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Abstract— Thermoyphons, in the engineering literature, is a device composed of a closed loop containing a fluid who motion is
driven by several actions such as gravity and natural convection. In this work I prove some result about the asymptotic behaviour
for solutions of a closed loop thermosyphon model with a viscoelastic fluid in the interior ( A. Jiménez-Casas et. al [8]). In this
model a viscoelastic fluid described by the Maxwell constitutive equation is considered, this kind of fluids present elastic-like
behavior and memory effects.
Their dynamics are governing for a coupled differential nonlinear systems. In several previous work we show chaos in the fluid,
even with this kind of viscoelastic fluid ( A. Jiménez-Casas and Mario Castro[7], Justine Yasapan, A. Jiménez-Casas and M.
Castro[9, 8, 10]).
In this model I consider a prescribed heat flux like Rodríguez-Bernal and Van Vleck[17], Jiménez-Casas and Ovejero[4] between
others (all of them with Newtonian fluids).
This work is a generalization of some previous results on standard ( Newtonnian ) fluids obtained by Rodríguez-Bernal and Van
Vleck[17], when considering a viscoelastic fluid.

Keywords:Thermosyphon, Viscoelastic fluid, Heat flux, Asymptotic behaviour, Inertial Manifold.

1 Introduction

In engineering literature a thermosyphon is a device composed
of a closed loop pipe containing a fluid whose motion is driven
by the effect of several actions such as gravity and natural con-
vection.The flow inside the loop is driven by an energetic bal-
ance between thermal energy and mechanical energy.

Here, we consider a thermosyphon model in which the con-
fined fluid is viscoelastic. This has some a-priori interesting
peculiarities that could affect the dynamics with respect to the
case of a Newtonian fluid. On the one hand, the dynamics has
memory so its behavior depends on the whole past history and,
on the second hand, at small perturbations the fluid behaves
like an elastic solid and a characteristic resonance frequency

could, eventually, be relevant (consider for instance the behav-
ior of jelly or toothpaste).

The simplest approach to viscoelasticity comes from the so-
called Maxwell model [13]. In this model, both Newton’s law
of viscosity and Hooke’s law of elasticity are generalized and
complemented through an evolution equation for the stress ten-
sor, σ.

Viscoelastic behavior is common in polymeric and biological
suspensions and, consequently, our results may provide useful
information on the dynamics of this sort of systems inside a
thermosyphon.

In a thermosyphon the equations of motion can be greatly sim-
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plified because of the quasi-one-dimensional geometry of the
loop. Thus, we assume that the section of the loop is constant
and small compared with the dimensions of the physical de-
vice, so that the arc length co-ordinate along the loop (x) gives
the position in the circuit. The velocity of the fluid is assumed
to be independent of the position in the circuit, i.e. it is as-
sumed to be a scalar quantity depending only on time. This
approximations comes from the fact that the fluid is assumed
to be incompressible. On the contrary temperature is assumed
to depend both on time and position along the loop.

The derivation of the thermosyphon equations of motion is sim-
ilar to that in Ref. [11] and are obtained in [8]. Finally, after
adimensionalizing the variables (to reduce the number of free
parameters) we get the followingo ODE/PDE system (see [8]
and [20]):


ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
Tf,

∂T

∂t
+ v

∂T

∂x
= h(x, v, T ) + ν ∂

2T
∂x2 ,

(1)

with v(0) = v0,
dv
dt (0) = w0 and T (0, x) = T0(x).

Here v(t) is the velocity, T (t, x) is the distributions of the tem-
perature of the viscoelastic fluid into the loop, ν is the tem-
perature diffusion coefficient, G(v), is the friction law at the
inner wall of the loop, the function f is the geometry of the
loop and the distribution of gravitational forces, in this cases
h(x, v, T ) = h(x) as in [4],[8],[18, 19] is the general heat flux
and ε in Eq. (1) is the viscoelastic parameter, wich is the di-
mensionless version of the viscoelastic time. Roughly speak-
ing, it gives the time scale in which the transition from elastic
to fluid-like occurs in the fluid.

We assume that G(v) is positive and bounded away from zero.
This function has been usually taken to be G(v) = G0, a pos-
itive constant for the linear friction case [11], or G(v) = |v|
for the quadratic law [3, 12], or even a rather general function
given by G(v) = g(Re)|v|,where Re is a Reynolds-like num-
ber that is assumed to be large [16, 18] and proportional to |v|.
The functions G, f, l and h incorporate relevant physical con-
stants of the model, such as the cross sectional area, D, the
length of the loop, L, the Prandtl, Rayleigh, or Reynolds num-
bers, etc see [18]. UsuallyG, h are given continuous functions,
such that G(v) ≥ G0 > 0, and h(v) ≥ h0 > 0, for G0 and h0
positive constants.

Finally, for physical consistency, it is important to note that
all functions considered must be 1-periodic with respect to the
spatial variable, and

∮
=
∫ 1

0
dx denotes integration along the

closed path of the circuit. Note that
∮
f = 0.

The contribution in this paper (Section 3) is to prove that, un-
der suitable conditions, any solution either converges to the
rest state or the oscillations of velocity around v = 0 must

be large enough. This result, generalizes the one proposed
in Rodríguez-Bernal and Van Vleck[17] for a thermosyphon
model with a one-component viscoelastic fluid.

2 Previous results about well posedness and
global attractor

First, we note that in this section we consider the case in which
all periodic functions in Eq. (1) have zero average, i.e. we
work in Y = IR2 × Ḣ1

per(0, 1), where

L̇2
per(0, 1) = {u ∈ L2

loc(IR), u(x+1) = u(x)a.e.,

∮
u = 0},

Ḣm
per(0, 1) = Hm

loc(IR) ∩ L̇2
per(0, 1).

In effect, we observe that, for ν > 0, if we integrate the
equation for the temperature along the loop, we have that
d
dt (
∮
T ) =

∮
h and then

∮
T (t) =

∮
T0 + t

∮
h. Therefore,

the temperature is unbounded, as t → ∞, unless
∮
h = 0.

However, taking θ = T −
∮
T and h∗ = h−

∮
h reduces to the

case
∮
θ =

∮
θ0 =

∮
h∗ = 0, since θ would satisfy:

∂θ

∂t
+ v

∂θ

∂x
= h(x) + ν

∂2θ

∂x2
, θ(0) = θ0 = T0 −

∮
T0(2)

Therefore, if we consider now θ = T −
∮
T then from the sec-

ond equation of system Eq. (1), we obtain that θ verifies the
equations (2).

Finally, since
∮
f = 0, we have that

∮
Tf =

∮
θf, and the

equation for v reads

ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
θ.f, v(0) = v0,

dv

dt
(0) = w0.(3)

Thus, from Eqs. (2) and (3) we have (v, θ) verifies sys-
tem Eq.(1) with h∗, θ0 replacing h, T0 respectively and now∮
θ =

∮
h =

∮
θ0 = 0.

Thus, we consider the system Eq. (1) with
∮
T0 =

∮
h = 0

and
∮
T (t) = 0 for every t ≥ 0.

Also, if ν > 0 the operator −ν ∂2

∂x2 , together with periodic
boundary conditions, is an unbounded, self-adjoint operator
with compact resolvent in L2

per(0, 1) that is positive when
resctricted to the space of zero-average functions L̇2

per(0, 1).
Hence, the second equation in Eq. (1) is of parabolic type for
ν > 0.

Hereafter we denote by w = dv
dt and we write the system (1)

as the following evolution system for the acceleration,velocity
and temperature:

d

dt

 w
v
T

+

 1
ε 0 0
0 0 0

0 0 −ν ∂2

∂x2

 w
v
T

 =

 F1

F2

F3

(4)
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with F1(w, v, T ) = − 1
εG(v)v+ 1

ε

∮
Tf, F2(w, v, T ) = w and

F3(w, v, T ) = −v ∂T∂x + h(v) and initial data (w, v, T )⊥(0) =
(w0, v0,0 T )⊥.

The operator B =

 1
ε 0 0
0 0 0

0 0 −ν ∂2

∂x2

 is a sectorial oper-

ator in Y = IR2 × Ḣ1
per(0, 1) with domain D(B) = IR2 ×

Ḣ3
per(0, 1) and has compact resolvent, where

L̇2
per(0, 1) = {u ∈ L2

loc(IR), u(x+ 1) = u(x)a.e.,

∮
u = 0},

Ḣm
per(0, 1) = Hm

loc(IR) ∩ L̇2
per(0, 1).

Thus, we can apply the result about sectorial operator of [2]
to prove the existence of solutions of system (1). Moreover,
if we consider some aditionally hypothesis (H) to add for the
friction G using in the tecnique Lemma 3.1 in [8], which are
satisfied for all friction functions G consider in the previous
works,i.e., the thermsyphon models where G is constant or lin-
ear or quadratic law, and also for G(s) ≡ A|s|n, as s → ∞.
Then, we have the next result.

PROPOSITION 1 We suppose that H(r) = rG(r) is locally
Lipschitz, f, h ∈ L̇2

per h(v) ≥ h0 > 0. Then, given
(w0, v0, T0) ∈ Y = IR2 × Ḣ1

per, there exists a unique solu-
tion of (1) satisfying

(w, v, T ) ∈ C([0,∞],Y) ∩ C(0,∞, IR2 × Ḣ3
per(0, 1)),

(ẇ, w,
∂T

∂t
) ∈ C(0,∞, IR2 × Ḣ3−δ

per (0, 1)),

where w = v̇ = dv
dt and ẇ = d2v

dt2 for every δ > 0. In
particular, (1) defines a nonlinear semigroup, S(t) in Y, with
S(t)(w0, v0, T0) = (w(t), v(t), T (t)).

Moreover, from (H) (see [8]) Eq. (1) has a global compact and
connected attractor, A , in Y . Also if h ∈ ×Ḣm

per(0, 1) with
m ≥ 1, the global attractor A ⊂ IR2 × Ḣm+2

per and is compact
in this space.

Proof: This result has been proved in Theorem 2.1, Proposi-
tion 3.1 and Corollary 4.1 from A.Jiménez-Casas at al.[8].

3 Asymptotic behaviour of finite length solu-
tions

In previous works, like A. Jiménez-Casas and Mario [7], A.
Jiménez-Casas at al.[8, 10], the asymptotic behaviour of the
system Eq.(1) for large enough time is studied.

In this sense the existence of a inertial manifold associated to
the functions f (loop-geometry) and h (prescribed heat flux)

have proved. The abstract operators theory (Henry[2], Foias et
al. [1] and Rodríguez-Bernal[15, 14]) has been used for this
purpose. In this section we consider the linear friction case
[11] where G(v) = G0, a positive constant and we prove in
Proposition 3 the results which rise an important consequence:
for large time the velocity reaches the equilibrium - null veloc-
ity -, or takes a value to make its integral diverge, which means
that either it remains with a constant value without changing its
sign or it will alternate an infinite number of times so the oscil-
lations around zero become large enough to make the integral
diverge.

3.1 Previous results and notations

In this section we assume also that G∗(r) = rG(r) is locally
Lipschitz satisfying (H) (see [8]), and f, h ∈ L̇2

per are given by
following Fourier expansions

h(x) =
∑
k∈IZ∗

bke
2πkix; f(x) =

∑
k∈IZ∗

cke
2πkix;(5)

where IZ∗ = IZ − {0}, while T0 ∈ Ḣ2
per is given by T0(x) =∑

k∈IZ∗ ak0e
2πkix. Finally assume that T (t, x) ∈ Ḣ2

per is
given by

T (t, x) =
∑
k∈IZ∗

ak(t)e2πkix(6)

where IZ∗ = IZ − {0}, We note that āk = −ak since all func-
tions consider are real and also a0 = 0 since they have zero
average.

Now we observe the dynamics of each Fourier mode and from
Eq. (1), we get the following system for the new unknowns, v
and the coefficients ak(t).{

εd
2v
dt2 + dv

dt +G(v)v =
∑
k∈IZ∗ ak(t)c−k

ȧk(t) +
[
2πkiv(t) + 4νπ2k2

]
ak(t) = bk

(7)

• Assume that the prescribed heat flux h ∈ Ḣm
per, are given

by
h(x) =

∑
k∈K

bke
2πkix,

and bk 6= 0 for every k ∈ K ⊂ IZ with 0 6= K, since∮
h = 0. We denote by Vm the clousure of the subspace

of Ḣm
per generated by {e2πkix, k ∈ K}. Then we have

from Theorem 4.2 in A. Jiménez-Casas et al.[8] the set
M = IR2 × Vm is an inertial manifold for the flow
of S(t)(w0, v0, T0) = (w(t), v(t), T (t)) in the space
Y = IR2 × Ḣm

per. By this, the dynamics of the flow
is given by the flow in M associated to the prescribed
heat flux h. This is

{
εd

2v
dt2 + dv

dt +G(v)v =
∑
k∈K ak(t)c−k

ȧk(t) +
[
2πkiv(t) + 4νπ2k2

]
ak(t) = bk, k ∈ K

(8)
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• Moreover, we assume that the function associated to the
geometry of the loop f , are given by

f(x) =
∑
k∈J

cke
2πkix

and ck 6= 0 for every k ∈ J ⊂ IZ with 0 6= K, since∮
f = 0.

We note also that on the inertial manifold∮
Tf =

∑
k∈K∩J ak(t)c−k. Thus, the dynamics of the

system depends only on the coefficients in K ∩ J .

• Herafter, we consider de functions h and f are given by
following Fourier expansions

h(x) =
∑
k∈K

bke
2πkix; f(x) =

∑
k∈J

cke
2πkix;(9)

where

K = {k ∈ IZ∗/bk 6= 0} , J = {k ∈ IZ∗/ck 6= 0} with
IZ∗ = IZ − {0}, First, from the equations Eq. (7)
we can observe the velocity of the fluid is indepen-
dent of the coefficients for temperature ak(t) for ev-
ery k ∈ IZ∗ − (K ∩ J). That is, the relevant coeffi-
cients for the velocity are only ak(t) with k belonging
to the set K ∩ J. This important result about the asymp-
totic behaviour has been proved in Corollary 4.2 from A.
Jiménez-Casas at al.[8].

We also note that 0 /∈ K ∩ J and since K = −K and J = −J
then the set K ∩ J has an even number of elements, wihch we
denote by 2n0. Therefore the number of the positive elements
of K ∩ J , (K ∩ J)+ is n0. Moreover the equations for a−k
are conjugates of the equations for ak and therefore we have∑
k∈K∩J ak(t)c−k = 2Re(

∑
k∈(K∩J)+

ak(t)c−k).

Thus, ∮
Tf = 2Re(

∑
k∈(K∩J)+

ak(t)c−k).(10)

The aim is to prove the Proposition 3 which generalize
the result of thermosyphon model for Newtoniann fluids of
Rodríguez-Bernal and Van Vleck[17] in the case of a pre-
scribed heat flux, i.e. h = h(x). To do so we examine which
are these steady-state solutions, also called equilibrium points.

We have to make the difference between equilibrium points
(constants respect to the time) null velocity, called rest equi-
librium, and equilibrium points with non-vanishing constant
velocity.

Equilibrium conditions.

i) The system Eq. (7) presents the rest equilibrium w = v = 0,
ak = bk

4νπ2k2 ∀k ∈ K ∩ J under the assumption of the follow-

ing orthogonality condition:

I0 = Re(
∑

k∈(K∩J)+

bkc−k
k2

) = 0.(11)

ii) Any other equilibrium position will have a non-vanishing
velocity and the equilibrium is given by: G(v)v = 2Re(

∑
k∈(K∩J)+

akc−k)

ak = bk
4νπ2k2+2πkiv

(12)

3.2 Asymptotic behaviour

LEMMA 2 If we assume that a solution of Eq. (7) satisfies∫∞
0
|v(s)|ds < ∞, then for every η > 0 there exists t0 such

that ∫ t

t0

e−4νπ
2k2(t−r)(e−

∫ t
r
2πikv − 1)dr ≤ η,(13)

with t ≥ t0.

Proof: If
∫∞
0
|v(s)|ds < ∞, then for all δ there exits t0 > 0

such that for every t0 ≤ r ≤ t we have |
∫ t
r
v| ≤ δ. Then, for

any η > 0 we can take t0 large enough such that

|e−
∫ t
r
2πikv − 1| ≤ η for all t0 ≤ r ≤ t.(14)

Therefore, we get∫ t

t0

e−4νπ
2k2(t−r)(e−

∫ t
r
2πikv − 1)dr ≤

≤ η
4νπ2k2 (1− e−4νπ2k2(t−t0)) ≤ η with t ≥ t0 and taking into

account that η → 0 for t→∞ and ν > 0, we get Eq. (13).

PROPOSITION 3 i) if K ∩J = ∅, then the global attractor for
system Eq. (1) in IR2×Ḣ1

per is reduced to a point {(0, 0, θ∞)},
where θ∞ is the unique solution in Ḣ2

per(0, 1) of

−ν ∂
2θ

∂x2
= h(x).

ii) We assume that I0 = Re(
∑

k∈(K∩J)+

bkc−k
k2

) = 0, with

K ∩ J finite set, and that a solution of Eq. (7) satisfies∫∞
0
|v(s)|ds < ∞. Then the system reaches the rest station-

ary solution, that:{
v(t)→ 0, and w(t)→ 0, as t→∞

ak(t)→ bk
4νπ2k2 , as t→∞

This is, he also have in this situation the global attractor for sys-
tem Eq. (1) in IR2 × Ḣ1

per is reduced to a point {(0, 0, θ∞)}.
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iii) Conversely, if I0 = Re(
∑

k∈(K∩J)+

bkc−k
k2

) 6= 0 then for ev-

ery solution
∫∞
0
|v(s)|ds = ∞, and v(t) does not converge to

zero.

Proof:

First, we study the behaviour for large time of the coefficients
ak(t).

The distance between the coefficients that represents the solu-
tion of the system, ak(t) to the values of those coefficients in
the equilibrium, bk

4νπ2k2 is computed.

For t0 enough large, we known that for every t > t0 we have

ak(t) = ak(t0)e
−

∫ t
t0

2πikv+4νπ2k2
+bk

∫ t

t0

e−
∫ t
r
2πikv+4νπ2k2dr

(15)
and using

∫ t
t0
e−

∫ t
r
4νπ2k2 = 1

4νπ2k2 (1 − e−4νπ2k2(t−t0)) we
have that

ak(t)−bk(1− e−4νπ2k2(t−t0))

4νπ2k2
= ak(t0)e

−
∫ t
t0

2πikv+4νπ2k2
+

+bk

∫ t

t0

e−
∫ t
r
4νπ2k2(e−

∫ t
r
2πikv − 1)dr.

Taking limits when t→∞, we get

ak(t) − (1 − e−4νπ
2k2(t−t0)) bk

4νπ2k2 → 0, since
ak(t0)e−

∫ t
0
2πikv+4νπ2k2 → 0 and from Eq. (13) we have

that bk
∫ t
t0
e−

∫ t
r
4νπ2k2(e−

∫ t
r
2πkiv − 1)→ 0. Now taking into

account that (1 − e−4νπ2k2(t−t0)) bk
4νπ2k2 converges to bk

4νπ2k2

for large time we conclude that:
ak(t)→ bk

4νπ2k2

I(t) = 2Re(
∑

k∈(K∩J)+

ak(t)c−k)→ I0
2νπ2

= I∗0
(16)

with I0 = 2Re(
∑

k∈(K∩J)+

bkc−k
4νπ2k2

).

We note that T (t, x) =
∑
k ak(t)e2πkix →

θ∞ =
∑
k

bk
4νπ2k2 e

2πkix and we also note ∂2θ∞
∂x2 =

−1
ν

∑
k bke

2πkix = −1
ν h(x).

To conclude, we study now when the velocity v(t) and the ac-
celeration w(t) go to zero. From (10) we can reading the equa-
tion for v, the first equation of system Eq. (7), as

ε
d2v

dt2
+
dv

dt
+G(v)v = I(t).

we consider now, G(v) = G0 > 0 and then we note that:

I) First, if we denoted by vH(t) any solution of linear homoge-
neous equation given by:

ε
d2v

dt2
+
dv

dt
+G0v = 0

then vH(t)→ 0 as t→∞ since there exits a base of solutions
given by exponential functions wihch converge to zero.

II) Second,using (16) for every δ > 0 there exists t0 such that
|I(t)− I∗0 | ≤ δ for ever t ≥ t0, and

ε
d2v

dt2
+
dv

dt
+G0v = I(t) = (I(t)− I∗0 )) + I∗0 ≤ δ + I∗0 .

Now taking into accoun that

vp(t) =
δ + I∗0
G0

satisfies ε
d2v

dt2
+
dv

dt
+G0v = δ + I∗0

and any solution of

ε
d2v

dt2
+
dv

dt
+G0v = δ + I∗0 ,

are given by v(t) = vH(t)+vp(t) for some vH(t); we conclude
that

limsupt→∞|v(t)| ≤ δ + I∗0
G0

for every δ > 0 and

|v(t)| → I∗0
G0

.

i)-ii) In particular, when K ∩ J = ∅ or I0 = 0, i.e.I∗0 = 0,
we get v(t) → 0 and if we also prove that w(t) → 0 then we
conclude.

In effect, if v(t)→ 0 , for every δ > 0 there exists t0 such that
|G0v| ≤ δ and εd|w|dt + |w| ≤ δ for every t ≥ t0, this is

|w(t)| ≤ |w(t0)|e− 1
ε (t−t0) + δ[1− e− 1

ε (t−t0)] ≤ δ

i.e w(t)→ 0 as t→∞.

iii) Finally, we also note that

liminft→∞|v(t)| ≥ δ + I∗0
G0

for every δ > 0 and in the case of I0 6= 0, then I∗0 6= 0 and we
get liminft→∞|v(t)| > 0, which implies that

∫∞
0
|v(s)|ds =

∞. This result is in contradiction with the initial condition∫∞
0
|v(s)|ds < ∞, what implies that it is not a valid hypothe-

sis.
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3.3 Concluding remarks

Recalling that functions associated to circuit geometry, f, and
to prescribed heat flux, h, are given by f(x) =

∑
k∈J cke

2πkix

and h(x) =
∑
k∈K bke

2πkix, respectively. In Jiménez-Casas
et. al [8], using the operator abstract theory, it is proved that
if K ∩ J = ∅, then the global attractor for system Eq. (1) in
IR2× Ḣ1

per is reduced to a point {(0, 0, θ∞)}, where θ∞ is the
unique solution in Ḣ2

per(0, 1) of −ν ∂
2θ
∂x2 = h(x).

In this sense the Proposition 3 offers the possibility to obtain
the same asymptotic behaviour for the dynamics, i.e., the at-
tractor is also reduced to a point taking functions f and h with-
out this condition, that is with K ∩ J 6= ∅, its enough that the

set (K ∩ J) 6= ∅, but Re(
∑

k∈(K∩J)+

bkc−k
k2

) = 0, when we

consider the linear friction case G = G0.

We note, the result about the inertial manifold (Jiménez-Casas
et. al [8]) reduces the asymptotic behaviour of the initial sys-
tem Eq. (1) to the dynamics of the reduced explicit system Eq.
(8) with k ∈ K ∩ J.

We observe also that from the analysis above, it is possible to
design the geometry of circuit, f , and/or heat flux, h, so that
the resulting system has an arbitrary number of equations of
the form N = 4n0 + 1 where n0 is the number of elements
of (K ∩ J)+ and we consider the real an imaginary parts of
relevant coefficients for the temperature ak(t) and solute con-
centration dk(t) with k ∈ (K ∩ J)+ .

Note that it may be the case that K and J are infinite sets, but
their intersection is finite. Also, for a circular circuit we have
f(x) ∼ asen(x) + bcos(x), i.e. J = {±1} and then K ∩ J is
either {±1} or the empty set.

Recently, we have considered a thermosyphon model contain-
ing a viscoelastic fluid and we have shown chaos in some
closed-loop thermosyphon model with one-component vis-
coelastic fluid not only in this model [8], also in other kind
of transfer law ( Jiménez-Casas and Castro [7], Yasappan and
Jiménez-Casas et al. [9]), and even in some cases with a vis-
coelastic binary fluid (Yasappan and Jiménez-Casas et al. [10])
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