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A doubly adaptive algorithm for edge detection in 3D images

Sagrario Lantarón · M. Dolores López · Javier
Rodrigo

Abstract This paper proposes a new algorithm (DA3DED) for edge detection in 3D images.
DA3DED is doubly adaptive because it is based on the adaptive algorithm EDAS-1 for
detecting edges in functions of one variable and a second adaptive procedure based on the
concept of projective complexity of a 3D image. DA3DED has been tested on 3D images
that modelize real problems (composites and fractures). It has been much faster than the 1D
edge detection algorithm for 3D images derived from EDAS-1.
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1 Introduction

Three dimensional imaging is useful in many fields such as medicine and materials science.
3D medical imaging models organs and internal structures of the human body. These models
are important in image guided surgery, assessment of the quality of bones, diagnostics, etc;
see, for example, [1–3]. New materials (composites, foams, etc.) have a complex geometric
structure. 3D images of materials provide data such as the 3D connectivity of a structure,
distribution of particles, fibre orientation, etc. These data can be used in simulations to com-
pute macroscopic material properties. They constitute the basis of virtual material design
[4].

Due to its technological importance, many procedures have been proposed to determine
3D edges (interfaces). Below, we give a (non-exhaustive) classification:

– Direct Methods. The aim of these methods is to determine the edges of a determined
function.
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– 1D edge detection methods (1D3DED). These procedures can be extended to detect
the size and position of discontinuities of a multi-dimensional function by holding
all but one dimension fixed and determining the edges as a function of the fixed
coordinates. A practical application of this method is described in [5,6].

– Spatial difference filters [7]. These methods are used for detecting edges in digital
3D images. An image is a discretely defined function. Its domain is a set of nodes
in a regular grid. The local function of this type of filters contains the calculation
of the difference between density values of an input image. Most 3D filters can be
synthesized from 2D filters. 3D difference filters were first reported in [8]. In some
cases the computation cost of these methods may become excessive. A subvoxel
edge detector based on the Canny algorithm is described in [9].

– Polynomial fitting method [10]. This method is based on a local polynomial anni-
hilation property on a set of irregularly distributed points in a bounded domain of
Rd .

– Deformable models. These methods consider a geometric object surrounding the in-
terest area (active contour) depending on several parameters. They define an energy
functional which consists of the sum of an internal and an external energy. When the
functional is minimized, the internal energy constraints the shape of the active con-
tour and the external energy locates the contour in desired image features [11–17].
Deformable models present some inconveniences such as sensibility to the initial
contours, stopping at local minima of the energy, slowness and computational cost.

– Adaptive splitting methods. An algorithm (EDAS-3) to approximate the jump dis-
continuity set of functions defined on subsets of R3 was proposed in [18]. The pro-
cedure is based on the adaptive splitting of the domain of the function guided by
the value of an average integral. This algorithm overcomes most inconvenients pre-
sented by deformable models. It does not depend on the initial surface choice. It
exhibits effective edge detection in 3D models with different interface topologies.
Moreover, EDAS-3 can obtain the edges with a prefixed accuracy.

– Indirect Methods. The aim of these methods is to divide the domain of the function into
a collection of homogeneous subsets (segmentation). Edges appear as the boundaries of
these subsets. These methods are less efficient than direct methods. Examples of these
procedures include region-based algorithms [19,20] and registration based segmentation
[21].

In this paper we present an accurate algorithm (DA3DED) that can obtain a point based
representation of the jump discontinuity set of a 3D image. The algorithm is a type of 1D
edge detection method (1D3DED). It begins by considering a region in the plane x1x2 con-
taining the projection of the image and a set of points in this region. Then it considers straight
lines perpendicular to the plane x1x2 and computes the edge points lying on these straight
lines. This task is accomplished using the 1D edge detector EDAS-1 [22]. If the number of
edges detected in the region is high or the distance between them is small, the algorithm con-
cludes that the region under consideration is complex and performs a subdivision process,
otherwise the region is not divided and the algorithm studies a contiguous zone. The process
is repeated for the x1x3 and x2x3 planes. The edge points obtained are stored in a file. In this
way complex regions are crossed by many lines and simple regions are crossed by few lines.
The resulting algorithm is doubly adaptive because the ”straight line step” is performed in
an adaptive way by EDAS-1 and the second step performs an adaptive process based on the
complexity of the image. The algorithm uses less CPU time than previous algorithm [18].
We will give a C-like pseudocode description of the constituent algorithms of DA3DED.
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Experimental results show a good behaviour of DA3DED on practical 3D problems that
modelize different types of composite materials and fractures.

The paper is organized as follows. Section 2 gives some mathematical preliminary re-
sults and details the conceptual and algorithmic constituents of DA3DED: EDAS-1 algo-
rithm, discrete and continuous representation of 3D images, projective complexity, subdi-
vision procedures of discrete rectangles and split criterion. It also describes the algorithm
DA3DED. Section 3 shows computational experiments on models of complex materials.
Section 4 provides some concluding remarks.

2 Materials and Methods

2.1 Mathematical preliminaries

Let R ⊂ Rd be a compact d-interval. We say that a function g : R→ R is quasi-continuous
if the set of points where g is not continuous has zero Lebesgue measure.

Consider a finite collection {Ci}n
i=1 of connected sets with pairwise disjoint nonempty

interiors such that
R = ∪n

i=1Ci.

Let { fi : i = 1, ...,n} be a set of continuous functions on R. Define the function

f (x)≡ fi(x) i f x ∈
◦
Ci,

where
◦
C denotes the interior of C. We say that f is a general piecewise continuous func-

tion. If Ci, i = 1, . . . ,n, are closed and convex sets, we say that f is a piecewise continuous
function. Since the boundary of a convex set has zero Lebesgue measure, all piecewise con-
tinuous functions are quasi-continuous.

In the above definitions, if the functions fi, i = 1, . . . ,n, are constant, we say that f is a
general piecewise constant function and a piecewise constant function, respectively.

Let f be a general piecewise continuous function and let Γi be the boundary of Ci, i =
1, . . . ,n. Define Γ ≡ ∪n

i=1Γi. Let x ∈ Γ , then for some m ≤ n,x ∈ Γi j , j = 1, ...,m, where
i j ∈ {1,2, . . . ,n}.

Define
A≡ max

j=1,...,m

{
fi j (x)

}
and B≡ min

j=1,...,m

{
fi j (x)

}
If A 6= B we say that f has a jump discontinuity at x (we also say that x is a jump

point). We call |A−B| magnitude of the jump of f at x. The set of points in Γ with jump
discontinuities is called jump discontinuity set and denoted by Γ J . We call edge any subset
of the jump discontinuity set. The set of points in Γ J with magnitude of jump greater than l
is denoted by Γ J

l . The set of points in Γ J with magnitude of jump greater than l and lower
than u is denoted by Γ J

lu . Our aim is to obtain a good approximation of these sets for a given
function.

We use the following notation: Let {v0,v1, . . . ,vd} be a set of d+1 vectors in Rd . This
set is called affinely independent if the vectors {v1− v0,v2− v0, . . . ,vd − v0} are linearly
independent. Suppose now that {v0,v1, . . . ,vd} is an affinely independent subset of Rd . The
d-simplex T generated by {v0,v1, . . . ,vd}, denoted by 〈v0,v1, . . . ,vd〉, is defined to be the
convex hull of the vectors v0,v1, . . . ,vd . We denote by |T | the diameter of a d-simplex T .
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Proposition 1([24]) Let T = 〈v0,v1, . . . ,vd〉 be a d-simplex and let w0,w1, ...,wd be arbi-
trary real numbers. Then there is a unique affine map LT from T to R such that LT (v j) =
w j, j = 0,1, . . . ,d.

Consider a function f : T ⊂ Rd → R. We denote by LT f , the unique affine map such
that

LT f (v j) = f (v j), j = 0,1, . . . ,d.

In this subsection we study the average integral

AIT ( f )≡
∫

T | f (x)−LT f (x)|dx
v(T )

,

where v(T ) denotes the Lebesgue measure of T .
As we prove below, the behavior of AIT ( f ) depends on the continuity or lack of conti-

nuity of f on T . This fact lays the foundation for the algorithm described in the next section.
The comportment of AIT ( f ) when f is continuous is given by the following results.

Proposition 2([24]) Let S ⊂ Rd be compact and let f : S→ R be continuous. Then given
ε > 0, there exists δ > 0 such that

| f (x)−LT f (x)|< ε

for all x ∈ T , where T is a d-simplex contained into S with |T |< δ .

Corollary 1 Let S⊂ Rd be compact and let f : S→ R be continuous. Then given ε > 0, we
have that AIT ( f )< ε for any small enough d-simplex T ⊂ S.

From the above results, we can conclude, in the case of continuous functions, that
AIT ( f )→ 0 as |T | approaches zero. We study below the case in that f presents jump dis-
continuities on T , when d = 1.

Consider the Heaviside function

H(x)≡
{

0, if x≤ 0,
1, if x > 0.

Define the funcion h(x)≡ JH(x−α) where J > 0 and α are real numbers. We have the
following result

Proposition 3([22]) Let T be a compact interval in R and α ∈
◦
T . Then

J
4
≤
∫

T |h(x)−LT h(x)|dx
v(T )

< J (1)

where v(T ) is the length of the interval T .

2.2 Constituents of the algorithm DA3DED

DA3DED is based on several concepts and algorithms that are described in this subsection.
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2.2.1 Algorithm EDAS-1

EDAS-1 is an algorithm, based on inequality (1), to approximate the jump discontinuity set
of functions of one variable. It is a particular case of the algorithm EDAS-d for functions
defined on subsets of Rd . In this section we give an outline of EDAS-d. Its validity for
d = 1,2 has been established in [22]. The case d = 3 has been studied in [18]. Consider the
d-interval R = [a,b], where a,b ∈ Rd . We can find n (closed) simplices Ti such that

◦
T i∩

◦
T j = /0, i 6= j,

n⋃
i=1

Ti = R,

(for example, see [25,26]). We call P≡ {Ti}n
i=1 a partition of R. The set of partitions of R is

denoted by P(R). Given a d-simplex T we denote by V (T ) the set of its vertices.
The proposed algorithm builds a partition P∈P(R) and the associated piecewise affine

approximant L(x) defined by

L(x)≡ LT f (x) if x ∈ T ⊂ P.

The average integral

AIT ( f )≡
∫

T | f (x)−LT f (x)|dx
v(T )

,

can be considered as the local error of the approximant L.
Given a function f : R→ R and an initial partition P1 of R, denote by E1 the maxi-

mum local error of the approximant L. E1 also provides a detection threshold, because the
algorithm will detect the jumps with magnitude greater than 4E1. Denote by E2 the approx-
imation error of the points in Γ J . Let E4 be a positive real parameter.

If (AIT ( f ) ≤ E1 or |T | ≤ E2) and |T | ≤ E4 we call T a good simplex, otherwise T is
called bad.

We call E4 exploration parameter (in difficult problems, it is necessary to make E4 small.
This is due to the fact that an inaccurate numerical evaluation of AIT ( f ) can eliminate sim-
plices containing points of Γ J).

Edge Detection by Adaptive Splitting Algorithm (EDAS-d)

Step 1. The good simplices in the initial partition P1 are put into the set G1 and the bad
simplices are put into the set B1.
Step 2. At each step j we have a set of good simplices G j and a set of bad simplices B j.
Divide each bad simplex into two simplices, by splitting its largest edge. Test whether
these children are good or bad to obtain the sets G j+1 and B j+1
Step 3. The algorithm stops if B j = /0. Then G = G j is the searched partition. If the
stopping criterion is not satisfied, go to Step 2.
Step 4. Obtain the following subset of G

AΓ
J

E3
≡
{

T ∈ G : AIT ( f )> E1 and ja ≡ max
vi∈V (T )

{ f (vi)}− min
vi∈V (T )

{ f (vi)}> E3

}
,

where E3 is the minimum magnitude of jump reported. E2 is also a stopping criterion.
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The convergence of this algorithm is guaranteed by the definition of good simplex. AΓ J
E3

is a set of simplices containing points of Γ J
E3

. This constitutes an approximation of Γ J
E3

. In the
cases considered by Proposition 4, we have that AΓ J

E3
⊃Γ J

E3
. In the images studied in Section

3, a voxel is considered as an edge voxel if it contains some barycenter of the simplices in
AΓ J

E3
.

In practice we have implemented the above algorithm using a binary tree whose leaves
correspond to good simplices. In the case d = 1, the integrals

∫
T | f (x)−LT f (x)|dx have

been computed using the Gauss-Legendre integration formula [27]. More details about the
implementation and performance of EDAS-1 can be found in [22].

2.2.2 Continuous and discrete representations of a 3D Image

The algorithm DA3DED uses two different mathematical representations of a 3D image.
It considers that the image is a function defined on a box in R3 when it computes edge
points using EDAS-1. This continuous representation is also useful to define the concept
of ”projective complexity”; we will see this in the next subsection. In the remaining steps
DA3DED uses the usual discrete representation. Below we define these concepts.

Let n and m be positive integers with n < m, define

[[n,m]]≡ {n,n+1, . . . ,m}

A 3D image is given by an n1× n2× n3 array I =
{

Ii jk
}

with indices (i, j,k) ∈ [[1,n1]]×
[[1,n2]]× [[1,n3]]. From a 3D image I, one can build a piecewise constant function Ĩ, defined
on [0.5,n1 +0.5]× [0.5,n2 +0.5]× [0.5,n3 +0.5] in the following way

Ĩ(x1,x2,x3)≡



I111, if (x1,x2,x3) ∈ [0.5,1.5]× [0.5,1.5]× [0.5,1.5],
Ii11, if (x1,x2,x3) ∈ [i−0.5, i+0.5]× [0.5,1.5]× [0.5,1.5] (i > 1),
I1 j1, if (x1,x2,x3) ∈ [0.5,1.5]× [ j−0.5, j+0.5]× [0.5,1.5] ( j > 1),
Ii j1, if (x1,x2,x3) ∈ [i−0.5, i+0.5]× [ j−0.5, j+0.5]× [0.5,1.5] (i, j > 1),
I11k, if (x1,x2,x3) ∈ [0.5,1.5]× [0.5,1.5]× [k−0.5,k+0.5] (k > 1),
Ii1k, if (x1,x2,x3) ∈ [i−0.5, i+0.5]× [0.5,1.5]× [k−0.5,k+0.5] (i,k > 1),
I1 jk, if (x1,x2,x3) ∈ [0.5,1.5]× [ j−0.5, j+0.5]× [k−0.5,k+0.5] ( j,k > 1),
Ii jk, if (x1,x2,x3) ∈ [i−0.5, i+0.5]× [ j−0.5, j+0.5]× [k−0.5,k+0.5]

(i, j,k > 1),

Fig. 1 shows the difference between both representations in the case of a 2D image.

2.2.3 Projective complexity of a 3D Image

Several complexity measures for 2D images have been proposed [28,29]. Some definitions
are based on statistical gray level features (global versus local histograms). Other definitions
are based on spatial distributions of gray levels (edges, symmetry, texture). Edges highlight
image zones in which there are abrupt changes in luminosity level usually associated with
surface discontinuities. The rationale is straightforward: images with more borders contain
more objects (or objects with more facets), thus resulting in a greater perceived complexity.
This has lead to the following edge based measure of complexity. Complexity is measured
by the number of edges per unit area in the image [30]. In the case of 3D images we can
extend this definition, for example, complexity can be measured by the number of edge
voxels per unit volume. This definition is not suitable for adaptive algorithms based on 1D
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edge detection methods. Therefore we propose a new definition consistent with the above
one.

Consider a continuously defined function f : [a,b]3 → R. Let [α,β ] ⊂ [a,b] and S =
[α,β ]2. Let (x1,x2) ∈ S be a fixed point in S. Call e(x1,x2) the number of edge points of the
function of one variable f (x1,x2,x) when x ∈ [a,b]. The projective complexity of f on the
set K = S× [a,b] is defined as

PC( f ,K)≡
∫

S e(x1,x2)dx1dx2

v(S)
. (2)

Let d be a positive integer. To approximate the above quantity we subdivide S into d2

identical squares. Denote the center of the squares by (x1i,x2 j), 1 ≤ i, j ≤ d. Then (2) can
be approximated by

PCa( f ,K) = (
d

∑
i, j=1

e(x1i,x2 j)((β −α)/d)2)/(β −α)2 =

=
d

∑
i, j=1

e(x1i,x2 j)/d2. (3)

Observe that PCa( f ,K) does not depend on the size of the square S. We can consider e
as a vector with d2 components and write (3) as

PCa( f ,K) = ‖e‖1 /d2.

In each experiment, the value of d has been almost constant. Then, using the norm equiva-
lence, we can define the following measure of complexity

PC∗( f ,K) = ‖e‖
∞
.

Although we have considered sets in the plane x1x2, similar definitions can be stated for sets
in the planes x1x3 or x2x3. The above definitions are applicable to 3D images because they
can be extended to continuously defined functions using the procedure detailed in Subsec-
tion 2.2.2.

Fig. 1: Continuous representation (left) and discrete representation (right) of a 2D image.
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2.2.4 Subdivision and selection procedures

Consider a 3D image given by an n1 × n2 × n3 array I =
{

Ii jk
}

with indices (i, j,k) ∈
[[1,n1]]× [[1,n2]]× [[1,n3]].

The doubly adaptive algorithm performs split and point selection operations. These pro-
cedures are defined on the set of indices, that is, they consider discrete rectangles. First, we
describe how a discrete rectangle is divided into four almost equal discrete subrectangles.

Consider the discrete rectangle R = [[n,m]]× [[p,q]] with n<m and p< q. The subdivi-
sion is performed computing r = n+ b(m−n)/2c and s = p+ b(q− p)/2c (bxc denotes the
floor function that returns the greatest integer less than or equal to x). The resulting discrete
rectangles are

R1 = [[n,r]]× [[p,s]],
R2 = [[n,r]]× [[s+1,q]],
R3 = [[r+1,m]]× [[s+1,q]],
R4 = [[r+1,m]]× [[p,s]].

Suppose now that we want to select (d + 1)2 points from R, distributed regularly. The se-
lected points are obtained as the set

N = {h[0],h[1], . . . ,h[d]}×{v[0],v[1], . . . ,v[d]},

where the vectors h and v are given by the following algorithm

le f t = n−0.5;right = m+0.5;up = q+0.5;down = p−0.5;
h[0] = n;h[d] = m;v[0] = p;v[d] = q;
f or(i = 1; i < d; i++)
{

ht = le f t + i(right− le f t)/d;
vt = down+ i(up−down)/d;
h[i] = bht +0.5c ; if(ht−bhtc== 0.5)h[i] = h[i]−1;
v[i] = bvt +0.5c ; if(vt−bvtc== 0.5)v[i] = v[i]−1;

}
Observe that bx+0.5c returns the integer nearest to x. The above algorithm obtains a subset
of [[n,m]]([[p,q]]) whose points are distanced approximately by (n−m)/d((q− p)/d). If
d > n−m or d > q− p the subdivision is not possible.

2.2.5 Split criterion

The set of indices of a 3D image is given by

M = [[1,n1]]× [[1,n2]]× [[1,n3]].

The projections of this set on the coordinate planes are

Ra = [[1,n1]]× [[1,n2]],
Rb = [[1,n1]]× [[1,n3]],
Rc = [[1,n2]]× [[1,n3]].

Consider a set Rα , (α = a,b,c). Suppose that R = [[n,m]]× [[p,q]] is a subset of Rα .
The split criterion for R is defined by the following procedure
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Fig. 2: EDAS-1 obtains edge points (red) lying on the straight lines perpendicular to the
considered plane.

Split criterion

Step 1. if (d > n−m||d > q− p) return 0;
Step 2. Select (d +1)2 points from R, distributed regularly (Subsection 2.2.4). The result
is the set N .
Step 3. Consider the straight lines perpendicular to the plane containing Rα , passing
through each point in N .
Step 4. Apply EDAS-1 to each one of these lines to obtain the number of edge points cor-
responding to each point k ∈ N (NEP(k)); see Fig. 2. Compute the minimum distance
between these edge points (MIND(k)). In this step all the edge points found are stored in
a file.
Step 5. Compute

MAXNEP = max
k∈N

NEP(k),

MIND = min
k∈N

MIND(k).

Step 6. If we call T NEP the limit of the maximum number of edge points and T MIND the
limit of the minimum distance between edge points, then

if ((MAXNEP≥ T NEP)||(MIND≤ T MIND)return 1;
else return 0;

A discrete rectangle is subdivided when the measure of projective complexity corre-
sponding to the discrete rectangle (PC∗) is greater than a fixed beforehand limit or when the
minimum distance between edge points is less than a fixed threshold. In this last case, it is
possible that the discontinuity surface be non smooth and this makes necessary to consider
small discrete rectangles to obtain a detailed description of the jump discontinuity set. Given
a discrete rectangle R, the split criterion is implemented with the function SPC. SPC(R)
takes the value 1 if the split criterion is satisfied and 0 in the contrary case.
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2.3 Doubly adaptive algorithm

Consider the discrete rectangle Rα = [[1,ni]]× [[1,n j]] . Let R be a discrete rectangle con-
tained in Rα . If SPC(R) = 0 we call R a good discrete rectangle otherwise R is called bad.

Doubly Adaptive algorithm for 3D Edge Detection (DA3DED)

Step 1. Consider Rα = [[1,n1]]× [[1,n2]]. Divide Rα into four discrete rectangles using
the procedure described in Subsection 2.2.4. Apply the split criterion to the resulting rect-
angles. The good rectangles are put into the set G1 and the bad rectangles put into the set
B1.
Step 2. At each step j we have a set of good discrete rectangles G j and a set of bad discrete
rectangles B j. Divide each bad discrete rectangle into four discrete rectangles using the
procedure described in Subsection 2.2.4. Test whether these children are good or bad to
obtain the sets G j+1 and B j+1.
Step 3. The algorithm stops if B j = /0. If the stopping criterion is not satisfied, go to Step
2.
Step 4. Repeat the above steps for Rb = [[1,n1]]× [[1,n3]] and Rc = [[1,n2]]× [[1,n3]].

DA3DED has been implemented using a quadtree. Below we detail this algorithm.

2.3.1 Algorithm to generate the quadtree

In this subsection we provide a pseudocode of the algorithm used by DA3DED to generate
the quadtree. We start by defining a structure of type node (each node is associated with a
discrete rectangle R)

struct node
{
int n; int m; int p; int q;
int spc;
int pt;
int ch[4];
int d;
}Q[ ],

where, n,m, p,q are the coordinates of the corners of the discrete rectangle.
spc: indicator variable that takes the value 1 if the algorithm has applied the split criterion
to the rectangle and 0 otherwise.
pt: number of the node parent of the current one.
ch[ j]: jth child of the current node (-1 in case of leaf nodes). ch[0] is the left child and ch[3]
is the right child.
d: determines the subset of R used by the split criterion.

The algorithm uses alternately two distinct values of d: d1 and d2, in order to avoid the
repetition of computations. In practice these values are almost equal. We denote by Rc the
discrete rectangle associated with the current node c.
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Algorithm to generate the quadtree

– Input of data:nk,nl ,1≤ k < l ≤ 3,E1,E2,T NEP,T DMIN,d1,d2, po = 0.
– Initialize the node 0:

Q[0].n = 1,Q[0].m = nk, ;Q[0].p = 1;Q[0].q = nl ;Q[0].spc = 1;Q[0].pt =−1;
– Split the node 0 into four discrete rectangles and initialize the nodes 1, 2, 3 and 4.

Q[ j].n,Q[ j].m,Q[ j].p,Q[ j].q, j = 1, . . . ,4, are obtained according to the method described
in Subsection 2.2.4.
for( j = 1; j ≤ 4; j++){Q[ j].spc = 0;Q[ j].pt = 0;Q[ j].d = d1;}

– Complete the members of the node 0,
for( j = 0; j ≤ 3; j++)Q[0].ch[ j] = j+1;

– Initialize the current node and the counter of nodes c = 1;nn = 4;
– while(po < 4)
{

rch = Q[c].ch[3]; (right child of the current node)
if(Q[c].spc == 0) (the split criterion has not been applied to the current node)
{

if(SPC(Rc) == 1) (the current node satisfies the split criterion)
{

Split Rc into four discrete rectangles,
compute Q[nn+ j].n,Q[nn+ j].m,Q[nn+ j].p,Q[nn+ j].q,
j = 1, . . . ,4, by the method described in Subsection 2.2.4.
if(Q[c].d == d1)DV = d2;
else DV = d1;
for( j = 1; j ≤ 4; j++)
{Q[nn+ j].spc = 0;Q[nn+ j].pt = c;
Q[nn+ j].d = DV ;Q[c].ch[ j−1] = nn+ j;}
Q[c].spc = 1;
c = nn+1; (new current node)
nn = nn+4;

}
else (the current node does not satisfy the split criterion)
{

Q[c].spc = 1;
for( j = 0; j ≤ 3; j++)Q[c].ch[ j] =−1;
c = Q[c].pt;
if(c == 0)po = po+1;

}
}
else (the split criterion has been applied to the current node)
{

if(Q[rch].spc == 1)(all the childs have been visited. Go to the parent)
{

c = Q[c].pt;
if(c == 0)po = po+1;

}
else (there exist childs not visited)
{
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for( j = 1; j ≤ 3; j++) if (Q[Q[c].ch[ j]].spc == 0)break;
c = Q[c].ch[ j];
i f (c == 0)po = po+1;

}
}

}

3 Results and Discussion

In this section we have tested DA3DED with several synthetic material models. The results
have been compared with those obtained with other algorithms: 3D Sobel, 3D Prewitt and
3D EDAS-1. The test models have been the following:

– Internal inclusions within a material.
– Short fiber composites.
– Fracture models.

Materials with internal inclusions are also called particle composites (filled materials).
For example, internal pores in aluminium alloys can be obtained by introducing hydrogen
in the melt metal. Since the solubility of the hydrogen decreases with the temperature, when
the metal solidifies, the gas is rejected and forms gas pores which are easily visualized us-
ing X-ray tomography [31]. Icosahedral inclusions have been described in [32]. Short fiber
composites are a kind of composite materials with short fibers of materials included in a
matrix material. For example, glass or carbon fibers are used to reinforce polymers. The
habitual fibers present a circular cross-section. Nowadays composite research is being con-
ducted with more exotic fibers: hollow glass fibers and triangular glass fibers. In the case
of fibers with triangular cross sections is difficult to compute the fibre orientations from 2D
images. This makes necessary 3D imaging [33]. Finally, we have considered a model of
fractured material. The interface of a fracture model is rather difficult to approximate be-
cause it presents acute dihedral angles. In fact, many procedures to detect 3D edges assume
that the jump discontinuity set is smooth.

To test the algorithms, we have designed examples having different complexity in dif-
ferent zones. The box containing the composite has been divided into eight equal cubes. The
inclusions and fibers have been randomly placed in each cube with the following distribu-
tion:

– Spherical inclusions: 60 spheres (with radius 8) in one of the cubes, each one of the
remaining parts contains 4 spheres.

– Icosahedral inclusions: 60 icosahedra in one of the cubes, each one of the remaining
parts contains 4 icosahedra.

– Cylindrical fibers: 30 cylinders in one of the cubes, each one of the remaining parts
contains 2 cylinders.

– Prismatic fibers: 30 triangular prisms in one of the cubes, each one of the remaining
parts contains 2 triangular prisms.

The 3D images used in the experiments have been generated in two steps. First, we have
considered a continuous function with value 1 inside and 0 outside the bodies. In the case
of icosahedral inclusions, prismatic fibers and fracture model we have used the algorithm
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Table 1: Performance of 3D EDAS-1 on the test models.

3D Image E1 E2 E3 E4 E5 TNI TNJI CPU(s)

Spherical inclusions 10−1 10−2 10−2 10 10 4770465 93447 109.8
Icosahedral inclusions 10−1 10−2 10−2 10 10 6123908 229703 156.7
Cylindrical fibers 10−1 10−2 10−2 10 10 4854444 102482 111.8
Prismatic fibers 10−1 10−2 10−2 10 10 4940281 112624 115.1
Fracture model 10−1 10−2 10−2 10 10 8297400 452000 234.4

proposed in [34] to find the distance from a point to a polyhedron. Then, the above contin-
uous function has been discretized using a 200×200×200 mesh and taking its value at the
center of each cell.

The experimental environment has been the following:

– CPU Intel(R)Core(TM) i7-4500U CPU 1.8 GHz.
– Running Software Microsoft Visual C++ 2012.

The test 3D images exhibit a complex structure containing several three dimensional ob-
jects. In complex problems, it may be difficult to use deformable model algorithms. There-
fore, we have compared DA3DED with 3D difference filters (Sobel, Prewitt) which are
suitable for arbitrary (unstructured) images. In the experiments with the 3D Sobel method,
the following mask to obtain the partial derivative of the image intensity with respect to the
variable x1, was adopted

MX(:, :,1) = [−2 0 2;−3 0 3;−2 0 2],
MX(:, :,2) = [−3 0 3;−6 0 6;−3 0 3],
MX(:, :,3) = [−2 0 2;−3 0 3;−2 0 2].

The corresponding mask used for the 3D Prewitt method is

MX(:, :,1) = [−1 0 1;−1 0 1;−1 0 1],
MX(:, :,2) = [−1 0 1;−1 0 1;−1 0 1],
MX(:, :,3) = [−1 0 1;−1 0 1;−1 0 1].

We have used the MATLAB notation for matrices. The masks for the derivatives with
respect to x2 and x3 can be obtained from the above ones [7,35].

The results obtained with the Prewitt method are similar to those obtained with the Sobel
method, we have not included them to save space.

3D EDAS-1 consists of applying EDAS-1 to the straight lines, perpendicular to the plane
xix j, passing through each one of the points of [[1,ni]]× [[1,n j]]. This process is performed
for each coordinate plane.

The numerical results for 3D EDAS-1 and DA3DED are reported in Tables 1 and 2. We
call T NI the total number of intervals and T NJI the total number of intervals containing
jumps, generated in the applications of EDAS-1. E5 is a parameter of adaptive cubature; see
[22]. The results in Table 2 have been obtained with the same values of Ei, i = 1, . . . ,5, than
those in Table 1.

The synthetic models are shown in Figs. 3, 6, 9, 12 and 15. A graphic comparison of the
results obtained with 3D Sobel, 3D EDAS-1 and DA3DED is shown in Figs. 4, 5, 7, 8, 10,
11, 13, 14, 16, 17 and 18.
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Table 2: Performance of DA3DED on the test models.

3D Image TMIND TNEP d1 d2 TNI TNJI CPU(s)

Spherical inclusions 3 25 10 9 2137515 71586 51.3
Icosahedral inclusions 3 25 10 9 4339122 192821 110.4
Cylindrical fibers 3 25 10 8 2774380 89438 65.8
Prismatic fibers 4 25 6 5 3369707 108608 79.5
Fracture model 4 17 8 7 3983960 338064 124.9

Fig. 3: Spherical inclusions.
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(a) (b)

(c) (d)

Fig. 4: Spherical inclusions (intersection with the plane x1=50). (a) Exact intersection, (b)
3D Sobel, (c) 3D EDAS-1, (d) DA3DED.
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(a) (b)

(c) (d)

Fig. 5: Spherical inclusions (intersection with the plane x1=150). (a) Exact intersection, (b)
3D Sobel, (c) 3D EDAS-1, (d) DA3DED.
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Fig. 6: Icosahedral inclusions.

(a) (b)

(c) (d)

Fig. 7: Icosahedral inclusions (intersection with the plane x1=75). (a) Exact intersection, (b)
3D Sobel, (c) 3D EDAS-1, (d) DA3DED.
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(a) (b)

(c) (d)

Fig. 8: Icosahedral inclusions (intersection with the plane x1=150). (a) Exact intersection,
(b) 3D Sobel, (c) 3D EDAS-1, (d) DA3DED.
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Fig. 9: Cylindrical fibers (circular cross-section).

(a) (b)

(c) (d)

Fig. 10: Cylindrical fibers (intersection with the plane x1=50). (a) Exact intersection, (b) 3D
Sobel, (c) 3D EDAS-1, (d) DA3DED.
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(a) (b)

(c) (d)

Fig. 11: Cylindrical fibers (intersection with the plane x1=110). (a) Exact intersection, (b)
3D Sobel, (c) 3D EDAS-1, (d) DA3DED.
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Fig. 12: Prismatic fibers (triangular cross-section).

(a) (b)

(c) (d)

Fig. 13: Prismatic fibers (intersection with the plane x1=50). (a) Exact intersection, (b) 3D
Sobel, (c) 3D EDAS-1, (d) DA3DED.
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(a) (b)

(c) (d)

Fig. 14: Prismatic fibers (intersection with the plane x1=150). (a) Exact intersection, (b) 3D
Sobel, (c) 3D EDAS-1, (d) DA3DED.
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Fig. 15: Fracture model.

(a) (b)

(c) (d)

Fig. 16: Fracture model (section perpendicular to the x1-axis). (a) Exact intersection, (b) 3D
Sobel, (c) 3D EDAS-1, (d) DA3DED.
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(a) (b)

(c) (d)

Fig. 17: Fracture model (intersection with the plane x3=175). (a) Exact intersection, (b) 3D
Sobel, (c) 3D EDAS-1, (d) DA3DED.

4 Conclusions

Fast and accurate edge detection in 3D images is necessary in many applications. Some
typical examples include, image guided surgery, 3D assisted face recognition, safety and
security applications [36], seismic imaging, etc.

The problem is challenging because 3D images involve an enormous amount of data
(voxels) that must be processed. Algorithms that provide a simple point based representation
of the jump discontinuity set (3D filters) process all the voxels in an image.

However, in most images the complexity varies from a region to another. The proposed
algorithm (DA3DED) is based on this fact. The depth of the treatment is proportional to the
complexity of the region into consideration.

DA3DED has been tested on 3D images that modelize real problems (composites, frac-
tures). It has been much faster than the 1D edge detection algorithm for 3D images derived
from EDAS-1.

The doubly adaptive algorithm provides a thorough description of the edges in complex
zones. Regions with low complexity are described in less detail, but in this case the discon-
tinuity surface can be effectively reconstructed using techniques such as interpolation.
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