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MARKOFF EQUATION WITH PELL COMPONENTS

BIR KAFLE, ANITHA SRINIVASAN, AND ALAIN TOGBÉ

Abstract. In this paper, we find all triples of Pell numbers (x, y, z) = (Pi, Pj , Pn) satisfying
the Markoff equation x2 + y2 + z2 = 3xyz.

1. Introduction

The Diophantine equation

x2 + y2 + z2 = 3xyz (1)

was first considered by A. Markoff [6] in 1879, and is now known as the Markoff equation. A
triple (a, b, c) of positive integers with a ≤ b ≤ c is called a Markoff triple if it satisfies equation
(1). The first few such triples are

(1, 1, 1), (1, 1, 2), (1, 2, 5), (1, 5, 13), (2, 5, 29), (1, 13, 34), (1, 34, 89), (2, 29, 169),

(5, 13, 194), (1, 89, 233), (5, 29, 433), (1, 233, 610), (2, 169, 985), (13, 34, 1325), . . . .

A Markoff number (sequence OEIS A002559 in [8]) is a positive integer arising as a component
of a Markoff triple. The first few Markoff numbers are

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, . . . .

If (a, b, c) is a Markoff triple, one can verify that (a, c, 3ac − b) and (b, c, 3bc − a) are Markoff
triples as well. So, any such ordered triple generates additional triples, creating a tree of
Markoff triples consisting of all solutions of equation (1). Using this procedure, any Markoff
triple can be obtained in a finite number of steps from the basic triple (1, 1, 1). (The tree with
b ≤ 100,000 can be found in Zagier [10]).

The Markoff conjecture (first stated by Frobenius [4] in 1913) states that any Markoff
number c appears uniquely as the maximal element of a Markoff triple. In other words, if
(a1, b1, c) and (a2, b2, c) are two Markoff triples with ai ≤ bi ≤ c, i = 1, 2, then a1 = a2 and
b1 = b2. This conjecture has been proved for many special cases, such as when c is a prime
power, or two times an odd prime power, or when one of 3c − 2 and 3c + 2 is a prime power
(see [1, 2, 7, 11]). For more information and references, see [9].

Although the proof of the conjecture still eludes us, many connections between Markoff
numbers and other well-known sequences of numbers have been discovered. For example, in [5],
F. Luca and A. Srinivasan determined all triples of Fibonacci numbers (Fi, Fj , Fn) = (x, y, z)
satisfying the Markoff equation. In this paper, we extend these authors’ ideas to the sequence
of Pell numbers.

The Pell sequence (Pn)n≥0 is defined by the binary recurrence

Pn+1 = 2Pn + Pn−1,

with the initial terms P0 = 0 and P1 = 1. The first few members of this sequence are

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860 . . . .
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In addition to P2 = 2, the sequence of Markoff numbers contains all the odd-indexed Pell
numbers. It may be verified that the identity

22 + P 2
2m−1 + P 2

2m+1 = 3 · 2 · P2m−1P2m+1 (2)

is valid for all positive integers m. Now, we ask whether there are other solutions (x, y, z) =
(Pi, Pj , Pn) to the Markoff equation (1), other than the ones arising from equation (2).

Our result is the following.

Theorem 1.1. If (x, y, z) = (Pi, Pj , Pn) with i ≤ j ≤ n is a solution in positive integers to

the Markoff equation (1), then either (x, y, z) ∈ {(1, 1, 1), (1, 1, 2), (1, 2, 5)}, or it is of the form

given by (2) with m ≥ 2.

We organize this paper as follows. We will recall some properties related to Pell numbers
and Markoff triples that will be useful for the proof of Theorem 1.1 in Section 2. The last
section is devoted to the proof of this theorem.

2. Auxiliary Results

We begin this section by recalling a few important properties of the Pell sequence.
Let α and β be the roots of the characteristic equation x2− 2x− 1 = 0 of the Pell numbers,

where

α = 1 +
√
2 and β = − 1

α
= 1−

√
2.

The well-known Binet formula for Pn is given by the roots α and β as

Pn =
αn − βn

2
√
2

(3)

for all n ≥ 0. Equation (3) also implies that the inequalities

αn−2 ≤ Pn ≤ αn−1 (4)

hold for all positive integers n. Also, from the binary recurrence formula we have, for all
positive integers j and k,

2kPj ≤ Pj+k. (5)

One can prove the above inequalities by induction on n or j and k.
We will use the following result proved in [5] (p. 2, F. Luca and A. Srinivasan, 2018) in the

proof of Theorem 1.1.

Lemma 2.1. If (a, b, c) 6= (1, 1, 1) satisfies equation (1) with a ≤ b ≤ c, then 3ab < b+ c.

3. The Proof of Theorem 1.1

Assume that x = Pi, y = Pj , and z = Pn with i ≤ j ≤ n. We rewrite equation (1) as

z − 3xy = −x2 + y2

z
. (6)

Now, by inserting the values of x, y, and z and using (3) in (6), we get that

αn

2
√
2
− 3αi+j

8
= −

P 2
i + P 2

j

Pn

+
βn

2
√
2
− 3

(

αiβj + αjβi − βi+j
)

8
. (7)

We have
P 2
i + P 2

j

Pn

≤
2P 2

j

Pn

≤ 2α2j

αn
≤ 2αj .
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Since β = −α−1, it follows that
∣

∣

∣

∣

βn

2
√
2

∣

∣

∣

∣

≤ α−j

2
√
2
≤ αj

2
√
2
,

and taking the absolute value of the last term on the right side of (7), we get
∣

∣

∣

∣

∣

3
(

αiβj + αjβi − βi+j
)

8

∣

∣

∣

∣

∣

≤ 3

8

(

2αj + 1
)

≤ 9αj

8
.

Combining the last three inequalities with equation (7), we get that
∣

∣

∣

∣

αn

2
√
2
− 3αi+j

8

∣

∣

∣

∣

≤
(

2 +
1

2
√
2
+

9

8

)

αj < 3.5αj . (8)

Dividing equation (8) by αi+j/2
√
2, we get
∣

∣

∣

∣

αn−i−j − 3

2
√
2

∣

∣

∣

∣

≤ 7
√
2

αi
. (9)

We have

minn∈Z

∣

∣

∣

∣

αn − 3

2
√
2

∣

∣

∣

∣

=

∣

∣

∣

∣

1− 3

2
√
2

∣

∣

∣

∣

> 0.06.

From (9), we get that 0.06 < 7
√
2/αi, giving us i ≤ 6. Below, we record what we have proved

in the following lemma.

Lemma 3.1. If (x, y, z) = (Pi, Pj , Pn) satisfies equation (1) with i ≤ j ≤ n, then i ∈
{0, 1, 2, 3, 4, 5, 6}. Out of these, only P1 = 1, P2 = 2, P3 = 5, and P5 = 29 are Markoff

numbers.

Note that j ≥ i ≥ 1. Let n = j + k. If k = 0, then we have Pn = Pj . Because all three
components of a Markoff triple are mutually coprime ([3, page 28]), we must have Pn = Pj = 1,
which forces Pi = 1 and we have the triple (1, 1, 1). So we may assume that k ≥ 1. If j = 1,
then i = 1 and we have the triple (1, 1, 2). If j = 2, that is Pj = 2, again by the coprimality
condition, we must have Pi = 1, giving the triple (1, 2, 5). Henceforth, we assume that j ≥ 3
and k ≥ 1.

Assume that Pi = 1. We have

1 + P 2
j + P 2

n = 3PjPn,

which gives us
1 + P 2

j = Pn(3Pj − Pn),

and hence, Pn < 3Pj . Combining this with inequality (5), we get

2kPj ≤ Pn < 3Pj .

So k = 1, that is, n = j + 1. In this case, the Markoff equation (1) becomes

1 + P 2
j = Pj+1(3Pj − Pj+1) = Pj+1(Pj − Pj−1). (10)

By the recursive formula for Pj , we have Pj/2 > Pj−1 (as j ≥ 3), which also gives us Pj−Pj−1 >
Pj/2. Similarly, we have Pj+1 > 2Pj + 1. Working on the right side of equation (10) with the
last two inequalities,

1 + P 2
j > (2Pj + 1)Pj/2 = P 2

j + Pj/2 > P 2
j + 1,

which is not true. Hence, Pi = 1 is not possible.
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Next, we assume that Pi = 5. Then, we have

25 + P 2
j + P 2

n = 15PjPn,

or

25 + P 2
j = Pn(15Pj − Pn),

giving us Pn < 15Pj . By Lemma 2.1, we get 15Pj < Pj + Pn, or 14Pj < Pn. Hence,

14Pj < Pn < 15Pj .

By comparing the last inequalities with (5), we have 2kPj < 15Pj as n = j+k. So, k ≤ 3, that
is n ≤ j + 3. As Pj+1 and Pj+2 are both less than 14Pj , we ignore the possibilities k = 1, 2.
Now, suppose k = 3, so n = j + 3. By (1), we have

25 + P 2
j = Pj+3(15Pj − Pj+3) = (5Pj+1 + 2Pj)(3Pj − 5Pj−1). (11)

As Pj+1 > 2Pj + 1 (j ≥ 3), the first factor in the right side of (11) satisfies

5Pj+1 + 2Pj > 12Pj + 5. (12)

Similarly, using Pj > 2Pj−1, we have (5/2)Pj > 5Pj−1. The second factor in the right side of
equation (11) gives us

3Pj − 5Pj−1 > 3Pj − (5/2)Pj = Pj/2. (13)

Now, combining (11), (12), and (13), we get

25 + P 2
j > (12Pj + 5)Pj/2 = 6P 2

j + 5Pj/2,

or 25 > 5P 2
j + 5Pj/2, which is not true for j ≥ 3. Therefore, Pi = 5 is not possible.

In the case of Pi = 29, similar to the above, we get

86Pj < Pn < 87Pj .

However, the last inequality does not contain a Pell number as Pj+5 < 86Pj , and Pj+6 > 87Pj .
Therefore, we are left with the case of Pi = 2, leading us to the following lemma.

Lemma 3.2. If (x, y, z) = (Pi, Pj , Pn) satisfies equation (1) with i ≤ j ≤ n, then either

(x, y, z) ∈ {(1, 1, 1), (1, 1, 2), (1, 2, 5)}, or Pi = 2.

In the case of Pi = 2, we have

4 + P 2
j + P 2

n = 6PjPn,

giving us Pn < 6Pj . In addition, by Lemma 2.1, we have 6Pj < Pj + Pn. Hence, we obtain

5Pj < Pn < 6Pj . (14)

Recall (as explained in the paragraph below Lemma 3.1), that we may assume that j ≥ 3 and
k ≥ 1. From the inequalities (5) and (14), we also obtain k ≤ 2, that is, n− j ≤ 2. So, we have
two possible cases: n = j + 1 or n = j + 2. But, if n = j + 1, then Pj+1 = 2Pj + Pj−1 < 5Pj .
This means, Pj+1 does not lie in the above interval (5Pj , 6Pj). Hence, we must have n = j+2.
In this case, we have

4 + P 2
n−2 + P 2

n = 6Pn−2Pn.

To complete the proof of Theorem 1.1, it remains to show that n is odd. This follows
because if n were even, then Pn is even, which contradicts that the components of any Markoff
triple are mutually coprime ([3, page 28]).
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[4] G. Frobenius, Über die Markoffschen Zahlen, Akad. Wiss. Sitzungaber, (1913), 458–493.
[5] F. Luca and A. Srinivasan, Markov equation with Fibonacci components, The Fibonacci Quarterly, 56.2

(2018), 126–129.
[6] A. A. Markoff, Sur les formes binaires indéfinies, Math. Ann., 15 (1879), 381–409.
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