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Abstract

Metropolitan railways are major consumers of energy and are potential targets for the application
of energy efficiency techniques. In this paper, eco-driving, timetable design and regenerative
braking are integrated to optimise operation while minimising energy consumption. In addition, the
rolling stock required to provide the service is considered, as it has an important impact on
operational costs. First, the design of efficient ATO (Automatic Train Operation) driving is carried
out using a MOPSO (Multi-Objective Particle Swarm Optimization). Then the timetable is optimised
including a regenerated energy model and the number of trains required to satisfy the periodic
service. For the timetable design, several algorithms have been compared, proving that GLMO-
NSGA-III (Grouped and Linked Mutation Operator — Non-dominated Sorting Genetic Algorithm
I1I) is the best for the case study. The complete model has been applied to the Madrid Underground
line, achieving energy savings of 24.79% compared to the typical operator’s design criteria.

Keywords: energy-efficient train timetable, eco-driving, regenerative braking energy, Automatic
Train Operation (ATO), rolling stock.

1. Introduction

In the current context of optimising energy efficiency and supporting the use of renewable
energy, it is important to develop technologies that enable the rational and efficient use of resources.
Europe is leading this change through emission reduction policies, creating a framework for action
in this area. Among one of the major energy consumers is the transport sector. The rail sector is
gaining attention given that it is one of the most efficient transport modes, and it is considered a
keystone to reducing pollutant emissions in metropolitan areas. Metropolitan rail traffic is an
electrified mode of transport and, despite its efficiency, is susceptible to the application of techniques
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to reduce energy consumption (Feng et al. 2013). Some of these methods are related to optimal
operation, and they can be implemented in the short term, like the design of efficient driving or eco-
driving, whether manual or automatic, and the design of the timetable. Automatic Train Operation
(ATO) systems are also the desirable trend for rail systems because of the regularity in the train
operation that provides capacity and safety improvements and the potential energy savings given
by its ability to perform accurately the efficient driving commands, also known as eco-driving.

Eco-driving consists of executing a speed profile in an interstation to achieve the minimum energy
savings for a specific running time (Yuan and Frey 2020). The most common strategies for the
application of eco-driving in metro lines are speed regulation and the execution of cut-off traction
and re-motor cycles with upper and lower speed limits.

The benefits of eco-driving implementation in mass transit lines have been demonstrated in several
studies under different scenarios. Efficient driving achieved by GA (Genetic Algorithm) and PSO
(Particle Swarm Optimisation) was validated in the case of the Istanbul metro achieving energy
savings with manual operation between 20% and 30% (Yildiz, Arikan, and Keskin 2023b). In
(Dominguez et al. 2012), the authors consider the regenerated energy and storage devices in the
design of Automatic Train Operation (ATO) driving commands, obtaining a result of 11% energy
savings. The ATO speed profiles search with MOPSO (Multi-Objective Particle Swarm
Optimization) in (Dominguez et al. 2014) provides energy savings of 15% and it can be combined
with robustness conditions to obtain driving commands considering mass variation (Fernandez-
Rodriguez et al. 2015) or extended to include multiple time targets (Ferndndez et al. 2020). The
authors in (Yildiz, Arikan, and Keskin 2023a) present a speed trajectory optimization using nature-
inspired algorithms for the Istanbul M3 subway line considering a variable number of passengers.
The algorithms used are GA, Simulated Annealing algorithm (SA), PSO and the Marine Predators
Algorithm. The solution was tested in the real line achieving energy savings of 21.27%. In (S. Su et
al. 2023), the speed curve of heavy-haul trains is optimized considering the cyclic air braking on
long, steep downward slopes.

The first study related to the calculation of efficient driving applied to railways was carried out
(Ichikawa 1968), applying Pontryagin's Maximum Principle. Ichikawa considers the analysis as a
bounded state variable problem taking into account the speed limits and obtained for the first time
the optimal regimes: maximum acceleration, holding speed, coasting and maximum deceleration.
Applying the same principle, Howlett in (Howlett 1990) considers energy minimisation to find the
optimal driving strategy. Different simulation methods and optimisation techniques are used
applying the results of the Maximum Principle to solve different cases proposed in the literature.

Solutions from a constructive algorithm are achieved in (Howlett 1996) where coast and maximum
power phases are alternate to obtain the optimal driving strategy. Variable speed restrictions, grade
profile, traction and brake force and running time are constraints to optimal driving pattern
calculation in (Khmelnitsky 2000) with the maximum principle analysis. In (Liu and Golovitcher
2003) the analytical solution offers the sequence of optimal train control. An optimisation and control
of speed and dwell time are given in (Thomas Albrecht, Binder, and Gassel 2013).

Apart from constructive algorithms, different mathematical models have been applied to obtain the
optimal solution for efficient driving such as Dynamic Programming (DP) (Thomas Albrecht,
Binder, and Gassel 2013), Mixed-Integer programming (Zhou, You, and Fan 2020), Sequential
Quadratic Programming (Miyatake and Ko 2010) or Lagrange Multipliers (Rodrigo et al. 2013). A
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mixed-integer non-linear programming problem is solved in (Y. Wang et al. 2014) minimising
passengers travel time and traction energy consumption in urban rail transit system.

Previous methods obtain the analytical eco-driving solution but, when the model includes details
such as automatic driving logic, the nonlinearities introduced require the application of different
techniques. In contrast to mainline, mass transit lines are highly automated exploitations where the
trains are automatically driven by ATO equipment. Therefore, it is important to develop simulation
models that include ATO characteristics in eco-driving models for mass transit lines and to combine
them with optimisation algorithms (Figueira and Almada-Lobo 2014) to obtain applicable solutions.

Artificial Neural Networks (ANN) are used in (Chuang et al. 2009) for optimising coasting speed in
Mass Rapid Transit (MRT) systems while in (Ag¢ikbas and Soylemez 2008) are found the optimal
coasting positions. GA have been frequently used for eco-driving as in (Bocharnikov et al. 2007) for
a Direct Current (DC) metropolitan railway line, in (Chang and Sim 1997) to find the optimal
coasting points and in (Lu et al. 2013) to calculate the efficient speed. In (T. Albrecht 2004), the GA
is used to minimise energy consumption considering the headway, running time and dwell times.
A multi-population GA is used in (Huang et al. 2015) to minimise traction energy taking into account
driving strategy and trip time. Fuzzy logic (Bellman and Zadeh 1970) and GA can be combined to
consider uncertainty in any of the parameters that affect railway operation. An example is presented
in (Blanco-Castillo et al. 2022) where eco-driving is calculated and adapted to operational conditions
considering variability in climatological conditions for a high-speed railway with a GA. NSGA-II (K.
Deb et al. 2002) (Non-Dominated Sorting Genetic Algorithm II) is applied in (Dullinger, Struckl, and
Kozek 2017) to optimise traction systems while, in (Carvajal-Carrefio, Cucala, and Fernandez-
Cardador 2014), is combined with fuzzy logic to calculate ATO driving in metro lines considering
variability in the load of passengers. In (Fernandez, Ferndndez, and Cucala 2018) a dynamic version
of NSGA-II was applied to re-calculate the train speed profiles during its journey. In (Sicre, Cucala,
and Ferndndez-Cardador 2014) a fuzzy manual driving model and a GA are combined to solve eco-
driving. Other alternatives to GA have been proposed in the literature to solve the energy
minimisation problem in train driving such as Brute Force (Zhao et al. 2017), Monte Carlo
(Metropolis and Ulam 1949) simulation in (Z. Tian et al. 2017), Differential Evolution in (Kim et al.
2013), Genetic Simulated Annealing in (Keskin and Karamancioglu 2017), Indicator Based
Evolutionary Algorithm (Zitzler and Kiinzli 2004) (IBEA) in (Chevrier, Pellegrini, and Rodriguez
2013) and Ant Colony Optimisation (ACO) (Dorigo, Birattari, and Stutzle 2006) in (Lu et al. 2013).

In contrast to previous studies, approaches that combine timetabling and eco-driving problems can
be found in literature to minimise the global traction energy consumption of traffic operations. Thus,
the focus is on the complete line instead of minimising the consumption of each interstation
separately. The running times between stations and dwell times can be optimised jointly with the
eco-driving to spend the time where it is more beneficial reducing the traction energy for operation.

Driving and timetable are optimised with a combined PSO-GA (Ran et al. 2020) for energy efficiency
purposes. Eco-driving and timetable level are solved in (S. Su et al. 2020) by DP and the SA
algorithm, respectively, adding a substation-based energy consumption model. The timetable is also
calculated in (Sdnchez-Contreras et al. 2023) by applying ATO efficient driving when the mass
transported is considered a fuzzy variable. Optimal design (Meng, Jia, and Xiang, 2018) focuses on
the capacity of the timetable to remain robust when possible disruptions arise during operation.



Other studies address disruptions integrating the rescheduling problem of train timetables and
rolling stock circulation (B. Su et al. 2024).

On the other hand, it is important to take into account not only the traction energy but also the use
of regenerative energy to reduce the energy consumption in a railway line as much as possible. This
is even more important in mass transit line where the power system is a DC system where returning
energy from the railway grid to the utility grid is difficult (Bae 2009). Regenerative braking is a
technology that allows the trains equipped with it to produce energy during the braking process.
This energy is, firstly, used to feed the auxiliary equipment of the train that produces it, and the rest
can be sent back to the catenary. This way, other trains can use it reducing the energy demanded
from substations. The regenerated energy produced by a train can be used by another train that
requires traction in DC systems when the trains share the same electrical section. Suppose there is
not enough energy demand in the section. In that case, the regenerated energy must be wasted in
on-board rheostats of the braking train to prevent an undesired increase of the catenary voltage.

Taking into account the previous concepts, there are authors who seek to reduce the total substation
demand of the train traffic by synchronising accelerating and braking trains (Pefa-Alcaraz et al.
2012) taking into account the power-saving factor between each pair of trains. In this case, an energy
saving of 7% is achieved in a Madrid Underground case study just by the increase in regenerated
energy use. The timetable is optimised in (Xin Yang et al. 2012), maximising the overlapping time
between the accelerating and braking trains by means of an integer programming model and solving
it with a GA.

The application of eco-driving decreases consumption but the use of regenerated energy decreases
as well. The higher the speed, the higher the use of regenerated brake energy when trains arrive to
the stopping points. So, there is a balance between efficient driving design and the ability to
maximise the use of regenerated energy during braking, considering also the density of rail traffic
(Bocharnikov, Tobias, and Roberts 2010). In (Huang et al. 2018), the driving is designed, and the
timetable is then optimised considering regenerative braking exchange only when trains arrive and
depart from stations with no consideration of motor efficiency or transmission losses.

In (P. Wang, Zhu, and Corman 2022) a resolution model is used to synchronise trains where the
overlapping time of accelerating and braking trains (at the start-up and arrival at stations) is
maximised and the travel time of a user and of all passengers globally is minimised, taking into
account passenger transfers. In order to reuse the regenerated energy, this work takes into account
the start-up and arrival of trains at stations without considering possible traction and braking that
may occur during driving between stations. This study does not consider the use of regenerated
energy but the overlapping time does not add the losses suffered during energy transmission and
does not carry out an eco-driving design included in the model. Furthermore, the timetable is
designed in such a way as to be periodic because, although flexibility is lost in adjusting starts and
braking to maximise the use of regenerated energy, comfort and the perception of good service on
the line are gained.

In the study carried out by (Xin Yang et al. 2015), the timetabling and coordination of trains during
starting and braking, controlling dwell times, are proposed to take advantage of regenerated energy
on the Beijing Metro Yizhuang Line. The results obtained show annual energy savings of 6.97%
compared to the current planning. In this article, the speed profiles used are the real ones of the
trains on the line analyzed, and the transmission loss coefficient is considered as constant.



The analysis in (Xin Yang et al. 2014) aims to maximize the use of regenerated energy while at the
same time shortening passenger waiting time. It is formulated as a two-objective integer
programming model with headway time and dwell time control, and then, it is designed a genetic
algorithm to find the optimal solution. Transmission loss data are estimated using historical data.

An integrated method to maximize regenerative energy is presented in (Yildiz, Arikan, and
Cakiroglu 2024) by optimizing train speed and timetables. Additionally, it minimises simultaneous
acceleration or braking within the same electric zone. Simulations of Istanbul's M3 subway using
genetic and simulated annealing algorithms show traction energy savings.

In (P. Wang et al. 2022) the design of the timetable is carried out considering the synchronisation
between trains as in the previous work but now minimising power peaks. Possible delays and how
they affect the timetable are analysed by means of the Monte Carlo method.

In (Qu et al. 2020) a two-step approach to timetable design is proposed. The first phase aims to
reduce passenger waiting time and the second phase to reduce total consumption. The speed profile
of the trains is divided into six zones for traction, coasting and braking. Regenerated energy is only
taken into account during the overlap between acceleration and braking. In (He et al. 2019) a
Chongging metro line is studied for which the objective is to minimise the total energy consumed
by taking into account the energy regenerated by accelerating and braking trains in the same power
supply section. They use a matrix resolution model for searching the global solution, although with
a higher computational cost, by taking the speed profiles of the trains. A bi-objective algorithm is
proposed by (Als, Madsen, and Jensen 2023) to obtain efficient timetables where the consumption
and passenger travel time are considered using real historical data of a railway network taking
simplifications.

The literature found real-time timetable optimisation by means of train control as in (Sun et al. 2023).
The synchronisation of the trains is taken into account to take advantage of the regenerated energy
when the whole DC power supply system is connected in all the sections although the scenario
where sections are disconnected is also considered. The response of the timetable is analysed against
delays, and the speed profiles to be executed by the trains are adjusted using the strategy presented
in (Sun et al. 2014).

(Chen et al. 2023) proposed a timetable optimisation and train control method to minimise
substation energy consumption on a metro line with a DC electrical system equipped with reversible
substations. In this case, the limitations of regenerative energy exchange are relaxed because
reversible substations allow the flow of regenerative energy from the catenary to the utility grid. The
train speed profile is included along with the timetable optimisation.

In the literature, different studies on energy-efficient train timetabling can be found but have rarely
been taken into account train circulation plan, that is, the use of rolling stock (trains) required to
provide the rail services defined in the timetable. However, the timetable design has an important
impact on the use of the available rolling stock. When the timetable is optimised in order to save
energy, it may be very costly to match the train circulation plan to the timetable due to an inadequate
connection between train services (Zhou et al. 2023). Authors in (Liebchen and Mohring 2007)
suggested that the train circulation plan should be taken into account in the optimization of the train
schedule, but they did not focus on the energy-efficient timetabling problem.



In particular, depending on how the timetable is designed, the number of trains (rolling stock)
needed to provide the service may be different, significantly impacting investment and operation.

In (Zhou et al. 2023) a synchronisation between trains is carried out for timetabling taking into
account different electrical sections. The authors consider the possible synchronisation of energy
regenerated/consumed along the interstation, and not only at arrival/departure. They optimize the
timetable considering the energy saving and the train circulation plan for an urban rail line, by
means of a mono-objective PSO optimization algorithm. However, they do not design the eco-
driving at each interstation, taking into account the characteristics of the ATO equipment, the
number of trains associated with the timetable is not calculated, and some simplifications are
assumed in the train model.

The main objective and contribution of the present work is a multi-objective method based on
detailed simulation to design the optimal ATO driving commands of a metro line and, as a result,
define the traffic operation that minimises the energy consumption considering the rolling stock
required to provide the service. This is achieved by integrating the optimisation of the speed profiles
and the optimisation of the timetable, adding the contribution of the energy regenerated by braking
trains during the train journey. The number of trains required to provide the service associated with
the timetable is also considered to quantify costs related to rolling stock. In particular, it can be
highlighted the following contributions:

e Anintegrated multi-objective approach to design the ATO driving commands and timetable
of a metro line including: the minimization of energy consumption, the maximization of
regenerative energy usage and the minimization of the rolling stock required to operate. This
method can assist train operators to decide the timetable taking into account the trade-offs
between commercial speed and the costs of energy and rolling stock.

e The integrated optimization model is a two-level optimization procedure where the local
eco-driving level finds the set of efficient speed profiles at each interstation and the global
timetable level finds the Pareto front of timetables. The local level is solved using a MOPSO
algorithm which has demonstrated its performance in literature. The global timetable level
is solved comparing four different algorithms, proving that GLMO-NSGA-III is the most
effective for this optimization model.

e The model includes constraints associated with realistic ATO equipment at the local level
and constraints associated with the reverse manoeuvre in terminal stations in order to avoid
solutions that cannot be applied in real installations or that can require a greater number of
trains.

e A Madrid Underground case study is carried out to prove the benefits of the optimization
model proposed. The results illustrate that the integrated optimization achieves energy
savings of 24.8% compared to the typical criteria used by operators to design the timetable.

References and previous work related to eco-driving and timetable design are listed in Table 1. As a
summary, many studies in the literature ((Xin Yang et al. 2012), (P. Wang, Zhu, and Corman 2022),
(Xin Yang et al. 2015), (Liebchen and Mohring 2007)) compared with the proposed model do not
include an integrated optimization method with timetable and eco-driving. Literature models do
not take into account constraints associated with ATO driving logic as the model proposed, except
for (Sanchez-Contreras et al. 2023) and (He et al. 2019). However, in reference (Sanchez-Contreras et
al. 2023) the regenerated energy is not considered and in (Sanchez-Contreras et al. 2023) (He et al.



2019) the rolling stock is not included as a goal. Regarding the regenerated energy, in (Yildiz, Arikan,
and Keskin 2023a), (Ran et al. 2020), (S. Su et al. 2020), (Sanchez-Contreras et al. 2023), (Als, Madsen,
and Jensen 2023) and (Liebchen and Moéhring 2007) the regenerated energy is not modelled. In (Xin
Yang et al. 2012), (Bocharnikov, Tobias, and Roberts 2010), (Huang et al. 2018), (P. Wang, Zhu, and
Corman 2022), (Xin Yang et al. 2015), (Xin Yang et al. 2014), (Yildiz, Arikan, and Cakiroglu 2024) and
(Qu et al. 2020) the use of regenerated energy is improved indirectly by maximizing the coincidences
of train departures and arrivals. In (P. Wang et al. 2022), (He et al. 2019), (Sun et al. 2023), (Chen et
al. 2023) and (Zhou et al. 2023) a similar approach to the model proposed in this paper is used to
calculate the total regenerated energy transferred among trains. However, except for (Zhou et al.
2023) the rolling stock is not taken into account. The cost associated with the rolling stock is only
included in the model in (Zhou et al. 2023) and (Liebchen and Mohring 2007). In both cases, the
approach is to include the rolling stock cost as the total running time and the connection time. In the
present paper, the approach is to directly calculate the number of trains needed to provide the
service with the designed timetable and include it as a penalty in the objective function.

This paper is organised as follows: Section 2 describes the design objective for the optimal efficient
operation of a metro line. In Section 3 the timetabling model is presented. Section 4 defines the eco-
driving ATO design model for each interstation and the train simulator it uses to evaluate solutions.
In Section 5 the method is applied to a case study of Madrid Underground. Section 6 presents the
conclusions and a discussion of the proposed method.

Eco-driving ATO Regenerated energy Rolling stock
Reference . . . . . . . .
consideration consideration consideration consideration
(Yildiz, Arikan, and Keskin 2023a) Yes No No No
(Ran et al. 2020) , (S. Su et al. 2020) Yes No No No
(Sanchez-Contreras et al. 2023) Yes Yes No No
Traction/Brakin
(Xin Yang et al. 2012) No No / L. & No
synchronization
Traction/Brakin,
(Bocharnikov, Tobias, and Roberts 2010) Yes No / .. & No
synchronization
Traction/Brakin
(Huang et al. 2018) Yes No / L. & No
synchronization
Traction/Brakin,
(P. Wang, Zhu, and Corman 2022) No No / L. & No
synchronization
Traction/Brakin
(Xin Yang et al. 2015) No No / L. & No
synchronization
Traction/Brakin,
(Xin Yang et al. 2014) Yes No / L. & No
synchronization
Traction/Brakin
(Yildiz, Arikan, and Cakiroglu 2024) Yes No / . & No
synchronization
(P. Wang et al. 2022) Yes No Fully considered No
Traction/Brakin
(Qu et al. 2020) Yes No / L. & No
synchronization
(He et al. 2019) Yes Yes Fully considered No
(Als, Madsen, and Jensen 2023) Yes No No No
(Sun et al. 2023) Yes No Fully considered No
(Chen et al. 2023) Yes No Fully considered No




(Zhou et al. 2023) Yes No Fully considered Yes
(Liebchen and M6hring 2007) No No No Yes

Table 1. Literature review.

2. Design of the optimal ATO operation of a railway line

The model presented in this paper considers a typical topology of a mass transit railway line,
a two-track line between terminal stations. The line is composed of Ns stations and equipped with
ATO systems. All the electrical sections are supposed to be connected although regeneration will be
more efficiently used by trains running close to the regenerating one, as electrical losses are
modelled. Energy regenerated by a train running upwards can be consumed by a nearby train
running in the same direction or in the downward direction.

Sections 2.1., 2.2., and 2.3. list the parameters, intermediate variables and decision variables used in
the paper in Table 2, Table 3 and Table 4, respectively.

2.1. Parameters

h Headway

N Number of stations
tnin Minimum dwell time

P Penalty for the use of an additional train
a(s) Transmission loss model dependent on train position

M, ain Train mass at each interstation

M., Equivalent mass of the train
e Maximum traction effort according to the motor characteristics
Jmax Maximum variation of traction/braking effort

A Constant related to the mechanical resistance to the motion

B Constant related to the resistance due to the air inlet in the train

C Constant related to the aerodynamic resistance

g Gravitational acceleration

Pirack(S) Equivalent gradient of the track in the train position

Lnax Maximum current
Ucar Nominal catenary voltage
of Motors’ efficiency

Table 2. Parameters.

2.2. Intermediate variables

RT(xg, t g) Global running time of the timetable

C (x gt g) Cost function
N, Number of trains
ty Running time on track 1




t, Running time on track 2
T, Time difference between the arrival and departure of consecutive services in station 1
f1(xn) Running time evaluation function for interstation n
f2(xy) Energy consumption evaluation function for interstation n
EDC, Set of the efficient ATO driving commands of interstation n
S; Position of train i
gji Value of transmission losses for the regenerating train j and the accelerating train i
n, Number of trains consuming energy
n, Number of trains regenerating energy
E; Energy consumption used for traction by train
R; Energy regenerated by train j
Rj; Energy regenerated by train j and transmitted to train i
t Time
Atrain Train acceleration
Firack Resistance due to the track grades
s Running resistance
QAref Traction/braking demand for the train
Kiraction Constant of the proportional controller for the traction mode
Vearget Minimum value be'tween the maximum speed at the position of the train and the driving
command hs (holding speed)
Virain Speed of the train
Agradient Acceleration due to the gradients at the position of the train
K braking Constant of the proportional controller for the braking mode
Firain Traction/braking effort of the train
Pirac Traction electric power
Preg Regenerative electric power
Table 3. Intermediate variables.
2.3. Decision variables
Xg ATO driving commands for all the interstations of the entire metro line
ty Dwell time at every station in the railway line
%, Vector with the ATO driving parameters for the interstation n (component of
Xg)
t, Dwell time at station n (component of &)
XNs ATO driving commands for interstation Ns
tys Dwell time at station Ns
c Speed at which coasting is applied (component of x,,)
r Speed at which traction is applied (component of x;,)
hs Holding speed (component of x,)




b Braking rate (component of x,,)

Table 4. Decision variables.

2.4. Optimal ATO problem

The problem to solve is the design of the optimal ATO driving commands of a metropolitan
railway line for a specific operational period. With this objective, the model designs jointly the
efficient driving at each interstation and a periodic efficient timetable for the operational period.

The model includes a penalty associated to the number of trains (rolling stock) required to provide
the rail services of the timetable. This way, timetables with a lower number of trains required will
be preferred.

A multi-objective model is defined to propose the most efficient solutions for different total travel
times of the line. As the travel time and energy consumption are conflicting objectives, the result
will be the set of non-dominated solutions; i.e., those that cannot be improved in energy
consumption and travel time simultaneously. This way, the operator can select the commercial
running time of the line (i.e., the travel time to run the line completely) in view of the trade-off with
the energy consumption and considering the number of trains required. The travel time is the sum
of the running time of the speed profiles produced by the designed ATO driving commands for each
interstation stretch, and the selected dwell time at each station. To optimise the energy consumption
of the line, for each total travel time the proposed model takes into account the set of optimal ATO
driving commands in each interstation (that produces eco-driving speed profiles), the distribution
of time margins along the route to make it efficient and also the energy transferred between trains
in the braking processes which, depending on the design of the timetables of all trains, makes it
possible to reduce the overall energy consumption. In this paper, a two-level resolution model is
proposed (Figure 1). First, at the eco-driving level, a local Pareto front of driving commands is
obtained for each interstation, providing for each running time the eco-driving (ATO driving with
the minimum energy consumption).

Then, at the timetable level, a global Pareto front of optimal timetable solutions (i.e., a driving
command for each interstation and a dwell time for each station) is obtained taking into account the
exchange of regenerative energy among trains on the entire metro line in order to maximise its use,
as well as the time distribution along the line to minimise the total energy consumption of the
system.
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Figure 1. Proposed model for the efficient operation of a metro line.

3. Timetable design level

This section presents the optimisation of the timetable at the global level. The inputs received
at this level are the eco-driving profiles designed by the Local eco-driving multi-objective
optimisation model (Section 4).

A series of preconditions have been established to design the timetable for a specific operational
period. A periodic timetable has been considered with all trains performing the same running time
for the same route and the same stopping times for the same stations considering that the interval
between trains is constant. Therefore, by calculating the timetable for each train in each period of
time, the entire timetable is calculated.

When the timetable design problem is solved, a new global Pareto front is obtained where each
solution has associated the total energy consumption and running time of the cycle for the entire
line, considering that the trains are using the efficient driving calculated in the eco-driving level.
Thus, each solution represents a specific set of efficient ATO driving parameters at each interstation
(which provide the running times at interstations) and the dwell times at the stations of the line. For
each solution, the total operating cycle time of the entire line is thus defined. In this way, the optimal
timetable is established by defining the time of arrival and departure at stations and thus, the
associated stopping times.
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3.1. Global optimisation model

At the global level, the objective is to maximise the use of energy regenerated by trains during
braking avoiding waste through rheostats and to distribute the time margins by reducing the
running time at the interstations where greater traction energy reduction can be obtained.

The energy regenerated by a train is firstly used for auxiliary systems. The remaining regenerated
energy is transmitted to other trains that are accelerating nearby the train or transmitted to rheostats
if there is no demand to avoid voltage surges in the catenary.

To design the efficient timetable, the input parameters are the headway and the set of efficient eco-
driving parameters obtained for each interstation at local level. The proposed optimisation model
will modify the arrival/departures in order to synchronize trains improving the use of regenerated
energy in braking. In this way, a braking train transmits as much energy as possible to nearby
accelerating trains.

In the proposed model, the consumption profile on the route of each interstation is used to
synchronise not only the braking on arrival at the station but also at any other moment that may
occur, such as, for example due to speed limits along the route.

In addition, every timetable on a railway line has an associated number of trains required to provide
that service. The model proposed imposes a penalty for timetables with similar running time and
energy consumption that require an extra train to provide the service.

Thus, the objective function of the multi-objective optimisation problem of designing the line
operation can be expressed as:

min fy(xg,tg) = (RT(xg,t5) , C g, tg) ) (1)

where, RT is the total running time (s) for the mass transit line, C is the cost function that includes
the total energy consumption (kWh) and the penalty in the number of trains (kWh), x4 is the ATO
driving commands for all the interstations of the entire metro line with
Xg = (X1, X3, ..., Xys) being Ns the number of stations along the metro line and ¢t are the values of

dwell time (s) at every station in the line with t; = (¢4, t;, ..., tys)-
The driving commands contained in x; will be restricted by the following condition:

x, € EDC, 2)
where x,, is the component n of x; (i.e., the ATO driving command of the interstation n) and EDC,

is the set of the efficient ATO driving commands of interstation n (i.e., the Pareto front obtained in
the local eco-driving level for interstation n).

Moreover, the dwell times will be restricted by a minimum value that ensures that the passengers
have enough time to get on board the train:

tn = tmin ©)

where t,, es the dwell time (s) at station n, and t,;;;, is the minimum dwell time (s). The global
running time of the timetable model RT (x4, t;), presented in Equation 4, is calculated as the sum of

the running time and the stopping time at each station n:
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RT(5,t6) = > (filo) + &) )
n=1

where, f1(x;) is the running time (s) of interstation #.

The cost function C(x4,t;), shown in Equation 5, is calculated knowing at each moment ¢ the
consumption of the traction trains, the energy returned by braking trains and the distance between
trains to take into account the electrical losses in the energy transmission between regenerating
trains and accelerating trains. In addition, this function includes a penalty for each extra train
required in the solution to satisfy the timetable:

t=0 i=1j=1
JE

i=1 j

where, j is the train that transmits regenerated energy, i is the train that receives regenerated
energy, n. is the number of trains consuming energy, n, is the number of trains regenerating
energy, h is the headway (s), E; is the energy consumption (kWh) used for traction by train i, R;; is
the energy regenerated (kWh) by train j and transmitted to train i at a specific instant, 0 models the
electrical losses and represents the percentage of regenerated energy that is transmitted from a
braking train and utilised by a traction train. This function is dependent on the distance (m) between
the regenerating train j and the train i receiving the energy as shown in Equation 6. An example is
shown in Figure 2 although different shapes can be obtained depending on the characteristics of the
specific railway line. P is the penalty (kWh) whereby the solution with the lowest number of trains
satistying the timetable is prioritised and N, is the number of trains required to fulfil the timetable.

gji = (|si = s5) (6)

Where s; and s; are the kilometric position (m) of train i and j respectively.
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Cost function C (Equation 5) is calculated as the sum of consumption at each instant of time ¢, over
an interval equal to the headway. It is sufficient to calculate it in a headway since, as the timetable
is periodic, it is repeated every headway h.

In Equation 5, the value of the energy consumption (E) of a train cannot be a negative value. A
negative value would mean that the train would be braking, regenerating and transmitting energy,
so instead, this value would be included in R. Similarly, the energy regeneration R of a train cannot
be a negative value (in that case, the train would be consumed and should be modelled by means of
E).

In addition, there are a series of restrictions to complete the model for the use of regenerated energy.
The first expression (Equation 7) indicates that the reuse of the regenerated energy is maximised
offering the greatest possible amount of energy to the nearest trains with the highest utilisation
percentage (Figure 2):

nc
max Z Rj; - 0j; (7)
i=1

The energy regenerated will always be higher than the energy received by the other trains for reuse
due to the losses introduced in the calculation:

N¢
Ri> ) Ry ®)
i=1

The total regenerated energy received by trains cannot exceed the energy required for their
operation so energy is only transmitted to trains that are accelerating:

nc

i=1

In addition, in the cost function (Equation 5), a penalty is introduced associated to the number of
trains (rolling stock) required to provide the service of the designed timetable. In this way, the
optimal solution can be obtained with the lowest number of associated trains while reducing related
costs.

The calculation of the number of trains is solved by means of Equations 10 and 11. T; is the result of
the timetable optimisation and represents the time difference between the arrival and departure of
consecutive services in terminal station 1. If this time is equal to or greater than minimum dwell
time, t,,;,, that means the same rolling stock can perform both services. In this case, the number of
trains is calculated by Equation 10, by considering the dwell time at terminal station 2 equal to the
minimum and rounding the result to the greater closest integer value. That means that the dwell
time at terminal station 2 is the needed value to obtain an integer value of trains subject to the

minimum stopping time:

t1+t2+T1+tmin) (10)

If Ty =2 tpin —>Nt=ceil( .
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If this time is lower than minimum dwell time (t,,;,), that means the same rolling stock cannot
perform both services. That means that when a train arrives to terminal station 1, there is other train
ready to start the service in the opposite direction. Therefore, the train that arrives to terminal station
1 has to wait T; plus an interval h to start the service in the opposite direction (Figure 3). The impact
of this extra-time is that an additional train is needed to provide the service. In this case, the number
of trains is calculated by Equation 11:

t1+t2+T1+h+tmin) (11)

IfT1< tmin —>Nt=C€il( h

where, T; is the dwell time (s) calculated in terminal station 1, t,,;;, is the minimum dwell time (s) in
terminal station, t; is the running time (s) on track 1 and ¢, is the running time (s) on track 2.

T’1=TI + tmin

_/ N\

T1<tmin

Figure 3./Dwell time at Terminal stationX.

The number of trains necessary for the operation is calculated as the complete cycle running time
associated with a specific timetable divided by the headway between trains. For a given timetable it
is analysed whether the time at the terminal station is greater than the minimum time necessary for
the manoeuvre (or if more margin time is desired for delay recovery). Otherwise, if the result is less
than the minimum time, it means that the train arriving at that terminal station must connect with
the next timetable which starts a time equals to one headway later. As a consequence, in this case an
extra train is needed to provide the service.

A Non-Sorted Genetic Algorithm III (Kalyanmoy Deb and Jain 2014) that uses the Grouped Linked
Polynomial Mutation Operator (Zille et al. 2016a) (GLMO-NSGA-III) algorithm is proposed in this
paper to solve the multi-objective optimization problem defined in the timetable level due to its
performance in terms of diversity and optimality of the solutions obtained in complex problems.

3.2. GLMO-NSGA-III algorithm

The parameters related to the GLMO-NSGA-III algorithm are presented in Table 5.

s Set of solutions

Si Solution i of §
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n Distribution Index
m Mutated Solution
m; Mutated solution i of
T Variables that are to be mutated chosen based on variable grouping
ng Group index
T'n, Variables with group index n,
j Random group index
h Random value between (0,1)
T Group r with index j
S Minimum value of §
Simax Maximum value of §
T, Tq, T2 Intermediate variable calculation

Table 5.GLMO-NSGA-IIl parameters.

GLMO-NSGA-III algorithm is the proposed method for solving the efficient timetable
calculation model. The Grouped Linked Polynomial Mutation Operator (GLMO) (Zille et al. 2016a)
is based on the following mutation techniques: Linked Polynomial Mutation and Grouped
Polynomial Mutation. These two procedures are based on Polynomial Mutation and are explained
below.

* Polynomial Mutation: This mutation operator is designed to modify the value of a variable
based on a distribution around the value at that time. Two parameters are used to perform the
mutation: the mutation probability and the distribution index. The probability is used to decide for
each variable whether or not it undergoes mutation. The index determines the distribution from
which the new value will be calculated, the probability of the new value being more similar to the
current value when this index takes large values. When deciding whether a variable will mutate,
another parameter h is taken from a uniform distribution indicating how the mutated variable will
change. If the result of the mutation exceeds the limits of the distribution around which the original
value is modified, this new value is placed at the limit of the distribution.

* Linked Polynomial Mutation: This operator follows a similar idea to the Polynomial Mutation
but the parameter u remains constant for all variables. The Linked Polynomial Mutation is a version
of the Polynomial Mutation in which a connection is established between variables that are
susceptible to change. The procedure by which the connection is established is by keeping the
relative amount of change of a variable fixed for each mutation and the same for each solution. With
this change, all variables that undergo mutation considering a specific value of probability are
mutated by the same amount.

* Grouped Polynomial Mutation: In this modification the variables are separated into different
groups and the mutation is applied to these groups, varying each variable in the same group equally.
The decision of which variables mutate changes from a randomised procedure to a procedure
designed for that purpose assuming that the clustering method makes the appropriate decision of
which variables interact and should be modified simultaneously. In this case the mutation
probability is not necessary. In this operator, the variables are arbitrarily divided into groups and
the variables in any of these groups will be susceptible to polynomial mutation. For each of the
variables in the group, a value h is taken defining the mutation. The variables of the rest of the
groups do not change.
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* Grouped Linked Polynomial Mutation Operator (GLMO): This case is a combination of the
two previous ones. The distribution parameter together with the grouping mechanism are the input
information for this procedure. The selection of the group to mutate is done in a similar way to the
Grouped Polynomial Mutation operator. In this case the value of the parameter h is previously
selected as in the Linked Polynomial Mutation. In comparison to the Linked Polynomial Mutation,
it is now assumed that the interacting variables are modified simultaneously and equally when they
are in the same group. GLMO operator is used within the NSGA-III optimisation algorithm
(Kalyanmoy Deb and Jain 2014) to improve the adaptability, the diversity and the convergence of
the algorithm.

GLMO pseudocode is as follows:

Input:  Solution §, the Grouping Mechanism and Distribution Index p

Output: Mutated Solution m

1. {rl, s rng} « Apply Grouping Mechanism to 7 producing ngy groups
2. j < Pick a group index at random from {1, ...,ng}
3. h « takes random values between (0,1)
4. loop s; values belonging to rj do
5. if h £0.5then
6. T, = Si—Simin
Simax~Si;min
7 ‘L'q=(2'h+(1—2'h)'(1—‘[1)”+1)ﬁ—1
else
9. T, = Si;max—Si

Simax ~Si,min
10. 1,= 1—(2-(1—h)+2-(h—o.5)-(1—rz)u+1)ﬁ
11. end if
12. m; =5; + Tq- (Si,max - Si,min)
13.  repair(m;)
14. end loop
15. loop s; values not belonging to 1j do
16. m; =s;
17. end loop
18. returnm

Finally, NSGA-III optimisation algorithm flowchart is shown in Figure 4. The NSGA-III is an
evolutionary algorithm where individuals evolve during iterations at the end of which the best fitted
survives. The initial step of the algorithm is the random generation of the parent population. The
global travel time and cost of the members of the parent population are evaluated using Equations
4 and 5. Then, the offspring population is generated by applying the GLMO operator to individuals
in the parent population. This offspring population is evaluated, and a result population is
generated, joining the parent and offspring populations. The dominance of the solutions in the result
population is calculated. As a result, the selection criterion chooses the members of the result
population that will survive depending on the domination level. Thus, firstly the group of non-
dominated solutions are saved. After that, the group of solutions that are dominated by just one
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solution is saved, and the process is repeated with the following groups of solutions. If a group
cannot be saved completely because the size of the population is achieved, the crowding distance
operator is applied to select the solutions of the last group that will survive.

Random parent
population (Py)

it=0

i

Parent population
evaluation

Oftspring generation (Q;)
crossover and mutation (GLMO)

!
Selection ‘ Qit evaluation ‘
operator l
| Re-P:UQ: |
Dominance
calculation

Figure 4. NSGA-III flowchart.

4. Local eco-driving multi-objective optimisation model

As previously described, the local optimisation model provides a Pareto front of solutions for
each interstation. Each solution of a Pareto front represents the set of optimal ATO driving
parameters for the interstation with the running time and energy consumption associated.

At this level of model resolution, which is the eco-driving level executed for each interstation of the
line, the search of optimal solutions is modelled as a multi-objective problem where the aim is to
minimise running time and energy consumption at the interstation. The evaluation function for
interstation 7 is:

min f (xn) = (fi(xn) , f2(xn)) (12)

where, f;(x,) is the objective function that defines the running time (s) between stations when a
specific set of ATO driving parameters is executed, f,(x,) is the objective function that defines the
energy consumption (kWh) associated to each driving and x,, is the vector that contains the ATO
driving parameters for the interstation n. The driving parameters are defined following the driving
model presented in (Dominguez et al. 2014).

x, = (c, 1, hs, b) (13)
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where, c is the speed at which coasting is applied (km/h), r is the speed at which traction is applied
(km/h) (re-motor), hs is the holding speed (km/h) and b is the braking rate (m/s?).

Figure 5 shows an example of ATO speed profile where the eco-driving strategy is the regulation
speed. In this case, the main driving parameter is hs and the coasting speed and re-motoring speed
are equal to 0. When a regulation speed is greater than 0, the train aims to maintain the speed defined
by c. On the other hand, Figure 6 shows a coasting/re-motoring case. Coasting/re-motoring strategies
are characterized by two main parameters ¢ and r while the holding speed hs is 0. In this case, the
train tractions until its speed achieves the value of ¢ and, then, it coasts until it reduces its speed r
km/h that it is the moment when the train tractions again and the cycle is repeated. In both cases
(regulation and coasting/re-motoring) the speed limitations are observed and the deceleration up to
the stop in the station is defined by b.

Speed
(km/h)

Limit
hs |-

Accelerating Regulation

Kilometric Point

Figure 5. Regulation speed profile.

Speed
(km/h)

Limit

Accelerating Coasting/re-motoring Braking

Kilometric Point
Figure 6. Coasting/re-motoring speed profile.

Efficient ATO driving must meet comfort requirements, otherwise they are discarded. The
requirements to be fulfilled are: avoid traction cut-off on a ramp, avoid too many cut-off and re-
motor cycles between interstations, and avoid low operating speeds and maintaining traction for a
minimum time. In addition, accelerations and decelerations must be kept within a certain comfort
range by controlling the rate of change of acceleration. Another desirable requirement is that the
driving can be kept stable facing changes in the mass of passengers avoiding large variations in
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running time and consumption (Lin and Sheu 2008). For instance, the efficient ATO speed profiles
generated in (Fernandez-Rodriguez et al. 2015) considers load variations.

It is important to note that the passenger load can vary during the journey and, in the proposed
model, it is possible to configure a different passenger mass for each interstation. This way, the
model takes into account the impact of the mass variation in the design of the eco-driving and in the
use of regenerated energy. On the other hand, the objective is to provide a periodic timetable with a
constant headway and with the same stopping regime for a specific time period (for instance, peak
hours). In this kind of operation, the model considers that trains run with similar passenger load at
the same stations. Therefore, the passenger mass used for the design of the ATO should be an
average mass value for each interstation.

4.1. MOPSO algorithm

The parameters involved in the MOPSO algorithm section are presented in Table 6.

X; Position of the particle
n Iteration number
v; Velocity of the particle
w Inertial weight of the particle
C1,Co Parameters that determine individual and collective influence
1,72 Parameters that take a random value chosen between 0 and 1
Di Vector where the previously local best result of the i particle is stored
Py Vector where the previously global best result is stored

Table 6. MOPSO parameters.

For the search of these possible solutions, a MOPSO algorithm has been chosen because it has
been proven to provide better results for the eco-driving problem compared to other widely used
algorithms (Dominguez et al. 2014). MOPSO algorithm is based on the PSO method, resembling the
behaviour of a multitude of individuals present in nature (Kennedy and Eberhart 1995). MOPSO
algorithm is a particle swarm optimisation technique for solving multi-objective optimisation
problems. In MOPSO, each particle represents a potential solution to the optimisation problem and
moves in a multidimensional search space. The goal of the algorithm is to find a set of optimal
solutions that are as close as possible to the Pareto front. To achieve this, MOPSO uses a technique
called “Pareto dominance”, which allows solutions to be compared in terms of their quality across
multiple goals. The algorithm adjusts the speed and direction of each particle based on its own
previous experience and that of neighbouring particles, in an iterative process that seeks to
continuously improve solutions.

The MOPSO algorithm presented in this paper uses the train simulation model presented in Section
4.2 to evaluate the fitness function in Equation (12) and the comfort criteria.

The PSO algorithm searches for an optimal solution by allowing an initial population to move
through the search space according to mathematical rules. The movement of the particles is
conditioned by the best local solutions, at the level of each particle, and at the global level, by the
population as a whole. The PSO method is a relatively simple and effective algorithm, which makes
use of the characteristic movement of particles through the search hyperspace by rapidly converging
on better solutions. It makes use of a process similar to crossover, used in Genetic Algorithms, and
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the concept of fitness. MOPSO allows dealing with multi-objective optimisation problems. In this
case, it is used the Pareto front concept (Goldberg 1989). The history of the best solutions found by
a particle can be used to store previously generated non-dominated solutions. The use of attraction
mechanisms combined with non-dominated solution vectors would trigger convergence to globally
non-dominated solutions. Therefore, in each cycle, the past experience of each particle is saved. In
addition, it is used the technique inspired by the external archive used in PAES (Knowles and Corne
2000) (Pareto Archive Evolution Strategy). Here, the information stored by the particles is updated
based on the values of the objective function for each of the particles. The previously stored
information is used by each individual to choose the leader to guide the search.

MOPSO algorithm is described by the following steps:

1. Initialise randomly the position and velocity of the particles.
The particles are evaluated in running time and energy consumption and those that do not
fulfil comfort criteria are directly marked as dominated solutions.

3. Local best is initialised as the current position of each particle.
4. Non-dominated solutions are stored in the archive.
5. Global best is initialised selecting randomly a non-dominated solution.
6. Update the position and velocity values for each of the particles by means of the following
equations:
x(n) = x;-(n—1) +v(n) (14)
vim)=w-v;-(m—1D+c - —x-(n—1)) +¢, 'Tz'(l’g —xi-(n—l)) (15)

where, x; is the position of the particle, v; is the velocity of the particle, n is the number of the
iteration, w is the inertial weight of the particle and allows particles to find local optimal solutions
based on global solutions at the outset, ¢; and ¢, are parameters that determine individual and
collective influence, r; and r, are parameters that take a random value chosen between 0 and 1, p,
is the vector where the previously global best result is stored and it is the best position found by the
swarm during all the iterations of the algorithm, p; is the vector where the previously local best
result of the i particle is stored and it is the best position found by the specific particle during all the
iterations of the algorithm.

7. Calculate the consumption and travel time by evaluating the particles. Subsequently,
comfort criteria can be applied to mark as dominated those driving that do not meet them.

8. The archive is updated including the new non-dominated solutions found and discarding
those that are dominated by the new ones.

9. Update local best for each solution. If the local best and the current particle position are
mutually non-dominated, then the local best will be maintained or updated by the new
particle position randomly.

10. Calculate the crowding distance (CD) of each solution in the archive.

11. Update the global best result from the solutions of the archive. Solutions with higher value
of CD will have higher probability of being selected as global best to promote diversity. Thus,
the archive will be divided into two groups: the group with higher values of CD and the rest.
The first group is composed by the fraction of the archive with higher values of CD according
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to the “Top select” parameter. Then, a solution is randomly selected from the top group or
from the rest with a probability defined by the “Top select probability” parameter.
12. Repeat steps 6 to 11 until the maximum number of iterations is achieved.

4.2. Train simulation model

The train simulation model is used to evaluate the solutions generated by the MOPSO
algorithm. A detailed description of this simulation model and its validation can be found in
(Dominguez et al. 2011). It is composed by several modules that represent the ATO logic, the
traction/braking system, the train dynamics and the energy consumption calculation. The line
characterization used by the simulation model includes location of stations (kilometric point),
grades, grade transitions curves, track curvatures and speed limits. Moreover, the train
characterization includes mass of the train, the mass of the load, length of the train, maximum speed,
rotatory inertia, adhesion traction, traction effort curve, braking effort curve, running resistance
coefficients, auxiliary systems consumptions and the ATO equipment configuration.

The simulation model works by calculating, at constant time steps, the state variables of the train
motion. At each step, the process starts with the ATO module to obtain the traction/braking demand
(@rer) for the train. This demand is the ratio between the effort that the traction/braking system has

to apply and the maximum traction/braking effort.

The ATO module receives as inputs the speed and position of the train, the maximum speed profile,
the gradient profile and the position of the arrival station. With this information, the ATO modules
differentiate 3 scenarios:

e The train is in traction mode and does not need to brake to observe maximum speed
reduction or to the station arrival. In this case, the ATO calculates its output by means of a
proportional controller using as a speed reference (V¢4 ge¢) the minimum value between the
maximum speed at the position of the train and the driving command hs (in case the train is
driven in holding speed mode). The result of the control is corrected with the gradient
acceleration as shown in Equation (16).

Aref = Kiraction (vtarget - vtrain) + Kaee Agradient (16)

where K;yqction 15 the constant of the proportional controller (%) for the traction mode, V¢yrgin

2
is the current train speed (%), Kgcc is the constant for the pre-fed acceleration (S;) and

Agradient 18 the acceleration (Sﬂz) due to the gradients at the position of the train.

e The train is in braking mode to observe a speed restriction. At each simulation step, the ATO
logic evaluates by means of a braking detection curve (Carvajal, Cucala, and Fernandez 2016)
if it is necessary to reduce the speed because of a maximum speed reduction. When the
braking detection curve intersects the maximum speed profile, the ATO braking logic is
started. In the braking mode, the output of the ATO is calculated by the proportional
controller represented in Equation (17). This controller is corrected not only with the gradient

acceleration (as the previous case) but also with the target acceleration a;q,get (522) The target
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acceleration (a¢qrget) is calculated as a braking curve from the current train position and
speed to the position where the maximum speed is reduced and the new maximum speed

value. The speed reference Vg, get (%) in this case is the speed of the braking curve in the

next time step.

Aref = Kbraking ’ (Utarget - Utrain) + Koee (_atarget + agradient) (17)

where Kj,;qking is the constant of the proportional controller (%) for the braking mode that
depends on the train speed.

e The train is in final braking mode to brake up to the arrival station. At the beginning of the
simulation, the braking curve up to the stop in the arrival station is calculated between the
arrival point and the initial point using the driving command deceleration (b). When the
train speed and position intersect this braking curve, the ATO final braking is started. In the
final braking mode, the proportional ccontrolrepresented in Equation (17) is applied where
the target acceleration is b and the speed reference (V¢qrget) is the speed of the final braking

curve in the next time step

The ATO traction/braking demand a,.f previously calculated is bounded by [-1,1] and hysteresis is
applied to minimise that the train changes for traction to braking continuously. Besides, if the train
is driven with coasting/re-motoring driving commands, a,.; will be bounded by a maximum value
of 0 when the train is in traction mode and the speed has previously reached the coasting speed (c)
and it is over the re-motoring speed (r).

Once the ATO output is calculated, the effort provided by traction/braking system is calculated
using Equation (18).

Firain = Arer * Enax (18)

where F, 4y, is the traction/braking effort of the train (kN) and F, 4, is the maximum traction effort
(kN) according to the motors characteristics, if a,.f = 0, or the maximum braking effort according
to the braking system characteristics, if a,.; < 0. Both, maximum traction and maximum braking

effort curves are dependent on the train speed.

The traction/braking system limits abrupt changes in the train effort applied. Therefore, the
previously calculated traction/braking effort will be constrained applying a limitation as show in
Equation (19).

. AFirain . 19
—Jmax < (tirtaln < Jmax ( )

where j, 45 is the maximum variation of traction/braking effort (kTN) value configured.

The traction/braking effort will be the input for the dynamics module that will calculate firstly the
train acceleration (s qi,) using the Newton’s second motion law as shown in Equation (20).
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_ Firain = Frrack = Fres (20)
QAtrain = M

eq

where Fy,q is the resistance due to the track grades (kN), F..5 (kN) is the running resistance and
M, is the equivalent mass of the train (tons) (including the rotatory inertia).

The running resistance and the resistance due to track grades can be calculated using Equations (21)
and (22).

Fres = A+ B Vipgin +C- (Utrain)z (21)
Firack = 9 * Mtrain * Perack (22)

where A (kN), B (

kN
iy m

N

) and C ( kN2> are coefficients that depend on the train characteristics, g is the

N

gravitational acceleration (g), Miyqin is the train mass (tons) and Py.qc is the equivalent gradient of
the track (g) in the train position. The equivalent gradient is calculated adding to the average
gradient affecting the complete length of the train, the equivalent gradient that represents the

resistance produce by the track curves.

The position S;4i, (M) and speed of the train (%) can be updated using the train acceleration and

Equations (23) and (24).

dvtrain = Qo (23)
dt - train

dStrain _ . (24)
dt - train

Finally, the traction electric power Pgq. (kW) and regenerative electric power B, (kW)
consumptions are calculated using Equations (25) and (26). With the power, the traction energy
consumption can be calculated integrating the traction electric power.

Firai . 25

Pirac = Imax - F;aazl “Ucat ﬁ if Firain =0 (25)

Firai . 26

Preg = Imax '%' Ucat " Pf if Firain <0 (26)
‘max

where [,,4, is the maximum current (A) according to the motor characteristics that is associated to
the maximum effort of traction or braking, F,, 4, (kN), U4 is the nominal catenary voltage (V) and
pf is the motors’ efficiency (%) that depends on the working load level (i.e., depends on the ratio
between Fipgin and Fyqy)-
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5. Case study

This section presents a case study where the proposed model is applied to a line of Madrid
Underground. The metro line consists of 16 interstations and two terminal stations spread over 14
kilometres and its infrastructure is modelled by means of gradients and curves. The characteristics
of the train are: 160 tonnes, 78 tonnes of passenger load, a length of 90 metres and the maximum
power offered is 1500 kW. The electric system is a 1.5 kV DC. Speed limits set by the railway operator
are respected at all times. The dynamic simulation of the train taking into account the above
parameters is carried out by means of a detailed model of the train movement and execution of the
on-board ATO driving parameters. The minimum dwell time (t,,;,) takes a value of 20 seconds.

The variations of the possible values of the ATO driving parameters and their maximum and
minimum limits are defined according to Table 7.

Deceleration rate (m/s?) Regulation speed (km/h) Coasting speed (km/h) Re-motoring speed (km/h)

Minimum 0.60 30 30 5
Maximum 0.80 80 80 50
Increase 0.05 0.25 0.50 1

Table 7. ATO Driving parameter settings.
The headway of the timetable to be designed is 420 seconds (7 min).

For the analysis of the case study, the process described in Section 4 is carried out searching for the
optimal driving (Equation 12) for each interstation with MOPSO optimisation algorithm.

MOPSO parameters used in to generate the local eco-driving Pareto curves are listed in Table 8.

Swarm size Iterations cl 2 w Top select (%) Top select probability (%)

40 1000 1 1 0.9 6% 98
Table 8. MOPSO parameters.

The result of this process is a Pareto front for each interstation and is the input information used for
the following optimisation procedure. Figure 7 shows an example of solutions after the local eco-
driving calculation process. Each point of a Pareto curve represents a specific ATO parametrisation
that produces the most efficient driving for the corresponding running time at that interstation.
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Figure 7. Examples of Pareto front of interstations 1 and 5: designed eco-driving, running time / energy
consumption.
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As previously described, the procedure continues with the timetable optimisation (Equation 1) and
the global Pareto front is obtained. Each solution of this global front represents the set of efficient
ATO driving parameters at each interstation of the entire railway line and stopping times. The
obtained selection of running times and stopping times leads to synchronised braking and
tractioning trains to maximise the use of regenerative energy.

The timetable optimisation problem is solved by the proposed algorithm GLMO-NSGA-IIL In the
following, this solution is compared as well with other algorithms: WOF (Zille et al. 2016b)
(Weighted Optimization Framework), LCSA (Zille and Mostaghim 2019) (Linear Combination-
based Search Algorithm), FDV (Xu Yang et al. 2021) (Fuzzy Decision Variable) and NSGA-IIL

The optimisation process using the FDV algorithm is divided into two distinct parts, fuzzy evolution
and precise evolution. In the first one, fuzzy evolution substages are added and the fuzzy operation
is performed once the offspring has been generated at the beginning with the MOEA (Multi-
Objective Evolutionary Algorithm) that has been chosen, being in this case the LMOCSO (Y. Tian et
al. 2020) (Large-Scale Multi-Objective Optimization Competitive Swarm Optimizer). In the second
phase, offspring generation operations are carried out. The next population generation is examined
by means of LMOCSO. The fuzzy evolution phase in turn consists of: fuzzy evolution sub-stages
division and fuzzy operation. The purpose of the first of the above phases is to make the algorithm's
solution more accurate by dividing the fuzzy evolution into multiple phases in which the level of
fuzzification decreases. In the second phase, the degree of fuzzification of the solution is determined.

LCSA algorithm is a procedure in which solutions of the optimisation problem are formed by linear
combination of previous results to improve the quality of solutions in multi-objective problems. A
population of coefficient vectors is formed and optimised by a metaheuristic procedure to improve
the search for solutions. The algorithm starts with the optimisation of the population with any multi-
objective method. The first non-dominated solution front of the existing population is used to form
a solution matrix. Then, a random population of the linear combination of solution vectors is formed.
These vectors are optimised through an arbitrary procedure, storing this result. Finally, the previous
result is combined with the initial population, and the process is repeated. In this case study, the
multi-objective optimisation algorithm applied has been the NSGA-III.

WOF algorithm has been designed as a metaheuristic procedure to be incorporated in a population-
based optimisation mechanism. This method is based on the grouping and optimisation of the
weighting variables to be applied, and the weighting variables are applied to cases where the
objectives are multiple. In the WOF algorithm, the decision vector is divided into smaller vectors.
The corresponding weighting factor is applied to each of these vectors. The whole process is divided
into two different phases. Initially, an optimisation is performed with any of the following randomly
chosen algorithms: SMPSO (Speed-constrained Multi-objective Particle Swarm Optimisation),
MOEA/D (Multi-Objective Evolutionary Algorithm based on Decomposition), NSGA-II, NSGA-IIL
After this, a certain number of solutions are chosen from the current population and a new
optimisation is performed with the NSGA-III algorithm and taking into account the corresponding
reduced decision vector.

Table 9 presents the parameters of the algorithms used for the optimization. All algorithms have
been executed with 220 generations and a population size of 100. Additionally, the random seed is
initialized for the generation of the initial random population in all cases, and for all executed and
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compared algorithms. This uniformity in the initialization process and parameters further ensures a
fair comparison of the algorithms' performance.

Fuzzy evolution rate  Step acceleration Optimiser Aggregation function -
EDV
0.8 04 LMOCSO Penalty based Eoundar )
Intersection
GLMO- Grouping method  Variable groups Optimiser - -
NSGAIIl Ordered 4 NSGA-III - -
- - Optimiser - -
LCSA
- - NSGA-III - -
Simulated binary . ?ros.sovezr Mutation distribution Polynomial mutation
crossover distribution index index (1,,) robabilit -
NSGAIII probability @) hm P ) y
1 ey 20 number of variables )
Fraction of
function
Variable Transformation . 'Evaluatlons evaluatlons.for
Grouping method groups function (original/transformed the alternating
WOF problem) weight-
optimisation
phase
Ordered 4 Interval 1000/500 0.5

Table 9. Algorithm configuration parameters.

Figure 8 presents the behaviour of the algorithms after the global optimisation process considering
the electrical loss function.
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Figure 8. Pareto fronts comparison.

For the resolution and optimisation of the timetable as the second part of the problem, the GLMO-
NSGA-III has been chosen due to its good results after the comparison with the rest of the
algorithms. When NSGA-III is combined with the GLMO operator, the algorithm provides better
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solutions. It can be observed that GLMO-NSGA-III obtains better solutions in the range between
3100 seconds and 3600 seconds. After that, the LCSA algorithm provides more solutions. However,
in the design of railway timetables the time margin that is usually given above the minimum time
is between 3.5% and 10%, so the range for the running time is up to 500 seconds. Therefore, solutions
provided by GLMO-NSGA-III are adequate from the operational point of view.

In the following, the proposed model is firstly executed without introducing the penalty on the
number of trains to analyse the obtained results. The design of the timetable is carried out in two
different cases depending on whether regenerated energy is considered or not in the optimisation
model. The first case will refer to the optimal design of the timetable when the energy regenerated
by the trains is ignored in the analysis. The second case will consider the energy regenerated during
braking being more faithful to reality by adding the losses given during transmission. These losses
are modelled by means of a function dependent on the distance that separates the train that is
regenerating energy and the train that receives and uses the energy (Figure 2).

Figure 9 plots the optimisation scenarios representing each of them as the corresponding Pareto
front. As expected, the driving with the highest associated consumption corresponds to the scenario
where the regenerated energy is not reused.

Optimisation cases with GLMO-NSGA-I|
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Figure 9. GLMO-NSGA-IIl optimisation cases.

Results in Figure 9 are the Pareto curves obtained by the optimisation algorithm in these cases.
However, in reality, when the solutions obtained by the algorithm are tested on the line (by
simulation) there is regenerated energy and the transmission of this energy between trains has
associated losses that depend on the distance between trains. Therefore, the result of simulating the
above Pareto fronts on a line with regenerated power transmission with losses according to the
defined loss model is presented below in Figure 10. It can be seen in Figure 10 that the curve that
was optimised taking into account the regenerated energy and o function has a better behaviour in

terms of consumption as it has been tried to preferentially synchronise accelerating and braking
trains.
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Figure 10 shows the optimisation result when regeneration is considered with the loss function and
the result when regeneration is not considered in the optimisation, both simulated in the case where
regeneration with losses during transmission is added.
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Figure 10. Optimisation results simulated considering o function.

As can be seen in Figure 10 a better result is obtained for the optimised case where regeneration and
the loss function are considered. The graph highlights the points corresponding to the fastest
possible set of driving for the whole metro line and the same for a set of 4.52% slower driving with
respect to the optimised case in the two optimised cases. Comparing the result of both optimisations
for what could be the nominal set of driving shows an energy saving of 5.42% with the optimisation
when considering regeneration and o function.

Previous results do not take into consideration the number of trains required to meet the demand.
Firstly, the number of trains is calculated as a further step to the optimisation (Equation 10 and 11),
and the results are shown in Figure 11. In this case, no penalty has been introduced for the objective
function. This is why the solutions between the 8-train and 9-train cases overlap in some areas of the
graph. As shown in the figure, the Pareto front contains similar solutions that are optimal in terms
of energy and running time but with different numbers of trains required to give the associated
service. With the same consumption and running times some solutions require 8 trains and others
require 9 trains, which impact critically on the investments and operation. The results of Figure 11
present the energy consumption vs the commercial running time. The commercial running time is
the commercial speed experienced by the passengers, so the time spent by the trains at stops in
terminal stations is excluded. This time is used by the trains for the reverse manoeuvres, to unload
and load passengers, and as a buffer to absorb delays. However, it is also crucial to determine the
synchronization of ascending and descending trains to use regenerated energy as was studied in
(Roch-Dupré et al. 2018). Therefore, solutions with the same commercial running time could present
different cycle time in the line and different number of trains to operate the timetable.
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Figure 11. Timetable optimisation without penalty for the number of trains.

Figure 12 shows the optimisation after including in the objective function (Equation 1) a penalty or
additional cost of 25 kWh for each extra train required in the achieved solution. This penalty is

expressed in the term P - N, of the Equation 5. Hence, the areas of the 8-train and 9-train cases are
clearly differentiated.
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Figure 12. Timetable optimisation introducing penalty for the number of trains.

In this case, a timetable can be chosen with a running time around 5% slower than that associated
with the flat-out driving between stations following the railway operator's criteria of setting a time
margin for the design of the timetable. In this way, an energy saving in relation to the cost function
of 1372 kWh is achieved, which represents a saving of 24.79%, not being necessary to include more
trains on the line ensuring the fulfilment of the service.

Figure 13 compares the energy that would be consumed in rheostats in the results obtained in Figure
10. Both cases were simulated by considering the regenerated energy and the losses associated with
its transmission. Orange bars show the result when the optimisation is carried out without
considering the energy regenerated during braking and the blue bars show the result when the
energy regenerated during braking is considered with the associated transmission losses.

31



Energy lost on each interstation considering o function
T T T T T T T T T T T T T T

T
[ Optimisation: Regeneration considering o function Il Optimisation: No regeneration

100 1

80 N

60 N

40 -

Energy to rheostats (kWh)

20 -

0 1 1 . 1 1 ] 1 1

1" 2 13 4 15 16 17 18 19 WO M1 M2 H3 H4 M5 W6 M7
Figure 13. Energy dissipation in rheostats at interstations.

It can be seen from the result that synchronisation improves the use of regenerated energy in every
interstation. The energy that would be wasted in the case where regeneration was not taken into
account would be 279 kWh while this wasted energy drops to 33 kWh when the driving and
synchronisation are designed taking regeneration into account.

Figure 14 and Figure 15 show the two optimised speed profiles for the cases compared for track 1
and track 2, respectively:
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Figure 14. Speed profiles for track 1.
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Optimised speed profiles for track 2
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Figure 15. Speed profiles for track 2.

Table 10 and Table 11 show the arrival and dwell times for the compared cases, in track 1 and track
2. These figures have been obtained for a train that arrives to the first station in time equals to 0. As
can be seen, when no regeneration is considered all the dwell times are the minimum value except
for the reverse time in the first station that is 287s. However, when considering regeneration with o
function, there are cases where the dwell time is above the 20s (station S8 for instance) and both
reverse times are greater than the minimum value (45s in S1 and 38s in S18). This is because the
algorithm is synchronizing accelerating and braking trains to increase the use of regenerated energy.

Optimisation: considering o Optimisation: no regeneration
Station Arrival time (s) Departure time (s)  Arrival time (s) Departure time (s)
S1 0 45 0 287
S2 183 203 423 443
S3 303 323 544 564
S4 415 435 649 669
S5 528 548 766 786
S6 614 634 848 868
S7 731 751 966 986
S8 864 885 1087 1107
S9 959 979 1181 1201
S10 1039 1059 1264 1284
S11 1133 1153 1363 1383
S12 1210 1230 1441 1461
S13 1322 1342 1553 1573
S14 1397 1417 1629 1649
S15 1478 1498 1712 1732
S16 1550 1570 1789 1809
S17 1624 1644 1865 1885

Table 10. Arrival and dwell times for track 1.
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Optimisation: considering o Optimisation: no regeneration

Station Arrival time (s) Departure time (s)  Arrival time (s) Departure time (s)
S18 1693 1731 1934 1954
S17 1780 1800 2004 2024
S16 1854 1874 2078 2098
S15 1926 1946 2150 2170
S14 2010 2030 2235 2255
S13 2082 2102 2307 2327
S12 2193 2213 2418 2438
S11 2269 2289 2495 2515
S10 2365 2385 2591 2611

S9 2443 2463 2670 2690
S8 2541 2561 2765 2785
S7 2657 2677 2884 2904
S6 2765 2785 2992 3012
S5 2852 2872 3079 3099
S4 2972 2992 3200 3220
S3 3074 3094 3301 3321
S2 3188 3208 3414 3434

Table 11. Arrival and dwell times for track 2.

6. Conclusion

This paper presents a procedure for optimal timetable design considering efficient driving for
a metropolitan railway line based on detailed simulation. The objective is to design the optimal
operation, minimising the energy consumption and considering the rolling stock required to provide
the service. This is achieved by integrating the optimisation of the ATO driving parameters and the
optimisation of the timetable, adding the contribution of the energy regenerated by braking trains.
The number of trains required to fulfil the timetable is included in the model to consider costs
associated with rolling stock. The model starts with designing the ATO eco-driving parameters for
the whole line where the energy consumption is minimised as a function of running time. The search
for efficient driving has been carried out by means of the MOPSO algorithm, and the solutions form
a Pareto front where running time and consumption are conflicting objectives. These ATO
parameters satisfy realistic operating conditions easing its implementation in real conditions. The
timetable is then designed by optimising the time margin distribution, the stopping times at each
station and synchronising traction and braking trains during their journey on the whole line to
maximise the use of regenerated energy. Several optimisation algorithms have been tested for the
efficient timetable design, including WOF, LCSA, NSGA-III, GLMO-NSGA-III and FDV. In this
study, GLMO-NSGA-III has been found to be the best performing algorithm.

The procedure described has been applied to a line of Madrid Underground. The optimal design
has been carried out in two different scenarios: ignoring regenerated energy and considering
regenerated braking with transmission losses to show the importance of including regenerated
energy use calculation in the optimisation model. It has been proved energy savings up to 5.42%
when the proposed model considers the regenerative braking for the optimisation and it permits to
take into account the number of trains required to provide the service when deciding the commercial
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speed of the line. Likewise, the calculated driving meets the railway operator's design criteria, giving
a margin time for the nominal operation, offering also an accurate reference for metro railway
operators.
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