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Abstract—. The ability to analyze the market performance, set 

proper objectives and to anticipate and analyze the market 

response to potential new mechanisms is essential for regulators. 

In this context, simulation models represent powerful tools to 

assist the regulator in his duties. 

The objective of this paper is to illustrate and deal with the 

proper definition of metrics to evaluate whether the market is 

reaching efficient outcomes. To do so, we first extend the classic 

formulation of the classic Probabilistic Production Cost models 

(PPC) by proposing a novel algorithm that allows easily and 

efficiently to introduce demand elasticity and then on this basis 

we illustrate how traditional reliability measures are not suitable 

metrics to be used when a non-negligible part of the demand is 

elastic. 

 

Index Terms— Electricity markets, Security of electricity 

supply, Probabilistic Production Cost models, demand elasticity 

I. INTRODUCTION 

he ability to analyze the electricity market performance, in 

order to set proper objectives and to anticipate and 

analyze the market response to potential new mechanisms is 

essential for regulators. In this context, simulation models 

represent powerful tools to assist them in their duties. 

In particular, the first necessary step in the complex task of 

achieving an optimal level of security of generation supply is 

to detect whether or not (and assess to what extent) there is a 

problem. In order to carry out such an assessment it is 

necessary to define metrics to evaluate the electric power 

system and market performance. These metrics, when referred 

to the firmness and adequacy dimensions, have been usually 

expressed in terms of “pure” reliability (for instance, based on 

the Lost of Load Probability (LOLP), Lost of Load 

Expectancy (LOLE) and Expected Non-Served Energy 

(ENSE) values), assigning a secondary role to the actual cost 

of enjoying the level required  

One of the simulation tools which has been traditionally 

used to carry out electric power generation system reliability 

assessments is the so-called Probabilistic Production Cost 

(PPC) model. 

In this paper, our purpose is to contribute to the 

development of this approach: 

• We first face one of the challenges in this context: we 

propose to use an algorithm that allows extending the classic 

PPC models design to explicitly represent demand elasticity. 

The methodology proposed is a simple, robust, closed and 

consistent solution which clears up the task without 

complicating the original approach. 

• Then, this redesign will serve us to illustrate how, in the 

presence of demand elasticity, the aforementioned traditional 

reliability measures are no longer a consistent proxy to 

estimate the system performance, since as we discuss, they 

leave aside relevant information. Indeed, in a fully elastic 

demand context, the LOLP or the NSE value as traditionally 

defined, would take a zero value, no matter which the 

generation availability would be. 

Next in the remainder of this introduction, we describe the 

basic PPC model methodology. Then in section II the 

algorithm to model demand elasticity is developed. Finally, in 

section III, we discuss the reasons that lead us to state that 

reliability measures are not suitable metrics in a context in 

which demand elasticity is significant. This will lead to the 

discussion on the ways to better define a proper metric to 

estimate to what extent the market outcomes are adequate. 

A. Probabilistic production cost models: a classic tool to 

measure the reliability of a power system 

Probabilistic Production Cost models (PPC models) have 

been traditionally used as a support tool in the centralized 

long-term decision-making process in electric power systems. 

These models are characterized for centering all the 

computational efforts in representing the random nature of 

some of the most relevant variables involved in the long-term 

planning problem (typically the demand values and the forced 

outage rates of each generating unit). They allow for reliability 

assessments of real-size electric power systems with little 

computational effort. However, this is achieved at the cost of 

making strong simplifications regarding short- and medium-

term operational and planning constraints of the generation 

plants.  

This approach has attracted considerable efforts from 

academia since the late 60’s. The basic model corresponds to 

its application to a non-constrained thermal system; see the 

pioneering works of (Baleriaux et al, 1967) and (Booth, 1972).  

The major outputs that were first calculated using these 

models were: 

• Reliability measures: the loss of load probability, the loss 
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of load expectancy, the expected value of the non served 

energy, etc. 

• Expected production schedules, that is, the expected 

energy generated by each generating unit. 

• Expected production costs. 

Although for the purposes of the present chapter, this basic 

approach will serve as the starting point to illustrate the effect 

of demand elasticity, is it important to note that there are 

dozens of papers where several developments have been 

introduced to the classic approach. For instance, there are 

remarkable works focused on introducing simplified 

alternatives to include hydraulic units (Finger, 1978), (Ramos 

et al., 1991) or (Malik, 2004), storage units (Conejo, 1987) or 

(Invernizzi et al., 1988), time dependent units (Conejo et al., 

1985), etc.  

One of the most popular extensions to the basic model is the 

so-called frequency and duration method. This extension 

introduces information on frequency and durations of the 

different states (demand interval, outage rates, etc.). This 

allows calculating additional information, as for instance the 

mean time existing between two consecutive events (typically 

scarcities). There are different approaches to introduce this 

frequency and duration data, see for instance (Ayoub & Patton, 

1976) or (Finger, 1979). 

There are also different approaches to compute some 

additional results, for instance in (Leite da Silva et al., 1988) 

or in (Lee et al., 1990) a means to calculate the underlying 

variance of the results is provided. A description on how to 

estimate derivatives (e.g. marginal values), can be found in 

(Ramos et al, 1994) and also in (Maceira & Pereira, 1996). 

These PPC models have been applied to determine the 

marginal contribution of each generating unit to the regulator’s 

reliability objectives. One of the first works in this respect is 

the one developed in (Garver, 1966). A more recent work 

trying to determine this contribution to reliability objectives 

(in this case, the contribution of wind energy) by means of a 

PPC model can be found in (Kahn, 2004). This sort of 

calculations have served for instance to set the remuneration 

for each generating unit in some real systems in which a 

capacity payment mechanism had been implemented (this was 

for example the case of the former Chilean mechanism or the 

Panamanian case
1
). 

However, in the literature the way to address electricity 

demand elasticity in PPC models is still a pending issue, since 

no close solutions to deal with this issue can be found. Inon & 

Hobbs (2004) approach the problem by resorting to a stylized 

model in which they represent demand elasticity in a very 

simplified way by considering two different realizations of the 

demand curve and comparing the impact on the expected 

values of LOLP in the long run. 

Malik (2001) aimed at representing the impact of demand-

 
1 The Centro Nacional de Despacho (CND) of the Empresa de 

Transmisión Eléctrica S.A. (ETESA) in Panama uses the FLOP model (see 

www.iit.upcomillas.es/aramos/flop.htm), a PPC model to calculate the so-

called Firm Capacity according to which generating plants are paid in the 

context of the capacity mechanism in force. 

side programs, but the chief objective of his approach was to 

introduce and assess the effect of load shifting programs, 

which are demand side-management programs that seek to 

move the load consumption from peak to off-peak hours. This 

is carried out by breaking down the load shifting operation into 

two operations that can be separately modeled within the PPC 

context by means of limited energy generators. This way the 

model separates peak clipping (reduction of the consumption 

on the peak) and valley filling (increasing it on off-peak 

hours), and models the first operation as an equivalent hydro 

unit and the second as the process of loading a pump storage 

unit (for more details, see any of the references provided 

before on how to perform such operations). However, in this 

model, the energy to be shifted from peak load to valley load is 

introduced as an exogenous parameter, thus, in rigor no 

explicit response to prices is modeled. 

As stated, our objective is not to model load shifting 

programs, but introducing explicitly demand response to 

prices. Here we propose a methodology that solves the 

problem in a simple and compact way. In order to ease and 

clarify the description, we will present the proposed new 

formulation on the basis of the simplest PPC model design 

(representing just non-energy limited thermal generating 

plants, modeled through their maximum output and their 

forced outage rate). As it is latter shown, thanks to the 

consistency and straightforwardness of the algorithm 

proposed, the methodology allows further complication of the 

system representation on exactly the same basis as the 

traditional approach itself. 

B. Description of the Basic PPC Model 

The basic PPC model is built upon the assumption that all 

generation plants can produce at full capacity at any time 

unless when they are out-of-order due to a forced outage. 

Hourly demand is considered to be inelastic and stochastic. 

These models were conceived to check a basic reliability 

condition: whenever the system’s (inelastic) demand exceeds 

the available generating capacity a loss of load takes place. 

The probability of such an event happening (the Loss of Load 

Probability or LOLP) and the corresponding expected non-

served energy (ENSE), have been the main reliability results 

obtained from these PPC models. 

In such a context, the loss of load probability distribution 

can be evaluated by means of the distribution of the difference 

between two random variables: the demand and the total 

generation available
2
. This difference is usually evaluated in a 

generic random hour. Longer-term results (e.g. the ENSE in a 

whole year) are calculated by directly extending the results 

obtained when computing this generic hour. 

If all variables (demand and failure rates in the most simple 

case) are statistically independent, then the computation of the 

former difference considerably simplifies, since the sum (or 

difference) of two independent random variables is equal to 

 
2 If only loss of load is being evaluated, just positive values of such 

difference would be of interest. 
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the convolution of their probability distribution functions.  

We next present how the demand and the thermal generating 

units are modeled and the order followed in the convolution 

operation to simulate the generating units’ scheduling. Then 

we explain how to interpret the results obtained when 

performing this operation. 

1) Hourly load probability distribution 

The probability curve for the electricity demand in a generic 

random hour should ideally be calculated by means of 

probabilistic forecasting techniques. However, it is commonly 

accepted as a well-suited proxy to take a large set of historical 

data and then assign the same probability to each one of the 

historical realizations of the demand, that is, each realization is 

supposed to have a probability of 1/n , being n  the number of 

hourly data considered. This way, the percent of time that a 

given load level (or a greater than a given load level) occurs in 

the set of data considered will be interpreted as a probability. 

Thus, at any given time (hour) there will be a probability of 1 

that the load will be higher than the minimum load being 

considered. 

Under the latter assumption, and as illustrated in ¡Error! No 

se encuentra el origen de la referencia., we can calculate the 

Load Complementary Distribution Function (LCDF) just by 

rotating the axes of the load duration curve corresponding to 

the historical horizon considered, and then normalizing the 

time period so that the vertical axis gives the percent of time 

(the probability) that a certain value of demand level is 

exceeded. This is the reason why the hourly Load 

Complementary Distribution Function (LCDF) is sometimes 

referred to as the Inverted Load Duration Curve (ILDC) or just 

Load Duration Curve (LDC). 
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Fig. 1. Chronologic demand, corresponding load duration curve and estimated 

load complementary distribution function. 

However, it is important to bear in mind that the LDCF 

curve does not represent anymore a demand monotone, but a 

complementary distribution function of the demand in a 

generic hour.  

2) Thermal plants modeling 

Each generator’s available capacity is modeled as an 

independent discrete random variable. The simplest 

representation would be the two-state model, where the plant 

either is able to produce at maximum capacity (probability p ) 

or it cannot produce because of a forced outage (probability 

1q p= − ). 

3) Dispatch criteria: the merit order 

When operating constraints are not considered, the dispatch 

that results in the minimum operating cost is the one in which 

generators are dispatched in order of increasing marginal cost
3
. 

This ranking of the generators is usually known as the merit 

order or the loading order. This way, the convolution 

operation is performed following this merit order. 

4) The equivalent load and the results provided by the 

basic model 

As described in (Booth, 1972), let us introduce the concept 

of the “equivalent load after dispatching the first n  units”, 

denoted by 
n

EqL . This 
n

EqL  represents the distribution 

function of the non-served load after having dispatched the 

first n  generating groups in the merit order. This equivalent 

load can be computed by carrying out the convolution of the 

variables involved, as expressed next: 

0,1,2, 3,...,       
n n

n

EqL L C n= − =∑  (1) 

The first equivalent curve (n =0) represents the 

complementary distribution function of the load consumption 

(L ) of the system, when no generator has been dispatched yet. 

The successive equivalent loads represent the load yet to be 

covered after dispatching each generator in the system. The 

last curve, 
N

EqL , represents the complementary distribution 

function of the demand left uncovered once all the system 

generators have been dispatched. ¡Error! No se encuentra el 

origen de la referencia. illustrates this procedure, where the 

successive equivalent loads are calculated as a result of the 

successive probabilistic dispatch of the units. 
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Fig. 2. Equivalent load curve 

The last equivalent load curve represents the distribution 

function of the non-served energy. From this last equivalent 

curve we can extract the two following valuable pieces of 

information (see ¡Error! No se encuentra el origen de la 

referencia.): 

• The loss of load probability (LOLP) is the point where 

this last curve intercepts the y -axis (probability). It represents 

 
3 In practice, based on heuristic algorithms, this merit order can be 

modified in order to consider approximately some operating constraints (high 

start-up, on-line or shutdown costs, network transmission constraints, etc.). 
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the probability that there will still be non-served demand left 

to be satisfied after all the generators have been dispatched. 

• The non-served energy expectation (ENSE) is the area 

beneath this last curve. It represents the expected amount of 

energy in MWh that is left unsupplied (in the generic random 

hour being represented) in the system after all the generators 

have been dispatched. 
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Fig. 3. The last equivalent curve: the non-served energy distribution function 

II. INTRODUCING DEMAND ELASTICITY IN PPC MODELS 

To introduce explicitly demand response to prices in PPC 

models we opt for modeling elastic demand bids by means of a 

set of equivalent thermal units, which as we show next, allows 

us to solve one of the pending issues in the literature regarding 

PPC modeling, introducing demand price elasticity in an 

extremely simple and robust way
4
. Our proposal allows 

clearing up the task without complicating the original 

approach. 

A. Redefining the merit order: modeling demand offer bids 

as equivalent generators 

For the sake of clarity we have opted for illustrating the 

basic idea of the algorithm proposed making use of both a 

deterministic demand and a deterministic set of the thermal 

units being available to produce. Once presented the main 

idea, it will be straightforward to introduce an analogous 

reasoning in the PPC methodology. 

Let us consider that demand marginal utility (the demand 

offer curve) is given by the red step-wise curve presented in 

Figure 1. The available generators’ capacities (MW) and their 

corresponding marginal costs (€/MWh) have been represented 

as an aggregated step-wise curve (dotted in blue) in the same 

chart. 

 
4 This solution has been previously used in other modelling approaches, as 

for instance in the context of a long-term deterministic simulation tool 

representing market agents’ strategic behavior, see (Batlle & Barquín, 2005), 

as well as in former market equilibrium models designed by Prof. Barquín. 
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Figure 1. Demand and generation offer curves 

Note that in the demand representation there are two 

differentiated parts: 

The inelastic load consumption, denoted here by 
In
L . The 

associated offer price representing this portion of the 

consumption is assumed to be much higher than the variable 

cost of any of the generators. This price should ideally 

represent the value of loss of load (VOLL), also known as the 

Non-Served Energy Cost (NSEC). 

The offers corresponding to elastic demand consumption; 

each step of the elastic fragment has been denoted by 
i
L , 

where i  represents the elastic offer index, offered at a price, 

L
ip . 

The algorithm proposed consists in solving an equivalent 

problem (see Figure 2), in which the elastic demand is 

substituted by: 

A new fictitious inelastic demand which is equal to the sum 

of quantities of all the consumption of the original demand 

curve (i.e. including both the inelastic and elastic 

consumption). This new fictitious inelastic demand, has been 

denoted in Figure 2 by  F

InL .  

A set of fictitious generators, each one representing an offer 

step from the original demand curve. This way, each Li , 

becomes a fictitious generator F

Li
G  The corresponding quantity 

(MWh) and price (€/MWh) are those defining the original 

demand offer. 
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Figure 2. The equivalent model formulation 

In the figure it can also be checked how the market outcome 
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remains unchanged, since the resulting price, and the 

committed generators are exactly the same in both cases.  

Note that in the equivalent problem, the production of the 

fictitious generators corresponds to those blocks of the demand 

which were not committed, that is, it corresponds to the energy 

that was not purchased because the offer price was below the 

resulting market price
5
. 

B. The PPC model with an elastic demand 

The aforementioned methodology allows including demand 

elasticity in the PPC framework by performing well-known 

operations (the dispatch of thermal units). As described, the 

algorithm consists in solving an equivalent problem, where the 

elastic demand is substituted by an inelastic demand and a set 

of fictitious thermal units. 

In the following, for the sake of simplicity we consider a 

unitary value for all the availability rates of the fictitious 

thermal generators. However, note that by means of the 

availability failure rate of the fictitious thermal units we can 

represent stochastic demand elasticity (exactly in the same way 

that the thermal units are modeled). 

As it has just been pointed out, the production of the 

fictitious generators corresponds to demand consumption not 

committed at the corresponding price. This production can be 

calculated by means of the resulting equivalent load before 

dispatching each one of the fictitious unit.  

In Figure 3 it is shown how this production can be 

calculated using the equivalent load after dispatching the 

previous units in the merit order (i.e. 1nEqL
−

), and the 

capacity of the fictitious generator. Assuming that the failure 

rate is zero, the dotted line (in red) represents the 

complementary distribution function of the production of the 

fictitious unit. The dahed area (in each of the charts included 

in the figure), represents the expected production (i.e. the 

expected non-purchased energy at that price). In the figures it 

has also been represented the probability of the corresponding 

demand block not being committed, what will be termed here 

as non-purchased energy probability (NPEP)
6
. 
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Figure 3. Expected production of the fictitious generator 

 
5 In other words, this is a way to represent that when the market price rises 

up to the level of an elastic segment of demand, this energy is retired. This is 

modeled by artificially committing a virtual generator that covers with its 

fictitious production this “hole”. 
6 Note that this non-purchased energy probability is nothing but what is 

usually known as the 
1n

LOLP
−

, that is, the resulting LOLP after having 

dispatched al the preceding units in the merit order.  

C. Numerical case example 

In order to better illustrate the procedure, we resort to a case 

example. In Figure 4 we have represented the thermal plants 

that are considered in the analysis as well as its characteristics 

(installed capacity, availability and variable costs). 
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Figure 4. Thermal plants considered in the case study 

Next, in Figure 5 we present the Load Complementary 

Distribution Function as well as the demand elasticity
7
. The 

minimum demand value (including both the inelastic and 

elastic consumption) is equal to 18350 MWh, and the 

maximum 36580 MWh. 
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Figure 5. LCDF and demand elasticity function 

We introduce the demand elastic offers in the model by 

means of the fictitious generators. The resulting generating 

mix considered, including these fictitious units (in red), have 

been represented in Figure 6. 
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Figure 6. The equivalent thermal unit problem 

 
7 Note that in order to simplify the algorithm understanding, implicitly we 

have assumed that demand elasticity remains unchanged during all the yearly 

blocks, i.e. roughly speaking it is the same in the off-peak hours than in the 

peak ones. 
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1) Results 

In Figure 7 it has been represented the successive results 

obtained from dispatching probabilistically each one of 

generators considered in the equivalent problem. The areas 

dashed in red correspond to the dispatch of the fictitious 

generators. 
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Figure 7. Case example results 

Following the procedure described in Figure 3, we can 

calculate the probability that each one of the offers does not 

result accepted for falling below the market price. We have 

termed this probability associated to each offer as the Non-

Purchased Energy Probability (NPEP). It is also possible to 

calculate the Expected Non-Purchased Energy (ENPE) 

corresponding to each one of the demand offers. 

In the following table we have gathered these results. 

Elastic offers Results 

Quantity Price NPEP ENPE 

[MWh] [€/MWh] [p.u.] [MWh] 

2000 12 1.00 2000 

4000 31 0.83 2718 

5000 62 0.10 102 

 

This way, the first block is never dispatched, since the 

NPEP value is 1, and the expected value of the non purchased 

energy (ENPE) is equal the quantity being offered. On the 

other extreme, the block offered at a highest price, is not 

dispatched 10% of the time, and the expected energy not being 

committed is 102 MWh. 

The classic reliability measures take the following values: 

LOLP 1,8E-04 

ENSE 0,2325 

III. NON-SERVED ENERGY AND NON-PURCHASED ENERGY 

In real markets, the regulator is particularly concerned about 

guaranteeing the electricity supply for the inelastic demand. 

This happens for several reasons, among which we can 

highlight the following: 

the inelastic consumption represents a large percentage of 

overall energy consumption, 

the underlying marginal demand utility (ideally, the 

demand’s offer price) is considered to be much higher than the 

one corresponding to the elastic demand, 

In Figure 8 we have a real example of both the system 

demand and generator curves corresponding to the Spanish 

spot market. It can be clearly observed the two types of 

consumption already mentioned (i.e. the inelastic  

InL  and the 

elastic consumption  

El
L )

8
.  
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Figure 8. Demand and offer curves in the Spanish spot market 

For the three reasons just mentioned, traditionally the 

regulator has defined its security of supply objectives in terms 

of the system capability to supply the inelastic consumption. 

This capability to provide this “critical” fraction of the demand 

is what is usually analyzed by the different so-called reliability 

measures. This way, the LOLP represents the probability of 

not being able to supply this inelastic consumption and the 

NSE the non-served energy corresponding to this inelastic 

consumption. 

Therefore, the non-served consumption corresponding to the 

elastic demand blocks not being committed (which will be 

denoted in the following as non-purchased energy or NPE), 

does not intervene in the reliability measures. 

To illustrate this, we have taken the previous example 

representing a tighter generation availability scenario (just 

three thermal groups are now available). In this new case we 

have represented the non-served energy (NSE) and the non-

purchased energy (NPE) in both the real market situation and 

in the equivalent problem formulation. 

 
8 As pointed out in ¡Error! No se encuentra el origen de la referencia., 

section ¡Error! No se encuentra el origen de la referencia., in many 

systems the regulator has imposed price limits avoiding the system to reflect 

the true marginal demand utility. This is the case in Spain, where a limit of 

180€/MWh has been in force since the electricity market was introduced. 



 7

Q  (MWh)

P
  

(€
/M

W
h
)

Demand's offer

Generator's bid

1L
2L

3L

4L

In
L

1

F

L
G

1 2 3 4In
L L L L L+ + + +

1 2 3 4In
L L L L L+ + + +

Original problem Equivalent problem

Q  (MWh)

 F

In
L

2

F

L
G

3

F

L
G

NSE NSE

4

F

L
G

NPE

NPE

 

Figure 9. The Non Served Energy (NSE) and the Non Purchased Energy 

(NPE) 

A. Reliability measures in the presence of demand elasticity 

We next show the fact that, when assessing the system 

performance by means of the reliability measures, since we are 

just taking into account the inelastic consumption, we are 

leaving aside relevant information. This has been illustrated in 

the following figures, which serve us as the basis to give rise to 

the discussion about the weakness of these reliability measures 

in the presence of an elastic demand.  

Three different scenarios of demand have been considered: 

a fully inelastic scenario, a partially elastic scenario and a fully 

elastic scenario. Each of these demand scenarios have been 

confronted with three deterministic scenarios of generation 

availability, one presenting a sufficient reserve margin, one in 

which several groups are unavailable and also one representing 

a severe scarcity (just a few groups are available). This is what 

we can observe: 

In the case of the inelastic demand, see Figure 10, there are 

two generation availability scenarios which lead to non-served 

energy. 
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Figure 10. Fully inelastic demand scenario 

In the case of the partial elastic demand, see Figure 11, there 

is only non-served energy in the scenario presenting the 

tightest reserve margin. 

123

3NSE

VOLL ~ ∞

 

Figure 11. Partially elastic demand scenario 

In the case with a fully elastic demand, see Figure 12, 

resorting to the classic definition of the aforementioned 

reliability measures, the non-served energy is equal to zero. 

VOLL ~ ∞

123

 

Figure 12. Fully elastic demand scenario 

Does this mean that in a context where demand is fully 

elastic, reliability is not longer a problem? Resorting to the 

definition provided previously the answer is that effectively, 

reliability as classically defined is not longer a problem. 

However, this does not mean that security of supply as 

defined in the present work is not longer a problem. Note that 

in this fully elastic demand case, a permanent scenario of 

severe scarcity will clearly be a problem from the regulator 

perspective. As previously discussed in ¡Error! No se 

encuentra el origen de la referencia., the objective of the 

regulator is to maximize the net social benefit, and this implies 

evaluating how far the outcomes provided by the market are 

from an ideal benchmark (the most efficient investments, 

resource management, scheduling, etc.). 

Indeed, comparing the market results with a benchmark is 

exactly what is done when the regulator seeks to achieve a 

reliability standard (like the one day in ten years). These 

standards are supposed to represent the optimal benchmark, 

and this benchmark is supposed to take into account 

investment costs, the value of loss of load, etc. 

B. The metric to evaluate market performance 

In order to take into account the elastic consumption in the 

performance measure, we propose to evaluate the distribution 

function of the total value of what we have termed the Non-

Purchased Energy.  

This Non-Purchased Energy Distribution Function would 

have to be compared with that of resulting from the 

benchmark. This comparison would provide a more precise 

idea of how well the market is performing its “job” than the 
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mere reliability criteria. The comparison can be performed in 

terms of the expected value, the VaR, the CVaR, or in general 

in terms of any measure of a distribution function. In Figure 13 

in has been illustrated how this comparison could be 

performed in a generic case (the measure represented in the 

figure is the CVaR). 

Valueof the total non-purchasedenergy(€)

95CVaR

Valueof the total non-purchasedenergy(€)

Benchmark

Real market outcome

95CVaR

95VaR

95VaR

 

Figure 13. Measuring the market performance comparing with the benchmark 

solution 

Note that the LOLP would no longer make sense in the fully 

elastic demand scenario. In this new context it can rather be 

calculated the probability of not supplying a certain demand 

block. 

C. Numerical case example 

The expected value
9
 of the previous case example can be 

computed taking into account for each offer, the expected non-

purchased energy and the corresponding price (we have 

considered a value of loss of load (VOLL) equal to 

10000 €/MWh). 

The expected value of the total non-purchased energy 

(ENPE): 

 

· ·

0,2325 10000 2000 12 2718 31 102 62  116907 €

L
i i

i

ENSEVOLL ENPE p+ =

= ⋅ + ⋅ + ⋅ + ⋅ =

∑

 

This value should be compared with that of resulting from 

the benchmark scenario. 

IV. CONCLUSION 

We have developed the Probabilistic Production Cost (PPC) 

model approach by extending the classic formulation on the 

basis a novel algorithm that allows introducing demand 

elasticity in a simple and closed way. 

Then, we have taken advantage of this model formulation to 

 
9 In our case example, the distribution function of the non-purchased 

energy value could also be easily computed taking into account that if any 

energy offer is not committed, then any energy offer presenting a lower price 

will also be left uncommitted. This is true since we are considering that 

demand elastic offers have a failure rate equal to zero. 

show how the traditional reliability measures, such as the 

LOLP or the ENSE, as a measure to assess the level of security 

of supply should be reconsidered in the presence of significant 

demand elasticity. This has led us to propose a better way to 

define a proper metric to estimate if the market results comply 

with the regulator’s standards. 
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