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H I G H L I G H T S

• Bi-level mechanism maximizes flexibility services from smart prosumers.
• Proxy-driven algorithm enables geo-distributed IDC service-sharing across zones.
• Adaptive ADMM accelerates convergence by 74.5 % with minimal data exchange.
• Case study shows 35.2 % lower congestion costs and higher prosumer revenues.
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A B S T R A C T

Smart prosumers with Distributed Generation (DGs) and controllable loads can provide cost-effective grid ser
vices. However, realizing this potential requires distributed optimization mechanisms that ensure market effi
ciency, participant privacy, and compliance with electricity market regulations. This paper presents a bi-level 
distributed optimization mechanism to maximize flexibility services from industrial parks and Internet Data 
Centers (IDCs) in distribution-level Congestion Management (CM) markets. The upper-level models the Distri
bution System Operator (DSO), which identifies congested lines using linear AC power flow analysis on pre- 
settled energy market results and sends corrective signals to prosumers. The lower level allows prosumers to 
adjust their operations accordingly and communicate updated transactions back to the DSO. A novel proxy- 
driven algorithm is proposed to facilitate service-sharing among geo-distributed IDCs, considering congestion 
issues. Additionally, an adaptive Alternating Direction Method of Multipliers (ADMM) algorithm enables 
decentralized coordination among market agents, achieving 74.52 % faster convergence than the standard 
ADMM. A real-world case study from Spain demonstrates that the proposed mechanism enables the grid operator 
to maximize grid services from prosumers, reducing congestion alleviation costs by 35.27 %. Moreover, IDCs 
reduced daily costs by 11.07 % through service-sharing and task-shifting aligned with CM market signals, while 
industrial parks achieved a 13.68 % cost reduction by aligning material production processes with CM market 
signals, both enabled by the proposed bi-level mechanism.

1. Introduction

1.1. Background and motivation

The integration of Distributed Energy Resources (DERs) and ad
vancements in smart grid technologies have redefined power system 

operations, creating opportunities for decentralized grid services [1,2]. 
Industrial parks and IDCs are emerging as key smart prosumers, equip
ped with generation units, energy storage systems, and controllable 
loads [3,4]. These entities hold the potential to provide essential grid 
services, including congestion alleviation, frequency regulation, and 
load balancing, which are vital for maintaining grid reliability and ef
ficiency [5,6]. Conventional centralized grid management approaches 
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Nomenclature

Abbreviations
ADMM Alternating Direction Method of Multipliers
CHP Combined Heat and Power
CM Congestion Management
DER Distributed Energy Resources
DG Distributed Generation
DLC Direct Load Control
DSO Distribution System Operator
HDD Hard Disk Drive
IDC Internet Data Center
MILP Mixed-Integer Linear Programming
MIQCP Mixed-Integer Quadratically Constrained Programming
PTDF Power Transfer Distribution Factor
PV Photovoltaic

Sets
c Index of IDC's clusters
d Index of IDCs
es Index of grid-connected storage systems
g Index of controllable generations
i, j Index of distribution buses
m Index of materials
n Index of industrial parks
pv Index of PV units
s Index of IDC's services
t Index of time periods
x Index of piecewise segments

Scalars
α/β Multiplicative / Division factor
Cp Specific heat capacity of air (kJ/kg.oC)
Δt Δt Time step (h)
δmin/δmax Min/Max voltage angle (rad)
ηPV Efficiency of PV panels (%)
ηCh/ηDis Efficiency of charging/discharging process (%)
IRSTC Sun irradiance at standard test conditions (W/m2)
λES Operation cost of storage systems ($/kWh)
λDLC Cost of applying DLC ($/kWh)
M Big positive number
ρ Air density (kg/m3)
SBase Base power (kVA)
Vmin/Vmax Min/Max voltage magnitude (p.u)

Parameters
Ad/Bd Power consumption coefficients (kW/GHz3 - kW)
CMd Capacity margin of IDCs (tasks/h)
Ds,c,d Server response time (h)
EES,In

es Initial energy level of grid-connected storage systems 
(kWh)

E(.),In
n Initial material storage level in industrial parks (units)

EES,min
es /EES,max

es Min/Max energy level of grid-connected storage 
systems (kWh)

E(.),min
n /E(.),max

n Min/Max material storage level in industrial parks 
(units)

ε Inertia coefficient
ηAC

d Cooling system efficiency (%)
ηB,gh

n Boiler conversion factors (kWh/m3)
ηCHP,ge

n /ηCHP,gh
n CHP conversion factors (kWh/m3)

FIDC
s,c,d,x CPU frequencies (GHz)

Gl/Bl/Rl Conductance/Susceptance/Resistance of branches (p.u)
GIP,EM

n,t Gas consumption of industrial parks in the energy market 

(m3/h)
γi/γd/γn Reactive power rates (kVAR/kW)
HB,max

n Boiler capacity (kW)
IRt Sun irradiance (W/m2)
λProxy

t Operation cost of proxy ($/tasks)
λGas

t Gas price ($/m3)
λCM

n,t /λCM
d,t Congestion management prices ($/kWh)

φEM
t Penalty for adjusting power exchanges with the upstream 

grid ($/kWh)
φCG

t Penalty for adjusting power exchanges with controllable 
generation ($/kWh)

φpv Max reactive power capacity of PV unit (%)

Mmin,(.)
n,t /Mmax,(.)

n,t Min/Max material production level (units/h)
MProd,Desire

n,t Desired final material production curve (units/h)
PAC,min

d /PAC,max
d Min/Max power consumption of IDC's air- 

conditioning system (kW)
PIDC,min

s,c,d /PIDC,max
s,c,d Min/Max power consumption of clusters in each 
service (kW)

PCh,max
es /PDis,max

es Max charging/discharging capacity of grid- 
connected storage systems (kW)

PRate
pv Rated capacity of PV units (kW)

PUG,EM
t Power exchange with upstream grid in the energy market 

(kW)
PCG,EM

g,t Power exchange with controllable generations in the 
energy market (kW)

PIP,EM
n,t Power exchange of industrial parks in the energy market 

(kW)
PIDC,EM

d,t Power exchange of IDCs in the energy market (kW)
PCG,min

g /PCG,max
g Min/Max active power capacity of controllable 

generation (kW)
PD

i,t/QD
i,t Active/Reactive load demands (kW - kVAR)

P(.)
n /h(.)

n Edging power/Heating operation points of CHP units (kW)
PPV

n,t Power generation by PV unit in industrial parks (kW)
PFixed

n,t /HFixed
n,t Fixed power/heating load demands of industrial parks 

(kW)
QCG,min

g /QCG,max
g Min/Max reactive power capacity of controllable 
generation (kW)

ρIDC/ρIP Penalty Parameters
rP,IDC/IP/rD,IDC/IP Primal/Dual residuals
σIDC

s,c,d,x Fractional segments of server capacity (tasks/h)

SLine,max
l Branch capacity (kW)

θmin
d /θmax

d Min/Max allowable temperature for air-conditioning 
system (◦C)

Umax
s,c,d Maximum utilization rate (%)

υi Max DLC level (%)
ωi,l Flow direction
ϖIDC

d Predefined computing service requirements (h)
ωIDC

s,c,d,t Workload before service sharing (tasks/h)
WH,(.)/WG,(.)/WP,(.) Weighting factors for the material production 

process (units/kWh – units/m3 - units/kWh)
ψd Airflow rate (m3/s)
χIDC,min

s,c,d /χIDC,max
s,c,d Min/Max capacity of clusters (tasks/h)

Variables
δi,t Voltage angle (rad)
eES

es,t Energy level of grid-connected storage systems (kWh)

e(.)n,t Material storage level in industrial parks (units)
θIndoor

d,t Indoor temperature of IDCs (◦C)

θOutput
d,t Output temperature of air-conditioning system (◦C)
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struggle to scale effectively in modern power systems, particularly with 
the growing number of prosumers and DERs [7,8]. Centralized systems 
also pose challenges regarding data privacy, communication bottle
necks, and regulatory compliance. As a result, there is an increasing 
demand for decentralized optimization mechanisms that can securely 
and efficiently coordinate grid services from prosumers without 
compromising operational data privacy or market regulations [9–11].

The motivation behind this work is to harness the untapped potential 
of industrial parks and IDCs to provide cost-effective grid services within 
local CM markets. To achieve this, the paper proposes an adaptive 
ADMM-based distributed coordination mechanism that enables the DSO 
to efficiently coordinate these decentralized smart prosumers while 
preserving their data privacy.

1.2. Literature review

Significant prior research has focused on deriving grid services from 
smart prosumers and DERs in local CM markets. In this context, models 
presented in [12,13] address CM services provided by DERs within 
microgrids, [14,15] focus on extracting these services from local re
sources within energy communities, and [16] highlight the provision of 
CM services from energy hubs. However, there is limited research on 
leveraging CM services from industrial parks and IDCs. Studies [17–19] 
have explored the optimal participation of industrial parks in energy 
markets, with [17,18] considering energy flows between DERs within 
industrial parks, albeit with simplified production line models. These 
studies employed centralized optimization approaches that did not ac
count for privacy in the market participation of industrial parks. 
Conversely, [19] introduced a hierarchical structure that facilitated the 
participation of industrial parks in energy markets with limited infor
mation sharing, while accurately modelling both the energy flow among 
DERs and the production lines of the industrial parks. Similarly, [20] 

employed a hierarchical optimization structure with limited information 
sharing to assess the potential of industrial parks to provide CM services, 
though the production line model was simplified.

The involvement of IDCs as smart prosumers with time-shiftable 
loads in energy markets has been assessed in [21–26]. The authors in 
[22–25] employed centralized optimization structures to integrate IDCs 
into energy markets, while a hierarchical optimization approach was 
utilized in [21]. In [21,22,26], IDCs can share some of their services with 
other centers within a common area, while [23–25] present more real
istic models that enable service sharing between geographically 
distributed data centers. Only [26] evaluated the potential of IDCs to 
provide CM services, employing an adaptive ADMM algorithm to inte
grate them into the local CM market. However, this study did not 
explore the potential of service sharing between geographically 
distributed IDCs operating across different time zones.

Recent research on organizing local CM markets with high partici
pation from smart prosumers has employed various power flow models 
to identify potential congestion within networks. The authors in [14] 
employed a nonlinear AC power flow model, [12,16,27–29] used linear 
AC models, [13,21,30] adopted DC models, and [31] applied Power 
Transfer Distribution Factors (PTDFs), all aimed at identifying congested 
lines. However, most of these models were tested on benchmark test 
systems, with only [21] validating their approach through imple
mentation on a real-world case study involving an 11-zone aggregation 
of the New York power system. In [16,18,22–25,31], centralized opti
mization structures are employed to coordinate smart prosumers with 
the market operator, compromising prosumer privacy. Hierarchical 
optimization techniques are utilized in [15,19–21] for this coordination, 
preserving privacy but failing to achieve the global optimal solution in 
market optimization. In contrast, distributed optimization techniques 
are applied in [12–14,17,26–30] for coordinating smart prosumers with 
market operators, using ADMM algorithms in [12,14,17,26,27,29], an 

f IDC
s,c,d,t CPU frequency (GHz)

gIP
n,t Total gas consumption of the industrial park (m3/h)

gB
n,t Gas consumption of boiler (m3/h)

gCHP
n,t Gas consumption of CHP (m3/h)

g(T1− T6)
n,t Gas consumption in the material production process (m3/ 

h)
hB

n,t Heat generated by boiler (kW)

h(T1− T6)
n,t Heat consumption in the material production process (kW)

mProd,(.)
n,t Material produced in production lines of industrial parks 

(units/h)
mUsed,(.)

n,t Material used in production lines of industrial parks (units/ 
h)

pAC
d,t Power consumption of the air-conditioning system (kW)

pIDC
d,t /p̃IDC

d,t Coupling variables representing the power exchange of 
IDCs (kW)

pIDC
s,c,d,t Power consumption of different clusters in each service 

(kW)
pIP

n,t/p̃IP
n,t Coupling variables representing the power exchange of 

industrial parks (kW)
pIP,Buy

n,t /pIP,Sell
n,t Buying/Selling power by industrial parks (kW)

pLine
l,t /qLine

l,t Active/Reactive power flow (kW - kVAR)
pPV

pv,t/qPV
pv,t Active/Reactive power generated by grid-connected PV 

units (kW - kVAR)
p(.)→(.)

n,t /h(.)→(.)
n,t Internal power/heat flow in industrial parks (kW)

pES,Ch
n,t /hTS,Ch

n,t Charging level of electrical/thermal storage systems 
(kW)

pES,Dis
n,t /hTS,Dis

n,t Discharging level of electrical/thermal storage systems 

(kW)
pDLC

i,t Power curtailed via DLC (kW)
pCG

g,t /qCG
g,t Active/Reactive power generated by grid-connected 

controllable generations (kW - kVAR)
pUG

t /qUG
t Active/Reactive power exchange with upstream grid (kW - 

kVAR)
pCh

es,t/pDis
es,t Charging/Discharging power of grid-connected storage 

systems (kW)
pLoss

l,t Power losses (kW)
pCHP

n,t /hCHP
n,t Power/Heat operating points of CHPs

p(T1− T6)
n,t Power consumption by material production process (kW)

us,c,d,t Utilization rate (%)
vi,t Voltage magnitude (p.u.)
ωProxy,In

s,c,d,t /ωProxy,Out
s,c,d,t Incoming/Outgoing services of IDCs (tasks/h)

χIDC
s,c,d,t Task quantity of different clusters in each service (tasks/h)

zIDC
s,c,d,t Modulation factor of computing services (h)

Binary variables
iAC
d,t Flag status of the air-conditioning system at the minimum 

temperature
oAC

d,t Flag status of the air-conditioning system at the maximum 
temperature

iFreq
s,c,d,x,t Status of piecewise segments
iCh
es,t/iDis

es,t Charging/Discharging status of grid-connected storage 
systems

iIDC
s,c,d,t Status of IDC clusters in each service
iCHP
n,t Status of CHP
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alternating iterative method in [13], a Stackelberg game theory in [28], 
and a step-wise procedure in [30]. These studies demonstrate that 
distributed optimization techniques can simultaneously preserve pro
sumer privacy and achieve the global optimal solution.

1.3. Research gap and contributions

In Table 1, the proposed model, denoted by an asterisk (*), is 
compared against other models from recent literature. The review 
highlights that very few studies have focused on the extraction of CM 
services from industrial parks and IDCs. Most works have either 
addressed the optimal scheduling of these smart prosumers individually 
or their participation in energy markets, often neglecting their potential 
to provide grid services. To the authors' knowledge, only [20,26] have 
evaluated the capability of industrial parks and IDCs to offer grid ser
vices to CM markets. However, these studies have not simultaneously 
considered both industrial parks and IDCs, failed to accurately model 
industrial parks' production lines, and overlooked the potential for 
service-sharing between geo-distributed IDCs. This creates a significant 
research gap that requires a detailed assessment of the capacity of in
dustrial parks and IDCs to provide grid services. Consequently, it is 
crucial to develop distributed optimization structures that ensure a 
secure and optimal environment for the participation of all 

decentralized parties in the market. While [12–14,17,26–30] have 
demonstrated that distributed optimization methods can be effective 
and secure for electricity market optimization, they are challenged by 
long convergence times, a critical issue that still needs to be addressed.

To address these gaps, this paper proposes an adaptive ADMM-based 
distributed coordination mechanism that enables the DSO, acting as 
market organizer, to efficiently coordinate smart prosumers, specif
ically, industrial parks and IDCs, in local CM markets. The proposed 
framework integrates detailed techno-economic models of industrial 
parks and IDCs, capturing their respective flexibility mechanisms: pro
duction chain rescheduling and energy management for industrial 
parks, and service shifting and proxy-based service sharing for IDCs. The 
main contributions of this study are as follows: 

• A bi-level mechanism is introduced for distributed optimization of 
decentralized smart prosumers, particularly industrial parks and 
IDCs, within local CM markets. This mechanism incorporates 
congestion management at the upper level and smart prosumers' 
scheduling at the lower level, enabling an iterative exchange of 
optimization signals between the two levels. It allows industrial 
parks and IDCs to adjust their material production and service- 
sharing activities, respectively, in response to grid service re
quirements communicated by the system operator.

• A novel proxy-driven algorithm for service-sharing among geo- 
distributed IDCs is presented, enabling them to offload part of their 
tasks to centers in other time zones during congested periods and 
receive services during non-congested periods. This method lever
ages time zone differences to optimize resource utilization and 
enhance IDCs' flexibility. An adaptive ADMM algorithm is also 
introduced for distributed optimization between smart prosumers 
and the DSO in local CM markets, ensuring convergence to the global 
optimum with minimal data exchange. By dynamically adjusting 
penalty parameters, the adaptive ADMM remarkably accelerates 
convergence compared to the standard version.

• The proposed mechanism maximizes the provision of grid services 
from industrial parks and IDCs to mitigate congestion in local mar
kets, reducing the system operator's reliance on controllable fossil- 
fueled units. In addition to generating significant daily revenue for 
smart prosumers, the approach significantly lowers congestion alle
viation costs for the system operator.

1.4. Organization

The remainder of this paper is structured as follows. Section 2 in
troduces the proposed framework and its main components. Section 3
details the mathematical formulation of the DSO, IDC, and industrial 
park models, together with the adaptive ADMM-based coordination. 

Table 1 
Comparative analysis of proposed and recent Models.

Industrial Parks

Internal Converters Production Line CM 
Market

[17]– [18] - [19]– [20] * [19] - * [20]*
Internet Data Centers

Internal Devices
Proxy-Driven Service Sharing 
Across Geo-Distributed, Multi- 
Time-Zone IDCs

CM 
Market

[21]– [22] - [24]– [25] - [26] - * [24]– [25] - * [26] - *

Optimization 
Framework

Centralized [16]– [18] - [22]– [23] - [24]– [25] - [31]

Distributed [12]– [13] - [14]– [17]- [26]– [27] 
[28]– [29] - [30] - *

Hierarchical [15]– [19]– [20]– [21]
Multi-Level Market Modelling 

for Industrial Parks / IDCs [17]– [19]– [20]– [21] - [26] - *

ADMM-Based Market 
Coordination for Industrial 
Parks / IDCs

[17]– [26] - *

Improved and Accelerated 
ADMM Variants [29] - *

Market Coordination with 
Minimal Data Exchange for 
Industrial Parks / IDCs

[17]– [19]– [20]– [21] - [26] - *

Fig. 1. The outline of the proposed bi-level mechanism.
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Section 4 presents the implementation workflow, while Section 5 reports 
the case study results and performance analysis. Section 6 concludes the 
paper and outlines future research directions.

2. Model outline

The framework proposed in this paper aligns with the objectives of 
the Spanish national project OptiREC [32], which aims to design 
decentralized local CM markets for distribution networks, as such 
markets are not yet established in Spain. The proposed framework en
ables the DSO, acting as the market organizer, to efficiently coordinate 
smart prosumers, including industrial parks and IDCs, in providing 
flexibility services to alleviate local congestion. In this framework, the 
DSO, which has the capability to run power flow programs in the dis
tribution system, acts as the market organizer, while decentralized smart 
prosumers serve as active participants. The local CM market operates a 
few hours after the day-ahead energy market and one day prior to real- 
time operations. Fig. 1 illustrates the outline of the proposed bi-level 
mechanism. At the upper level, the DSO identifies and mitigates 
congestion in its service area using a linear AC power flow model. The 
DSO seeks to alleviate congestion by making minimal adjustments to 
nodal production and consumption relative to the pre-established en
ergy market outcomes. The DSO's congestion management strategies 
include adjusting generation or consumption at nodes linked to sub
scribers with Direct Load Control (DLC) contracts, controllable genera
tion units, energy storage systems, and smart prosumers. Once these 
adjustments are determined, the DSO sends power exchange correction 
signals to the smart prosumers.

At the lower level, smart prosumers adjust the schedules initially 
submitted to the day-ahead energy market in response to signals from 
the DSO, aiming to maximize their profits in the local CM market. In
dustrial parks can optimize the operation of their DERs, such as Com
bined Heat and Power (CHP) systems, boilers, and thermal and electric 
storage systems, or shift part of their material production to non- 
congested periods. Data centers can shift part of their interruptible 
services to less congested times or transfer non-interruptible services to 
centers in different time zones via proxies. After these adjustments, 
smart prosumers communicate their updated power exchanges to the 
DSO.

An adaptive version of the ADMM is developed to enable signal ex
changes between the upper and lower levels within a decentralized 
framework. This version follows the standard ADMM process, iteratively 
exchanging coupling variables (i.e., power exchange signals between 
prosumers and the DSO) during the optimization process until global 
convergence is achieved. It ensures the privacy of all market agents 
through minimal information sharing. In the proposed version, the 
ADMM algorithm's penalty term is dynamically updated at each itera
tion based on the behavior of market agents, significantly improving the 
convergence speed.

3. Mathematical modelling

The proposed bi-level mechanism is formulated as a Mixed-Integer 
Linear Programming (MILP) problem, but with the application of an 
adaptive ADMM using a 2-norm penalty term, it is transformed into a 
Mixed-Integer Quadratically Constrained Programming (MIQCP) prob
lem. In this formulation, indices n, d, g, pv, and es represent industrial 
parks, IDCs, controllable generation units, Photovoltaic (PV) units, and 
grid-connected storage systems, respectively. Indices s and c correspond 
to services and clusters within IDCs, while index m represents materials 
within industrial parks. Variables related to the energy market, already 
determined and provided to the DSO, are denoted with superscript EM. 
It should be stated that parameters are represented by uppercase letters, 
while variables are in lowercase.

3.1. Upper level (DSO scheduling)

Eq. (1) defines the objective function of the DSO, who acts as the 
market organizer in the local CM market. The DSO's goal is to mitigate 
network congestion while ensuring that deviations from the pre- 
established energy market schedules remain minimal. This objective 
represents the DSO's practical task of maintaining secure and efficient 
network operation with the lowest possible cost. The first and second 
terms in (1) quantify the costs of adjusting power exchanges with the 
upstream transmission grid and controllable generation units, respec
tively, actions that the DSO undertakes to relieve local congestion. The 
third term accounts for the operational costs of grid-connected storage 
systems, which provide flexibility by charging or discharging during 
congested periods. The fourth and fifth terms correspond to the costs of 
procuring flexibility services from industrial parks and IDCs, two key 
smart prosumers capable of adjusting production or shifting computing 
loads in response to CM market signals. Finally, the sixth term models 
the activation costs of the DLC contract, a last-resort measure that the 
DSO employs when other flexibility options are insufficient. The price of 
procuring services from smart prosumers (λCM

n/d,t) is not fixed in advance 
but is dynamically updated during the adaptive ADMM coordination 
process until convergence, ensuring that final prices reflect market 
equilibrium between the DSO and decentralized prosumers. To preserve 
computational tractability, absolute value expressions in the objective 
function are represented in linearized form in GAMS. 

minOFDSO =
∑

t

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

φEM
t

⃒
⃒pUG

t − PUG,EM
t

⃒
⃒+φCG

t

∑

g

⃒
⃒
⃒pCG

g,t − PCG,EM
g,t

⃒
⃒
⃒

+λES
∑

es

(
pCh

es,t +pDis
es,t

)
−
∑

n

[

λCM
n,t

(

p̃IP
n,t − PIP,EM

n,t

)]

−
∑

d

[

λCM
d,t

(

p̃IDC
d,t − PIDC,EM

d,t

)]

+λDLC
∑

i
pDLC

i,t

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Δt

(1) 

Constraints in (a1) impose operational limits on the active and 
reactive power outputs of controllable generation units [33]. (a2) cal
culates the active power generation of PV units, considering installed 
capacity (PRate

pv ), conversion efficiency (ηPV), and irradiance rate (IRt). In 
(a3), the reactive power injected or absorbed by PV units is modeled as a 
function of the generated active power, adjusted by coefficient φpv, 
which reflects the PV unit's converter capacity to manage reactive 
power. 

PCG,min
g ≤ pCG

g,t ≤ PCG,max
g ,QCG,min

g ≤ qCG
g,t ≤ QCG,max

g (a1) 

pPV
pv,t = ηPV IRt

IRSTCPRate
pv (a2) 

− φpvpPV
pv,t ≤ qPV

pv,t ≤ φpvpPV
pv,t (a3) 

Equations (a4)-(a6) model grid-connected energy storage systems. 
(a4) defines the energy balance, considering both charging and dis
charging power over time t, with efficiencies ηCh and ηDis. (a5) sets the 
limits on charging and discharging, controlled by binary variables iCh

es,t 

and iDis
es,t, which cannot be simultaneously active. (a6) sets the storage 

system's energy level to EES,In
es at the start and end of the scheduling 

period, maintaining it within bounds EES,min
es and EES,max

es during other 
periods. 

eES
es,t = eES

es,t− 1 +

(

pCh
es,tηCh −

pDis
es,t

ηDis

)

Δt (a4) 

0 ≤ pCh
es,t ≤ PCh,max

es iCh
es,t ,0 ≤ pDis

es,t ≤ PDis,max
es iDis

es,t (a5) 

EES,min
es ≤ eES

es,t ≤ EES,max
es , eES

es,t=0 = eES
es,t=24 = EES,In

es (a6) 
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The linearized AC power flow relations in (a7)-(a14) are essential for 
identifying potential network congestion [34]. (a7) and (a8) compute 
active and reactive power flows for each branch, with Gl and Bl repre
senting conductance and susceptance, and vi,t and δi,t denoting voltage 
magnitude and angle. Voltage magnitude and angle constraints are 
defined in (a9), while (a10) sets bounds on apparent power per branch. 

The nonlinearity of the quadratic terms, 
(

pLine
l,t

)2 
and 

(
qLine

l,t

)2
, is 

managed through piecewise linearization in GAMS. (a11) calculates 
hourly power loss per branch, while (a12) and (a13) represent active 
and reactive power balance equations. Ultimately, (a14) restricts DLC 
implementation. 

pLine
l,t

SBase = Gl
(
vi,t − vj,t

)
+Bl

(
δi,t − δj,t

)
(a7) 

qLine
l,t

SBase = Bl
(
vi,t − vj,t

)
− Gl

(
δi,t − δj,t

)
(a8) 

Vmin ≤ vi,t ≤ Vmax, δmin ≤ δi,t ≤ δmax (a9) 

(
pLine

l,t

)2
+
(

qLine
l,t

)2
≤
(

SLine,max
l,t

)2
(a10) 

pLoss
l,t =

Rl
(
SBase

)2

[(
pLine

l,t

)2
+
(

qLine
l,t

)2
]

(a11) 

pUG
t

⃒
⃒
i=1 +

∑

g∈Πg
i
pCG

g,t +
∑

pv∈Πpv
i

(
pPV

pv,t + pDis,SS
pv,t − pCh,SS

pv,t

)
=
∑

l∈Πl
i

(
ωi,lpLine

l,t

)

+
∑

l∈Πl
i

(
⃒
⃒ωi,l

⃒
⃒
pLoss

l,t

2
SBase

)

+PD
i,t − pDLC

i,t +
∑

d∈Πd
i
p̃IDC

d,t +
∑

n∈Πn
i
p̃IP

n,t

(a12) 

qUG
t

⃒
⃒
i=1 +

∑

g∈Πg
i
qCG

g,t +
∑

pv∈Πpv
i

(
qPV

pv,t

)

=
∑

l∈Πl
i

(
ωi,lqLine

l,t

)
+QD

i,t − γipDLC
i,t +

∑

d∈Πd
i

(

γdp̃
IDC
d,t

)

+
∑

n∈Πn
i

(

γnp̃
IP
n,t

)

(a13) 

0 ≤ PDLC
i,t ≤ υiPD

i,t (a14) 

3.2. Lower level (smart prosumers scheduling)

3.2.1. Internet data centers

Fig. 2 illustrates the architecture of the IDC, which comprises three 

main service categories, processing, storage, and computing, each 
organized into multiple clusters [26]. As depicted in the figure, pro
cessing and storage services represent non-interruptible tasks that must 
operate continuously to maintain service quality, whereas computing 
services are interruptible and can be flexibly rescheduled without 
affecting user experience. In practice, the IDC participates in the local 
CM market as a smart prosumer capable of adapting its power con
sumption in response to signals from the DSO (market organizer). When 
the DSO identifies congestion, the IDC can shift its computing loads to 
non-congested time periods or offload part of its non-interruptible ser
vices to other data centers located in different geographical areas and 
time zones via proxy coordination. The IDC's optimization problem, 
expressed in (2), captures this behavior. The first component of the 
objective function quantifies the net financial impact of modifying its 
power exchange in the CM market relative to the pre-settled energy 
market schedule. The second component represents the costs associated 
with the service-sharing mechanism, which incorporates the bandwidth 
usage, latency management, and proxy operation needed to exchange 
services with other data centers. Together, these terms reflect the IDC's 
practical decision process: maximizing profitability while flexibly 
contributing to congestion relief through load shifting and inter-data- 
center coordination. 

maxOFIDC
d =

∑

t

[
λCM

d,t

(
PIDC,EM

d,t − pIDC
d,t

)]
Δt −

∑

s

∑

c

∑

t
λProxy

t

(
ωProxy,Out

s,c,d,t

)
Δt

(2) 

The power consumption (pIDC
s,c,d,t) of processing, storage, and 

computing services is constrained in (b1) by a binary variable that de
fines their active or inactive status (iIDC

s,c,d,t). 

pIDC,min
s,c,d iIDC

s,c,d,t ≤ pIDC
s,c,d,t ≤ pIDC,max

s,c,d iIDC
s,c,d,t (b1) 

Constraints (b2)-(b11) define the operation of non-interruptible 
services within the IDC, specifically processing and storage tasks. 
These constraints represent activities that must run continuously to 
guarantee service quality, forming the backbone of the IDC's baseline 
workload. Constraint (b2) limits the number of tasks assigned to each 
Hard Disk Drive (HDD) and router cluster, ensuring that the processing 
load remains within each cluster's technical capacity. χIDC

s,c,d,t represents 
the task count per cluster whereas χIDC,max

s,c,d represents the maximum 
number of tasks per cluster. Constraint (b3) manages temporary work
load surges by capping them at an upper limit, thereby preventing IDC 
overloading. Constraint (b4) ensures the continuity of ongoing tasks, so 
once a process begins, it runs to completion without interruption, 
reflecting the real-world need to maintain data integrity and user con
nectivity. Constraint (b5) determines the power consumption of storage 

Fig. 2. Architecture of Internet data centers.
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and router clusters based on their utilization rate, while constraint (b6)
calculates the server cluster power consumption (pIDC

s,c,d,t) as a function of 
its operational status (iIDC

s,c,d,t), CPU frequency (f IDC
s,c,d,t), and utilization rate 

(us,c,d,t), with power consumption coefficients Ad andBd. These parame
ters represent the power-performance trade-offs, where higher CPU 
frequencies and utilization levels increase energy consumption but 

improve service speed. The non-linear term 
(

f IDC
s,c,d,t

)3 
is linearized 

through constraints (b7) and (b8) using a piecewise approximation. The 
server workload described in (b7) encompasses the aggregated work
loads of router and HDD clusters allocated to processing service. σIDC

s,c,d,x 

defines fractional segments of server capacity in the piecewise model, 
with the binary variable iFreq

s,c,d,x,t activating each segment. (b9) defines the 
utilization rate of each cluster and (b10) constrains it within permissible 
bounds defined by the maximum utilization rate (Umax

s,c,d). Finally, (b11) 
enforces Quality of Service (QoS) standards by limiting the server 
response time (Ds,c,d). 

χIDC,min
s,c,d iIDC

s,c,d,t ≤ χIDC
s,c,d,t ≤ χIDC,max

s,c,d iIDC
s,c,d,t (b2) 

∑

s

∑

c

(
χIDC,max

s,c,d − χIDC
s,c,d,t

)
≥ CMd (b3) 

∑

t

⃒
⃒
⃒iIDC

s,c,d,t − iIDC
s,c,d,t− 1

⃒
⃒
⃒ ≤ 2 (b4) 

pIDC
s,c,d,t =

χIDC
s,c,d,t

χIDC,max
s,c,d

PIDC,max
s,c,d (b5) 

pIDC
s,c,d,t = BdiIDC

s,c,d,t +Ad

(
f IDC
s,c,d,t

)3
us,c,d,t (b6) 

∑

x

(
σIDC

s,c,d,x− 1iFreq
s,c,d,x,t

)
≤
∑

c∈

{
HDD

Router

}χIDC
s,c,d,t ≤

∑

x

(
σIDC

s,c,d,xi
Freq
s,c,d,x,t

)
(b7) 

(
f IDC
s,c,d,t

)3
=
∑

x

[(
FIDC

s,c,d,x

)3
iFreq
s,c,d,x,t

]

(b8) 

us,c,d,t =
χIDC

s,c,d,t

χIDC,max
s,c,d

(b9) 

0 ≤ us,c,d,t ≤ Umax
s,c,d (b10) 

iIDC
s,c,d,t ≤ Ds,c,d

(
χIDC,max

s,c,d − χIDC
s,c,d,t

)
(b11) 

Constraints (b12) and (b13) model computing services as interrupt
ible activities that can be rescheduled over time. (b12) computes the 
power consumption of the server allocated for computing, considering 
its full-load consumption (PIDC

s,c,d) and a modulation factor zIDC
s,c,d,t (ranging 

from 0 to 1) to adjust consumption dynamically over time. The sum of 
zIDC

s,c,d,t over the scheduling horizon must be equal to ϖIDC
d , representing the 

Table 2 
Service sharing among geo-distributed IDCs.

Module 1:
1. Perform ADMM-based CM market settlement in Zone A;
2. For IDC d in Zone A, Do:
3. Calculate outgoing services from CM market outcomes;

4. Send outgoing services to the proxy; →ωProxy,Out
s,c,d,t

5. End
Module 2:
6. For IDC d in Zone B, Do:
7. Calculate free capacity for incoming services; →χFree

s,c,d,t = χIDC,max
s,c,d − χIDC

s,c,d,t
8. Send free capacities to the proxy;
9. End
Module 3:
10. For service s, Do:
11. For task c, Do:
12. For hour t, Do:

13. Classify services; →ωProxy,High/Med/Low
s,c,t =

∑

d∈ΠHigh/Med/Low ωProxy,Out
s,c,d,t

14. Classify free capacities; →χFree,High/Med/Low
s,c,t =

∑

d∈ΠHigh/Med/Low χFree
s,c,d,t

15. End
16. End
17. End
Module 4:
18. For IDC d in Zone B, Do:

19. Allocate services: 

̅̅̅̅̅̅→
d∈ΠLow

ωProxy,In
s,c,d,t =

(
χFree

s,c,d,t

χFree,Low
s,c,t

)

ωProxy,Low
s,c,t 

̅̅̅̅̅̅→
d∈ΠMed

ωProxy,In
s,c,d,t =

(
χFree

s,c,d,t

χFree,Med
s,c,t

)

ωProxy,Med
s,c,t 

̅̅̅̅̅̅ →
d∈ΠHigh

ωProxy,In
s,c,d,t =

(
χFree

s,c,d,t

χFree,High
s,c,t

)

ωProxy,High
s,c,t

20. End
Module 5:
21. For IDC d in Zone B, Do:
22. Receive incoming services from the proxy; →ωProxy,In

s,c,d,t
23. End
24. Perform ADMM-based CM market settlement in Zone B;
25. For IDC d in Zone B, Do:
26. Calculate outgoing services from CM market outcomes;

27. Send outgoing services to the proxy; →ωProxy,Out
s,c,d,t

28. End
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predefined computing service requirements. (b13) ensures that the 
computing server is on whenever zIDC

s,c,d,t is nonzero. 

pIDC
s,c,d,t = PIDC

s,c,dz
IDC
s,c,d,t,

∑

t

∑

s

∑

c
zIDC

s,c,d,t = ϖIDC
d (b12) 

0 ≤ zIDC
s,c,d,t ≤ iIDC

s,c,d,t (b13) 

Constraints (b14)-(b18) model the air-conditioning system to regu
late IDC cooling. Constraint (b14) defines the air-conditioning system's 
allowable power consumption range. Equation (b15) relates the air- 
conditioning output temperature (θOutput

d,t ) to the indoor temperature 
(θIndoor

d,t ), considering operational efficiency (ηAC
d ) and inertia (ε). Equa

tion (b16) defines the indoor temperature as a function of the cooling 

output and the heat released by IDC activities (
∑

s

∑
c
pIDC

s,c,d,t
ρCpψd

). ψd denotes 
the airflow rate, whereas ρ and Cp represent air density and specific heat 
capacity, respectively. Constraint (b17) deactivates the air-conditioning 
system at the minimum indoor temperature (θmin

d ), while (b18) sets it to 
rated capacity at the peak temperature (θmax

d ). 

PAC,min
d ≤ pAC

d,t ≤ PAC,max
d (b14) 

θOutput
d,t = εθOutput

d,t− 1 +(1 − ε)
(

θIndoor
d,t − ηAC

d pAC
d,t

)
(b15) 

θIndoor
d,t = θOutput

d,t +

∑
s
∑

cpIDC
s,c,d,t

ρCpψd
(b16) 

θOutput
d,t − θmin

d ≥ M
(

iAC
d,t − 1

)
(b17) 

(
oAC

d,t − 1
)

M ≤ θmax
d − θOutput

d,t ≤ oAC
d,t M, pAC

d,t ≥ PAC,max
d

(
1 − oAC

d,t

)
(b18) 

Equation (b19) models the workload balance for non-interruptible 
services, where ωIDC

s,c,d,t represents the workload before service sharing, 

and ωProxy,Out
s,c,d,t and ωProxy,In

s,c,d,t denote services sent to and received from the 
proxy, respectively. It is assumed that each IDC can transfer up to 25 % 
of its non-interruptible services to a proxy and receive services based on 
available capacity. The proxy then distributes these services among 
geographically distributed IDCs located in different time zones. Equa
tion (b20) defines the IDC's power balance, considering grid exchanges 
(pIDC

d,t ), internal consumption (pIDC
s,c,d,t), and PV system. 

χIDC
s,c,d,t = ωIDC

s,c,d,t +ωProxy,In
s,c,d,t − ωProxy,Out

s,c,d,t (b19) 

pIDC
d,t =

∑

s

∑

c
pIDC

s,c,d,t − pPV
d,t (b20) 

Table 2 outlines the service-sharing process among IDCs across three 
time zones: A (Brazil), B (Spain), and C (Australia). Each zone settles its 
market independently, with Zone A operating 5 h behind Zone B and 
Zone C 8 h ahead. IDCs are categorized into low, medium, and high 
priority, with proxy services dispatched exclusively within the same 
priority level. The process begins in Module 1, where markets in Zone A 
are assumed to be settled, and IDCs submit their outgoing services to the 
proxy. Module 2 involves pre-scheduling by IDCs in Zone B to determine 
their available free capacities, which are then communicated to the 
proxy. Here, χIDC,max

s,c,d represents the maximum capacity of clusters in 
storage and processing services, while χIDC

s,c,d,t denotes their occupied ca
pacity. In Module 3, the proxy classifies these free capacities and out
going services based on IDC type, service type, cluster, and execution 
time. Subsequently, in Module 4, the proxy allocates services from Zone 
A to the available free capacities in Zone B. Finally, in Module 5, the 
IDCs in Zone B compute and submit their outgoing services to the proxy 
after settling the CM market. Coordination between Zones B and C fol
lows the same sequence as Modules 2 to 5, substituting Zone A with B 
and Zone B with C.

3.2.1. Industrial parks
Fig. 3 illustrates the structure of the industrial parks considered in 

Fig. 3. Architecture of the industrial parks.
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this study. Each park is connected to both the electricity and natural gas 
networks at their entry points and integrates multiple DERs, including 
PV units, CHP systems, boilers, and electrical and thermal energy stor
age systems. These components jointly supply the electricity and heat 
required to produce a sequence of intermediate materials (1–6), where 
each material represents a specific stage in the production process and is 
temporarily stored before being used in the next stage. The last material, 
Material 6, corresponds to the final product sold in the market.

In the local CM market, the industrial park operates as a smart pro
sumer capable of adjusting its internal energy use and production 
schedule in response to coordination signals received from the DSO 
(market organizer). This flexibility enables the industrial park to 
modulate its electricity consumption over the scheduling horizon, either 
increasing or decreasing it as required, with reductions specifically 
occurring during congested periods to deliver downward services to the 
grid, while ensuring that overall daily production objectives are fully 
met. The objective function in Eq. (3) mathematically represents this 
behavior. Its first term quantifies the profit (or cost) derived from 
modifying power exchanges between the energy and CM markets, 
reflecting how the park's adjusted operation contributes to congestion 
relief. The second term models the cost of changes in gas consumption 
associated with these operational adjustments. Note that any variation 
in gas purchases relative to the pre-settled energy market schedule leads 
to a proportional cost correction. 

maxOFIP
n =

∑

t

[
λCM

n,t

(
PIP,EM

n,t − pIP
n,t

) ]
Δt −

∑

t

[
λGas

t

(
gIP

n,t − GIP,EM
n,t

) ]
Δt (3) 

The operational limits of the CHP system define a trapezoidal region 
with vertices A, B, C, and D, representing the relationship between heat 
and electricity generation. Constraint (c1) ensures the operating point 
remains under the boundary represented by line AB. Additional 
boundaries are introduced by constraints (c2) and (c3), restricting 
operation within the regions demarcated by lines BC and CD, respec
tively. Moreover, constraints (c4) provide further restrictions on both 
heat and electricity generation. Finally, gas consumption for the CHP 
unit is defined through (c5). 

pCHP
n,t − PA

n −
PA

n − PB
n

HA
n − HB

n

(
hCHP

n,t − HA
n

)
≤ 0 (c1) 

pCHP
n,t − PB

n −
PB

n − PC
n

HB
n − HC

n

(
hCHP

n,t − HB
n

)
≥ −

(
1 − iCHP

n,t

)
M (c2) 

pCHP
n,t − PC

n −
PC

n − PD
n

HC
n − HD

n

(
hCHP

n,t − HC
n

)
≥ −

(
1 − iCHP

n,t

)
M (c3) 

0 ≤ hCHP
n,t ≤ HB

n iCHP
n,t ,PC

n iCHP
n,t ≤ pCHP

n,t ≤ PA
n iCHP

n,t (c4) 

gCHP
n,t =

pCHP
n,t

ηCHP,ge
n

+
hCHP

n,t

ηCHP,gh
n

(c5) 

Equation (c6) models the heat generation of the boiler, where the 
thermal output (hB

n,t) depends on gas consumption (gB
n,t) and efficiency 

factor (ηB,gh
n ). (c7) imposes an upper limit on heat generation, ensuring it 

does not exceed the boiler's maximum capacity (HB,max
n ). Note that 

electrical and thermal storage systems in industrial parks are formulated 
similarly to grid-connected electrical storage systems.

Equations (c8)-(c21) define the hourly power, heat, and gas flows 
within the industrial park. (c8) governs the power exchange direction 
between the industrial park and the grid, based on variables pIP,Buy

n,t and 
pIP,Sell

n,t , which are subject to non-simultaneity constraints. The values of 
pIP,Buy

n,t and pIP,Sell
n,t are determined by (c9) and (c10), respectively. Equa

tion (c11) manages the power output balance of the PV system. Equa
tions (c12) and (c13) handle input and output power balances for the 
electrical storage system, while (c14) and (c15) manage thermal storage 

balances. Equations (c16) and (c17) model the power and heat balance 
of the CHP system, and (c18) addresses the heat balance for boiler 
output. Equation (c19) calculates gas flow into the industrial park, ac
counting for consumption by the CHP, boiler, and materials production 
processes. Equation (c20) models electricity consumption for fixed loads 
and material production, and (c21) captures the corresponding heat 
consumption for these processes. 

hB
n,t = ηB,gh

n gB
n,t (c6) 

hB
n,t ≤ HB,max

n (c7) 

pIP
n,t = pIP,Buy

n,t − pIP,Sell
n,t (c8) 

pIP,Buy
n,t = pGrid→L

n,t + pGrid→ES
n,t (c9) 

pIP,Sell
n,t = pPV→Grid

n,t + pCHP→Grid
n,t + pES→Grid

n,t (c10) 

PPV
n,t = pPV→Grid

n,t + pPV→ES
n,t + pPV→L

n,t (c11) 

pES,Ch
n,t = pGrid→ES

n,t + pPV→ES
n,t + pCHP→ES

n,t (c12) 

pES,Dis
n,t = pES→Grid

n,t + pES→L
n,t (c13) 

hTS,Ch
n,t = hCHP→TS

n,t + hB→TS
n,t (c14) 

hTS,Dis
ts,t = hTS→L

n,t (c15) 

pCHP
n,t = pCHP→Grid

n,t + pCHP→ES
n,t + pCHP→L

n,t (c16) 

hCHP
ip,t = hCHP→TS

n,t + hCHP→L
n,t (c17) 

hB
ip,t = hB→TS

n,t + hB→L
n,t (c18) 

gIP
n,t = g(T1− T6)

n,t + gCHP
n,t + gB

n,t (c19) 

pES→L
n,t + pCHP→L

n,t + pGrid→L
n,t + pPV→L

n,t = p(T1− T6)
n,t +PFixed

n,t (c20) 

hTS→L
n,t + hCHP→L

n,t + hGB→L
n,t = h(T1− T6)

n,t +HFixed
n,t (c21) 

The materials production process within the industrial park is 
formulated in (c22)-(c32) and represents the coordinated operation of 
sequential production stages, as illustrated in Fig. 3. Equations (c22)- 
(c27) describe the conversion processes through which intermediate 
materials (1–6) are produced, where parameter WP/G/H/M,T(.) translates 
the energy consumed by industrial equipment into material output. This 
formulation captures the physical relationship between energy use and 
production rate in each stage of the manufacturing chain. Equation 
(c28) imposes hourly limits on production increases or decreases for the 
final product (Material 6), reflecting the technical constraints and 
ramping capabilities of industrial processes. Equation (c29) ensures that 
the total production of the final product over the scheduling horizon 
equals a predefined target, meaning that temporary adjustments in 
production, such as reductions during congested periods to provide 
downward services, are later compensated to maintain the total daily 
output. Equation (c30) models the storage dynamics of materials 1–6, 
considering the balance between previously stored volumes, newly 
produced materials, and those transferred between stages. Equations 
(c31) and (c32) define the storage capacity limits and initial inventory 
levels, ensuring that all production and storage activities remain within 
feasible operational boundaries. 

mProd,T1
n,t = WH,T1pT1

n,t (c22) 

mProd,T2
n,t = WP,T2pT2

n,t +WG,T2gT2
n,t +WM1,T2mM1,T2

n,t +WM5,T2mM5,T2
n,t (c23) 
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mProd,T3
n,t = WH,T3pT3

n,t +WG,T3gT3
n,t +WM5,T3mM5,T3

n,t (c24) 

mProd,T4
n,t = WP,T4pT4

n,t (c25) 

mProd,T5
n,t = WP,T5pT5

n,t (c26) 

mProd,T6
n,t = WP,T6pT6

n,t +WH,T6hT6
n,t +WM2,T6mM2,T6

n,t +WM3,T6mM3,T6
n,t

+WM4,T6mM4,T6
n,t +WM5,T6mM5,T6

n,t

(c27) 

Mmin,T6
n,t ≤ mProd,T6

n,t ≤ Mmax,T6
n,t (c28) 

∑

t
mProd,T6

n,t =
∑

t
MProd,Desire

n,t (c29) 

e(T1− T6)
n,t = e(T1− T6)

n,t− 1 +mProd,(T1− T6)
n,t − mUsed,(T1− T6)

n,t (c30) 

E(T1− T6),min
n ≤ e(T1− T6)

n,t=0 ≤ E(T1− T6),max
n (c31) 

e(T1− T6)
n,t=0 = E(T1− T6),In

n (c32) 

3.2.2. Distributed coordination of market agents
The proposed adaptive ADMM enables decentralized coordination 

between upper and lower levels, structured through (d1)-(d5). This 
method introduces penalty terms into the objective functions of market 
agents, including the DSO, IDCs, and industrial parks. Specifically, (d1)
specifies the penalty terms for IDCs and industrial parks, which are 
included in their respective objective functions and jointly integrated 
into the DSO's objective function. These terms are dynamically updated 
at each iteration based on variations in the coupling variables and 
penalty parameters (ρIDC and ρIP). The variables without a tilde (pIDC/IP

d/n,t ) 

denote the local decisions of the prosumers, while those with a tilde 
(p̃IDC/IP

d/n,t ) correspond to the coupling variables optimized by the DSO. 
According to (d2), exchange prices between the DSO and smart pro
sumers are iteratively adjusted based on the discrepancies in defined 
coupling variables. The primal residual is derived from coupling vari
able differences as outlined in (d3), while (d4) determines the dual re
sidual based on price variations across iterations. Equation (d5) updates 
the penalty parameter automatically to keep the primal and dual re
siduals at a similar scale. This helps the algorithm progress steadily in 
price updates, leading to faster and more stable convergence under 
different system conditions. Specifically, the penalty parameter is 
adjusted by applying a multiplicative factor α when the primal residual 
(rP,IDC/IP) significantly exceeds the dual residual (rD,IDC/IP), and divided 
by β when the opposite occurs. An extensive series of simulation runs 
indicated that setting α and β to 1.1 and 1.2, respectively, results in the 
most robust and fastest convergence behavior of the proposed algo
rithm. Table 3 presents a pseudocode of the proposed adaptive ADMM 
for coordinating market agents. The algorithm stops when the sum of the 
primal residuals falls below the specified threshold (ε = 2× 10− 2). 

ρIDC

2

⃦
⃦
⃦
⃦
⃦
p̃IDC

d,t − pIDC
d,t

⃦
⃦
⃦
⃦
⃦

2

2

,
ρIP

2

⃦
⃦
⃦
⃦p̃

IP
n,t − pIP

n,t

⃦
⃦
⃦
⃦

2

2
(d1) 

λCM,it+1
d/n,t = λCM,it

d/n,t + ρIDC/IP

(

pIDC/IP
d/n,t − p̃IDC/IP

d/n,t

)

(d2) 

rP,IDC/IP =

⃦
⃦
⃦
⃦
⃦
p̃IDC/IP

d/n,t − pIDC/IP
d/n,t

⃦
⃦
⃦
⃦
⃦

2

2

(d3) 

Table 3 
Pseudocode of the proposed adaptive ADMM for market coordination.

1. Set starting point for coupling variables;→pIDC
d,t ,p

IP
n,t ,λ

CM
d,t,it ,λ

CM
n,t,it

2. Add penalty terms to agents' objectives; →

⃦
⃦
⃦
⃦
⃦
p̃IDC

d,t − pIDC
d,t

⃦
⃦
⃦
⃦
⃦

2

2

,

⃦
⃦
⃦
⃦p̃

IP
n,t − pIP

n,t

⃦
⃦
⃦
⃦

2

2
3. it = 1; Stop = 0
4. While (Stop ∕= 1), Do:
5. it←it+ 1
6. Minimize OFDSO subject to constraints (a1)-(a14);
7. For IDC d, Do:
8. Update IDC's workload with services from proxy; →ωProxy,In

s,c,d,t

9. Maximize OFIDC
d subject to (b1) to (b20);

10. End
11. For industrial park n, Do:
12. Maximize OFIP

n subject to constraints (c1) to (c32);
13. End

14. Update service prices at connection points;→λCM,it+1
d/n,t = λCM,it

d/n,t + ρIDC/IP

(

pIDC/IP
d/n,t − p̃IDC/IP

d/n,t

)

15. Calculate primal residuals (Eq. d3); →rP,IDC/IP =

⃦
⃦
⃦
⃦
⃦
p̃IDC/IP

d/n,t − pIDC/IP
d/n,t

⃦
⃦
⃦
⃦
⃦

2

2

16. Calculate dual residuals (Eq. d4); →rD,IDC
IP =

⃦
⃦
⃦
⃦
⃦
⃦
⃦

λCM,it
d
n,t

− λCM,it− 1
d
n,t

⃦
⃦
⃦
⃦
⃦
⃦
⃦

2

2

17. Switch (γ =
rP,IDC/IP

rD,IDC/IP)

18. Case γ ≥ γmax; →ρ
IDC
IP = αρ

IDC
IP

19. Case γ ≤ γmin; →ρ
IDC
IP =

ρ
IDC
IP

β
20. Default; → do not update;
21. End
22. If (rP,IDC + rP,IP ≤ ε), Then:
23. Stop = 1;
24. End
25. End

26. Send outgoing services to the proxy;→ωProxy,Out
s,c,d,t
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Fig. 4. Implementation workflow of the proposed distributed optimization framework.
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rD,IDC/IP =

⃦
⃦
⃦λCM,it

d/n,t − λCM,it− 1
d/n,t

⃦
⃦
⃦

2

2
(d4) 

ρIDC/IP =

⎧
⎨

⎩

αρIDC/IP, rP,IDC/IP >> rD,IDC/IP

ρIDC/IP/β, rD,IDC/IP >> rP,IDC/IP

ρIDC/IP, Otherwise
(d5) 

4. Proposed model implementation

Fig. 4 depicts the implementation workflow of the proposed bi-level 
distributed optimization mechanism, which coordinates the DSO and 

smart prosumers through an adaptive ADMM. The process operates 
iteratively across three layers: the upper-level DSO scheduling, the 
ADMM-based coordination layer, and the lower-level smart prosumer 
scheduling. At the upper level, the DSO receives updated coordination 
signals from the ADMM layer, which include exchanged power and dual 
price variables, and solves its local congestion management problem to 
determine revised power exchanges with prosumers. In the first itera
tion, the DSO initializes the coupling variables with predefined values to 
initiate the coordination process. In subsequent iterations, these vari
ables are updated based on the exchanged information between the DSO 
and the smart prosumers, continuing until convergence is achieved. The 

Fig. 5. 334-Bus case study in Alcalá de Henares, Spain.

S.A. Mansouri et al.                                                                                                                                                                                                                            Applied Energy 407 (2026) 127320 

12 



coordination layer implements the adaptive ADMM algorithm, which 
manages the interaction between the DSO and prosumers. At each 
iteration, the coordinator evaluates the primal and dual residuals, up
dates the penalty parameters dynamically, and redistributes the 
adjusted variables to all agents. This adaptive update mechanism ac
celerates convergence and maintains numerical stability. At the lower 
level, smart prosumers, industrial parks, and IDCs optimize their inter
nal operations in response to the received ADMM signals. Industrial 
parks coordinate their distributed energy resources and production 
schedules to provide congestion management services, while IDCs 
perform load-shifting and service-sharing operations through a proxy 
system that links geographically distributed centers. The updated power 

exchanges from all prosumers are then sent back to the coordinator, 
completing one iteration of the ADMM loop. The signal indicators in the 
figure distinguish between input (red) and output (green) exchanges 
among entities, emphasizing the iterative and privacy-preserving 
communication that leads to global market equilibrium. This work
flow ensures optimal coordination with minimal information sharing, 
achieving convergence efficiency and scalability in large distribution 
systems.

5. Simulation results

The proposed mechanism is implemented on a real case study in 
Alcalá de Henares, Spain. This case study, illustrated in Fig. 5, involves a 
334-bus distribution system connected to 9 industrial parks and 14 IDCs. 
The network load is supplied through the upstream grid, five fossil- 
fueled controllable generators and twenty-two PV units. Each PV unit 
is paired with a dedicated storage system. Subscribers at 11 buses, 
highlighted in green, are under DLC contracts, allowing the DSO to 
disconnect their load during emergencies or congestion for a pre
determined price. The key parameters employed in the simulation are 
reported in Table 4. The information on the industrial parks, IDCs, 
network components, and network nodes is provided in Table 5. 
Furthermore, comprehensive information regarding the network nodes, 
network components, and smart prosumers is available online in [35].

The proposed mechanism is evaluated under four scenarios sum
marized in Table 6. Scenario 1 represents the base case, where the DSO 

Table 4 
Key parameters used in the simulation.

Parameter Value 
(unit)

Parameter Value 
(unit)

Parameter Value (unit)

α 1.1 ηCh 98 (%) Vmin 0.9 (p.u)
β 1.2 ηDis 98 (%) Vmax 1.1 (p.u)

Cp 1.005 (kJ/ 
kg.oC) IRSTC 1000 (W/ 

m2) SBase 105

Δt 1 (h) λDLC 10 
($/kWh) γi/γd/γn

0.46 
(kVAR/kW)

δmin − π(rad) ρ 1.19 (kg/ 
m3) ηPV 98 (%)

δmax π(rad) M 105 λES 0.05 
($/kWh)

Table 5 
Information on industrial parks, IDCs, network components, and network nodes.

Industrial Parks

Type Node Number
Capacity of Power & Thermal 
Generation Units (kW)

Capacity of Storage 
Systems (kWh)

Final Product (units/ 
day)

Daily Fixed Energy Demand (kWh)

CHP Boiler PV Electrical Thermal Electrical Thermal
1 58, 155, 226 600 1000 700 100 700 28,800 13,102.34 7981.06
2 82, 206, 233 800 900 600 200 500 33,600 9353.82 8296.86
3 77, 189, 294 600 1000 1000 200 600 36,000 11,192.24 6242.13
Internet Data Centers

Type Node Number
Processing (tasks/day) Storage (tasks/day) Computing PV Capacity 

(kW)HDD Router HDD Router Workload (h) Power Usage 
(kWh)

1
300, 63, 133 
247, 269 1200 1100 1100 970 11 1925 200

2
27, 151, 165 
267, 321

1300 1000 1000 900 12 2100 250

3 28, 152, 222 
330

1300 600 1000 1200 14 2450 200

Network Components
PV Units Electrical Storage Systems
Node 

Number
Capacity 
(kW)

Node 
Number Capacity (kW) Node Number Capacity (kWh) Node Number Capacity (kWh)

48 400 303 350 48 400 303 375
60 450 41 450 60 425 41 425
275 350 117 350 275 375 117 375
289 400 274 300 289 400 274 350
119 450 279 500 119 425 279 450
121 500 296 450 121 450 296 425
14 400 232 450 14 400 232 425
20 350 74 400 20 375 74 400
253 450 268 350 253 425 268 375
297 350 127 500 297 375 127 450
241 300 314 450 241 350 314 425
Controllable Generators
Node Number Capacity (kW)
317, 227, 195, 185, 108 1500, 1200, 1275, 1350, 1500
Network Nodes
Nodes with Inflexible Demand (PQ) Nodes Under DLC Contract (PQ)
1–26, 29–57, 59–62, 64–76, 78–81, 83–132, 134–150, 153, 154 

156–164, 166–188, 190–205, 207–221, 223–225, 227–232 
234–246, 248–266, 268, 270–293, 295–297, 307–314 
317–320, 322–329, 331–334

298–306, 315, 316
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relies only on controllable generators and DLC contracts to provide 
congestion management services. Scenarios 2–4 progressively incorpo
rate additional flexibility resources that can deliver congestion man
agement services: grid-connected storage systems in Scenario 2, 
industrial parks in Scenario 3, and IDCs in Scenario 4. This stepwise 
design enables the assessment of how the inclusion of each resource type 
enhances the DSO's capability to manage network congestion under 
comparable operating conditions.

Table 7 presents the numerical outputs from simulations of Scenarios 
1 to 4. In Scenario 1, the DSO's options for resolving congestion include 
modifying exchanges with the upstream grid, adjusting the production 
of local controllable generators, and deploying DLC contracts. Scenario 
2 adds storage systems to these options. It is worth noting that DLC is the 
costliest strategy available to the DSO and is used as a last resort for 
congestion alleviation. The numerical results indicate that the DSO's 

congestion relief costs in Scenario 2, with storage systems available, 
decreased by 8.64 % compared to Scenario 1. This reduction is attrib
uted to a 21.27 % decrease in the need for DLC implementation.

Fig. 6a and b illustrate the services employed to alleviate congestion 
during the morning and evening periods for Scenarios 1 and 2, along 
with the corresponding power exchange curves with the upstream grid 
in both the energy and CM markets. In Scenario 1, despite the increased 
output of controllable generators during congestion, the DSO was 
required to reduce upstream purchases and curtail the load of certain 
DLC subscribers. In Scenario 2, although a similar strategy was adopted, 
access to storage systems substantially reduced DLC-related load in
terruptions. It is observed that the storage systems charge during non- 
congested periods and discharge during congested periods, thereby 
mitigating the reliance on DLC-based interventions.

In the third scenario, industrial parks act as smart prosumers 
providing grid services in the CM market. Table 7 indicates that by of
fering downward services in the CM market, industrial parks in Scenario 
3 gained a profit of $26,998.59. Additionally, the provision of these 
services reduced the DSO's congestion alleviation costs by 10.8 % 
compared to Scenario 2, primarily due to the lower cost of procuring 
services from industrial parks compared to the cost of implementing DLC 
contracts. Fig. 7 illustrates the congestion relief measures in Scenario 3, 
where a significant portion of DLC interventions was replaced by 
downward services from industrial parks. However, reductions in up
stream purchases during both congestion periods were unavoidable due 
to capacity constraints on lines. Fig. 8a and b present the electrical and 

Table 6 
Definition of the studied scenarios.

Scenarios Available Resources for Congestion Management

Controllable 
Generators & DLC 
Contracts

Grid-Connected 
Storage Systems

Industrial 
Parks

IDCs

1 ✓ × × ×

2 ✓ ✓ × ×

3 ✓ ✓ ✓ ×

4 ✓ ✓ ✓ ✓

Table 7 
Numerical outcomes of Scenarios 1–4.

Sc. Controllable Generations ($) DLC ($) Storage Systems ($) Industrial Parks ($) IDCs ($) Sum ($)

1 11,466.04 64,003.70 0 0 0 97,303.08
2 11,466.01 50,389.63 764.16 0 0 88,891.08
3 7632.12 6859.61 596.63 26,998.59 0 79,282.16
4 3016.47 0 382.08 9774.86 7117.76 57,536.21

Fig. 6. Grid services used for congestion relief in Scenarios 1 & 2.
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heat balances of the industrial park at bus 189 in Scenario 2, while 
Fig. 9a and b illustrate those corresponding to Scenario 3. A comparison 
shows that the industrial park in Scenario 3 adjusted its DERs and ma
terial production in alignment with CM market signals, providing 
downward capacity to the DSO during congested periods. Note that the 
total production level of the M6 product remained constant over the 24- 
h period, with only temporal adjustments made within permissible 
limits.

In the fourth scenario, IDCs were activated in the CM market using 
both load-shifting and service-sharing mechanisms. Table 7 shows that 
IDCs in Scenario 4 earned a profit of $7117.76 from providing CM ser
vices, reducing their net cost by 11.07 %, considering their $2087.91 
service-sharing fee and $11,358.79 energy market expense. Moreover, 
the provision of these services allowed the DSO to completely eliminate 
the need for DLC contracts for congestion relief, reducing congestion 
alleviation costs by 27.42 % compared to Scenario 3. Fig. 10 illustrates 
the capacities employed to alleviate congestion in Scenario 4, 

confirming that the downward services provided by IDCs fully replaced 
the DLC contracts, thereby resolving line congestion without any load 
interruptions. Additionally, the increased availability of downward ca
pacity in Scenario 4 enabled the DSO to rely less on increasing the output 
of controllable fossil-fueled generators compared to Scenario 3, opting 
instead for the more cost-effective downward services provided by IDCs. 
Although the services provided by the industrial parks in Scenario 4 are 
nearly identical to Scenario 3, as shown in Fig. 10, the cost paid by the 
DSO to the parks decreased by 63.79 %, as shown in Table 7. This 
decrease is due to the significant reduction in Locational Marginal Price 
(LMP) in Scenario 4, as shown in Fig. 11. The higher LMP in Scenario 3 is 
primarily due to the presence of DLC, which costs twice as much as other 
services. In the ADMM-based coordination, LMPs are obtained from the 
dual variables of the nodal balance constraints. Through the ADMM it
erations, the DSO and prosumers exchange local schedules and update 
nodal prices until convergence, at which point the prices represent the 
marginal cost of power at each node. The decentralized structure, 

Fig. 7. Grid services used for congestion relief in Scenario 3.

Fig. 8. Industrial park schedule in Scenario 2.
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Fig. 9. Industrial park schedule in Scenario 3.

Fig. 10. Grid services used for congestion relief in Scenario 4.

Fig. 11. LMP curve obtained for Scenarios 3 & 4.
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together with nodal pricing and transparent information exchange, en
sures efficient and fair market outcomes.

Fig. 12a and b compare the operational schedule for the IDC at bus 
222 in Scenarios 3 and 4. It is evident that IDC's participation in the CM 
market in Scenario 4 significantly altered its workload schedule 
compared to Scenario 3. Specifically, IDC shifted its interruptible 
computing services during congestion periods to non-congested hours 
using the load-shifting mechanism. Additionally, using the service- 

sharing mechanism, it offloaded a significant portion of its unin
terruptible workload, related to processing and storage services, to IDCs 
in other time zones through the proxy. Specifically, the IDC located in 
Spain (Zone B) transferred its services to IDCs in Australia (Zone C), 
earning profit by providing downward services to the DSO while paying 
the service-sharing fee. Note that time differences between zones pre
vent overlapping peak periods, enabling IDCs in congested networks 
within one zone to share services with those in non-congested networks 

Fig. 12. IDC operational schedule in Scenarios 3 & 4.

Fig. 13. Impact of smart prosumers' participation levels in the CM market on daily costs.
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in other zones, effectively delivering grid services.
A sensitivity analysis is conducted to assess the impact of smart 

prosumers' participation in the CM market on the daily costs of both the 
DSO and the prosumers. As shown in Fig. 13, seven participation levels 
are considered, starting from a baseline case without CM service pro
vision up to a scenario where prosumers are allowed to deviate up to 30 
% from their scheduled energy quantities in the day-ahead energy 
market. The results show that increasing participation levels signifi
cantly reduces the daily costs for both the DSO and the prosumers. At the 
30 % participation level, the DSO's cost decreases by 38.94 %, while the 
prosumers' aggregate cost decreases by 33.54 % relative to the baseline.

An additional analysis is performed to assess the impact of applying 
the piecewise linearization technique within the proposed linear AC 
power flow model. The method is employed to linearize the quadratic 
terms associated with the active and reactive power components, based 
on which the power losses are subsequently calculated. As illustrated in 
Fig. 14, the obtained results are compared with the real losses calculated 

from the quadratic AC power flow formulation. The piecewise linear 
approximation is implemented using 11 linear segments, resulting in a 
low error ranging from 1.8 % to 3.86 % compared to the actual losses. 
This deviation is negligible, considering the substantial computational 
advantages of the linearized approach, which enables the power flow 
model to be embedded within an iterative distributed optimization 
framework, such as ADMM. In this context, the power flow model is 
solved at each iteration within the DSO's subproblem, which would be 
computationally demanding and inefficient if a quadratic power flow 
formulation were adopted instead.

Finally, Fig. 15a and b illustrate the evolution of the primal and dual 
residuals, together with the progression of the ADMM penalty parameter 
in both the adaptive and standard implementations. As shown, both 
decentralized implementations, the adaptive ADMM and the standard 
ADMM, converge to the same solution as the centralized optimization, 
with a value of $57,536.21. Reaching an identical outcome to the 
centralized benchmark demonstrates that both ADMM versions satisfy 

Fig. 14. Comparison of power losses from the linearized and quadratic AC power flow models.

Fig. 15. Convergence of the proposed and standard versions.
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the market-efficiency criterion, ensuring that the decentralized market- 
clearing process reproduces the socially optimal (centralized) allocation 
and leads to fair market outcomes for all participating agents. However, 
the proposed adaptive model achieves convergence 126 iterations 
earlier, corresponding to a 74.52 % improvement in computational ef
ficiency. This acceleration arises from the dynamic adjustment of the 
ADMM penalty parameter, which responds to variations in the behavior 
of market agents. In contrast, the standard approach maintains a fixed 
penalty parameter throughout the iterations, limiting its adaptability 
and convergence speed.

6. Conclusion

This study presented a distributed optimization mechanism designed 
to maximize congestion alleviation services provided by industrial parks 
and IDCs. The mechanism employed a bi-level structure that linked the 
upper and lower levels through an adaptive ADMM approach, which 
operated 74.52 % faster than the standard ADMM. This formulation 
allowed market agents to optimize their operations individually with 
minimal information exchange. The mechanism was implemented on a 
334-bus real-world case study in Spain. The results demonstrated that 
the system operator was able to fully utilize the cost-effective grid ser
vices offered by smart prosumers, leading to a 35.27 % reduction in 
daily congestion alleviation costs, a lower dependence on fossil-fueled 
generators, and reduced load shedding associated with DLC contracts. 
Furthermore, the mechanism enabled industrial parks to optimize ma
terial production planning and allowed IDCs to adjust load-shifting and 
service-sharing strategies in response to DSO requests, resulting in daily 
cost reductions of 13.68 % and 11.07 %, respectively.

While the proposed mechanism proved highly effective in enhancing 
congestion management and distributed coordination, certain limita
tions remain that could guide future improvements, including its reli
ance on the availability of flexible resources, the accuracy of network 
and market data, and the computational complexity of large-scale 
implementations. Future research could explore the deployment of the 
proposed framework under real-world conditions using advanced digital 
platforms (e.g., Microsoft Azure), enhance privacy and resilience in real- 
time coordination against potential cyber and data integrity attacks, and 
extend the market framework to include commercial and residential 
participants.
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