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Abstract: Eco-driving is one of the most promising methods to reduce the energy 

consumption of existing railways. Considering the practical situation in complex 

railway lines, this paper proposes a new multi-objective searching algorithm to obtain 

the set of most efficient speed profiles in train journey for each combination of arrival 

and intermediate times. This algorithm makes use of the Particle Swarm optimization 

principles. However, a criterion of minimum energy consumption for a combination of 

objective arrival and passing times is applied to avoid the gaps that could appear in 

Pareto fronts. The multi-dimensional set of speed profiles obtained by means of the 

algorithm proposed can help railway operators to make better decisions when designing 

timetables. In the simulation, variations of 25 % can be observed in the energy 

consumption of two speed profiles with the same arrival time but with different passing 

times. 

Keywords: Energy efficiency, train simulation, eco-driving, multi-objective, 

Particle Swarm optimization, speed profile, operational restrictions  

1. Introduction 

Despite of being one of the most energy efficient transport modes, railways are subject 

nowadays to processes of energy reduction worldwide. These changes in the railway 

sector are motivated by the rising energy prices and the climate crisis. The latter is 
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reflected in the Paris agreement of 2015 where energy reductions goals and specific CO2 

emissions reduction goals were established for the railway sector (IEA and UIC, 2016). 

The problem of energy reduction in railways has been widely study in literature. 

The methods proposed could be divided in three general groups (X. Yang et al., 2016): 

methods related to the rolling stock (Beusen et al., 2013; Matsuoka and Kondo, 2014), 

methods related to infrastructure (Liu et al., 2018; Sousa et al., 2019) and methods related to 

the traffic operation (Abril et al., 2008; Fay, 2000; Huang and Li, 2017; Peña-Alcaraz et al., 

2011). The methods related to the traffic operation is more popular since it allows 

providing great energy reduction results in the short-term, being applied in railways lines 

already built, and using low investments.  

Among the traffic operation methods, speed profile optimization, also known as 

eco-driving, stands out as one of the most important and most studied methods. A variety 

of studies and real life applications consistently show that important energy reduction 

figures can be obtained by means of the efficient driving in railways (Douglas et al., 

2015). The objective of the speed profile optimization problem is to find the driving 

commands that a train must perform for a safe, punctual, comfortable, and energy-

efficient train operation.  

The first speed profile optimization work was developed by Ichikawa (Ichikawa, 

1968). In this work, the Pontryagin’s Maximum Principle was applied to a very simplified 

train model to obtain the optimal regimes of the train control. Later, the research 

developed by Howlett (Howlett, 1996) demonstrated that the solution of the eco-driving 

problem is unique and that in a flat track, it consists in a sequence of a maximum 

acceleration period, a cruising period, a coasting period and maximum braking period. 

Since then, many researchers have continued this research line proposing more 

detailed train models taking into account regenerated energy (Khmelnitsky, 2000) or 
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variable motor efficiency (Franke et al., 2000). Track details have also been taken into 

account by means of variable grades and speed limits (Liu and Golovitcher, 2003). The 

optimal way to negotiate steep grades was obtained in (Howlett et al., 2009). As details 

were incorporated in the model, the complexity of the optimal solution increased.  

Many techniques have been applied to solve the speed profile optimization 

problem. Among them, it can be found constructive algorithms (A. R. Albrecht et al., 

2013; Howlett et al., 2009; Khmelnitsky, 2000; Liu and Golovitcher, 2003; Su et al., 2016, 

2013; J. Yang et al., 2016), Dynamic Programming (T. Albrecht et al., 2013; Lu et al., 

2013; Miyatake and Ko, 2010; Miyatake and Matsuda, 2009), Sequential Quadratic 

Programming (Gu et al., 2014; Miyatake and Ko, 2010), Lagrange multiplier method over 

the discretised problem (Rodrigo et al., 2013) and pseudo-spectral methods (Wang et al., 

2014, 2013). Furthermore, it can be found artificial intelligence techniques to solve this 

problem such as: Artificial Neural Networks (Acikbas and Soylemez, 2008; Chuang et 

al., 2009), genetic algorithms (GA) (Bocharnikov et al., 2010; Chang and Sim, 1997; Jia et al., 

2018; Lechelle and Mouneimne, 2010; Li and Lo, 2014; Sicre et al., 2012; Wong and Ho, 2004, 

2003; Yang et al., 2012), Simulated Annealing (SA) (Keskin and Karamancioglu, 2017; Xie 

et al., 2013), Ant Colony Optimisation (ACO) (Ke et al., 2012; Yan et al., 2016) or 

Differential Evolution (DE) (Kim et al., 2013). 

This paper proposes a new searching algorithm for obtaining the set of most 

efficient speed profiles to be performed by trains in stretches between stations by taking 

into account the effect of intermediate target times. The objective of this algorithm is to 

calculate the set of solutions that perform the minimum energy consumption for the 

possible combination of arrival and intermediate passing times. This algorithm improves 

existing multi-objective approaches taking into account not only energy consumption and 

running time but also the passing time at intermediate target positions. Furthermore, it 
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includes mechanisms to allow the inclusion of energy efficient solutions that are 

dominated, making possible the selection of speed profiles that perform the exact 

intermediate and arrival times. This algorithm has been developed in the basis of Multi-

Objective Particle Swarm Optimization (MOPSO) algorithm. The main contribution of 

this paper is described as the following. 

 The eco-driving problem is proposed formulating the speed profile optimization 

problem as a multi-objective optimization problem such that the decision-maker can 

consider the trade-offs in energy consumption and running time by using the two-

dimensional Pareto front (Carvajal-Carreño et al., 2014; Chevrier et al., 2013; 

Domínguez et al., 2014; Fernández-Rodríguez et al., 2018b, 2015). 

 The intermediate passing target times in complex railway lines which are used to 

ensure the passing order of crossing trains or the separation of trains in critical 

positions of the infrastructure (T. Albrecht et al., 2013) are considered and taken as 

objectives in the optimization model. 

 A new algorithm called “Eco-driving Particle Swarm Searching Algorithm” 

(EPSSA) is proposed that is combined with a detailed simulation model. The Pareto 

selection criterion has been substituted by a criterion of minimum energy 

consumption for a combination of objective arrival and passing times. And a smooth 

set of the most efficient speed profiles is obtained avoiding the gaps that could appear 

in Pareto front. 

The paper is structured as follows: Section 2 presents the driving model used as 

the basis of the speed profile solutions, Section 3 explains the algorithm proposed to 

obtain the set of efficient speed profiles, Section 4 introduces the simulation model used 

to evaluate the possible solutions during the algorithm execution, Section 5 presents the 

results obtained in this piece of research and Section 6 details the main conclusions. 
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2. Driving model 

The solutions obtained by the proposed algorithm are speed profiles characterized by a 

set of driving commands which are presented in the algorithm by means of the Command 

Matrix (𝐶𝐶𝑚𝑚) scheme proposed by Sicre et al. (Sicre et al., 2012). This scheme results in a 

speed profile where the driving commands of the train are maximum motoring, cruising,  

coasting, and maximum service deceleration. This follows the optimal driving modes 

derived from the optimal control theory as shown in (Su et al., 2013).  

𝐶𝐶𝑚𝑚 divides the journey into 𝑛𝑛𝑠𝑠 sections where the train applies a certain driving 

command. The first 𝑛𝑛𝑠𝑠 − 1 sections are defined by a value of holding speed without 

braking command. In other words, in these sections the train has as objective to reach and 

maintain the target speed given by the commands but only motoring. However, if braking 

is demanded to maintain the target speed (for instance during steep downhills), the train 

will apply coast (null traction). This way, the train takes advantage of the gravitational 

force to increase its speed reducing the running time without increasing the energy 

consumed. The last section (𝑛𝑛𝑠𝑠) is defined by a coasting command that must be fulfilled 

up to the braking curve to stop at the station. The orders collected in 𝐶𝐶𝑚𝑚 are limited by 

the braking curves. If the train needs to brake to observe a speed limitation and the driving 

command demands coast or traction, the train will apply the corresponding service brake 

(see Figure 1). 

This figure shows in solid line the speed profile of the train, in dot-dashed line the 

traction force (positive values) or baking force (negative values) provided by the train 

motors, in dotted line the holding speed without braking command at each position, in 

dashed line the speed limitations and the grey areas present the track profile. 

As can be seen, between 0 and 35 km the train needs to apply traction to achieve 

and maintain the speed command of 250 km/h. Between 35 and 55 km there is a downhill 
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and the train would need to apply braking to maintain 250 km/h. However, the train 

applies coasting to speed-up without energy consumption as can be seen in the null value 

of the motor force. Later, between 55 and 70 km the train applies a certain amount of 

braking force not to overcome the maximum speed limitation. From 70 km, the track is 

almost flat so the train applies coasting to reduce its speed until the 250km/h command 

and, in that moment, it applies traction to hold its speed. After that, it coasts when the 

driving command is 0 and brakes when crosses the braking curve up to the station. 

 

 

Figure 1. Train journey using a 250 km/h holding speed without braking command and 

a coasting command before the final braking 

 

The command matrix 𝐶𝐶𝑚𝑚 is as a matrix of 𝑛𝑛𝑠𝑠 − 1 rows and 2 columns (see Figure 

2). The first column (𝑠𝑠𝑠𝑠𝑘𝑘 values) contains the points of the track (position) where the 

sections end. The second column represents the values of the holding speed without 

braking command (𝑣𝑣𝑣𝑣𝑘𝑘) that will be applied in that section.  

 

Figure 2. Command matrix of four sections 
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The value of 𝑛𝑛𝑠𝑠 must be established by the railway operator depending on the 

journey length, the speed limitation profile and the number of intermediate target points. 

The railway operator must take into account also comfort criteria to reduce the frequency 

of changes in the driving commands that can be perceived unpleasant for passenger or 

stressful for drivers. 

3. Eco-driving Particle Swarm Searching Algorithm 

The algorithm proposed has the objective of obtaining the set of speed profiles with the 

lower energy consumption for each combination of arrival and intermediate passing 

times. This algorithm follows the framework of the MOPSO algorithm proposed in 

(Coello et al., 2004). However, the domination criteria is substituted by an energy 

efficiency criterion in order to not discard dominated solutions. These dominated 

solutions are included in the optimal set to provide a smooth and a complete set of eco-

driving speed profiles. 

In the EPSSA, as well as the MOPSO, the velocity of the particles (pbest) and its 

position (gbest) are updated at each iteration. Particularising the notation for the problem 

of speed profile optimization, the notation is as follows: The 𝑗𝑗𝑡𝑡ℎ particle of the swarm in 

an iteration is a specific set of driving commands and, therefore, a specific speed profile 

with a result of arrival time, intermediate passing times and energy consumption. It is 

represented by a matrix 𝑋𝑋𝑗𝑗(𝑖𝑖𝑖𝑖) in iteration 𝑖𝑖𝑖𝑖 and contains the elements of a specific  𝐶𝐶𝑚𝑚. 

The velocity of the 𝑗𝑗𝑡𝑡ℎ particle in iteration 𝑖𝑖𝑖𝑖 is 𝑉𝑉𝑗𝑗(𝑖𝑖𝑖𝑖) and has the same dimensions as 

𝑋𝑋𝑗𝑗(𝑖𝑖𝑖𝑖). The best previous position of the 𝑗𝑗𝑡𝑡ℎ particle is 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗 and the best combination 

of commands in the swarm is 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.  

In successive iterations, the particle’s new velocity is calculated using its previous 

velocity (weighted by an inertia factor), and the distances from its current position to its 
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pbest and to the gbest positions (weighted by social factors) as shown in Eq. 1. The new 

position of the particle is calculated with Eq. (2). 

𝑉𝑉𝑗𝑗(𝑖𝑖𝑖𝑖) = 𝑤𝑤 ∙ 𝑉𝑉𝑗𝑗(𝑖𝑖𝑖𝑖 − 1) + 𝑐𝑐1 ∙ 𝑟𝑟1 ∙ �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗 − 𝑋𝑋𝑗𝑗(𝑖𝑖𝑖𝑖 − 1)� + 𝑐𝑐2 ∙ 𝑟𝑟2 ∙ �𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑋𝑋𝑗𝑗(𝑖𝑖𝑖𝑖 − 1)� (1) 

 

𝑋𝑋𝑗𝑗(𝑖𝑖𝑖𝑖) = 𝑋𝑋𝑗𝑗(𝑖𝑖𝑖𝑖 − 1) + 𝑉𝑉𝑗𝑗(𝑖𝑖𝑖𝑖) (2) 

where, 𝑖𝑖 =  1, 2, … , 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠; 𝑖𝑖𝑖𝑖 =  1, 2, … , 𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚. The parameter 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the size of the 

swarm, and 𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 is the iteration limit; 𝑐𝑐1 and 𝑐𝑐2 are positive constants (called “social 

factors”), and 𝑟𝑟1 and 𝑟𝑟2 are random numbers between 0 and 1; 𝑤𝑤 is inertia weight that 

controls the impact of the previous history of the velocities on the current velocity, 

influencing the trade-off between the global and local experiences. 

The selection of pbest and gbest are based on the particle’s results in the 𝑛𝑛𝑛𝑛 

dimensions of the search space which are the passing times at the intermediate target 

points, the arrival time and the energy consumption in this paper. To improve the typical 

MOPSO algorithm, the proposed EPSSA discards the dominance principle to rank the 

solutions found. An energy consumption principle combined with a mechanism based on 

reference points is used instead. This principle prioritizes the solutions with the minimum 

energy consumption for each combination of target times. EPSSA creates a set of 

reference points evenly distributed in the intermediate and arrival time dimensions of the 

searching space to compare solutions and rank them. The reference points are created 

within the practical bounds of the journey considered. That is, the values of these points 

will be greater or equal to the times obtained by the flat-out driving (i.e. the fastest 

possible speed profile) and lower than or equal to the times performed by the slowest 

possible speed profile (i.e. the speed profile that performs the driving commands with the 

lowest value of holding speed). Furthermore, the separation of the reference points at each 
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time dimensions will be a constant value ∆𝜎𝜎 . This parameter determines the desired 

separation between speed profiles. 

EPSSA ranks the positions found by particles and includes the best in the optimal 

set using the reference points explained before. First of all, each solution is associated to 

a reference point calculating its Euclidean distance to each reference point and selecting 

the closest one. Once each solution is associated to a reference point, it can be calculated 

the fitness of all solutions comparing all the solutions by pairs. The fitness of a solution 

in the proposed algorithm is calculated as the number of solutions that are associated to 

the same reference point and has a lower energy consumption. Thus, if two solutions are 

associated to different reference points it cannot be said what solution is better. However, 

if a solution is compared with another solution associated to same reference point, the 

best solution will be the one with the lowest energy consumption. For a given reference 

point, the solution with the lowest energy consumption will have a fitness value of 0 as 

no other solution associated to that reference point has lower energy consumption.  

EPSSA maintains an external archive 𝐴𝐴 where the solutions with zero fitness 

value are contained (i.e. the solutions with the minimum energy consumption per each 

reference point). The archive is updated at each iteration calculating the fitness of the 

swarm positions and the positions stored in 𝐴𝐴 by comparison of all of them by pairs. 

Besides, a niche count mechanism is applied to ensure the diversity in the optimal 

set. Niche count mechanism allows to know how crowded the region around a solution 

of the archive 𝐴𝐴 is. This mechanism consists in calculating the number of solutions that 

falls into a hypersphere with a fixed radius (𝜃𝜃) determined by the user after normalising 

the results of the solution. The normalization of the results is carried out using Eq. (3). 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑗𝑗 =
𝑉𝑉𝑉𝑉𝑉𝑉𝑗𝑗 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

 (3) 
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where 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑗𝑗 is the normalized variable and 𝑉𝑉𝑉𝑉𝑉𝑉𝑗𝑗 is the value of the variable before the 

normalization of solution 𝑗𝑗. 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 which are taken from the speed profile with 

the minimum and maximum possible running times are the maximum and the minimum 

possible values for the objective.  

EPSSA selects the gbest for the swarm with the Top Select probability from 

among the best positions in 𝐴𝐴 with the lowest niche count values. This way, the swarm is 

incentivized to move towards the least crowded regions in the objective space. 

On the other hand, the update of pbest is carried out at each iteration by 

comparison of the current position of each particle with its own pbest. If the particle’s 

pbest and current position are associated to the same reference point, the new pbest will 

be the one with the lowest energy consumption. On the contrary, if the particle’s pbest 

and current position are associated to a different reference point, the new pbest will be 

selected randomly between them with equal probability. 

3.1 EPSSA flow diagram 

1. The algorithm begins with the initialization process. An empty external archive 𝐴𝐴 

and the set of the reference points are generated. Then, a swarm of 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

combinations of commands is created. The particle positions (𝑋𝑋𝑗𝑗) and velocities 

(𝑉𝑉𝑗𝑗) are initialised randomly. The driving commands of the particles are always 

maintained within the minimum and maximum holding speed values (𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 and 

𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 respectively) after each update.  

2. After that, the result of each particle position in the objective space (energy 

consumption, arrival and passing times) are evaluated using the simulator 

explained in Section 4 and the driving commands of each particle as input data. 
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3. The particles obtained are associated to a reference point. Particles’ position and 

positions stored in 𝐴𝐴 are compared by pairs to calculate the fitness of all of them. 

With the new value of fitness, the archive 𝐴𝐴  is updated adding the particles’ 

positions with fitness equal to 0 and removing the positions stored with fitness 

greater to 0. 

4. The pbest is updated comparing the current position of each particle with its own 

pbest. In the first iteration, as there is no pbest, it is set to the current position of 

each particle. 

5. The niche count is calculated and the positions stored in 𝐴𝐴 are sorted in increasing 

order of niche count. 

6. The gbest is selected randomly from the Top Select portion with a Top Select 

Probability. Otherwise, it is randomly selected from the remaining portion of 𝐴𝐴. 

7. At each iteration 𝑖𝑖𝑖𝑖, the velocities and the positions of the particles are updated 

using equations (1) and (2), respectively.  

8. The process is repeated from point 2 until the maximum number of iterations is 

reached. 

The EPSSA algorithm described is represented in Figure 3. 
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Figure 3. EPSSA diagram flow 

 

4. Train simulation model 

The simulation model is used in combination with EPSSA to evaluate the results of the 

particles’ position. The simulator receives as input the driving commands contained in 

the position of the particle, obtains the corresponding speed profile defined by the input 

𝐶𝐶𝑚𝑚 and returns the results in the energy and time dimensions.  

This section briefly presents the simulation model which consists of the train 

module, the line module and the driving module. The detailed description of the 

simulation model and its validation can be found in (Fernández-Rodríguez et al., 2018a; 
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Sicre et al., 2012). The simulator was validated with real data measured from high-speed 

trains on commercial services and nocturnal tests on the Madrid–Barcelona high-speed 

corridor. An average error of 1.2% in running time and 0.4% in energy consumption was 

obtained comparing simulation results and the measurements. This accurate simulator 

was used in a project developed  in collaboration with Renfe and Adif for the design of 

efficient speed profiles for this high-speed line and important energy consumption 

reduction figures were measured (Sicre et al., 2012). 

A closed-loop proportional-integral speed regulator performs the control of the 

train. The variable 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) is the tractive/braking effort demanded by the control and it 

is obtained at each simulation step using the following expressions: 

𝑒𝑒(𝑡𝑡) = 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) − 𝑣𝑣(𝑡𝑡) (4) 

 

𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) = 𝐾𝐾𝑝𝑝 ∙ 𝑒𝑒(𝑡𝑡) (5) 

 

𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) =
𝐾𝐾𝑝𝑝
𝐾𝐾𝐼𝐼

∙
�𝑒𝑒(𝑡𝑡) + 𝑒𝑒(𝑡𝑡 − 𝑡𝑡𝑡𝑡)�

2
+ 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡 − 𝑡𝑡𝑡𝑡) (6) 

 

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) = 𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) + 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)               𝑖𝑖𝑖𝑖 𝑣𝑣(𝑡𝑡) ≥ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)   𝑜𝑜𝑜𝑜   𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) + 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) ≥ 0 
(7) 

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) = 0                                                𝑖𝑖𝑖𝑖 𝑣𝑣(𝑡𝑡) < 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) + 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) < 0 

where 𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) is the proportional contribution to 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) and 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) is the integral 

contribution to 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡). 𝐾𝐾𝑝𝑝 and 𝐾𝐾𝐼𝐼 are the proportional and the integral constants. The 

error of regulation 𝑒𝑒(𝑡𝑡)  is calculated as the difference between the objective speed 

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) and the current speed of the train 𝑣𝑣(𝑡𝑡). The constant 𝑡𝑡𝑡𝑡 is the simulation time-

step and 𝑒𝑒(𝑡𝑡 − 𝑡𝑡𝑡𝑡) is the error of regulation in the previous simulation step. The minimum 

value for the total tractive/braking effort demanded is set to 0 when the train speed is 

below the maximum 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)  to perform the holding speed without braking driving 
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command (Eq. (7)). 

Several limitations are applied to the value of 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) to no surpass the train 

motors characteristics and comfort limitations introduced by the maximum jerk allowed. 

Thus, 𝐹𝐹𝑚𝑚  is obtained using the maximum traction/braking curves as boundaries for 

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) and limiting its variations by taking into account the maximum jerk limitation. 

The objective speed 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) is derived from the driving commands contained in the input 

𝐶𝐶𝑚𝑚and the maximum speed 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) at each simulation step.  

Once the demand for the motors is obtained, the simulation model calculates the 

train acceleration at each time step using Eq. (8). 

𝑀𝑀𝑒𝑒𝑒𝑒 ∙ 𝑎𝑎(𝑡𝑡) = 𝐹𝐹𝑚𝑚 − (𝐹𝐹𝑟𝑟(𝑣𝑣) + 𝐹𝐹𝑔𝑔(𝑠𝑠)) (8) 

where 𝑀𝑀𝑒𝑒𝑒𝑒 is the train mass including the effect of rotary intertia, 𝑡𝑡 is the time, 𝑣𝑣 is the 

speed of the train, 𝑠𝑠 is the position of the train, 𝑎𝑎(𝑡𝑡) is the train acceleration, 𝐹𝐹𝑚𝑚 is the 

motors force, and 𝐹𝐹𝑟𝑟(𝑣𝑣) is the running resistance. 𝐹𝐹𝑔𝑔(𝑠𝑠) includes the gravitational force 

caused by the track grades and the resistance caused by the track bends. 

The running resistance is calculated with the Davis’ formula at each simulation 

step as shown in Eq. (10): 

𝐹𝐹𝑟𝑟(𝑣𝑣) = 𝐴𝐴 + 𝐵𝐵 ∙ 𝑣𝑣 + 𝐶𝐶 ∙ 𝑣𝑣2 (9) 

The resistance force produced by the track profile is obtained using Eq. (10). 

𝐹𝐹𝑔𝑔(𝑠𝑠) = 𝑔𝑔 ∙ 𝑚𝑚 ∙ 𝑝𝑝(𝑠𝑠) (10) 

where 𝑔𝑔  is the gravity acceleration, 𝑚𝑚  is the mass of train and 𝑝𝑝(𝑠𝑠)  is the average 

equivalent track grade affecting the complete length of the train.  
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The simulator derives the train speed and position at the next simulation step using 

the acceleration value calculated and the uniformly accelerated motion equations (11) and 

(12). 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑣𝑣(𝑡𝑡) (11) 

  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝑎𝑎(𝑡𝑡) (12) 

After solving the train dynamics, the simulation model calculates the train energy 

consumption by using the following equations: 

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐹𝐹𝑚𝑚 ∙ 𝑣𝑣 (13) 

 

𝑃𝑃𝑝𝑝 =
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
𝜂𝜂

+ 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼𝐼𝐼 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 0 
(14) 

𝑃𝑃𝑝𝑝 = 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝜂𝜂 + 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎  𝐼𝐼𝐼𝐼 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 < 0 

where 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 is the mechanical power, 𝑃𝑃𝑝𝑝 is the electrical power at pantograph, 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 is the 

power consumed by auxiliary equipment and 𝜂𝜂 is the efficiency of the electrical chain 

that is a function of the train speed and the ratio of the motor force divided to the 

maximum motor force. 

Finally, the simulation model calculates the increment of energy consumed by the 

train measured at pantograph as a time integral of 𝑃𝑃𝑝𝑝. Furthermore, the estimation of the 

effect of the energy consumed by the train at substation is calculated adding the line power 

losses to 𝑃𝑃𝑝𝑝. 

5. Case study 

The proposed EPSSA algorithm combined with the train simulation model have been 
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applied to a realistic case study using data from a Spanish high-speed line. The stretch 

analysed runs between two consecutives stations (Calatayud to Zaragoza) and has a length 

of 85.4 km. The train data used is taken from the Talgo-Bombardier class 102 high-speed 

train. This train has two motors of 8 MW and 200 kN of maximum traction effort. The 

train length is 200 m and the train mass is 324 t. The operational restrictions for EPSSA 

to generate possible sets of driving commands are set to 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 =  150 km/h  to avoid 

too low speed phases in the middle of the journey, and 𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 =  300 km/h that is the 

maximum speed allowed in the journey.  

The case study includes a train travel with one intermediate timing point besides 

the arrival timing point. The intermediate timing point is located at the kilometric point 

264 km, between the departure point (221.3 km) and the arrival point (306.7 km). 

Therefore, the solution space will have 3 dimensions: The arrival hour at 306.7 km, the 

passing hour at 264 km and the energy consumed by the train at the end of the journey. 

Figure 4 shows the track profile of the journey as well as the speed limitation profile and 

the neutral zones where the train has no power. 

 

Figure 4. Track profile, speed limitation profile and neutral zones of the case study 

 

Table 1 presents the tuned parameters of the algorithm. These parameters have 

been tuned by trial and error as usual in population-based algorithms. 
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Iterations 

(𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) 

Swarm size 

(𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

Social 

factor (𝑐𝑐1) 

Social 

factor (𝑐𝑐2) 

Inertia 

weight (𝑤𝑤) 

Niche count 

radius (𝜃𝜃) 

𝐴𝐴 Top 

select  

𝐴𝐴 Top select 

probability  

400 250 2 2 0.3 0.1 3 % 99 % 

Table 1. Tuned parameters of EPSSA 

 

The distance between reference points (∆𝜎𝜎) is set to 10 s. This distance will result 

in the approximate distance between the solutions obtained in the time dimension so it 

seems that 10 s is an adequate separation given that the minimum possible running time 

for the journey is 1320 s and the maximum is 2476 s.  

5.1. Convergence analysis 

Several metrics have been proposed in literature to measure the convergence of multi-

objective optimization algorithms results with the known optimal solution (Jiménez et 

al., 2013) or with the designed discard dominated solutions such as the hyper-volume 

(While et al., 2012), which are not valid to measure the results of EPSSA. Therefore, a 

new metric has been proposed to compare the results of a set of efficient speed profiles 

against others to study the convergence of EPSSA results. This metric takes advantage of 

the set of reference points created for the algorithm execution to calculate the proximity 

of the solutions to the reference points.  

The convergence metric associates to each reference point the energy 

consumption of the nearest solution contained in the archive A. If no solution is associated 

to the reference point, the energy consumption of this reference point will be equal to the 

energy consumption of the flat-out driving. Finally, the value of the convergence metric 

is calculated by the summation of the energy consumption associated to all the reference 
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points. Therefore, the lower the value of the metric the closer to the best set of speed 

profiles. 

Figure 5 presents the evolution of the metric during the iterations of the algorithm 

for the case study presented. As can be seen, the value of the proposed convergence metric 

decreases at each iteration of the algorithm execution. That means that the solution is 

improved through the EPSSA iterations. The value decreases dramatically during the first 

100 iterations. After that, between 100 and 300 iterations the convergence metric 

reduction is slower. Finally, between 300 and 400 iterations the reduction ratio is 

minimum, which shows the algorithm has converged to the best solution. 

 

Figure 5. Evolution of convergence metric for EPSSA 

 

Figure 6 presents the set of efficient speed profiles obtained in the three 

dimensions considered (intermediate passing time, arrival time and energy consumption) 

as a result of EPSSA execution at the end of the 400th iteration. 

4300
4500
4700
4900
5100
5300
5500
5700
5900
6100

0 100 200 300 400

Co
nv

er
ge

nc
e 

M
et

ric
 (M

W
h)

Iterations



19 
 

 

  

 

 

Figure 6. Results of the algorithm 

 

The set of speed profiles obtained by the algorithm are well distributed in the time 

space made of arrival and intermediate passing time dimensions. Furthermore, they form 

a front that smoothly changes the energy consumption when moving through the time 

dimensions. 
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It can be observed that the energy consumption tends to increase as lower is the 

arrival time. For the same value of intermediate passing time, the results show important 

differences in energy consumption. This is caused because, for the same intermediate 

passing time, it can be found a wide variety of solutions with different values of arrival 

time and the running time for the whole journey has a capital influence in the energy 

consumption determination. However, if we consider the intermediate passing time, the 

results also show important differences in the energy consumption obtained for the same 

arrival time. These variations in energy consumption are lower because the possible 

combinations of arrival and intermediate passing time are reduced when the running time 

is close to the minimum.  

The optimization computation cost depends on the number of particle position 

evaluations and the number of iterations. Each particle evaluation takes 0.15 s on average 

because of the detailed simulation performed. The computational cost of the whole swarm 

evaluation is 37 s on average at each iteration. Compared to this, the computational cost 

of the remaining optimization tasks of the algorithm can be neglected. 

5.2. Speed profile analysis 

The results obtained by EPSSA can be used to design the set of driving commands that 

the train must perform in a journey to fulfil a target arrival and intermediate passing times.  

The nominal trip time for the complete journey of the case study is 26 minutes 

(1560 s). There are 20 solutions in the efficient set of speed profiles obtained by EPSSA 

which arrival time is lower or equal to 1560 s with a maximum difference of 5 s. From 

these solutions close to the nominal running time, it can be extracted three main 

representatives: the speed profile with the minimum energy consumption, the speed 
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profile with the minimum intermediate passing time and the speed profile with the 

maximum intermediate passing time (see Table 2).  

 

 
Intermediate 

passing time (s) 

Arrival 

time (s) 

Energy 

consumption 

(MWs) 

Difference with the 

minimum energy 

consumption 

Minimum energy 

consumption speed profile 
725.0 1559.5 0.962 0 % 

Minimum intermediate 

passing time speed profile 
653.5 1559.0 1.0174 5.8 % 

Maximum intermediate 

passing time speed profile 
878.0 1558.0 1.2055 25.3 % 

Table 2. Results of representative speed profiles for 1560 s running time 

 

All the speed profiles allow arriving on time with the nominal running time. 

However, depending of the traffic conditions a speed profile can be chosen instead of 

another to ensure a determined passing time. This will lead to a different energy 

consumption result as can be seen in Table 2. It is necessary to pass through the 

intermediate target at 725 s to achieve the minimum energy consumption. However, if it 

is demanded to pass early through the intermediate target, the train could advance the 

passing up to 72 s early, which would lead to increase the energy consumption by 5.8%. 

Similarly, if it is necessary to delay the passing at the intermediate target, the train could 

pass up to 225 s of delay but with a 25.3 % growth in energy consumption. Figure 7 

presents the three speed profiles explained before: 
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Minimum energy consumption speed profile 

 

Minimum intermediate passing time speed profile 

 

Maximum intermediate passing time speed profile 

 

Figure 7. Representative speed profiles for 1560 s running time 
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The minimum energy consumption speed profile presents stable driving 

commands between 230 and 240 km/h up to the coasting period in 282 km. However, the 

speed profile presents more important speed variations in the driving commands of the 

minimum intermediate passing time example. The train drives practically at maximum 

speed until it starts coasting to reach a command of 220 km/h in this example. Later, it 

starts to coast in a similar position than in the minimum energy consumption example. 

By this way, it arrives to the intermediate target in a short time and reduces the speed of 

the train in the second half of the journey to maintain the global running time. The relevant 

speed variations that experiment the train during the minimum intermediate passing time 

example makes that the energy consumption grows respect to the most efficient speed 

profile. 

On the other hand, the variations of the driving commands are more important in 

the maximum intermediate passing time example. This speed profile starts the journey 

with the minimum driving command of 150 km/h. However, in the 250 km position, it 

starts to accelerate to drive the train at the maximum speed of 300 km/h in order to 

perform the target arrival time. The journey finish starting a coasting period at 289 km 

position up to the final braking stage. The bigger speed variations in the driving 

commands of this example explains why this is the most energy consuming case for the 

running time of 1560 s. 

6. Conclusions 

Taking the intermediate target times into consideration, a new multi-objective 

searching algorithm, called EPSSA, has been proposed in this paper to obtain the set of 

most efficient speed profiles in train journey with intermediate target times to meet. This 

algorithm contributes to the existing multi-objective speed profile optimization models 

including passing times at intermediate target positions as additional objectives besides 
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energy consumption and running time. Railway operators can select the best combination 

of passing times at target positions using the results from the algorithm proposed taking 

into account possible trade-offs among solutions. 

This algorithm is built in the basis of particle swarm optimization algorithm. 

However, as a difference of other multi-objective algorithms, EPSSA does not ignore 

dominated solutions. A criterion of minimum energy consumption for a combination of 

objective arrival and passing times is applied, instead of the typical Pareto selection 

criterion, with the objective of obtaining the most efficient speed profile for each possible 

combination of arrival and intermediate passing times. The result obtained by this 

algorithm is a smooth and complete set of most efficient speed profiles avoiding the gaps 

that could appear in Pareto fronts because of the presence of dominated solutions.  

The proposed EPSSA has been applied to a case study using real data from a 

Spanish high-speed corridor. The result obtained by the algorithm is a well distributed set 

of speed profiles in the time dimensions of the problem. Furthermore, the set obtained 

does not present gaps and the variations in energy consumption are smooth when moving 

in the time dimensions. A new metric has been proposed to evaluate the convergence of 

the algorithm. This metric has allowed to determine the convergence speed of EPSSA. 

The analysis of the efficient set of solutions allows to evaluate the cost in energy 

consumption when selecting a specific combination of target times. Variations of 25 % 

can be observed in the energy consumption of two speed profiles with the same arrival 

time but with different passing times. These differences are reduced in low running time 

regions because the possibilities of different speed profiles are reduced. 

The multi-dimensional set of efficient speed profiles obtained by means of EPSSA 

can also help operators to make better decisions when designing efficient timetables. 
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