature. The
global timetable level is solved comparing four different algorithms,
proving that GLMO-NSGA-III is the most effective for this
optimisation model.

* The model includes constraints associated to realistic ATO equipment
at the local level and constraints associated to the reverse manoeuvre
in terminal stations in order to avoid solutions that cannot be applied
in real installations or that can require a greater number of trains.

* A Madrid Underground case study is carried out to prove the benefits
of the optimisation model proposed. The results illustrate that the
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integrated optimisation achieves energy savings of 24.8% compared to
the typical criteria used by operators to design the timetable.

References and previous work related to eco-driving and timetable design
are listed in Table 15. As a summary, many studies in the literature ([52],
[56], [155], [157]) compared with the proposed model do not include an
integrated optimisation method with timetable and eco-driving. Literature
models do not take into account constraints associated to ATO driving logic
as the model proposed except for [32] and [46]. However, in reference [32]
the regenerated energy is not considered and in [32] and [46] the rolling
stock is not included as a goal. Regarding the regenerated energy, in [32],
[41], [56], [142], [152], [161] and the regenerated energy is not modelled. In
([52], [53], [54], [90], [155], [156], [157] and [158]) the use of regenerated
energy is improved indirectly by maximizing the coincidences of trains’
departures and arrivals. In [45], [46], [55], [57] and [159] and a similar
approach to the model proposed in this chapter is used to calculate the total
regenerated energy transferred among trains. However, except for [45] the
rolling stock is not taken into account. The cost associated to the rolling stock
is only included in the model in [45] and [56]. In both cases, the approach is
to include the rolling stock cost as the total running time and the connection
time. In the present chapter, the approach is to directly calculate the number
of trains needed to provide the service with the designed timetable and
include it as a penalty in the objective function.

This chapter is organised as follows: Section 3.2 describes the design
objective for the optimal efficient operation of a metro line. In Section 3.3
the timetabling model is presented. Section 3.4 defines the eco-driving ATO
design model for each interstation and the train simulator it uses to evaluate
solutions. In Section 3.5 the method is applied to a case study of Madrid
Underground. Section 3.6 presents the conclusions and a discussion of the
proposed method.

75



ENP
B
COMILLAS

ICAI

Table 15. Literature review.

Reference
[23]
[42]
[52]

[53]

[54]

[55]
[57]
[58]
[142]
[152]

[155]
[156]
[157]

[158]
[162]
[163]

[164]
[165]
[166]

Eco-driving
consideration

Yes
Yes

No
Yes

Yes

Yes
Yes
Yes
Yes
Yes

Yes
No

Yes
Yes
Yes

Yes
Yes

ATO
consideration

No
No

Regenerated
energy
consideration
No
Fully considered
Traction/Braking
synchronisation
Traction/Braking
synchronisation
Traction/Braking
synchronisation
Fully considered
Fully considered

Traction/Braking
synchronisation
Traction/Braking
synchronisation
Traction/Braking
synchronisation
Traction/Braking
synchronisation
No
Traction/Braking
synchronisation
Fully considered
Fully considered
No

Rolling stock
consideration

3.2. DESIGN OF THE OPTIMAL ATO OPERATION OF A RAILWAY

LINE

The model presented in this chapter considers a typical topology of a mass

transit railway line, a two-track line between terminal stations. The line is

composed of N; stations and equipped with ATO systems. All the electrical
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sections are supposed to be connected although regeneration will be more

efficiently used by trains running close to the regenerating one, as electrical
losses are modelled. Energy regenerated by a train running upwards can be
consumed by a nearby train running in the same direction or in downwards

direction.

Sections 3.2.1, 3.2.2, and 3.2.3 list the parameters, intermediate variables and
functions and decision variables used in the chapter in Table 13, Table 14
and Table 15, respectively.

3.2.1. PARAMETERS

Table 16. Parameters.

Headway (s)

Number of stations

Minimum dwell time (s)

Penalty for the use of an additional train (kW)

Transmission loss model dependent on train position

Empty train mass (tons)

Load mass (tons)

Equivalent mass of the train

Maximum traction effort according to the motor characteristics
Maximum variation of traction/braking effort

Constant related to the mechanical resistance to the motion
Constant related to the resistance due to the air inlet in the train
Constant related to the aerodynamic resistance

Gravitational acceleration (m/s?)

Equivalent gradient of the track in the train position
Maximum current

Nominal catenary voltage

Motor efficiency (%)
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3.2.2. INTERMEDIATE VARIABLES

Table 17. Intermediate variables.

RT(xg' tg)

C(xg' tg)

x \w e-?’ ﬁ= ﬂ=

hﬁaﬂ'

F
F,

Qe f

(>}

K traction

Kacc

Vtarget

Vtrain
agradient
K braking

Fn

Global running time of the timetable (s)
Cost function (kWh)

Number of trains

Running time on track 1 (s)

Running time on track 2 (s)

Time difference between the arrival and departure of consecutive
services in station 1 (s)

Running time evaluation function for interstation n (s)

Energy consumption evaluation function for interstation n (kWh)
Set of the efficient ATO driving commands of interstation n
Position of train i (m)

Value of transmission losses for the regenerating train j and the
accelerating train i (kWh)

Number of trains consuming energy

Number of trains regenerating energy

Energy consumption used for traction by train i (kWh)

Energy regenerated by train j (kWh)

Energy regenerated by train j and transmitted to train i (kWh)
Time (s)

Acceleration (m/s?)

Force due to the railway grades (kIN)

Force due to track curvature (kIN)

Running resistance (kN)

Traction/braking demand for the train (m/s?)

Constant of the proportional controller for the traction mode (s/m)
Constant for the pre-fed acceleration (s?/m)

Minimum value between the maximum speed at the position of the
train and the driving command hs (holding speed) (m/s)

Speed of the train (m/s)

Acceleration due to the gradients at the position of the train (m/s?)

Constant of the proportional controller for the braking mode (s/m)
Motor force (kN)
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Pirac Traction electric power (kW)
Preg Regenerative electric power (kW)

3.2.3. DECISION VARIABLES

Table 18. Decision variables.

ATO driving commands for all the interstations of the entire metro line

Dwell time at every station in the railway line (s)

Vector with the ATO driving parameters for the interstation n (component of x)
Dwell time at station n (component of t,) (s)

ATO driving commands for interstation Ns

Dwell time at station Ns (s)

Speed at which coasting is applied (component of x,,) (m/s)

Speed at which traction is applied (component of x,,) (m/s)

Holding speed (component of x,,) (m/s)

Braking rate (component of x,,) (m/s?)

3.2.4. OPTIMAL ATO PROBLEM

The problem to solve is the design of the optimal ATO driving commands
of a metropolitan railway line for a specific operational period. With this
objective, the model designs jointly the efficient driving at each interstation
and a periodic efficient timetable for the operational period.

The model includes a penalty associated to the number of trains (rolling
stock) required to provide the rail services of the timetable. This way,
timetables with a lower number of trains required will be preferred.

A multi-objective model is defined to propose the most efficient solutions
for different total travel times of the line. As the travel time and energy
consumption are conflicting objectives, the result will be the set of non-
dominated solutions; i.e., those that cannot be improved in energy
consumption and travel time simultaneously. This way, the operator can
select the commercial running time of the line (i.e., the travel time to run the
line completely) in view of the trade-off with the energy consumption and
considering the number of trains required. The travel time is the sum of the
running time of the speed profiles produced by the designed ATO driving
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commands for each interstation stretch, and the selected dwell time at each
station. To optimise the energy consumption of the line, for each total travel
time the proposed model takes into account the set of optimal ATO driving
commands in each interstation (that produces eco-driving speed profiles),
the distribution of time margins along the route to make it efficient and also
the energy transferred between trains in the braking processes which,
depending on the design of the timetables of all trains, makes it possible to
reduce the overall energy consumption. In this study, a two-level resolution
model is proposed (Figure 17). First, at the eco-driving level, a local Pareto
front of driving commands is obtained for each interstation, providing for
each running time the eco-driving (ATO driving with the minimum energy
consumption).

Then, at the timetable level, a global Pareto front of optimal timetable
solutions (i.e., a driving command for each interstation and a dwell time for
each station) is obtained taking into account the exchange of regenerative
energy among trains on the entire metro line in order to maximise its use, as
well as the time distribution along the line to minimise the total energy
consumption of the system.

Global running time /

Consumption of the line Timetable

Speed profile | 2 position
Timetable global
/ optimisation model \

Interstation 1 Interstation 2 Interstation N

- ng time Running time ' Running time '

L/

Local eco-driving
optimisation model

Consumption
Consumplion
Consumption

Figure 17. Proposed model for the efficient operation of a metro line.
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3.3. TIMETABLE DESIGN LEVEL

This section presents the optimisation of the timetable at the global level.
The inputs received at this level are the eco-driving profiles designed by the
Local eco-driving multi-objective optimisation model (Section 4). A series of
preconditions have been established to design the timetable for a specific
operational period. A periodic timetable has been considered with all trains
performing the same running time for the same route and the same stopping
times for the same stations considering that the interval between trains is
constant. Therefore, by calculating the timetable for each train in each period
of time, the entire timetable is calculated.

When the timetable design problem is solved, a new global Pareto front is
obtained where each solution has associated the total energy consumption
and running time of the cycle for the entire line, considering that the trains
are using the efficient driving calculated in the eco-driving level. Thus, each
solution represents a specific set of efficient ATO driving parameters at each
interstation (which provide the running times at interstations) and the dwell
times at the stations of the line. For each solution, the total operating cycle
time of the entire line is thus defined. In this way, the optimal timetable is
established by defining the time of arrival and departure at stations and
thus, the associated stopping times.

3.3.1. GLOBAL OPTIMISATION MODEL

At the global level, the objective is to maximise the use of energy regenerated
by trains during braking avoiding waste through rheostats and to distribute
the time margins by reducing the running time at the interstations where
greater traction energy reduction can be obtained. The energy regenerated
by a train is firstly used for auxiliary systems. The remaining regenerated
energy is transmitted to other trains that are accelerating nearby the train or
transmitted to rheostats if there is no demand to avoid voltage surges in the
catenary. To design the efficient timetable, the input parameters are the
headway and the set of efficient eco-driving parameters obtained for each
interstation at local level. The proposed optimisation model will modity the
arrival / departures in order to synchronize trains improving the use of
regenerated energy in braking. In this way, a braking train transmits as
much energy as possible to nearby accelerating trains.
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In the proposed model, the consumption profile on the route of each
interstation is used to synchronise not only the braking on arrival at the
station but also at any other moment that may occur, such as, for example
due to speed limits along the route. In addition, every timetable on a railway
line has an associated number of trains required to provide that service. The
model proposed imposes a penalty for timetables with similar running time
and energy consumption that require an extra train to provide the service.

Thus, the objective function of the multi-objective optimisation problem of
designing the line operation that can be expressed as:

min f, (xg, tg) = (RT(xg, tg) , C(xg, tg)) (40)

Where, RT is the total running time (s) for the mass transit line, C is the cost
function that includes the total energy consumption (kWh) and the penalty
in the number of trains (kWh), x, is the ATO driving commands for all the
interstations of the entire metro line with x; = (x4, x,, ..., xys) being Ns the
number of stations along the metro line and ¢, are the values of dwell time
(s) at every station in the line with t; = (¢, t,, ..., tys).

The driving commands contained in x, will be restricted by the following
condition:

x, € EDC, (41)
where x, is the component n of x, (i.e., the ATO driving command of the
interstation n) and EDC,, is the set of the efficient ATO driving commands

of interstation n (i.e., the Pareto front obtained in the local eco-driving level
for interstation n).

Moreover, the dwell times will be restricted by a minimum value that
ensures that the passengers have enough time to get on board the train:

tn = tmin (42)

where t, es the dwell time (s) at station n, and t,,;,, is the minimum dwell
time (s). The global running time of the timetable model RT (x4, t,),
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presented in Equation 43, is calculated as the sum of the running time and
the stopping time at each station n:

RT (g tg) = ) (i) + t) #3)

where f; (x;) is the running time (s) of interstation n.

The cost function C (x4, t;), shown in Equation 44, is calculated knowing at
each moment t the consumption of the traction trains, the energy returned
by braking trains and the distance between trains to take into account the
electrical losses in the energy transmission between regenerating trains and
accelerating trains. In addition, this function includes a penalty for each
extra train required in the solution to satisfy the timetable:

c(xg,tg)=zh: iEi— iiRﬁ-gji>+P-Nt (44)

t=0 i=1j=1
Jj#i

where j is the train that transmits regenerated energy, i is the train that
receives regenerated energy, n. is the number of trains consuming energy,
n, is the number of trains regenerating energy, h is the headway (s), E; is the
energy consumption (kWh) used for traction by train i, R;; is the energy
regenerated (kWh) by train j and transmitted to train i at a specific instant,
o models the electrical losses and represents the percentage of regenerated
energy that is transmitted from a braking train and utilised by a traction
train. This function is dependent on the distance (m) between the
regenerating train j and the train i receiving the energy as shown in
Equation 45. An example is shown in Figure 18 although different shapes
can be obtained depending on the characteristics of the specific railway
line. P is the penalty (kWh) whereby the solution with the lowest number of
trains satisfying the timetable is prioritised and N, is the number of trains
required to fulfil the timetable.

=0 (1 =5 "

83



NG
B
COMILLAS

ICAI

where s; and s; are the kilometric position (m) of train i and j respectively.
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Figure 18. o function.

Cost function C (Equation 44) is calculated as the sum of consumption at
each instant of time t, over an interval equal to the headway. It is sufficient
to calculate it in a headway since, as the timetable is periodic, it is repeated
every headway h.

In Equation 44, the value of the energy consumption (E) of a train cannot be
a negative value. A negative value would mean that the train would be
braking, regenerating and transmitting energy, so instead, this value would
be included in R. Similarly, the energy regeneration R of a train cannot be a
negative value (in that case, the train would be consumed and should be
modelled by means of E).

In addition, there are a series of restrictions to complete the model for the
use of regenerated energy. The first expression (Equation 46) indicates that
the reuse of the regenerated energy is maximised offering the greatest
possible amount of energy to the nearest trains with the highest utilisation
percentage (Figure 18):

ne
i=1
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The energy regenerated will always be higher than the energy received by
the other trains for reuse due to the losses introduced in the calculation:

R > Z Ry (47)

The total regenerated energy received by trains cannot exceed the energy
required for their operation so energy is only transmitted to trains that are
accelerating:

ne

Z 0ji " Rji < E; (48)

i=1

In addition, in the cost function (Equation 44), a penalty is introduced
associated to the number of trains (rolling stock) required to provide the
service of the designed timetable. In this way, the optimal solution can be
obtained with the lowest number of associated trains while reducing related
costs.

The calculation of the number of trains is solved by means of Equations 49
and 50. T; is the result of the timetable optimisation and represents the time
difference between the arrival and departure of consecutive services in
terminal station 1. If this time is equal to or greater than minimum dwell
time, t,,;,, that means the same rolling stock can perform both services. In
this case, the number of trains is calculated by Equation 49, by considering
the dwell time at terminal station 2 equal to the minimum and rounding the
result to the greater closest integer value. That means that the dwell time at
terminal station 2 is the needed value to obtain an integer value of trains
subject to the minimum stopping time:

Gy +e,+ T, + tmin)

If Ty = thin —>Nt=ceil( A

(49)

If this time is lower than minimum dwell time (t,,;;,), that means the same
rolling stock cannot perform both services. That means that when a train
arrives to terminal station 1, there is other train ready to start the service in
the opposite direction. Therefore, the train that arrives to terminal station 1
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has to wait T; plus an interval h to start the service in the opposite direction
(Figure 19). The impact of this extra-time is that an additional train is needed
to provide the service. In this case, the number of trains is calculated by

Equation 50:

tt+t,+T, +h+ tmin) (50)

If Ty < thn —>Nt=ceil( A

where T; is the dwell time (s) calculated in terminal station 1, t,,;, is the
minimum dwell time (s) in terminal station, t; is the running time (s) on
track 1 and t, is the running time (s) on track 2.

T’1=TI1 + tmin

/\

T 1<tmin

Figure 19. Dwell time at Terminal station 1.

The number of trains necessary for the operation is calculated as the
complete cycle running time associated with a specific timetable divided by
the headway between trains. For a given timetable it is analysed whether
the time at the terminal station is greater than the minimum time necessary
for the manoeuvre (or if more margin time is desired for delay recovery).
Otherwise, if the result is less than the minimum time, it means that the train
arriving at that terminal station must connect with the next timetable which
starts a time equals to one headway later. As a consequence, in this case an
extra train is needed to provide the service.

A Non-Sorted Genetic Algorithm III [167] that uses the Grouped Linked
Polynomial Mutation Operator [60] (GLMO-NSGA-II) algorithm is
proposed in this work to solve the multi-objective optimisation problem
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defined in the timetable level due to its performance in terms of diversity
and optimality of the solutions obtained in complex problems.

3.3.2. GLMO-NSGA-III ALGORITHM

The parameters related to the GLMO-NSGA-III algorithm are presented in
Table 19.

Table 19. GLMO-NSGA-III parameters.

s Set of solutions
S; Solution i of §
u Distribution Index
m Mutated Solution
m; Mutated solution i of m
T Variables that are to be mutated chosen based on variable grouping
ng Group index
Th, Variables with group index n,
Jj Random group index
h Random value between (0, 1)
r; Group r with index j
Simin Minimum value of §
Simax Maximum value of §

T1,Tq T.  Intermediate variable calculation

GLMO-NSGA-III algorithm is the proposed method for solving the efficient
timetable calculation model. The Grouped Linked Polynomial Mutation
Operator (GLMO) [60] is based on the following mutation techniques:
Linked Polynomial Mutation and Grouped Polynomial Mutation. These
two procedures are based on Polynomial Mutation and are explained below.

* Polynomial Mutation: This mutation operator is designed to modify
the value of a variable based on a distribution around the value at that time.
Two parameters are used to perform the mutation: the mutation
probability and the distribution index. The probability is used to decide for
each variable whether or not it undergoes mutation. The index determines
the distribution from which the new value will be calculated, the
probability of the new value being more similar to the current value when
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this index takes large values. When deciding whether a variable will
mutate, another parameter h is taken from a uniform distribution
indicating how the mutated variable will change. If the result of the
mutation exceeds the limits of the distribution around which the original

value is modified, this new value is placed at the limit of the distribution.

* Linked Polynomial Mutation: This operator follows a similar idea to
the Polynomial Mutation but the parameter u remains constant for all
variables. The Linked Polynomial Mutation is a version of the Polynomial
Mutation in which a connection is established between variables that are
susceptible to change. The procedure by which the connection is
established is by keeping the relative amount of change of a variable fixed
for each mutation and the same for each solution. With this change, all
variables that undergo mutation considering a specific value of probability
are mutated by the same amount.

* Grouped Polynomial Mutation: In this modification the variables are
separated into different groups and the mutation is applied to these
groups, varying each variable in the same group equally. The decision of
which variables mutate changes from a randomised procedure to a
procedure designed for that purpose assuming that the clustering method
makes the appropriate decision of which variables interact and should be
modified simultaneously. In this case the mutation probability is not
necessary. In this operator, the variables are arbitrarily divided into groups
and the variables in any of these groups will be susceptible to polynomial
mutation. For each of the variables in the group, a value h is taken defining
the mutation. The variables of the rest of the groups do not change.

* Grouped Linked Polynomial Mutation Operator (GLMO): This case
is a combination of the two previous ones. The distribution parameter
together with the grouping mechanism are the input information for this
procedure. The selection of the group to mutate is done in a similar way to
the Grouped Polynomial Mutation operator. In this case the value of the
parameter h is previously selected as in the Linked Polynomial Mutation.
In comparison to the Linked Polynomial Mutation, it is now assumed that
the interacting variables are modified simultaneously and equally when
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they are in the same group. GLMO operator is used within the NSGA-III
optimisation algorithm [167] to improve the adaptability, the diversity and

the convergence of the algorithm.

GLMO pseudocode is as follows:

Input:  Solution §, the Grouping Mechanism and Distribution Index p
Output: Mutated Solution m

SN Ul W=

® N

10.
11.
12.
13.
14.
15.
16.
17.
18.

. {rl, s rng} « Apply Grouping Mechanism to 7 producing n, groups
. J « Pick a group index at random from {1, ...,n,}
. h « takes random values between (0,1)
. loop s; values belonging to r; do
.if h £0.5then
Si—Si,min
= Simax—Si,min
Tq = (2-h+(1—2-h)-(1—rl)““)ﬁ—l
. else
Simax—Si
2= Simax—Si,min
Tq = 1—(2-(1—h)+2-(h—0.5)-(1—12)“+1)ﬁ
end if
m; =S+ 74" (Si,max - Si,min)
repair(m;)
end loop
loop s; values not belonging to r; do
m; = s;
end loop
return m

Finally, NSGA-III optimisation algorithm flowchart is shown in Figure 20.
The NSGA-IIIis an evolutionary algorithm where individuals evolve during
iterations at the end of which the best fitted survives. The initial step of the
algorithm is the randomly generation of the parent population. The global
travel time and cost of the members of parent population are evaluated
using Equations 43 and 44. Then, offspring population is generated
applying the GLMO operator to individuals in the parent population. This
offspring population is evaluated and a result population is generated
joining parent and offspring population. The dominance of the solutions in
the result population is calculated. As a result, the selection criterion chooses

89



NCYS
B
COMILLAS

the members of the result population that will survive depending on the
domination level. Thus, firstly the group of non-dominated solutions are
saved. After that, the group of solutions that are dominated just by one
solution is saved and the process is repeated with the following groups of
solutions. If a group cannot be saved completely because the size of the

population is achieved, the crowding distance operator is applied to select
the solutions of the last group that will survive.

Random parent
population (P,)

¥

it=0

Y

Parent population
evaluation

‘D;['t

Oftfspring generation (Q;)
crossover and mutation (GLMO)
¥
Selection Qit evaluation
operator i

»~

Riy =Py UQy

Dominance Yes
- ‘7
calculation

No

Solution

Figure 20. NSGA-III flowchart.

3.4. LOCAL ECO-DRIVING MULTI-OBJECTIVE OPTIMISATION
MODEL

As previously described, the local optimisation model provides a Pareto
front of solutions for each interstation. Each solution of a Pareto front
represents the set of optimal ATO driving parameters for the interstation
with the running time and energy consumption associated.
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At this level of model resolution, which is the eco-driving level executed for
each interstation of the line, the search of optimal solutions is modelled as a
multi-objective problem where the aim is to minimise running time and
energy consumption at the interstation. The evaluation function for
interstation n is:

min f(x,) = (fi(xn) , f2(xn)) (51)

where f;(x,) is the objective function that defines the running time (s)
between stations when a specific set of ATO driving parameters is executed,
f2(xy) is the objective function that defines the energy consumption (kWh)
associated to each driving and x,, is the vector that contains the ATO driving
parameters for the interstation n. The driving parameters are defined
following the driving model presented in [168].

x, = (c,7,hs,b) (52)

where c is the speed at which coasting is applied (km/h), r is the speed at
which traction is applied (km/h) (re-motor), hs is the holding speed (km/h)
and b is the braking rate (m/s?).

Figure 21 shows an example of ATO speed profile where the eco-driving
strategy is the regulation speed. In this case, the main driving parameter is
hs and the coasting speed and re-motoring speed are equal to 0. When a
regulation speed is greater than 0, the train aims to maintain the speed
defined by c. On the other hand, Figure 22 shows a coasting/re-motoring
case. Coasting/re-motoring strategies are characterized by two main
parameters ¢ and r while the holding speed hs is 0. In this case, the train
tractions until its speed achieves the value of ¢ and, then, it coasts until it
reduces its speed r km/h that it is the moment when the train tractions again
and the cycle is repeated. In both cases (regulation and coasting/re-
motoring) the speed limitations are observed and the deceleration up to the
stop in the station is defined by b.
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Figure 21. Regulation speed profile.
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Figure 22. Coasting / re-motoring speed profile.

Efficient ATO driving must meet comfort requirements, otherwise are
discarded. The requirements to be fulfilled are: avoid traction cut-off on a
ramp, avoid too many cut-off and re-motor cycles between interstations,
and avoid low operating speeds and maintaining traction for a minimum
time. In addition, accelerations and decelerations must be kept within a
certain comfort range by controlling the rate of change of acceleration.
Another desirable requirement is that the driving can be kept stable facing
changes in the mass of passengers avoiding large variations in running time
and consumption [169]. For instance, the efficient ATO speed profiles
generated in [51] considers load variations.

It is important to note that the passenger load can vary during the journey
and, in the proposed model, it is possible to configure a different passenger
mass for each interstation. This way, the model takes into account the impact
of the mass variation in the design of the eco-driving and in the use of
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regenerated energy. On the other hand, the objective is to provide a periodic
timetable with a constant headway and with the same stopping regime for
a specific time period (for instance, peak-hours). In this kind of operation,
the model considers that trains run with similar passenger load at the same
stations. Therefore, the passenger mass used for the design of the ATO

should be an average mass value for each interstation.

3.4.1. MOPSO ALGORITHM

The parameters involved in the MOPSO algorithm section are presented in
Table 15.

Table 20. MOPSO parameters.

X; Position of the particle
n Iteration number
v; Velocity of the particle
w Inertial weight of the particle
C1,Co Parameters that determine individual and collective influence
7Ty Parameters that take a random value chosen between 0 and 1
Pi Vector where the previously local best result of the i particle is stored
Py Vector where the previously global best result is stored

For the search of these possible solutions, a MOPSO algorithm has been
chosen because it has been proven that provides better results for the eco-
driving problem compared to other widely used algorithms [168]. MOPSO
algorithm is based on the PSO method, resembling the behaviour of a
multitude of individuals present in nature [170]. MOPSO algorithm is a
particle swarm optimisation technique for solving multi-objective
optimisation problems. In MOPSO, each particle represents a potential
solution to the optimisation problem and moves in a multidimensional
search space. The goal of the algorithm is to find a set of optimal solutions
that are as close as possible to the Pareto front. To achieve this, MOPSO uses
a technique called “Pareto dominance”, which allows solutions to be
compared in terms of their quality across multiple goals. The algorithm
adjusts the speed and direction of each particle based on its own previous
experience and that of neighbouring particles, in an iterative process that
seeks to continuously improve solutions.
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The MOPSO algorithm presented in this chapter uses the train simulation
model presented in Section 3.4.2 to evaluate the fitness function in Equation

(51) and the comfort criteria.

The PSO algorithm searches for an optimal solution by allowing an initial
population to move through the search space according to mathematical
rules. The movement of the particles is conditioned by the best local
solutions, at the level of each particle, and at the global level, by the
population as a whole. The PSO method is a relatively simple and effective
algorithm, which makes use of the characteristic movement of particles
through the search hyperspace by rapidly converging on better solutions. It
makes use of a process similar to crossover, used in Genetic Algorithms, and
the concept of fithess. MOPSO allows dealing with multi-objective
optimisation problems. In this case, it is used the Pareto front concept [171].
The history of the best solutions found by a particle can be used to store
previously generated non-dominated solutions. The use of attraction
mechanisms combined with non-dominated solution vectors would trigger
convergence to globally non-dominated solutions. Therefore, in each cycle,
the past experience of each particle is saved. In addition, it is used the
technique inspired by the external archive used in PAES [172] (Pareto
Archive Evolution Strategy). Here, the information stored by the particles is
updated based on the values of the objective function for each of the
particles. The previously stored information is used by each individual to
choose the leader to guide the search.

MOPSO algorithm is described by the following steps:

1. Initialise randomly the position and velocity of the particles.

2. The particles are evaluated in running time and energy consumption
and those that do not fulfil comfort criteria are directly marked as
dominated solutions.

3. Local best is initialised as the current position of each particle.

4. Non-dominated solutions are stored in the archive.

5. Global best is initialised selecting randomly a non-dominated
solution.

6. Update the position and velocity values for each of the particles by
means of the following equations:

xi(n) =x;-(n—1) + v;(n) (53)
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vi(n)=W-vi-(n—1)+Cl'r1'(pi—xi'(Tl—l))+C2'T2'(pg—xi'(n—l)) (54)

where x; is the position of the particle, v; is the velocity of the particle, n
is the number of the iteration, w is the inertial weight of the particle and
allows particles to find local optimal solutions based on global solutions
at the outset, c; and c, are parameters that determine individual and
collective influence, r; and r, are parameters that take a random value
chosen between 0 and 1, p, is the vector where the previously global best
result is stored and it is the best position found by the swarm during all
the iterations of the algorithm, p; is the vector where the previously local
best result of the i particle is stored and it is the best position found by
the specific particle during all the iterations of the algorithm.

7. Calculate the consumption and travel time by evaluating the
particles. Subsequently, comfort criteria can be applied to mark as
dominated those driving that do not meet them.

8. The archive is updated including the new non-dominated solutions
found and discarding those particles that are dominated by the new
ones.

9. Update local best for each solution. If the local best and the current
particle position are mutually non-dominated, then the local best will be
maintained or updated by the new particle position randomly.

10. Calculate the crowding distance (CD) of each solution in the archive.
11. Update the global best result from the solutions of the archive.
Solutions with higher value of CD will have higher probability of being
selected as global best to promote diversity. Thus, the archive will be
divided into two groups: the group with higher values of CD and the
rest. The first group is composed by the fraction of the archive with
higher values of CD according to the “Top select” parameter. Then, a
solution is randomly selected from the top group or from the rest with a
probability defined by the “Top select probability” parameter.

12. Repeat steps 6 to 11 until the maximum number of iterations is
achieved.
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3.4.2. TRAIN SIMULATION MODEL

The train simulation model is used to evaluate the solutions generated by
MOPSO algorithm. A detailed description of this simulation model and its
validation can be found in [75]. It is composed by several modules that
represent the ATO logic, the traction/braking system, the train dynamics
and the energy consumption calculation. The line characterisation used by
the simulation model includes location of stations (kilometric point), grades,
grade transitions curves, track curvatures and speed limits. Moreover, the
train characterisation includes mass of the train, the mass of the load, length
of the train, maximum speed, rotatory inertia, adhesion traction, traction
effort curve, braking effort curve, running resistance coefficients, auxiliary
systems consumptions and the ATO equipment configuration.

The simulation model works calculating, at constant time steps, the state
variables of the train motion. At each step, the process starts with the ATO
module to obtain the traction/braking demand (a,.r) for the train. This
demand, is the ratio between the effort that the traction/braking system has
to apply and the maximum traction/braking effort.

The ATO module receives as inputs the speed and position of the train, the
maximum speed profile, the gradient profile and the position of the arrival
station. With this information, the ATO modules differentiate 3 scenarios:

o The train is in traction mode and does not need to brake to observe
maximum speed reduction or to the station arrival. In this case, the
ATO calculates its output by means of a proportional controller
using as a speed reference (Vg ge¢) the minimum value between the
maximum speed at the position of the train and the driving
command hs (in case the train is driven in holding speed mode). The
result of the control is corrected with the gradient acceleration as
shown in Equation (55).

aref = Ktraction ) (Utarget - vtrain) + Kacc ) agradient (55)

where Kiyqction 15 the constant of the proportional controller (s/m) for
the traction mode, v, 4, is the current train speed (m/s), K, is the
constant for the pre-fed acceleration (s*’m) and ag.ggiene is the
acceleration (m/s?) due to the gradients at the position of the train.
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The train is in braking mode to observe a speed restriction. At each
simulation step, the ATO logic evaluates by means of a braking
detection curve [173] if it is necessary to reduce the speed because of
a maximum speed reduction. When the braking detection curve
intersects the maximum speed profile, the ATO braking logic is
started. In the braking mode, the output of the ATO is calculated by
the proportional controller represented in Equation (56). This
controller is corrected not only with the gradient acceleration (as the
previous case) but also with the target acceleration a;q;ge¢ (M/5?).
The target acceleration (a;q,ge¢) is calculated as a braking curve from
the current train position, the speed of the position where the
maximum speed is reduced and the new maximum speed value. The
speed reference V.4, 4¢¢ (mM/s) in this case is the speed of the braking
curve in the next time step.

Aref = Kbraking ) (Utarget - Utrain) + Kgee (_atarget + agradient) (56)

where K,.qxing is the constant of the proportional controller (s/m) for
the braking mode that depends on the train speed.

The train is in final braking mode to brake up to the arrival station.
At the beginning of the simulation, the braking curve up to the stop
in the arrival station is calculated between the arrival point up to the
initial point using the driving commands deceleration (b). When the
train speed and position intersect this braking curve, the ATO final
braking is started. In the final braking mode, the proportional
controlled represented in Equation (56) is applied where the target
acceleration (m/s?) is b and the speed reference (v;4,ge¢) is the speed
(km/h) of the final braking curve in the next time step.

The ATO traction/braking demand a,.; previously calculated is bounded

by [-

1,1] and hysteresis is applied to minimise that the train changes for

traction to braking continuously. Besides, if the train is driven with

coasting/re-motoring driving commands, a,. will be bounded by a

maximum value of 0 when the train is in traction mode and the speed has

previously reached the coasting speed (c) and it is over the re-motoring

speed ().
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Once the ATO output is calculated, the effort provided by traction/braking
system is calculated using Equation (57).

Fn = Qref * Frnax (57)

where F,, is the traction/braking effort of the train (kN) and F,,, is the
maximum traction effort (kN) according to the motors characteristics, if
arer = 0, or the maximum braking effort according to the braking system
characteristics, if a,.r < 0. Both, maximum traction and maximum braking
effort curves are dependent on the train speed.

The traction/braking system limits abrupt changes in the train effort applied.
Therefore, the previously calculated traction/braking effort will be
constrained applying a limitation as show in Equation (58).

_ dE, 58
—Jmax < d_;n < Jmax ( )

where 4y is the maximum variation of traction/braking effort (RTN) value

configured.

The traction/braking effort will be the input for the dynamics module that
will calculate firstly the train acceleration (a) using the Newton’s second
motion law as shown in Equation (59).

F,— F,—F.—F,. (59)

where F; (kN) and F; (kN) are defined in Equation (5) and Equation (6),
respectively, F,. is the running resistance (kN) and m,, is the equivalent
mass of the train (tons), including the rotatory inertia (Equation (3)).
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The running resistance F, can be calculated using Equation (60):
F,=A+ B Vyqin +C- vtzrain (60)

kN

where A (kN), B (kTN) and C (—2> are coefficients that depend on the train

m

S s

characteristics.

m
N

The position S;y4i, (M) and speed of the train ( ) can be updated using the

train acceleration and Equations (62) and (63).

dvtrain —a (62)
dt

AStram _ (63)
dt train

Finally, the traction electric power P, (kW) and regenerative electric
power P, (kW) consumptions are calculated using Equations (64) and (65).
With the power, the traction energy consumption can be calculated
integrating the traction electric power.

Firai 1 . 64
Pirgc = Inax - F?‘am “Ucar "= lf E, =20 ( )
‘max n
Firai . 65
Preg = Lnax Fram “Ucar * M if E,<0 (65)
‘max

where [,,, is the maximum current (A) according to the motor
characteristics that is associated to the maximum effort of traction or
braking, F,.x (kN), U4 is the nominal catenary voltage (V) and 7 is the
motor efficiency (%) that depends on the working load level (i.e., depends
on the ratio between E,, and F,,,,).

3.5. CASE STUDY

This section presents a case study where the proposed model is applied to a
line of Madrid Underground. The metro line consists of 16 interstations and
two terminal stations spread over 14 kilometres and its infrastructure is
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modelled by means of gradients and curves. The characteristics of the train
are: 160 t, 78 t of passenger load, a length of 90 m and the maximum power
offered is 1500 kW. The electric system is a 1.5 kV DC. Speed limits set by
the railway operator are respected at all times. The dynamic simulation of
the train taking into account the above parameters is carried out by means
of a detailed model of the train movement and execution of the on-board
ATO driving parameters. The minimum dwell time (t,,;,) takes a value of
20 seconds.

The variations of the possible values of the ATO driving parameters and
their maximum and minimum limits are defined according to Table 21.

Table 21. ATO driving parameters settings.

Deceleration Regulation Coasting Re-motoring
rate (m/s?) speed (km/h)  speed (km/h)  speed (km/h)
Minimum 0.60 30 30 5
Maximum 0.80 80 80 50
Increase 0.05 0.25 0.50 1

The headway of the timetable to be designed is 420 seconds (7 min).

For the analysis of the case study, the process described in Section 3.4 is
carried out searching for the optimal driving (Equation 51) for each
interstation with MOPSO optimisation algorithm.

MOPSO parameters used in to generate the local eco-driving Pareto curves
are listed in Table 22.

Table 22. MOPSO parameters.

Swarm . Top Top select
I 1
size terations el 2 W lect(%)  probability (%)
40 1000 1 1 09 6% 98

The result of this process is a Pareto front for each interstation and is the
input information used for the following optimisation procedure. Figure 23
shows an example of solutions after the local eco-driving calculation
process. Each point of a Pareto curve represents a specific ATO
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parametrisation that produces the most efficient driving for the
corresponding running time at that interstation.

Interstation 1 Interstation 5

Energy consumption (kK\Wh)

Energy consumption (kKWh)

4 S o
. G S .
%"@6@6_ , —o

2
5
120 125 130 13.5 j4o . 145 150 155 a0 65 70 75 80 a5 90 95 00 105
Commercial running time (s)

Commercial running time (s)

Figure 23. Examples of Pareto front of interstations 1 and 5: designed eco-driving, running time / energy consumption.

As previously described, the procedure continues with the timetable
optimisation (Equation 40) and the global Pareto front is obtained. Each
solution of this global front represents the set of efficient ATO driving
parameters at each interstation of the entire railway line and stopping times.
The obtained selection of running times and stopping times leads to
synchronised braking and tractioning trains to maximise the use of
regenerative energy.

The timetable optimisation problem is solved by the proposed algorithm
GLMO-NSGA-IIL In the following, this solution is compared as well with
other algorithms: WOF [174] (Weighted Optimization Framework), LCSA
[175] (Linear Combination-based Search Algorithm), FDV [59] (Fuzzy
Decision Variable) and NSGA-III.

The optimisation process using the FDV algorithm is divided into two
distinct parts, fuzzy evolution and precise evolution. In the first one, fuzzy
evolution substages are added and the fuzzy operation is performed once
the offspring has been generated at the beginning with the MOEA (Multi-
Objective Evolutionary Algorithm) that has been chosen, being in this case
the LMOCSO [176] (Large-Scale Multi-Objective Optimization Competitive
Swarm Optimizer). In the second phase, offspring generation operations are
carried out. The next population generation is examined by means of
LMOCSO. The fuzzy evolution phase in turn consists of: fuzzy evolution
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sub-stages division and fuzzy operation. The purpose of the first of the
above phases is to make the algorithm's solution more accurate by dividing
the fuzzy evolution into multiple phases in which the level of fuzzification
decreases. In the second phase, the degree of fuzzification of the solution is
determined.

LCSA algorithm is a procedure in which solutions of the optimisation
problem are formed by linear combination of previous results to improve
the quality of solutions in multi-objective problems. A population of
coefficient vectors is formed and optimised by a metaheuristic procedure to
improve the search for solutions. The algorithm starts with the optimisation
of the population with any multi-objective method. The first non-dominated
solution front of the existing population is used to form a solution matrix.
Then, a random population of the linear combination of solution vectors is
formed. These vectors are optimised through an arbitrary procedure,
storing this result. Finally, the previous result is combined with the initial
population and the process is started again. In this case study, the multi-
objective optimisation algorithm applied has been the NSGA-IIL.

WOF algorithm has been designed as a metaheuristic procedure to be
incorporated in a population-based optimisation mechanism. This method
is based on the grouping and optimisation of the weighting variables to be
applied, and applies the weighting variables for cases where the objectives
are multiple. In WOF algorithm the decision vector is divided into smaller
vectors. The corresponding weighting factor is applied to each of these
vectors. The whole process is divided into two different phases. Initially, an
optimisation is performed with any of the following randomly chosen
algorithms: SMPSO (Speed-constrained Multi-objective Particle Swarm
Optimisation), MOEA/D (Multi-Objective Evolutionary Algorithm based on
Decomposition), NSGA-II, NSGA-IIl. After this, a certain number of
solutions are chosen from the current population and a new optimisation is
performed with the NSGA-III algorithm and taking into account the
corresponding reduced decision vector.

Table 23 presents the parameters of the algorithms used for the optimisation.
All algorithms have been executed with 220 generations and a population
size of 100. Additionally, the random seed is initialized for the generation of
the initial random population in all cases, and for all executed and compared
algorithms. This uniformity in the initialisation process and parameters
further ensures a fair comparison of the algorithms' performance.
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Figure 24 presents the behaviour of the algorithms after the global
optimisation process considering the electrical loss function.
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Figure 24. Pareto fronts comparison.

For the resolution and optimisation of the timetable as the second part of the
problem, the GLMO-NSGA-III has been chosen due to its good results after
the comparison with the rest of the algorithms. When NSGA-III is combined
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with the GLMO operator, the algorithm provides better solutions. It can be
observed that GLMO-NSGA-III obtains better solutions in the range
between 3100 seconds and 3600 seconds. After that, the LCSA algorithm
provides more solutions. However, in the design of railway timetables the
time margin that is usually given above the minimum time is between 3.5%
and 10%, so the range for the running time is up to 500 seconds. Therefore,
solutions provided by GLMO-NSGA-III are adequate from the operational
point of view.

In the following, the proposed model is firstly executed without introducing
the penalty on the number of trains to analyse the obtained results. The
design of the timetable is carried out in two different cases depending on
whether regenerated energy is considered or not in the optimisation model.
The first case will refer to the optimal design of the timetable when the
energy regenerated by the trains is ignored in the analysis. The second case
will consider the energy regenerated during braking being more faithful to
reality by adding the losses given during transmission. These losses are
modelled by means of a function dependent on the distance that separates
the train that is regenerating energy and the train that receives and uses the
energy (Figure 18).

Figure 25 plots the optimisation scenarios representing each of them as the
corresponding Pareto front. As expected, the driving with the highest
associated consumption correspond to the scenario where the regenerated
energy is not reused.
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Figure 25. GLMO-NSGA-III optimisation cases.

Results in Figure 25 are the Pareto curves obtained by the optimisation
algorithm in these cases. However, in reality, when the solutions obtained
by the algorithm are tested on the line (by simulation) there is regenerated
energy and the transmission of this energy between trains has associated
losses that depend on the distance between trains. Therefore, the result of
simulating the above Pareto fronts on a line with regenerated power
transmission with losses according to the defined loss model is presented
below in Figure 26. It can be seen in Figure 26 that the curve that was
optimised taking into account the regenerated energy and o function has a
better behaviour in terms of consumption as it has been tried to
preferentially synchronise accelerating and braking trains.

Figure 26 shows the optimisation result when regeneration is considered
with the loss function and the result when regeneration is not considered in
the optimisation, both simulated in the case where regeneration with losses
during transmission is added.
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Figure 26. Optimisation results simulated considering o function.

As can be seen in Figure 26 a better result is obtained for the optimised case
where regeneration and the loss function are considered. The graph
highlights the points corresponding to the fastest possible set of driving for
the whole metro line and the same for a set of 4.52% slower driving with
respect to the optimised case in the two optimised cases. Comparing the
result of both optimisations for what could be the nominal set of driving
shows an energy saving of 5.42% with the optimisation when regeneration
and o function are considered.

Previous results do not take into consideration the number of trains required
to meet the demand. Firstly, the number of trains are calculated as a further
step to the optimisation (Equation 49 and 50) and the results are shown in
Figure 27. In this case no penalty has been introduced in the objective
function. This is why the solutions between the 8-train and 9-train case
overlap in some areas of the graph. As shown in the figure, the Pareto front
contains similar solutions that are optimal in terms of energy and running
time, but with different number of trains required to give the associated
service. With the same consumption and running times some solutions
require 8 trains and others require 9 trains, which impact critically on the
investments and operation. The results of Figure 27 present the energy
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consumption vs the commercial running time. The commercial running
time is the commercial speed experienced by the passengers, so the time
spent by the trains at stops in terminal stations is excluded. This time is used
by the trains for the reverse manoeuvres, to unload and load passengers,
and as a buffer to absorb delays. However, it is also crucial to determine the
synchronisation of ascending and descending trains to use regenerated
energy as was studied in [177]. Therefore, solutions with the same
commercial running time could present different cycle time in the line and
different number of trains to operate the timetable.
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Figure 27. Timetable optimisation without penalty for the number of trains.

Figure 28 shows the optimisation after including in the objective function
(Equation 40) a penalty or additional cost of 25 kWh for each extra train
required in the achieved solution. This penalty is expressed in the term P -
N, of the Equation 44. Hence, the areas of the 8-train and 9-train cases are
clearly differentiated.
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Optimisation scenario: Regeneration considering « function
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Figure 28. Timetable optimisation introducing penalty for the number of trains.

In this case, a timetable can be chosen with a running time around 5% slower
than that associated with the flat-out driving between stations following the
railway operator's criteria of setting a time margin for the design of the
timetable. In this way, an energy saving in relation to the cost function of
1372 kWh is achieved, which represents a saving of 24.79%, not being

necessary to include more trains on the line ensuring the fulfilment of the
service.

Figure 29 compares the energy that would be consumed in rheostats in the
results obtained in Figure 26. Both cases have been simulated when
considering the regenerated energy and the losses associated with its
transmission. Orange bars show the result when the optimisation is carried
out without considering the energy regenerated during braking and the blue
bars show the result when the energy regenerated during braking is
considered with the associated transmission losses.
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Figure 29. Energy dissipation in rheostats at interstations.

It can be seen from the result that synchronisation improves the use of
regenerated energy in every interstation. The energy that would be wasted
in the case where regeneration was not taken into account would be 279
kWh while this wasted energy drops to 33 kWh when the driving and
synchronisation are designed taking regeneration into account.

Figure 30 and Figure 31 show the two optimised speed profiles for the cases
compared for track 1 and track 2, respectively:
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Figure 30. Speed profiles for track 1.
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Optimised speed profiles for track 2
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Figure 31. Speed profiles for track 2.

Table 24 and Table 25 show the arrival and dwell times for the compared
cases, in track 1 and track 2. These figures have been obtained for a train that
arrives to the first station in time equals to 0. As can be seen, when no
regeneration is considered all the dwell times are the minimum value except
for the reverse time in the first station that is 287s. However, when
considering regeneration with o function, there are cases where the dwell
time is above the 20s (station S8 for instance) and both reverse times are
greater than the minimum value (45s in S1 and 38s in 518). This is because
the algorithm is synchronizing accelerating and braking trains to increase
the use of regenerated energy.

Table 24. Arrival and dwell times for track 1.

Optimisation: Optimisation:
considering o no regeneration
Station Arrival Departure  Arrival Departure
time (s) time (s) time (s) time (s)

S1 0 45 0 287

S2 183 203 423 443

S3 303 323 544 564

S4 415 435 649 669

S5 528 548 766 786

S6 614 634 848 868

110

14000



ENP
B
COMILLAS

ICAI

S7 731 751 966 986

S8 864 885 1087 1107
S9 959 979 1181 1201
S$10 1039 1059 1264 1284
S11 1133 1153 1363 1383
S12 1210 1230 1441 1461
S13 1322 1342 1553 1573
S14 1397 1417 1629 1649
S15 1478 1498 1712 1732
S16 1550 1570 1789 1809
S17 1624 1644 1865 1885
Table 25. Arrival and dwell times for track 2.
Optimisation: Optimisation:
considering o no regeneration
. Arrival Departure Arrival Departure
Station . . . ;
time (s) time (s) time (s) time (s)
S18 1693 1731 1934 1954
$17 1780 1800 2004 2024
S16 1854 1874 2078 2098
S15 1926 1946 2150 2170
S14 2010 2030 2235 2255
$13 2082 2102 2307 2327
S12 2193 2213 2418 2438
S11 2269 2289 2495 2515
S$10 2365 2385 2591 2611
S9 2443 2463 2670 2690
S8 2541 2561 2765 2785
S7 2657 2677 2884 2904
Sé 2765 2785 2992 3012
S5 2852 2872 3079 3099
S4 2972 2992 3200 3220
S3 3074 3094 3301 3321

S2 3188 3208 3414 3434
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3.6. CONCLUSIONS AND CONTRIBUTIONS

Chapter 3 presents a procedure for optimal timetable design considering
efficient driving for a metropolitan railway line based on detailed
simulation. The objective is to design the optimal operation, minimising the
energy consumption and considering the rolling stock required to provide
the service. This is achieved by integrating the optimisation of the ATO
driving parameters and the optimisation of the timetable adding the
contribution of the energy regenerated by braking trains. The procedure
described has been applied to a line of Madrid Underground. The optimal
design has been carried out in two different scenarios: ignoring regenerated
energy and considering regenerated braking with transmission losses to
show the importance of including regenerated energy use calculation in the
optimisation model.

The presented analysis supports the conclusion that the proposed model is
effective in reducing energy consumption on metropolitan railway lines by
integrating efficient driving design, timetable optimisation, and the use of
regenerated energy. Its application to a real case on the Madrid Metro
network has validated the approach, achieving a total energy saving of
24.79% compared to the fastest possible driving strategy. Furthermore, it has
been demonstrated that including regeneration in the timetable
optimisation yields an additional 5.42% improvement in efficiency. The new
timetable design meets punctuality requirements while providing sufficient
time margins to recover from potential delays. In addition, the model
optimises the number of trains required to operate the service, considering
their associated operating costs. Finally, it has been shown that
synchronisation between trains significantly improves the use of
regenerated energy across all interstation segments: while 279 kWh would
be wasted if regeneration were not considered, this value is reduced to just
33 kWh when the new model is applied —representing a reduction in energy
waste to 11.83% compared to the optimisation without energy regeneration.
Likewise, the calculated driving meets the railway operator's design criteria,
giving a margin time for the nominal operation and offering an accurate
reference for metro railway operators.

A key contribution of this chapter is the integration of a two-level
optimisation model: first, the design of eco-driving parameters for all
interstation runs of the line, and second, the global timetable optimisation,
which includes station dwell times and synchronisation of traction and
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braking trains to maximise regenerative energy transfer. The number of
trains required to fulfil the timetable are included in the model to consider
costs associated with rolling stock. This allows the model to select the
solution that satisfies the timetable with the minimum number of active
trains, achieving energy efficiency while considering operational cost. The
model starts with the design of the ATO eco-driving parameters for the
whole line where the energy consumption is minimised as function of
running time. The search for efficient driving has been carried out by means
of the MOPSO algorithm and the solutions form a Pareto front where
running time and consumption are conflicting objectives. These ATO
parameters satisfy realistic operating conditions easing its implementation
in real conditions. The timetable is then designed by optimising the time
margin distribution, the stopping times at each station and synchronising
traction and braking trains during their journey on the whole line to
maximise the use of regenerated energy. Several optimisation algorithms
have been tested for the efficient timetable design, including WOF, LCSA,
NSGA-III, GLMO-NSGA-III and FDV. In this study, GLMO-NSGA-III has
been found to be the best performing algorithm. Furthermore, it allows
evaluating the impact of commercial speed decisions on fleet size and
energy usage, providing a solution that simultaneously minimises the
number of trains in use and total energy consumed.

Future developments will focus on real-time energy and traffic optimisation
in metro systems, integrating rolling stock management and improving the
use of regenerated energy, supported by advanced communications and
high-performance computing.
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CONCLUSIONS, CONTRIBUTIONS, PUBLICATIONS AND
FUTURE DEVELOPMENTS

4.1. CONCLUSIONS AND CONTRIBUTIONS

The importance of increasing efficiency in railway operations lies in the
growing use of services of high-speed trains and mass transit transport
systems. These systems consume a significant amount of energy, and it is
necessary to provide technological solutions that enable better energy use,
which could potentially result in benefits for the passengers. For this reason,
this thesis is based on the application of energy efficiency techniques in
railway systems from the perspective of train operation. The main
techniques for achieving efficient operation include driving design and
timetable optimisation.

Efficient driving design in railway systems has been the subject of study for
decades, with research focusing on the design of driving strategies, planning
and regulation of rail traffic. Several computational techniques and
optimisation algorithms have been used to solve the efficient driving models
proposed in the literature. The application of these techniques covers long-
distance, high-speed railway systems and metropolitan transport networks.
However, the effectiveness of these strategies depends not only on their
design but also on the accurate consideration of external factors influencing
train operation.
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In railway operation, various factors directly affect energy consumption and
journey times, which are generally not considered in designs due to the
difficulty of addressing them in simulations. The relevance of these factors
lies in the uncertainty inherent in their nature, which complicates their
quantification and, consequently, their integration into models without
appropriate treatment. To address this complexity, fuzzy logic can be used
to model and quantify these uncertainties, providing a flexible
representation of variations and unforeseen factors affecting railway
operation. This ensures that the application of the model and the validity of
the results remain consistent with actual operating conditions.

Previous studies have considered the uncertainty of certain driving-related
parameters, such as the variability in driving styles and the drive’s
behaviour during manual driving in high-speed rail services. However,
climatological factors have often been overlooked. Driving strategies are
conventionally designed based on nominal conditions, omitting the
consideration of external environmental factors, including fluctuations in air
properties along the route and the influence of wind, which can critically
affect train performance.

Therefore, in Chapter 2, the impact of climatological uncertainty on railway
operations—and consequently, on the design of efficient driving for high-
speed services—has been analysed. The parameters subject to uncertainty,
modelled by means of fuzzy logic, have been air density, which is influenced
by pressure and temperature, wind intensity and the wind incidence angle
relative to the train's direction of travel. These fuzzy parameters influence
the aerodynamic resistance of the train, which acts as an opposing force to
its motion. Thus, climatological conditions directly affect the train’s traction
energy consumption and the total running time required to complete the
journey.

To solve the efficient driving problem, a genetic algorithm (NSGA-II) has
been used, integrating the parameters modelled through fuzzy logic. The
efficient driving model also incorporates punctuality requirements. This
punctuality constraint has been modelled as a necessity level, representing
the requirement to meet the scheduled arrival time under given climatic
conditions.

In this way, efficient driving has been designed for high-speed rail service
on a Spanish railway line, considering uncertainty associated with
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climatological conditions and punctuality requirements. The case where the
driving is carried out under nominal conditions, i.e., without taking climatic
factors into account, has been compared with the case where the driving has
been designed considering these factors. Finally, the solutions of the model

have been compared for a typical summer case and a typical winter case.

The conclusions derived from the research focused on the development of
eco-driving optimisation for high-speed trains under climate uncertainty -
where climate parameters are modelled using fuzzy logic - are presented
below:

e Taking climatological conditions into account when optimising eco-
driving strategies has a relevant impact on the expected energy
savings for a railway line. In the case study, the difference reached
approximately 5%, increasing the expected energy savings from
29.76% to 34.70% under summer conditions. This highlights the
significant potential of incorporating weather variability into
energy-saving models.

e The model reveals a seasonal variation in energy consumption of
5.31% between summer and winter scenarios, despite maintaining
compliance with punctuality constraints in both cases. This
underlines the importance of adapting strategies to different
weather conditions. This point underlines the importance of
tailoring eco-driving strategies to seasonal changes to achieve
optimal performance year-round.

e Although climatic conditions influence energy consumption, their
impact on running time is practically negligible. The results show a
variation of only 0.03% between the optimised summer and winter
scenarios, confirming that energy optimisation does not
compromise punctuality. The balance between efficiency and service
reliability is critical for practical implementation.

e Adapting train driving strategies to real climatological conditions
leads to a more accurate estimation of energy consumption. The
proposed model was successfully simulated in a real high-speed
railway line in Spain, demonstrating its effectiveness and practical
applicability.
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e The optimisation case that does not consider climatological
parameters shows a behaviour more similar to the winter scenario
than to the summer one. Specifically, the expected energy savings
without weather consideration (29.76%) are much closer to those
obtained under winter conditions (31.03%) than to those achieved in
summer (34.70%). This suggests that traditional eco-driving
strategies might unintentionally approximate winter conditions, as
the simulation results of the initial case and the winter scenario are
more similar, reinforcing the value of including weather data to
maximise efficiency under varying climates. Therefore, ignoring
climatological variability could lead to suboptimal energy savings
during more favourable conditions, such as in summer.

The main contributions of this work on eco-driving for high-speed trains
under climatic uncertainty are listed below:

e A new eco-driving model for railway lines, incorporating
climatological conditions such as temperature, pressure, wind
intensity and its angle of incidence. By integrating these
environmental factors, the model captures the interaction between
climate and train dynamics, allowing for an adaptative optimisation.
The incorporation of climatological data into the optimisation model
allows for maximizing energy savings, achieving additional traction
energy reductions.

e The incorporation of the wuncertainty of the climatological
parameters through the application of fuzzy logic, facilitating the
treatment of their variability. This approach provides a flexible and
robust framework that can handle inaccurate or incomplete
meteorological data, reflecting the unpredictability in a real case.

e The optimisation problem is solved using a Genetic Algorithm with
fuzzy parameters (GA-F), integrating fuzzy logic to account for the
impact of climatological uncertainty on railway operations. This
approach enables the derivation of driving commands that are better
adapted to real-world conditions and consider punctuality
constraints. As a result, the method achieves a balance between
energy efficiency and operational reliability, essential aspects for its
practical implementation.
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e The application of the model to a high-speed railway line in Spain
demonstrating that climatological parameters have a significant
impact on energy consumption and a lesser effect on running times.
These findings underscore the importance of incorporating
meteorological data into eco-driving strategies to optimise
performance under diverse climate scenarios.

e A comparison has been carried out between the case where it is not
considered climatological conditions and the cases where they are
considered, showing that neglecting these factors underestimates
potential energy savings. Additionally, summer and winter
scenarios are compared. This comparison highlights the risk of
relying on traditional models that do not account for climate
variability, which can lead to missed opportunities for efficiency
improvements during more favourable weather conditions.

Metropolitan railways, metro-type systems or mass rapid transit (MRT) are
characterized as passenger rail transport with the capacity to move a large
number of people with a high frequency service. Additionally, this system
can connect a large part of the city with its metropolitan areas, with each line
having multiple stops along its route. In these reasons, along with the
potential benefits or drawbacks for passengers, lies the importance of an
effective timetable design for these type of railway services.

An essential distinction between this type of railway transport and long-
distance transport is its high degree of automation. While in long-distance
trains the driver is responsible for the manual operation of the train,
metropolitan systems are increasingly automated, with most trains
equipped with ATO systems. Just like high-speed rail operations,
metropolitan systems are major energy consumers and are therefore
suitable for the application of technology and techniques to achieve energy
savings.

The high level of automation in these types of railway lines allows for the
application of efficient driving techniques where the driver loses
significance. In this case, the train's movements are programmed in the
onboard and track-side systems. These automatic driving can be designed
considering energy-saving and comfort criteria, taking into account running
times between stations, dwell times at stations and headways.
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One of the most relevant technologies for optimizing energy use in metro-
type systems is the regenerative braking. The energy produced during the
braking of trains can be used by other trains that are being powered,
returned to the grid through electrical substations or stored in accumulators

located along the track.

Thus, Chapter 3 presents a procedure for optimal timetable design in
metropolitan railway lines, focusing on minimising energy consumption
while considering the rolling stock required for the service. The model
integrates the optimisation of ATO driving parameters based on real data
and the design of the timetable, taking into account the energy regenerated
by braking trains. The optimisation process starts with the design of the
efficient ATO parameters for the entire line, where energy consumption is
minimised as a function of running time. The search for efficient driving is
carried out using MOPSO algorithm, which generates one Pareto front for
each interstation that balances the conflicting objectives of running time and
energy consumption.

The timetable optimisation process determines the dwell times at each
station considering the previous eco-driving design and synchronising
traction and braking trains along the entire route to maximise the use of
regenerated energy. Several optimisation algorithms were tested, including
WOF, LCSA, NSGA-III, GLMO-NSGA-III and FDV. The procedure was
applied to the Madrid Underground, where two scenarios were considered:
the first one that ignored regenerated energy and the second one that
accounted for regenerative braking considering transmission losses.

The integration of eco-driving, timetable optimisation, and the use of
regenerated energy into a single model has enabled a coordinated and
effective approach to reducing energy consumption in metropolitan
railway systems. Based on this proposal, the following conclusions have
been reached:

e The application of the model to a real case on the Madrid Metro
railway network has validated its effectiveness, achieving an energy
saving of 24.79% compared to the fastest possible driving scenario.
This result demonstrates the practical applicability of the
methodology in real operational environments.

e The inclusion of the rolling stock required to provide the service and
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its operational costs within the model has allowed the selection of
solutions that require a lower number of trains, thereby optimising
not only energy consumption but also material and economic
resources. Specifically, for the case study presented, it has been
observed that, for the same energy consumption and commercial
running time, there are solutions that allow the operation of the line
with 8 trains instead of 9, representing a significant reduction in
investment and operating costs. This difference becomes clearly
visible when a penalty associated with the number of trains is
introduced in the objective function, reinforcing the model's
usefulness in supporting efficient operational decision-making.

e The inclusion of regenerative braking in timetable optimisation has
led to an additional energy saving of 5.42% compared to the case in
which regenerated energy is not considered, confirming that
coordination between braking and traction phases is key to
maximising energy efficiency.

e The model has succeeded in significantly reducing energy losses:
from 279 kWh to only 33 kWh, which represents just 11.83% of the
initially wasted energy. This result highlights the importance of train
synchronisation to enhance the use of regenerated energy and
increase overall system efficiency.

e Finally, as a more general conclusion, it is evident that integrating
multiple strategies into the planning and optimisation of railway
operations —including eco-driving, timetable design, energy
regeneration management and rolling stock allocation— enables
more comprehensive, sustainable, and realistic solutions. The more
relevant factors are incorporated into the optimisation model, the
greater the potential for improvement in energy, operational, and
economic efficiency, making this integrated approach a key tool for
better design of metropolitan railway systems.

The main contributions of this study are summarised as follows:

e The design of an optimal timetable procedure for a metropolitan
railway line, integrating the optimization of ATO driving
parameters and the use of energy regenerated by braking trains. This
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integration ensures an approach that seeks to balance energy
efficiency and operational performance.

e The simultaneous optimization of energy consumption and running
time through the incorporation of ATO driving parameters, using
the MOPSO algorithm to obtain the Pareto front between these two
objectives. This multi-objective method allows for evaluating and
selecting solutions that optimize both energy efficiency and
punctuality.

e The incorporation of rolling stock costs into the model, by
considering the number of trains required to meet the timetable and
the associated costs, enabling a more comprehensive and realistic
analysis of the operation. This economic dimension strengthens the
model’s applicability for sustainable and cost-effective railway
planning.

o The detailed optimization of the timetable through the proper
distribution of time margins, dwell times, and the synchronization
of traction and braking trains to maximize the use of regenerated
energy. This fine coordination between acceleration and braking
phases is key to reducing energy losses.

e The evaluation of several optimization algorithms, highlighting that
GLMO-NSGA-III showed the best performance for -efficient
timetable design. The rigorous comparison of methods ensures the
selection of the most suitable technique for the problem at hand.

e The application of the model to a real line scenario, demonstrating
energy savings considering energy regeneration and confirming that
the design meets the railway operator’s criteria, providing a margin
for nominal operation. This validates the practical feasibility of the
approach and its alignment with real operational requirements.

4.2. PUBLICATIONS

The main content and development the doctoral thesis work and its results
have been collected in the next articles and published in academic journals.
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Initially, the outcome of the work in Chapter 2 is reflected in an article
published in the journal Sustainability:

Blanco-Castillo, M.; Fernandez-Rodriguez, A.; Fernandez-Cardador, A,;
Cucala, A.P. Eco-Driving in Railway Lines Considering the Uncertainty
Associated with Climatological Conditions. Sustainability 2022, 14,
8645. https://doi.org/10.3390/su14148645

The result of the work in Chapter 3 is then published in an article in the
journal Engineering Optimisation:

Blanco-Castillo, M., Fernandez-Rodriguez, A., Su, S., Fernandez-
Cardador, A., & Cucala, A. P. (2024). Efficient automatic operation of a
metro line: eco-driving design with optimized use of regenerative
energy and rolling stock consideration. Engineering Optimization, 1-33.
https://doi.org/10.1080/0305215X.2024.2385583

4.3. FUTURE DEVELOPMENTS

At this point, possible ideas for future work on the topic discussed during
this work are discussed. The development of previous works and the
current thesis led to the consideration of possible lines of research and future
work.

4.3.1. ENHANCEMENTS ECO-DRIVING FOR HIGH-SPEED
OPERATIONS UNDER CLIMATIC INFLUENCE

Future research could explore how high-speed train eco-driving strategies
can be further optimized by incorporating real-time weather data and
environmental variability. Current models could be extended to include
uncertain or fluctuating meteorological parameters. By integrating on-board
sensors and improved data acquisition, ATO systems could dynamically
adjust speed profiles to minimise energy usage without compromising
punctuality. Furthermore, computational advances will support faster
recalculations of speed commands in response to weather changes, allowing
the control strategy to evolve continuously during the journey.
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4.3.2. METROPOLITAN OPERATION AND REGENERATIVE
ENERGY OPTIMISATION

For metro and suburban railway systems, future research could focus on
refining energy-saving strategies through regenerative braking
optimisation. This involves not only optimising driving profiles or
maximising regenerated energy between trains, but also enhancing power
flows and overall energy efficiency through the integration with other
technologies. In particular, research could also expand into system-level
energy management, where energy flows are directed not only between
trains but also toward stationary storage systems or auxiliary station
services. The increasing deployment of communications systems as CBTC
allows more flexible and responsive driving strategies, which can be further
leveraged by multi-objective optimisation to balance energy, punctuality
and headway constraints in real-time.

4.3.3. ENERGY-EFFICIENCY, CAPACITY OPTIMISATION AND
VIRTUAL COUPLING

While the optimisation of railway capacity has traditionally focused on
increasing train frequency and minimising conflicts, future developments
may increasingly consider energy-efficiency constraints in the formulation
of operational capacity models. Given the limited infrastructure in many
metropolitan and intercity lines, a promising line of research is the joint
optimization of capacity and energy consumption, especially under high-
density traffic scenarios.

Modern capacity assessment techniques based on timetable compression
(UIC 406) allow for a detailed representation of track occupancy, signalling
constraints, and rolling stock performance. These approaches can be
extended to explicitly incorporate energy-related parameters, such as
braking and traction power demands, regeneration opportunities and
dynamic headways dependent on train energy profiles.

In this context, the concept of virtual coupling (VC) emerges as a potentially
disruptive technology. By enabling reduced headways through continuous
communication between trains, VC can unlock additional capacity without
the need for major infrastructure expansion. However, the dynamic
coordination required by VC also presents a unique opportunity to
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synchronise traction and braking phases of neighbouring trains to maximise
the transfer or storage of regenerative energy.

Thus, future work could explore multi-objective optimisation models that
simultaneously aim to:

« Maximise capacity utilisation.

« Minimise total energy consumption.

« Enhance regenerative energy use through coordinated control of
virtually coupled trains.

These models could build upon existing simulation tools and real-time
traffic management algorithms, offering a path forward for sustainable and
high-capacity railway operations.

4.3.4. REAL-TIME SIMULATION, DECISION SUPPORT AND
ALGORITHMIC ENHANCEMENT

Further advancements can be made in the speed, robustness and
adaptability of simulation tools and real-time optimisation algorithms used
in railway operations. The integration of real-time data input, including
train diagnostics, weather information and network traffic, would allow
dynamic re-optimisation of train trajectories during commercial service.
Moreover, on-board computing systems could benefit from algorithmic
improvements, such as metaheuristic acceleration, parallel processing or
reduced-order modelling, to produce rapid solutions that are deployable in
operational settings. These improvements would be critical for real-time
ATO decision-making, dispatching support systems, and adaptive energy-
efficient control across varying traffic scenarios.
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