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Abstract 

Metropolitan railways are major consumers of energy and are potential targets for the application 
of energy efficiency techniques. In this paper, eco-driving, timetable design and regenerative 
braking are integrated to optimise operation while minimising energy consumption. In addition, the 
rolling stock required to provide the service is considered, as it has an important impact on 
operational costs.  First, the design of efficient ATO (Automatic Train Operation) driving is carried 
out using a MOPSO (Multi-Objective Particle Swarm Optimization). Then the timetable is optimised 
including a regenerated energy model and the number of trains required to satisfy the periodic 
service. For the timetable design, several algorithms have been compared, proving that GLMO-
NSGA-III (Grouped and Linked Mutation Operator – Non-dominated Sorting Genetic Algorithm 
III) is the best for the case study. The complete model has been applied to the Madrid Underground 
line, achieving energy savings of 24.79% compared to the typical operator’s design criteria. 

Keywords: energy-efficient train timetable, eco-driving, regenerative braking energy, Automatic 
Train Operation (ATO), rolling stock. 

 

1. Introduction  

In the current context of optimising energy efficiency and supporting the use of renewable 
energy, it is important to develop technologies that enable the rational and efficient use of resources. 
Europe is leading this change through emission reduction policies, creating a framework for action 
in this area. Among one of the major energy consumers is the transport sector. The rail sector is 
gaining attention given that it is one of the most efficient transport modes, and it is considered a 
keystone to reducing pollutant emissions in metropolitan areas. Metropolitan rail traffic is an 
electrified mode of transport and, despite its efficiency, is susceptible to the application of techniques 
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to reduce energy consumption (Feng et al. 2013). Some of these methods are related to optimal 
operation, and they can be implemented in the short term, like the design of efficient driving or eco-
driving, whether manual or automatic, and the design of the timetable. Automatic Train Operation 
(ATO) systems are also the desirable trend for rail systems because of the regularity in the train 
operation that provides capacity and safety improvements and the potential energy savings given 
by its ability to perform accurately the efficient driving commands, also known as eco-driving.  

Eco-driving consists of executing a speed profile in an interstation to achieve the minimum energy 
savings for a specific running time (Yuan and Frey 2020). The most common strategies for the 
application of eco-driving in metro lines are speed regulation and the execution of cut-off traction 
and re-motor cycles with upper and lower speed limits.  

The benefits of eco-driving implementation in mass transit lines have been demonstrated in several 
studies under different scenarios. Efficient driving achieved by GA (Genetic Algorithm) and PSO 
(Particle Swarm Optimisation) was validated in the case of the Istanbul metro achieving energy 
savings with manual operation between 20% and 30% (Yildiz, Arikan, and Keskin 2023b). In 
(Domínguez et al. 2012), the authors consider the regenerated energy and storage devices in the 
design of Automatic Train Operation (ATO) driving commands, obtaining a result of 11% energy 
savings. The ATO speed profiles search with MOPSO (Multi-Objective Particle Swarm 
Optimization) in (Domínguez et al. 2014) provides energy savings of 15% and it can be combined 
with robustness conditions to obtain driving commands considering mass variation (Fernandez-
Rodriguez et al. 2015) or extended to include multiple time targets (Fernández et al. 2020). The 
authors in (Yildiz, Arikan, and Keskin 2023a) present a speed trajectory optimization using nature-
inspired algorithms for the Istanbul M3 subway line considering a variable number of passengers. 
The algorithms used are GA, Simulated Annealing algorithm (SA), PSO and the Marine Predators 
Algorithm. The solution was tested in the real line achieving energy savings of 21.27%. In (S. Su et 
al. 2023), the speed curve of heavy-haul trains is optimized considering the cyclic air braking on 
long, steep downward slopes. 

The first study related to the calculation of efficient driving applied to railways was carried out 
(Ichikawa 1968), applying Pontryagin's Maximum Principle. Ichikawa considers the analysis as a 
bounded state variable problem taking into account the speed limits and obtained for the first time 
the optimal regimes: maximum acceleration, holding speed, coasting and maximum deceleration. 
Applying the same principle, Howlett in (Howlett 1990) considers energy minimisation to find the 
optimal driving strategy. Different simulation methods and optimisation techniques are used 
applying the results of the Maximum Principle to solve different cases proposed in the literature.  

Solutions from a constructive algorithm are achieved in (Howlett 1996) where coast and maximum 
power phases are alternate to obtain the optimal driving strategy. Variable speed restrictions, grade 
profile, traction and brake force and running time are constraints to optimal driving pattern 
calculation in (Khmelnitsky 2000) with the maximum principle analysis. In (Liu and Golovitcher 
2003) the analytical solution offers the sequence of optimal train control. An optimisation and control 
of speed and dwell time are given in (Thomas Albrecht, Binder, and Gassel 2013).  

Apart from constructive algorithms, different mathematical models have been applied to obtain the 
optimal solution for efficient driving such as Dynamic Programming (DP) (Thomas Albrecht, 
Binder, and Gassel 2013), Mixed-Integer programming (Zhou, You, and Fan 2020), Sequential 
Quadratic Programming (Miyatake and Ko 2010) or Lagrange Multipliers (Rodrigo et al. 2013). A 
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mixed-integer non-linear programming problem is solved in (Y. Wang et al. 2014) minimising 
passengers travel time and traction energy consumption in urban rail transit system. 

Previous methods obtain the analytical eco-driving solution but, when the model includes details 
such as automatic driving logic, the nonlinearities introduced require the application of different 
techniques. In contrast to mainline, mass transit lines are highly automated exploitations where the 
trains are automatically driven by ATO equipment. Therefore, it is important to develop simulation 
models that include ATO characteristics in eco-driving models for mass transit lines and to combine 
them with optimisation algorithms (Figueira and Almada-Lobo 2014) to obtain applicable solutions. 

Artificial Neural Networks (ANN) are used in (Chuang et al. 2009) for optimising coasting speed in 
Mass Rapid Transit (MRT) systems while in (Açıkbaş and Söylemez 2008) are found the optimal 
coasting positions. GA have been frequently used for eco-driving as in (Bocharnikov et al. 2007) for 
a Direct Current (DC) metropolitan railway line, in (Chang and Sim 1997) to find the optimal 
coasting points and in (Lu et al. 2013) to calculate the efficient speed. In (T. Albrecht 2004), the GA 
is used to minimise energy consumption considering the headway, running time and dwell times. 
A multi-population GA is used in (Huang et al. 2015) to minimise traction energy taking into account 
driving strategy and trip time. Fuzzy logic (Bellman and Zadeh 1970) and GA can be combined to 
consider uncertainty in any of the parameters that affect railway operation. An example is presented 
in (Blanco-Castillo et al. 2022) where eco-driving is calculated and adapted to operational conditions 
considering variability in climatological conditions for a high-speed railway with a GA. NSGA-II (K. 
Deb et al. 2002) (Non-Dominated Sorting Genetic Algorithm II) is applied in (Dullinger, Struckl, and 
Kozek 2017) to optimise traction systems while, in (Carvajal-Carreño, Cucala, and Fernández-
Cardador 2014), is combined with fuzzy logic to calculate ATO driving in metro lines considering 
variability in the load of passengers. In (Fernández, Fernández, and Cucala 2018) a dynamic version 
of NSGA-II was applied to re-calculate the train speed profiles during its journey.  In (Sicre, Cucala, 
and Fernández-Cardador 2014) a fuzzy manual driving model and a GA are combined to solve eco-
driving. Other alternatives to GA have been proposed in the literature to solve the energy 
minimisation problem in train driving such as Brute Force (Zhao et al. 2017), Monte Carlo 
(Metropolis and Ulam 1949) simulation in (Z. Tian et al. 2017), Differential Evolution in (Kim et al. 
2013), Genetic Simulated Annealing in (Keskin and Karamancioglu 2017), Indicator Based 
Evolutionary Algorithm (Zitzler and Künzli 2004) (IBEA) in (Chevrier, Pellegrini, and Rodriguez 
2013) and Ant Colony Optimisation (ACO) (Dorigo, Birattari, and Stutzle 2006) in (Lu et al. 2013). 

In contrast to previous studies, approaches that combine timetabling and eco-driving problems can 
be found in literature to minimise the global traction energy consumption of traffic operations. Thus, 
the focus is on the complete line instead of minimising the consumption of each interstation 
separately. The running times between stations and dwell times can be optimised jointly with the 
eco-driving to spend the time where it is more beneficial reducing the traction energy for operation.  

Driving and timetable are optimised with a combined PSO-GA (Ran et al. 2020) for energy efficiency 
purposes. Eco-driving and timetable level are solved in (S. Su et al. 2020) by DP and the SA 
algorithm, respectively, adding a substation-based energy consumption model. The timetable is also 
calculated in (Sánchez-Contreras et al. 2023) by applying ATO efficient driving when the mass 
transported is considered a fuzzy variable. Optimal design (Meng, Jia, and Xiang, 2018) focuses on 
the capacity of the timetable to remain robust when possible disruptions arise during operation. 
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Other studies address disruptions integrating the rescheduling problem of train timetables and 
rolling stock circulation (B. Su et al. 2024). 

On the other hand, it is important to take into account not only the traction energy but also the use 
of regenerative energy to reduce the energy consumption in a railway line as much as possible. This 
is even more important in mass transit line where the power system is a DC system where returning 
energy from the railway grid to the utility grid is difficult (Bae 2009). Regenerative braking is a 
technology that allows the trains equipped with it to produce energy during the braking process. 
This energy is, firstly, used to feed the auxiliary equipment of the train that produces it, and the rest 
can be sent back to the catenary. This way, other trains can use it reducing the energy demanded 
from substations. The regenerated energy produced by a train can be used by another train that 
requires traction in DC systems when the trains share the same electrical section. Suppose there is 
not enough energy demand in the section. In that case, the regenerated energy must be wasted in 
on-board rheostats of the braking train to prevent an undesired increase of the catenary voltage. 

Taking into account the previous concepts, there are authors who seek to reduce the total substation 
demand of the train traffic by synchronising accelerating and braking trains (Peña-Alcaraz et al. 
2012) taking into account the power-saving factor between each pair of trains. In this case, an energy 
saving of 7% is achieved in a Madrid Underground case study just by the increase in regenerated 
energy use. The timetable is optimised in (Xin Yang et al. 2012), maximising the overlapping time 
between the accelerating and braking trains by means of an integer programming model and solving 
it with a GA.  

The application of eco-driving decreases consumption but the use of regenerated energy decreases 
as well. The higher the speed, the higher the use of regenerated brake energy when trains arrive to 
the stopping points. So, there is a balance between efficient driving design and the ability to 
maximise the use of regenerated energy during braking, considering also the density of rail traffic 
(Bocharnikov, Tobias, and Roberts 2010). In (Huang et al. 2018), the driving is designed, and the 
timetable is then optimised considering regenerative braking exchange only when trains arrive and 
depart from stations with no consideration of motor efficiency or transmission losses. 

In (P. Wang, Zhu, and Corman 2022) a resolution model is used to synchronise trains where the 
overlapping time of accelerating and braking trains (at the start-up and arrival at stations) is 
maximised and the travel time of a user and of all passengers globally is minimised, taking into 
account passenger transfers. In order to reuse the regenerated energy, this work takes into account 
the start-up and arrival of trains at stations without considering possible traction and braking that 
may occur during driving between stations. This study does not consider the use of regenerated 
energy but the overlapping time does not add the losses suffered during energy transmission and 
does not carry out an eco-driving design included in the model. Furthermore, the timetable is 
designed in such a way as to be periodic because, although flexibility is lost in adjusting starts and 
braking to maximise the use of regenerated energy, comfort and the perception of good service on 
the line are gained.  

In the study carried out by (Xin Yang et al. 2015), the timetabling and coordination of trains during 
starting and braking, controlling dwell times, are proposed to take advantage of regenerated energy 
on the Beijing Metro Yizhuang Line. The results obtained show annual energy savings of 6.97% 
compared to the current planning. In this article, the speed profiles used are the real ones of the 
trains on the line analyzed, and the transmission loss coefficient is considered as constant.  
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The analysis in (Xin Yang et al. 2014) aims to maximize the use of regenerated energy while at the 
same time shortening passenger waiting time. It is formulated as a two-objective integer 
programming model with headway time and dwell time control, and then, it is designed a genetic 
algorithm to find the optimal solution. Transmission loss data are estimated using historical data.  

An integrated method to maximize regenerative energy is presented in (Yildiz, Arikan, and 
Cakiroglu 2024) by optimizing train speed and timetables. Additionally, it minimises simultaneous 
acceleration or braking within the same electric zone. Simulations of Istanbul's M3 subway using 
genetic and simulated annealing algorithms show traction energy savings. 

In (P. Wang et al. 2022) the design of the timetable is carried out considering the synchronisation 
between trains as in the previous work but now minimising power peaks. Possible delays and how 
they affect the timetable are analysed by means of the Monte Carlo method.  

In (Qu et al. 2020) a two-step approach to timetable design is proposed. The first phase aims to 
reduce passenger waiting time and the second phase to reduce total consumption. The speed profile 
of the trains is divided into six zones for traction, coasting and braking. Regenerated energy is only 
taken into account during the overlap between acceleration and braking. In (He et al. 2019) a 
Chongqing metro line is studied for which the objective is to minimise the total energy consumed 
by taking into account the energy regenerated by accelerating and braking trains in the same power 
supply section. They use a matrix resolution model for searching the global solution, although with 
a higher computational cost, by taking the speed profiles of the trains. A bi-objective algorithm is 
proposed by (Als, Madsen, and Jensen 2023) to obtain efficient timetables where the consumption 
and passenger travel time are considered using real historical data of a railway network taking 
simplifications. 

The literature found real-time timetable optimisation by means of train control as in (Sun et al. 2023). 
The synchronisation of the trains is taken into account to take advantage of the regenerated energy 
when the whole DC power supply system is connected in all the sections although the scenario 
where sections are disconnected is also considered. The response of the timetable is analysed against 
delays, and the speed profiles to be executed by the trains are adjusted using the strategy presented 
in (Sun et al. 2014). 

(Chen et al. 2023) proposed a timetable optimisation and train control method to minimise 
substation energy consumption on a metro line with a DC electrical system equipped with reversible 
substations. In this case, the limitations of regenerative energy exchange are relaxed because 
reversible substations allow the flow of regenerative energy from the catenary to the utility grid. The 
train speed profile is included along with the timetable optimisation. 

In the literature, different studies on energy-efficient train timetabling can be found but have rarely 
been taken into account train circulation plan, that is, the use of rolling stock (trains) required to 
provide the rail services defined in the timetable. However, the timetable design has an important 
impact on the use of the available rolling stock. When the timetable is optimised in order to save 
energy, it may be very costly to match the train circulation plan to the timetable due to an inadequate 
connection between train services (Zhou et al. 2023). Authors in (Liebchen and Möhring 2007) 
suggested that the train circulation plan should be taken into account in the optimization of the train 
schedule, but they did not focus on the energy-efficient timetabling problem. 
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In particular, depending on how the timetable is designed, the number of trains (rolling stock) 
needed to provide the service may be different, significantly impacting investment and operation. 

In (Zhou et al. 2023) a synchronisation between trains is carried out for timetabling taking into 
account different electrical sections. The authors consider the possible synchronisation of energy 
regenerated/consumed along the interstation, and not only at arrival/departure. They optimize the 
timetable considering the energy saving and the train circulation plan for an urban rail line, by 
means of a mono-objective PSO optimization algorithm. However, they do not design the eco-
driving at each interstation, taking into account the characteristics of the ATO equipment, the 
number of trains associated with the timetable is not calculated, and some simplifications are 
assumed in the train model. 

The main objective and contribution of the present work is a multi-objective method based on 
detailed simulation to design the optimal ATO driving commands of a metro line and, as a result, 
define the traffic operation that minimises the energy consumption considering the rolling stock 
required to provide the service. This is achieved by integrating the optimisation of the speed profiles 
and the optimisation of the timetable, adding the contribution of the energy regenerated by braking 
trains during the train journey. The number of trains required to provide the service associated with 
the timetable is also considered to quantify costs related to rolling stock. In particular, it can be 
highlighted the following contributions: 

• An integrated multi-objective approach to design the ATO driving commands and timetable 
of a metro line including: the minimization of energy consumption, the maximization of 
regenerative energy usage and the minimization of the rolling stock required to operate. This 
method can assist train operators to decide the timetable taking into account the trade-offs 
between commercial speed and the costs of energy and rolling stock. 

• The integrated optimization model is a two-level optimization procedure where the local 
eco-driving level finds the set of efficient speed profiles at each interstation and the global 
timetable level finds the Pareto front of timetables. The local level is solved using a MOPSO 
algorithm which has demonstrated its performance in literature. The global timetable level 
is solved comparing four different algorithms, proving that GLMO-NSGA-III is the most 
effective for this optimization model.  

• The model includes constraints associated with realistic ATO equipment at the local level 
and constraints associated with the reverse manoeuvre in terminal stations in order to avoid 
solutions that cannot be applied in real installations or that can require a greater number of 
trains. 

• A Madrid Underground case study is carried out to prove the benefits of the optimization 
model proposed. The results illustrate that the integrated optimization achieves energy 
savings of 24.8% compared to the typical criteria used by operators to design the timetable. 

References and previous work related to eco-driving and timetable design are listed in Table 1. As a 
summary, many studies in the literature ((Xin Yang et al. 2012), (P. Wang, Zhu, and Corman 2022), 
(Xin Yang et al. 2015), (Liebchen and Möhring 2007)) compared with the proposed model do not 
include an integrated optimization method with timetable and eco-driving. Literature models do 
not take into account constraints associated with ATO driving logic as the model proposed, except 
for (Sánchez-Contreras et al. 2023) and (He et al. 2019). However, in reference (Sánchez-Contreras et 
al. 2023) the regenerated energy is not considered and in (Sánchez-Contreras et al. 2023) (He et al. 
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2019) the rolling stock is not included as a goal. Regarding the regenerated energy, in (Yildiz, Arikan, 
and Keskin 2023a), (Ran et al. 2020), (S. Su et al. 2020), (Sánchez-Contreras et al. 2023), (Als, Madsen, 
and Jensen 2023) and (Liebchen and Möhring 2007) the regenerated energy is not modelled. In (Xin 
Yang et al. 2012), (Bocharnikov, Tobias, and Roberts 2010), (Huang et al. 2018), (P. Wang, Zhu, and 
Corman 2022), (Xin Yang et al. 2015), (Xin Yang et al. 2014), (Yildiz, Arikan, and Cakiroglu 2024) and 
(Qu et al. 2020) the use of regenerated energy is improved indirectly by maximizing the coincidences 
of train departures and arrivals. In (P. Wang et al. 2022), (He et al. 2019), (Sun et al. 2023), (Chen et 
al. 2023) and (Zhou et al. 2023) a similar approach to the model proposed in this paper is used to 
calculate the total regenerated energy transferred among trains. However, except for (Zhou et al. 
2023) the rolling stock is not taken into account. The cost associated with the rolling stock is only 
included in the model in (Zhou et al. 2023) and (Liebchen and Möhring 2007). In both cases, the 
approach is to include the rolling stock cost as the total running time and the connection time. In the 
present paper, the approach is to directly calculate the number of trains needed to provide the 
service with the designed timetable and include it as a penalty in the objective function. 

This paper is organised as follows: Section 2 describes the design objective for the optimal efficient 
operation of a metro line.  In Section 3 the timetabling model is presented. Section 4 defines the eco-
driving ATO design model for each interstation and the train simulator it uses to evaluate solutions. 
In Section 5 the method is applied to a case study of Madrid Underground. Section 6 presents the 
conclusions and a discussion of the proposed method. 

 

 
Reference 

 

Eco-driving  
consideration 

ATO  
consideration 

Regenerated energy  
consideration 

Rolling stock  
consideration 

(Yildiz, Arikan, and Keskin 2023a) Yes No No No 

(Ran et al. 2020) , (S. Su et al. 2020) Yes No No No 
(Sánchez-Contreras et al. 2023) Yes Yes No No 

(Xin Yang et al. 2012) No No 
Traction/Braking 
synchronization 

No 

(Bocharnikov, Tobias, and Roberts 2010) Yes No 
Traction/Braking 
synchronization 

No 

(Huang et al. 2018) Yes No 
Traction/Braking 
synchronization 

No 

(P. Wang, Zhu, and Corman 2022) No No 
Traction/Braking 
synchronization 

No 

(Xin Yang et al. 2015) No No 
Traction/Braking 
synchronization 

No 

(Xin Yang et al. 2014) Yes No 
Traction/Braking 
synchronization 

No 

(Yildiz, Arikan, and Cakiroglu 2024) Yes No 
Traction/Braking 
synchronization 

No 

(P. Wang et al. 2022) Yes No Fully considered No 

(Qu et al. 2020) Yes No 
Traction/Braking 
synchronization 

No 

(He et al. 2019) Yes Yes Fully considered No 
(Als, Madsen, and Jensen 2023) Yes No No No 

(Sun et al. 2023) Yes No Fully considered No 
(Chen et al. 2023) Yes No Fully considered No 
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(Zhou et al. 2023) Yes No Fully considered Yes 
(Liebchen and Möhring 2007) No No No Yes 

Table 1. Literature review. 

 

2. Design of the optimal ATO operation of a railway line 

The model presented in this paper considers a typical topology of a mass transit railway line, 
a two-track line between terminal stations. The line is composed of 𝑁𝑁𝑁𝑁 stations and equipped with 
ATO systems. All the electrical sections are supposed to be connected although regeneration will be 
more efficiently used by trains running close to the regenerating one, as electrical losses are 
modelled. Energy regenerated by a train running upwards can be consumed by a nearby train 
running in the same direction or in the downward direction. 

Sections 2.1., 2.2., and 2.3. list the parameters, intermediate variables and decision variables used in 
the paper in Table 2, Table 3 and Table 4, respectively. 

2.1. Parameters 

𝒉𝒉 Headway 

𝑵𝑵𝒔𝒔 Number of stations 

𝒕𝒕𝒎𝒎𝒎𝒎𝒎𝒎 Minimum dwell time 

𝑷𝑷 Penalty for the use of an additional train 

𝝈𝝈(𝒔𝒔) Transmission loss model dependent on train position 

𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 Train mass at each interstation 

𝑴𝑴𝒆𝒆𝒆𝒆 Equivalent mass of the train 

𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎 Maximum traction effort according to the motor characteristics 

𝒋𝒋𝒎𝒎𝒎𝒎𝒎𝒎 Maximum variation of traction/braking effort 

𝑨𝑨 Constant related to the mechanical resistance to the motion 

𝑩𝑩 Constant related to the resistance due to the air inlet in the train 

𝑪𝑪 Constant related to the aerodynamic resistance 

𝒈𝒈 Gravitational acceleration 

𝑷𝑷𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝒔𝒔) Equivalent gradient of the track in the train position 

𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎 Maximum current 

𝑼𝑼𝒄𝒄𝒄𝒄𝒄𝒄 Nominal catenary voltage 

𝒑𝒑𝒑𝒑 Motors’ efficiency 
Table 2. Parameters. 

2.2. Intermediate variables 

𝑹𝑹𝑹𝑹�𝒙𝒙𝒈𝒈, 𝒕𝒕𝒈𝒈� Global running time of the timetable  

𝑪𝑪�𝒙𝒙𝒈𝒈, 𝒕𝒕𝒈𝒈� Cost function 

𝑵𝑵𝒕𝒕 Number of trains 

𝒕𝒕𝟏𝟏 Running time on track 1 
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𝒕𝒕𝟐𝟐 Running time on track 2 

𝑻𝑻𝟏𝟏 Time difference between the arrival and departure of consecutive services in station 1 

𝒇𝒇𝟏𝟏(𝒙𝒙𝒏𝒏) Running time evaluation function for interstation 𝒏𝒏 

𝒇𝒇𝟐𝟐(𝒙𝒙𝒏𝒏) Energy consumption evaluation function for interstation 𝒏𝒏 

𝑬𝑬𝑬𝑬𝑬𝑬𝒏𝒏 Set of the efficient ATO driving commands of interstation 𝒏𝒏 

𝒔𝒔𝒊𝒊 Position of train i 

𝝈𝝈𝒋𝒋𝒋𝒋 Value of transmission losses for the regenerating train j and the accelerating train i 

𝒏𝒏𝒄𝒄 Number of trains consuming energy 

𝒏𝒏𝒓𝒓 Number of trains regenerating energy 

𝑬𝑬𝒊𝒊 Energy consumption used for traction by train i 

𝑹𝑹𝒋𝒋 Energy regenerated by train j 

𝑹𝑹𝒋𝒋𝒋𝒋 Energy regenerated by train j and transmitted to train i 

t Time 

𝒂𝒂𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 Train acceleration 

𝑭𝑭𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 Resistance due to the track grades 

𝑭𝑭𝒓𝒓𝒓𝒓𝒓𝒓 Running resistance 

𝒂𝒂𝒓𝒓𝒓𝒓𝒓𝒓 Traction/braking demand for the train 

𝑲𝑲𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 Constant of the proportional controller for the traction mode 

𝒗𝒗𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 
Minimum value between the maximum speed at the position of the train and the driving 
command ℎ𝑠𝑠 (holding speed) 

𝒗𝒗𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 Speed of the train 

𝒂𝒂𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 Acceleration due to the gradients at the position of the train 

𝑲𝑲𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Constant of the proportional controller for the braking mode 

𝑭𝑭𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 Traction/braking effort of the train 

𝑷𝑷𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 Traction electric power 

𝑷𝑷𝒓𝒓𝒓𝒓𝒓𝒓 Regenerative electric power 
Table 3. Intermediate variables. 

2.3. Decision variables 

𝒙𝒙𝒈𝒈 ATO driving commands for all the interstations of the entire metro line 

𝒕𝒕𝒈𝒈 Dwell time at every station in the railway line 

𝒙𝒙𝒏𝒏 
Vector with the ATO driving parameters for the interstation 𝑛𝑛 (component of  
𝒙𝒙𝒈𝒈) 

𝒕𝒕𝒏𝒏 Dwell time at station 𝒏𝒏 (component of 𝒕𝒕𝒈𝒈) 

𝒙𝒙𝑵𝑵𝑵𝑵 ATO driving commands for interstation Ns 

𝒕𝒕𝑵𝑵𝑵𝑵 Dwell time at station Ns 

𝒄𝒄 Speed at which coasting is applied (component of 𝒙𝒙𝒏𝒏) 

 𝒓𝒓 Speed at which traction is applied (component of 𝒙𝒙𝒏𝒏) 

𝒉𝒉𝒉𝒉 Holding speed (component of 𝒙𝒙𝒏𝒏) 
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𝒃𝒃 Braking rate (component of 𝒙𝒙𝒏𝒏) 
Table 4. Decision variables. 

 

2.4. Optimal ATO problem 

 The problem to solve is the design of the optimal ATO driving commands of a metropolitan 
railway line for a specific operational period. With this objective, the model designs jointly the 
efficient driving at each interstation and a periodic efficient timetable for the operational period.  

The model includes a penalty associated to the number of trains (rolling stock) required to provide 
the rail services of the timetable. This way, timetables with a lower number of trains required will 
be preferred. 

A multi-objective model is defined to propose the most efficient solutions for different total travel 
times of the line. As the travel time and energy consumption are conflicting objectives, the result 
will be the set of non-dominated solutions; i.e., those that cannot be improved in energy 
consumption and travel time simultaneously. This way, the operator can select the commercial 
running time of the line (i.e., the travel time to run the line completely) in view of the trade-off with 
the energy consumption and considering the number of trains required. The travel time is the sum 
of the running time of the speed profiles produced by the designed ATO driving commands for each 
interstation stretch, and the selected dwell time at each station. To optimise the energy consumption 
of the line, for each total travel time the proposed model takes into account the set of optimal ATO 
driving commands in each interstation (that produces eco-driving speed profiles), the distribution 
of time margins along the route to make it efficient and also the energy transferred between trains 
in the braking processes which, depending on the design of the timetables of all trains, makes it 
possible to reduce the overall energy consumption. In this paper, a two-level resolution model is 
proposed (Figure 1). First, at the eco-driving level, a local Pareto front of driving commands is 
obtained for each interstation, providing for each running time the eco-driving (ATO driving with 
the minimum energy consumption). 

Then, at the timetable level, a global Pareto front of optimal timetable solutions (i.e., a driving 
command for each interstation and a dwell time for each station) is obtained taking into account the 
exchange of regenerative energy among trains on the entire metro line in order to maximise its use, 
as well as the time distribution along the line to minimise the total energy consumption of the 
system.  



11 
 

 

Figure 1. Proposed model for the efficient operation of a metro line. 

 

3. Timetable design level 

This section presents the optimisation of the timetable at the global level. The inputs received 
at this level are the eco-driving profiles designed by the Local eco-driving multi-objective 
optimisation model (Section 4). 

A series of preconditions have been established to design the timetable for a specific operational 
period. A periodic timetable has been considered with all trains performing the same running time 
for the same route and the same stopping times for the same stations considering that the interval 
between trains is constant. Therefore, by calculating the timetable for each train in each period of 
time, the entire timetable is calculated. 

When the timetable design problem is solved, a new global Pareto front is obtained where each 
solution has associated the total energy consumption and running time of the cycle for the entire 
line, considering that the trains are using the efficient driving calculated in the eco-driving level. 
Thus, each solution represents a specific set of efficient ATO driving parameters at each interstation 
(which provide the running times at interstations) and the dwell times at the stations of the line. For 
each solution, the total operating cycle time of the entire line is thus defined. In this way, the optimal 
timetable is established by defining the time of arrival and departure at stations and thus, the 
associated stopping times. 
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Running time / consumption

Interstation 1 
Running time / consumption

Interstation N 
Running time / consumption

Global Running time /
consumption of the line

Local Eco-driving
optimisation

model

Timetable global 
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3.1. Global optimisation model 

At the global level, the objective is to maximise the use of energy regenerated by trains during 
braking avoiding waste through rheostats and to distribute the time margins by reducing the 
running time at the interstations where greater traction energy reduction can be obtained. 

The energy regenerated by a train is firstly used for auxiliary systems. The remaining regenerated 
energy is transmitted to other trains that are accelerating nearby the train or transmitted to rheostats 
if there is no demand to avoid voltage surges in the catenary. 

To design the efficient timetable, the input parameters are the headway and the set of efficient eco-
driving parameters obtained for each interstation at local level. The proposed optimisation model 
will modify the arrival/departures in order to synchronize trains improving the use of regenerated 
energy in braking. In this way, a braking train transmits as much energy as possible to nearby 
accelerating trains.  

In the proposed model, the consumption profile on the route of each interstation is used to 
synchronise not only the braking on arrival at the station but also at any other moment that may 
occur, such as, for example due to speed limits along the route.  

In addition, every timetable on a railway line has an associated number of trains required to provide 
that service. The model proposed imposes a penalty for timetables with similar running time and 
energy consumption that require an extra train to provide the service. 

Thus, the objective function of the multi-objective optimisation problem of designing the line 
operation can be expressed as:  

𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑔𝑔�𝑥𝑥𝑔𝑔, 𝑡𝑡𝑔𝑔� = �𝑅𝑅𝑅𝑅�𝑥𝑥𝑔𝑔, 𝑡𝑡𝑔𝑔� ,𝐶𝐶�𝑥𝑥𝑔𝑔, 𝑡𝑡𝑔𝑔��      (1) 

where, 𝑅𝑅𝑅𝑅  is the total running time (s) for the mass transit line, 𝐶𝐶  is the cost function that includes 
the total energy consumption (kWh) and the penalty in the number of trains (kWh), 𝑥𝑥𝑔𝑔 is the ATO 
driving commands for all the interstations of the entire metro line with  
𝑥𝑥𝑔𝑔 = (𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑁𝑁𝑁𝑁) being 𝑁𝑁𝑁𝑁 the number of stations along the metro line and 𝑡𝑡𝑔𝑔 are the values of 
dwell time (s) at every station in the line with 𝑡𝑡𝑔𝑔 = (𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑁𝑁𝑁𝑁). 

The driving commands contained in 𝑥𝑥𝑔𝑔 will be restricted by the following condition: 

𝑥𝑥𝑛𝑛 ∈ 𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛      (2) 

where 𝑥𝑥𝑛𝑛 is the component 𝑛𝑛 of 𝑥𝑥𝑔𝑔 (i.e., the ATO driving command of the interstation 𝑛𝑛) and 𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛 
is the set of the efficient ATO driving commands of interstation 𝑛𝑛 (i.e., the Pareto front obtained in 
the local eco-driving level for interstation 𝑛𝑛). 

Moreover, the dwell times will be restricted by a minimum value that ensures that the passengers 
have enough time to get on board the train: 

𝑡𝑡𝑛𝑛 ≥ 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚      (3) 

where 𝑡𝑡𝑛𝑛 es the dwell time (s) at station 𝑛𝑛, and 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum dwell time (s). The global 
running time of the timetable model 𝑅𝑅𝑅𝑅(𝑥𝑥𝑔𝑔, 𝑡𝑡𝑔𝑔), presented in Equation 4, is calculated as the sum of 
the running time and the stopping time at each station 𝑛𝑛: 
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𝑅𝑅𝑅𝑅(𝑥𝑥𝑔𝑔, 𝑡𝑡𝑔𝑔) = �  (𝑓𝑓1(𝑥𝑥𝑛𝑛) +  𝑡𝑡𝑛𝑛) 
𝑁𝑁𝑁𝑁

𝑛𝑛=1

      (4) 

 

where, 𝑓𝑓1(𝑥𝑥𝑛𝑛)  is the running time (s) of interstation n.  

The cost function 𝐶𝐶(𝑥𝑥𝑔𝑔, 𝑡𝑡𝑔𝑔), shown in Equation 5, is calculated knowing at each moment t the 
consumption of the traction trains, the energy returned by braking trains and the distance between 
trains to take into account the electrical losses in the energy transmission between regenerating 
trains and accelerating trains. In addition, this function includes a penalty for each extra train 
required in the solution to satisfy the timetable:  

𝐶𝐶(𝑥𝑥𝑔𝑔, 𝑡𝑡𝑔𝑔) = �  

⎝

⎜
⎛
�𝐸𝐸𝑖𝑖 −  ��𝑅𝑅𝑗𝑗𝑗𝑗 ∙ 𝜎𝜎𝑗𝑗𝑗𝑗

𝑛𝑛𝑟𝑟

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

𝑛𝑛𝑐𝑐

𝑖𝑖=1

𝑛𝑛𝑐𝑐

𝑖𝑖=1
⎠

⎟
⎞

+ 𝑃𝑃 ∙ 𝑁𝑁𝑡𝑡

ℎ

𝑡𝑡=0

    (5) 

 

where, 𝑗𝑗 is the train that transmits regenerated energy, 𝑖𝑖 is the train that receives regenerated 
energy, 𝑛𝑛𝑐𝑐 is the number of trains consuming energy, 𝑛𝑛𝑟𝑟 is the number of trains regenerating 
energy, ℎ is the headway (s), 𝐸𝐸𝑖𝑖 is the energy consumption (kWh) used for traction by train 𝑖𝑖, 𝑅𝑅𝑗𝑗𝑗𝑗 is 
the energy regenerated (kWh) by train 𝑗𝑗 and transmitted to train 𝑖𝑖 at a specific instant, 𝜎𝜎 models the 
electrical losses and represents the percentage of regenerated energy that is transmitted from a 
braking train and utilised by a traction train. This function is dependent on the distance (m) between 
the regenerating train 𝑗𝑗 and the train 𝑖𝑖 receiving the energy as shown in Equation 6. An example is 
shown in Figure 2 although different shapes can be obtained depending on the characteristics of the 
specific railway line. 𝑃𝑃 is the penalty (kWh) whereby the solution with the lowest number of trains 
satisfying the timetable is prioritised and 𝑁𝑁𝑡𝑡 is the number of trains required to fulfil the timetable.  

𝜎𝜎𝑗𝑗𝑗𝑗 = 𝜎𝜎 ∙ ��𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑗𝑗��    (6) 
 

Where 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗 are the kilometric position (m) of train 𝑖𝑖 and 𝑗𝑗 respectively. 

  

Figure 2. σ function. 
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Cost function 𝐶𝐶 (Equation 5) is calculated as the sum of consumption at each instant of time t, over 
an interval equal to the headway. It is sufficient to calculate it in a headway since, as the timetable 
is periodic, it is repeated every headway h. 

In Equation 5, the value of the energy consumption (E) of a train cannot be a negative value. A 
negative value would mean that the train would be braking, regenerating and transmitting energy, 
so instead, this value would be included in R. Similarly, the energy regeneration R of a train cannot 
be a negative value (in that case, the train would be consumed and should be modelled by means of 
E).  

In addition, there are a series of restrictions to complete the model for the use of regenerated energy. 
The first expression (Equation 7) indicates that the reuse of the regenerated energy is maximised 
offering the greatest possible amount of energy to the nearest trains with the highest utilisation 
percentage (Figure 2): 

𝑚𝑚𝑚𝑚𝑚𝑚�𝑅𝑅𝑗𝑗𝑗𝑗

𝑛𝑛𝑐𝑐

𝑖𝑖=1

∙ 𝜎𝜎𝑗𝑗𝑗𝑗      (7) 

 

The energy regenerated will always be higher than the energy received by the other trains for reuse 
due to the losses introduced in the calculation: 

𝑅𝑅𝑗𝑗 > �𝑅𝑅𝑗𝑗𝑗𝑗

𝑛𝑛𝑐𝑐

𝑖𝑖=1

      (8) 

 

The total regenerated energy received by trains cannot exceed the energy required for their 
operation so energy is only transmitted to trains that are accelerating: 

�𝜎𝜎𝑗𝑗𝑗𝑗 ∙ 𝑅𝑅𝑗𝑗𝑗𝑗

𝑛𝑛𝑐𝑐

𝑖𝑖=1

≤ 𝐸𝐸𝑖𝑖      (9) 

 

In addition, in the cost function (Equation 5), a penalty is introduced associated to the number of 
trains (rolling stock) required to provide the service of the designed timetable. In this way, the 
optimal solution can be obtained with the lowest number of associated trains while reducing related 
costs. 

The calculation of the number of trains is solved by means of Equations 10 and 11. 𝑇𝑇1 is the result of 
the timetable optimisation and represents the time difference between the arrival and departure of 
consecutive services in terminal station 1. If this time is equal to or greater than minimum dwell 
time, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚,  that means the same rolling stock can perform both services. In this case, the number of 
trains is calculated by Equation 10, by considering the dwell time at terminal station 2 equal to the 
minimum and rounding the result to the greater closest integer value. That means that the dwell 
time at terminal station 2 is the needed value to obtain an integer value of trains subject to the 
minimum stopping time: 

𝐼𝐼𝐼𝐼 𝑇𝑇1 ≥  𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚  → 𝑁𝑁𝑡𝑡 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑡𝑡1 + 𝑡𝑡2 + 𝑇𝑇1 + 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

ℎ
�      (10) 
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If this time is lower than minimum dwell time (𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚), that means the same rolling stock cannot 
perform both services. That means that when a train arrives to terminal station 1, there is other train 
ready to start the service in the opposite direction. Therefore, the train that arrives to terminal station 
1 has to wait 𝑇𝑇1 plus an interval ℎ to start the service in the opposite direction (Figure 3). The impact 
of this extra-time is that an additional train is needed to provide the service. In this case, the number 
of trains is calculated by Equation 11: 

       𝐼𝐼𝐼𝐼 𝑇𝑇1 <  𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚  → 𝑁𝑁𝑡𝑡 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑡𝑡1 + 𝑡𝑡2 + 𝑇𝑇1 + ℎ + 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

ℎ
�      (11) 

 

where, 𝑇𝑇1 is the dwell time (s) calculated in terminal station 1, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum dwell time (s) in 
terminal station, 𝑡𝑡1 is the running time (s) on track 1 and 𝑡𝑡2 is the running time (s) on track 2. 

 

Figure 3. Dwell time at Terminal station 1.  

The number of trains necessary for the operation is calculated as the complete cycle running time 
associated with a specific timetable divided by the headway between trains. For a given timetable it 
is analysed whether the time at the terminal station is greater than the minimum time necessary for 
the manoeuvre (or if more margin time is desired for delay recovery). Otherwise, if the result is less 
than the minimum time, it means that the train arriving at that terminal station must connect with 
the next timetable which starts a time equals to one headway later. As a consequence, in this case an 
extra train is needed to provide the service. 

A Non-Sorted Genetic Algorithm III (Kalyanmoy Deb and Jain 2014) that uses the Grouped Linked 
Polynomial Mutation Operator (Zille et al. 2016a) (GLMO-NSGA-III) algorithm is proposed in this 
paper to solve the multi-objective optimization problem defined in the timetable level due to its 
performance in terms of diversity and optimality of the solutions obtained in complex problems. 

 

3.2. GLMO-NSGA-III algorithm 

The parameters related to the GLMO-NSGA-III algorithm are presented in Table 5. 

𝒔𝒔�⃗  Set of solutions 

𝒔𝒔𝒊𝒊 Solution i of 𝑠𝑠 

T1<tmin
h

T’1= T1 + tmin
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𝝁𝝁 Distribution Index 

𝒎𝒎���⃗  Mutated Solution 
  𝒎𝒎𝒊𝒊 Mutated solution i of 𝑚𝑚��⃗  
𝒓𝒓�⃗  Variables that are to be mutated chosen based on variable grouping 
𝒏𝒏𝒈𝒈 Group index 
𝒓𝒓𝒏𝒏𝒈𝒈  Variables with group index 𝑛𝑛𝑔𝑔 
𝒋𝒋 Random group index 
𝒉𝒉 Random value between (0,1) 
𝒓𝒓𝒋𝒋 Group 𝑟𝑟 with index 𝒋𝒋 

𝒔𝒔𝒊𝒊,𝒎𝒎𝒎𝒎𝒎𝒎 Minimum value of 𝑠𝑠 
𝒔𝒔𝒊𝒊,𝒎𝒎𝒎𝒎𝒎𝒎 Maximum value of 𝑠𝑠 

    𝝉𝝉𝟏𝟏, 𝝉𝝉𝒒𝒒, 𝝉𝝉𝟐𝟐 Intermediate variable calculation 
Table 5.GLMO-NSGA-III parameters. 

GLMO-NSGA-III algorithm is the proposed method for solving the efficient timetable 
calculation model. The Grouped Linked Polynomial Mutation Operator (GLMO) (Zille et al. 2016a)  
is based on the following mutation techniques: Linked Polynomial Mutation and Grouped 
Polynomial Mutation. These two procedures are based on Polynomial Mutation and are explained 
below.  

 Polynomial Mutation: This mutation operator is designed to modify the value of a variable 
based on a distribution around the value at that time. Two parameters are used to perform the 
mutation: the mutation probability and the distribution index. The probability is used to decide for 
each variable whether or not it undergoes mutation. The index determines the distribution from 
which the new value will be calculated, the probability of the new value being more similar to the 
current value when this index takes large values. When deciding whether a variable will mutate, 
another parameter ℎ is taken from a uniform distribution indicating how the mutated variable will 
change. If the result of the mutation exceeds the limits of the distribution around which the original 
value is modified, this new value is placed at the limit of the distribution. 

 
 Linked Polynomial Mutation: This operator follows a similar idea to the Polynomial Mutation 

but the parameter 𝑢𝑢 remains constant for all variables. The Linked Polynomial Mutation is a version 
of the Polynomial Mutation in which a connection is established between variables that are 
susceptible to change. The procedure by which the connection is established is by keeping the 
relative amount of change of a variable fixed for each mutation and the same for each solution. With 
this change, all variables that undergo mutation considering a specific value of probability are 
mutated by the same amount. 

 
 Grouped Polynomial Mutation: In this modification the variables are separated into different 

groups and the mutation is applied to these groups, varying each variable in the same group equally. 
The decision of which variables mutate changes from a randomised procedure to a procedure 
designed for that purpose assuming that the clustering method makes the appropriate decision of 
which variables interact and should be modified simultaneously. In this case the mutation 
probability is not necessary. In this operator, the variables are arbitrarily divided into groups and 
the variables in any of these groups will be susceptible to polynomial mutation. For each of the 
variables in the group, a value ℎ is taken defining the mutation. The variables of the rest of the 
groups do not change. 
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 Grouped Linked Polynomial Mutation Operator (GLMO): This case is a combination of the 

two previous ones. The distribution parameter together with the grouping mechanism are the input 
information for this procedure. The selection of the group to mutate is done in a similar way to the 
Grouped Polynomial Mutation operator. In this case the value of the parameter ℎ is previously 
selected as in the Linked Polynomial Mutation. In comparison to the Linked Polynomial Mutation, 
it is now assumed that the interacting variables are modified simultaneously and equally when they 
are in the same group. GLMO operator is used within the NSGA-III optimisation algorithm 
(Kalyanmoy Deb and Jain 2014) to improve the adaptability, the diversity and the convergence of 
the algorithm. 

GLMO pseudocode is as follows: 

Input:     Solution 𝑠𝑠, the Grouping Mechanism and Distribution Index 𝜇𝜇 

Output:  Mutated Solution 𝑚𝑚��⃗   

1. �𝑟𝑟1, … , 𝑟𝑟𝑛𝑛𝑔𝑔� ← 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛𝑔𝑔 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  
2. 𝑗𝑗 ← 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 {1, … ,𝑛𝑛𝑔𝑔}  
3. ℎ ← 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (0,1)  
4. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑖𝑖  𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡 𝑟𝑟𝑗𝑗 𝑑𝑑𝑑𝑑 
5. 𝑖𝑖𝑖𝑖 ℎ ≤ 0.5 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 
6.     𝜏𝜏1 = 𝑠𝑠𝑖𝑖−𝑠𝑠𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚−𝑠𝑠𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
 

7.     𝜏𝜏𝑞𝑞 = (2 ∙ ℎ + (1 − 2 ∙ ℎ) ∙ (1 − 𝜏𝜏1)𝜇𝜇+1)
1

𝜇𝜇+1 − 1 
8. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
9.       𝜏𝜏2 = 𝑠𝑠𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚−𝑠𝑠𝑖𝑖

𝑠𝑠𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚−𝑠𝑠𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
 

10.       𝜏𝜏𝑞𝑞 = 1 − (2 ∙ (1 − ℎ) + 2 ∙ (ℎ − 0.5) ∙ (1 − 𝜏𝜏2)µ+1)
1

µ+1 
11. 𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 
12.      𝑚𝑚𝑖𝑖 = 𝑠𝑠𝑖𝑖 +  𝜏𝜏𝑞𝑞 ∙ (𝑠𝑠𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑠𝑠𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚) 
13.      𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑚𝑚𝑖𝑖) 
14. 𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
15. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑖𝑖  𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑛𝑛𝑛𝑛𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡 𝑟𝑟𝑗𝑗 𝑑𝑑𝑑𝑑  
16.      𝑚𝑚𝑖𝑖 = 𝑠𝑠𝑖𝑖 
17. 𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  
18. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑚𝑚��⃗    

Finally, NSGA-III optimisation algorithm flowchart is shown in Figure 4. The NSGA-III is an 
evolutionary algorithm where individuals evolve during iterations at the end of which the best fitted 
survives. The initial step of the algorithm is the random generation of the parent population. The 
global travel time and cost of the members of the parent population are evaluated using Equations 
4 and 5. Then, the offspring population is generated by applying the GLMO operator to individuals 
in the parent population. This offspring population is evaluated, and a result population is 
generated, joining the parent and offspring populations. The dominance of the solutions in the result 
population is calculated. As a result, the selection criterion chooses the members of the result 
population that will survive depending on the domination level. Thus, firstly the group of non-
dominated solutions are saved. After that, the group of solutions that are dominated by just one 
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solution is saved, and the process is repeated with the following groups of solutions. If a group 
cannot be saved completely because the size of the population is achieved, the crowding distance 
operator is applied to select the solutions of the last group that will survive.  

 

Figure 4. NSGA-III flowchart. 

 

4. Local eco-driving multi-objective optimisation model 

As previously described, the local optimisation model provides a Pareto front of solutions for 
each interstation. Each solution of a Pareto front represents the set of optimal ATO driving 
parameters for the interstation with the running time and energy consumption associated. 

At this level of model resolution, which is the eco-driving level executed for each interstation of the 
line, the search of optimal solutions is modelled as a multi-objective problem where the aim is to 
minimise running time and energy consumption at the interstation. The evaluation function for 
interstation n is: 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓(𝑥𝑥𝑛𝑛) = (𝑓𝑓1(𝑥𝑥𝑛𝑛) ,𝑓𝑓2(𝑥𝑥𝑛𝑛))      (12) 
 

where, 𝑓𝑓1(𝑥𝑥𝑛𝑛) is the objective function that defines the running time (s) between stations when a 
specific set of ATO driving parameters is executed, 𝑓𝑓2(𝑥𝑥𝑛𝑛) is the objective function that defines the 
energy consumption (kWh) associated to each driving and 𝑥𝑥𝑛𝑛 is the vector that contains the ATO 
driving parameters for the interstation n. The driving parameters are defined following the driving 
model presented in (Domínguez et al. 2014). 

𝑥𝑥𝑛𝑛 = (𝑐𝑐, 𝑟𝑟,ℎ𝑠𝑠, 𝑏𝑏)      (13) 
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where, 𝑐𝑐 is the speed at which coasting is applied (km/h), 𝑟𝑟 is the speed at which traction is applied 
(km/h) (re-motor), ℎ𝑠𝑠 is the holding speed (km/h) and 𝑏𝑏 is the braking rate (m/𝑠𝑠2). 

Figure 5 shows an example of ATO speed profile where the eco-driving strategy is the regulation 
speed. In this case, the main driving parameter is ℎ𝑠𝑠 and the coasting speed and re-motoring speed 
are equal to 0. When a regulation speed is greater than 0, the train aims to maintain the speed defined 
by 𝑐𝑐. On the other hand, Figure 6 shows a coasting/re-motoring case. Coasting/re-motoring strategies 
are characterized by two main parameters 𝑐𝑐 and 𝑟𝑟 while the holding speed ℎ𝑠𝑠 is 0. In this case, the 
train tractions until its speed achieves the value of 𝑐𝑐 and, then, it coasts until it reduces its speed 𝑟𝑟 
km/h that it is the moment when the train tractions again and the cycle is repeated. In both cases 
(regulation and coasting/re-motoring) the speed limitations are observed and the deceleration up to 
the stop in the station is defined by 𝑏𝑏. 

 

Figure 5. Regulation speed profile. 

 

Figure 6. Coasting/re-motoring speed profile. 

Efficient ATO driving must meet comfort requirements, otherwise they are discarded. The 
requirements to be fulfilled are: avoid traction cut-off on a ramp, avoid too many cut-off and re-
motor cycles between interstations, and avoid low operating speeds and maintaining traction for a 
minimum time. In addition, accelerations and decelerations must be kept within a certain comfort 
range by controlling the rate of change of acceleration. Another desirable requirement is that the 
driving can be kept stable facing changes in the mass of passengers avoiding large variations in 
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running time and consumption (Lin and Sheu 2008). For instance, the efficient ATO speed profiles 
generated in (Fernandez-Rodriguez et al. 2015) considers load variations. 

It is important to note that the passenger load can vary during the journey and, in the proposed 
model, it is possible to configure a different passenger mass for each interstation. This way, the 
model takes into account the impact of the mass variation in the design of the eco-driving and in the 
use of regenerated energy. On the other hand, the objective is to provide a periodic timetable with a 
constant headway and with the same stopping regime for a specific time period (for instance, peak 
hours). In this kind of operation, the model considers that trains run with similar passenger load at 
the same stations. Therefore, the passenger mass used for the design of the ATO should be an 
average mass value for each interstation.  

 

4.1. MOPSO algorithm 

The parameters involved in the MOPSO algorithm section are presented in Table 6. 

𝒙𝒙𝒊𝒊 Position of the particle 

𝒏𝒏 Iteration number 
𝒗𝒗𝒊𝒊 Velocity of the particle 
𝒘𝒘 Inertial weight of the particle 

𝒄𝒄𝟏𝟏, 𝒄𝒄𝟐𝟐 Parameters that determine individual and collective influence 
𝒓𝒓𝟏𝟏, 𝒓𝒓𝟐𝟐 Parameters that take a random value chosen between 0 and 1 
𝒑𝒑𝒊𝒊 Vector where the previously local best result of the i particle is stored 
𝒑𝒑𝒈𝒈 Vector where the previously global best result is stored 

Table 6. MOPSO parameters. 

For the search of these possible solutions, a MOPSO algorithm has been chosen because it has 
been proven to provide better results for the eco-driving problem compared to other widely used 
algorithms (Domínguez et al. 2014). MOPSO algorithm is based on the PSO method, resembling the 
behaviour of a multitude of individuals present in nature (Kennedy and Eberhart 1995). MOPSO 
algorithm is a particle swarm optimisation technique for solving multi-objective optimisation 
problems. In MOPSO, each particle represents a potential solution to the optimisation problem and 
moves in a multidimensional search space. The goal of the algorithm is to find a set of optimal 
solutions that are as close as possible to the Pareto front. To achieve this, MOPSO uses a technique 
called “Pareto dominance”, which allows solutions to be compared in terms of their quality across 
multiple goals. The algorithm adjusts the speed and direction of each particle based on its own 
previous experience and that of neighbouring particles, in an iterative process that seeks to 
continuously improve solutions. 

The MOPSO algorithm presented in this paper uses the train simulation model presented in Section 
4.2 to evaluate the fitness function in Equation (12) and the comfort criteria.  

The PSO algorithm searches for an optimal solution by allowing an initial population to move 
through the search space according to mathematical rules. The movement of the particles is 
conditioned by the best local solutions, at the level of each particle, and at the global level, by the 
population as a whole. The PSO method is a relatively simple and effective algorithm, which makes 
use of the characteristic movement of particles through the search hyperspace by rapidly converging 
on better solutions. It makes use of a process similar to crossover, used in Genetic Algorithms, and 
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the concept of fitness. MOPSO allows dealing with multi-objective optimisation problems. In this 
case, it is used the Pareto front concept (Goldberg 1989). The history of the best solutions found by 
a particle can be used to store previously generated non-dominated solutions. The use of attraction 
mechanisms combined with non-dominated solution vectors would trigger convergence to globally 
non-dominated solutions. Therefore, in each cycle, the past experience of each particle is saved. In 
addition, it is used the technique inspired by the external archive used in PAES (Knowles and Corne 
2000) (Pareto Archive Evolution Strategy). Here, the information stored by the particles is updated 
based on the values of the objective function for each of the particles. The previously stored 
information is used by each individual to choose the leader to guide the search. 

MOPSO algorithm is described by the following steps: 

1. Initialise randomly the position and velocity of the particles. 
2. The particles are evaluated in running time and energy consumption and those that do not 

fulfil comfort criteria are directly marked as dominated solutions. 
3. Local best is initialised as the current position of each particle. 
4. Non-dominated solutions are stored in the archive. 
5. Global best is initialised selecting randomly a non-dominated solution. 
6. Update the position and velocity values for each of the particles by means of the following 

equations: 

𝑥𝑥𝑖𝑖(𝑛𝑛) = 𝑥𝑥𝑖𝑖 ∙ (𝑛𝑛 − 1) + 𝑣𝑣𝑖𝑖(𝑛𝑛)      (14) 
𝑣𝑣𝑖𝑖(𝑛𝑛) = 𝑤𝑤 ∙ 𝑣𝑣𝑖𝑖 ∙ (𝑛𝑛 − 1) + 𝑐𝑐1 ∙ 𝑟𝑟1 ∙ (𝑝𝑝𝑖𝑖 − 𝑥𝑥𝑖𝑖 ∙ (𝑛𝑛 − 1)) + 𝑐𝑐2 ∙ 𝑟𝑟2 ∙ �𝑝𝑝𝑔𝑔 − 𝑥𝑥𝑖𝑖 ∙ (𝑛𝑛 − 1)�      (15) 

 

where, 𝑥𝑥𝑖𝑖 is the position of the particle, 𝑣𝑣𝑖𝑖 is the velocity of the particle, 𝑛𝑛 is the number of the 
iteration, 𝑤𝑤 is the inertial weight of the particle and allows particles to find local optimal solutions 
based on global solutions at the outset, 𝑐𝑐1 and 𝑐𝑐2 are parameters that determine individual and 
collective influence, 𝑟𝑟1 and 𝑟𝑟2 are parameters that take a random value chosen between 0 and 1, 𝑝𝑝𝑔𝑔 
is the vector where the previously global best result is stored and it is the best position found by the 
swarm during all the iterations of the algorithm, 𝑝𝑝𝑖𝑖 is the vector where the previously local best 
result of the i particle is stored and it is the best position found by the specific particle during all the 
iterations of the algorithm. 

7. Calculate the consumption and travel time by evaluating the particles. Subsequently, 
comfort criteria can be applied to mark as dominated those driving that do not meet them. 

8. The archive is updated including the new non-dominated solutions found and discarding 
those that are dominated by the new ones. 

9. Update local best for each solution. If the local best and the current particle position are 
mutually non-dominated, then the local best will be maintained or updated by the new 
particle position randomly. 

10. Calculate the crowding distance (CD) of each solution in the archive.  
11. Update the global best result from the solutions of the archive. Solutions with higher value 

of CD will have higher probability of being selected as global best to promote diversity. Thus, 
the archive will be divided into two groups: the group with higher values of CD and the rest. 
The first group is composed by the fraction of the archive with higher values of CD according 
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to the “Top select” parameter. Then, a solution is randomly selected from the top group or 
from the rest with a probability defined by the “Top select probability” parameter. 

12. Repeat steps 6 to 11 until the maximum number of iterations is achieved. 

 

4.2. Train simulation model 

The train simulation model is used to evaluate the solutions generated by the MOPSO 
algorithm. A detailed description of this simulation model and its validation can be found in 
(Domínguez et al. 2011). It is composed by several modules that represent the ATO logic, the 
traction/braking system, the train dynamics and the energy consumption calculation. The line 
characterization used by the simulation model includes location of stations (kilometric point), 
grades, grade transitions curves, track curvatures and speed limits. Moreover, the train 
characterization includes mass of the train, the mass of the load, length of the train, maximum speed, 
rotatory inertia, adhesion traction, traction effort curve, braking effort curve, running resistance 
coefficients, auxiliary systems consumptions and the ATO equipment configuration. 

The simulation model works by calculating, at constant time steps, the state variables of the train 
motion. At each step, the process starts with the ATO module to obtain the traction/braking demand 
(𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟) for the train. This demand is the ratio between the effort that the traction/braking system has 
to apply and the maximum traction/braking effort. 

The ATO module receives as inputs the speed and position of the train, the maximum speed profile, 
the gradient profile and the position of the arrival station. With this information, the ATO modules 
differentiate 3 scenarios: 

• The train is in traction mode and does not need to brake to observe maximum speed 
reduction or to the station arrival. In this case, the ATO calculates its output by means of a 
proportional controller using as a speed reference (𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) the minimum value between the 
maximum speed at the position of the train and the driving command ℎ𝑠𝑠 (in case the train is 
driven in holding speed mode). The result of the control is corrected with the gradient 
acceleration as shown in Equation (16). 

𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∙ �𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�+ 𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔      (16) 
 

where 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the constant of the proportional controller � 𝑠𝑠
𝑚𝑚
� for the traction mode, 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

is the current train speed �𝑚𝑚
𝑠𝑠
�,  𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎 is the constant for the pre-fed acceleration �𝑠𝑠

2

𝑚𝑚
� and 

𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is the acceleration �𝑚𝑚
𝑠𝑠2
� due to the gradients at the position of the train. 

 
• The train is in braking mode to observe a speed restriction. At each simulation step, the ATO 

logic evaluates by means of a braking detection curve (Carvajal, Cucala, and Fernández 2016) 
if it is necessary to reduce the speed because of a maximum speed reduction. When the 
braking detection curve intersects the maximum speed profile, the ATO braking logic is 
started. In the braking mode, the output of the ATO is calculated by the proportional 
controller represented in Equation (17). This controller is corrected not only with the gradient 
acceleration (as the previous case) but also with the target acceleration 𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 �

𝑚𝑚
𝑠𝑠2
�. The target 
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acceleration (𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) is calculated as a braking curve from the current train position and 
speed to the position where the maximum speed is reduced and the new maximum speed 
value. The speed reference 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 �

𝑚𝑚
𝑠𝑠
� in this case is the speed of the braking curve in the 

next time step. 

𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐾𝐾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∙ �𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�+ 𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎 ∙ �−𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�      (17) 
 

where 𝐾𝐾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the constant of the proportional controller � 𝑠𝑠
𝑚𝑚
� for the braking mode that 

depends on the train speed. 
 

• The train is in final braking mode to brake up to the arrival station. At the beginning of the 
simulation, the braking curve up to the stop in the arrival station is calculated between the 
arrival point and the initial point using the driving command deceleration (𝑏𝑏). When the 
train speed and position intersect this braking curve, the ATO final braking is started. In the 
final braking mode, the proportional ccontrolrepresented in Equation (17) is applied where 
the target acceleration is 𝑏𝑏 and the speed reference (𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) is the speed of the final braking 
curve in the next time step 

 

The ATO traction/braking demand 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 previously calculated is bounded by [-1,1] and hysteresis is 
applied to minimise that the train changes for traction to braking continuously. Besides, if the train 
is driven with coasting/re-motoring driving commands, 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 will be bounded by a maximum value 
of 0 when the train is in traction mode and the speed has previously reached the coasting speed (𝑐𝑐) 
and it is over the re-motoring speed (𝑟𝑟). 

Once the ATO output is calculated, the effort provided by traction/braking system is calculated 
using Equation (18). 

𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚      (18) 
 

where 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the traction/braking effort of the train (kN) and 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum traction effort 
(kN) according to the motors characteristics, if 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 0, or the maximum braking effort according 
to the braking system characteristics, if 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 < 0. Both, maximum traction and maximum braking 
effort curves are dependent on the train speed. 

The traction/braking system limits abrupt changes in the train effort applied. Therefore, the 
previously calculated traction/braking effort will be constrained applying a limitation as show in 
Equation (19). 

−𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 <
𝑑𝑑𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑑𝑑𝑑𝑑

< 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚      (19) 

 

where  𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum variation of traction/braking effort �𝑘𝑘𝑘𝑘
𝑠𝑠
� value configured. 

The traction/braking effort will be the input for the dynamics module that will calculate firstly the 
train acceleration (𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) using the Newton’s second motion law as shown in Equation (20). 
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𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −  𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟

𝑀𝑀𝑒𝑒𝑒𝑒
      (20) 

 

where 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the resistance due to the track grades (kN), 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟 (kN) is the running resistance and 
𝑀𝑀𝑒𝑒𝑒𝑒 is the equivalent mass of the train (tons) (including the rotatory inertia). 

The running resistance and the resistance due to track grades can be calculated using Equations (21) 
and (22). 

𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐴𝐴 + 𝐵𝐵 ∙ 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐶𝐶 ∙ (𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)2      (21) 
𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑔𝑔 ∙ 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡      (22) 

 

where 𝐴𝐴 (kN), 𝐵𝐵 �𝑘𝑘𝑘𝑘𝑚𝑚
𝑠𝑠
�  and 𝐶𝐶 � 𝑘𝑘𝑘𝑘

�𝑚𝑚𝑠𝑠 �
2� are coefficients that depend on the train characteristics, 𝑔𝑔 is the 

gravitational acceleration �𝑚𝑚
𝑠𝑠2
�, 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the train mass (tons) and 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the equivalent gradient of 

the track �𝑚𝑚
𝑚𝑚
� in the train position. The equivalent gradient is calculated adding to the average 

gradient affecting the complete length of the train, the equivalent gradient that represents the 
resistance produce by the track curves. 

The position 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (m) and speed of the train �𝑚𝑚
𝑠𝑠
� can be updated using the train acceleration and 

Equations (23) and (24). 

𝑑𝑑𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡      (23) 

𝑑𝑑𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡      (24) 

 

Finally, the traction electric power 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (kW) and regenerative electric power 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 (kW) 
consumptions are calculated using Equations (25) and (26). With the power, the traction energy 
consumption can be calculated integrating the traction electric power. 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 ∙
𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚

∙ 𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐 ∙
1
𝑝𝑝𝑝𝑝

        𝑖𝑖𝑖𝑖 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≥ 0      (25) 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 ∙
𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚

∙ 𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑝𝑝𝑝𝑝         𝑖𝑖𝑖𝑖 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 < 0      (26) 

 

where 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum current (A) according to the motor characteristics that is associated to 
the maximum effort of traction or braking, 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 (kN), 𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐 is the nominal catenary voltage (V) and 
𝑝𝑝𝑝𝑝 is the motors’ efficiency (%) that depends on the working load level (i.e., depends on the ratio 
between 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚). 
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5. Case study 

This section presents a case study where the proposed model is applied to a line of Madrid 
Underground. The metro line consists of 16 interstations and two terminal stations spread over 14 
kilometres and its infrastructure is modelled by means of gradients and curves. The characteristics 
of the train are: 160 tonnes, 78 tonnes of passenger load, a length of 90 metres and the maximum 
power offered is 1500 kW. The electric system is a 1.5 kV DC. Speed limits set by the railway operator 
are respected at all times. The dynamic simulation of the train taking into account the above 
parameters is carried out by means of a detailed model of the train movement and execution of the 
on-board ATO driving parameters. The minimum dwell time (𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚) takes a value of 20 seconds. 

The variations of the possible values of the ATO driving parameters and their maximum and 
minimum limits are defined according to Table 7. 

 Deceleration rate (m/s2) Regulation speed (km/h) Coasting speed (km/h)  Re-motoring speed (km/h) 
Minimum 0.60 30 30 5 
Maximum 0.80 80 80 50 
Increase 0.05 0.25 0.50 1 

Table 7. ATO Driving parameter settings. 

The headway of the timetable to be designed is 420 seconds (7 min). 

For the analysis of the case study, the process described in Section 4 is carried out searching for the 
optimal driving (Equation 12) for each interstation with MOPSO optimisation algorithm.  

MOPSO parameters used in to generate the local eco-driving Pareto curves are listed in Table 8. 

       Swarm size Iterations c1 c2 w               Top select (%)   Top select probability (%) 

40 1000 1 1 0.9                      6%                 98 
Table 8. MOPSO parameters. 

The result of this process is a Pareto front for each interstation and is the input information used for 
the following optimisation procedure. Figure 7 shows an example of solutions after the local eco-
driving calculation process. Each point of a Pareto curve represents a specific ATO parametrisation 
that produces the most efficient driving for the corresponding running time at that interstation. 

 
Figure 7. Examples of Pareto front of interstations 1 and 5: designed eco-driving, running time / energy 

consumption. 
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As previously described, the procedure continues with the timetable optimisation (Equation 1) and 
the global Pareto front is obtained. Each solution of this global front represents the set of efficient 
ATO driving parameters at each interstation of the entire railway line and stopping times. The 
obtained selection of running times and stopping times leads to synchronised braking and 
tractioning trains to maximise the use of regenerative energy. 

The timetable optimisation problem is solved by the proposed algorithm GLMO-NSGA-III. In the 
following, this solution is compared as well with other algorithms: WOF (Zille et al. 2016b) 
(Weighted Optimization Framework), LCSA (Zille and Mostaghim 2019) (Linear Combination-
based Search Algorithm), FDV (Xu Yang et al. 2021) (Fuzzy Decision Variable) and NSGA-III. 

The optimisation process using the FDV algorithm is divided into two distinct parts, fuzzy evolution 
and precise evolution. In the first one, fuzzy evolution substages are added and the fuzzy operation 
is performed once the offspring has been generated at the beginning with the MOEA (Multi- 
Objective Evolutionary Algorithm) that has been chosen, being in this case the LMOCSO (Y. Tian et 
al. 2020) (Large-Scale Multi-Objective Optimization Competitive Swarm Optimizer). In the second 
phase, offspring generation operations are carried out. The next population generation is examined 
by means of LMOCSO. The fuzzy evolution phase in turn consists of: fuzzy evolution sub-stages 
division and fuzzy operation. The purpose of the first of the above phases is to make the algorithm's 
solution more accurate by dividing the fuzzy evolution into multiple phases in which the level of 
fuzzification decreases. In the second phase, the degree of fuzzification of the solution is determined. 

LCSA algorithm is a procedure in which solutions of the optimisation problem are formed by linear 
combination of previous results to improve the quality of solutions in multi-objective problems. A 
population of coefficient vectors is formed and optimised by a metaheuristic procedure to improve 
the search for solutions. The algorithm starts with the optimisation of the population with any multi-
objective method. The first non-dominated solution front of the existing population is used to form 
a solution matrix. Then, a random population of the linear combination of solution vectors is formed. 
These vectors are optimised through an arbitrary procedure, storing this result. Finally, the previous 
result is combined with the initial population, and the process is repeated. In this case study, the 
multi-objective optimisation algorithm applied has been the NSGA-III. 

WOF algorithm has been designed as a metaheuristic procedure to be incorporated in a population-
based optimisation mechanism. This method is based on the grouping and optimisation of the 
weighting variables to be applied, and the weighting variables are applied to cases where the 
objectives are multiple. In the WOF algorithm, the decision vector is divided into smaller vectors. 
The corresponding weighting factor is applied to each of these vectors. The whole process is divided 
into two different phases. Initially, an optimisation is performed with any of the following randomly 
chosen algorithms: SMPSO (Speed-constrained Multi-objective Particle Swarm Optimisation), 
MOEA/D (Multi-Objective Evolutionary Algorithm based on Decomposition), NSGA-II, NSGA-III. 
After this, a certain number of solutions are chosen from the current population and a new 
optimisation is performed with the NSGA-III algorithm and taking into account the corresponding 
reduced decision vector. 

Table 9 presents the parameters of the algorithms used for the optimization. All algorithms have 
been executed with 220 generations and a population size of 100. Additionally, the random seed is 
initialized for the generation of the initial random population in all cases, and for all executed and 



27 
 

compared algorithms. This uniformity in the initialization process and parameters further ensures a 
fair comparison of the algorithms' performance. 

 

FDV 
Fuzzy evolution rate Step acceleration Optimiser Aggregation function - 

0.8 0.4 LMOCSO Penalty based Boundar  
Intersection  

- 

GLMO-
NSGAIII 

Grouping method Variable groups Optimiser - - 

Ordered 4 NSGA-III - - 

LCSA 
- - Optimiser - - 

- - NSGA-III - - 

NSGAIII 

Simulated binary 
crossover 

probability** 

Crossover 
distribution index 

(𝜼𝜼𝒄𝒄) 

Mutation distribution 
index (𝜼𝜼𝒎𝒎) 

Polynomial mutation 
probability 

- 

1 30 20 
1

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 - 

WOF 
 

Grouping method 
Variable 
groups 

Transformation 
function 

Evaluations 
(original/transformed 

problem) 

Fraction of 
function 

evaluations for 
the alternating 

weight-
optimisation 

phase 
Ordered 4 Interval 1000/500 0.5 

Table 9. Algorithm configuration parameters. 

Figure 8 presents the behaviour of the algorithms after the global optimisation process considering 
the electrical loss function. 

 
Figure 8. Pareto fronts comparison. 

For the resolution and optimisation of the timetable as the second part of the problem, the GLMO-
NSGA-III has been chosen due to its good results after the comparison with the rest of the 
algorithms. When NSGA-III is combined with the GLMO operator, the algorithm provides better 
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solutions. It can be observed that GLMO-NSGA-III obtains better solutions in the range between 
3100 seconds and 3600 seconds. After that, the LCSA algorithm provides more solutions. However, 
in the design of railway timetables the time margin that is usually given above the minimum time 
is between 3.5% and 10%, so the range for the running time is up to 500 seconds. Therefore, solutions 
provided by GLMO-NSGA-III are adequate from the operational point of view. 

In the following, the proposed model is firstly executed without introducing the penalty on the 
number of trains to analyse the obtained results. The design of the timetable is carried out in two 
different cases depending on whether regenerated energy is considered or not in the optimisation 
model. The first case will refer to the optimal design of the timetable when the energy regenerated 
by the trains is ignored in the analysis. The second case will consider the energy regenerated during 
braking being more faithful to reality by adding the losses given during transmission. These losses 
are modelled by means of a function dependent on the distance that separates the train that is 
regenerating energy and the train that receives and uses the energy (Figure 2).  

Figure 9 plots the optimisation scenarios representing each of them as the corresponding Pareto 
front. As expected, the driving with the highest associated consumption corresponds to the scenario 
where the regenerated energy is not reused. 

 

Figure 9. GLMO-NSGA-III optimisation cases. 

Results in Figure 9 are the Pareto curves obtained by the optimisation algorithm in these cases. 
However, in reality, when the solutions obtained by the algorithm are tested on the line (by 
simulation) there is regenerated energy and the transmission of this energy between trains has 
associated losses that depend on the distance between trains. Therefore, the result of simulating the 
above Pareto fronts on a line with regenerated power transmission with losses according to the 
defined loss model is presented below in Figure 10. It can be seen in Figure 10 that the curve that 
was optimised taking into account the regenerated energy and σ function has a better behaviour in 
terms of consumption as it has been tried to preferentially synchronise accelerating and braking 
trains. 
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Figure 10 shows the optimisation result when regeneration is considered with the loss function and 
the result when regeneration is not considered in the optimisation, both simulated in the case where 
regeneration with losses during transmission is added. 

 

Figure 10. Optimisation results simulated considering σ function. 

As can be seen in Figure 10 a better result is obtained for the optimised case where regeneration and 
the loss function are considered. The graph highlights the points corresponding to the fastest 
possible set of driving for the whole metro line and the same for a set of 4.52% slower driving with 
respect to the optimised case in the two optimised cases. Comparing the result of both optimisations 
for what could be the nominal set of driving shows an energy saving of 5.42% with the optimisation 
when considering regeneration and σ function. 

Previous results do not take into consideration the number of trains required to meet the demand. 
Firstly, the number of trains is calculated as a further step to the optimisation (Equation 10 and 11), 
and the results are shown in Figure 11. In this case, no penalty has been introduced for the objective 
function. This is why the solutions between the 8-train and 9-train cases overlap in some areas of the 
graph. As shown in the figure, the Pareto front contains similar solutions that are optimal in terms 
of energy and running time but with different numbers of trains required to give the associated 
service. With the same consumption and running times some solutions require 8 trains and others 
require 9 trains, which impact critically on the investments and operation. The results of Figure 11 
present the energy consumption vs the commercial running time. The commercial running time is 
the commercial speed experienced by the passengers, so the time spent by the trains at stops in 
terminal stations is excluded. This time is used by the trains for the reverse manoeuvres, to unload 
and load passengers, and as a buffer to absorb delays. However, it is also crucial to determine the 
synchronization of ascending and descending trains to use regenerated energy as was studied in 
(Roch-Dupré et al. 2018). Therefore, solutions with the same commercial running time could present 
different cycle time in the line and different number of trains to operate the timetable. 

X: 3122 s 
Y: 5979 kWh 

X: 3263 s 
Y: 4426 kWh 

X: 3260 s 
Y: 4186 kWh 
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Figure 11. Timetable optimisation without penalty for the number of trains. 

Figure 12 shows the optimisation after including in the objective function (Equation 1) a penalty or 
additional cost of 25 kWh for each extra train required in the achieved solution. This penalty is 
expressed in the term 𝑃𝑃 ∙ 𝑁𝑁𝑡𝑡  of the Equation 5. Hence, the areas of the 8-train and 9-train cases are 
clearly differentiated.  
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Figure 12. Timetable optimisation introducing penalty for the number of trains. 

In this case, a timetable can be chosen with a running time around 5% slower than that associated 
with the flat-out driving between stations following the railway operator's criteria of setting a time 
margin for the design of the timetable. In this way, an energy saving in relation to the cost function 
of 1372 kWh is achieved, which represents a saving of 24.79%, not being necessary to include more 
trains on the line ensuring the fulfilment of the service. 

Figure 13 compares the energy that would be consumed in rheostats in the results obtained in Figure 
10. Both cases were simulated by considering the regenerated energy and the losses associated with 
its transmission. Orange bars show the result when the optimisation is carried out without 
considering the energy regenerated during braking and the blue bars show the result when the 
energy regenerated during braking is considered with the associated transmission losses. 

X: 3116 s 
Y: 5535 kWh 

X: 3275 s 
Y: 4163 kWh 
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Figure 13. Energy dissipation in rheostats at interstations. 

It can be seen from the result that synchronisation improves the use of regenerated energy in every 
interstation. The energy that would be wasted in the case where regeneration was not taken into 
account would be 279 kWh while this wasted energy drops to 33 kWh when the driving and 
synchronisation are designed taking regeneration into account. 

Figure 14 and Figure 15 show the two optimised speed profiles for the cases compared for track 1 
and track 2, respectively: 

 
Figure 14. Speed profiles for track 1. 
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Figure 15. Speed profiles for track 2. 

Table 10 and Table 11 show the arrival and dwell times for the compared cases, in track 1 and track 
2. These figures have been obtained for a train that arrives to the first station in time equals to 0. As 
can be seen, when no regeneration is considered all the dwell times are the minimum value except 
for the reverse time in the first station that is 287s. However, when considering regeneration with σ 
function, there are cases where the dwell time is above the 20s (station S8 for instance) and both 
reverse times are greater than the minimum value (45s in S1 and 38s in S18). This is because the 
algorithm is synchronizing accelerating and braking trains to increase the use of regenerated energy. 

 

 Optimisation: considering 𝝈𝝈 Optimisation: no regeneration 

 
Station 

 

 
Arrival time (s) 

 

 
Departure time (s) 

 

 
Arrival time (s) 

 

 
Departure time (s) 

 
S1 0 45 0 287 
S2 183 203 423 443 
S3 303 323 544 564 
S4 415 435 649 669 
S5 528 548 766 786 
S6 614 634 848 868 
S7 731 751 966 986 
S8 864 885 1087 1107 
S9 959 979 1181 1201 

S10 1039 1059 1264 1284 
S11 1133 1153 1363 1383 
S12 1210 1230 1441 1461 
S13 1322 1342 1553 1573 
S14 1397 1417 1629 1649 
S15 1478 1498 1712 1732 
S16 1550 1570 1789 1809 
S17 1624 1644 1865 1885 

Table 10. Arrival and dwell times for track 1. 
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 Optimisation: considering 𝝈𝝈 Optimisation: no regeneration 

 
Station 

 

 
Arrival time (s) 

 

 
Departure time (s) 

 

 
Arrival time (s) 

 

 
Departure time (s) 

 
S18 1693 1731 1934 1954 
S17 1780 1800 2004 2024 
S16 1854 1874 2078 2098 
S15 1926 1946 2150 2170 
S14 2010 2030 2235 2255 
S13 2082 2102 2307 2327 
S12 2193 2213 2418 2438 
S11 2269 2289 2495 2515 
S10 2365 2385 2591 2611 
S9 2443 2463 2670 2690 
S8 2541 2561 2765 2785 
S7 2657 2677 2884 2904 
S6 2765 2785 2992 3012 
S5 2852 2872 3079 3099 
S4 2972 2992 3200 3220 
S3 3074 3094 3301 3321 
S2 3188 3208 3414 3434 

Table 11. Arrival and dwell times for track 2. 

 

     6. Conclusion 

This paper presents a procedure for optimal timetable design considering efficient driving for 
a metropolitan railway line based on detailed simulation. The objective is to design the optimal 
operation, minimising the energy consumption and considering the rolling stock required to provide 
the service. This is achieved by integrating the optimisation of the ATO driving parameters and the 
optimisation of the timetable, adding the contribution of the energy regenerated by braking trains. 
The number of trains required to fulfil the timetable is included in the model to consider costs 
associated with rolling stock. The model starts with designing the ATO eco-driving parameters for 
the whole line where the energy consumption is minimised as a function of running time. The search 
for efficient driving has been carried out by means of the MOPSO algorithm, and the solutions form 
a Pareto front where running time and consumption are conflicting objectives. These ATO 
parameters satisfy realistic operating conditions easing its implementation in real conditions. The 
timetable is then designed by optimising the time margin distribution, the stopping times at each 
station and synchronising traction and braking trains during their journey on the whole line to 
maximise the use of regenerated energy. Several optimisation algorithms have been tested for the 
efficient timetable design, including WOF, LCSA, NSGA-III, GLMO-NSGA-III and FDV. In this 
study, GLMO-NSGA-III has been found to be the best performing algorithm.  

The procedure described has been applied to a line of Madrid Underground. The optimal design 
has been carried out in two different scenarios: ignoring regenerated energy and considering 
regenerated braking with transmission losses to show the importance of including regenerated 
energy use calculation in the optimisation model. It has been proved energy savings up to 5.42% 
when the proposed model considers the regenerative braking for the optimisation and it permits to 
take into account the number of trains required to provide the service when deciding the commercial 
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speed of the line. Likewise, the calculated driving meets the railway operator's design criteria, giving 
a margin time for the nominal operation, offering also an accurate reference for metro railway 
operators.  
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