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ABSTRACT

Artificial Neural Networks (ANNs) have significantly advanced various fields by effectively recogniz-
ing patterns and solving complex problems. Despite these advancements, their interpretability remains
a critical challenge, especially in applications where transparency and accountability are essential. To
address this, explainable AI (XAI) has made progress in demystifying ANNs, yet interpretability alone
is often insufficient. In certain applications, model predictions must align with expert-imposed re-
quirements, sometimes exemplified by partial monotonicity constraints. While monotonic approaches
are found in the literature for traditional Multi-layer Perceptrons (MLPs), they still face difficulties in
achieving both interpretability and certified partial monotonicity. Recently, the Kolmogorov-Arnold
Network (KAN) architecture, based on learnable activation functions parametrized as splines, has been
proposed as a more interpretable alternative to MLPs. Building on this, we introduce a novel ANN
architecture called MonoKAN, which is based on the KAN architecture and achieves certified partial
monotonicity while enhancing interpretability. To achieve this, we employ cubic Hermite splines,
which guarantee monotonicity through a set of straightforward conditions. Additionally, by using
positive weights in the linear combinations of these splines, we ensure that the network preserves
the monotonic relationships between input and output. Our experiments demonstrate that MonoKAN
not only enhances interpretability but also improves predictive performance across the majority of
benchmarks, outperforming state-of-the-art monotonic MLP approaches.

1. Introduction

Artificial neural networks (ANNSs) are the backbone of
modern artificial intelligence (Lecun et al., 2015; Goodfel-
low et al., 2016). These computational systems are designed
to recognize patterns and solve complex problems through
learning from data, making them highly effective for tasks
such as image and speech recognition (Hinton et al., 2012),
predictive analytics (Liu et al., 2017) or many others (Sarva-
mangala and Kulkarni, 2022; Xu et al., 2020). By mimicking
the brain’s ability to process information and adapt through
experience, ANNs have revolutionized fields ranging from
computer vision to autonomous systems (Sarvamangala and
Kulkarni, 2022; Voulodimos et al., 2018), and their develop-
ment continues to drive forward the capabilities of machine
learning and artificial intelligence as a whole.

Despite their impressive capabilities, ANNs face signif-
icant challenges regarding interpretability. As ANNs grow
more complex, their decision-making processes become in-
creasingly opaque, often described as "black boxes" due to
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the difficulty in understanding how specific inputs are trans-
lated into outputs. This lack of transparency can be prob-
lematic in critical applications such as healthcare or finance,
where understanding the rationale behind decisions is cru-
cial for trust and accountability (Cohen et al., 2021; Tjoa and
Guan, 2021). Furthermore, the complexity of ANNs makes
it hard to find and fix biases in the models, which can lead to
unfair or harmful results. Addressing these interpretability
issues is essential to ensure that ANNs can be safely and
effectively integrated into high-stakes environments.

In response to the interpretability challenges of ANNSs,
the field of explainable artificial intelligence (XAI) has
grown substantially in the last decades. Numerous studies
have emerged aiming to demystify their inner workings
(Zhang et al., 2020; Pizarroso et al., 2022; Morala et al.,
2023). These studies represent critical strides toward making
neural networks more transparent and trustworthy, facil-
itating their adoption in fields where understanding and
accountability are paramount.

However, it is often the case where interpretability alone
is insufficient in some critical applications (Rudin, 2019).
Therefore, in some fields, it is a requisite to certify that the
model predictions align with some requirements imposed by
human experts (Cohen et al., 2021). Partial monotonicity
is an example where incorporating prior knowledge from
human experts into the model might sometimes be neces-
sary. For instance, in university admissions, it is reasonable
to expect that, all other variables being equal, an applicant
with a higher GPA should have a higher probability of
being accepted. If the model’s predictions do not follow this
monotonic relationship, it could lead to unfair and unethical
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admission decisions. For instance, an applicant with a 4.0
GPA being rejected while an applicant with a 3.0 GPA is
accepted, all other factors being equal, would be seen as
unfair and could indicate bias in the model.

Partial monotonicity also plays a key role in domains
such as healthcare, finance or criminal justice (Wang and
Gupta, 2020). In organ transplant allocation, for example,
policies often prioritize sicker patients with higher urgency
scores to receive transplants sooner (Iserson and Moskop,
2007), as is the case with the United States Transplant
Board (Bernstein, 2017). A model violating this principle,
by assigning lower transplant priority to a patient with higher
medical need, could result in unethical outcomes. Besides,
in criminal sentencing, many legal systems impose stricter
penalties on repeat offenders compared to first-time offend-
ers (Allen et al., 2016). A model used for risk assessment that
fails to respect this monotonic relationship could produce
recommendations that are legally and socially unacceptable.
Consequently, certified monotonic ML models allow users to
enforce such domain-specific monotonic constraints during
training, helping ensure that the model adheres to expected
input-output relations.

As a result, the training of partial monotonic ANNs has
become a prominent area of research in recent years. To
tackle this issue, two primary strategies have emerged (Liu
et al., 2020). First of all, there are some studies that enforce
monotonicity by means of a regularization term that guides
the ANNSs training towards a partial monotonic solution
(Sivaraman et al., 2020; Gupta et al., 2019; Monteiro et al.,
2022). However, these approaches verify monotonicity only
on a finite set of points, and hence none of the previous
studies can certify the enforcement of partial monotonic
constraints across all possible input values. Therefore, it
is necessary to use some external certification algorithm
after the training process to guarantee partial monotonicity.
Regarding this type of algorithm, few examples are found in
the literature (Liu et al., 2020; Polo-Molina et al., 2025). On
the other hand, some studies propose designing constrained
architectures that inherently ensure monotonicity (Runje and
Shankaranarayana, 2023; Daniels and Velikova, 2010; You
et al., 2017; Nolte et al., 2022). Although these methods
can guarantee partial monotonicity, they often come with
the trade-off of being overly restrictive or complex and
challenging to implement (Liu et al., 2020).

Even though some of the aforementioned methods can
lead up to certified partial monotonic ANNS, traditional
Multi-layer Perceptron (MLP) architectures still have signif-
icant difficulties with interpretability. The complex and often
opaque nature of the connections and weight adjustments
in MLPs makes it challenging to understand and predict
how inputs are being transformed into outputs. Therefore,
existing approaches to obtaining monotonic MLPs hardly
generate both interpretable and certified partial monotonic
ANNSs, often requiring post-hoc interpretability methods.

To address some of the aforementioned difficulties re-
lated to interpretability, a new ANN architecture, called
the Kolmogorov-Arnold Network (KAN), has been recently

proposed (Liu et al., 2024b). Unlike traditional MLPs, which
rely on the universal approximation theorem, KANs lever-
age the Kolmogorov-Arnold representation theorem. This
theorem states that any multivariate continuous function
can be decomposed into a finite combination of univariate
functions, enhancing the interpretability of the network.

However, the functions depicted by the Kolmogorov-
Arnold theorem can be non-smooth, even fractal, and may
not be learnable in practice (Liu et al., 2024b). Conse-
quently, a KAN with the width and depth proposed by
the Kolmogorov-Arnold theorem is often too simplistic in
practice to approximate any function arbitrarily well using
smooth splines.

Therefore, although the use of the Kolmogorov-Arnold

representation theorem for ANNs was already studied (Sprecher

and Draghici, 2002; K&ppen, 2002), the major breakthrough
occurred when Liu et al. (2024b) established the analogy
between MLPs and KANs. In MLPs, the notion of a layer
is clearly defined, and the model’s power comes from stack-
ing multiple layers to form deeper architectures. Similarly,
defining a KAN layer allows for the creation of deep KANs
through layer stacking, which significantly enhances the
model’s ability to capture increasingly complex functions.

Schematically, each KAN layer is composed of a set
of nodes, with each node connected to all preceding nodes
via activation functions on the edges. These univariate ac-
tivation functions are the components subjected to train-
ing. Then, the outputs of these activation functions are
aggregated to determine the node’s output. According to
(Liu et al., 2024b), this approach not only enhances in-
terpretability by allowing visualization of relationships be-
tween variables, but also demonstrates faster neural scaling
laws compared to MLPs due to its ability to decompose
complex functions into simpler ones. Additionally, it can
improve performance on numerous problems compared to
MLPs (Poeta et al., 2024; Xu et al., 2024).

Building on these advantages, this paper proposes a
novel KAN architecture called MonoKAN that forces the
resulting KAN to be certified partially monotonic across the
entire input space. To do so, while the original formulation
of KANs proposes the use of B-splines, this paper replaces
them with cubic Hermite splines and imposes constraints on
their coefficients to ensure monotonicity. This substitution
allows for more flexible and general imposition of monotonic
conditions. An intuitive rationale for this change is that,
while it is possible to achieve monotonicity with a com-
bination of B-splines within a specific interval, B-splines
are not inherently monotonic. In contrast, cubic Hermite
splines can be imposed to be monotonic naturally (Fritsch
and Carlson, 1980; Arandiga et al., 2022), making them a
more appropriate choice for ensuring the desired monotonic
properties in the MonoKAN architecture.

Therefore, MonoKAN enhances the capability of the
KAN framework by leveraging the intrinsic properties of
cubic Hermite splines to achieve certified partial monotonic-
ity. Consequently, the proposed MonoKAN architecture is
able to encompass both the enhanced interpretability that the

Page 2 of 18



MonoKAN: Certified Monotonic Kolmogorov-Arnold Network

KAN architecture presents with certified partial monotonic-
ity. To the authors’ knowledge, this is the first time that a
monotonic approach for a KAN has been proposed.

The paper is structured as follows: Section 2 presents
the KAN methodology that will be later used in Section 3
as the base to generate certified partial monotonic KANs.
Besides, in Section 4, the experiments and corresponding re-
sults are detailed, demonstrating that the proposed approach
surpasses the state-of-the-art methods in the majority of
the experiments. Moreover, in Section 5, the computational
complexity of the proposed method and the comparison with
the state-of-the-art models is presented. Lastly, the main
contributions are summarized in Section 6. Moreover, the
code of the proposed algorithm and the results are available
at https://github.com/alejandropolo/MonoKAN

2. Kolmogorov-Arnold Networks

As mentioned before, while Multi-Layer Perceptrons
(MLPs) draw their inspiration from the universal approxima-
tion theorem, our attention shifts to the Kolmogorov-Arnold
representation theorem.

The Kolmogorov-Arnold representation theorem states
that any multivariate continuous function can be expressed
as a finite sum of continuous functions of a single variable.
Specifically, for any function f : [0,1]" — R, there exist
univariate functions (;bq’p : [0,1] - R and (Dq TR >R
such that

f(x, %0, .00,X,

2n+1 n
)= <1>q< ¢q,,,(x,,)>. (1
p=1

q=1

The major breakthrough presented in (Liu et al., 2024b)
comes from recognizing the similarities between MLPs and
KAN. Just as MLPs increase their depth and expressiveness
by stacking multiple layers, KANs can similarly enhance
their predictive power through layer stacking once a KAN
layer is properly defined.

To understand this concept further, a KAN layer with n;,
inputs and n,,, outputs can be described as a matrix of 1D
functions

D= {d,,}

where ¢, ,(-) are functions parameterized by learnable coef-
ficients. Consequently, applying a KAN layer with n;, inputs
and n,,, outputs to an input x € R"in is defined through the
following action of the matrix of functions.

p=12my g=12-.n

out>

D(x) = (¢q’l’) 1<p<n;y, 1<q<ngy, ) (XP)ISpSnm
Nin
= 2 Pap(p) 4= 12,0 ngy.
p=1

Accordingly, the Kolmogorov-Arnold theorem (Eq. (1)) can
be represented within the KAN framework as a composition
of a KAN layer with n;; = nand n,,, = 2n + 1 and a KAN
layer with n;; = 2n+ 1 and n, = 1.

Given that all functions to be learned are univariate, we
can approximate each 1D function as a spline curve with

learnable coefficients. However, it is important to note that
the functions ¢, ,(-) specified by the Kolmogorov-Arnold
theorem are arbitrary. In practice, though, a specific class of
functions parameterized by a finite number of parameters is
typically used. This practical consideration justifies the need
of using more KAN layers than just the proposed by Eq. (1).

Adopting the notation from (Liu et al., 2024b), we define
the structure of a KAN as [ng, ny, ---, n; ], where n; denotes
the number of nodes in the /" layer. The i'" neuron in the /'
layer is represented by (/, i), and its activation value by x Lt
Between layer / and layer / + 1, there are n;n,,; activation
functions and the activation function connecting (/, i) and
(I + 1, ) is denoted by

d)l,j,i(')’ 1=0,-,L-1,
i:l’...,nl, j:l’...’nl+1.

The pre-activation input for ¢, ; ;(-) is x;;, while its post-
activation output is represented by X;;; = ¢ ;;(x;;).
Moreover, the activation value of the neuron (/ + 1, j) is then
calculated as the sum of all incoming post-activation values:

i i
Xpy1,; = z Xpji= Z G, J= L. (2)
i=1 i=1

Therefore, the KAN layer can be stated in its matrix form as

br110) &r120) b1, ()
Xipp = ¢’1,2:,1(‘) ¢’1,2:,2(‘) ¢l,2,:n,(') X, (3)
¢ls”1+|»1(') ¢17”1+|»2(') ¢ls”l+l7”l(‘)

~V~

@,

where ®; is the function matrix corresponding to the [th
KAN layer. Consequently, a KAN with L-layers can be
described as a composition of the function matrices @;,0 <
I < L, such that for a given input vector x € R"0, the output
of the KAN is:

KAN(X) = (@, _;0 -+ o o) (X).

3. MonoKAN

This section introduces the necessary theoretical devel-
opment and the proposed algorithm for generating a set
of sufficient conditions to ensure that a KAN is partially
monotonic w.r.t. a specific subset of input variables. First of
all, the concept of partial monotonicity will be explained,
as well as the way to ensure monotonicity in cubic Hermite
splines. Subsequently, the main theorem outlining the suffi-
cient conditions for a KAN to be partially monotonic will be
presented. Finally, the proposed algorithm to ensure that a
KAN meets these conditions will be described.
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3.1. Partial Monotonicity

To begin with, let us start by presenting the concept of
partial monotonicity. Intuitively, a function f : R" — R
is increasing (resp. decreasing) partially monotonic w.r.t the
pth input, with 1 < r < n, whenever the output increases
(decreases) if the ' input increases. Mathematically speak-
ing, a function f : R"” — R is increasing (resp. decreasing)
partially monotonic w.r.t. its 7 input if

FOxp, X x,) < fxg, ..

(resp. f(X1s oo Xpyoeny X)) 2 FX1, 00, X, X))
Therefore, f will be partially monotonic w.r.t. a subset of its
input variables {xil, ,xik} where 0 < k < n, if Eq. (4)
holds for each i; simultaneously with j € {1,..., k}.

,x;...,xn),Vx, Sx: 4)

3.2. Monotonic Cubic Hermite Splines

As mentioned before, each function to be learned in a
KAN layer is univariate, allowing for various parameter-
ization methods for each 1D function. While the original
formulation presented in (Liu et al., 2024b) employs B-
splines to approximate these univariate functions, in this
paper, it is proposed the use of cubic Hermite splines. The
advantage of cubic Hermite splines lies in the well-known
sufficient conditions for monotonicity (Fritsch and Carlson,
1980; Arandiga et al., 2022). Besides, for a sufficiently
smooth function and a fine enough grid, the resulting cubic
Hermite spline converges uniformly to the desired function
(Hall and Meyer, 1976).

A cubic Hermite spline, or cubic Hermite interpolator,
is a type of spline where each segment is a third-degree
polynomial defined by its values and first derivatives at the
endpoints of the interval it spans. Consequently, the spline
is C! continuous within the interval of definition.

To formally define a cubic Hermite spline, consider a
set of knots x, values y, and derivative values m; at each
of the knots x; given by X = {(x;,y.m) | V k €
I = {1,2,...,n}}. Then, the cubic Hermite spline p is a
set of n — 1 cubic polynomials such that, in each subinterval
I, =[xy, X411, it is verified that

px) =y, Vkel )
p'(xk) =m,Vkel.

Therefore, the above conditions ensure that the spline
matches both the function values and the slopes at each
data point. An intuitive example illustrating this behavior is
shown in Figure 1, where the spline passes through the knots
and aligns with the expected derivatives.

Furthermore, on each subinterval I, = [x;,x;,], the
cubic Hermite spline p can be expressed in its Hermite form
as

p(®) = hoo@yy + hyo(D)(Xp1 — XM+
hor D Ygg1 + A O — XMy,

x_—xkx and hgg, hyg, hgp, hyp are the Hermite
k+17
basis functions defined as follows

hoo(t) = 265 = 31% + 1,

where t =

—— Hermite Spline

Cubic Hermite Spline for the Knot Points (xy, yx, mi)
Gxe.
. m Slope

Tan Line xacya) .
bayn)
Wl 4 ‘
> 50ys)
05 wll
(xo. .

oof %

7 3

x

o 1 4 5

Figure 1: lllustration of a cubic Hermite spline. The spline
smoothly interpolates the function values while respecting the
slope (derivative) constraints at each knot.

hio(H) =1 =21 +1,
hoy () = =283 + 312,
h’ll(t) = t3 - t2.

Once the terminology of cubic Hermite splines has been
established, we now consider the conditions required for
the resulting spline to be monotonic as shown in Fritsch
and Carlson (1980). According to Eq. (5), to achieve an in-
creasing (resp. decreasing) monotonic cubic Hermite spline,
it is necessary that y, < y. ., V kK € I (tesp.y, 2>
Yis1> V i € I). Additionally, to ensure monotonicity, it is
clear that considering
d, = Yk+1 ~ J’k’

X1 — Xk
the slope of the secant line between two successive points
x; and x,,, then the derivative at each point within the
interval I, must match the sign of d; to maintain mono-
tonicity. Specifically, if d;, = 0, then both m; and m;,
must also be zero, as any other configuration would disrupt
monotonicity between x; and x;_ ;. These conditions, stated
in the following lemma, establish necessary conditions for a
cubic Hermite spline to be monotonic.

Lemma 1 (Necessary conditions for monotonicity, (Arandiga
et al., 2022, Theorem 1.1)). Let p; be an increasing (resp.
decreasing) monotone cubic Hermite spline of the data
X = {(xp, Vi M)y Xy 15 Yiew1> Myq1) Y such that the control
points verify that y,, <y, (resp. i > Yi1). Then

mg >0 and my; >0.
(resp. m <0 and my 4 < 0)
Moreover, if d;, = 0 then p, is monotone (in fact, constant)
ifand only if mj, = m;_; = 0.

For the more general case when d; # 0, Fritsch and
Carlson (1980) introduced the parameters a; and g, defined
as

my

a, .= —
k d.’
L M
B = —.
dy

These parameters provide the necessary framework for
establishing sufficient conditions for monotonicity.
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Lemma 2 (Sufficient conditions for monotonicity, (Fritsch
and Carlson, 1980, Lemma 2 and §4)). Let I; = [x;, X; 1]
be an interval between two knot points and p;, be a cubic Her-
mite spline of the data X = {(x;, yi, my), (X415 YView1» Mir1))
such that the control points verify that y, < y;, (resp.
Yk > Yiq1)- Then, the cubic Hermite spline p,_is increasingly
(resp. decreasingly) monotone on 1 if

my My
(xk2=—20, ﬂk'=_20
dy dy
m m
(resp. a = d_k <0, Py = LI;H < O)
k k

and
2 2
a, + B, 9.

By adhering to these conditions, one can ensure that
the cubic Hermite spline remains monotonic over its entire
domain.

3.3. Mathematical Certification of Partial
Monotonicity of a KAN

Having introduced the definition of partial monotonicity
and the necessary conditions for a cubic Hermite spline to
be monotonic, we now present the main theoretical result,
which provides a set of sufficient conditions for a KAN
to be certified partial monotonic. For simplicity, we will
assume that the KAN is partially monotonic with respect to
the " input. Therefore, when handling multiple monotonic
features, the same conditions applied to the # input will be
applied to each monotonic feature.

Recall that, according to Eq. (3), a KAN can be described
as a combination of univariate functions, parametrized in
this paper as cubic Hermite splines, followed by a multivari-
ate sum. Since a linear combination of monotonic functions
with positive coefficients is monotonic, and the composition
of monotonic functions is also monotonic (see Proposition
B.1), we propose constructing a partially monotonic KAN
by ensuring that each of the cubic Hermite splines in the
KAN is monotonic.

To achieve this, consider a KAN with n, = » inputs,
expected to be increasingly (decreasingly) partially mono-
tonic with respect to the * input, where 1 < r < n. Con-
sequently, to obtain an increasingly (decreasingly) partially
monotonic KAN with respect to the " input, it is sufficient
to ensure that the 1, activations originating from the # input
are increasingly (decreasingly) monotonic and that any of
the following neurons, where the output of the activation
functions generated by the '/ input is considered as part of
the input, must also be increasingly monotonic. This idea of
this procedure is illustrated in Figure 2, which provides an
example of a partial monotonic KAN.

On the other hand, as mentioned in (Liu et al., 2024b),
the activation value of the (I + 1, j) node is not computed
merely as a sum of spline outputs of the previous layer,
but rather as a combination of spline transformations and

Figure 2: Scheme of monotonic and non-monotonic connec-
tions of a partial monotonic KAN w.r.t the first input with
layers [n,2,3,1]

Go12(x)= 0, @(x) + 0fy 5 b2

Figure 3: lllustration of a simplified MonoKAN, partially
monotonic w.r.t. the first input, with two inputs and one
output. Each connection between neuron (I,i) and (I + 1,))
includes a cubic Hermite spline @,;, and a base activation b,
weighted respectively by oy . and w . The outputs of these
functions are summed to produce the flnal activation.

a standard activation function. Specifically, each activation
¢;j,; is defined as a linear combination of a spline ¢ ;;
and a base activation function b (e.g., Sigmoid or SiLU),
both evaluated at the pre-activation x; ;. This construction is
visually detailed in Figure 3, where the roles of q), i and
b, as well as their respective weights co . and a) | are

explicitly depicted. Therefore, Eq. (2) is transformed into:

n n
= Z il,j,i = Z ¢l,j,i(xl,i) =
i=1 i=1

X14+1,j
< (6
2( ICET b(x,,)) +0,;,
i=1
V.] = 19 i ’n[+]3
where »? L -and w ; are the weights associated respectively

with the spline functlon and the base activation function
connecting neuron (/, i) to neuron (! + 1, j). Moreover, 6, j
represents the bias added to neuron (/ + 1, j). Besides, each
spline @; j ; 1s given by the cubic Hermite spline of the data

—{(xljl,yljl )| V1< k < K} where K is the
number of knots.

ljl
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b o)
;and i areposmve and ¢, ; ; and

b are monotonic, for all 1 <i<n,1<j<nt!and
0 <1 < L — 1, then the resulting activation value func-
tion is also monotonic. Moreover, conditions established in
Lemma | and Lemma 2 give us an intuitive way of imposing
monotonicity for each of the splines ¢, ; ;.

Additionally, it is proposed that the cubic Hermite spline
is extended linearly outside the interval of the definition of
the spline I = [x!,xX], with slope m! to the left of x!
and slope mX to the right of xX. This linear extrapolation
ensures that each of the splines is C! continuous in R.
Moreover, it also guarantees that the splines are monotonic,
not just within the interval of definition, but in R. Hence,
the resulting KAN maintains monotonic consistency beyond
the data domain and thereby certifies the monotonicity of the
model across R".

This idea is presented in Theorem 3 that states the set
of sufficient conditions needed to guarantee partial mono-
tonicity of a KAN w.r.t the 7" input. A detailed glossary of
the notation used can be found in Appendix A. Moreover,
a complete proof of the above theorem can be found in
Appendix B.

Consequently, if w(pA

Theorem 3 (Certified Partial Monotonicity Conditions). Let
f : R" - R be a KAN composed of L layers and n

inputs, where each spline function is defined over a common

interval I = [x',xX] with K knots. For each layer 1, let

l . denote the spline value at knot k for the connection

from neuron i in layer | to neuron J in layer 1 + 1. Let

k+1 k+1
dlka = (yl;rl yljl)/( [;rl. - 1/1) be the difference
between the knot values, and let m* . . be the corresponding

I,J,t
spline slope at knot k. Denote by a) ; the weights
applied to the spline and the base acnvatton ﬁmctlon output,
respectively. Then, assuming the base activation function b
is monotonically increasing, the KAN f is certified increas-
ingly (respectively decreasingly) monotonic with respect to
the r'" input variable if the following conditions are satisfied
V1<k<LK:

and a)

Input layer conditions for increasing (resp. decreasing)
monotonicity with respect to the r'" input:
1. ¢ >0, a)

0,j,r 0,j,r
(non- negatlve welghts on input x,.)

k+1 k
2. yojr > yojr ie. do,j,r

k

d()jr <0)
3. Ifd"

flat mtervals )

k

4. If dy . > 0, thenmoj >

lfdojr<0 m g*j’lr<0)

2

5. Ifa'(’)C >0, then( 0”> + (ﬁg,j’r) <9 (sufficient

condition for monotonicity (Lemma 2))

> 0,0 <0)

> 0 (resp. ¢, > o =

k+1
> 0 (resp. yojr < yojr ie.
(monotonic spline values)

=0, thenmt =m*l =0

0 0 (zero slope at

0, ng;I, > 0 (resp.

(positive slopes)

Jor

Hidden layers (1 <[ < L — 1) increasing conditions:

6. coq’ >0, co ;20 (non-negative weights)

7. yf‘jll > yl/z (monotonic spline values)

8. Ifdlkj =0, then mlj ; mf‘;r} =0 (zero slope at flat
intervals)

9. Ifdk > 0, then m mk+l >0 (positive slopes at

1,j,i
non ﬂat intervals)
10. Ifdk > 0, then( <ﬂ1”> <9 (sufficient

condltlon for monotomctty (Lemma 2)).

Lastly, it is worth mentioning that the proposed method,
considering a linear combination with positive coefficients
of monotonic functions, could be seen as analogous to
(Archer and Wang, 1993), where a traditional MLP archi-
tecture with a ReLU activation function is constrained to
have positive weights. However, the constraint proposed
in (Archer and Wang, 1993) significantly reduces the ex-
pressive power as it forces the output function to be con-
vex (Liu et al., 2020). In contrast, MonoKAN is capable
of generating monotonic non-convex functions because it
leverages monotonic cubic Hermite splines, which allow for
flexible piecewise constructions and can model complex,
non-convex shapes.

3.4. MonoKAN Algorithm

Finally, we present the algorithm that guarantees a KAN
satisfies the sufficient conditions defined in Theorem 3,
thereby certifying the network as partially monotonic. To
enforce these constraints during training, we introduce a
clamping mechanism that adjusts the learned parameters
after each optimization step to ensure that the parameters
remain within the valid range.

Although implemented as simple bound enforcement
(i.e., clipping values to lie within predefined intervals), this
procedure is mathematically equivalent to a projection onto
a convex constraint set. As such, it can be interpreted as a
special case of Projected Gradient Descent (PGD), where the
projection ensures constraint satisfaction after each update
(Bubeck, 2015). This projection step is performed inde-
pendently of the gradient computation and does not alter
the optimizer’s internal state, making it compatible with
commonly used algorithms such as SGD and Adam.

Mathematically, consider f : R" — R, a KAN with L
layers, expected to be partially monotonic with respect to the

" input (1 < r < n). The sufficient conditions outlined in
Theorem 3 are enforced through the clamping mechanism
described in the applyCons Algorithm, which is applied at
every training epoch. As detailed in Section 3.3, clamping
must be applied to the spline activations directly influenced
by x, and the downstream layers. A full pseudocode imple-
mentation is provided in the MonoKAN Algorithm.

4. Experiments

To assess the practical applicability of the proposed
method, we divide our experimental analysis into two parts.
First, we present a case study based on a two-dimensional
setting from the ESL dataset (Ben-David et al., 1989),
intended to provide intuitive insight into the behavior of
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Algorithm 1 applyCons

Algorithm 2 MonoKAN Algorithm

Require: Parameters: 1-D arrays col(”, o a)}’ ; and 2-D arrays
Yy .mf L xk  with0 <k <K-—1.

Ensure: Adjusted parameters fulﬁlling sufficient condi-
tions from Theorem 3 for ith input of layer /.

I: a);” " a)}’,l. <« max(0, a) ) max(0, a)b )
2: for kinrange(K —1) do
3: yf“. - max(ka, ¥y, ;) {Impose that the sequence
of control pomts is 1ncreasmg}
k+1_ k
4: dk yl N yl S
. . k+1 k
hii N R
5. ifdf.  =0then
6: mk omktl 0
1,0 1,0
7:  else
8: mf‘ l.,m;‘ﬂ «— max <0, m;‘ i> ,max (0, mf”i)

{Impose positivity of the derivatives}

k
. k .,
% i dr
N
k+1
. k ml,:,[
10: ﬁl,:,i N
1,
e )2 0 \2
11: if <al,i> +<ﬂl,i) > O then
12: le, PP R—
g, 22
. k k .k
13: X TI,:,i &
. k kK
14: Br.i<v.. b,
15: mhk —ak . dk
1,0 1,0 100
) k+1 k. gk
16: mly e bdn
17: end if
18:  endif
19: end for

. @ b k k
20: return O @) 5V and m

MonoKAN and to illustrate the ethical importance of cer-
tified partial monotonicity. This case study aims to visually
analyze how unconstrained or partially constrained models
can produce unfair or counterintuitive predictions, motivat-
ing the need for strict monotonicity guarantees in certain
domains.

Next, we conduct a comprehensive set of experiments
across multiple benchmark datasets to evaluate MonoKAN’s
performance relative to existing state-of-the-art models. Al-
though no prior work has introduced a certified partial mono-
tonic Kolmogorov—Arnold Network, we compare against
leading monotonic MLP-based methods reported in the lit-
erature.

To ensure a fair and consistent comparison, we adopted
the experimental procedures established by Liu et al. (2020)
and Sivaraman et al. (2020), which are widely accepted in
the literature. Therefore, for each dataset, the experiments
were conducted three times to report the mean and the
standard deviation. Moreover, the dataset is divided using
a three-way split, where 80% of the data is used for training
and validation, and the remaining 20% for testing. Within

Require: KAN model f with L layers and K knots, max-
imum number of epochs max_epochs, index r of the
increasing (resp. decreasing) monotonic feature.

Ensure: Adjusted parameters of the KAN to fulfill suffi-
cient conditions from Theorem 3.

1: for epoch = 1 to max_epochs do

2 Compute loss: L < ComputeLoss(f)

3 Perform optimizer step: f < OptimizerStep(f, L)

4. for [ inrange(L) do

5

6

if/=0 then
C00(’12,;"’ 0,:,r ’yO ’ml(l, J -
applycons(a)o,:,r’ a)g,:,r’ y(]; r’ mg,: r’ X0 ”)
7 (resp. w(()p,:,r’ _wg,‘,r’ _yg, r’ ml(;,:,r <
applycons(w(()p,:,r’ _wg,:,r’ _ylé r’ _mé,:,r’ X0, J))
8: else
9: for iin range( l) do
10: wlp,:,i’ 1, ’yl l(:,r “«
applyCons(a)l,:,i, ?: i,yﬁ:’l,m;":’r, X0
11: end for
12: end if
13:  end for
14: end for

15: return Partial monotonic KAN w.r.t the r# input

the training portion, an additional 80%/20% split is used to
separate a validation set for early stopping. Consequently,
although we benchmark our results against the state-of-the-
art monotonic architectures (Nolte et al., 2022; Runje and
Shankaranarayana, 2023), we reran their experiments using
the methodology of Liu et al. (2020) and Sivaraman et al.
(2020). This approach ensures methodological consistency
and allows for a fair comparison across the different studies.
To support reproducibility and clarify the scope of our
evaluation, we have added Appendix C, which contains
detailed descriptions of all datasets used, including task type,
input dimensionality, number of monotonic features, and the
rationale behind the constraints applied. It is important to
note that the monotonic feature selection criteria were not
selected by the authors but are instead defined in the original
benchmark studies (Liu et al., 2020; Sivaraman et al., 2020).

All computations were carried out on a server equipped
with two Intel(R) Xeon(R) Platinum 8480C CPUs. Each
processor provides 56 physical cores and supports 2 threads
per core, resulting in a total of 224 hardware threads across
both sockets. The CPUs operate at a maximum clock speed
of 3.8 GHz. The system is also provisioned with approx-
imately 2.1 TB of RAM, ensuring sufficient memory for
all experimental workloads. Moreover, for GPU-accelerated
experiments, the server was provisioned with an NVIDIA
H200 GPU (driver version 550.90.07, CUDA 12.4). The
proposed code was developed based on the Pytorch frame-
work (Paszke et al., 2019). The results and the proposed
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MonoKAN code can be accessed on GitHub at https://
github.com/alejandropolo/MonoKAN.

4.1. Case Study: Visualizing Monotonicity and
Fairness in 2D Predictions

First of all, we consider the ESL dataset (Ben-David
et al., 1989), which is one of the benchmarks in the literature
of monotonic datasets (Cano et al., 2019). The dataset con-
sists of 488 records, each representing a job candidate eval-
uated for an industrial job. In particular, each of the records
contains four input features representing the candidate’s
scores from standardized psychometric tests conducted dur-
ing the assessment process. Besides, the output feature of the
dataset is the alignment between the candidate’s profile and
the job requirements.

Out of the four input variables, we decided to select the
first two input features to consider a two-dimensional case
study. Therefore, this 2D scenario serves as an ideal dataset
to assess and visualize the proposed method and how the
conditions presented in Theorem 3, lead to a certified partial
monotonic KAN. Moreover, we decided to transform the
output variable into a binary classification task by assigning
a value of 1 to candidates with a suitability score greater than
5, and O otherwise.

Given that the model’s output is used to select candi-
dates, ensuring fairness in the model’s predictions is essen-
tial. In particular, a fair model should reflect an increase in a
candidate’s predicted suitability for the job whenever there
is an improvement in any of the psychometric test scores,
assuming all other factors remain constant. Consequently,
penalizing candidates for demonstrating stronger competen-
cies undermines merit-based selection and can lead to un-
ethical outcomes (Hunter and Schmidt, 1976). Specifically,
a non-monotonic model may disadvantage more qualified
applicants, producing hiring decisions that appear arbitrary
or biased. Therefore, enforcing monotonicity with respect to
each of these input features is essential to ensure that the
model’s behavior aligns with fundamental fairness princi-
ples.

Moreover, an important characteristic of this dataset is
the uneven distribution of samples across the input space,
which results in sparse coverage in certain regions. Such
sparsity may lead unconstrained models to overfit or be-
have unreliably in less populated areas, producing erratic or
unintuitive predictions. This reinforces the relevance of in-
corporating certified monotonic constraints to ensure model
stability and trustworthy behavior.

To evaluate the impact of certified partial monotonicity
on model behavior and performance, we trained four variants
of KANs on the two-dimensional ESL dataset: an uncon-
strained KAN using the original B-splines, an unconstrained
KAN using the proposed cubic Hermite splines, a par-
tially constrained MonoKAN (monotonic with respect to the
first psychometric test), and a fully constrained MonoKAN
(monotonic with respect to both input features). Table 1
reports the training and test accuracy for all four models.
Notably, all models achieve nearly identical performance

Table 1
Accuracy on the ESL dataset under different monotonicity
constraints

Model Train Test
Unconstrained Hermite KAN 0.80 0.85
Unconstrained B-splines KAN 0.80 0.85

MonoKAN (1 feature monotonic) 0.79 0.85
MonoKAN (2 features monotonic) 0.79 0.85

on the training and test sets. This suggests that enforcing
monotonicity, whether partially or fully, does not appear
to compromise predictive accuracy in this setting, as ex-
ploratory data analysis supports a monotonic relationship
between inputs and outputs.

Although the accuracy scores across all four models are
nearly identical, the key distinction lies in the fairness and
monotonicity of their predictions, as illustrated in Figure 4.
Both unconstrained models (Figure 4 (a),(b)) displays sev-
eral violations of monotonicity: increasing the score in either
psychometric test 1 or test 2 can lead to a lower predicted
suitability score. For example, considering Figure 4 (a),
comparing the selected candidates A and B, we observe that
although candidate B has a higher score on psychometric test
1 and an equal score on test 2, the model assigns a higher
suitability score to candidate A, demonstrating a counter-
intuitive and unfair outcome. A similar issue is observed
between candidates A and C: both have the same score on
psychometric test 1, but candidate C has a higher score on
test 2, yet receives a lower prediction. The same behaviour
can be easily identified in the case of the unconstrained
KAN using the B-splines formulation. Consequently, these
instances reveal how unconstrained models may fail to up-
hold basic fairness expectations in high-stakes contexts such
as hiring.

On the other hand, the partially constrained model (Fig-
ure 4 (c¢)), which enforces monotonicity only with respect to
psychometric test 1, successfully eliminates violations along
that axis. However, it still produces irregularities with re-
spect to test 2. This is evident in the region around candidates
G and H, where higher values in test 2 still lead to lower
predicted outcomes, indicating that partial monotonicity is
insufficient when fairness must be guaranteed in all relevant
dimensions. In contrast, the fully constrained MonoKAN
model (Figure 4 (d) enforces certified monotonicity with
respect to both inputs, resulting in a smooth and consistent
decision surface. The model output increases as either psy-
chometric test score improves, ensuring alignment with eth-
ical expectations and eliminating unfair behaviors observed
in the other configurations.

To better illustrate these monotonicity violations at a
finer granularity, Figure 5 presents one-dimensional slices
of the prediction’s surface of each of the aforementioned
trained models, fixing one input while varying the other
along the minimum and the maximum value of the dataset.
These plots directly correspond to the candidate compar-
isons highlighted in Figure 4, allowing us to isolate how
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Figure 4: Contour plots of model outputs over the 2D input space (psychometric test 1 vs. psychometric test 2) for (a)
unconstrained cubic Hermite KAN, (b) unconstrained B-spline KAN, (c) partially constrained MonoKAN (monotonic with respect
to the first psychometric test), and (d) fully constrained MonoKAN. In (a) and (b), the model exhibits several violations of
monotonicity, as highlighted by candidate comparisons (e.g., A vs. B, and A vs. C), where improved input scores lead to lower
predicted suitability. In (c), monotonicity is enforced only along test 1, improving consistency along that axis but still allowing
irregularities along test 2 (G vs H). In (d), full monotonicity constraints result in a smooth, fair decision surface aligned with
ethical expectations.
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Figure 5: One-dimensional slices of the model outputs across psychometric test 1 and test 2, with the complementary variable
fixed at 0.4, to visualize local monotonicity violations. Each row corresponds to a different model architecture: (a, b) unconstrained
cubic Hermite KAN, (c, d) unconstrained B-spline KAN, (e, f) partially constrained MonoKAN (monotonic with respect to the
first psychometric test), and (g, h) fully constrained MonoKAN. Red dots highlight specific counterexamples (e.g., A vs. B, D
vs. E, G vs. H) where increasing an input leads to a decrease in the predicted output, violating monotonicity. These examples
are consistent with the patterns observed in the contour plots of Figure 4, providing further evidence of undesirable behaviors
in unconstrained models. Notably, all violations are eliminated in the fully constrained MonoKAN (g, h), confirming its certified
monotonic behavior across both input dimensions.

model predictions behave along each axis. For instance, in occur when psychometric test 1 is varied (Figure 5(e)),
Figures 5(a)-(d), clear local drops in predicted suitability as constraints are imposed along this dimension. However,
are observed when increasing one psychometric test score when psychometric test 2 is varied (Figure 5(f)), the model

while holding the other fixed, confirming the violations high- still exhibits non-monotonic behavior, e.g., a drop between
lighted in the contour plots. These non-monotonic trends are ~ points G and H, highlighting that enforcing monotonicity in
particularly evident around points A-B or A-C and D-E, D- only one input dimension may be insufficient in fairness-
F, emphasizing the ethical risks of using unconstrained mod- critical applications. Finally, these irregularities are fully

els. In the partially constrained MonoKAN model, shown in eliminated in Figures 5(g)—(h), where the fully constrained
Figures 5(e)—(f), we observe that no monotonicity violations MonoKAN produces strictly non-decreasing outputs along
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both inputs. This further supports the effectiveness of cer-
tified monotonicity in enforcing reliable and interpretable
model behavior.

Finally, to understand how these behaviors emerge, Fig-
ure 6 shows the learned spline activations for each neuron.
In both unconstrained models, the spline activations exhibit
local non-monotonicities that contribute to the counterintu-
itive predictions. These irregularities are partially corrected
in the partially constrained model, and fully eliminated in
the certified MonoKAN, where all activations conform to
the required monotonicity constraints.

* *
J
/‘\

J

¢ o b
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L

Figure 6: Spline activation functions learned by the three mod-
els: (a) unconstrained cubic Hemite KAN, (b) unconstrained
B-spline KAN, (c) partially constrained MonoKAN (monotonic
with respect to psychometric test 1), and (c) fully constrained
MonoKAN (monotonic with respect to both input features).
The black curves represent the learned univariate spline activa-
tions. The unconstrained model exhibits non-monotonic shapes
while the partially constrained model exhibits non-monotonic
spline activations in the second input feature. Finally, in the
certified monotonic MonoKAN all activations follow monotonic
patterns.

4.2. Benchmarking MonoKAN Against
State-of-the-Art Algorithms

After the illustrative example presented in the previous
section, we now evaluate the performance of the proposed
algorithm on several real-world datasets. In the initial set
of experiments, we used the following datasets proposed
by (Liu et al.,, 2020): COMPAS (Angwin et al., 2016),
a classification dataset containing 6,172 records and 13
features, including 4 features labeled as monotonic; Blog

Feedback Regression (Buza, 2014), a high-dimensional re-
gression dataset with 54,270 samples and 276 features, 8
of which are designated monotonic; and Loan Defaulter, a
large-scale classification dataset with nearly half a million
records and 28 features, including 5 monotonic ones 0
Therefore, the aforementioned datasets enable a realistic
evaluation of MonoKAN in real-world, large-scale scenarios
that involve high-dimensional feature spaces.

Moreover, following the approach described in (Nolte
et al., 2022), we evaluated both MonoKAN and the Expres-
sive Monotonic Network using two configurations: one with
the full set of input features and another with a reduced
subset selected via Ridge regression. In the reduced setup,
we trained a Ridge model and selected the top 20 features
for the Blog Feedback dataset and the top 15 for the Loan
Defaulter dataset, based on the absolute value of the learned
coefficients. For each model, we reported the results corre-
sponding to the best-performing configuration.

To improve clarity and reproducibility, we have added
Appendix C, which provides detailed descriptions of each
dataset, including task type, number of features, number of
monotonic constraints, and the rationale behind the mono-
tonic assignments. Besides, it is important to note that the
monotonic features, described in Appendix C, were defined
according to the original benchmark specifications and were
not determined by the authors.

On the other hand, for the second set of experiments,
we employed datasets specified by Sivaraman et al. (2020):
the Auto MPG dataset !, which is a regression dataset
with 3 monotonic features and is one of the benchmarks
in the literature (Cano et al., 2019), and the Heart Disease
dataset 2, which is a classification dataset featuring two
monotonic variables. The results obtained are going to be
compared with COMET (Sivaraman et al., 2020), Min-Max
Net (Daniels and Velikova, 2010), Deep Lattice Network
(You et al., 2017), Constrained Monotonic Networks (Runje
and Shankaranarayana, 2023) and (Nolte et al., 2022).

4.2.1. Results

The obtained results after performing the experiments
are summarized in Tables 2 and 3. As observed, the results
obtained by the proposed MonoKAN outperform the state-
of-the-art in four out of five datasets, while in the remaining
experiment, our method equals the best option.

When considering the number of parameters for each
model, KAN remains competitive compared to most of the
approaches proposed in the literature. However, in cases
where the number of input variables is substantial, KAN
exhibits a higher parameter count than some approaches.
This increase in parameters for datasets with numerous
inputs is due to KAN’s architecture, which generates at least
one spline in the first layer for each input. Consequently,
the model complexity and the number of parameters grow

Ohttps://www.kaggle.com/datasets/wordsforthewise/lending-
club/code

Thttps://archive.ics.uci.edu/dataset/9/auto+mpg

Zhttps://archive.ics.uci.edu/dataset/45/heart+disease
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Figure 7: Spline activations of a trained decreasing partial
monotonic MonoKAN w.r.t the input variables x,,x; and x,
using the Auto MPG dataset.

proportionally with the number of input variables, impacting
the overall efficiency and computational requirements of
KANSs for datasets with a large number of variables.

On the other hand, it is important to note that MonoKAN
inherits all the additional advantages of using KAN archi-
tectures compared with traditional MLPs described in the
introduction, especially its enhanced interpretability aris-
ing from being easier to visualize. For instance, in Figure
7, we can observe a trained MonoKAN model using the
Auto MPG dataset. This illustration highlights the specific
relationships between each input variable and the output,
demonstrating the certified decreasing partial monotonicity
concerning input variables x,, x5, and x,. The visualization
effectively showcases how the MonoKAN model maintains
monotonic behavior w.r.t these selected features. This is
crucial for understanding and verifying the model’s adher-
ence to monotonic constraints, which can be essential for
applications requiring reliable and interpretable predictions.
Additionally, MonoKAN provides insight into the model’s
behavior and performance, allowing for a deeper analysis of
the variable interactions and their impact on the output.

5. Computational Implementation Details

This section provides a detailed analysis of the com-
putational characteristics of the proposed MonoKAN ar-
chitecture, including parameter complexity, memory usage,
runtime behavior, and scalability considerations.

To begin with, regarding parameter complexity, a KAN
with depth L and width N requires O(N?L(G + k)) param-
eters, where G represents the number of spline grid points

and k is the spline degree (Liu et al., 2024a; Kundu et al.,
2024). In our proposed MonoKAN framework, we utilize
cubic Hermite splines resulting in a parameter complexity of
O(N?LQ2G)), reamining comparable with the original KAN
formulation. Hence, switching from B-splines to Hermite
splines does not introduce significant differences in parame-
ter complexity.

In comparison, a conventional MLP with the same ar-
chitecture would require O(N 2L parameters (Kundu et al.,
2024). Although this suggests that KANs and MonoKAN
introduce an increase in parameter count, empirical studies
show that KANs often require half the number of parameters
than MLPs to achieve comparable performance (Liu et al.,
2024b; Tran et al., 2024). This efficiency stems from the
greater expressiveness of spline-based activations, which
allows KAN-based models to achieve similar or better per-
formance with reduced depth or width.

However, a key challenge in KANS is their dense con-
nectivity: for a KAN model with » input features and a
first hidden layer with n; neurons, the network must learn
n - n; univariate spline functions in the first layer, since
each input is connected to every neuron through a sepa-
rate spline. Therefore, this formulation can be inefficient in
high-dimensional settings. To address this, sparse activation
schemes have been proposed, where each neuron connects
to only a subset of input features, thereby reducing the
number of spline modules and memory overhead (Liu et al.,
2024a). Furthermore, MultKAN (Liu et al., 2024a), a newly
proposed implementation of KAN, demonstrates that mem-
ory usage can be reduced from O(LN 2G) to O(LNG) by
eliminating unnecessary input expansions, an optimization
strategy that could be incorporated into MonoKAN in future
work.

On the other hand, in terms of runtime, KANs tend
to be slower than MLPs, despite using fewer parameters.
This is largely due to the computational cost associated
with evaluating and optimizing spline functions. Prior work
reports training time slowdowns ranging from 6.5x to over
100x relative to MLPs (Tran et al., 2024; Kundu et al., 2024).
However, recent developments have significantly narrowed
this gap. In particular, the introduction of MultKAN (Liu
et al., 2024a) has improved runtime efficiency, achieving
training speeds only 3.5x slower than MLPs. Further opti-
mizations such as GPU-compatible implementations have
enabled orders-of-magnitude speedups, reducing training
from hours to seconds (Liu et al., 2024a). In this study, some
of these advances, such as leveraging GPU computations,
have been implemented. However, not all advances have
been considered, as further optimizing KAN runtime is out
of the scope of the paper.

While runtime efficiency remains a broader challenge for
KAN-based architectures compared to MLPs, it is impor-
tant to emphasize that the addition of certified monotonic
constraints in MonoKAN introduces only minimal overhead
relative to the standard KAN. In particular, the proposed
constraints are enforced through lightweight projection op-
erations on the network parameters as the projection is done
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Method COMPAS Blog Feedback Loan Defaulter
etho

Parameters Test Acc Parameters RMSE Parameters Test Acc
Isotonic N.A. 67.6% N.A. 0.203 N.A. 62.1%

XGBoost (Chen and Guestrin, 2016)

Crystal (Milani Fard et al., 2016)

DLN (You et al., 2017)

Min-Max Net (Daniels and Velikova, 2010)
Non-Neg-DNN

Certified (Liu et al., 2020)

Constrained (Runje and Shankaranarayana, 2023)
Expressive (Nolte et al., 2022)

MonoKAN

Table 2

N.A. 68.5% + 0.1%
25840 66.3% =+ 0.1%
31403 67.9% =+ 0.3%
42000 67.8% + 0.1%
23112 67.3% + 0.9%
23112 68.8% =+ 0.2%

2317 65.3% =+ 0.0%

37 68.7% + 0.0%

4101 69.0% =+ 0.0%

N.A. 0.176 + 0.005
15840 0.164 + 0.002
27903 0.161 + 0.001
27700 0.163 + 0.001

8492 0.168 + 0.001

8492 0.158 + 0.001

1101 0.156 + 0.001

177 0.158! + 0.003

8546 0.155! + 0.0

Comparison of the proposed MonoKAN with the state-of-the-art certified partial monotonic MLPs.

N.A. 63.7% + 0.1%
16940 65.0% + 0.1%
29949 65.1% + 0.2%
29000 64.9% + 0.1%

8502 65.1% + 0.1%

8502 65.2% + 0.1%

577 65.0% + 0.0%
753 65.3% + 0.0 %
1926 65.3%' + 0.1 %

! Following (Nolte et al., 2022), we apply Ridge regression-based feature selection, using the top 20 features for Blog Feedback and top 15

for Loan Defaulter

Method Auto MPG |Heart Disease
MSE Test Acc
Min-Max Net (Daniels and Velikova, 2010) 10.14 + 1.54| 0.75 + 0.04
DLN (You et al., 2017) 13.34 + 2.42| 0.86 + 0.02
COMET (Sivaraman et al., 2020) 8.81 +1.81 | 0.86 + 0.03
Constrained (Runje and Shankaranarayana, 2023) || 9.05 + 0.25 | 0.86 + 0.01
Expressive (Nolte et al., 2022) 6.23 + 0.50 | 0.81 +0.03
MonoKAN 6.18 + 0.02 | 0.89 + 0.00

Table 3

Comparison of the proposed MonoKAN with the state-of-the-art certified partial monotonic MLPs.

using PyTorch clamping function (Paszke et al., 2019). This
operation scales linearly with the number of parameters and
has no significant impact at training time. Consequently,
MonoKAN achieves certified partial monotonicity while
preserving the computational efficiency of its underlying
architecture.

To validate this claim, we conducted a runtime analysis
comparing the training time of MonoKAN, the proposed
cubic Hermite-based KAN (HermiteKAN), and the original
B-spline-based KAN across a wide range of network sizes
and depths. As shown in Figure 8, MonoKAN introduces
only a marginal increase in training time over Hermite KAN,
while both remain substantially more efficient than the origi-
nal B-spline formulation. For instance, even at higher model
sizes with four hidden layers and over 2,000 parameters,
MonoKAN’s mean training time per epoch remains below
0.05 seconds, showing a consistent runtime advantage over
the B-spline KAN, which can exceed 0.06 seconds. These
results empirically confirm that the introduction of mono-
tonic constraints has minimal impact on training efficiency
when using cubic Hermite splines and that the computational

overhead is negligible relative to the gains in certified mono-
tonicity and fairness.

Additionally, considering the comparison against the
baselines of certified monotonic algorithms, MonoKAN of-
fers a practical and scalable alternative. In contrast to prior
approaches such as Certified Monotonic Neural Networks
(Liu et al., 2020), which rely on Mixed Integer Linear
Programming (MILP) solvers for post-hoc verification, and
Counterexample-Guided Monotonic Networks (Sivaraman
et al., 2020), which leverage Satisfiability Modulo Theories
(SMT) solvers to identify violations, our method avoids
solving expensive combinatorial problems. For instance, the
MILP-based method proposed by (Liu et al., 2020) trans-
forms the monotonicity verification task into an NP opti-
mization problem where each neuron’s activation must be
modeled by binary variables, leading to exponential worst-
case complexity in the number of neurons and layers (e.g.,

o (221L=1 & ) for a ReLU network with L layers). To mitigate
intractability in deep architectures, (Liu et al., 2020) pro-
poses to enforce monotonicity layer-wise, but this restricts

the function class to compositions of monotonic functions,
limiting expressiveness.
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Training Time vs Model Size by Layers, Hermite, and Monotonicity
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Figure 8: Mean training time per epoch (in seconds) as a function of model size, measured by number of parameters, across
networks with 2, 3, and 4 hidden layers. We compare the original B-spline KAN, HermiteKAN (a non-monotonic version using
the proposed cubic Hermite splines), and MonoKAN (HermiteKAN with certified monotonicity constraints). Results are averaged
over 5 runs with standard deviation shown as error bars. MonoKAN introduces minimal overhead relative to HermiteKAN, and
both remain substantially more efficient than the original B-spline KAN across all tested configurations.

Similarly, the SMT-based approach proposed by (Sivara-
man et al., 2020) iteratively searches for monotonicity vio-
lations by formulating logical queries over network outputs.
When violations are found, the corresponding counterexam-
ples are injected into the training data with modified targets
to steer the model towards monotonicity. Consequently, this
process requires repeatedly querying SMT solvers and re-
training the network, resulting in substantial computational
overhead. Besides, both methods are also limited to piece-
wise linear activation functions such as ReLU, and their
reliance on solver-based iterations makes them difficult to
scale or extend.

In contrast, MonoKAN achieves certified monotonic-
ity directly by design, using simple and efficient clamping
operations during training, which scale linearly with the
number of parameters. Furthermore, unlike MILP or SMT-
based methods, which are tailored for ReLLU activations
and cannot be easily extended to other types of networks,
MonoKAN supports a broader range of activation functions,
broadening its applicability. Besides, our approach requires
no additional verification steps or post-training adjustments,
making it more efficient and readily deployable in practical
applications.

Finally, to complement the theoretical comparison, we
also performed an empirical evaluation of training time per
epoch to benchmark MonoKAN against the most recent
state-of-the-art monotonic models: Constrained Monotonic
Networks (Runje and Shankaranarayana, 2023) and Expres-
sive Monotonic Networks (Nolte et al., 2022). As reported
in Table 4, MonoKAN achieves superior or equal predictive
performance on all three benchmark datasets while main-
taining comparable training times. In particular, MonoKAN
trains significantly faster than the Expressive method on
the COMPAS dataset, and remains comparable on the Loan

Defaulter and Blog Feedback datasets. MonoKAN also out-
performs Constrained Networks in terms of runtime in the
Loan Defaulter dataset and offers better performance in all
three tasks. These results support our claim that MonoKAN
achieves certified monotonicity without compromising effi-
ciency, and highlight its practical suitability for real-world
applications.

6. Conclusion

This paper proposes a novel artificial neural network
(ANN) architecture called MonoKAN, which is based on
the Kolmogorov-Arnold Network (KAN). MonoKAN is de-
signed to certify partial monotonicity across the entire input
space, not just within the domain of the training data, while
enhancing interpretability. To achieve this, we replace the
B-splines, proposed in the original formulation of KAN,
with cubic Hermite splines, which offer well-established
conditions for monotonicity and can uniformly approximate
sufficiently smooth functions. Our experiments demonstrate
that MonoKAN consistently outperforms existing state-of-
the-art methods in terms of performance metrics. Moreover,
it retains the interpretability benefits of KANs, enabling ef-
fective visualization of model behavior. This combination of
interpretability and certified partial monotonicity addresses
a crucial need for more trustworthy and explainable Al
models.

Future research will focus on extending the architecture
to splines of arbitrary degrees and investigating the effects of
pruning, a key characteristic of KANs. Moreover, following
the advances presented in (Liu et al., 2024a), we aim to
explore the integration of sparse activation mechanisms and
shared spline modules into MonoKAN. These enhancements
could significantly reduce memory usage and training time,
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Blog Feedback Loan Defaulter

Method ‘ COMPAS

Params Acc

Time (s)[|Params

RMSE Time (s)[[Params Acc Time (s)

Constrained (Runje and Shankaranarayana, 2023)
Expressive (Nolte et al., 2022)
MonoKAN

Table 4

2317| 65.3% + 0.0] 31.80 + 2.9 1101| 0.156 + 0.0| 233.44 + 15.1 577| 65.0% + 0.0/163.59 + 2.6
37| 68.7% + 0.0/101.87 + 0.9 177| 0.158 + 0.0
4101]69.0% + 0.0| 48.96 + 4.0 8546(0.155' + 0.0|526.55 + 177.0 1926(65.3%' + 0.1{101.87 + 0.9

396.34 + 0.4 753| 65.3% + 0.0| 91.7 + 12.9

Comparison of MonoKAN with state-of-the-art certified partial monotonic MLPs. Each “Time" cell reports the mean and the

standard deviation of training time per execution (in seconds).

making MonoKAN more scalable in high-dimensional set-
tings without compromising its certified monotonicity guar-
antees. Additionally, we plan to explore whether the certified
monotonicity constraints enforced by MonoKAN lead to
more stable or interpretable results when evaluated with
post-hoc attribution methods such as SHAP or Integrated
Gradients, in order to further validate its utility in high-
stakes, trust-sensitive applications. Finally, we acknowledge
that in other domains, a more relaxed form of constraint (e.g.,
via an e-tolerant monotonicity margin) may be desirable to
balance interpretability with flexibility. To address such sce-
narios, we include as future work an extension of MonoKAN
to support approximate monotonicity when full constraint
enforcement is not strictly required.
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A. Symbol Glossary for Theorem 3

To support the readability of Theorem 3, in this appendix
we provide a detailed glossary of the mathematical symbols
used throughout the monotonicity conditions. To this matter,
Table 5 summarizes the key notation, including the indexing
conventions for network layers, neurons, spline knots, and
the associated weights and parameters. The definitions are
consistent across all layers of the KAN architecture and are
referenced throughout the theoretical results.

Symbol Meaning

L Total number of network layers

1 Layer index, 0 <I <L -1

I =[x',xX] Spline definition interval

K Number of spline knots in the interval
of definition

n, Number of neurons in the I'" layer

Ny Number of neurons in the (I + 1)
layer

i Neuron index in layer I, 1 <i < n,

Jj Neuron index in layer I +1, 1 < j <
US|

() i neuron in the layer I

(I+1,) j™ neuron in the layer I + 1

r Index of input variable with imposed
monotonicity

@1, Spline activation connecting the (I, i)-

neuron and the (I + 1, j)-neuron
b(-) Base activation function (e.g. Sig-
moid, Tanh, etc.)

f/‘,i Weight on spline activation connect-
ing the (I, i)-neuron and the (I + 1, j)-
neuron

}’W. Weight on base activation function
connecting the (I,i)-neuron and the
(I + 1, j)-neuron

k Spline knot index, 1 £k <K
y;"jyi Spline value at knot k
dl‘fj’,. Knot difference: (yf;'f - yfj’i)/(x;‘,;,! -
Xps
;‘,N_ Spline slope at knot k
al"’j’i Norm. slope: m* /d*
B, Norm. slope: m¥*+! /d*+!
Table 5

Glossary of symbols used in Theorem 3.

B. Proof of Theorem 3

This appendix presents a proof of Theorem 3 that states
a sufficient condition for a Kolmogorov Arnold Network
(KAN) to be partially monotonic. First of all, let us start by
presenting a proposition that states that the composition of
univariate monotonic function is also monotonic.

Proposition B.1. Let f : R > Rand g : R - R be two
continuous functions. Then

1. gof is increasingly monotonic if both f and g are
increasingly monotonic.
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2. gof is decreasingly monotonic if f is decreasingly
monotonic and g is increasingly monotonic.

Proof.

1. Assume f and g are increasingly monotonic. By def-
inition, V x;,x, € R such that x; < x,, we have
f(x)) < f(x) and g(yy) < () ¥ y1.¥; € R with
¥1 £ »,. Therefore, consider any x;, x, € R such that
x1 £ x,. Then,

f(xl) < f(x2)~

Applying g to both sides, since g is increasing, we get

g(f(xp) < g(f(x2)).

Thus, go f is increasingly monotonic.

2. Assume f is decreasingly monotonic and g is increas-
ingly monotonic. By definition, V x;,x, € R with
x; < X, we have f(x;) > f(x,) and g(y)) < g(3,)
V y1,¥, € R with y; < y,. Consider any x;,x, € R
such that x; < x,. Then,

S(xq) = f(xp).

Applying g to both sides, since g is increasing, we get

g(f(x) 2 g(f (x2)).
Thus, go f is decreasingly monotonic.
O

Consequently, to obtain a KAN that is increasingly (resp.
decreasingly) partially monotonic with respect to the r”
input, it is sufficient to ensure that the n; activations from
the '/ input in the first layer are increasingly (decreasingly)
monotonic and that for the rest of the nodes from the follow-
ing layers, where the activation function outputs generated
by the ' input are considered part of the input, are also
increasingly monotonic. Therefore, according to the above
proposition, the KAN would be increasingly (decreasingly)
partially monotonic. Considering this idea, it is obtained
Theorem B.2 that gives a sufficient condition for a KAN to
be partially monotonic.

Theorem B.2. Given f : R" — R a KAN with L layers and
K knots in the interval of definition T = [x!, xK], then if the
basis function b is increasingly monotonic and the following
conditions are met.

1. o >0, a)b 20,(resp.a)q’, >0, a)b <0)
0.j.r 0.j.r 0.j.r

0.j.r
2. ygjlr > y()]r’ ie. d(’)"jyr > 0, (resp. yg"j'lr < yojr ie.
d(’)‘]r <0)
3. zfdk,”—o mojr—mg':lr 0,
4. lde/r > 0, méjr mé“;lr > 0, (resp. lfdojr <
0, mojr ](;J;lr 0)
5.ifdf, >0, (0”) (ﬂo’”> <9,

6 l >0, a) >0,
i = Ljsi
k+1 k
7. Vi _ylj’l., Le. a’l’j >0,
k  _ o k+1 _
8. ’fdljl 0, my == 0,
k k+1
9. l‘fdljl mljl mljlzo’
10 ifdf, >0, ( 1,1> (ﬁ,”) <9,
mk k+1
where a* . = ”’ ﬂ 1= ”'and1<l<L—1V1<
Lji * Lji * dk+1

k<K-1,1< i 5 nl,l <j< nl“, then f is increasingly
(resp. decreasingly) partially monotonic w.r.t the r'" input

Proof. Let us prove the theorem by induction over the
number of layers of the KAN. Without loss of generality,
we will consider the case of increasing monotonicity. The
case for decreasing monotonicity is followed by analogous
arguments.

Base Case (n = 1)

Suppose that f : R” — R is a KAN with 1 layer such
that the KAN’s structure is [n, 1]. Therefore, by Eq. (6),

K

y=rf(Xxy) = Z (a)g’l’i “ ®0.1.:(x0,) + wg’lgi . b(xO,i)> + 6y

i=1

Considering conditions (1) — (5) and Lemma | and Lemma
2, then it is clear that ®o.1.r is monotone. Additionally, the
proposed linear extrapolation of the cubic Hermite spline,
with slopes m! to the left of x! and mX to the right of xX,
ensures that the spline ¢ ; . is C ! continuous and monotonic
across R, not just within the data domain. Therefore, the
linear combination of these monotonic functions, with posi-
tive coefficients, remains monotonic, and the composition of
monotonic functions is also monotonic (by Proposition B.1).
Thus, f is partially monotonic with respect to the #”* input
across R”.

Induction Step. Suppose true the result for / layers and
let us prove it for the (I + 1)/" layer.

Considering a KAN f : R”
[n,...,n', n'*! = 1]. Then by Eq. (6),

— R with structure

n

=100 =Y (),

i=1

(pllt(xlz)+w b(xlz)>+91,l'

By conditions (6) — (10) and Lemma 1 and Lemma 2, ¢, ; ;
is monotone V 1 < i < n. Moreover, as x;; is obtained
from the input x, as a KAN with structure [n, ...,n/"!, 1]
which satisfies all the hypothesis of the Theorem, then, by
the induction hypothesis, x, ; is partially monotone w.r.t. the
" input. Therefore, considering Proposition B.1 and the
same reasoning as in the base case, f is partially monotone

w.r.t. the " input across R”. O

C. Dataset Descriptions

This appendix provides a detailed overview of the datasets
used in our experiments. For each dataset, we specify
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Table 6
Summary of datasets used in the experiments

Dataset Task Feature Dim. Mono Features Train/Validation/Test Size
COMPAS Classification 13 4 3949 / 988 / 1235
Blog Feedback Regression 276 8 37841 / 9461 / 6968
Loan Defaulter  Classification 28 5 334957 / 83740 / 70212
Auto MPG Regression 8 3 250 / 79 / 80

Heart Disease  Classification 13 2 193 /49 / 61

the task type, input dimensionality, number of monotonic
features, and the size of the training and test sets.

COMPAS: The COMPAS dataset (Angwin et al., 2016)
contains criminal history and demographic information for
6,172 individuals arrested in Florida. The objective is to pre-
dict the likelihood of recidivism within two years, based on
13 input features, which is modeled as a binary classification
problem. To reflect ethical considerations, monotonicity is
enforced with respect to four features that indicate criminal
history: number of prior adult convictions, number of juve-
nile felonies, number of juvenile misdemeanors, and num-
ber of other convictions. Higher values for these variables
should correspond to an increased predicted risk.

Blog Feedback: The Blog Feedback dataset (Buza,
2014) includes over 54,000 examples derived from blog
posts, with the goal of predicting the number of comments
a post will receive in the 24 hours following publication.
Each sample consists of 276 features extracted from the post
metadata and publication context. Eight of these features
(AS51, A52, A53, A54, A56, A57, A58, and A59) are
expected to be monotonically non-decreasing with the target
variable. Following common practice, we filter out extreme
outliers by removing samples with targets above the 90th
percentile to improve robustness to skewed error metrics
such as MSE.

Loan Defaulter:*> Based on publicly available lending
data covering loans issued between 2007 and 2015, this
dataset includes 488,909 entries with 28 input features.
These features span credit history, income data, and loan
status details. The task is to predict whether a borrower
will default. Monotonicity constraints are imposed on a
subset of features with strong financial interpretation: the
model should predict increasing default probability with
more public bankruptcies and higher debt-to-income ratio,
and decreasing default probability with higher credit scores,
longer employment history, and greater annual income.

Auto MPG:* This dataset includes fuel efficiency data
for various car models. The prediction task is to estimate
miles-per-gallon (MPG), framed as a regression problem.
The input consists of 8 features, including engine and vehicle
specifications. Monotonicity is enforced for three attributes:
weight, horsepower, and displacement, all of which are

3https://www.kaggle.com/datasets/wordsforthewise/lending-
club/code
“https://archive.ics.uci.edu/dataset/9/auto+mpg

assumed to be negatively correlated with MPG due to me-
chanical and energy-efficiency constraints. The dataset is
sourced from the UCI Machine Learning Repository.

Heart Disease: > The Heart Disease dataset contains
303 patient records with 13 medical features. The task is
to classify the presence or absence of heart disease. Based
on medical rationale, monotonicity constraints are applied to
two input variables: trestbps and cholesterol. Higher values
for these features are assumed to increase the risk of heart
disease, and the model is designed to reflect this domain
knowledge
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