

COURSE GUIDE

Course Data	
Name	Circular economy and eco-industry
Code	DOI-OPT-439
Degree	Grado en Ingeniería Electromecánica, Grado en Ingenieríe Telemática
Year	4
Semester	20
ECTS Credits	3 ECTS
Type	Optative
Department	Industrial Engineering
Area	Economics and Business Administration

Information of Professors		
Professor		
Name	Adela Conchado	
Department	Instituto de Investigación Tecnológica (IIT)	
Area		
e-mail	adela.conchado@comillas.edu	
Tutoring hours	Previous appointment by e-mail	

SPECIFIC INFORMATION OF THE COURSE

Course context

Contribution to the professional profile of the degree

This course introduces the student to the basic concepts of the circular economy and eco-industry, and provides an opportunity for hands-on learning on these topics. Classes will combine theoretical pills, case studies, tools and techniques for idea generation and business model design, and team work on a project.

The team project will indeed be the cornerstone of the course: students will work on innovative solutions for the circular economy taking into account technical considerations, business model design, and supply chain design.

During the course students will learn how to apply the principles of the circular economy to real cases and develop skills such as creativity, systems thinking and team-work.

Pre-requirements

There are no particular prerequisites to take this course.

CONTENTS

Contents

THEORETICAL BACKGROUND

1: Facts and trends

- 1.1. Resources & environmental challenges
- 1.2. Global trends
- 1.3. Business value in "closing the loops"?

2. Influencing schools of thought

- 2.1. Craddle to craddle
- 2.2. Biomimicry
- 2.3. Industrial ecology

3. Framework for analysis

- 3.1. The butterfly diagram
- 3.2. Four design models

CASE STUDIES

- Interface inc.
- Black bear carbon
- Precious plastic... & many more

TOOLS & TECHNIQUES

- Design thinking
- Idea generation and selection
- Business model canvas
- Eco-design

Competences – Learning Results

Competences

Basic Competences

- CG3. Knowledge of basic and technological subjects, which enables students to learn new methods and theories, and gives them versatility to adapt to new environments.
- CG4. Ability to solve problems with initiative, decision, creativity, and critical reasoning; and to communicate and transfer knowledge, abilities and skills, understanding the ethical and professional responsibility of the activity.
- CG7. Ability to analyze and assess the social and environmental impact of technical solutions.
- CG9. Management and planning ability in business environments, or in other institutions or organizations.

CG10. Ability to work in a multilingual, multidisciplinary environment.

CFB6. Appropriate knowledge of the concept of the firm, its institutional and legal setting. Business management.

Specific Competences

CRI9. Basic knowledge on production and manufacturing systems.

CRI10. Basic knowledge and application of environmental and sustainability technologies.

CRI11. Business management applied knowledge.

Learning Results

At the end of the course the student must have achieved the following outcomes:

RA1. Understand the context, the challenges and the opportunities of the circular economy

RA2. Get insights and inspiration from real examples of the circular economy

RA3. Propose a business model for the circular economy considering technical, economic and environmental aspects

RA4. Apply tools for business model design

RA5. Engage in collaborative dynamics for team work

TEACHING METHODOLOGY

Classroom Methodology: Activities

- Theoretical pills: the instructor will briefly introduce the background and the challenges to be dealt with.
- 2. **Case studies**: key concepts will be illustrated using real-life examples and case studies. Case studies will also be used as a source of inspiration for students' projects.
- Tools & techniques: the instructor will introduce some key tools and techniques from design
 thinking and entrepreneurship that can be useful for developing the projects: brainstorming, idea
 selection, business model design, etc.
- 4. **Hands-on learning:** we will have some guided dynamics in class to encourage students participation and engagement, and time for team work on the projects applying the tools and techniques explained in class.

Non-Classroom Methodology: Activities

- Individual research: students will be encouraged to do research on their own, both to deepen
 the understanding of the concepts and methods discussed in class and to discover new
 resources, related concepts and inspiration for their projects.
- 6. Team project: students will have to work on their projects out of classroom. Team project is the cornerstone of this course: it is here where students should demonstrate their understanding of concepts and their ability to propose innovative solutions, in a process of co-creation and colearning. The instructor will guide this process and be available for addressing the questions of students.

EVALUATION ACTIVITIES AND CRITERIA

Evaluation activities	Evaluation Criteria	Weight Percentage
Quizzes on key concepts	- Understanding of concepts	10%
Active participation in class	Questions and comments in classActive engagement in the proposed activities	20%
Project-related assignments	Meeting the assignmentOriginal and critical analysis	20%
Final project	Degree to which students apply what they have learned to the analysis of a real situation	50%
	- Degree of innovation of the proposed solution	
	Degree of technical & economic feasibility of the proposed solution	
	Ability to present and communicate the solution	

Qualification Criteria

Grading will be based on:

- [10%] Quizzes on key concepts
- [20%] Participation in class
- [20%] Project-related assignments
- [50%] Final project

The following conditions must be accomplished to pass the course:

- A minimum overall grade of at least 5 over 10.
- A minimum grade in the final project of 5 over 10.

Extraordinary session

- [50%] Extraordinary exam
- [50%] Final project

WORK PLAN AND SCHEDULE

SUMMARY OF WORKING HOURS OF THE STUDENT						
CLASSROOM HOURS						
Lectures	Problem solving					
10	20					
NON-CLASSROOM HOURS						
Autonomous work – research	Team work - project					
20	40					
		ECTS CRÉDITS:	3 (90 hours)			

BIBLIOGRAPHY AND RESOURCES

Basic References

Reference books, articles & videos

Stahel, W. R. (2016). *The circular economy*. Nature, vol. 531, nr. 7595, comment. [Available from http://www.nature.com/news/the-circular-economy-1.19594]

Ellen MacArthur Foundation (2011). *Re-thinking progress: The Circular economy*. [Available from https://www.youtube.com/watch?v=zCRKvDyyHml]

Ellen MacArthur Foundation (2013). Towards The Circular Economy Vol. 1: An Economic And Business Rationale For An Accelerated Transition.

[Available from https://www.ellenmacarthurfoundation.org/assets/downloads/publications/Ellen-MacArthur-Foundation-Towards-the-Circular-Economy-vol.1.pdf]

Koppius, O., Ö.r Özdemir-Akyildirim, and E. van der Laan (2014), *Business Value from Closed-Loop Supply Chains*. Int. J Sup. Chain. Mgt, vol. 3, nr. 4, p 107-120. [Available from http://ojs.excelingtech.co.uk/index.php/IJSCM/article/view/1006]

Nasr, N. and M. Thurston (2006). *Remanufacturing: A Key Enabler to Sustainable Product Systems*. Proceedings of the 13th CIRP International Conference on Life Cycle Engineering, p 15-18.

[Available from http://www.mech.kuleuven.be/lce2006/key4.pdf]

Ellen MacArthur Foundation, World Economic Forum and McKinsey & Company (2016). *The New Plastics Economy: Rethinking the Future of Plastics*.

[Available from https://www.weforum.org/reports/the-new-plastics-economy-rethinking-the-future-of-plastics/]

Graedel, T.E., E.M. Harper, N.T. Nassar, and B. Reck (2013). *On the materials basis of modern society*. PNAS, pp.1–6.

[Available from http://www.pnas.org/content/112/20/6295.full.pdf]

SwitchMed (2014) Create your Green Business! The Handbook for Green Entrepreneurs in the Mediterranean

[Available from $\underline{\text{https://www.switchmed.eu/en/corners/start-up/training-materials}} \text{]}$

Online resources

Ellen MacArthur Foundation https://www.ellenmacarthurfoundation.org/

Additional References

Online resources

A list of online resources will be provided at the beginning of the course as the basis for students own research.