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Abstract	
The	 present	 Thesis	 tackles	 the	 problem	 of	 aerodynamic	 shape	 optimization,	

particularly	in	the	case	of	big	changes	of	geometry.	The	approach	proposed	is	a	Multi-
Objective	 Structured	 Hybrid	 Direct	 Search	 and	 this	 Thesis	 presents	 the	 MOST-HDS	
model	 developed	 for	 this	 purpose.	 This	 model	 is	 a	 general,	 automatic,	 flexible	 and	
robust	 methodology	 which	 is	 applicable	 to	 many	 different	 fields	 of	 aerodynamic	
optimization	 and	 which	 combines	 elements	 of	 gradient,	 genetic	 and	 swarm	 search.	
MOST-HDS	 is	 applied	 to	 two	 relevant	 and	 significantly	 different	 industrial	 cases:	 the	
design	 of	 closed	wind	 tunnels	 and	 the	 inlet	 duct	 design	 of	 industrial	 boilers	 used	 in	
combined	cycle	power	plants.	The	results	obtained	with	the	optimization	methodology	
proposed	 show	 significant	 performance	 improvements	 over	 traditional	 designs	 and,	
moreover,	 innovative	 and	 non-conventional	 designs	 are	 obtained	 for	 certain	 cases,	
which	 also	 outperform	 current	 design	 guidelines.	 A	 comparison	 of	 MOST-HDS	 and	
surrogate-based	 optimization	 (using	 response	 surfaces)	 is	 presented	 and	 the	
advantages	 and	 limitations	 of	 each	 approach	 are	 discussed	 in	 detail.	 Finally,	 the	
algorithm	 developed	 for	 this	 Thesis	 is	 also	 applied	 to	 a	 well-known	 and	 challenging	
mathematical	test	problem	(the	WFG	test	suite)	and	compared	to	a	popular,	advanced	
Multi-Objective	 Evolutionary	 Algorithm,	 the	 NSGA-II.	 The	 results	 are	 very	 promising	
and	illustrate	the	potential	of	MOST-HDS	for	general	optimization	purposes,	too.	

	

Resumen	
La	 presente	 Tesis	 aborda	 el	 problema	 de	 la	 optimización	 aerodinámica,	

particularmente	en	el	caso	de	grandes	cambios	de	geometría.	El	enfoque	propuesto	es	
una	 búsqueda	 directa	 híbrida,	 estructurada	 y	 multiobjetivo	 y	 esta	 Tesis	 presenta	 el	
modelo	MOST-HDS	desarrollado	para	este	propósito.	Este	modelo	es	una	metodología	
general,	 automática,	 flexible	y	 robusta	que	es	aplicable	a	muchos	campos	diferentes	
de	 optimización	 aerodinámica	 y	 que	 combina	 elementos	 de	 búsqueda	 basada	 en	
gradiente,	 genéticos	 y	 enjambre.	 MOST-HDS	 se	 aplica	 a	 dos	 casos	 industriales	
relevantes	y	significativamente	diferentes:	el	diseño	de	túneles	de	viento	cerrados	y	el	
diseño	del	conducto	de	entrada	de	calderas	industriales	utilizadas	en	centrales	de	ciclo	
combinado.	 Los	 resultados	 obtenidos	 con	 la	metodología	 de	 optimización	propuesta	
muestran	 mejoras	 significativas	 respecto	 a	 los	 diseños	 tradicionales	 y,	 además,	 se	
obtienen	 diseños	 innovadores	 y	 no	 convencionales	 para	 ciertos	 casos,	 que	 también	
superan	las	directrices	actuales	de	diseño.	Se	presenta	una	comparación	de	MOST-HDS	
y	la	optimización	basada	en	modelos	aproximados	(utilizando	superficies	de	respuesta)	
y	 se	 discuten	 en	 detalle	 las	 ventajas	 y	 limitaciones	 de	 cada	 enfoque.	 Por	 último,	 el	
algoritmo	desarrollado	para	 esta	 Tesis	 también	 se	 aplica	 a	 un	 conocido	 y	 desafiante	
problema	de	prueba	matemática	(el	conjunto	de	problemas	WFG)	y	se	compara	con	un	
popular	y	avanzado	algoritmo	multiobjetivo	evolutivo,	el	NSGA-II.	 Los	 resultados	 son	
muy	prometedores	e	 ilustran	el	potencial	que	MOST-HDS	tiene,	asimismo,	para	 fines	
generales	de	optimización.	
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Chapter	1 -	Introduction.	Thesis	
motivation,	objectives	and	contributions		

According	to	the	theory	of	aerodynamics	and	wind	tunnel	testing	the	bumblebee	is	unable	to	fly.	However	the	bumblebee	goes	
ahead	and	flies	anyway—and	makes	a	little	honey	every	day.	

	
Sign	in	a	General	Motors	Corporation	factory.	

As	quoted	in	Ralph	L.	Woods,	The	Businessman's	Book	of	Quotations	(1951).	

	
This	chapter	introduces	a	general	overview	of	the	field	of	study	of	this	Thesis	and	
justifies	 the	 general	motivation	 for	 this	 research	work.	Moreover,	 it	 illustrates	
the	 relevance	 of	 shape	 optimization,	 particularly	 aerodynamic	 shape	
optimization,	 with	 real-life	 examples.	 Based	 on	 this,	 the	 Thesis	 approach	 is	
summarized	 and	 its	 main	 objectives	 and	 contributions	 are	 presented.	
Furthermore,	 the	 chapter	 outlines	 the	 general	 structure	 of	 the	 document,	 to	
help	 the	 reader	 understand	 the	 sequence	 of	 the	 chapters.	 Firstly,	 Section	 1.1.	
presents	a	general	introduction;	Section	1.2.	puts	forward	the	general	motivation	
of	 the	 Thesis;	 Section	 1.3.	 presents	 a	 general	 summary	 of	 the	 objectives	 and	
main	 contributions	 of	 this	 Thesis;	 finally,	 Section	 1.4.	 describes	 the	 general	
structure	of	the	document,	to	 justify	the	order	of	the	chapters	and	to	motivate	
the	reader	to	delve	into	the	whole	document.	
	

1.1.	Introduction	
Complex	 aerodynamic	 components	 are	 of	 paramount	 importance	 both	 for	 the	

scientific	community	and	for	our	everyday	lives.	From	a	space	rocket	to	a	high-speed	
train,	a	car	or	a	boat	of	any	kind,	aerodynamic	design	optimization	can	yield	important	
advantages	 such	 as	 higher	 speeds,	 reduced	 fuel	 consumption,	 better	 stability	 or	 a	
larger	operation	envelope.	

1	
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However,	aerodynamics	has	not	always	been	a	relevant	discipline	for	the	design	of	
these	 different	 vehicles.	 Except	 in	 air	 and	 spacecraft,	 for	which	 aerodynamics	 is	 the	
basis,	for	those	bodies	intended	to	travel	on	land	or	even	on	water,	the	designers	did	
not	realize	the	paramount	importance	of	aerodynamic	shape	design.	

Let	 us	 take	 the	 example	 of	 the	 automotive	 sector,	 highly	 advanced	 nowadays	 in	
terms	of	aerodynamic	design.		

Although	during	its	very	first	stages	(19th	century),	aerodynamics	was	not	taken	into	
account,	 quite	 soon	 the	 automobile	 industry	 started	 including	 aerodynamic	
considerations	 in	 the	 design	 phase.	 However,	 the	main	 objective	was	 to	 reduce	 the	
Drag	 coefficient	 of	 the	 vehicle.	 A	 lower	 value	 of	 this	 coefficient	 means	 a	 better	
penetration	of	 the	vehicle	 in	 the	air,	 i.e.	 a	 lower	 resistance	and	 therefore	a	 reduced	
fuel	 consumption	 or	 a	 higher	 speed.	 The	 mathematical	 definition	 for	 the	 Drag	
coefficient	is	given	in	the	following	equation1:		

	

AV
DCd

×××
=

¥
2

2
1 r

		 Equation	1-1	

	

where	 D	 represents	 the	 Drag	 itself,	 i.e.	 the	 force	 representing	 the	 aerodynamic	
resistance	acting	on	the	vehicle	or	body	along	the	longitudinal	axis,	𝜌	is	the	air	density,	
𝑉#	the	air	speed	of	the	free	stream	and	A	is	a	reference	area	(normally	the	frontal	or	
projected	 vehicle	 area).	 The	 Drag	 coefficients	 for	 a	 set	 of	 general	 body	 shapes	 are	
given	in	Figure	1–1.	The	strong	impact	of	shape	design	can	be	very	clearly	understood	
from	these	values.	

	

	
Figure	1–1	-	Drag	coefficients	for	general	body	shapes.	

																																																								
1	Instead	of	“d”,	“x”	is	sometimes	used	as	the	index	to	refer	to	the	Drag	coefficient	(Cx).	
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The	aim	of	the	designers	was	therefore	to	reduce	the	value	of	the	Drag	coefficient	
to	 decrease	 the	 value	 of	 the	 longitudinal	 force	 that	 the	 vehicle	 had	 to	 overcome	 in	
order	to	advance.	

For	example,	as	early	as	1916,	the	Peugeot	that	won	the	Indianapolis	500	that	year	
had	 a	 slightly	 streamlined,	 rather	 than	 square,	 rear	 end,	 to	 reduce	 the	 Drag	 of	 the	
vehicle	(in	Figure	1–2,	this	can	be	observed,	not	just	in	the	Peugeot,	car	17,	but	also	in	
the	car	to	the	right	of	the	picture).	

	

	
Figure	1–2	-	Darío	Resta	and	his	mechanic	in	the	Peugeot	car,	which	won	the	Indianapolis	500	in	

1916.	

	

Nevertheless,	the	main	technical	leap	occurred	when	aerodynamic	engineers	began	
to	worry	about	the	Lift	coefficient,	analogue	to	the	Drag	coefficient	but	replacing	the	
longitudinal	aerodynamic	force	with	the	vertical	aerodynamic	force.	More	specifically,	
the	goal	of	the	designers	was	to	reduce	the	value	of	the	Lift	coefficient,	because	it	was	
responsible	for	the	lifting	force	on	a	vehicle	as	its	speed	increased,	and	even	to	make	it	
negative,	 especially	 for	 sports	 cars	 (since	 conventional	 road	 cars	 have	 positive	 Lift	
values,	especially	near	the	rear	axle).	With	a	negative	Lift	or	downforce	the	cornering	
speed	you	can	reach	can	exceed	in	more	than	three	times	the	vehicle's	speed	without	
downforce	(Katz	[2006]).	

As	 an	 example	 of	 the	 importance	 of	 aerodynamics	 in	 motorsport,	 Figure	 1–3	
illustrates	 the	different	 trends	 that	have	been	 followed	by	aerodynamic	engineers	 in	
Formula	 1	 throughout	 its	 history.	 Figure	 1–4	 gives	 examples	 of	 real	 cars	 designed	
following	these	aerodynamic	trends.		
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Figure	1–3	-	Aerodynamic	trend	evolution	in	Formula	1	since	the	beginning	of	the	competition	(1950).	

	

	
Figure	1–4	-	Real	examples	of	the	different	aerodynamic	trends	in	Formula	1	since	the	beginning	of	

the	competition	(1950).	

	

For	the	purpose	of	this	Thesis,	it	is	very	worth	highlighting	that	aerodynamic	shape	
design	is	not	only	a	case	of	fine-tuning,	but	many	times	of	qualitative	modifications,	as	
have	been	shown	in	Figure	1–3	and	Figure	1–4,	and	even	radical,	non-conventional	or	
non-intuitive	 designs,	 such	 as	 those	 depicted	 in	 Figure	 1–5.	 These	 substantial,	
qualitative	 or	 even	 disruptive	 shape	 design	 modifications,	 here	 referred	 to	 as	 big	
geometry	changes,	will	be	taken	into	account	in	the	shape	optimization	methodology	
presented	in	this	Thesis,	and	this	is	one	of	the	key	differential	elements	with	respect	to	
most	of	works	of	the	State	of	the	Art.		
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Figure	1–5	-	Examples	of	disruptive	designs	in	Formula	1,	either	because	of	the	wing	design,	or	the	

nose	design,	or	even	the	introduction	of	a	fan	for	increased	downforce.	

	

In	the	field	of	aerodynamics,	street	cars	have	inherited	numerous	elements	of	the	
lessons	 learned	 in	 motorsport.	 Although	 in	 general	 they	 do	 not	 have	 wings	 or	 an	
aerodynamic	bottom,	they	have	 incorporated	elements	and	details	which	allow	for	a	
better	stability	of	the	vehicle	at	high	speeds,	when	aerodynamics	really	counts.	Other	
modifications	 aim	 at	 achieving	 less	 aerodynamic	 noise	 within	 the	 passenger	
compartment,	 less	 accumulation	 of	 dirt	 in	 long	 journeys	 and	 greater	 efficiency	 in	
aspects	such	as	ventilation	or	cooling.	

The	strong	evolution	in	aerodynamic	design	is	by	no	means	exclusive	to	motorsport	
or	 to	 the	 automotive	 sector.	 The	 following	 figures	 aim	 at	 showing	 the	 impact	 of	
aerodynamics	in	shape	design	in	a	very	wide	range	of	sectors.	

	

	
Figure	1–6	-	Aerodynamic	design	evolution	of	an	example	road	car,	in	this	case	the	BMW.	
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Figure	1–7	-	Aerodynamic	design	evolution	in	the	train	sector.	A	steam	high	speed	train,	capable	of	

maximum	speeds	of	160km/h	and	average	speeds	of	130km/h,	compared	to	the	most	modern	Talgo	
train,	the	Avril,	capable	of	maximum	speeds	of	363km/h	and	average	speeds	of	330km/h.	

	

	
Figure	1–8	-	Aerodynamic	design	evolution	in	the	marine	sector,	in	particular	in	the	America's	Cup.	To	

the	left	the	1871	Defender,	the	Columbia/Sappho,	which	won	that	year.	To	the	right,	the	2013	winner,	
the	Defender	that	year,	the	17	Oracle	Team	USA.	

	

	
Figure	1–9	-	Aerodynamic	design	evolution	in	the	cycling	sector.	A	set	of	representative	modern	

racing	helmets	are	shown.	

	

The	above	figures	illustrate	how	the	shape	design	changes	over	history	in	different	
sectors	 have	 been	 a	 combination	 of	 fine-tuning	with	 qualitative	 or	 discrete	 leaps	 in	
design,	 towards	 new,	 more	 radical	 or	 unconventional	 concepts.	 These	 are	 non-
exhaustive	examples	of	what	will	be	referred	to	as	small	versus	big	geometry	changes	
(Chapter	2),	a	concept	of	great	importance	for	this	Thesis.	
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1.2.	Thesis	motivation	
From	Section	1.1.	above	it	is	clear	that	aerodynamic	shape	design	is	highly	relevant	

in	general	body	design	in	many	different	sectors.	It	is	also	evident	how	the	design	has	
been	moving	both	in	small	and	in	big	jumps	from	one	design	concept	to	the	following	
one,	up	until	the	present	day.	

Having	said	this,	it	is	also	worth	highlighting	that	aerodynamics	is	not	a	trivial	area	
of	 research	and	 the	governing	equations	of	 the	different	 types	of	 flow	 fields	are	 too	
complex	to	be	solved	analytically.		Figure	1–10	depicts	the	3D	velocity	streamlines	for	
an	 example	 complex	 aerodynamic	 body	 geometry.	 Many	 highly	 complex	 flow	
phenomena	(vorticity,	flow	detachment,	backflow,	etc.)	can	be	observed	and	illustrate	
the	complexity	of	aerodynamic	analyses.			

	

	
Figure	1–10	-	Example	3D	velocity	streamlines	for	a	complex	aerodynamic	body,	in	this	case	the	floor	

of	a	motorsports	car.	

	

Aerodynamic	 research	 has	 three	 main	 tools	 to	 evaluate	 the	 performance	 of	 a	
particular	shape	design	(for	a	detailed	description	of	them,	for	the	automotive	sector,	
refer	to	Joseph	Katz	[2006]):		

1. Computer	 analysis:	 by	 means	 of	 numerical	 analysis	 (Computational	 Fluid	
Dynamics,	 CFD),	which	 can	either	 follow	a	direct	 approach	of	 the	high-fidelity	
model2	 (direct	 simulation)	or	 it	 can	make	use	of	 a	 surrogate	 (or	 approximate)	
model	(a	good	list	of	the	different	general	surrogate	techniques	can	be	found	in	
Robinson	et	al.	[2006]).	

2. Wind	tunnel	testing:	Figure	1–11	shows	three	examples	of	wind	tunnel	testing	
for	Volkswagen	cars	of	different	years.		

3. Testing	 in	 the	 real	 environment:	 this	 can	 mean	 road	 testing,	 on-sea	 testing,	
flight	testing,	depending	on	the	body	to	be	tested.	

																																																								
2	 The	 so-called	 high-fidelity	 model,	 in	 any	 case,	 will	 also	 include	 a	 set	 of	 simplifications	 of	 the	

governing	equations,	unless	performed	via	Direct	Numerical	Simulation,	which	is	too	time-consuming	in	
most	cases.	
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Figure	1–11	-	Wind	tunnel	testing	for	three	VW	cars	of	different	years.	Velocity	streamlines	are	

simulated	with	a	smoke	generator.	Changes	in	the	flow	field	can	be	observed	between	the	different	car	
models.	

	

Taking	 all	 the	 above	 into	 account,	 the	 motivation	 of	 this	 Thesis	 is	 to	 propose	 a	
general	 method	 to	 optimize	 shape	 design	 with	 an	 automatic,	 flexible	 and	 robust	
procedure	which	can	be	applied	to	many	different	real	industry	applications.	A	strong	
aspect	of	this	Thesis	motivation	is	the	fact	that	the	general	method	developed	should	
be	able	 to	handle	not	only	 small,	 but	 also	big,	 changes	 to	 the	body	geometry,	 since	
they	can	have	an	 important	 impact	on	performance.	These	big	changes	are	currently	
handled	mostly	by	trial	and	error	or	manual	procedures,	while	computer	optimization	
has	 been	 limited	 to	 cases	 of	 small	 geometry	 changes	 or	 to	 fine-tuning	 (refer	 to	 the	
State	of	the	Art,	in	Chapter	3).			
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1.3.	Thesis	approach,	main	objectives	and	contributions	
The	 problem	 this	 Thesis	 deals	 with	 is	 the	 multi-attribute	 or	 multi-objective	

aerodynamic	 shape	optimization	of	 real	 geometries	 in	different	 fields	of	 application,	
subject	to	a	set	of	constraints,	and	taking	into	account	both	small	and	big	changes	of	
the	geometry	of	interest.	

The	approach	proposed	for	the	problem	described	above	will	be	the	development	
of	 a	 general	 method	 based	 on	 a	Multi-Objective	 Structured	 Hybrid	 Direct	 Search	
optimization	algorithm	(referred	to	as	MOST-HDS).	

1.3.1.	THESIS	OBJECTIVES	

The	Thesis	main	and	secondary	objectives	are	the	following:	

1. Present	a	structured,	detailed	and	commented	review	of	the	applicable	State	of	
the	Art.	

2. Propose	how	a	problem	of	shape	design	can	be	defined	in	a	most	suitable	way	
to	apply	not	only	advanced	optimization	schemes	in	general,	but,	 in	particular,	
multi-attribute/objective,	 structured,	 hybrid,	 direct	 search	 (MOST-HDS).	 This	
objective	includes	the	following	secondary	objectives:	

a. Definition	of	truly	independent	variables.	

b. Definition	of	attributes	or	objectives	to	be	optimized.		

3. Design	 the	MOST-HDS	 algorithm	architecture	 and	develop	 a	 computer	 tool	 to	
apply	it	to	real	problem	cases.		

4. Validate	 the	 MOST-HDS	 general	 method	 presented	 to	 show	 its	 broad-scope	
applicability	(not	only	to	shape	design	optimization):	

a. Mathematical	validation:	test	suite	benchmark	validation	

b. Validate	with	real	industry	cases:	

i. Wind	tunnel	case.	

ii. Industrial	boiler	case.	

5. Compare	the	proposed	method	to	other	methods	and	approaches	used	 in	 the	
State	 of	 the	 Art	 (surrogate	 models	 and	 other	 commonly-used	 optimization	
algorithms).	
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1.3.2.	THESIS	CONTRIBUTIONS	

Based	on	this	set	of	main	and	secondary	objectives,	the	following	is	a	detailed	list	of	
this	 Thesis	 contributions,	 which	 will	 be	 presented	 again	 in	 the	 conclusions	 chapter	
(Chapter	 8).	 They	 are	 listed	 in	 decreasing	 order	 of	 relevance,	 from	 the	 author’s	
perspective:	

1. Development	of	MOST-HDS,	a	general	model	for	multi-attribute	optimization	of	
aerodynamic	shape	design	which	is	a	contribution	because:	

a. It	 is	 capable	 of	 handling	 big	 geometry	 changes,	 which	 is	 very	 rarely	
addressed	in	literature	

b. It	 is	 applicable	 to	 a	 wide	 range	 of	 real	 life	 problems,	 both	 industrial	
(shape	design	optimization)	and	mathematical	(optimization	of	complex	
functions	 modelling	 real	 problems).	 As	 commented	 below,	 the	 results	
presented	in	this	Thesis	show	that	the	methodology	yields	performance	
improvements	 over	 currently	 used	 optimization	 algorithms	 and	
improved	 geometry	 designs,	 with	 important	 reductions	 of	 objectives	
such	as	energy	consumption	or	material	cost.		

c. This	 model	 exploits	 the	 potential	 of	 direct	 search	 and,	 in	 particular,		
builds	 a	 hybrid	 direct	 search	 architecture,	 combining	 genetic,	 gradient	
and	 swarm	 search	 intelligence.	 This	 approach	 is	 novel	 in	 itself	 and,	 in	
particular,	 in	 the	 area	of	 aerodynamic	 shape	optimization.	Once	 again,	
the	improvement	shown	in	the	results	supports	the	fact	that	MOST-HDS	
is	 an	 interesting	 and	 valuable	 contribution	 to	 the	 current	 State	 of	 the	
Art.	

d. The	search	carried	out	by	MOST-HDS	is	structured	and	this	is	one	of	the	
key	aspects	of	the	model.	This	constitutes	an	additional	contribution	of	
this	Thesis	to	the	field	of	aerodynamic	shape	optimization	because	such	
a	full	use	of	structured	optimization	has	not	been	used	up	to	this	date.	
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2. Full	 implementation	 of	 an	 automatic	 workflow	 for	 optimization	 of	 CFD	
problems.	MS	Excel	and	a	VBA	code	(Visual	Basics	for	Applications)	are	coupled	
to	 ANSYS	 FLUENT	 for	 this	 Thesis,	 although	 the	 optimization	methodology	 can	
easily	be	translated	to	MATLAB,	C++,	Python	or	other	programming	languages	(it	
was	 considered	 that	 the	 integration	 with	 ANSYS	 would	 be	 easier	 and	 more	
efficient	 using	MS	 Excel).	MOST-HDS	 is	 thus	 implemented	 in	 a	 computer	 tool	
connected	to	a	CFD	solver	(ANSYS	FLUENT	in	this	case,	but	it	can	be	a	different	
solver).	 The	 MOST-HDS	 tool	 controls	 the	 optimization	 process,	 and	 calls	 the	
solver	 every	 time	 a	 candidate	 design	 point	 has	 to	 be	 evaluated.	 This	 requires	
finding	 a	 smart	 geometry	 parameterization	 to	 represent	 body	 shapes	with	 an	
efficient	set	of	 independent	design	variables.	 In	every	evaluation,	these	design	
variables	are	automatically	mapped	to	other	variables	in	the	CFD	solver,	which	
are	 not	 so	 intuitive	 but	 are	 understood	 by	 the	 CFD	 program.	 This	 is	 a	
contribution	 to	 the	 State	 of	 the	 Art	 since	 the	 automatic	workflow	 is	 a	 robust	
method	which	reduces	a	project’s	cycle	time	or	increases	the	number	of	design	
points	which	can	be	evaluated	within	a	fixed	time.	

3. Application	 of	 the	 MOST-HDS	 model	 to	 two	 real-life	 problems:	 closed	 wind	
tunnels,	 such	 as	 those	 used	 for	 testing	 and	 leisure,	 and	 industrial	 boilers	 for	
combined	cycle	power	plants.	This	contributes	 to	the	State	of	 the	Art	because	
the	results	obtained	show	that	MOST-HDS	can	yield	surprising,	non-intuitive	and	
unconventional	designs	which	perform	better	than	traditional	concepts.	

4. Regarding	 the	 industrial	 boiler	 optimization,	 the	 contribution	 of	 this	 Thesis	 is	
twofold:	 on	 the	 one	 hand,	 it	 shows	 that	 there	 is	 substantial	 room	 for	
improvement	 in	 the	 shape	 design	 of	 the	 inlet	 ducts	 of	 Heat	 Recovery	 Steam	
Generator	 (HRSGs),	 in	 terms	 of	 achieving	 a	 lower	 pressure	 drop,	 a	 higher	
velocity	 uniformity	 and	 an	 important	 cost	 reduction	 of	 the	 unit;	 on	 the	 other	
hand,	 it	 shows	how	 the	 application	 of	 the	MOST-HDS	 algorithm,	 applicable	 in	
many	 fields	 for	 aerodynamic	 shape	 optimization	 involving	 big	 geometry	
changes,	 can	 find	 these	 improved	designs,	which	 can	be	quite	unconventional	
and	non-intuitive.	The	results	obtained	 for	 two	HRSG	families	show	that	 there	
are	optimum	trade-off	design	points	with	simultaneous	 reductions	 in	pressure	
drop	of	up	to	20-25%,	in	 lateral	surface	of	up	to	38%	and	in	 length	of	up	16%,	
while	having	comparable	velocity	uniformities	to	the	existing	designs.	

5. Furthermore,	it	is	also	shown	in	this	Thesis	that	the	double	angle	design	of	HRSG	
inlet	 ducts,	 which	 is	 the	 current	 design	 trend,	 is	 not	 always	 better	 than	 the	
single	angle	design,	which	was	the	traditional	guideline	followed.	
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6. Analysis	 of	 the	 limitations	 of	 surrogate	 models	 (mainly	 response	 surfaces),	
which	are	optimization	techniques	widely	used	and	very	popular	nowadays.	This	
Thesis	 shows	 that	 MOST-HDS	 beats	 surrogate	 models	 in	 the	 aerodynamic	
optimization	 of	 complex	 components	 (wings,	 high-speed	 train	 noses,	
automotive	 designs,	 etc.),	 especially	 when	 big	 changes	 of	 geometry	 are	
involved.	 A	 detailed	 comparison	 is	 carried	 out	 for	 the	 specific	 example	 of	 the	
industrial	boiler	case.	It	is	difficult	in	many	cases	for	any	surrogate	model	(be	it	
by	means	 of	 data	 fits	 and	 response	 surfaces,	 or	 by	 reduced	 order	models	 or	
hierarchical	 or	 multi-fidelity	 models)	 to	 be	 an	 accurate	 approximation	 if	 the	
objective	 function	 is	 strongly	non-linear,	having	 to	 represent	phenomena	such	
as	 flow	 separation,	 and	 combining	 variables	 of	 different	 types	 (discrete,	
continuous).	This	 is	very	much	the	case	when	big	variable	changes	are	allowed	
in	 aerodynamic	optimization	problems,	 and	when	a	whole	body	 (wind	 tunnel,	
for	instance)	is	optimized,	and	not	only	certain	parts	or	components	of	it.	

7. Benchmark	 results	of	MOST-HDS	when	applied	 to	an	exhaustive	mathematical	
optimization	test	suite,	 in	order	to	compare	 its	performance	with	other	widely	
used	 general-purpose	 optimization	 algorithms.	 Hence	 the	 potential	 of	MOST-
HDS	 is	 shown,	 not	 only	 for	 shape	 design	 optimization,	 but	 also	 for	 other	
applications.	 The	 results	 show	 that	MOST-HDS	 can	 be	more	 competitive	 than	
modern	optimization	algorithms.	

8. Exhaustive	 review	 of	 the	 applicable	 State	 of	 the	 Art	 regarding	 design	
optimization,	with	an	easy-to-follow	structure	and	relevant	highlights	on	each	of	
the	research	works	included.	This	can	be	used	in	the	future	by	other	researchers	
to	have	a	detailed	overview	of	the	State	of	the	Art	in	this	area	of	expertise.	

1.4.	Structure	of	this	document	
This	 document	 aims	 to	 present	 the	 research	work	 carried	 out	 for	 this	 Thesis	 in	 a	

rigorous	 yet	 comprehensive	 and	 easy-to-read	 manner.	 Once	 Chapter	 1	 has	 set	 the	
foundations	 for	 the	 Thesis,	 describing	 its	 motivation,	 main	 objectives	 and	
contributions,	the	rest	of	the	document	is	organized	as	follows:			

- Chapter	2	–	Problem	description	and	general	approach	describes	in	more	detail	
the	problem	addressed.	

- Chapter	3	–	State	of	the	Art	review	is	a	thorough	review	of	the	State	of	the	Art	
of	design	optimization,	especially	in	the	area	of	aerodynamics.	

- Chapter	 4	 –	 Problem	 definition	 presents	 the	 detailed	 problem	 definition	 and	
the	 geometry	 parameterization	 proposed,	 for	 the	 two	 industrial	 examples	
presented,	 to	 illustrate	 the	 applicability	 of	 the	 method	 for	 widely	 different	
fields.	
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- Chapter	5	–	The	MOST-HDS	optimization	model	offers	and	in-depth	explanation	
of	the	general	model	and	optimization	algorithm	proposed	by	this	Thesis.	

- Chapter	 6	 –	 Results	 obtained	 presents	 the	 results	 section	 and	 shows	 the	
applicability	of	MOST-HDS	for	two	aerodynamic	shape	design	problems:	closed	
wind	 tunnels	 for	 testing	 and	 other	 purposes,	 and	 industrial	 boilers	 used	 in	
combined	cycle	power	plants.	Moreover,	it	analyses	the	performance	of	MOST-
HDS	as	a	general	purpose	optimization	algorithm,	applying	it	to	a	mathematical	
test	suite	used	for	benchmark	studies	in	the	State	of	the	Art.	

- Chapter	7	–	Comparison	to	surrogate	models	compares	the	results	obtained	by	
MOST-HDS	with	a	very	popular	optimization	approach,	surrogate	models,	used	
for	 problems	 with	 time-consuming	 evaluations.	 This	 chapter	 will	 show	 the	
limitations	of	surrogate	models	when	applied	to	shape	design	problems	with	big	
geometry	changes.	

- Chapter	8	–	Conclusions	summarizes	the	main	conclusions,	the	results	obtained,	
the	Thesis	contributions,	 the	 limitations	for	MOST-HDS	and	the	future	work	to	
be	carried	out,	based	on	the	results	of	this	research.	

- APPENDIXES		

o A	–	Illustration	of	the	MOST-HDS	process	

o B	–	Important	notes	on	mesh	sensitivity	and	mesh	quality	
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with	a	smoke	generator.	Changes	in	the	flow	field	can	be	observed	between	the	different	car	models.	
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Chapter	2 -	Problem	description	and	
general	approach	

Aerodynamics	is	for	those	who	don’t	manufacture	good	engines.	
	

Enzo	Ferrari.	

	
This	 chapter	 presents	 the	 general	 problem	of	 aerodynamic	 shape	 optimization	
and	 the	 approach	 followed	 in	 this	 Thesis.	 It	 mentions	 other	 alternative	
approaches	used	by	other	authors	(refer	to	the	State	of	the	Art	in	Chapter	3	for	
more	 detail).	 In	 particular,	 this	 chapter	 gives	 an	 initial	 global	 overview	 of	 the	
hybrid	structured	direct	search	approach.	Additionally,	 for	the	sake	of	clarity,	 it	
defines	the	concept	of	small	v.	big	geometry	change.	Firstly,	Section	2.1.	offers	a	
brief	 introduction;	 Section	 2.2.	 describes	 the	 main	 problem	 addressed	 by	 this	
Thesis;	Section	2.3.	outlines	the	proposed	general	approach	for	this	work;	Section	
2.4.	 illustrates	the	difference	between	small	and	big	geometry	changes,	 for	 the	
purpose	 of	 this	 Thesis,	 with	 a	 real	 example	 case	 which	 will	 be	 presented	
thoroughly	in	Chapter	6;	and	finally,	Section	2.5.	offers	a	set	of	final	remarks	to	
conclude	the	chapter.	
	

2.1.	Introduction	
As	 Chapter	 1	 has	 introduced,	 the	 field	 of	 aerodynamic	 shape	 design	 in	 different	

sectors	 (automotive,	motorsport,	aeronautics,	high-speed	trains,	etc.)	has	undergone	
different	 stages	 of	 development.	 At	 first	 not	 well	 understood,	 and	 with	 an	
underestimated	 impact	 on	 overall	 body	 design,	 aerodynamics	 started	 growing	 in	
importance	and	it	is	now	one	of	the	key	areas	of	engineering	design	in	many	fields.	

Trial	and	error	has	been	the	common	design	trend	for	many	decades,	based	on	the	
designer’s	experience.	Thereafter	the	aerodynamic	performance	of	each	design	was	at	
first	 calculated	 using	 either	 simplified	 analytical	 equations	 or	 empirical	 correlations	
derived	 from	 test	 data.	 Currently	 most	 designs	 require	 either	 Computational	 Fluid	
Dynamics	 (CFD)	 solvers,	 or	 costly	 wind	 tunnel	 tests,	 or	 even	 testing	 in	 the	 real	
environment.	

2	
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Shape	design	optimization	has	gradually	grown	in	use	by	designers	and	engineers,	
but,	 in	 most	 cases,	 it	 starts	 with	 a	 first	 stage	 of	 trial-and-error-based	 selection	 of	
candidates	and	then	a	 fine-tuning	optimization	of	 the	best	designs.	 In	general,	when	
optimization	 is	 used,	 only	 small	 geometry	 changes	 are	 addressed.	 However,	 a	
complete,	automatic,	 flexible	and	robust	methodology	for	aerodynamic	shape	design	
optimization,	 able	 to	 analyze	 big	 geometry	 changes,	 has	 not	 been	 presented	 up	 to	
date,	as	far	as	we	know.	

This	Thesis	presents	an	optimization	methodology	of	this	kind,	which	can	be	applied	
to	many	fields	in	which	aerodynamic	design	is	important.		

The	main	contribution	of	 this	 chapter	 is	 to	describe	 the	difference	between	small	
and	big	geometry	changes,	 for	the	purpose	of	this	Thesis,	because	there	 is	very	 little	
work	 in	 the	 literature	 focused	 on	 shape	 optimization	 considering	 big	 geometry	
changes.	

2.2.	Characterization	of	the	type	of	problem	
The	methodology	presented	in	this	Thesis	is	a	multi-attribute/objective,	structured	

optimization	procedure,	based	on	hybrid	direct	search	(MOST-HDS).	Structured	refers	
to	 the	 fact	 that	 the	 complete	 optimization	 problem	 will	 be	 divided	 into	 simpler	
optimization	 sub-problems,	 following	 a	 structured	 architecture.	 Structured	
optimization	 is	 also	 referred	 to	 as	 sequential	 optimization,	 multi-level	 optimization,	
nested	optimization	or	hierarchical	optimization	(Cuadra	[1990],	Babu	[2014],	Held	et	
al.	[2006],	Robinson	et	al.	[2006],	Zhou	et	al.	[2015],	Liu	and	Zhang	[2014]	or	Nuñez	et	
al.	[2012]).	

The	optimization	architecture	developed	here	is	ideally	suited	to	problems	with	the	
following	 characteristics,	 as	 explained	 for	 example	 in	 Cuadra	 (1990)	 and	 Prada-
Nogueira	et	al.	(2015):	

	

1. The	number	of	independent	variables	(degrees	of	freedom)	is	high.	

2. The	 vector	 of	 independent	 variables	 does	 not	 have	 a	 fixed	 dimension;	 its	
dimension	depends	on	the	value	of	certain	variables.	

3. Independent	 variables	 are	 of	 different	 mathematical	 kinds	
(discrete/continuous),	 and	 have	 a	 different	 (stronger	 or	 weaker)	 influence	 on	
the	final	design.	These	two	facts	lead	to	a	hierarchy	of	variables.	

4. The	number	of	design	constraints	is	high.	

5. There	 are	 attributes	 of	 interest	 to	 the	 engineer	 that	 cannot	 be	 reduced	
efficiently	to	a	single	objective	function	because	they	are	mutually	conflictive,	or	
not	comparable.	Hence,	the	problem	is	truly	multi-attribute.		
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6. Complex	evaluation	methods	such	as	CFD	solvers	–	not	only	analytical	equations	
–	must	be	used,	so	the	evaluation	process	(defined	by	a	set	of	linkage	functions)	
is	complex	and	slow.	

In	 a	 multi-attribute,	 structured	 optimization,	 the	 following	 entities	 must	 be	
thoroughly	defined:	parameters,	 independent	variables,	attributes,	 linkage	 functions,	
constraints,	 and	evaluation	process	 (refer	 to	Chapter	 4	 for	 the	detailed	definition	of	
these	elements).	

Parameters	are	quantities	of	fixed	value,	being	that	value	fixed	either	externally	by	
the	user	or	 internally	by	the	optimization	model	within	a	particular	sub-problem.	For	
example,	the	level	of	discretization	of	the	geometry	model	for	the	aerodynamic	body	
of	 interest	 (as	will	be	explained	 in	more	depth	 in	Chapter	4),	or	 the	stopping	criteria	
(maximum	function	evaluations,	maximum	time,	etc.).	Eres	et	al.	(2014),	for	instance,	
present	an	interesting	and	novel	methodology	to	introduce	customer	requirements	in	
the	engineering	design	process,	applied	to	the	aerospace	sector.	

Variables	are	quantities	 that	can	change	their	value.	They	may	be	 independent	or	
dependent,	but	only	independent	variables	are	relevant	from	an	optimization	point	of	
view,	 since	 dependent	 variables	 are	 automatically	 computed	 inside	 a	 black-box	
evaluation	process.	 Independent	 variables	 (also	 called	degrees	 of	 freedom)	 can	 take	
any	value	among	a	particular	group	(positive	numbers,	binary,	etc.);	for	example,	the	
length	of	a	section	of	 the	geometry	 (continuous	variable),	or	 the	geometry	 type	of	a		
particular	transverse	section	of	the	model:	circular,	rectangular,	square,	etc.	(discrete	
variable).	 Explicit	 constraints	may	 limit	 their	 range	 of	 values	 a	 priori	 and,	 of	 course,	
other	constraints	of	any	kind	will	bound	the	feasible	search	space.	

Attributes,	 or	 objectives,	 are	 special	 dependent	 variables	 which	 allow	 for	 the	
comparison	of	one	solution	to	another	(i.e.	one	geometry	design	to	a	different	design).	
Here	they	can	refer	to	cost,	size,	flow	quality,	aerodynamic	performance,	or	any	other	
magnitude	of	interest	for	the	user.		

To	calculate	the	values	of	the	various	attributes	of	 interest	 from	the	values	of	the	
independent	 variables	 and	 the	 parameters,	 a	 set	 of	 equality	 constraints	 or	 linkage	
functions	is	required.	This	set	of	functions	is	structured	as	an	evaluation	process,	i.e.	a	
black-box	process	that	computes	the	attributes	and	constraints	for	each	combination	
of	parameters	and	 independent	variables.	This	Thesis	 focuses	on	problems	for	which	
the	 evaluation	 process	 is	 complex	 and	 time	 consuming,	 because	 it	 relies	 on	 CFD	
computations,	although	the	methodology	presented	can	be	applied	to	other	problems	
(refer	 to	Chapter	6	 for	an	example	of	 the	 results	obtained	when	 the	methodology	 is	
applied	to	different	kinds	of	problems).	

Finally,	 there	 will	 also	 be	 a	 body	 of	 inequality	 constraints,	 referred	 to	 simply	 as	
“constraints”	 in	 this	work.	 They	 set	 the	 limits	 for	 certain	 variable	 combinations	 and	
hence	 determine	 how	 far	 off	 a	 particular	 solution	 is	 from	 the	 space	 of	 feasible	
solutions.	In	our	cases	of	interest,	the	constraints	are	usually	variable	value	ranges	or	
geometry	absurdity	limitations.	It	is	often	useful	to	define	special	attributes	to	quantify	
the	status	of	constraint	violations,	i.e.,	the	degree	of	feasibility	of	a	solution.	
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2.3.	General	approach	
The	approach	proposed	 in	 this	 Thesis	 is	 a	multi-attribute,	 structured	optimization	

based	on	hybrid	direct	search	(i.e.	direct	evaluation	of	each	candidate	design	and	not	
approximation	of	its	attribute	values	by	any	procedure).		

The	 optimization	 algorithm	 developed	 combines	 genetic,	 gradient	 and	 swarm	
search	 intelligence	 in	every	 iteration,	as	will	be	explained	 in	depth	 in	Chapter	5.	This	
novel	 optimization	 method	 allows	 for	 an	 intelligent	 and	 efficient	 direct	 search	 in	
complex	 aerodynamic	 problems	 with	 big	 geometry	 changes.	 This	 optimization	
methodology	 is	 applicable	 to	 advanced	 aerodynamic	 design	 in	 cars,	 aircraft,	 high-
speed	trains,	etc.		

2.4.	Definition	of	small	versus	big	geometry	changes	
For	the	purpose	of	this	Thesis,	 it	 is	 important	to	introduce	the	difference	between	

small	 and	 big	 geometry	 changes	 in	 the	 context	 of	 aerodynamic	 shape	 design	
optimization.	As	shown	in	the	whole	set	of	results	presented	(Chapter	6),	 the	MOST-
HDS	 optimization	 algorithm	 can	 also	 be	 applied	 successfully	 to	 problems	 of	 small	
geometry	 change,	 and	 even	 to	 other	 fields	 quite	 different	 to	 aerodynamic	 design.	
However,	 it	 is	 in	 problems	 with	 big	 geometry	 changes	 that	 MOST-HDS	 fills	 a	 gap	
present	in	the	State	of	the	Art.		

The	aim	of	 this	 section	 is	not	 to	define	 the	 terms	 small	 and	big	 in	 a	 strict	 formal	
way,	 but	 rather	 to	 illustrate	 the	 difference	with	 example	 figures	 to	 help	 the	 reader	
have	a	clear	idea	of	the	meaning	of	each	term.		

The	 concept	of	big	 geometry	 change	 includes	not	only	a	big	modification	 in	body	
geometry,	 but	 also	 a	 considerable	 change	 of	 position	 of	 discrete	 elements	 present	
within	 the	 geometry	 (an	 engine	 in	 the	 case	 of	 an	 airplane	 wing,	 a	 fan	 or	 the	 test	
section	of	a	wind	tunnel,	etc.).		

The	interest	of	analyzing	big	geometry	changes	stems	from	the	fact	that	taking	this	
type	 of	 changes	 into	 account	 for	 the	 optimization	 can	 yield	 improved	 yet	 not	
conventional,	or	non-intuitive,	designs,	as	will	be	shown	in	Chapter	6.		

The	following	figure	shows	an	example	transition	duct	for	an	industrial	application,	
namely	 the	 entrance	 to	 a	 particular	 kind	 of	 industrial	 boiler,	 called	 Heat	 Recovery	
Steam	Generator	(HRSG),	which	is	used	in	combined	cycle	power	plants.	The	geometry	
is	 quite	 simple	 and	 illustrative	 and	 is	 therefore	 used	 as	 an	 example.	 Figure	 2–1	
represents	a	possible	baseline	design	for	this	duct’s	shape	optimization.	Figure	2–2	is	a	
sample	of	possible	designs	which	current	commonplace	shape	optimization	techniques	
would	consider	(be	it	by	means	of	direct	search,	surrogate	models,	adjoints,	etc.).	This	
type	of	design	changes	fall	within	the	category	of	small	geometry	changes.		
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Figure	2–1	-	Illustrative	example	of	geometry	which	represents	a	possible	baseline	design,	to	show	

the	difference	between	small	and	big	geometry	changes	for	shape	optimization.	

		

	
Figure	2–2	-	Example	designs	which	are	considered	small	geometry	changes	with	respect	to	the	

baseline	design	(design	"a"),	shown	in	Figure	2–1.	

	

Figure	2–3	 illustrates	 a	 selection	of	 candidate	design	points	which	are	 considered	
big	geometry	changes	–	with	respect	to	the	baseline	design	–	for	the	purpose	of	this	
Thesis.	 Some	 of	 these	more	 radical	 or	 unconventional	 designs	 have	 proved	 to	 yield	
very	good,	yet	unexpected,	 results	 (refer	 to	Chapter	6).	Finally,	Figure	2–4	shows	3D	
views	of	some	of	these	example	candidate	designs	with	big	geometry	changes.	
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Figure	2–3	-	Example	designs	which	are	considered	big	geometry	changes	with	respect	to	the	

baseline	design	(design	"a"),	shown	in	Figure	2–1. 
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Figure	2–4	-	Side	views	and	3D	views	of	different	candidate	designs	for	an	example	shape-

optimization	problem	with	big	geometry	changes.	

	

2.5.	Final	remarks	
This	 chapter	 has	 characterized	 the	 type	 of	 problem	 that	 this	 Thesis	 addresses.	

Moreover,	it	has	presented	a	key	distinction	for	the	purpose	of	this	research,	which	is	
the	 difference	 between	 small	 and	 big	 geometry	 changes.	 This	 distinction	 if	 of	 high	
importance	 for	 this	 Thesis,	 since	 one	 of	 its	 contributions	 is	 that	 it	 can	 consider	 big	
geometry	changes	in	problems	of	shape	optimization	and	hence	yield	optimum	designs	
which	 are	 non-intuitive,	 unconventional,	 and	 which	 have	 better	 performance	 than	
current	designs.		
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Chapter	3 -	State	of	the	Art	review	
If	someone	tells	you	there	is	a	rule,	break	it.	It	is	the	only	way	to	move	forward.	

	
Hans	Zimmer.	

	
This	chapter	presents	a	thorough	review	of	the	applicable	State	of	the	Art.	Firstly,	
Section	3.1.	presents	the	structure	and	classification	criteria	used	for	the	State	of	
the	 Art	 review;	 Sections	 3.2.	 to	 3.4.	 analyze	 the	 applicable	 State	 of	 the	 Art;	
finally,	Section	3.5.	summarizes	the	main	conclusions	regarding	the	State	of	the	
Art	review,	as	well	as	the	location	of	this	Thesis	contributions	within	the	State	of	
the	Art.	
	

3.1.	Introduction	and	classification	criteria	
The	 present	 Thesis	 tackles	 aerodynamic	 design	 optimization	 using	 the	MOST-HDS	

general	model,	which	proposes	a	Multi-Objective	Structured	Hybrid	Direct	Search	for	
the	optimization	process.	

This	chapter	will	classify	the	relevant,	applicable	research	work	in	the	existing	State	
of	the	Art	as	follows,	from	a	general	to	a	more	particular	field	of	study:	

1. Metaheuristic	optimization	in	general:	this	section	will	be	less	exhaustive,	since	
it	 covers	 a	 much	 broader	 spectrum	 of	 research.	 It	 will	 discuss	 papers	 on	
optimization	approaches	which	will	be	compared	 to	 the	approach	 followed	by	
MOST-HDS.		

2. Aerodynamic	shape	or	design	optimization	 in	general:	 this	 includes	papers	of	
different	areas	of	research	within	general	aerodynamic	shape	design.	A	special	
emphasis	is	made	in	the	comments	to	clarify	whether	the	different	papers	take	
into	account	only	small	geometry	changes,	or	if	they	consider	both	small	and	big	
geometry	changes.	In	particular,	the	following	aspects	will	be	reviewed:	

a. Geometry	 parameterization	 techniques:	 Bézier	 curves,	 B-splines	 and	
Free	Form	Deformation.	

3	
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b. Design	of	Experiments	(DoE)	technique	used.	

c. Advanced	meshing:	structured	v.	unstructured	meshes,	overset	meshes,	
mesh	morphing.	

d. Evaluation	 scheme:	 direct	 search	 v.	 metamodels	 or	 surrogate	 models	
(Response	Surface	Methodology	(RSM),	Reduced	Order	Models	(ROM)	or	
hierarchical	modelling).		

e. Optimization	 procedure:	 structured	 optimization,	 gradient-based	
methods	 (Adjoint	 Methods,	 Sequential	 Quadratic	 Programming	 (SQP),	
etc.),	non-gradient-based	methods	(Genetic	Algorithms	(GAs),	Simulated	
Annealing	(SA),	etc.),	hybrid	algorithms.		

f. General	 problem	 complexity:	 size	 of	 space	 of	 variables	 considered	 for	
search	(i.e.	big	v.	small	geometry	changes),	number	of	variables,	number	
of	constraints,	etc.	

3. Aerodynamic	 shape	or	 design	optimization	 for	 the	 industrial	 cases	 analyzed:	
the	 different	 approaches	 in	 the	 area	 of	 aerodynamics	 will	 be	 described,	
specifically	 for	 the	 industrial	 applications	 for	 which	 detailed	 results	 are	
presented	in	this	Thesis:	closed	wind	tunnels	and	industrial	boilers	for	combined	
cycle	power	plants.	In	this	section	it	is	worth	highlighting	if	the	research	papers	
analyzed	focus	on	a	local	optimization	or	if	they	carry	out	a	global	optimization	
of	the	whole	shape	of	a	particular	body.	

	

With	respect	to	all	these	fields	of	the	State	of	the	Art,	the	specific	contributions	of	
this	 Thesis,	 which	 are	 summarized	 again	 at	 the	 end	 of	 the	 chapter	 with	 a	 series	 of	
scatter	plots,	are	the	following:		

1. Metaheuristic	 optimization	 in	 general:	 this	 Thesis	 presents	 the	 MOST-HDS	
tool,	 which	 is	 highly	 competitive	 and	 can	 outperform	 other	 advanced	 and	
commonly-used	general-purpose	optimization	algorithms,	as	shown	in	Chapter	
6	when	applying	MOST-HDS	to	a	challenging	mathematical	test	problem.	

2. Aerodynamic	shape	or	design	optimization	in	general:	

a. This	 Thesis	 can	 handle	 big	 geometry	 changes	 and	 can	 yield	 very	
innovative	designs,	with	 improved	performance.	Most	of	the	 literature	
focuses	only	on	small	geometry	changes	or	fine-tuning.	

b. The	 tool	 developed	 uses	 structured	 optimization,	which	 has	 not	 been	
used	so	fully	up	to	date	in	aerodynamics.	
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c. MOST-HDS	 follows	 a	 direct	 search	 approach,	 which	 is	 shown	 to	 beat	
surrogate-based	optimization	(using	response	surfaces)	for	the	types	of	
problems	addressed	by	this	Thesis.	

3. Aerodynamic	shape	or	design	optimization	for	the	industrial	cases	analyzed:	

a. Wind	 tunnels:	 this	 Thesis	 considers	 a	 wide	 variety	 of	 tunnel	
configurations,	 not	 only	 90°	 corners,	 rectangular	 ducts	 and	 multi-fan	
designs.	 It	aims	at	exploring	big	geometry	changes,	which	can	improve	
the	performance	of	more	traditional	design	concepts.	It	focuses	on	true	
optimization	of	the	full	wind	tunnel	body,	and	not	only	certain	parts	of	
it,	such	as	corners	or	the	main	nozzle.	Moreover,	 it	considers	different	
relative	 positions	 of	 the	 various	 elements	 of	 the	 wind	 tunnel	 (mainly	
test	section	and	fan	system).	

b. Industrial	boilers:	in	this	field,	the	Thesis	contributes	because	it	carries	
out	 a	more	 extensive	 design	 exploration	 of	 possible	 candidate	 points	
than	 the	 works	 found	 in	 literature.	 Consequently,	 it	 explores	
unconventional	designs	which,	in	some	cases,	show	better	performance	
than	boilers	designed	following	traditional	trend-lines.	Finally,	based	on	
the	 extensive	 design	 exploration,	 MOST-HDS	 carries	 out	 a	 true	 and	
complete	optimization.	In	the	State	of	the	Art,	most	authors	limit	their	
work	 to	 exploring	 a	 reduced	 set	 of	 design	 candidates.	 This	 allows	 this	
Thesis	to	yield	important	performance	improvements	(refer	to	Chapter	
6).			

3.2.	 State	 of	 the	 Art	 of	 general	 metaheuristic	
optimization	

The	first	section	of	this	State	of	the	Art	chapter	is	focused	on	general	optimization	
research	work	which	is	worth	analyzing	in	the	context	of	this	Thesis.	

Because	 the	MOST-HDS	model	 developed	 in	our	 research	work	proposes	 a	multi-
attribute,	 structured	 optimization	 based	 on	 hybrid	 direct	 search,	 let	 us	 analyze	 the	
State	of	the	Art	of	the	different	aspects	involved	in	the	followed	approach.	

The	research	on	multi-objective	optimization	 is	 too	extensive	and	covering	a	wide	
range	 of	 fields	 and	 thus	we	will	 not	 aim	 at	 presenting	 a	 review	 on	 this	 area	 in	 this	
document.	 Instead,	 we	 will	 commence	 by	 focusing	 on	 research	 using	 structured	
optimization.	 The	 two	 main	 concepts	 of	 this	 optimization	 methodology	 are:	 a)	
hierarchy	 of	 variables	 and	 b)	 optimization	 phases.	 This	 approach,	 including	 direct	
search	 in	most	 cases,	 has	 been	 used	 in	 other	 fields	 (Cuadra	 [1990]),	 but	 not	 yet	 in	
aerodynamics,	or	at	least	not	as	thoroughly	as	proposed	in	this	Thesis.		
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If	we	only	focus	on	the	area	of	optimization	using	different	phases	(or	levels)	there	
is	relevant	research	work.	In	most	cases	it	is	combined	with	the	use	of	highly-detailed	
and	low-detailed	models	for	the	different	stages	(also	referred	to	as	high-fidelity	and	
low-fidelity	models).	A	 first	relevant	example	 is	Lyu	et	al.	 (2014),	which	uses	a	multi-
level	 approach	 to	 reduce	 the	 computational	 cost	 for	 their	 problem	 of	 optimization	
applied	to	the	Common	Research	Model	Wing	Benchmark.	Additional	good	examples,	
applied	 to	 airfoil	 shape	 optimization,	 are	Marduel	 et	 al.	 (2006)	 and	 Robinson	 et	 al.	
(2006).	This	latter	explains,	for	instance,	different	mapping	techniques	to	find	the	best	
set	 of	 high-fidelity	 variables	 corresponding	 to	 a	 set	 of	 low-fidelity	 variables	 and	 vice	
versa.	They	propose	a	methodology	of	optimization	combining	 low-fidelity	and	high-
fidelity	models	and	they	obtain	 reductions	 in	 the	number	of	evaluations	of	 the	high-
fidelity	model	of	up	 to	40%	using	Proper	Orthogonal	Decomposition	 (POD)	mapping.	
This	paper	uses	surrogate	models	and	relies	on	papers	such	as	Eldred	et	al.	(2004)	to	
consider	second-order	corrections	for	their	surrogate-based	optimization.	

An	area	in	which	optimization	divided	into	phases	is	widely	used	is	Very	Large	Scale	
Integration	 (VLSI)	 systems.	 Babu	 (2014)	 describes	 the	 different	 optimization	 levels	
whereas	 Held	 et	 al.	 (2006)	 states	 that	 the	 traditional	 methods	 of	 hierarchical	
optimization	 (divide	 into	 optimization	 subproblems	 to	 reduce	 the	 search	 region)	 are	
not	the	best	option.	They	propose	a	flat	methodology,	in	which	they	constrain	as	little	
as	possible	the	search	region	of	the	optimization	algorithms.	

Other	interesting	contributions	are	included	here.	Zhou	et	al.	(2015),	for	a	method	
to	 obtain	 design	 alternatives	 from	 a	 pre-existing	 or	 base	 design	 and	 for	 the	 use	 of	
metamodels	 to	 switch	 from	 a	 nested	 optimization	 structure	 to	 a	 single-loop	
optimization.	Liu	and	Zhang	(2014),	 for	the	use	of	a	decoupling	strategy	to	obtain	an	
equivalent	 single-layer	 optimization	 model	 from	 their	 original	 nested	 optimization	
problem.	 Nunez	 et	 al.	 (2012),	 in	 which	 optimization	 workflows	 are	 analyzed	 and	
reformulated.	

Regarding	 sequential	 –	 not	 strictly	 speaking	 multi-phase	 –	 optimization,	 Du	 and	
Chen	 (2004)	 use	 a	 decoupling	 strategy	 to	 transform	 a	 double-loop	 optimization	
problem,	 typical	 of	 optimization	with	 uncertainty,	 to	 a	 single-loop	 optimization,	 but	
they	 do	 not	 decouple	 the	 optimization	 problem	 itself;	 they	 only	 separate	 the	
optimization	and	probabilistic	analyses.	

Moving	on	to	the	topic	of	hybrid	search	strategies	and,	more	specifically,	to	hybrid	
direct	search,	it	is	worth	highlighting	the	novelty	of	the	proposed	MOST-HDS	approach.	
This	 novelty	 stems	 from	 the	 fact	 that	MOST-HDS	 combines	 elements	 of	 all	 types	 of	
algorithms	 (in	 particular,	 genetic,	 gradient	 and	 swarm	 search	 techniques)	 in	 every	
phase.	In	contrast,	most	other	authors	switch	from	one	type	of	algorithm	to	the	other	
depending	on	how	the	optimization	is	advancing,	switching	for	instance	from	gradient-
based	 to	 non-gradient-based	 algorithms	 (relevant	 examples	 are	 Guliashki	 [2008],	
Hegazi	et	al.	[2002]	or	Hsiao	et	al.	[2001]).	

	



Aerodynamic	design	optimization	based	on	Multi-Attribute	Structured	Hybrid	Direct	Search	

36	

As	opposed	to	the	use	of	direct	search	or	direct	optimization	techniques	(which	rely	
on	the	direct	evaluation	of	a	 full-order	model	of	 the	problem	of	 interest),	 surrogate-
based	 evaluation	 and	 optimization	 have	 become	 very	 popular	 in	 recent	 years	 to	
reduce	 the	 number	 of	 evaluations	 and/or	 the	 time	 consumed	 for	 these	 evaluations.	
They	do	so	by	developing	simplified	models	of	 the	 full-order	model.	These	simplified	
models,	as	explained	very	well	in	Robinson	et	al.	(2006),	can	be	of	a	data	fit	type	(such	
as	 response	 surfaces)	 or	 of	 a	 Reduced	 Order	 Model	 (ROM)	 type	 or,	 finally,	 of	 a	
hierarchical	model	type.		

Given	the	amount	of	research	carried	out	in	this	area,	and	the	interest	of	the	debate	
between	 direct	 search	 and	 surrogate-based	 optimization,	 Chapter	 7	 of	 this	 Thesis	 is	
wholly	 devoted	 to	 the	 comparison	 of	 the	 results	 of	 both	 approaches	 for	 one	 of	 the	
industrial	cases	presented	in	this	research.	

Washabaugh	et	al.	 (2012)	give	novel	 approaches	 regarding	 surrogate	 (in	 this	 case	
reduced	 order)	 models,	 for	 example.	 They	 rely	 on	 local	 instead	 of	 global	 Reduced	
Order	Bases	 (ROBs),	 and	 they	obtain	better	 time	 reductions	and	 improved	accuracy.	
Schaumont	and	Verbauwhede	(2004),	on	their	side,	use	simplified	models	of	the	real	
model.	They	call	these	abstracted	models.	They	also	use	partial	evaluation,	i.e.	the	use	
of	design	properties	to	specialize	the	simulator.	They	improve	their	optimization	tools	
by	knowing	how	 the	design	works,	 similarly	 to	what	 is	proposed	 in	 this	Thesis.	 They	
also	carry	out	optimization	at	different	levels	and	with	various	algorithms.	

Other	 very	 relevant	 references	 in	 the	 area	 of	 surrogate-based	 optimization	 are	
described	 next.	 Su	 et	 al.	 (2016)	 is	 a	 good	 example	 of	 the	 use	 of	 modal-based	
optimization	 for	 the	 wing	 shape	 of	 highly	 flexible	 morphing	 aircraft.	 Walton	 et	 al.	
(2013)	 is	 especially	 interesting	 for	 their	 focus	 on	 the	 use	 of	 surrogate	 models	 for	
unsteady	 simulations;	 in	 particular,	 they	 use	 a	 combination	 of	 proper	 orthogonal	
decomposition	and	radial	basis	functions	for	three-dimensional	unsteady	compressible	
inviscid	flows	over	an	oscillating	ONERA	M6	wing,	and	they	report	large	reductions	in	
computation	time	without	significant	losses	in	accuracy.	The	work	by	Krajnovic	(2007),	
for	its	application	to	vehicle	shape	optimization.	The	paper	by	Robinson	et	al.	(2006),	
particularly	interesting	for	its	application	to	airfoil	shape	design.	

In	 addition,	 there	 is	 also	 very	 valuable	 work	 in	 the	 use	 of	 specific	 alternative	
evaluators,	not	necessarily	to	carry	out	a	computer-based	optimization,	but	rather	to	
merely	 compare	 the	 performance	 of	 different	 solutions,	 as	 the	work	 carried	 out	 for	
this	 Thesis	 did	 in	 its	 first	 stages.	 An	 area	 of	 particular	 interest	 for	 this	 is	 game	
simulation,	 in	 particular	 chess	 evaluators.	 Edelkamp	 and	 Schroedl	 (2011)	 and	
Fürnkranz	 and	 Kubat	 (2001)	 offer	 an	 interesting	 insight	 into	 the	 importance	 of	
evaluators	in	game	tree	search	applied	to	chess.	
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Optimization	problems	similar	to	the	one	presented	in	this	paper	–in	general	terms-	
are	addressed	next.	Kelly	et	al.	(2010)	introduces	a	method	to	quantify	user	preference	
of	a	particular	shape	design	into	the	objective	function	(quite	different	to	the	method	
used	by	Takagi	[2001],	Interactive	Evolutionary	Computation,	in	which	evaluations	are	
carried	out	directly	by	humans	because	 they	 relate	 to	 feelings	or	preferences,	which	
cannot	 be	 easily	 quantified).	 Xiao	 et	 al.	 (2011)	 or	 Yoshimura	 et	 al.	 (2013).	 Goit	 and	
Meyers	 (2015)	 uses	 a	 conjugate-gradient	 optimization	 method	 in	 combination	 with	
adjoint,	 large-eddy	 simulations	 for	 the	 determination	 of	 the	 gradients	 of	 the	 cost	
functional,	in	order	to	maximize	a	wind	farm’s	energy	extraction.	Sicilia-Montalvo	et	al.	
(2015)	proposes	a	multi-objective	optimization	with	ant	colony	methodologies	for	the	
optimum	 operation	 of	 long	 haul	 freight	 transportation.	 Izraelevitz	 and	 Triantafyllou	
(2014)	presents	a	model-based	optimization	approach.	Finally,	Hoffenson	et	al.	(2015)	
introduces	 sustainability	 and	 environmental	 impact	 quantification	 of	 design	
alternatives.	

Moreover,	this	Thesis	presents	the	benchmark	results	of	the	application	of	MOST-
HDS	 to	 one	 of	 the	 most	 challenging	 -as	 well	 as	 comprehensive-	 mathematical	 test	
problems	found	in	literature	(Huband	et	al.	[2006])	and	the	comparison	to	the	results	
obtained	with	a	well-known	Multi-Objective	Evolutionary	Algorithm	(MOEA),	NSGA-II,	
to	this	same	test	problem.	Very	 interesting	observations	are	made	 in	Chapter	6.	This	
helps	 support	 the	 potential	 of	 MOST-HDS	 for	 general-purpose	 optimization	 and	 it	
shows	its	advantages	and	limitations,	as	well	as	those	of	NSGA-II.	

In	the	field	of	test	problems,	some	major	examples	that	can	be	found	in	literature	
include:	

1. ZDT:	6	real-valued	problems	from	Zitzler	et	al.	(2000)	

2. DTLZ:	5	unconstrained,	scalable	real-valued	problems	from	Deb	et	al.	(2001)	

3. LZ:	9	real-valued	problems	from	Li	and	Zhang	(2009)	

4. CEC2009:	13	unconstrained	and	10	constrained	real-valued	problems	from	the	
Congress	on	Evolutionary	Computation	(CEC	2009)	competition	

5. WFG:	9	scalable,	real-valued	problems	by	Huband	et	al.	(2006)	

6. BBOB-2016:	55	bi-objective	problems	from	the	Black	Box	Optimization	
Benchmarking	(BBOB)	workshop	hosted	at	the	Genetic	and	Evolutionary	
Computation	Conference	(GECCO	2016)	

7. Others,	such	as	knapsack,	NK-landscapes,	etc.	

	

Among	 the	 researchers	 having	 used	 the	WFG	 test	 frame,	 it	 is	 worth	mentioning	
here	 the	 Thesis	 by	 Zhao	 (2007)	 and	 the	 work	 by	 Bradstreet	 et	 al.	 (2007),	 for	 their	
comparison	of	 the	performance	of	various	algorithms	when	applied	 to	 the	WFG	test	
problems.	
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Concerning	 the	most	modern	MOEAs	 that	 can	 be	 found	 in	 literature,	 one	 of	 the	
largest	 libraries	 available	 currently,	 the	MOEA	 framework3	 presents	 Table	 3–1.	 This	
table	 is	 included,	 given	 the	 great	 amount	 of	work	 and	 the	 popularity	 of	MOEAs	 for	
many	 fields	 of	 optimization.	 It	 can	 prove	 a	 valuable	 review	 of	 MOEAs	 for	 authors	
interested	in	this	area.	

	

MOEA	 DESCRIPTION	

AbYSS	 Multiobjective	Scatter	Search	

Borg	MOEA	 Adaptive	Multioperator	Search	with	ε-Dominance	and	ε-Progress	Triggered	
Restarts	

CellDE	 Cellular	Genetic	Algorithm	with	Differential	Evolution	

CMA-ES	 Covariance	Matrix	Adaption	Evolution	Strategy	

DBEA	 Improved	Decomposition-Based	Evolutionary	Algorithm	

DE	 Differential	Evolution	(Single	Objective)	

DENSEA	 Duplicate	Elimination	Non-dominated	Sorting	Evolutionary	Algorithm	

ECEA	 Epsilon-Constraint	Evolutionary	Algorithm	

ES	 Evolution	Strategies	(Single	Objective)	

ε-MOEA	 ε-Dominance-based	Evolutionary	Algorithm	

ε-NSGA-II	 NSGA-II	with	ε-Dominance,	Randomized	Restarts,	and	Adaptive	Population	
Sizing	

FastPGA	 Fast	Pareto	Genetic	Algorithm	

FEMO	 Fair	Evolutionary	Multi-objective	Optimizer	

GA	 Genetic	Algorithm	with	Elitism	(Single	Objective)	

GDE3	 Generalized	Differential	Evolution	

HypE	 Hyper-volume	Estimation	Algorithm	for	Multi-objective	Optimization	

IBEA	 Indicator-Based	Evolutionary	Algorithm	

MOCell	 Multi-objective	Cellular	Genetic	Algorithm	

MOCHC	 Multi-objective	CHC	Algorithm	

																																																								
3	www.moeaframework.org	(last	verified	on	February	2017).	
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MOEA/D	 Multi-objective	Evolutionary	Algorithm	with	Decomposition	

MSOPS	 Multiple	Single-Objective	Pareto	Sampling	

NSGA-II	 Non-dominated	Sorting	Genetic	Algorithm	II	

NSGA-III	 Reference-Point-Based	Non-dominated	Sorting	Genetic	Algorithm	

OMOPSO	 Multio-bjective	Particle	Swarm	Optimization	

PAES	 Pareto	Archived	Evolution	Strategy	

PESA2	 Pareto	Envelope-based	Selection	Algorithm	

Random	 Random	Search	

RSO	 Repeated	Single	Objective	Algorithm	

RVEA	 Reference	Vector	Guided	Evolutionary	Algorithm	

SEMO2	 Simple	Evolutionary	Multi-objective	Optmimizer	

SHV	 Sampling-Based	Hyper-volume-Oriented	Algorithm	

SIBEA	 Simple	Indicator-Based	Evolutionary	Algorithm	

SMPSO	 Speed-Constrained	Multi-objective	Particle	Swarm	Optimization	

SMS-EMOA	 S-Metric	Selection	MOEA	

SPAM	 Set	Preference	Algorithm	for	Multi-objective	Optimization	

SPEA2	 Strength-based	Evolutionary	Algorithm	

VEGA	 Vector-Evaluated	Genetic	Algorithm	

Table	3–1	-	List	of	most	relevant	MOEAs	as	provided	by	the	MOEA	framework	library	
(www.moeaframework.org).	

	

Many	 of	 the	 authors	 working	 in	 optimization	 have	 also	 carried	 out	 extensive	
research	 of	 performance	 indicators,	 to	 compare	 their	 algorithms	 to	 the	 State	 of	 the	
Art.	Among	the	most	important	indicators,	the	following	can	be	highlighted	(as	per	the	
MOEA	framework):	Hyper-volume,	Generational	Distance	(GD),	Inverted	Generational	
Distance	 (IGD),	 Additive	 ε-Indicator,	 Contribution,	 Maximum	 Pareto	 Front	 Error,	
Spacing,	R1	Indicator,	R2	Indicator	and	R3	Indicator.			

Only	 a	 review	 of	 research	 using	 the	 hyper-volume	 will	 be	 included	 here,	 for	 its	
popularity	and	potential	in	multi-objective	optimization.		
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The	 hyper-volume	 indicator,	 as	 explained	 in	 Bader	 and	 Zitzler	 (2011),	 is	 the	 only	
single	 set	 quality	 measure	 known	 to	 be	 strictly	 monotonic	 regarding	 Pareto	
dominance.	 This	 means	 that	 when	 a	 Pareto	 set	 approximation	 entirely	 dominates	
another	one,	the	indicator	value	of	the	dominant	set	will	be	better,	too.	This	property	
is	highly	 interesting	and	 relevant	 for	problems	 involving	a	 large	number	of	objective	
functions.		

Some	relevant	works	on	the	use	of	the	hyper-volume	indicator	are	described	next,	
apart	 from	 the	mentioned	 Bader	 and	 Zitzler	 (2011).	 The	 PhD	 Dissertation	 by	 Bader	
(2009)	provides	a	thorough	theoretical	basis	for	hyper-volume	optimization.	Auger	et	
al.	 (2012)	 presents	 two	 different	 approaches:	 one	 is	 the	 optimization	 of	 multiple	
objectives	 simultaneously	 (traditional	 approach)	 and	 another	 is	 an	 indicator-based	
optimization,	 which	 maximizes	 hyper-volume	 (weighted,	 in	 this	 case),	 or	 other	
indicators,	 for	 a	 set	of	 underlying	objectives.	 Bradstreet	 (2011);	Azevedo	and	Araújo	
(2011),	include	the	comparison	among	different	performance	indicators.	Minella	et	al.	
(2008)	 is	 particularly	 interesting	 for	 its	 comparison	 of	 two	 performance	 indicators:	
hyper-volume	 and	 unary	 epsilon.	 Two	 web	 references	 are	 also	 provided	 here,	 with	
worthwhile	selections	of	hyper-volume-related	literature	4,5.	

To	 conclude	 this	 section	 of	 the	 State	 of	 the	 Art	 of	 general	 metaheuristic	
optimization,	 it	has	been	deemed	of	 interest	 to	distinguish	between	exact,	heuristic,	
metaheuristic	 and	 hyperheuristic	 methods,	 to	 clarify	 why	 the	method	 developed	 in	
this	Thesis	is	classified	as	metaheuristic.		

In	the	first	place,	exact	algorithms	guarantee	they	will	find	the	optimum	in	a	finite	
amount	of	time.	However,	for	most	real	optimization	problems,	this	finite	amount	of	
time	is	usually	too	lengthy.		

As	opposed	to	exact	methods,	heuristics	do	not	have	mathematical	proof	that	they	
will	 find	 the	 optimum.	 At	 most,	 they	 have	 a	 high	 probability	 of	 obtaining	 a	 good	
solution	within	a	reasonable	time.	Strictly	speaking,	heuristic	algorithms	are	problem-
dependent,	i.e.	they	are	adapted	to	a	particular	optimization	problem.		

Metaheuristics,	 on	 the	 other	 hand,	 offer	 problem-independent	 techniques,	
although	 they	 still	 have	 a	 set	 of	 parameters	 which	 must	 be	 fine-tuned	 for	 each	
particular	problem.	

Finally,	hyper-heuristics	go	beyond	meta-heuristics,	and	they	refer	to	methods	that	
either	select	the	best	heuristics	for	a	particular	problem	or	generate	adapted	heuristics	
(Burke	et	al.	[2013]).	Additional	works	of	interest	relative	to	hyper-heuristics	are	Pillay	
(2016),	 which	 offers	 a	 recent	 review	 of	 hyper-heuristics	 applied	 to	 combinatorial	
optimization,	 in	particular	 to	 the	educational	 timetabling	problem,	 and	Branke	et	 al.	
(2016),	which	offers	a	review	of	hyper-heuristics,	in	this	case	for	the	field	of	production	
scheduling.	

																																																								
4	https://ls11-www.cs.uni-dortmund.de/rudolph/hypervolume/start	(last	verified	on	February	2017).	
5	https://hpi.de/en/friedrich/research/hypervolume.html	(last	verified	on	February	2017).	
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3.3.	 State	 of	 the	 Art	 of	 general	 aerodynamic	 shape	
design	optimization	

For	 the	 purpose	 of	 this	 Thesis,	 and	 in	 order	 to	 serve	 as	 a	 general	 review	 of	 the	
research	 work	 in	 this	 field,	 it	 is	 important	 to	 highlight	 the	 most	 representative	 or	
interesting	 work	 carried	 out	 in	 advanced	 aerodynamic	 optimization	 in	 general	 (not	
only	for	wind	tunnels	and	HRSGs).	Moreover,	 it	 is	also	useful	to	put	the	problem	in	a	
wider	 context,	 and	 so	 to	 indicate	 some	 relevant	 works	 on	 design	 optimization	 in	
general.	

Firstly,	there	are	interesting	results,	following	a	more	traditional	approach,	such	as,	
for	instance,	the	work	of	Montenegro-Johnson	and	Lauga	(2015),	J.	Wild	(2008),	or	the	
general	overview	on	optimization	presented	in	Koziel	and	Yang	(2011).		

However,	the	most	recent	approach	in	the	specific	area	of	aerodynamics	consists	of	
the	following	steps,	as	can	be	seen	in	Forti	and	Rozza	(2014),	Hicken	and	Zingg	(2010),	
Krajnovic	 (2007),	 Mengistu	 and	 Ghaly	 (2008),	 Okumura	 et	 al.	 (2013)	 or	 Paniagua	
(2014):		

1. Geometry	parameterization,	normally	using	Bézier	curves.	

2. Metamodels	 or	 surrogate	 models,	 to	 approximate	 the	 real	 objective	
function	 with	 a	 more	 simplified	 one,	 by	 means	 of	 Design	 of	 Experiments	
(DoE)	and	metamodels	such	as	Response	Surface	Methodology	(RSM),	Radial	
Basis	Functions	(RBF)	or	others.	

3. Optimization,	using	either	non-gradient-based	methods	(Genetic	Algorithms	
(GAs),	 Simulated	Annealing	 (SA),	 etc.),	 or	 gradient-based	methods	 (Adjoint	
Methods,	Sequential	Quadratic	Programming	(SQP),	etc.).	Most	of	the	work	
in	 this	 area	 carries	 out	 multi-objective	 optimization,	 for	 instance	
determining	Pareto	optimal	fronts.	

	

Consequently,	we	will	structure	the	State	of	the	Art	review	in	this	section	according	
to	the	above	steps.	

In	the	first	place,	the	initial	step	deals	with	geometry	parameterization	techniques.	
In	 current	 literature,	 either	 Bézier	 curves,	 B-splines	 or	 Free	 Form	Deformation	 (FFD)	
are	used.		

In	 the	 present	 Thesis,	 Bézier	 curves	 will	 be	 selected.	 These	 curves	 are	 chosen	
because	they	are	robust,	they	can	easily	be	controlled	to	avoid	absurd	tunnel	shapes,	
and	they	have	good	mathematical	behavior	and	optimum	aerodynamic	performance.	
Bézier	 curves	 are	 used	 extensively	 in	 aerodynamic	 optimization	 (a	 good	 illustrative	
example	is	Paniagua	[2014]).		
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In	 other	 cases,	 B-splines	 are	 used	 as	 a	 generalization	 of	 Bézier	 curves	 to	 avoid	
problems	such	as	the	Runge	phenomenon,	or	other	effects,	which	mean	higher	order	
polynomials	can	have	higher	interpolation	errors	than	lower	order	polynomials.	In	our	
case,	 the	Bézier	curves	are	not	used	as	an	approximation	to	a	real	 function,	but	as	a	
method	of	generating	good	aerodynamic	surfaces.	Cubic	Bézier	curves	(and	not	higher	
order	ones)	are	hence	chosen	 in	our	analyses.	 They	 represent	an	optimum	trade-off	
between	the	number	of	control	points	and	the	capacity	to	represent	a	very	wide	range	
of	 geometries	 for	 the	 tunnel.	 Splines,	 for	 instance,	 could	 yield	 absurd	 geometries,	
which	must	 be	 avoided;	 they	 also	 introduce	much	more	 complex	mathematics,	 and	
they	are	better	 suited	 for	 cases	of	 real	 function	approximations	 and	not	 so	much	 in	
aerodynamic	shape	generation.		

Lee	et	al.	 (2017)	offers	an	 interesting	comparison	on	two	of	the	most	widely	used	
geometry	parametrization	techniques	commented:	B-splines	and	FFD.	B-spline	surface	
control	 is	 often	 found	 to	 result	 in	 slightly	 better	 performance.	 Nevertheless,	 both	
methods	 perform	 equally	well	 in	 general.	 FFD	 provides	 a	more	 general	 approach	 to	
problem	 setup,	 decoupling	 geometry	 control	 from	 parameterization.	 Overall,	 the	
results	 presented	 suggest	 that	 B-spline	 surface	 control	 is	 better	 suited	 for	 simple	
geometries	 such	 as	 wings,	 whereas	 FFD	 is	 better	 adapted	 for	 complex	 geometries,	
such	 as	 unconventional	 aircraft,	 and	 for	 implementation	 with	multi-start	 algorithms	
and	adaptive	geometry	control	approaches.		

The	above-mentioned	work	by	Hicken	and	Zingg	(2010)	also	uses	B-splines.	Another	
very	relevant	work	in	the	area	of	aerodynamic	shape	optimization	is	Jing	et	al.	(2013),	
on	the	optimization	of	the	position	of	a	nacelle	and	pylon	assembly	for	aeronautics.	It	
is	very	interesting	because	it	combines	geometry	parameterization,	using	adapted	FFD	
and	 NURBS	 curves,	 mesh-morphing	 with	 Delaunay	 triangulation,	 Particle	 Swarm-
search	Optimization	 (PSO)	 for	 the	optimization	and	Kriging	 for	 the	 response	 surface.	
Consequently,	this	paper	will	be	highlighted	various	times	in	this	section	of	the	State	of	
the	Art.		

Moving	on	to	the	DoE	techniques	used,	which	was	not	one	of	the	objectives	of	the	
present	Thesis	(it	will	be	part	of	the	future	work),	we	only	mention	here	the	work	by	
Krajnovic	 (2007)	 and	 its	 recommendation	 to	 study	 the	 use	 of	 Latin	 Hypercube	
Sampling	(LHS)	and	Orthogonal	Arrays	(OA).	

The	 next	 step	 to	 be	 carried	 out	 in	 aerodynamic	 shape	 optimization,	 once	 the	
geometry	has	been	parameterized	or	modelled,	is	the	meshing	process.	In	the	State	of	
the	Art,	work	can	be	 found	both	on	structured	and	unstructured	meshes,	but	a	very	
interesting	 approach	 is	 the	 use	 of	 overset	 meshes	 (Kenway	 et	 al.	 [2017]),	 which	
develops	 an	 overset	 meshing	 procedure	 that	 performs	 very	 well	 with	 respect	 to	
common	structured	or	unstructured	meshes.	Other	relevant	pieces	of	research	on	the	
topic	 of	 advanced	 meshing	 are	 the	 already	 mentioned	 works	 by	 Hicken	 and	 Zingg	
(2010),	 on	mesh	movement;	 and	 Jing	 et	 al.	 (2013),	which	 uses	mesh	morphing	with	
Delaunay	triangulation.	Mesh	morphing	is	undoubtedly	a	very	relevant	topic	for	shape	
optimization	and	geometry	deformations.		



Chapter	3	–	State	of	the	Art	review	

43	

Regarding	 the	 evaluation	 scheme,	 of	 particular	 importance	 in	 problems	 of	 costly	
evaluation	 (for	 example	 those	 requiring	 CFD	 evaluations),	 two	 approaches	 can	 be	
found	in	mainstream	literature:	direct	search	(originally	defined	formally	in	Hooke	and	
Jeeves	[1961])	and	meta-models	or	surrogate	models	(Response	Surface	Methodology	
(RSM),	Reduced	Order	Models	(ROM)	or	hierarchical	modelling).	Prada-Nogueira	et	al.	
(2015),	and	especially	Prada-Nogueira	et	al.	(2017	(a),	2017	(b))	offer	good	examples	of	
direct	 search	 applied	 to	 aerodynamic	 optimization.	 References	 of	 direct	 search	 and	
hybrid	direct	search	applied	to	other	fields,	other	than	aerodynamics,	are	included	in	
Section	3.2	of	this	chapter.	

A	review	on	the	most	relevant	and	recent	references	in	the	area	of	surrogate-based	
evaluation	will	be	commented	below	(and	in	Section	3.2),	when	referring	to	works	on	
surrogate-based	optimization.	

A	 wide	 variety	 of	 approaches	 is	 found	 in	 current	 literature	 about	 optimization	
procedures.	It	is	usual	to	label	them	as:	

1. gradient-based	methods,	 such	as	Adjoint	Methods	or	Sequential	Quadratic	
Programming	(SQP)	

2. non-gradient-based	methods,	 such	 as	Genetic	 Algorithms	 (GAs),	 Simulated	
Annealing	(SA),	or	Particle	Swarm	Optimization	(PSO)	

	

but	there	are	also	other	optimization	schemes	or	features	such	as	structured	search	
or	hybrid	algorithms,	which	are	the	core	of	the	algorithm	developed	for	this	Thesis.		

The	references	included	aim	at	offering	a	relevant	selection	of	the	most	innovative	
research	approaches	that	can	be	found	in	the	State	of	the	Art,	instead	of	an	exhaustive	
coverage	of	more	traditional	optimization	schemes,	of	which	there	is	a	wide	range	of	
examples.	

For	problems	 in	which	there	 is	a	risk	of	 the	optimization	process	being	trapped	 in	
local	minima,	gradient-based	methods	need	to	be	revised	or	enhanced	to	be	able	 to	
perform	well.	Arreckx	et	al.	(2016)	offers	an	example	of	how	the	limitations	of	gradient	
methods	 can	 be	 overcome.	 It	 proposes	 a	 matrix-free	 optimization	 to	 avoid	 the	
calculation	 of	 Jacobian	 and	 Hessian	 matrixes,	 for	 a	 close-to-gradient-based	
optimization	of	engineering	problems	with	 thousands	of	 variables	and	constraints.	 It	
has	been	especially	applied	 to	Multidisciplinary	Design	Optimization	 (MDO)	 for	aero-
structural	problems.	

Fabiano	et	al.	(2016)	use	adjoints	for	MDO	in	a	time-dependent	situation,	applying	
adjoint-based	 optimization	 to	 a	 different	 field	 of	 aerodynamic	 design,	 in	 this	 case	
helicopter	rotor	blades.	This	reference	offers	a	very	valuable	 insight	 into	the	State	of	
the	Art	of	the	use	of	adjoints	in	the	field	of	unsteady	aerodynamic	problems.		
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The	authors	state	that	there	are	many	works	on	the	use	of	adjoints	for	steady-state	
shape	 optimization,	 whereas	 there	 are	 not	 so	many	 for	 unsteady	 flow	 problems.	 It	
were	the	works	by	Mani	and	Mavripilis	(2009)	and	by	Rumpfkeil	and	Zingg	(2010)	that	
initially	 demonstrated	 unsteady	 discrete	 adjoint-based	 shape	 optimization	 in	 the	
context	 of	 two-dimensional	 problems.	 Mavripilis	 (2007)	 offered	 a	 preliminary	
demonstration	of	the	method’s	feasibility	in	three-dimensional	problems.	Thereafter,	a	
full	 implementation	 and	 application	 to	 large	 scale	 problems	 concerning	 helicopter	
rotors	and	fighter	jets	was	performed	by	Nielsen	et	al.	(2010	(a),	2010	(b)).		

Based	on	the	works	of	these	papers	 in	the	field	of	adjoint-based	optimization,	the	
next	 step	 is	 to	 extend	 the	 use	 of	 adjoint	 methods	 to	 multidisciplinary	 simulations,	
using	 the	 calculated	 sensitivities	 to	 perform	 MDO.	 In	 the	 domain	 of	 fixed	 and	
especially	rotary	wind	aircraft,	aeroelastic	coupling	effects	can	be	very	significant	and	
must	be	considered	in	the	context	of	a	successful	optimization	procedure,	according	to	
Fabiano	et	al.	(2016).	

To	 conclude	 on	 the	 references	 concerning	 the	 use	 of	 adjoints,	 the	 already	
commented	paper	by	Hicken	and	Zingg	(2010)	is	also	a	very	good	example.	

With	 respect	 to	 references	 regarding	 surrogate-based	 optimization,	 Section	 3.2	
offers	an	 interesting	 set	of	 relevant	 research	works.	Worth	highlighting	here	are	 the	
ones	 described	 next.	 Once	 more,	 the	 work	 by	 Jing	 et	 al.	 (2013),	 which	 is	 a	 very	
complete	 example	 of	 aerodynamic	 shape	 optimization,	 from	 geometry	
parameterization	 and	 mesh	 morphing,	 to	 the	 use	 of	 the	 Kriging	 response	 surface	
method	for	the	optimization.	Poole	et	al.	(2017)	contributes	to	the	State	of	the	Art	for	
several	 reasons:	 (1)	 its	 use	 of	 proper	 orthogonal	 decomposition	 to	 derive	 aerofoil	
design	variables,	 (2)	 its	method	 to	obtain	an	efficient	and	 reduced	set	of	orthogonal	
design	variables,	(3)	the	application	of	a	constrained	global	optimizer	to	aerodynamics,	
and	 (4)	 its	 illustration	 that	 with	 only	 six	 variables	 an	 aerofoil	 optimization	 can	 be	
carried	 out	 successfully.	 Finally,	 Allen	 et	 al.	 (2016),	 for	 its	 use	 of	 modal-derived	
variables	and	gradient-based	optimization.		

The	 last	 topic	 to	 be	 commented,	 concerning	 shape	 optimization	 in	 the	 field	 of	
aerodynamics,	is	the	complexity	of	the	problem	solved	in	the	different	works	analyzed.	
Some	aspects	of	special	relevance	are	the	size	of	the	space	of	variables	considered	for	
the	search	process	(i.e.	big	or	small	geometry	changes),	the	number	of	variables,	and	
the	number	of	constraints.	

Given	that	one	of	the	key	aspects	of	the	method	developed	for	this	Thesis,	MOST-
HDS,	is	that	it	is	able	to	handle	big	geometry	changes,	it	is	worth	mentioning	that	there	
is	 very	 little	work	on	 the	 topic	of	 truly	big	deformations	 in	aerodynamics,	which	can	
lead	 to	 innovative	 and	 very	 new	 designs.	 Most	 of	 the	 papers	 analyzed	 focus	 on	
aerodynamic	shape	design	involving	small	fine-tuning	of	the	geometry,	or	at	least	not	
changes	of	the	extent	of	those	considered	in	this	Thesis.		
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Example	research	on	big	geometry	changes	includes	the	very	good	paper	by	Hicken	
and	 Zingg	 (2010).	 It	 is	 very	 worth	 describing	 this	 paper	 in	 detail	 here.	 The	 authors	
present	 an	 efficient	 gradient-based	 algorithm	 for	 aerodynamic	 shape	 optimization,	
which	 consists	 of	 several	 components,	 including	 a	 novel	 integrated	 geometry	
parameterization	and	mesh	movement,	a	parallel	Newton-Krylov	 flow	solver,	and	an	
adjoint-based	 gradient	 evaluation.	 In	 order	 to	 integrate	 geometry	 parameterization	
and	mesh	movement,	they	use	generalized	B-spline	volumes	to	parameterize	both	the	
surface	 and	 the	 volume	meshes.	 The	work	 shows	 that	 the	 volume	mesh	 of	 B-spline	
control	 points	mimics	 a	 coarse	mesh.	 Thereafter,	 a	 linear	 elasticity	mesh-movement	
algorithm	 is	 applied	 directly	 to	 this	 coarse	mesh	 and	 the	 new	mesh	 is	 regenerated	
algebraically.	 The	 authors	 claim	 mesh-movement	 time	 is	 reduced	 by	 two	 to	 three	
orders	of	magnitude	 relative	 to	a	node-based	movement.	 They	 state	 that	 the	mesh-
adjoint	 system	 also	 becomes	 smaller,	 and	 hence	 complex-step	 derivative	
approximations	can	be	applied	successfully.	When	solving	 the	 flow-adjoint	equations	
using	restarted	Krylov-subspace	methods,	a	nested-subspace	strategy	is	also	shown	to	
be	 more	 robust	 than	 truncating	 the	 entire	 subspace.	 In	 this	 paper,	 optimization	 is	
accomplished	by	the	use	of	a	sequential-quadratic-programming	(SQP)	algorithm.	The	
effectiveness	of	this	complete	algorithm	is	proved	using	a	lift-constrained	induced-drag	
minimization	 that	 involves	 big	 changes	 in	 geometry.	 The	 extent	 of	 these	 geometry	
changes	can	clearly	be	seen	in	the	figures	presented	in	their	work.		

The	 dissertation	 by	 Paniagua	 (2014)	 also	 considers	 big	 (or	 at	 least	 moderate)	
changes	of	geometry	in	the	case	of	the	shape	optimization	of	a	high-speed	train	nose.	

Lund	et	al.	 (2003)	 is	another	good,	yet	older,	example	of	 shape	optimization	with	
large	geometry	change.	It	uses	gradient-based	optimization	and	it	involves	big	changes	
of	geometry	in	Fluid-Structure	Interaction	(FSI)	problems.	

Moving	 on	 to	 other	 aspects	 of	 problem	 complexity,	 the	 paper	 by	 Arreckx	 et	 al.	
(2016)	 mentioned	 above,	 deals	 with	 problems	 involving	 thousands	 of	 variables	 and	
constraints,	 which	 are	 handled	 efficiently	 thanks	 to	 the	 use	 of	 matrix-free	
optimization.	

After	 going	 through	 all	 the	 relevant	 steps	 of	 shape	 optimization	 and	 offering	 a	
selection	of	relevant	research	works	for	each	step,	this	section	will	be	concluded	with	
useful,	 yet	 more	 general,	 research	 examples,	 also	 of	 interest	 within	 the	 domain	 of	
aerodynamic	shape	optimization.	

First	 of	 all,	 there	 is	 a	 very	 considerable	 amount	 of	 research	 on	 CFD	 shape	
optimization	applied	to	the	NASA	Common	Research	Model	Wing.	Relevant	examples	
are	the	following	papers.		

Lyu	et	al.	 (2014)	uses	a	gradient-based	optimization	algorithm	in	conjunction	with	
an	 adjoint	 method	 that	 computes	 the	 required	 derivatives.	 The	 objective	 is	 to	
minimize	 the	 drag	 coefficient,	 subject	 to	 lift,	 pitching	 moment,	 and	 geometric	
constraints.	 The	 authors	 apply	 a	 multilevel	 technique	 in	 order	 to	 reduce	 the	
computational	 cost.	 In	 the	 first	 place,	 a	 single-point	 optimization	 is	 solved	with	 720	
shape	 variables	 using	 a	 28.8-million-cell	 mesh	 and	 reducing	 the	 drag	 by	 8.5%.	
Secondly,	a	more	realistic	design	 is	achieved	through	a	multi-point	optimization.	The	
geometries	obtained	differ	by	only	0.4%	of	 the	mean	aerodynamic	chord.	Moreover,	
the	effect	of	varying	the	number	of	shape	design	variables	is	examined.		
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Liem	 et	 al.	 (2017)	 offers	 an	 interesting	 contribution	 because	 they	 use	 aircraft	
operational	data	as	basis	for	their	optimization.	An	additional	reference	of	 interest	 is	
the	already	indicated	work	by	Kenway	et	al.	(2017).		

Other	interesting	works	are	described	next.	Courty	and	Dervieux	(2006)	uses	some	
of	 the	 abovementioned	 aspects,	 but	 applied	 to	 the	 so-called	 CAD-free	 aerodynamic	
optimization	 problems.	 Chao	 et	 al.	 (2013),	 for	 their	 parameterization	 of	 complex	
geometries	 (in	 the	 order	 of	 250	 variables),	 the	 use	 of	 an	 evaluator	 &	 optimizer	
architecture	and	the	comparison	of	the	panel	method	and	CFD	as	solution	evaluators.	
Van	 Rees	 et	 al.	 (2015)	 investigates	 solutions	 in	 the	 speed-energy	 space,	 laying	 the	
foundations	for	the	design	of	high-performance,	artificial-swimming	devices.	Miralbés-
Buil	 and	 Ranz-Angulo	 (2015),	 for	 their	 multidisciplinary	 optimization	 of	 vortex	
generators,	taking	 into	account	aerodynamic,	structural,	ergonomic	or	manufacturing	
aspects.	 Quinn	 et	 al.	 (2015)	 employs	 experimental	 gradient-based	 optimization	 to	
maximize	the	propulsive	efficiency	of	flexible	underwater	propulsors.	

To	 conclude	 this	 section	 on	 the	 State	 of	 the	 Art	 of	 general	 shape	 design	
optimization,	it	is	important	to	mention	the	work	by	Eschenauer	et	al.	(2012),	which	is	
a	very	valuable	reference	book	for	shape	design	optimization	in	various	fields,	mostly	
focused	on	structural	components	of	diverse	applications.	

3.4.	 State	 of	 the	 Art	 of	 aerodynamic	 shape	 design	
optimization	for	the	industrial	cases	analyzed	

A	review	will	be	presented	of	the	research	work	carried	out	specifically	for	the	areas	
of	 the	 two	 industrial	 cases	 analyzed	 in	 this	 Thesis,	 which	 are	 two	 very	 different	
examples	 of	 aerodynamic	 shape	 design:	 closed	 wind	 tunnels	 for	 testing	 and	 leisure	
activities	and	industrial	boilers	for	combined	cycle	power	plants.	

WIND	TUNNELS		

Regarding	 the	 topic	 of	 tunnel	 design	 optimization	 there	 are	 two	 different	
approaches	found	in	literature.	The	first	approach	focuses	on	the	optimized	design	of	
particular	 sections	of	 the	 tunnel	 (in	most	 cases	 the	contraction	or	nozzle	 just	before	
the	 test	 section	 and	 the	 turning	 vanes	 and	 corners	 of	 the	wind	 tunnel).	 The	 second	
approach	 is	 the	 general	 optimization	 of	 the	 whole	 tunnel	 design.	 It	 is	 this	 second	
approach	that	the	research	presented	in	this	Thesis	wants	to	address.	However,	both	
approaches	will	be	analyzed	 in	this	section	 in	order	to	have	a	better	overview	of	the	
State	of	the	Art	in	wind	tunnel	design	optimization.	

In	 the	 area	 of	 research	 focusing	 on	 particular	 tunnel	 sections,	 it	 is	 important	 to	
highlight	 the	 work	 carried	 out	 by	 Borger	 (1976),	 on	 the	 optimization	 of	 tunnel	
contractions	 for	 the	 subsonic	 range.	Borger	 carries	out	an	extensive	 survey	on	other	
works	on	contraction	design	methods.		
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The	homogenization	of	the	velocity	profile	at	the	exit	of	a	contraction	is	shown	to	
be	 dependent	 on	 the	 contraction	 ratio	 and	 not	 on	 the	 contraction	 contour.	
Furthermore,	his	definition	of	the	velocity	 index	 in	the	test	section	(as	the	difference	
between	 the	 maximum	 and	 minimum	 velocity	 values	 over	 the	 average	 velocity)	 is	
more	stringent	than	the	more	common	version	used	by	other	authors.	Regarding	the	
definition	 of	 the	 contraction	 shape	 itself,	 Borger	 claims	 that	 the	 position	 of	 the	
inversion	point	is	much	more	important	to	determine	the	contraction	length	than	the	
definition	of	the	correction	geometry	at	the	exit	section	of	the	contraction.	A	program	
code	is	included	in	his	work	to	compute	the	optimum	contraction	length	and	contour	
for	a	set	of	given	constraints.	As	a	result,	a	number	of	optimized	contours	are	shown	
for	several	example	cases.	

Mikhail	 (1979)	describes	the	optimum	contraction	ratio	and	 length	of	wind	tunnel	
nozzles	for	an	optimum	design.	First,	he	states	that	the	optimum	contraction	ratio	is	a	
key	 trade-off	 between	 tunnel	 shell	 size	 (this	 affects	material	 cost,	which	 is	 lower	 as	
tunnel	 size	 is	 reduced)	 and	 power	 consumption	 (lower	 if	 tunnel	 is	 bigger,	 up	 to	 a	
certain	point,	because	of	 lower	power	losses	and	reduced	need	for	flow	conditioning	
devices).	 Next,	 the	 minimum	 length	 must	 be	 determined	 to	 satisfy	 the	 contraction	
ratio	 and	 the	 flow	 quality	 requirements	 in	 the	 test	 section.	 The	 length	 of	 the	 exit	
section	of	the	nozzle	is	determined	on	the	basis	of	achieving	0.25%	flow	uniformity	at	a	
point	on	the	test	section	center-line	one	local	radius	downstream	from	the	contraction	
exit.	 An	 optimum	 shape	 for	 the	 contraction	 curvature	 distribution	 is	 defined,	which	
permits	the	design	of	contractions	half	as	long	as	those	employed	when	his	paper	was	
published.	 The	 contraction,	 as	 expected,	 can	 be	 made	 shorter	 for	 higher	 Reynolds	
number	 applications.	 For	 low	 Reynolds	 number	 applications,	 a	 problem	 might	 be	
encountered	 regarding	 boundary-layer	 re-laminarization	 towards	 the	 exit	 end	of	 the	
nozzle.	 It	 is	 also	 shown	 that	 shorter	 contractions	 can	 be	 used	 whenever	 a	 thinner	
boundary	layer	exists	at	the	contraction	inlet.	

A	 more	 recent	 work	 by	 Doolan	 and	 Morgans	 (2007)	 offers	 a	 comparison	 of	
optimization	 methods	 applied	 to	 the	 design	 of	 tunnel	 contractions.	 They	 compare	
Sequential	 Quadratic	 Programming	 (SQP),	 DIRECT	 and	 Efficient	 Global	 Optimization	
(EGO).	They	conclude	that	SQP	was	able	to	solve	the	optimization	problem	efficiently,	
but	 not	 robustly;	 DIRECT	 provided	 a	 robust	 global	 optimization	 at	 the	 expense	 of	
function	evaluations;	and	EGO	is	robust	and	always	gave	acceptable	solutions,	but	its	
efficiency	depended	on	the	initial	random	sampling.	In	some	cases,	it	was	competitive	
with	 SQP,	 and	 the	 authors	 claim	 that	 with	 further	 research	 it	 should	 become	 an	
attractive	algorithm	for	global	optimization	of	low	speed	wind	tunnel	contractions.	

Other	 works	 can	 also	 be	 found	 on	 the	 topic	 of	 tunnel	 contraction	 optimization:	
Jordinson	 (1961),	Morel	 (1975,	1977),	Downie	et	al.	 (1984)	and	Vieira	and	Aparecido	
(1999).	 The	 main	 conclusions	 of	 these	 papers,	 as	 far	 as	 this	 Thesis	 research	 is	
concerned,	 have	 already	 been	 outlined	 and	 are	 included	 mostly	 in	 Doolan	 and	
Morgans	(2007),	but	also	in	Borger	(1976)	and	Mikhail	(1979).		
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Furthermore,	Hoghooghi	et	al.	(2016)	offers	an	interesting	contribution,	as	they	use	
the	 ball-spine	 inverse	 design	 method	 to	 improve	 the	 performance	 (outlet	 velocity	
uniformity)	 of	 a	 nozzle	 of	 reduced	 contraction	 ratio	 (to	 reduce	 its	 cost),	 yielding	
reasonably	 similar	 results	 to	 nozzles	 with	 higher	 contraction	 ratios.	 Ardekani	 (2013)	
also	 offers	 an	 interesting	 insight	 into	 the	 reduction	of	 nozzle	 length,	 in	 this	 case	 for	
vertical	wind	tunnels.		

Concerning	 research	 work	 carried	 out	 on	 wind	 tunnel	 turning	 vanes	 and	 corner	
design	optimization,	the	following	are	among	the	most	relevant	papers	for	the	purpose	
of	the	present	research.	

The	first	one	is	the	well-known	work	by	Friedman	and	Westphal	(1952).	They	tested	
the	 performance	 of	 a	 diffusing	 bend	 with	 different	 boundary	 layers,	 simulating	 the	
flow	that	would	be	encountered	in	a	bend	situated	downstream	of	different	ducts	and	
objects.	 They	 state	 that	 the	 use	 of	 diffusing	 corners	 does	 not	 have	 such	 a	 negative	
impact	on	pressure	 losses	while	having	the	benefit	of	 reducing	overall	 tunnel	 length.		
They	 highlight	 the	 key	 importance	 of	 boundary	 control	 systems	 to	 reduce	 pressure	
losses.	

Eckert	et	al.	 (1982)	gives	 recommendations	 for	 the	design	and	 implementation	of	
several	 flow	 control	 devices	 used	 for	 internal	 flow	 applications.	 Among	 the	 key	
recommendations,	the	authors	propose	chord-to-gap	ratios	of	2.5-3	for	turning	vanes	
in	 45-90°	 corners.	 They	highlight	 the	 impact	of	 a	 number	of	 factors	 on	 the	pressure	
loss	 introduced	 by	 turning	 vanes:	 basic	 vane	 contour,	 total	 turning	 angle	 and	 tail	
deflection	angle,	chord-to-gap	ratio	 (as	already	mentioned)	and	hinge-gap	seals.	This	
paper	 recommends	 thin	 vanes	 with	 a	 sealed	 hinge-gap,	 with	 respect	 to	 multi-arc	
circular	vanes	(even	those	with	tail).	

Lindgren	 et	 al.	 (1998)	 offers	 an	 interesting	 and	 in-depth	 study	 of	 turning	 vane	
performance	 in	 expanding	 bends	 (diffusing	 bends,	 as	 Friedman	 and	Westphal	 called	
them).	 These	 bends	 are	 of	 particular	 interest	 to	 reduce	 tunnel	 overall	 dimensions.	
According	to	Lindgren	et	al.,	in	closed	wind	tunnels	the	requirement	of	attached	flow	
in	 the	various	diffusers	 is	often	a	major	 factor	 in	determining	 the	 total	 length	of	 the	
circuit.	Therefore,	the	optimum	design	of	the	combination	of	diffusers	and	corners	(or	
bends)	is	of	paramount	importance	to	reduce	or	optimize	the	total	size	of	a	particular	
wind	 tunnel.	 Space	 restrictions	 can	 be	 a	 serious	 limiting	 factor	 and	 thus	 expanding	
corners	with	optimized	turning	vanes	can	be	a	promising	solution.	For	instance,	vanes	
of	an	optimized	profile	can	offer	three	dimensional	total	pressure	loss	coefficients	up	
to	four	times	smaller	than	conventional	¼	circle-shaped	vanes	with	prolongation	at	the	
trailing	edge.		
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However,	 it	 is	 not	 always	 the	 minimum	 pressure	 loss	 that	 is	 best,	 because	 flow	
quality	 must	 also	 be	 considered,	 especially	 in	 the	 corner	 upstream	 of	 the	 settling	
chamber.	The	wind	tunnel	design	proposed	by	the	authors	achieves	a	total	contraction	
ratio	 of	 nine.	 This	 is	 achieved	with	 a	 quite	moderate	 need	 of	 diffusers,	 yet	with	 an	
expansion	 ratio	 of	 about	 1.32	 in	 each	 corner.	 The	 results	 show	 that	 this	 can	 be	
achieved	with	very	small	 losses	 in	the	corners,	and	a	good	quality	of	the	flow	exiting	
those	 corners.	 The	MISES	 code,	 developed	by	 Youngren	 and	Drela	 to	 analyze	 turbo-
machinery	design,	 is	 used	 to	optimize	 turning	 vane	design	using	 an	 inverse	method:	
the	user	inputs	the	desired	pressure-distribution	along	the	vane	and	the	program	will	
yield	 the	vane	design.	Further	 information	on	 the	MISES	code	can	be	 found	 in:	Giles	
and	Drela	(1987),	Youngren	and	Drela	(1991)	or	Drela	and	Youngren	(1995).		

Moreover,	 Lindgren	 et	 al.	 also	 recommend	 inspecting	 the	 CP	 evolution	 along	 the	
upper	 and	 lower	 surfaces	 of	 the	 vanes	 to	 check	 where	 separation	 occurs	 and	 if	 a	
further	optimization	is	possible.	Finally,	given	that	the	total	pressure	loss	coefficient	is	
inversely	dependent	on	the	 lift-to-drag	ratio	of	 the	entire	corner	 (not	 just	of	a	single	
vane),	 it	 is	 important	to	maximize	this	ratio	for	every	single	vane,	and	also	to	reduce	
the	number	of	vanes.	

Jeong	et	al.	(2004)	use	the	Kriging	model	and	Genetic	Algorithms	(GAs)	to	optimize	
the	design	of	an	airfoil	and	the	position	of	a	 flap	on	a	multi-element	airfoil,	which	 is	
applicable	to	wind	tunnel	turning	vane	design.	As	pointed	out	by	the	authors,	it	is	very	
interesting	 that	 the	Kriging	model	 reduces	 the	computation	 time	 required	 to	 find	an	
optimum.	It	 is	well	suited	for	aerodynamic	problems	(thanks	to	the	use	of	GAs).	Also	
worth	 highlighting	 in	 this	 work	 is	 the	 fact	 that	 a	 variance	 analysis	 is	 carried	 out	 to	
determine	the	influence	of	the	different	variables	on	the	objective	function	(sensitivity	
analysis).		

Calautit	et	al.	(2014)	can	also	be	highlighted,	because	it	offers	a	design	method	for	
closed-loop	subsonic	wind	tunnels,	and	many	of	its	conclusions	are	focused	on	turning	
vane	and	corner	design	improvements.	However,	unlike	the	present	Thesis,	it	does	not	
carry	out	a	full	optimization	procedure.		

Finally,	we	will	present	the	most	relevant	papers	relating	to	the	optimum	design	of	
the	whole	wind	tunnel	circuit.	The	first	paper	worth	highlighting	for	our	purpose	in	this	
area	 is	 the	 work	 carried	 out	 by	 Eckert	 et	 al.	 (1976).	 In	 this	 case,	 formulae	 for	 the	
pressure	 losses	 in	 each	 tunnel	 section	 are	 presented	 (very	 similar	 to	 the	 impressive	
empirical	 work	 by	 Idel’Cik	 [1969],	 where	 the	 pressure	 loss	 coefficient	 of	 most	
commonly	used	geometries	in	hydraulics	and	aerodynamics	can	be	found).	Interesting	
formulae	 among	 those	 found	 in	 the	work	 by	 Eckert	 et	 al.	 refer,	 for	 example,	 to	 the	
pressure	 loss	 in	meshes.	 This	 paper	minimizes	 total	 pressure	 losses	 along	 the	whole	
wind	 tunnel.	 The	 necessary	 structural	 strength	 of	 the	 tunnel	 walls	 is	 taken	 into	
account.	 A	 computer	 program	 is	 hence	 developed	 to	 obtain	 the	 optimized	 tunnel	
design	 and	 check	 its	 performance.	 Some	 additional	 interesting	 points	 are	 the	
explanation	 of	 the	 impact	 of	 inaccurate	 estimations	 of	 pressure	 losses	 and	 fan	
efficiency	on	the	power	required	by	the	tunnel	and	the	velocity	in	the	test	section,	and	
a	final	description	of	the	main	tunnel	types	considered.	
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Abbaspour	and	Shojaee	(2009)	focus	on	the	whole-tunnel	design,	but	they	follow	an	
interesting	approach,	for	instance,	in	the	nozzle	design.	Their	objective	is	to	develop	a	
multipurpose	 tunnel	 for	 the	 R&D	 department	 of	 the	 Islamic	 Azad	 University	 (Iran).	
They	claim	that	only	the	nozzle	section	and	certain	parts	of	the	test	section	have	to	be	
modified	 to	 be	 able	 to	 use	 the	 tunnel	 for	 three	 main	 applications:	 environmental,	
subsonic	or	climatic	 tests.	This	 is	a	good	example	of	a	modular	wind	tunnel	concept.	
These	authors	change	approximately	half	of	 the	nozzle	 to	adapt	 it	 to	 these	different	
applications	and	thus	the	first	half	is	always	the	same	and	the	second	half	is	exchanged	
depending	on	 the	 test	 to	be	 carried	out	 (changing	 the	whole	nozzle	would	be	much	
more	difficult).	In	the	case	of	the	design	of	the	nozzle,	they	use	a	fifth	order	polynomial	
as	those	presented	in	Bell	and	Mehta	(1988).	

The	final	paper	included	in	the	context	of	full	wind-tunnel	design	optimization	is	a	
very	valuable	work	by	González	et	al.	 (2013).	Although	 it	only	optimizes	a	 traditional	
wind	tunnel	configuration,	the	work	is	very	complete	and	interesting,	and	the	authors	
suggest	somewhat	non-conventional	solutions	such	as	a	diffuser	upstream	of	the	fan	
system,	 instead	 of	 a	 nozzle	 geometry.	 They	 also	 propose	 a	 further	 diffuser	 in	 the	
section	 before	 the	 corner	 upstream	 of	 the	 test	 section	 and	 their	 design	 includes	 a	
considerably	long	nozzle.	A	detailed	Excel	spreadsheet	is	developed	and	can	be	found	
in	 their	 website6.	 This	 spreadsheet	 allows	 for	 the	 modification	 of	 many	 tunnel	
parameters	and,	 for	the	 input	values,	 it	will	yield	an	optimized	design.	However,	 it	 is	
not	an	automated	computer	optimization	tool.	

Furthermore,	this	work	states	that	in	the	case	of	wind	tunnels	for	civil	or	industrial	
applications,	a	contraction	ratio	between	four	and	six	may	be	sufficient.	With	a	good	
design	of	the	shape,	the	flow	turbulence	and	non-uniformity	levels	can	reach	the	order	
of	 2.0%,	which	 is	 acceptable	 for	many	 applications.	 Nevertheless,	 the	 authors	 claim	
that	with	one	screen	placed	in	the	settling	chamber	those	levels	can	be	reduced	up	to	
0.5%,	which	is	a	very	reasonable	value	even	for	some	aeronautical	purposes.	For	more	
demanding	aeronautical	applications,	when	the	flow	quality	must	be	better	than	0.1%	
in	 non-uniformity	 of	 the	 average	 speed	 and	 longitudinal	 turbulence	 level	 and	better	
than	 0.3%	 in	 vertical	 and	 lateral	 turbulence	 level,	 a	 contraction	 ratio	 between	 eight	
and	nine	is	more	desirable.	This	ratio	also	allows	installing	two	or	three	screens	in	the	
settling	 chamber	 to	 ensure	 the	 target	 flow	 quality	 without	 high	 pressure-losses	
through	 them.	 The	 authors	 state	 that	 the	 old-style	 contraction	 shape	 with	 a	 small	
radius	of	curvature	at	the	wide	end	and	a	large	radius	at	the	narrow	end	to	provide	a	
gentle	entry	to	the	test	section	 is	not	the	optimum.	There	 is	a	risk	of	boundary-layer	
separation	at	the	wide	end,	or	perturbation	of	the	flow	through	the	last	screen.	Good	
practice	 is	 to	make	 the	 ratio	of	 the	 radius	of	 curvature	 to	 the	 flow	width	 about	 the	
same	at	each	end.	However,	an	excessively	large	radius	of	curvature	at	the	upstream-
end	 leads	 to	 slow	acceleration	 and	 therefore	 increased	 rate	of	 growth	of	 boundary-
layer	thickness,	so	the	boundary	layer,	if	laminar	as	it	should	be	in	a	small	tunnel,	may	
suffer	 from	 Taylor-Goertler	 ‘centrifugal’	 instability	 when	 the	 radius	 of	 curvature	
decreases.	

																																																								
6	http://www.aero.upm.es/LSLCWT	(last	verified	on	February	2017).	



Chapter	3	–	State	of	the	Art	review	

51	

Regarding	 the	 power	 plant	 design	 or	 fan	 system,	 this	 work	 by	 González	 et	 al.	
proposes	using	a	multi-fan	matrix,	instead	of	a	more	standard	single-fan	configuration,	
stating	 that	 this	 reduces	 the	 cost	 of	 this	 component	 by	 roughly	 one	 order	 of	
magnitude.	 The	 paper,	 however,	 does	 not	 optimize	 the	 location	 of	 this	 power	 plant	
along	 the	 tunnel	 circuit	 and	 this	 has	 important	 effects	 on	 pressure	 loss	 and	 tunnel	
performance.		

To	 conclude	 the	 State	 of	 the	 Art	 review	 on	wind	 tunnel	 design	 optimization,	 the	
contributions	of	our	Thesis	in	this	area	are	now	commented.		

The	work	covered	by	our	research	aims	to	take	into	consideration	also	other	tunnel	
configurations,	 not	 only	 90°	 corners,	 rectangular	 ducts	 and	 multi-fan	 designs.	 In	
particular,	 it	aims	at	exploring	big	geometry	changes	and	therefore	non-conventional	
or	 non-intuitive	 designs,	 which	 may	 improve	 the	 performance	 of	 more	 traditional	
design	concepts.	It	focuses	on	true	optimization	of	the	full	wind	tunnel	body,	and	not	
only	 certain	parts	of	 it,	 such	as	corners	or	 the	main	nozzle.	Besides,	different	 tunnel	
wall	materials	will	also	be	considered	(in	future	research),	as	well	as	different	relative	
positions	 of	 the	 various	 elements	 of	 the	 wind	 tunnel,	 mainly	 test	 section	 and	 fan	
system.	

HEAT	RECOVERY	STEAM	GENERATORS	(HRSGS)	

Over	the	decades,	the	design	of	HRSG	inlet	ducts	has	largely	remained	unchanged.	
In	 this	 Thesis	 we	 will	 focus	 on	 the	 shape	 design	 optimization	 of	 the	 inlet	 duct	 of	
different	 HRSG	 families,	 thanks	 to	 the	 application	 of	 the	 proposed	 MOST-HDS	
algorithm.	

Generally	speaking,	there	are	two	current	design	trend-lines	for	an	HRSG	inlet	duct:	
single-angle	(more	traditional)	and	double-angle.	Most	manufacturers	have	used	both	
over	the	decades.	However,	some	manufacturers,	such	as	ALSTOM,	have	recently	tried	
somewhat	 unconventional	 variations	 of	 the	 double-angle	 inlet	 duct	 design,	 using	 a	
second	 angle	 of	 close	 to	 90°,	 as	 shown	 in	 Chapter	 4.	 Anyhow,	 extensive	 design	
analyses	have	not	been	performed,	as	far	as	we	know,	to	compare	the	different	inlet	
duct	designs	alternatives	thoroughly.		

There	are	a	number	of	works	in	the	area	of	CFD	modelling	of	an	HRSG’s	inlet	duct,	
but	 to	 our	 best	 knowledge,	 a	 complete	 shape	 optimization	 analysis	 of	 this	 critical	
element	 has	 never	 been	 addressed.	 The	 aim	 of	 these	 works	 is	 to	 analyze	 the	 flow	
distribution	of	 a	 particular	 design,	 or	 the	 effects	 of	 elements	 introduced	 in	 the	 inlet	
duct	to	improve	the	flow	distribution,	such	as	Ameri	and	Dorcheh	(2013)	and	Lee	et	al.	
(2002).	

The	 following	are	general	works	 in	 the	 field	of	CFD	analyses,	of	 relevance	 for	 the	
purpose	 of	 this	 Thesis,	 and	 useful	 for	 future	 authors	 working	 in	 the	 area	 of	 shape	
design	optimization	of	HRSGs.	
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Galindo	et	al.	 (2014)	 is	a	very	valuable	work	because	 it	develops	a	more	complex	
CFD	 model	 of	 the	 whole	 HRSG	 body	 to	 include	 an	 accurate	 model	 for	 the	 real	
geometry	 of	 the	 tube	 bundles,	 moving	 on	 from	 the	 more	 traditional	 approach	 of	
modelling	the	tube	bundles	as	porous	media.	Aslam	Bhutta	et	al.	(2012)	offers	a	review	
of	CFD	applications	in	various	types	of	heat	exchangers.	Galindo	et	al.	(2012),	for	the	
development	of	CFD	models	of	the	whole	HRSG	to	offer	a	better	comprehension	of	the	
flow	 inside	 the	unit	and	of	 its	performance	 for	plant	operators.	Shi	et	al.	 (2009)	and	
Hedge	et	al.	 (2007)	 for	 their	general	CFD	modelling	of	HRSGs.	Sundén	 (2007)	 for	 the	
work	on	CFD	modelling	for	R&D	on	the	field	of	heat	exchangers	in	general.	And	finally	
Daiber	(2006)	for	his	work	on	the	analysis	in	particular	of	the	gas	side	of	an	HRSG	flow	
design.	

The	 contribution	 of	 this	 Thesis,	 regarding	 HRSG	 inlet-duct	 shape-design	
optimization,	is	twofold.	On	the	one	hand,	it	shows	that	there	is	substantial	room	for	
improvement	in	the	shape	design	of	the	inlet	ducts	of	HRSGs,	in	terms	of	achieving	a	
lower	pressure	drop,	a	higher	velocity	uniformity	and	an	 important	cost	reduction	of	
the	unit.	On	 the	other	 hand,	 it	 shows	how	 the	MOST-HDS	 algorithm	 is	 applicable	 in	
diverse	 fields	 for	 aerodynamic	 shape	 optimization	 involving	 big	 geometry	 changes,	
finding	 improved	 designs	 that	 can	 be	 quite	 unconventional	 and	 non-intuitive.	 The	
results	 obtained	 for	 the	 two	 HRSG	 families	 presented	 illustrate	 the	 interest	 for	 the	
State	of	the	Art	of	the	work	presented	in	this	Thesis.	

Furthermore,	 this	 Thesis	 performs	 extensive	 design	 analyses	 to	 compare	 the	
different	 inlet-duct	 design	 alternatives	 thoroughly.	 As	 far	 as	 we	 know,	 this	 kind	 of	
analyses	have	not	been	performed	before.	

3.5.	Concluding	remarks	and	Thesis	mapping	to	the	State	
of	the	Art	

As	an	 important	 concluding	 remark	 to	 this	 chapter	on	 the	applicable	 State	of	 the	
Art,	 and	 as	 it	 will	 be	 commented	 further	 on	 in	 this	 Thesis,	 MOST-HDS	 has	 certain	
similarities	 with	 the	 Nelder	 and	 Mead	 simplex	 method	 for	 function	 minimization	
presented	in	Nelder	and	Mead	(1965).	The	Nelder-Mead	algorithm,	or	simplex	search	
algorithm,	 is	 one	 of	 the	 best-known	 algorithms	 for	 multidimensional	 and	
unconstrained	optimization	without	derivatives.	

The	main	contributions	of	the	Thesis	in	the	area	of	optimization	in	general	include	
the	 use	 of	 structured	 optimization	 in	 the	 field	 of	 aerodynamic	 shape	 design,	 the	
definition	of	a	novel	hybrid	direct	search	technique	and	the	development	of	the	MOST-
HDS	model	as	a	whole.	MOST-HDS	is	a	general,	automatic,	robust	and	flexible	tool	for	
shape	design	optimization,	as	it	will	be	shown	throughout	this	document.	

The	particular	mapping	(or	location)	of	the	Thesis	within	the	applicable	State	of	the	
Art	is	illustrated	in	the	following	scatter	plots,	for	a	better	general	perspective.	
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Figure	3–1	-	Scatter	plot	of	Thesis	contributions	to	State	of	the	Art	(SoA)	of	wind	tunnel	design	

optimization.	

	

	
Figure	3–2	-	Scatter	plot	of	Thesis	contributions	to	State	of	the	Art	(SoA)	of	HRSG	inlet	duct	design	

optimization.	
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Figure	3–3	-	Scatter	plot	of	Thesis	contributions	to	State	of	the	Art	(SoA)	of	general	design	

optimization.	
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Chapter	4 -	Problem	definition	
If	I	had	an	hour	to	solve	a	problem	I'd	spend	55	minutes	thinking	about	the	problem	and	5	minutes	thinking	about	solutions.	

	
Albert	Einstein.	

	
This	chapter	defines	the	general	problem	addressed	by	this	Thesis	in	an	efficient	
way	in	order	to	apply	automated	(i.e.	computer-based)	optimization	techniques.	
It	 defines	 the	 main	 elements	 of	 this	 kind	 of	 problem	 statement:	 variables,	
attributes	 and	 parameters,	 as	 well	 as	 a	 crucial	 aspect	 for	 shape	 design	
optimization:	the	geometry	parameterization	approach.	All	concepts	are	applied	
to	the	two	industrial	examples	which	will	be	presented	in	Chapter	6:	closed	wind	
tunnels	 and	 industrial	 boilers	 for	 combined	 cycle	 electricity	 generation	 plants.	
Firstly,	 Section	 4.1.	 puts	 forward	 the	 need	 for	 a	 robust	 problem	 definition;	
Section	 4.2.	 defines	 the	 main	 elements;	 Section	 4.3.	 presents	 the	 geometry	
parameterization	 scheme;	 and	 finally	 Section	 4.4.	 summarizes	 a	 set	 of	 final	
remarks.	
	

4.1.	Introduction	
The	 final	objective	of	 this	 Thesis	 is	 to	develop	an	optimization	architecture	which	

can	be	applied	 to	aerodynamic	 shape	design	optimization	problems.	One	of	 the	 first	
steps	 is	 to	present	 a	 general	way	 to	define	any,	or	 at	 least	most,	 of	 the	problems	a	
designer	can	face	in	the	field	of	shape	optimization,	so	that	the	optimization	model	can	
handle	them	in	a	more	efficient	and	comprehensive	manner.	This	means	that	the	way	
attributes,	parameters	and,	mainly,	variables	are	defined	is	not	to	be	underestimated.	
It	will	lay	the	foundations	for	an	easy-to-follow	optimization	process.		

Variables	condition	the	way	the	geometry	is	parameterized	and	this	has	to	be	done	
with	 care	 to	 ensure	 the	 parameterization	 is	 clear	 and	 intuitive,	 since	 this	will	 highly	
facilitate	 the	 development	 of	 the	 strategy	 to	 control	 the	 optimization	 algorithm.	
Furthermore,	it	will	make	easier	the	revision,	maintenance	and	future	developments	of	
the	program	source-code.	

4	
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Consequently,	the	contribution	of	the	Thesis	in	this	chapter	is	the	proposal	of	how	a	
problem	 of	 shape	 design	 can	 be	 defined	 in	 a	 most	 suitable	 way	 to	 apply	 not	 only	
advanced	optimization	schemes	in	general,	but,	in	particular,	multi-attribute/objective,	
structured,	hybrid,	direct	search	(MOST-HDS).	This	is	shown	for	two	example	cases	of	
very	different	industrial	fields,	to	illustrate	that	the	approach	and	method	are	general.		

This	 contribution	 includes	 the	 following	 related	 contribution:	 definition	 of	 an	
efficient	set	of	truly	 independent	variables.	This	 includes	defining	variables	which	are	
easy	 to	 understand	 and	 are	 intuitive	 enough	 to	 let	 the	 designer	 check	 how	 the	
optimization	proceeds.	These	variables	must	then	be	translated	to	the	variables	used	
by	the	CFD	solver,	which	are	normally	not	as	easy	to	handle	or	interpret.	

A	 final	 contribution	 worth	 highlighting	 in	 this	 chapter	 is	 the	 geometry	
parameterization	proposed	for	the	wind	tunnel	case.	There	are	very	rare	examples	of	a	
full	wind	tunnel	parameterizations	in	literature,	more	so	using	Bézier	curves	(18-20	are	
used	in	this	Thesis	for	a	real	full	wind	tunnel).	

4.2.	Problem	definition	
This	section	will	be	divided	into	two	parts:	one	focused	on	closed	wind	tunnels	and	

another	 one	 focused	 on	 industrial	 boilers,	 since	 we	 will	 be	 applying	 the	 problem	
definition	to	these	two	real	examples	throughout	this	Thesis.		

WIND	TUNNELS	

In	 the	 nineteenth	 century,	 the	 Wright	 brothers	 started	 a	 systematic	 process	 to	
study	flight	technology,	based	on	the	work	of	their	predecessors,	such	as	Da	Vinci,	the	
German	Otto	Lilienthal	or	the	American	Samuel	Langley.	Thanks	to	their	strong	effort,	
both	 the	Wright	 brothers	 and	 Santos	Dumont	 bear	 the	 title	 of	 pioneers	 of	 aviation.	
One	of	 their	main	 contributions	was	 the	design	and	development	of	 the	 first-known	
wind	 tunnel.	 Since	 then,	 many	 bodies	 subject	 to	 wind	 are	 tested	 in	 wind	 tunnels:	
aircraft,	 vehicles,	 civil	 structures,	 sports	 goods,	 etc.	 All	 wind	 tunnels	 share	 two	 key	
elements:	 the	 air-moving	 device	 (fan	 system)	 and	 a	 testing	 section	 to	 place	 the	
prototypes	analyzed.	

In	 wind	 tunnels,	 an	 airflow	 is	 generated	 around	 the	 objects	 tested.	 The	 objects	
themselves	 are	 equipped	 with	 various	 kinds	 of	 sensors	 to	 obtain	 the	 relevant	
aerodynamic	data	(mainly	pressure	distributions	and	forces	acting	on	the	prototypes).	
The	 airflow	 quality	 itself	 (turbulence	 and	 velocity	 indexes)	 must	 also	 be	 accurately	
measured	to	ensure	the	test	is	as	close	to	real	conditions	as	possible.	All	of	these	data	
allow	for	the	prediction	and	analysis	of	the	aerodynamic	performance	and	the	forces	
that	will	appear	on	the	tested	object	when	used	in	its	real-life	conditions.		

Wind	 tunnels	 can	 be	 classified	 according	 to	 different	 criteria.	 One	 of	 the	 most	
important	classifications	divides	wind	tunnels	into	open-loop	and	closed-loop	tunnels.	

In	open-loop	wind	tunnels,	ambient	air	is	suctioned	by	the	fan,	it	flows	through	the	
test	section,	and	then	through	an	open	outlet	and	into	the	atmosphere	again.		
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However,	 in	order	 to	have	a	better	 control	of	 the	airflow’s	quality	and	conditions	
(temperature	 and	 humidity)	 and	 to	 reduce	 energy	 consumption,	 closed-loop	 wind	
tunnels	were	developed.	In	these	tunnels,	the	same	air	is	re-circulated	once	and	again	
through	a	closed	ducting,	commonly	moved	by	some	kind	of	fan	system.	The	air	flows	
through	the	test	section	and	back	to	the	fan	for	a	new	cycle.	The	higher	quality	airflow	
and	 reduced	 energy	 consumption,	 main	 advantages	 of	 closed-loop	 wind	 tunnels,	
usually	 outweigh	 their	 main	 drawbacks:	 considerable	 space	 requirement	 for	 their	
construction	and	high	cost.	Moreover,	the	fact	that	these	tunnels	are	closed	allows	for	
the	use	of	other	gases,	different	from	air,	and	this	fact	contributes	to	a	better	density	
control	and	broader	applicability	of	this	type	of	equipment.		

This	Thesis	 focuses	on	closed	wind	tunnels,	 since	they	are	much	more	extensively	
used,	but	the	model	can	be	applied	to	open	wind	tunnels,	too.	

Figure	4–1	illustrates	a	representative	variety	of	types	of	wind	tunnels.	

	

							

	
Figure	4–1	-	Different	types	of	wind	tunnels.	From	right	to	left	and	top	to	bottom:	Replica	of	the	

Wright	wind	tunnel;	Closed	wind	tunnel	at	the	Ferrari	Formula	1	Team;	Open	wind	tunnel	at	NASA	Ames	
Research	Center;	A2	open	wind	tunnel	for	testing	of	various	kinds	(including	vehicles	and	professional	

cyclists	and	skiers);	and	vertical	wind	tunnels	for	scientific	testing	of	aircraft	spins,	helicopter	blades,	and	
parachutes:	at	NASA	Langley	Research	Center	(first	ever	built	vertical	wind	tunnel,	1940)	and	the	TsAGI	

Vertical	Wind	Tunnel	T-105	in	Russia	(1941).		

	

For	any	kind	of	wind	tunnel,	an	optimum	aerodynamic	design	is	required	to	ensure	
adequate	 performance	 and	 cost	 at	 all	 test	 conditions.	 This	 means	 minimal	 energy	
consumption,	 minimal	 cost	 (including	 investment,	 operation	 and	maintenance),	 and	
best	possible	emulation	of	real	conditions.	
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In	 order	 to	 reach	 an	 optimized	 wind	 tunnel	 design,	 an	 optimization	 model	
architecture	must	be	built.	This	model	will	need	two	types	of	 inputs:	parameters	and	
variables,	and	it	will	have	two	main	outputs:	the	values	of	each	of	the	attributes	and	
the	so-called	state	of	the	constraints	vector	(which	can	be	considered	as	a	special	type	
of	attribute).	

Table	 4–1	 and	 Table	 4–2	 show	 the	 generalized	 list	 of	 parameters	 (i.e.	 designer	
input)	and	attributes	proposed,	respectively,	for	the	study	of	closed	wind	tunnels.	It	is	
worth	noting	that	some	of	the	parameters	may	be	left	blank;	for	example,	cooling	may	
not	 considered,	 or	 convection	 or	 radiation	 may	 be	 neglected.	 Attributes	 can	 be	
grouped	 into	 different	 categories	 for	 the	 sake	 of	 clarity,	 in	 groups	 such	 as	 cost	
attributes,	 geometry/flow	attributes	and	 thermal	attributes.	Note	 that	 the	groups	of	
attributes	do	not	have	to	be	disjoint;	for	instance,	power	consumption	should	be	part	
of	the	cost	group	(energy	cost),	but	it	may	also	be	considered	a	category	by	itself,	for	
environmental	reasons.	
	

PARAMETER	 Explanation	

1.	NWT	 Number	of	sections	or	modules	for	wind	tunnel	discretization	

2.	ARMIN	 Minimum	frontal	cross–section	area	ratio	in	test	section	(i.e.	ATEST	SECTION/AMODEL)	

3.	ZMAXMODEL	 Maximum	height	of	models	to	be	introduced	in	test	section	

4.	YMAXMODEL	 Maximum	width	of	models	to	be	introduced	in	test	section	

5.	DMINTS	 Minimum	distance	in	z	and	y	directions	between	model	and	test	section	walls	

6.	LMINTS	 Minimum	required	length	for	test	section	

7.	HA	 Horizontal	arrangement	for	horizontal	closed	wind	tunnels	(1:	purely	horizontal,	2:	recirculating	
duct	runs	on	top	of	main	duct)	

8.	DTMAX/s	 Maximum	allowed	temperature	increase	of	air	inside	wind	tunnel	per	second	

9.	TAMB–time	 Ambient	air	temperature	versus	time	of	air	surrounding	tunnel	for	a	representative	24h	day,	for	
convection	modelling	

10.	GSOLAR–time	 Solar	radiation	versus	time	for	a	representative	24h	day,	for	radiation	modelling	

Table	4–1	-	Proposed	general	set	of	parameters	for	closed	wind	tunnels.	

	

ATTRIBUTE	 Explanation	

1.	PTOT	 Total	power	consumption	

2.	CFIXED	 Fixed	cost	(i.e.	investment)	

3.	CVAR	 Variable	cost	(operation	&	maintenance)	

4.	LTOT	 Total	length	

5.	WTOT	 Total	width	

6.	HTOT	 Total	height	

7.	VTOT	 Total	volume	

8.	𝑣TS	 Average	velocity	in	test	section	
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9.	𝑣INDEX	 Velocity	index	in	test	section	

10.	tINDEX	 Turbulence	index	in	test	section	

11.	ZMAXREAL	
Maximum	achieved	height	of	models	that	can	be	introduced	in	test	section	(the	value	will	normally	be	
the	same	as	ZMAXMODEL,	but	it	may	be	higher)	

12.	YMAXREAL	
Maximum	achieved	width	of	models	that	can	be	introduced	in	test	section	(the	value	will	normally	be	
the	same	as	YMAXMODEL,	but	it	may	be	higher)	

13.	ARREAL	
Achieved	value	of	area	ratio	in	test	section	(the	value	will	normally	be	the	same	as	ARMIN,	but	it	may	be	
higher)	

14.	LREALTS	
Achieved	value	of	length	of	test	section	(the	value	will	normally	be	the	same	as	LMINTS,	but	it	may	be	
higher)		

15.	DTREAL/s	
Achieved	value	of	temperature	increase	of	air	inside	wind	tunnel	per	second	(the	value	will	normally	be	
the	same	as	DTMAX/s,	but	it	may	be	lower)	

Table	4–2	-	Proposed	general	set	of	attributes	for	closed	wind	tunnels.	

	

In	the	case	of	wind-tunnel	design,	the	following	independent	variables,	presented	in	
Table	4–3,	were	already	defined	in	Prada-Nogueira	et	al.	(2015)	and	they	constitute	an	
efficient	set	of	truly	independent	variables	(independent	in	a	strict	sense,	i.e.,	none	of	
them	can	be	computed	univocally	from	the	others).	This	set	of	variables	is	capable	of	
representing	 most	 wind	 tunnel	 configurations,	 and	 it	 is	 appropriate	 to	 build	 an	
optimization	tool	based	on	them.	Figure	4–2	explains	graphically	the	meaning	of	each	
of	 these	 variables.	 This	 set	 gives	an	example	of	how	variables	 should	be	defined	 for	
other	 aerodynamic	 components.	 Recommendations	 on	 how	 to	 define	 an	 efficient	
variable	 set	 will	 be	 given	 at	 the	 end	 of	 this	 section,	 after	 the	 explanation	 on	 the	
industrial	boiler	case.	

	

VARIABLE	 Explanation	

1.	wTUNNEL	 Width	of	tunnel	

2.	lTS	 Length	of	test	section	

3.	wTS	 Width	of	test	section	

4.	𝛼F/TS	 Relative	position	of	fan	and	test	sections	

5.	dF	 Fan	diameter	

6.	geomTS	 Test	section	geometry	

7.	profileDUCT	1	
Profile	shape	of	the	different	parts	in	which	we	divide	the	ductwork	which	joins	the	test	section	
to	the	fan	(duct	1:	it	comprises	diffuser	1,	corner	1,	diffuser	2,	corner	2	and	fan	nozzle).	

8.	profileDUCT	2	
Profile	shape	of	the	different	parts	in	which	we	divide	the	ductwork	which	joins	the	fan	to	the	
test	section	(duct	2:	it	comprises	corner	3,	diffuser	3,	corner	4	and	nozzle	1).	

9.	aDUCT	1	 Area	distribution	for	the	wind	tunnel	sections	along	duct	1	

10.	aDUCT	2	 Area	distribution	for	the	wind	tunnel	sections	along	duct	2	

11.	geomDUCT	1	 Transverse	geometry	for	the	wind	tunnel	sections	along	duct	1	

12.	geomDUCT	2	 Transverse	geometry	for	the	wind	tunnel	sections	along	duct	2	

13.	nFANS	 Number	of	fans	
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14.	Other	 Other	variables	include:	length	of	diffuser	and	nozzle	sections,	length	of	fan	section,	angles	of	
diffuser	and	nozzle	sections,	offsets	in	corner	sections		

Table	4–3	-	Proposed	general	set	of	variables	for	closed	wind	tunnels7.	

	

	
Figure	4–2	-	Proposed	set	of	independent	variables	which	yield	an	efficient	representation	of	most	

wind	tunnel	configurations	and	are	adequate	for	the	application	of	computer-based	optimization	
methodologies.		

	

INDUSTRIAL	BOILERS:	HEAT	RECOVERY	STEAM	GENERATORS	(HRSGS)	

Heat	 Recovery	 Steam	Generators	 (HRSGs)	 for	 combined	 cycle	 power	 plants	 are	 a	
key	 industrial	 equipment	 in	 the	 power	 generation	 sector.	 They	 are	 designed	 and	
manufactured	by	big	engineering	companies	and	they	are	both	expensive,	large	in	size,	
and	 crucial	 to	 the	 performance	 of	 the	 power	 plant.	 However,	 the	 design	 of	 certain	
critical	components,	such	as	the	inlet	duct,	has	remained	largely	unchanged	for	many	
decades.	The	performance	of	 the	 inlet	duct	 is	mainly	measured	 in	 terms	of	pressure	
drop	throughout	the	unit,	gas	flow	velocity	uniformity	and	heat	transfer	capacity.		

																																																								
7	 Note	 that	 parameters	 and	 attributes	 are	 represented	 with	 uppercase	 names	 and	 variables	 are	

represented	with	lowercase	names.	
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In	 an	 HRSG,	 the	 hot	 exhaust	 gases	 of	 a	 gas	 turbine	 flow	 through	 a	 set	 of	 tubes	
(normally	 finned	 tubes)	 through	which	water	 is	pumped.	The	heat	of	 the	gas	 flow	 is	
transferred	to	the	water	flow,	which	is	transformed	into	steam.	This	steam	can	be	used	
directly	 for	 industrial	applications,	or	 for	electricity	generation	 in	a	steam	turbine,	or	
for	both	(in	the	so-called	co-generation	plants).	Figure	4–3	shows	an	example	layout	of	
a	combined	cycle	power	plant	and	an	example	of	a	real	HRSG.	

 

  

	
Figure	4–3	-	Example	combined	cycle	power	plant	layout	and	real	and	render	versions	of	an	example	

HRSG. 

 

The	main	challenge	 in	 this	application	 is	 that	 the	exhaust	gas	 flow	exiting	 the	gas	
turbine	 has	 to	 flow	 into	 the	 HRSG,	 which	 has	 a	 much	 bigger	 cross-sectional	 area,	
through	a	critical	section,	the	so-called	inlet	duct.	This	introduces	flow	detachment	and	
hence	 turbulence	and	velocity	non-uniformity,	which	 can	be	observed	 in	Figure	4–4.	
The	 velocity	 profile	 exiting	 the	 gas	 turbine	 greatly	 influences	 flow	 performance	
depending	on	its	velocity	uniformity,	swirl	and	other	characteristics.		

	

Gas	 turbine	
outlet	

Inlet	
duct	

HRSG	
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Figure	4–4	-	Side	view	of	velocity	contours	in	the	mid-plane	of	a	typical	HRSG	(left).	Detailed	isometric	

view	of	velocity	magnitude	streamlines	in	the	inlet	transition	duct	(right). 

	

Despite	 this,	 all	manufacturers	 try	 to	make	 this	 inlet	duct	 as	 short	 as	possible,	 to	
make	 their	whole	units	 shorter	and	more	 compact,	while	gas	pressure	drop	and	gas	
velocity	profile	are	maintained	within	certain	limits.	This	is	because	reducing	the	size	of	
the	inlet	duct	facilitates	its	integration	into	the	power	plant	layout,	and	it	can	reduce	
manufacturing	costs	considerably,	since	it	is	built	of	very	costly	stainless	steel.	

For	 the	 purpose	 of	 this	 Thesis,	 MOST-HDS	 will	 be	 applied	 to	 the	 shape	 design	
optimization	of	the	inlet	duct	of	several	HRSG	families,	to	show	its	applicability	to	an	
industrial	example	of	a	completely	different	field	to	wind	tunnels.	

The	optimization	problem	is	multi-attribute	or	multi-objective,	since	the	final	goal	is	
to	 obtain	 the	 inlet	 duct	 designs	 which	minimize	 two	 attributes:	 total	 pressure	 drop	
across	the	inlet	duct	and	velocity	non-uniformity	in	the	outlet	plane	of	the	inlet	duct8.		

The	pressure	drop	 is	measured	as	the	difference	 in	mass	weighted	average	of	 the	
total	pressure	between	the	inlet	and	the	outlet	of	the	inlet	duct.		

																																																								
8	 The	problem	 is	 defined	with	 two	objectives	 to	 be	 able	 to	 present	 the	optimization	 results	more	

simply.	The	problem	can	be	defined	with	a	higher	number	of	objectives.	Magnitudes	of	importance	such	
as	material	cost	and	total	length	are	calculated	throughout	the	optimization,	but	are	not	used	directly	as	
optimization	attributes.	



Aerodynamic	design	optimization	based	on	Multi-Attribute	Structured	Hybrid	Direct	Search	

64	

The	velocity	non-uniformity	is	defined	as	the	difference	between	the	velocity	area-
weighted	average	and	the	mass-flow-weighted	average.	This	definition	is	simply	one	of	
the	possible	ways	of	measuring	velocity	non-uniformity.	Other	alternative	definitions	
would	 be,	 for	 example,	 checking	 the	difference	between	 the	maximum	velocity,	 the	
minimum	 velocity	 and	 the	 average	 velocity	 (as	 is	 done	 for	 velocity	 indexes,	 for	
instance);	 or	 comparing	 the	maximum	 and	minimum	 velocities,	 etc.	 However,	 these	
alternative	definitions,	 involving	 the	maximum	and	minimum	velocity	 values,	 can	be	
misleading,	 since	minor	mesh	 irregularities,	 inevitable	 in	 most	 CFD	 simulations,	 can	
yield	 false	 values	 of	 maximum	 or	 minimum	 velocities.	 These	 values	 are	 acceptable	
numerical	 errors	 and	 can	 be	 easily	 discarded	 by	 the	 engineer	 when	 evaluating	 the	
results	one	by	one	and	manually,	 but	 cannot	be	detected	as	easily	by	 the	CFD	 code	
when	 launching	 an	 automatic	 optimization.	 Therefore,	 the	 indicated	 definition	 of	
velocity	 non-uniformity	 is	 used.	 It	must	 be	 noted	 that,	 strictly	 speaking,	 by	 velocity	
non-uniformity	we	are	not	only	referring	to	the	fact	that	velocity	values	are	uniform	in	
the	 outlet	 plane	 of	 the	 inlet	 duct,	 but	 to	 the	 fact	 that	 the	mass	 flow	must	 also	 be	
distributed	 as	 evenly	 as	 possible	 and	 the	 “combination”	 of	 velocity	 and	 mass	 flow	
uniformity	is	given	by	the	difference	between	the	velocity	area-weighted	average	and	
the	mass-flow-weighted	average9.		

Both	attributes	are	handled	in	per	unit	magnitude.	The	optimum	designs	are	those	
which	minimize	both	attributes.		

Regarding	 the	 independent	 variables	 used	 for	 this	 case,	 the	 following	 set	 is	
proposed:	two	angles	for	the	top	wall,	two	angles	for	the	lateral	wall	(identical	on	both	
lateral	 walls),	 two	more	 for	 the	 bottom	wall	 and	 the	 total	 length	 of	 the	 inlet	 duct.	
These	variables	take	into	consideration	the	design	modifications	which	are	feasible	in	
terms	of	manufacturing	and	assembly	in	real	power	plants.	For	example,	curved	walls	
or	 more	 than	 two	 intermediate	 angles	 are	 not	 considered	 of	 interest	 and	 they	 are	
consequently	not	included	in	this	analysis.	These	variables	are	listed	in	Table	4–4.	

	

VARIABLE	 Explanation	

1.	𝛼1T	(A16)	 First	angle	top	plane	

2.	𝛼2T	(A17)	 Second	angle	top	plane	

3.	𝛼1B	(A18)	 First	angle	bottom	plane	

4.	𝛼2B	(A27)	 Second	angle	bottom	plane	

5.	𝛼1S	(A6)	 First	angle	side	plane	

6.	𝛼2S	(A7)	 Second	angle	side	plane	

7.	lTOT	(V31)	 Total	length	

Table	4–4	-	Proposed	general	set	of	variables	for	HRSGs.	The	names	in	brackets	refer	to	ANSYS	names	
for	the	variables.		

																																																								
9	 Other	 definitions	 for	 velocity	 non-uniformity	 used	 by	 manufacturers	 in	 industry	 include	 the	

determination	 of	 the	 percentage	 of	 velocity	 values	 which	 lie	 within	 a	 10%	 of	 the	 RMS	 value	 of	 a	
particular	plane,	or	within	15%.		
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The	width	 and	 height	 of	 the	 HRSG	 and	 the	 elevation	 difference	 between	 turbine	
and	 boiler	 floor	 are	 kept	 constant	 for	 all	 simulations	 and	 are	 therefore	 included	 as	
parameters.	

The	 set	 of	 variables	 for	 the	 inlet	 duct	 is	 shown	 in	 Error!	 Reference	 source	 not	
found.	and	an	example	inlet	duct	3D	geometry	is	included	in	Figure	4–6.	
 

	 	
Figure	4–5	-	Variables	used	to	parameterize	a	general	inlet	duct	for	different	HRSG	families	(x-axis	

and	y-axis	views).	
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Figure	4–6	-	Side	and	3D	views	of	an	example	HRSG	inlet	duct	geometry,	generated	with	the	

proposed	geometry	parameterization.	

	

RECOMMENDATIONS	FOR	AN	EFFICIENT	VARIABLE	SET	DEFINITION	

This	 section	 offers	 a	 general	 outline	 on	 some	 of	 the	 observations	 or	
recommendations	to	be	taken	into	account	when	defining	a	variable	set	for	a	problem	
to	which	we	are	going	to	apply	automatic	optimization	tools:	

1. Check	 thoroughly	 that	 any	 variable	 set	 is	 truly	 independent,	 i.e.	 the	 value	 of	
each	variable	is	independent	from	the	value	of	the	rest	of	the	variables.	

2. The	variable	set	has	to	be	defined	to	be	as	simple	and	 intuitive	as	possible.	 In	
the	case	of	shape	design	optimization,	a	useful	way	of	thinking	is	to	define	the	
variables	 you	 would	 need	 to	 sketch	 a	 drawing	 of	 the	 body	 geometry.	
Additionally,	 each	 variable	 should	 represent	 visual	 aspects	 of	 the	 geometry,	
such	as	a	particular	dimension,	or	curvature,	or	relative	position.	Avoid	variables	
which	may	be	used	to	define	the	geometry	but	which	are	not	clear	geometrical	
magnitudes	that	any	non-expert	person	can	understand.	As	explained	in	point	3,	
the	optimization	algorithm	and	the	CAD	program	may	use	completely	different	
sets	of	variables	to	define	the	same	geometry.		
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3. The	 CAD	 or	 CFD	 programs	 used	 to	 generate	 the	 body	 geometry	 require	 a	
variable	set	used	to	define	or	parameterize	that	geometry,	but	it	may	not	be	an	
efficient	variable	 set	 for	 the	optimization	process.	 It	 is	 very	worth	highlighting	
this,	as	will	be	explained	in	detail	in	Chapter	5.	It	is	useful	to	bear	in	mind	that	
the	 variable	 set	 used	 for	 an	 optimization	 process	 will	 be	 more	 efficient	 if	
independent	 changes	 in	 each	of	 the	 variables	 are	 feasible,	 visual,	 and	directly	
generate	 different	 design	 candidates.	 Note	 that	 all	 the	 algorithm-embedded	
intelligence	will	act	directly	on	the	variable	values.	If	changes	to	these	values	are	
intuitive,	 it	 is	 more	 efficient	 for	 algorithm	 checking,	 maintenance	 or	
improvement.	 For	 instance,	using	 the	 relative	position	of	 two	elements	of	 the	
geometry	 is	better	than	using	the	base	point	position	of	 the	planes	containing	
each	of	the	elements.	

4. The	 variables	used	 should	 allow	 for	 an	easy	 formulation	of	 the	 constraints.	 In	
the	 case	of	 shape	design	optimization,	 a	 very	 important	 type	of	 constraints	 is	
geometry	 absurdity	 checks	 (negative	 volumes,	 intersecting	 parts,	 absurd	
curvatures,	etc.).	

5. Despite	 all	 the	 above,	 there	 is	 normally	 nothing	 such	 as	 the	 best	 and	 unique	
variable	 set	 for	 a	 particular	 problem.	 These	 are	 merely	 general	 guidelines	
applicable	to	most	geometries,	for	shape	design	optimization	purposes.	

4.3.	Geometry	parameterization	
In	 order	 to	 carry	 out	 a	 full	 optimization	 of	 a	 body’s	 shape	 design,	 this	 body’s	

geometry	 has	 to	 be	 parameterized	 in	 a	 CAD	 program	 (or	 CAD	 module	 of	 a	 CFD	
program,	 in	 our	 case).	 Although	 referred	 to	 as	 “parameterization”,	 this	 step	 really	
defines	 the	 variable	 (and	 not	 the	 parameter)	 set	 used	 by	 the	 CAD	 program	 to	
represent	the	geometry	univocally.	

As	has	been	highlighted	in	the	previous	section,	the	efficient	variable	set	defined	for	
the	optimization	process	will	in	most	cases	not	be	the	same	as	the	variable	set	defined	
to	parameterize	 the	geometry.	The	 latter	will	depend	on	the	CAD	program	used	and	
the	way	 the	designer	generates	 the	geometry.	This	variable	 set	will	 generally	not	be	
the	most	efficient,	 intuitive,	 illustrative	or	high-level	enough	so	as	 to	use	directly	 for	
the	optimization	process	(the	variables	may	not	even	be	independent).	Throughout	the	
section	a	number	of	concrete	examples	will	be	given	so	that	 the	reader	understands	
this	aspect	fully.	Once	again,	for	the	sake	of	clarity,	the	section	will	be	divided	in	two:	
wind	tunnel	and	HRSG	geometry	parameterization.	
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WIND	TUNNELS	

Figure	 4–7	 represents	 a	 general	 closed	wind	 tunnel	 of	 the	 traditional	 type	 (most	
current	wind	tunnels	are	qualitatively	of	this	design).	The	present	work	aims	at	proving	
that	 alternative	 designs	 (different	 corner	 geometries,	 cross-section	 types,	 etc.)	 can	
prove	interesting	and	better	for	certain	applications.	

	

	
Figure	4–7	-	Sections	of	a	general	closed	wind	tunnel	of	the	‘traditional’	type.	Section	1	is	the	test	

section	and,	following	the	airflow	direction,	the	sections	are:	2.	diffuser,	3.	corner,	4.	diffuser,	5.	corner,	
6.	straight	section,	7.	fan	section,	8.	diffuser	9.	corner,	10.	corner,	11.	settling	chamber	and	12.	nozzle.	

	

The	wind	tunnel	geometry	parameterization	is	carried	out	by	a	discretization	of	the	
tunnel	into	a	number	of	transverse	sections.	The	number	of	these	sections	is	selected	
by	the	user	as	one	of	the	input	parameters	to	the	model.	Each	section	is	parameterized	
with	a	number	of	segments	and	angles	(see	Figure	4–8).	For	this	work	eight	segments	
of	equal	 length	are	used,	but	this	can	be	generalized	to	any	number	which	creates	a	
closed	polygon.		
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Figure	4–8	-	Wind	tunnel	geometries	are	generated	by	means	of	a	discretized	set	of	transverse	

parameterized	sections.	An	example	plane	containing	one	of	these	transverse	sections	is	shown.	

	

The	polygon	for	each	transverse	section	can	have	any	geometry,	thus	being	able	to	
represent	most	wind	 tunnel	 designs.	 The	 area	of	 each	of	 these	 sections	 can	 also	be	
varied	as	one	of	the	model	variables.	For	instance,	the	angles	of	the	segments	of	each	
polygon	are	variables	used	in	the	CAD	module	to	generate	the	geometry	and	are	not	
very	 intuitive	 variables	 to	 be	 used	 for	 the	 optimization10.	 The	 geometry	 shape	
(rectangle,	 circle,	 regular	 polygon	 or	 others),	 which	 is	 much	 more	 visual,	 is	 used	
instead,	and	the	values	of	the	angles	are	adjusted	automatically	by	the	tool	developed	
for	this	Thesis	so	that	the	CAD	module	can	generate	the	geometry.		

Finally,	the	sections	are	generated	along	the	points	of	a	set	of	Bézier	curves.	These	
curves	 are	 chosen	 because	 they	 are	 robust,	 they	 can	 easily	 be	 controlled	 to	 avoid	
absurd	 tunnel	 shapes,	 and	 they	 have	 good	 mathematical	 behavior	 and	 optimum	
aerodynamic	 performance.	 Bézier	 curves	 are	 used	 extensively	 in	 aerodynamic	
optimisation	(a	good	illustrative	example	is	Paniagua	[2014]).	In	other	cases,	B-splines	
are	 used	 as	 a	 generalization	 of	 Bézier	 curves	 to	 avoid	 problems	 such	 as	 the	 Runge	
phenomenon,	or	other	effects,	which	mean	higher	order	polynomials	can	have	higher	
interpolation	errors	 than	 lower	order	polynomials.	 In	our	case,	 the	Bézier	curves	are	
not	used	as	an	approximation	to	a	real	function,	but	as	a	method	of	generating	good	
aerodynamic	 surfaces.	 Cubic	 Bézier	 curves	 (and	 not	 higher	 order	 ones)	 are	 hence	
chosen	 in	 our	 analyses.	 They	 are	 an	 optimum	 trade-off	 between	 number	 of	 control	
points	 and	 capacity	 to	 represent	 a	 very	 wide	 range	 of	 geometries	 for	 the	 tunnel.	
Besides,	splines,	for	instance,	could	yield	absurd	geometries,	which	must	be	avoided.	

																																																								
10	Stricty	speaking,	for	an	octagon,	only	the	angle	for	six	sides	must	be	specified,	and	not	for	all	eight,	

in	order	not	to	over-constrain	the	geometry	parameterization.	
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Depending	 on	 the	 complexity	 of	 the	 designer	 requirements	 for	 the	 wind	 tunnel	
model	 representation,	 more	 or	 less	 Bézier	 curves	 can	 be	 used	 for	 the	 geometry	
definition.	 An	 optimum	 trade-off	 must	 be	 reached	 between	 level	 of	 detail	 and	
computational	load.	

A	 set	 of	 18-20	 Bézier	 curves	 provides	 a	 highly-detailed	model,	 able	 to	 represent	
most	 wind	 tunnel	 geometries.	 The	 representation	 with	 this	 number	 of	 curves	 is	
depicted	in	Figure	4–9.	

	

	
Figure	4–9	–	Highly-detailed	representation	of	a	generalized	wind	tunnel	design,	able	to	represent	

most	tunnel	geometries	(18-20	Bézier	curves	are	needed).		

	

In	 this	Thesis,	 this	highly-detailed	 representation	will	be	used	 to	apply	 the	MOST-
HDS	algorithm	and	obtain	results	for	a	real	industrial	case.	However,	to	better	explain	
certain	 aspects	 of	 the	 optimization	 process	 and	 to	 analyze	 the	 way	 the	 algorithm	
works,	a	simpler	geometry	model	will	be	used	as	well	for	the	wind	tunnel	example.	

This	simpler	version,	shown	in	Figure	4–10,	uses	only	four	Bézier	curves:	two	for	the	
ductwork	between	the	test	section	and	the	fan	section	(referred	to	in	this	work	as	duct	
1)	and	two	for	the	ductwork	from	the	fan	section	back	to	the	test	section	(duct	2),	all	
defined	in	the	direction	of	the	airflow	(Figure	4–7).	
	

	 	
Figure	4–10	-	Low-detail	representation	of	a	wind	tunnel	design,	used	to	better	illustrate	certain	

aspects	of	the	optimization	methodology	presented	in	this	work.	Only	four	Bézier	curves	are	used.	Fan	
and	test	sections	are	both	shaded	in	this	figure	(left).	An	example	plane	containing	one	of	the	transverse	

sections	used	for	the	tunnel	geometry	discretization	is	also	shown	(right).		
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INDUSTRIAL	BOILERS:	HEAT	RECOVERY	STEAM	GENERATORS	(HRSGS)	

In	the	case	of	the	inlet	duct	of	HRSGs,	which	is	a	much	simpler	geometry	than	that	
of	 closed	 wind	 tunnels,	 the	 variables	 commented	 in	 Section	 4.2.	 are	 used	 to	
parameterize	the	geometry	 (Figure	4–5).	For	 this	 industrial	example,	 the	geometry	 is	
quite	 straightforward,	 and	 the	 variable	 set	 used	 for	 the	 optimization	 process	 is	 the	
same	as	that	used	to	generate	the	geometry	in	CAD.		

4.4.	Final	remarks	
This	 chapter	 has	 explained	 how	 this	 Thesis	 proposes	 to	 define	 shape	 design	

optimization	problems	of	a	wide	range	of	fields.	It	includes	real	industrial	examples	of	
a	 simple	 case	 in	 terms	 of	 number	 of	 variables,	 parameters	 and	 geometry	
parameterization	 (HRSGs)	 and	 an	 example	 of	 a	 complex	 case	 (wind	 tunnels).	 Very	
especially,	 the	 way	 variables	 are	 defined	 and	 the	 proposed	 geometry	
parameterizations	allow	for	an	efficient	and	easy-to-follow	optimization	process,	as	is	
analyzed	in	the	following	chapters.	

List	of	Figures	
	
Figure	4–1	-	Different	types	of	wind	tunnels.	From	right	to	left	and	top	to	bottom:	Replica	of	the	Wright	
wind	tunnel;	Closed	wind	tunnel	at	the	Ferrari	Formula	1	Team;	Open	wind	tunnel	at	NASA	Ames	
Research	Center;	A2	open	wind	tunnel	for	testing	of	various	kinds	(including	vehicles	and	professional	
cyclists	and	skiers);	and	vertical	wind	tunnels	for	scientific	testing	of	aircraft	spins,	helicopter	blades,	and	
parachutes:	at	NASA	Langley	Research	Center	(first	ever	built	vertical	wind	tunnel,	1940)	and	the	TsAGI	
Vertical	Wind	Tunnel	T-105	in	Russia	(1941).	

	
Figure	4–2	-	Proposed	set	of	independent	variables	which	yield	an	efficient	representation	of	most	wind	
tunnel	configurations	and	are	adequate	for	the	application	of	computer-based	optimization	
methodologies.	

	
Figure	4–3	-	Example	combined	cycle	power	plant	layout	and	real	and	render	versions	of	an	example	
HRSG.	

	
Figure	4–4	-	Side	view	of	velocity	contours	in	the	mid-plane	of	a	typical	HRSG	(left).	Detailed	isometric	
view	of	velocity	magnitude	streamlines	in	the	inlet	transition	duct	(right).	

	
Figure	4–5	-	Variables	used	to	parameterize	a	general	inlet	duct	for	different	HRSG	families	(x-axis	and	y-
axis	views).	

	
Figure	4–6	-	Side	and	3D	views	of	an	example	HRSG	inlet	duct	geometry,	generated	with	the	proposed	
geometry	parameterization.	
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Figure	4–7	-	Sections	of	a	general	closed	wind	tunnel	of	the	‘traditional’	type.	Section	1	is	the	test	section	
and,	following	the	airflow	direction,	the	sections	are:	2.	diffuser,	3.	corner,	4.	diffuser,	5.	corner,	6.	
straight	section,	7.	fan	section,	8.	diffuser	9.	corner,	10.	corner,	11.	settling	chamber	and	12.	nozzle.	

	
Figure	4–8	-	Wind	tunnel	geometries	are	generated	by	means	of	a	discretized	set	of	transverse	
parameterized	sections.	An	example	plane	containing	one	of	these	transverse	sections	is	shown.	

	
Figure	4–9	–	Highly-detailed	representation	of	a	generalized	wind	tunnel	design,	able	to	represent	most	
tunnel	geometries	(18-20	Bézier	curves	are	needed).	

	
Figure	4–10	-	Low-detail	representation	of	a	wind	tunnel	design,	used	to	better	illustrate	certain	aspects	
of	the	optimization	methodology	presented	in	this	work.	Only	four	Bézier	curves	are	used.	Fan	and	test	
sections	are	both	shaded	in	this	figure	(left).	An	example	plane	containing	one	of	the	transverse	sections	
used	for	the	tunnel	geometry	discretization	is	also	shown	(right).	
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Chapter	5 -	The	MOST-HDS	optimization	
model		

Insanity:	doing	the	same	thing	over	and	over	again	and	expecting	different	results.	
	

Albert	Einstein.	

	
This	 chapter	 describes	 in	 detail	 the	 MOST-HDS	 model	 and	 the	 optimization	
algorithm	developed	for	this	Thesis.	It	highlights	the	differential	aspects	between	
this	 approach	 and	 the	 current	 State	 of	 the	 Art.	 Firstly,	 Section	 5.1.	 presents	 a	
general	 introduction.	Section	5.2.	explains	 the	main	elements	of	 the	structured	
optimization	approach	proposed	by	MOST-HDS.	The	fact	that	the	search	carried	
out	 by	MOST-HDS	 is	 structured	 is	 one	 of	 the	 key	 aspects	 of	 the	model	 and	 a	
contribution	 of	 this	 Thesis	 to	 the	 field	 of	 aerodynamic	 shape	 optimization.	
Section	 5.3.	 describes	 the	 MOST-HDS	 model.	 Section	 5.4.	 illustrates	 the	
architecture	of	 the	model	 implementation.	This	architecture	 contributes	 to	 the	
State	 of	 the	 Art	 because	 it	 carries	 out	 a	 full	 implementation	 of	 an	 automatic	
workflow	 for	 an	 optimization-simulation	 environment	 based	 on	 direct	 search,	
applicable	to	CFD	problems	of	a	wide	range	of	fields.	Finally,	Section	5.5.	outlines	
a	set	of	final	remarks	on	MOST-HDS,	to	summarize	the	most	important	aspects	of	
this	chapter.	
	

5.1.	Introduction	
The	approach	proposed	by	this	Thesis	for	the	aerodynamic	shape	design	problems,	

able	to	handle	both	small	and	big	geometry	changes,	is	the	development	of	a	general	
method	 based	 on	 a	 Multi-Objective	 Structured	 Hybrid	 Direct	 Search	 optimization	
algorithm	(referred	to	as	MOST-HDS).		

Extensive	 research	 has	 been	 carried	 out	 over	 many	 years	 in	 all	 aspects	 of	
optimization,	 applied	 to	 a	 very	 wide	 range	 of	 fields.	 This	 Thesis	 focuses	 on	 a	 very	
particular	area,	aerodynamic	design.	Many	interesting	contributions	to	optimization	in	
this	field	can	also	be	found	(refer	to	the	State	of	the	Art,	Chapter	3).		

5	
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The	novel	aspects	and	contributions	of	the	MOST-HDS	model	are:	

- Firstly,	that	it	is	an	automatic,	flexible	and	robust	implementation	of	structured	
optimization	in	an	area	(aerodynamic	shape	design)	to	which	this	approach	has	
not	been	applied,	as	far	as	we	know.	

- Secondly,	the	contribution	to	the	concept	of	hybrid	direct	search,	used	by	other	
authors.	 In	 this	 regard,	 MOST-HDS	 combines	 genetic,	 gradient	 and	 swarm	
search	intelligence	in	a	way	no	other	author	we	are	aware	of	has	proposed.	

- Moreover,	the	fact	that	MOST-HDS	is	able	to	cope	smoothly	with	big	geometry	
changes	or	modifications	of	 the	shape	design	means	that	 it	can	produce	non-
conventional	 or	 non-intuitive	 designs.	 Such	 designs	 would	 never	 have	 been	
tried	manually	 by	 the	 designer	 or	 explored	 by	 other	 optimization	 algorithms	
focused	on	small	geometry	changes	(see	Chapters	1	and	2	for	the	importance	
of	big	geometry	changes	in	the	field	of	aerodynamic	design).	

- The	relevance	of	direct	search	for	problems	of	aerodynamic	shape	design	with	
big	 geometry	 changes	 is	 compared	 to	 other	 approaches,	 mainly	 surrogate	
models,	 which	 are	 shown	 not	 to	 perform	 as	 well	 for	 cases	 in	 which	 a	 big	
geometry	 change	means	 a	 qualitative	 change	 in	 the	 flow	 regime	 around	 the	
body	of	interest	(refer	to	Chapter	7).	

- Finally,	 the	 applicability	 of	 the	 MOST-HDS	 model	 is	 shown	 for	 two	 real	
industrial	examples	in	Chapter	6	(closed	wind	tunnels	and	industrial	boilers	for	
combined	 cycle	 plants)	 to	 illustrate	 that	 it	 is	 a	 substantially	 general	
optimization	 model.	 Besides,	 its	 performance	 is	 also	 compared	 to	 an	
extensively	 used	 general	 purpose	 optimization	 algorithm	 by	 applying	 MOST-
HDS	 to	 a	 relevant	 mathematical	 test	 suite	 which	 is	 commonly	 used	 for	
benchmark	analyses	of	optimization	algorithms	(Huband	et	al.	[2006]).	

5.2.	 Structured	 search:	 Variable	 hierarchy	 and	
optimization	phases	

Two	 of	 the	 fundamental	 concepts	 of	 this	 optimization	 methodology	 are	 the	
hierarchy	 of	 variables	 and	 the	 optimization	 phases.	 This	 approach	 –	 including	 direct	
search	 in	most	 cases	 –	 has	 been	 used	 in	 other	 fields	 (Cuadra	 [1990]	 is	 a	 very	 good	
reference	 example),	 but	 not	 yet	 in	 aerodynamics,	 or,	 at	 least,	 not	 as	 thoroughly	 as	
proposed	in	this	work.	
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Hierarchy	of	variables	
Hierarchy	of	variables	refers	to	the	fact	that	the	independent	variables	which	define	

each	possible	design	of	the	aerodynamic	body	are	not	all	of	them	of	equal	importance	
in	 terms	of	 their	 impact	on	attributes	and	 constraints.	 This	 is	one	of	 the	aspects	 for	
which	the	engineer’s	know-how	is	of	paramount	importance.		

As	 an	 example,	 in	 the	 particular	 case	 of	 wind	 tunnel	 design	 optimization,	 the	
following	main	 independent	 variables	were	 already	 defined	 in	 Prada-Nogueira	 et	 al.	
(2015)	and	presented	in	Chapter	4:	

1. Width	of	the	tunnel.	

2. Length	of	the	test	section.	

3. Width	of	the	test	section.	

4. Relative	position	of	fan	and	test	sections.	

5. Fan	diameter.	

6. Test	section	geometry.	

7. Profile	shape	of	the	so-called	ducts	1	and	2.	

8. Area	distribution	for	the	wind	tunnel	sections.	

9. Transverse	shape	for	the	wind	tunnel	sections.	

10. Number	of	fans.	

	

For	this	design	problem,	we	propose,	based	on	our	experience,	the	following	hierarchy	
of	variables	for	the	optimization	model:	

1. High	importance	variables:	width	of	the	tunnel,		length	of	the	test	section,		
width	of	the	test	section,	relative	position	of	fan	and	test	sections,	fan	
diameter	and	geometry	of	the	test	section.	

2. Medium	importance	variables:	profiles	for	ducts	1	and	2,	area	distribution	
and	shape	of	sections	in	ducts	1	and	2.	

3. Low	importance	variables:	number	of	fans.	

	

This	 hierarchy	 reflects	 the	 importance	 the	 engineer	 assigns	 to	 each	 variable.	
Treating	variables	differently,	according	to	their	hierarchy	(i.e.	their	importance	on	the	
value	of	the	attributes	considered),	allows	for	a	more	efficient	optimization	process,	as	
will	be	explained	below.	
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It	must	be	noted	that	the	hierarchy	of	variables	for	this	particular	case,	or	for	any	
other,	is	not	unique	and	it	must	suit	the	purpose	and	experience	of	the	designer.	This	
is	where	the	engineer	plays	a	key	role	in	ensuring	the	best	set-up	for	the	optimization	
problem.	A	bad	selection	of	the	hierarchy	can	result	in	less	efficient	optimizations.	

Optimization	phases		
The	 second	 key	 aspect	 of	 the	 optimization	 architecture	 presented,	 after	 variable	

hierarchy,	 is	 the	 concept	 of	 optimization	 phase.	 Figure	 5–1	 summarizes	 the	
optimization	model	 structure	 and	 introduces	 the	 concept	 of	 optimization	 phase	 for	
two	example	set-up	configurations.	

	

	

	
Figure	5–1	-	Optimization	model	structure,	illustrating	the	optimization	phases,	for	two	example	set-

up	configurations.	The	arrows	and	equal	signs	indicate	magnitude	of	change	for	each	type	of	variable	in	
each	phase.	

	

The	main	difference	between	phases	 is	the	 level	of	change	of	the	various	variable	
hierarchies	 (as	 well	 as	 the	 search	 techniques	 employed	 by	 the	 model).	 Figure	 5–1	
depicts	how	the	variable	value-changes	are	considered	in	the	different	phases	for	two	
example	 configurations	 (a	 big	 arrow	 stands	 for	 gross	 changes,	 a	 small	 arrow	 for	
medium	changes	or	even	 fine	 tuning	and	an	equal	 sign	means	 that	 variables	of	 that	
hierarchy	are	kept	constant	or	derived	 from	others).	The	number	of	phases	depends	
on	the	particular	problem	and	the	accuracy	and	time	constraints.		

Figure	 5–1	 illustrates	 how	MOST-HDS,	 after	 a	 design	 exploration	 phase	 (Phase	 0,	
not	 included	 in	 this	 figure	 because	 it	 is	 not	 an	 optimization	 phase),	 will	 implement	
different	types	of	change	for	each	variable,	depending	on	the	hierarchy	of	that	variable	
and	the	optimization	phase.		
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For	the	initial	phases,	given	that	the	designer	has	a	reasonable	idea	of	where	in	the	
search	region	the	optimum	designs	could	lie,	a	certain	variation	will	be	allowed	for	the	
high	importance	variables,	those	with	a	stronger	impact	on	the	value	of	the	attributes.	
However,	 this	variation	 range	allowed	will	not	be	gross,	otherwise	 the	search	 region	
will	be	too	large	and	the	total	computing	time	too	long.	It	is	important	to	note	that,	for	
discrete	variables,	a	small	change	may	already	imply	a	qualitative	change	in	design.	

For	medium	 importance	 variables,	 the	model	 allows	 the	 highest	 level	 of	 change.	
This	is	so	since	it	is	normally	for	this	type	of	variables	that	the	designer	cannot	rely	on	
his	 intuition	 or	 experience	 alone,	 or	 for	 which	 he	 cannot	 take	 all	 the	 mutual	
interactions	 into	 account,	 to	 know	 beforehand	 which	 designs	 can	 be	 better	 than	
others.	 It	 is	 thus	 important	 that	 the	 optimization	 explores	 big	 changes	 in	 these	
variables.	

Regarding	low	importance	variables,	they	are	not	modified	for	the	first	stages	of	the	
optimization.	The	reason	behind	this	is	that	their	impact	on	the	value	of	the	attributes	
is	weak	and	therefore	it	makes	no	sense	trying	to	fine-tune	the	design	at	this	very	early	
stage	of	the	optimization.		

As	 the	 optimization	 proceeds,	 the	 variation	 of	 the	 high	 importance	 variables	 and	
medium	importance	variables	is	gradually	reduced	from	their	initial	levels,	and	it	is	the	
low	importance	variables	that	suffer	gross	changes,	because	it	is	in	these	final	stages	of	
the	optimization	that	the	designs	have	to	be	fine-tuned.	

The	whole	 architecture	 and	 levels	 of	 change	 for	 each	 phase	 and	 type	 of	 variable	
(Figure	 5–1)	 can	 of	 course	 be	 adapted	 to	 each	 particular	 problem	 if	 the	 designer	
wishes	to	do	so.		

A	 naïve	 example	 of	 the	 difference	 between	 variables	 of	 different	 hierarchies	 and	
between	gross	and	fine	changes	can	be	the	selection	of	a	vehicle	to	purchase.	The	high	
importance	variables	would	be	the	type	of	vehicle,	and	gross	changes	would	be	either	
selecting	a	car	or	a	truck,	while	a	low	importance	variable	would	be	vehicle	color	and	a	
small	change	would	be	changing	the	tone	of	green	chosen,	for	example.	This	example	
is	illustrated	in	Figure	5–2,	Figure	5–3	and	Figure	5–4.		

	

	
Figure	5–2	-	Gross	and	fine	tuning	example	for	high	importance	variables.	In	this	example	the	high	

importance	variable	is	the	type	of	vehicle.	In	the	upper	line,	gross	changes,	and	in	the	bottom	line,	for	the	
selected	vehicle	type	(car),	fine	tuning	of	the	particular	model.	
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Figure	5–3	-	Gross	and	fine	tuning	example	for	medium	importance	variables.	In	this	example	the	

medium	importance	variable	is	the	type	of	fuel:	diesel	or	gasoline.	In	the	upper	line,	gross	changes	(diesel	
or	gasoline),	and	in	the	bottom	line,	for	the	selected	fuel	(gasoline),	fine	tuning	of	the	particular	gasoline	

type.	

	

	
Figure	5–4	-	Gross	and	fine	tuning	example	for	low	importance	variables.	In	this	example	the	low	

importance	variable	is	the	color	of	the	vehicle.	In	the	upper	line,	gross	changes,	and	in	the	bottom	line,	
for	the	selected	color	(green)	fine	tuning	of	the	tone.	

	

Variable	 hierarchy	 and	 optimization	 phases	 are	 at	 the	 core	 of	 a	 structured	
optimization	 model.	 Their	 importance	 stems	 from	 the	 fact	 that	 the	 number	 of	
evaluations	of	the	objective	function	can	be	reduced	in	a	robust	and	efficient	manner	if	
the	 selection	 of	 variables	 in	 each	 hierarchy	 level	 and	 the	 particular	 gross	 and	 fine	
tuning	levels	are	well	selected	by	the	expertise	of	the	designer.		

Furthermore,	 the	 optimization	 algorithms,	 evaluation	methods	 or	 tools	 used	 can	
differ	 from	phase	 to	phase	 to	better	exploit	 the	 types	of	variables	 to	be	modified	 in	
each	 phase	 (discrete/continuous),	 their	 hierarchy,	 or	 the	 level	 of	 change	 they	 suffer	
(gross,	 fine	or	none).	Besides,	 the	areas	of	 the	search	region	to	 focus	on	can	also	be	
changed	 during	 the	 optimization	 process.	 This	 is	 done	 automatically	 by	MOST-HDS,	
based	on	its	embedded	intelligence	and	metaheuristics,	as	will	be	explained	later	on	in	
this	chapter.	

To	further	illustrate	the	optimization	phases,	the	detailed	optimization	architecture	
is	shown	in	Figure	5–5,	for	each	proposed	phase.	The	example	application	is	the	wind	
tunnel	design	optimization,	subject	to	a	set	of	constraints.	
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For	this	particular	case,	the	approach	of	Figure	5–1	is	followed,	with	some	specific	
adaptations.	 Some	of	 the	high	 importance	 variables	 (width	of	 the	 tunnel	 and	 length	
and	width	of	the	test	section)	are	left	constant	from	the	very	beginning,	while	the	rest	
of	the	high	importance	variables	suffer	medium	changes.	This	is	so	to	limit	the	number	
of	designs	for	the	exploration	phase	(Phase	0)	to	a	manageable	number	of	32,	in	order	
to	present	and	analyze	the	results	for	this	Thesis	with	more	clarity.	It	also	stems	from	
the	fact	that	the	experienced	tunnel	designer	will	acknowledge	that	the	variables	set	
as	 constants	 are	 usually	 constraints	 of	 the	 project	 and	 so	 no	modifications	 (or	 only	
minor	ones)	are	allowed.	

As	commented	above,	this	methodology,	with	the	appropriate	modifications	–	it	is	
the	 job	 of	 the	 designer/engineer	 to	 adapt	 the	 method	 (variable	 hierarchies	 and	
number	of	phases)	–	can	be	used	for	other	problems	of	advanced	aerodynamic	design	
of	complex	systems.	In	this	Thesis	a	second	example,	the	application	of	MOST-HDS	to	
the	shape	optimization	of	a	critical	part	of	industrial	boilers,	will	also	be	presented.	

	

	

	



Chapter	5	–	The	MOST-HDS	optimization	model	

81	

	
Figure	5–5	-	Proposed	detailed	optimization	architecture	for	the	example	case	of	a	wind	tunnel	

design	optimization	and	for	one	possible	problem	configuration.	

	

As	the	optimization	proceeds,	the	algorithm	will	keep	the	best	solutions	it	finds,	and	
it	will	calculate	the	new	design	points	taking	the	architecture	shown	in	Figure	5–5	(or	
the	particular	one	set	by	the	designer)	 into	account	for	each	phase.	Consequently,	 in	
the	 first	 phases	 it	 will	 allow	 for	 changes	 in	 the	 variables	 of	 higher	 importance	 but,	
gradually,	 it	 will	 focus	 on	 the	 areas	 of	 the	 search	 region	 which	 are	 yielding	 better	
results	 and,	 for	 those	 designs,	 it	will	 reduce	 the	magnitude	 of	 the	modifications	 for	
variables	 of	 higher	 importance	 and	 it	 will	 focus	 on	 the	 optimization	 of	 the	 lower	
importance	variables.		

5.3.	Description	of	the	MOST-HDS	algorithm	
The	 optimization	 algorithm	 needs	 a	 set	 of	 embedded	 metaheuristic	 rules	 to	

determine	 how	 to	 move	 throughout	 the	 search	 region,	 for	 the	 different	 variable	
hierarchies,	 variable	 types	 (discrete	 or	 continuous)	 and	 optimization	 phases.	 This	
section	will	give	an	overview	of	these	rules.	

1.	Phase	0:	Initial	design	set	evaluation	(design	exploration	phase)	
The	initial	phase	or	Phase	0	performs	an	initial	evaluation	of	a	set	of	design	points	

within	 the	 search	 region.	 Design	 points	 in	 this	 initial	 set	 will	 usually	 have	 various	
different	values	for	the	high	and	medium	importance	variables	and	fixed	values	for	the	
low	 importance	 variables,	 in	 accordance	with	 Figure	 5–1	 and	 Figure	 5–5,	 but	 it	 is	 a	
phase	previous	to	those	shown	in	these	figures,	since	it	is	not	an	optimization	phase	in	
itself,	but	a	mere	design	exploration.		
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In	defining	this	initial	evaluation	to	be	performed,	the	experience	of	the	engineer	is	
critical,	since	it	must	be	broad	enough	to	explore	the	whole	area	of	the	search	space	
where	optimum	points	could	be	found.	The	optimization	algorithm	will	then	refine	the	
search	 in	each	optimization	phase,	but	a	poor	 initial	evaluation	set,	as	happens	with	
most	 optimization	 algorithms,	will	 increase	 the	 computing	 time	 required	 to	 find	 the	
optimum	 solutions	 or	may	make	 convergence	more	 difficult.	 However,	 using	 a	 very	
broad	evaluation	set	is	only	recommended	in	cases	in	which	there	is	a	high	uncertainty	
on	where	the	optimum	may	lie,	because	a	very	high	number	of	initial	points	will	also	
increase	the	computation	time	considerably.	The	ideal	situation	is	to	generate	an	initial	
evaluation	 set	 which	 is	 both	 limited	 in	 the	 number	 of	 points	 and	 which	 covers	 the	
whole	search	space	well,	or	the	area	where	the	optima	are	known	to	lie.	This	situation	
is	common	to	most	algorithms	currently	used.			

In	the	real	industrial	cases	presented	in	Chapter	6	we	will	use	initial	evaluation	sets	
which	 work	 well	 for	 this	 kind	 of	 problems,	 based	 on	 our	 experience.	 In	 one	 of	 the	
examples,	the	wind	tunnel	design	optimization,	this	set	is	generated	as	all	the	possible	
combinations	 of	 all	 maximum	 and	 minimum	 variable	 values	 for	 the	 whole	 set	 of	
variables	defined.	Thus	the	first	phase	explores	the	values	of	the	attributes	for	design	
points	on	 the	 limits	of	 the	 search	 space	and	will	 then,	based	on	 these	 results,	move	
into	the	search	space.	In	the	second	example,	the	industrial	boiler	inlet	duct,	the	initial	
evaluation	set	is	generated	by	Design	of	Experiments	(DoE).		

For	computer-based	design	optimization,	as	is	our	case,	DoE	schemes	such	as	Latin	
Hypercube	Sampling	 (LHS)	or	Orthogonal	Arrays	 (OA)	are	 recommended	 in	 literature	
(refer	to	Krajnovic	[2007]	or,	even	better,	to	the	survey	work	in	Simpson	et	al.[2001]).		

However,	for	other	cases,	such	as	the	problem	of	the	application	of	MOST-HDS	to	a	
mathematical	 test	 function	 (also	 presented	 in	 Chapter	 6),	 the	 initial	 set	 is	 purely	 a	
random	generation	of	 the	minimum	number	of	points	which	 is	considered	necessary	
to	have	a	good	coverage	of	all	the	search	space.	

In	 any	 case,	 the	 way	 MOST-HDS	 performs	 has	 been	 designed	 to	 reduce	 the	
dependency	of	the	results	and	of	the	convergence	rate	on	the	initial	evaluation	set	as	
much	as	possible.	Anyhow,	extensive	work	on	this	topic	is	part	of	the	future	work	to	be	
performed.	

Let	 us	 illustrate	 Phase	 0	 for	 the	 wind	 tunnel	 example	 case.	 In	 this	 problem,	 the	
initial	evaluation	set	is	generated	according	to	the	following	steps:	

1. Two	values	are	chosen	for	the	relative	position	of	the	fan	and	test	sections.	

2. Two	fan	diameters	are	selected	(one	below	and	one	above	a	nominal	
recommended	diameter).	

3. Two	geometries	for	the	test	section	shape	are	set	(square	or	circular).	

4. Two	possible	profile	shapes	are	used	for	duct	1	(one	nearly	circular	and	one	
skewed).	Duct	1,	as	explained	in	Chapter	4,	is	the	duct	which	joins	the	test	
section	and	the	fan	and	which	is	downstream	of	the	test	section.	

5. Finally,	two	shapes	(square	or	circular)	are	set	for	the	transverse	sections	of	
duct	1.	
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It	is	important	to	note	that	duct	2	is	kept	constant	to	a	baseline	design	geometry	for	
this	example	case,	once	more	to	keep	the	number	of	design	points	for	Phase	0	to	3211.	

This	yields	a	tree	of	32	wind	tunnel	design	points	(Figure	5–6).	These	design	points	
are	evaluated	using	the	CFD	software	ANSYS	FLUENT	v17.	The	tree	is	designed	in	this	
manner,	 in	 order	 to	minimize	 the	 points	 to	 be	 evaluated,	while	 covering	 the	 search	
region	adequately.	

	

	
Figure	5–6	-	Example	initial	evaluation	set	for	Phase	0	(in	this	case,	32	wind	tunnel	designs).		

	

Once	the	initial	search	is	set	in	Phase	0	of	the	optimization,	the	different	candidate	
design	 points	 are	 evaluated	 using	 CFD,	 in	 the	 case	 of	 aerodynamic	 optimization	
problems,	or	using	any	particular	evaluation	function	in	other	cases.		

Based	on	the	results	of	Phase	0,	which	is	a	mere	design	exploration,	the	algorithm	
must	decide	how	to	proceed	to	the	optimization	itself.	This	means	that	the	algorithm	
must	decide:	

1. How	to	use	the	information	from	the	previous	phase	to	set	up	the	search	
problem	of	the	current	phase.	

2. How	to	perform	an	optimization	search	in	successive	steps,	seeking	design	
improvements	at	a	minimum	computing	cost.	

3. When	to	stop	searching	and	give	way	to	the	next	optimization	phase.	

	

The	 following	 subsections	 explain	 the	 general	 strategy	 proposed	 for	 the	
optimization	 search.	 The	 scheme	 proposed	 exploits	 a	 mix	 of	 gradient,	 genetic	 and	
swarm	search	concepts.	

																																																								
11	The	industrial	boiler	case	will	illustrate	a	much	larger	number	of	design	points	for	the	exploration	

phase.	
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2.	Pareto	tolerance	threshold	
Given	a	set	of	evaluated	solutions,	some	of	them	must	be	rejected,	while	the	rest	

are	kept	for	further	analysis.		

The	first	step	is	to	calculate	the	Pareto	front	for	the	solutions	of	the	initial	search	on	
the	evaluation	set.	The	Pareto	front	groups	the	optimum	solutions	in	a	multi-objective	
optimization.	Any	solution	on	that	front	improves	at	least	one	objective	at	the	expense	
of	 sacrificing	 the	 value	 of	 at	 least	 another	 objective,	with	 respect	 to	 the	 rest	 of	 the	
points	on	the	Pareto	front.		

Because	 the	 solutions	 on	 the	 Pareto	 front	 may	 not	 be	 the	 only	 designs	 worth	
considering	for	the	subsequent	optimization	phases,	a	tolerance	threshold	is	defined.	
An	example	threshold	is	depicted	in	Figure	5–7.	Designs	within	this	area	of	the	search	
region	 could	 potentially	 evolve	 to	 be	 optimum	 designs,	 yielding	 even	 better	 results	
than	those	solutions	initially	on	the	Pareto	front,	because	this	Pareto	front	is	only	the	
result	of	a	first-step	exploration.		

	

	
Figure	5–7	-	Illustration	of	the	Pareto	front	and	the	tolerance	threshold	for	Phase	0	of	the	MOST-HDS	

optimization	algorithm.	

	

The	threshold	is	defined	in	terms	of	allowed	tolerances	for	each	selected	attribute.	
For	instance,	a	possible	threshold	definition	can	be:	

	

𝑓',),*+,-./,012 = 𝑓',)45,*67-.80 + 𝛿',),*	 	 	 	Equation	5–1	
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where	 i	 represents	 the	 particular	 attribute	 considered,	 j	 the	 next	 phase	 of	 the	
optimization,	k	 represents	 each	 solution	on	 the	Pareto	 front,	𝑓',)45,*67-.80	 represents	 the	
value	of	attribute	i,	for	phase	j-1	(the	current	phase),	at	point	k	along	the	Pareto	front,	
𝛿',),*	 is	 the	 value	 of	 the	 particular	 threshold	 assigned	 and,	 finally,	 𝑓',),*+,-./,012 	 is	 the	
threshold	value	that	will	be	considered	for	attribute	 i	and	optimization	phase	 j	at	the	
Pareto	point	k.		

For	cases	such	as	the	wind	tunnel,	the	threshold	can	simply	replicate	the	shape	of	
the	Pareto	 front	 (refer	 to	Chapter	6).	The	 threshold	of	Figure	5–7,	however,	offers	a	
more	general	example.	In	this	case	the	threshold	does	not	replicate	the	Pareto	front,	
but	 is	 focused	 on	 a	 very	 particular	 area	 of	 the	 search	 space	 to	 which	 the	 designer	
wants	 to	 limit	 the	 optimization	 search	 from	 this	 phase	 onwards.	 This	 is	 the	 type	 of	
threshold	used	for	the	industrial	boiler	inlet	duct,	as	will	be	explained	in	Chapter	6.	An	
alternative	threshold	definition,	which	can	easily	be	introduced	in	the	model,	would	be	
to	 limit	 the	number	of	points	selected	 for	 the	next	phase	to	a	maximum	amount,	so	
only	the	best	10	or	100	or	1000	points	would	be	kept,	for	instance.		

Regarding	 this	 tolerance	 definition,	 for	 problems	 which	 are	 evaluated	 using	 CFD	
codes,	 it	 is	worth	 commenting	 that	 the	best	 values	 for	 the	 tolerance	on	each	of	 the	
attributes	 depend	 on	 the	 number	 of	 solutions	 explored	 in	 the	 current	 phase,	 the	
accuracy	of	 the	CFD	solver	 (the	 level	of	precision	 increases	 in	general	 from	phase	 to	
phase)	 and	 the	 trade-off	 between	 computing	 time	 and	 accuracy	 stated	 by	 the	
designer.	Special	care	must	be	taken,	for	instance,	if	the	accuracy	of	the	CFD	solver	(for	
example	in	terms	of	mesh	coarseness)	does	not	yield	a	systematic	error	in	the	results.	
However,	the	more	the	engineer	uses	this	optimization	tool,	the	more	experience	he	
will	have	to	select	appropriate	tolerance	values.	

Once	 the	 tolerance	 threshold	 area	 is	 defined,	 as	 shown	 in	 Figure	 5–7,	 all	 the	
solutions	 that	 lie	 between	 this	 curve	 and	 the	 Pareto	 front	 are	 potential	 candidate	
solutions	kept	for	the	next	optimization	phase.	Neither	strict	dominance	nor	significant	
dominance	 criteria	 are	 used,	 to	 keep	 some	 additional	 and	 potentially	 interesting	
designs	(see	Cuadra	[1990]	and	Schweppe	and	Merril	[1986]	for	a	discussion	on	these	
dominance	criteria).	

However,	among	all	the	solutions	that	lie	within	the	tolerance	threshold,	not	all	will	
be	 used	 as	 baseline	 for	 the	 following	 optimization	 phase.	 Given	 that	 the	 CFD	
evaluations	 are	 very	 time	 consuming,	 candidate	 solutions	 to	 be	 kept	 have	 to	 be	
selected	 efficiently.	 The	 selection	 methodology	 is	 explained	 in	 detail	 in	 Step	 3.	
Selection	of	search	directions.	
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3.	Selection	of	search	direction(s)	
Firstly,	the	algorithm	will	search	for	the	closest	solutions	on	the	Pareto	front	to	each	

candidate	 design.	 These	 are	 potentially	 good	 search	 directions	 to	 continue	 the	
optimization	and	it	 is	one	of	the	main	novel	aspect	of	MOST-HDS.	The	designer	must	
choose	the	number	of	closest	solutions	to	be	used	to	determine	the	search	direction(s)	
from	 a	 particular	 candidate	 design.	 He	 can	 select	 to	 use	 the	 closest	 solution	 on	 the	
Pareto	front,	or	the	two	closest,	or	more	(this	can	also	be	selected	automatically	by	the	
algorithm).	The	higher	the	number	of	directions	to	consider,	the	higher	the	probability	
of	reaching	a	good	optimum,	but	also	the	analysis	will	be	more	time	consuming,	so	a	
trade-off	must	be	reached.		

It	is	worth	noting	that,	for	the	particular	case	of	solutions	on	the	Pareto	front	of	the	
previous	 optimization	 phase,	 the	 algorithm	 will	 follow	 search	 directions	 along	 the	
Pareto	front	itself.	

Once	 the	 search	directions	 for	 all	 candidate	 solutions	have	been	determined,	 the	
reduced	set	of	solutions	that	will	really	be	used	for	the	next	optimization	phase	must	
be	selected.	

The	selection	method	is	as	follows:	

1. The	algorithm	groups	all	the	candidate	solutions	depending	on	their	search	
direction	 (i.e.	 the	 point(s)	 on	 the	 Pareto	 front	 towards	 which	 they	 would	
move).	

2. Among	 those	 solutions	 which	 would	 move	 towards	 the	 same	 Pareto	
point(s),	both	the	distance	between	designs	in	the	space	of	variables	and	in	
the	space	of	attributes	must	be	determined.		

3. Space	 of	 variables:	 the	 metric	 to	 measure	 the	 distance	 in	 the	 space	 of	
variables	 is	 the	 relative	 distance	 between	 two	 designs,	 for	 each	 variable,	
with	 respect	 to	 the	 maximum	 range	 of	 that	 variable	 in	 that	 particular	
optimization	 phase.	 Then,	 to	 add	 up	 all	 the	 distances	 for	 the	 different	
variables,	 different	 weights	 are	 applied	 to	 the	 distance	 for	 each	 variable,	
depending	on	the	hierarchy	of	that	variable	and	the	phase.	

4. The	metric	to	measure	the	distance	in	the	space	of	attributes	is	analogous	to	
that	of	the	space	of	variables,	except	that	the	weight	of	all	the	attributes	is	
the	same	(unless	the	user	wants	different	weights).	

5. When	 a	 number	 of	 designs	 that	 would	 move	 towards	 the	 same	 Pareto	
point(s)	 are	 close	 both	 in	 the	 space	 of	 attributes	 and	 in	 the	 space	 of	
variables	 (i.e.	 below	 certain	 preset	maximum	 distance	 thresholds),	 then	 a	
representative	 for	 that	 subset	 of	 designs	 will	 be	 selected,	 to	 prevent	 the	
algorithm	from	evaluating	very	similar	designs.	This	representative	selection	
will	 be	 carried	 out	 by	 means	 of	 a	 clustering	 algorithm	 (the	 k-means	
algorithm,	 in	 our	 case,	 as	 originally	 explained	 in	 Hartigan	 [1975]	 and	 as	
currently	coded	in	MATLAB).	This	is	similar	to	the	work	carried	out	on	swarm	
search	methodologies	(a	good	reference	example	of	enhanced	swarm	search	
is	Shi	and	Eberhart	[1998]).	
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6. However,	if	various	solutions	are	close	in	the	attribute	space,	but	far	apart	in	
the	 variable	 space,	 all	 must	 be	 kept,	 because	 they	 represent	 different	
designs	and	they	enrich	the	search	process	(a	similar	approach	is	proposed	
in	Cuadra	[1990]).		

	

The	discarded	 solutions	of	 intermediate	optimization	phases	will,	 anyhow,	not	be	
eliminated	completely	and	will	be	kept,	in	case	the	algorithm	decides	they	can	still	be	
interesting	candidates	to	analyze	in	any	of	the	subsequent	optimization	phases.	

4.	Selection	of	search	variable(s)	
Based	on	the	search	direction(s)	defined,	the	algorithm	will	determine	the	variable	

changes	 needed	 to	move	 each	model	 towards	 its	 Pareto	 target	model(s).	 It	will	 run	
through	the	variable	values	for	each	selected	point	and	compare	those	values	to	the	
values	of	the	target	Pareto	point(s).	Search	variables	for	each	candidate	point	will	be	
those	for	which	the	point	and	its	target	Pareto	point(s)	have	different	values.		

5.	Calculation	of	the	increment	to	be	applied	to	each	variable	
Once	the	search	directions	for	all	points	have	been	determined	and	the	variables	to	

change	have	been	picked	up,	 the	algorithm	will	determine	the	amount	each	variable	
has	to	be	changed.	In	order	to	do	this,	the	algorithm	will	check	the	type	of	variable	(i.e.	
hierarchy)	and	 the	optimization	phase	and	 it	will	 introduce	value	changes	 to	each	of	
the	variables,	following	the	guidelines	of	Figure	5–1.	For	example,	if	the	variable	to	be	
changed	is	of	high	importance,	for	optimization	Phase	I	the	changes	introduced	would	
be	small,	 towards	 the	value	of	 the	 target	point	on	 the	Pareto	 front.	However,	 this	 is	
only	 the	 general	 approach	 followed	 by	 the	 algorithm.	 The	 detailed	 procedure	 is	
detailed	below	and	shown	in	the	flow	diagram	of	Figure	5–10.	

For	continuous	variables	the	changes	are	clear	to	understand.	For	instance,	in	Phase	
I,	 a	 big	 change	 can	 imply	 moving	 towards	 the	 target	 point	 2/3	 of	 the	 difference	
between	the	value	of	each	variable	 for	 the	design	point	considered	and	the	value	of	
that	same	variable	for	the	target	point.	A	small	change,	on	the	other	hand,	can	mean	
moving	 1/3	 of	 the	 distance	 in	 that	 variable.	 The	 particular	 increment	 factors	 are	
calculated	by	the	algorithm	dynamically	as	explained	below.	

For	discrete	variables,	however,	the	algorithm	will	jump	from	one	discrete	value	to	
the	 next	 one	 –	 for	 instance,	 from	 a	 circular	 to	 a	 square	 shape.	 For	 these	 variables,	
small	and	big	changes	may	therefore	coincide,	depending	on	their	range	of	values.	

These	increment	factors	are	modified	by	the	algorithm	depending	on	the	hierarchy	
of	variables,	the	particular	variable,	the	optimization	phase	and,	most	importantly,	the	
results	of	 the	optimization	process.	This	method	of	 increments	 follows	a	very	similar	
approach	 to	 the	 extensively	 used	method	 developed	 originally	 in	 Nelder	 and	Mead	
(1965).	 The	 possible	 changes	 of	 values	 explained	 in	 that	 work	 (namely	 reflection,	
expansion	and	contraction)	are	also	used	here,	with	some	modifications,	and	using	not	
the	centroid	point	of	the	set	of	points	defining	the	simplex,	but	the	closest	point(s)	on	
the	Pareto	front.		
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It	is	worth	noting	that	MOST-HDS	will	use	increment	factors	below	or	above	unity.	
Hence	the	exploration	moves	are	both	within	the	search	region	already	explored	and	
also	outside	of	it.	

6.	Evaluation	of	the	new	design	points	
Once	steps	1-5	have	been	performed	for	all	the	selected	designs	within	the	Pareto	

threshold	 of	 the	 previous	 optimization	 phase,	 the	 new	 candidate	 solutions	 will	 be	
evaluated	 (in	 our	 case	 simulated	 using	 CFD)	 and	 a	 new	 Pareto	 front	 will	 be	
determined.	

7.	Further	optimization	phases	
To	move	 to	 further	optimization	phases,	 the	algorithm	repeats	steps	1-6	until	 the	

stopping	criteria	defined	are	met.		

The	user	can	select	a	maximum	number	of	evaluations	 (or	alternatively	maximum	
calculation	time)	and	the	algorithm	can	estimate	the	number	of	phases	and	solutions	
to	be	kept	for	each	phase	to	match	that	time	target	as	closely	as	possible,	as	well	as	
other	internal	aspects	such	as	mesh	refining	criteria	for	each	phase	(in	the	case	of	CFD	
evaluation),	etc.	Another	possible	stopping	criterion	is	the	maximum	percentage	of	the	
current	set	of	design	points	that	is	in	the	best	Pareto	front	(as	soon	as	the	optimization	
reaches	that	threshold	value	it	will	stop).	 	

Moreover,	 the	 algorithm	 is	 able	 to	 change	 mesh	 coarseness,	 for	 example,	
depending	 on	 the	 optimization	 phase.	 Extensive	 results	 on	 the	 impact	 of	 mesh	
coarseness	 (mesh	 sensitivity	 analyses)	 will	 be	 presented	 in	 future	 work.	 For	 the	
purpose	of	 this	Thesis,	mesh	size	has	been	varied	 in	each	case	until	a	good	trade-off	
between	accuracy	and	computing	time	is	found.	

8.	Final	optimum	design	fine-tuning:	the	adjoint	method	
For	an	enhanced	fine-tuning	of	each	solution	on	the	Pareto	fronts	found	for	the	last	

optimization	phases,	the	use	of	the	adjoint	method	(a	good	classical	reference	is	Giles	
and	Pierce	[2000])	is	proposed,	as	mentioned	in	Figure	5–1.	This	method	allows	for	the	
determination	 of	 the	 sensitivities	 of	 one	 or	 more	 particular	 attributes	 to	 local	
modifications	 in	 the	 geometry	 of	 the	 body	 of	 interest.	 One	 of	 the	 most	 relevant	
research	works	on	the	application	of	adjoints	to	advanced	aerodynamic	optimization	is	
Paniagua	(2014),	for	the	case	of	high-speed	train	nose	optimization.		

In	 the	 following	 sections,	 important	 remarks	 on	 the	 MOST-HDS	 algorithm	 are	
highlighted.	 For	 a	 detailed	 illustration	 of	 the	 optimization	 flow	 diagram	 and	
metaheuristics	behind	MOST-HDS,	refer	to	Figure	5–10.	

The	MOST-HDS	optimization	procedure	in	short	
In	 the	 following	 sections,	 important	 remarks	 on	 the	 MOST-HDS	 algorithm	 are	

highlighted.	 For	 a	 detailed	 illustration	 of	 the	 optimization	 flow	 diagram	 and	
metaheuristics	behind	MOST-HDS,	refer	to	Figure	5–10.	

A	 brief	 summary	 of	 how	 MOST-HDS	 proceeds	 is	 included	 here	 for	 the	 reader’s	
comfort.	Figure	5–8	illustrates	the	main	steps	followed:	
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1. Phase	0	is	the	design	exploration	phase,	in	which	a	number	of	design	points	
are	generated	and	computed	to	have	an	initial	representation	of	the	space	
of	attributes	(i.e.	the	performance	space).	These	points	can	be	generated	by	
means	of	any	Design	of	Experiments	(DoE)	technique,	or	other	methods.		

2. A	first	Pareto	front	can	be	computed,	to	represent	the	optimum	designs	for	
Phase	 0.	 The	 Pareto	 front	 is	 a	 very	 useful	 tool	 for	 true	 multi-attribute	
optimization	problems.	

3. A	 tolerance	 threshold	 is	 automatically	 generated,	 based	 on	 the	 expert’s	
settings,	 to	 group	 the	 candidate	 points	 that	 will	 be	 selected	 for	 the	 next	
phase.	 Clustering	 can	 be	 applied	 to	 select	 representative	 points	 among	 a	
group	of	very	similar	design	points	(both	in	the	space	of	variables	and	in	the	
space	of	attributes).	

4. A	crossover	is	performed	between	each	selected	design	point	and	its	closest	
point(s)	 on	 the	 Pareto	 front.	 The	 crossover	 is	 controlled	 by	 the	 so-called	
increment	 factors,	 which	 are	 automatically	 tuned	 to	 improve	 the	
optimization	speed	and	final	result.	

5. A	new	set	of	design	points	is	hence	generated.	These	points	constitute	Phase	
I.		

6. A	new	Pareto	 front	 is	computed.	The	optimization	has	proved	successful	 if	
the	new	Pareto	front	improves	the	Pareto	front	of	the	previous	phase.	

7. This	 procedure	 can	 be	 repeated	 as	many	 times	 (i.e.	 phases)	 as	 set	 by	 the	
expert,	 or	 as	 controlled	 internally	 by	 the	 algorithm	 based	 on	 a	 set	 of	
stopping	or	convergence	criteria.	

	

	
Figure	5–8	-	Illustration	of	the	procedure	followed	by	the	MOST-HDS	optimization	algorithm	for	the	

optimization	in	each	phase.	
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Final	remarks	on	the	MOST-HDS	optimization	model	
MOST-HDS	 aims	 to	 prove	 an	 original,	 general	 methodology	 based	 on	 multi-

attribute,	 structured	 optimization	 and	 following	 a	 hybrid	 direct	 search	 approach.	 It	
combines	genetic,	gradient	and	swarm	search	intelligence	in	every	iteration,	as	will	be	
explained	in	this	section.	

Besides	 being	 multi-attribute,	 because	 it	 has	 been	 developed	 specifically	 for	
problems	with	more	than	one	objective	to	be	optimized	(although	it	could	also	be	used	
for	 single-attribute	 optimization),	 MOST-HDS	 exploits	 the	 concept	 of	 structured	
optimization,	making	 use	 of	 two	 key	 differential	 aspects:	 hierarchy	 of	 variables	 and	
optimization	phases.	These	concepts	have	been	used	in	other	fields	(refer	to	the	State	
of	the	Art	 in	Chapter	3),	but	have	not	been	used,	as	far	as	we	know,	 in	aerodynamic	
shape	optimization.	

Furthermore,	 MOST-HDS	 proposes	 a	 novel	 hybrid	 direct	 search	 approach.	 In	 the	
first	place,	according	 to	 the	extensively	cited	paper	by	Hooke	and	 Jeeves	 (1961),	 the	
term	direct	search	is	used,	as	they	state	 literally,	“to	describe	sequential	examination	
of	trial	solutions	involving	comparison	of	each	trial	solution	with	the	"best"	obtained	up	
to	that	time	together	with	a	strategy	for	determining	(as	a	function	of	earlier	results)	
what	 the	 next	 trial	 solution	 will	 be.	 The	 phrase	 implies	 our	 preference,	 based	 on	
experience,	 for	 straightforward	 search	 strategies	 which	 employ	 no	 techniques	 of	
classical	 analysis	 except	 where	 there	 is	 a	 demonstrable	 advantage	 in	 doing	 so.”.	 In	
other	words,	direct	 search	will	 imply	direct	evaluation	of	each	candidate	solution	 (in	
our	cases	using	CFD)	and	a	search	strategy	to	proceed	with	the	optimization,	avoiding	
the	use	of	any	other	methods,	such	as	surrogate	models	or	any	kind	of	approximation	
or	alternative	to	the	direct	evaluation	of	each	candidate	point12.	

Regarding	 the	 search	 strategy	 developed	 for	 MOST-HDS,	 besides	 following	 a	
structured	optimization	approach,	 it	 is	a	combination	of	genetic,	gradient	and	swarm	
search	intelligence,	hence	a	hybrid	direct	search.	Its	novelty	stems	from	the	fact	that,	
as	 opposed	 to	 most	 other	 authors	 who	 have	 combined	 gradient-based	 and	 non-
gradient-based	algorithms	(relevant	examples	are	Guliashki	[2008],	Hegazi	et	al.	[2002]	
or	Hsiao	et	al.	[2001]),	MOST-HDS	does	not	switch	from	one	type	of	algorithm	to	the	
other	depending	on	how	the	optimization	is	advancing,	but	it	benefits	from	elements	
of	all	these	types	of	algorithms	in	every	phase.	

To	 illustrate	 this	 better,	 an	 example	 of	 the	 search	 strategy,	 showing	 the	 most	
relevant	 cases	 which	 can	 occur,	 is	 presented	 in	 Figure	 5–9.	 This	 figure	 is	 also	 very	
important	because	 it	 clarifies	 the	difference	between	 the	 space	of	 variables	 and	 the	
space	of	attributes,	for	a	simplified	example	of	2	variables	and	2	attributes.	The	terms	
search	 space	 and	 fitness	 space	 are	 also	used	 to	 refer	 to	 the	 same	 concepts	 (a	 good	
example	emphasizing	the	difference	between	both	spaces	is	Huband	et	al.	[2006]).	

																																																								
12	Of	course	 it	can	always	be	argued	that	CFD	evaluation,	unless	computed	using	Direct	Numerical	

Simulation,	or	even	only	because	it	uses	space	and	time	discretization,	is	not	a	direct	evaluation	of	the	
problem	either.	However	what	we	mean	by	direct	search	is	the	use	of	the	most	approximate	evaluation	
method	available,	avoiding	the	use	of	further	simplifications	or	approximations.				
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Figure	5–9	-	Conceptual	explanation	showing	how	the	hybrid	optimization	algorithm	proposed	

proceeds,	combining	genetic,	gradient	and	swarm-search	intelligence	for	a	multi-attribute,	structured	
optimization.	The	figure	depicts	the	Pareto	front	and	threshold	for	the	current	phase	and	the	new	Pareto	

front	and	threshold	obtained	for	the	next	phase.		

	

After	a	particular	phase	has	been	computed,	the	solutions	to	be	used	for	the	next	
optimization	phase	are	picked	only	from	within	the	Pareto	tolerance	threshold,	as	has	
been	 explained.	 This	 is	 the	 fitness	 criterion	 (in	 genetic	 algorithm	 terminology).	
Moreover,	once	the	distance	between	design	points,	both	in	the	variable	and	attribute	
spaces,	 is	 calculated	 (because	 both	 distances	 are	 important),	 clustering	may	 further	
eliminate	design	points	which	are	close	to	others	 in	both	spaces	 (for	 instance	design	
point	6,	in	the	example	of	Figure	5–9),	so	this	step	is	also	part	of	the	fitness	evaluation	
of	each	candidate	solution.	

For	the	following	phase,	the	new	design	points	obtained	will	be	the	crossover	of	the	
design	 points	 selected	 in	 the	 current	 phase.	 The	 crossover	 process	 (i.e.	 determining	
how	the	child	solution	is	obtained	from	both	parents)	can	change	from	phase	to	phase,	
and	depending	on	the	type	of	variable	and	its	hierarchy.		

One	 of	 the	 key	 aspects	 of	 noting	 the	 conceptual	 difference	 between	 space	 of	
variables	and	space	of	attributes	is	that,	for	an	efficient	search	process,	certain	parent	
design	points	can	be	kept	or	discarded	for	the	crossover	process,	depending	on	their	
relative	distances	in	both	spaces.	As	can	be	seen	in	Figure	5–9,	the	child	design	points	
obtained	from	the	most	relevant	crossover	combinations,	compared	to	their	parents,	
can	be:		

1. Close	in	the	space	of	variables	and	close	in	the	space	of	attributes.	Example:	
parent	solutions	1,	2	and	their	child	solution	X.	The	crossover	of	this	type	of	
parent	points	will	generally	yield	a	very	predictable	design,	 such	as	X,	very	
similar	 to	 its	parents.	Therefore	 this	 type	of	 crossover	can	be	discarded	 to	
reduce	 the	 number	 of	 evaluations.	 Clustering	 can	 obtain	 a	 representative	
design	point	from	a	group	of	points	which	are	very	close	(i.e.	below	preset	
distance	thresholds)	 in	both	spaces	and	only	cross	 them	with	points	which	
are	 not	 so	 close	 in	 either	 spaces,	 to	 explore	 other	 regions	 of	 potentially	
better	designs.		
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2. Close	in	the	space	of	variables	and	far	apart	in	the	space	of	attributes.	This	
implies	a	critical	region	of	design,	in	which	performance	is	very	sensitive	to	
small	changes	in	the	variables.	Example:	parent	solutions	7,	8	and	their	child	
solution	W.	The	crossover	of	this	type	of	parent	points,	which	are	very	close	
in	their	variable	values	and	yet	far	apart	in	their	attribute	values	can	produce	
original	 or	 non-conventional	 design	 points,	 such	 as	 point	W,	which	 is	 also	
close	 in	 the	 space	 of	 variables	 but	 in	 a	 different	 area	 of	 the	 space	 of	
attributes.	 Thus	 the	 search	 can	 produce	 innovative	 or	 disruptive	 designs,	
showing	that	the	results	are	not	intuitive	and	illustrating	the	importance	of	
applying	automatic	optimization	schemes.	

3. Far	apart	 in	 the	space	of	variables	and	far	apart	 in	 the	space	of	attributes.	
Example:	 parent	 solutions	3,	 4	 and	 their	 child	 solution	Y.	 The	 crossover	of	
this	 type	 of	 parent	 points	 is	 worth	 exploring,	 since	 its	 result	 will	 also	
normally	be	far	apart	in	the	space	of	variables	and	in	the	space	of	attributes,	
so	it	should	produce	quite	novel	designs,	which	could	improve	the	attribute	
values	obtained	up	to	this	point	of	the	optimization.		

4. Far	 apart	 in	 the	 space	 of	 variables	 and	 close	 in	 the	 space	 of	 attributes.	
Example:	 parent	 solutions	3,	 5	 and	 their	 child	 solution	 Z.	 The	 crossover	of	
this	 type	 of	 parent	 points	 is	 also	 worth	 exploring,	 because	 it	 means	 that	
results	 are	not	 intuitive,	 at	 least	 in	 some	parts	of	 the	 search	 region,	 given	
that	very	different	designs	can	yield	very	similar	performances.	

In	 conclusion,	 the	MOST-HDS	optimization	algorithm	 is	hybrid	 in	 the	 sense	 that	 it	
uses	 a	 gradient-based	 approach	 to	 define	 the	 Pareto	 front	 and	 tolerance	 threshold,	
and	to	select	the	search	direction;	thereafter,	variable	increment	(crossover	strategy)	
is	defined	depending	on	the	hierarchy	of	the	variables	to	be	changed,	their	type,	the	
current	phase	and	the	results	obtained	up	to	this	point	of	the	optimization,	in	order	to	
obtain	child	solutions	from	their	parents,	so	it	follows	a	genetic	approach	(which	may	
perform	 the	 crossover	 of	 very	 different	 designs	 or	 yield	 very	 original	 designs,	 as	
commented	above).	Swarm	search	aspects	are	used,	as	mentioned,	mainly	whenever	
clustering	 is	applied	and,	 to	a	certain	extent,	 to	 focus	on	certain	areas	of	 the	search	
region	 (either	 in	 the	 space	 of	 variables	 or	 in	 the	 space	 of	 attributes)	 based	 on	 the	
results	of	the	search	process	for	groups	of	design	points	in	different	parts	of	the	search	
region.	

In	 the	 proposed	 algorithm	 there	 is	 no	 mutation,	 as	 opposed	 to	 most	 genetic	
algorithms,	 since	 all	 child	 solutions	 are	 obtained	 from	 two	 parents.	 It	 could	 be	
included,	however,	if	deemed	convenient.		

In	 general	 terms,	 on	 the	 one	 hand,	 the	 genetic	 approach	 introduces	 the	
randomness	needed	to	produce	sufficiently	novel	design	points	which	cover	well	both	
the	space	of	variables	and	the	space	of	attributes.	On	the	other	hand,	gradient	search	
is	 used	 when	 the	 movement	 of	 a	 design	 point	 improves	 and	 it	 seems	 to	 follow	 a	
gradient	reasoning	(local	 improvements).	Finally,	swarm	search	intelligence	is	used	at	
all	moments	to	control	how	the	global	performance	in	the	different	areas	of	the	search	
region	 is	 progressing.	 All	 these	 elements	 are	 key	 to	 handle	 the	 optimization	 of	
challenging	functions	or	real-life	problems.	
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The	 intelligence	 embedded	 in	 the	 MOST-HDS	 model	 has	 proved	 successful,	 as	
shown	in	Chapter	6,	not	only	for	the	type	of	problems	it	was	initially	aimed	at,	namely	
aerodynamic	shape	design	optimization	with	big	geometry	changes,	but	also	for	more	
general	optimization	problems.		

Detailed	 flow	 diagram	 of	 the	 metaheuristics	 behind	 the	 MOST-HDS	
algorithm	

The	 following	 figure	 shows	 the	 detailed	 flow	 diagram	 of	 the	 MOST-HDS	
optimization	algorithm	developed	in	this	Thesis.	

	

	
Figure	5–10	-	Flow	diagram	and	detailed	notes	describing	the	optimization	procedure	followed	by	the	

MOST-HDS	model.	DPs	stands	for	Design	Points.	

	

5.4.	Implementation	of	the	MOST-HDS	algorithm	
The	 architecture	 of	 the	 model	 implementation	 is	 illustrated	 in	 this	 section.	 This	

architecture	 contributes	 to	 the	 State	 of	 the	 Art	 because	 it	 carries	 out	 a	 full	
implementation	of	an	automatic	workflow	simulation	environment	for	optimization	of	
CFD	 problems,	 based	 on	 direct	 search,	 for	 a	 wide	 range	 of	 fields.	 In	 particular,	
Microsoft	Excel	and	a	CFD	solver	(ANSYS	FLUENT	in	this	case)	are	coupled	and	a	Visual	
Basics	 for	Applications	 (VBA)	 code	 is	developed	 to	 implement	 the	MOST-HDS	 solver,	
which	controls	the	optimization	process	from	Excel	(externally	to	ANSYS).	The	MOST-
HDS	algorithm	is	coded	in	VBA	and	not	in	other	programming	languages	(C++,	Matlab,	
etc.)	 because	 it	 was	 considered	 that	 the	 integration	 to	 ANSYS	 would	 be	 easier	 and	
more	 efficient.	 In	 any	 case	 the	 code	 can	 easily	 be	 adapted	 to	 these	 alternative	
programming	languages,	to	make	the	MOST-HDS	algorithm	even	more	broadly	usable.	
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The	model	architecture	is	presented	in	Figure	5–11.	It	is	worth	highlighting	that	the	
architecture	for	the	MOST-HDS	model	has	been	designed	with	the	objective	of	making	
this	 tool	 as	 general	 as	 possible.	 The	 initial	 goal	 of	 the	model	 was	 the	 aerodynamic	
shape	optimization	of	complex	geometries	with	big	geometry	changes	(for	these	cases	
an	external	CFD	solver	 is	required).	Nevertheless,	the	tool	has	also	been	applied	to	a	
commonly	used	benchmark	mathematical	 function,	not	only	 to	 show	 its	applicability	
for	 very	 different	 and	 challenging	 optimization	 purposes,	 but	 also	 to	 illustrate	 how	
general	 the	 model	 is.	 To	 give	 an	 example,	 for	 this	 general	 purpose	 mathematical	
optimization	problem	(presented	 in	Chapter	6),	 the	architecture	 is	valid	and	the	only	
difference	 would	 be	 that,	 given	 that	 an	 external	 evaluator	 is	 not	 required	 (all	 the	
evaluations	 can	 be	 performed	 internally	 in	 Excel),	 and	 because	 there	 is	 no	 need	 for	
variable	 translation,	 the	 module	 Translation	 of	 optimization	 variables	 to	 solver	
variables	would	not	be	called.			
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Figure	5–11	-	Schematic	diagram	of	the	module	architecture	of	the	MOST-HDS	model	implementation	
for	a	fully	automatic	optimization	workflow,	coupling	Microsoft	Excel	VBA	and	an	external	solver	or	

evaluator,	if	required	(in	this	case	ANSYS	was	used	for	the	CFD	evaluations).	

	

5.5.	Final	remarks	
This	 chapter	 has	 presented	 in	 detail	 the	 MOST-HDS	 optimization	 model.	 Before	

moving	 on	 to	 Chapter	 6	 and	 the	 results	 of	 the	 application	 of	 this	 tool	 to	 industrial	
problems	and	to	a	mathematical	benchmark	function	for	optimization	algorithms,	the	
following	is	a	summary	of	the	main	highlights	of	this	model:	

1. The	MOST-HDS	model	 is	a	Multi-Objective	Structured	Hybrid	Direct	Search	
optimization	algorithm.	

2. A	 first	 contribution	 of	 this	 model	 is	 to	 apply	 a	 structured	 optimization	
approach,	and	its	two	main	elements	(variable	hierarchies	and	optimization	
phases),	to	aerodynamic	design	optimization	problems.		

a. The	 structured	 architecture	 allows	 for	 a	 scope,	 level	 of	 detail	 and	
search	schemes	which	are	modified	or	adapted	automatically	in	each	
phase	of	the	optimization.		
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b. The	 concept	of	hierarchy	of	 variables	as	a	method	 to	 feed	 into	 the	
model	 the	 stronger	 or	weaker	 influence	 of	 a	 particular	 variable	 on	
the	attributes	is	very	interesting	for	industrial	optimization	problems,	
as	will	be	shown	in	Chapter	6.	The	optimization	process	handles	the	
variables	 differently	 among	 the	 various	 hierarchies	 defined.	 This,	
alongside	 other	 key	 features	 of	 MOST-HDS,	 allows	 for	 an	 efficient	
search	 process	 in	 a	 type	 of	 problems	 which	 is	 characterized	 by	
considerably	time-consuming	design	point	evaluations.		

3. The	 difference	 between	 the	 variables	 used	 by	 the	 optimization	 algorithm	
and	 the	variables	used	by	 the	evaluator	 (in	 this	 case	a	CFD	 solver)	 is	once	
again	noted	(as	in	Chapter	4).	Consequently,	a	translation	module	is	required	
to	transform	the	optimizer’s	variables	into	those	used	in	the	CFD	solver	for	
geometry	parameterization.	

4. The	 hybrid	 direct	 search	 scheme	 proposed	 by	 MOST-HDS	 is	 an	 efficient	
approach	which,	thanks	to	the	combination	of	genetic,	gradient	and	swarm	
search	aspects,	can	move	through	the	search	region	in	a	smart	and	adaptive	
manner.	

5. The	 model	 developed	 is	 a	 fully	 automatic,	 robust	 and	 highly	 flexible	
optimization	tool	which,	once	set-up	by	an	expert	engineer,	can	be	used	by	
any	non-expert	person.		

6. The	model	architecture	developed,	which	is	highly	general	and	applicable	to	
other	 domains	 of	 optimization,	 is	 also	 an	 important	 contribution	 of	 the	
MOST-HDS	tool.	

7. The	concepts	of	space	of	variables	and	space	of	attributes	(also	referred	to	
in	literature	as	search	space	and	fitness	space)	are	clarified,	so	that	it	can	be	
seen	that	the	search	process	has	to	take	the	position	of	each	design	point	in	
both	spaces	into	account.	

8. Due	to	the	way	the	optimization	is	carried	out,	the	MOST-HDS	model	paves	
the	 way	 for	 non-intuitive	 and	 quite	 disruptive	 designs,	 which	 will	 often	
outperform	more	conventional	designs,	as	will	be	seen	in	Chapter	6.	

	

List	of	Figures	
Figure	5–1	-	Optimization	model	structure,	illustrating	the	optimization	phases,	for	two	example	set-up	
configurations.	The	arrows	and	equal	signs	indicate	magnitude	of	change	for	each	type	of	variable	in	
each	phase.	

	
Figure	5–2	-	Gross	and	fine	tuning	example	for	high	importance	variables.	In	this	example	the	high	
importance	variable	is	the	type	of	vehicle.	In	the	upper	line,	gross	changes,	and	in	the	bottom	line,	for	the	
selected	vehicle	type	(car),	fine	tuning	of	the	particular	model.	
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Figure	5–3	-	Gross	and	fine	tuning	example	for	medium	importance	variables.	In	this	example	the	
medium	importance	variable	is	the	type	of	fuel:	diesel	or	gasoline.	In	the	upper	line,	gross	changes	(diesel	
or	gasoline),	and	in	the	bottom	line,	for	the	selected	fuel	(gasoline),	fine	tuning	of	the	particular	gasoline	
type.	

	
Figure	5–4	-	Gross	and	fine	tuning	example	for	low	importance	variables.	In	this	example	the	low	
importance	variable	is	the	color	of	the	vehicle.	In	the	upper	line,	gross	changes,	and	in	the	bottom	line,	
for	the	selected	color	(green)	fine	tuning	of	the	tone.	

	
Figure	5–5	-	Proposed	detailed	optimization	architecture	for	the	example	case	of	a	wind	tunnel	design	
optimization	and	for	one	possible	problem	configuration.	

	
Figure	5–6	-	Example	initial	evaluation	set	for	Phase	0	(in	this	case,	32	wind	tunnel	designs).	

	
Figure	5–7	-	Illustration	of	the	Pareto	front	and	the	tolerance	threshold	for	Phase	0	of	the	MOST-HDS	
optimization	algorithm.	

	
Figure	5–8	-	Illustration	of	the	procedure	followed	by	the	MOST-HDS	optimization	algorithm	for	the	
optimization	in	each	phase.	

	
Figure	5–9	-	Conceptual	explanation	showing	how	the	hybrid	optimization	algorithm	proposed	proceeds,	
combining	genetic,	gradient	and	swarm-search	intelligence	for	a	multi-attribute,	structured	
optimization.	The	figure	depicts	the	Pareto	front	and	threshold	for	the	current	phase	and	the	new	Pareto	
front	and	threshold	obtained	for	the	next	phase.	

	
Figure	5–10	-	Flow	diagram	and	detailed	notes	describing	the	optimization	procedure	followed	by	the	
MOST-HDS	model.	DPs	stands	for	Design	Points.	

	
Figure	5–11	-	Schematic	diagram	of	the	module	architecture	of	the	MOST-HDS	model	implementation	for	
a	fully	automatic	optimization	workflow,	coupling	Microsoft	Excel	VBA	and	an	external	solver	or	
evaluator,	if	required	(in	this	case	ANSYS	was	used	for	the	CFD	evaluations).	
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Chapter	6 -	Results	obtained	
Don't	be	trapped	by	dogma	-	which	is	living	with	the	results	of	other	people's	thinking.		

	
Steve	Jobs.	

	
This	chapter	presents	a	detailed	overview	of	the	most	relevant	results	obtained	
with	 the	 application	 of	 the	MOST-HDS	model	 to	 different	 problems.	 Firstly,	 it	
analyzes	two	 industrial	problems	of	shape	design	optimization	of	very	different	
fields.	The	results	shown	are	very	positive	and	are	a	strong	contribution	to	 the	
State	of	 the	Art	of	 shape	design	optimization	 for	 real,	 industrial	problems.	The	
first	 of	 these	 two	 problems	 is	 the	 shape	 optimization	 of	 the	 inlet	 duct	 to	
industrial	 boilers	 (in	 particular	 Heat	 Recovery	 Steam	 Generators,	 or	 HRSGs)	
which	 are	 used	 in	 combined	 cycle	 power	 plants.	 The	 second	 case	 study	 is	 the	
shape	optimization	of	closed	wind	tunnels,	a	facility	which	is	used	for	testing	and	
for	 leisure	 purposes.	 After	 both	 cases	 have	 been	 presented,	 a	 short	 section	
illustrates	the	results	of	 the	application	of	 the	adjoint	method	to	the	final	 fine-
tuning	 of	 the	 optimized	 geometries.	 To	 conclude,	 and	 to	 offer	 a	 better	
perspective	 on	 the	 applicability	 of	MOST-HDS,	 the	model	 is	 applied	 to	 a	 well-
known	 mathematical	 test	 suite	 used	 for	 benchmark	 of	 general-purpose	
optimization	 algorithms.	 Although	 the	 initial	 focus	 of	 MOST-HDS	 was	 the	
aerodynamic	 shape	 design	 optimization	 of	 geometries,	 including	 small	 and	 big	
geometry	 changes,	 it	 was	 considered	 that	 this	 last	 benchmark	 section	 could	
prove	relevant	to	show	the	general	validity	of	the	proposed	optimization	search	
scheme.	Section	6.1.	is	the	introduction	to	the	chapter.	Section	6.2.	analyzes	the	
results	 of	 the	 case	 of	 the	 inlet	 duct	 of	 a	 set	 of	 HRSG	 families.	 Section	 6.3.	
presents	the	results	 for	 the	closed	wind	tunnel	case.	Section	6.4.	comments	on	
the	 results	 of	 the	 application	 of	 the	 adjoint	 method	 to	 both	 industrial	 cases.	
Section	6.5.	studies	the	results	for	the	benchmark	of	MOST-HDS	when	applied	to	
the	WFG	mathematical	test	suite.	Finally,	Section	6.6.	indicates	the	final	remarks	
which	summarize	the	most	important	conclusions	which	can	be	drawn	from	this	
chapter.	
	

6	
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6.1.	Introduction	
The	 previous	 chapters	 have	 gradually	 presented	 how	 the	 MOST-HDS	 model	 has	

been	developed:	motivation	and	objectives,	problem	definition,	overview	of	the	State	
of	 the	Art	 and	 a	 detailed	 description	 of	 how	 the	model	works.	 This	 chapter	 aims	 at	
showing	clear	applications	of	the	model	for	real	industrial	problems	and	thus	illustrate	
that	 it	 is	 a	 general	model	 for	 shape	design	optimization	and	 for	 certain	problems	of	
general	 optimization.	 The	 improvements	 obtained	 in	 performance	 for	 the	 different	
cases	 presented	 are	 quantified	 and	 the	 model	 results	 are	 validated	 with	 real	
measurements	taken	 in	validation	cases.	Furthermore,	some	of	the	optimum	designs	
obtained	are	clearly	unconventional,	go	 far	beyond	traditional	design	guidelines,	and	
would	 rarely	have	been	 tried	out	by	most	designers.	This	occurs	because	MOST-HDS	
can	work	with	big	geometry	changes,	which	is	not	the	case	for	most	research	works	in	
the	 literature.	 These	 are	 some	 of	 the	 key	 contributions	 of	 this	 Thesis,	 that	 will	 be	
presented	throughout	this	chapter.	

6.2.	 Industrial	 boiler	 inlet	 duct	 shape	 design	
optimization	

A	 particular	 kind	 of	 industrial	 boilers,	 referred	 to	 as	 Heat	 Recovery	 Steam	
Generators	 (HRSGs),	are	used	 in	combined	cycle	power	plants	 to	 recover	part	of	 the	
heat	 of	 the	 exhaust	 gases	 of	 a	 gas	 turbine,	 in	 order	 to	 generate	 steam	 for	 a	 steam	
turbine.	Ever	 since	 the	use	of	HRSGs	 for	power	plants,	 the	 shape	design	of	 the	 inlet	
duct	 at	 the	 entrance	 to	 these	 units,	 one	 of	 their	 most	 critical	 components,	 has	
followed	 greatly	 unchanged	design	 guidelines.	 The	 contribution	of	 this	 Thesis	 in	 this	
section	 is	 twofold.	 On	 the	 one	 hand,	 it	 shows	 that	 there	 is	 substantial	 room	 for	
improvement	in	the	shape	design	of	the	inlet	ducts	of	HRSGs,	in	terms	of	achieving	a	
lower	pressure	drop,	a	higher	velocity	uniformity	and	an	 important	cost	reduction	of	
the	 unit.	 On	 the	 other	 hand,	 it	 shows	 how	MOST-HDS	 algorithm	 can	 find	 improved	
designs	that	may	be	quite	unconventional	and	non-intuitive,	in	fields	like	aerodynamic	
shape	optimization	 involving	big	geometry	changes.	The	results	obtained	for	the	two	
HRSG	 families	 presented	 show	 that	 there	 are	 optimum	 trade-off	 design	 points	with	
simultaneous	reductions	in	pressure	drop	of	up	to	20-25%,	 in	 lateral	surface	of	up	to	
38%	 and	 in	 length	 of	 up	 16%,	while	 having	 comparable	 velocity	 uniformities	 to	 the	
existing	designs.	

VALIDATION	CASE	FOR	THE	ANSYS	CFD	SOLVER	FOR	INDUSTRIAL	BOILER	SIMULATIONS	

In	the	first	place,	as	will	also	be	done	for	the	closed	wind	tunnel	case,	a	brief	section	
is	presented	on	the	validation	of	the	results	of	the	CFD	solver	used	(ANSYS	v17.0)	for	
the	evaluation	of	HRSGs.	
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The	following	table	presents	the	comparison	of	the	pressure	losses	provided	by	the	
manufacturer	and	the	pressure	losses	obtained	from	the	CFD	simulation	for	each	one	
of	the	tube	banks	which	are	located	throughout	an	HRSG	and	through	which	water	is	
pumped	to	generate	steam.	This	is	a	typical	comparison	to	validate	any	CFD	simulation	
applied	to	HRSGs.	For	clarity,	the	tube	banks	are	shown	for	an	example	simulation	in	
Figure	6–1.	

	

	
Figure	6–1	-	Side	view	of	velocity	contours	in	the	mid-plane	of	a	typical	HRSG	to	illustrate	the	position	

of	the	different	tube	banks. 

	

Tube	bank	 Error	[%]	

#1	 9	

#2	 9	

#3	 7	

#4	 3	

#5	 5	

#6	 1	

#7	 2	

#8	 4	

#9	 5	

#10	 5	

#11	 4	

#12	 4	

#13	 4	

#14	 4	

#15	 5	

#16	 5	

#17	 5	

#18	 5	

#19	 6	

#20	 8	

Table	6–1	–	Relative	error	between	the	pressure	losses	as	provided	by	the	manufacturer	and	as	
obtained	from	the	CFD	analysis	for	the	tube	banks	of	an	example	HRSG.	
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According	 to	 the	 previous	 table,	 there	 are	 certain	 errors	 between	 the	 values	
provided	by	 the	manufacturer	 for	 the	 pressure	 losses	 and	 the	 values	 obtained	 from	
the	 CFD	 simulation.	 These	 differences	 are	 mostly	 due	 to	 the	 non-uniformity	 of	 the	
velocity	 distribution	 at	 the	 entrance	 of	 each	 one	 of	 the	 tube	 banks	 (simulated	 as	
porous	media),	 whilst	 the	 porous	media	 equations	 assume	 a	 homogeneous	 velocity	
profile.	Besides,	the	pressure	losses	provided	are	point	measurements	and	their	values	
are	affected	by	the	exact	position	of	the	reading	within	each	tube	bank’s	 inlet/outlet	
plane	(it	must	be	noted	that	the	tube	banks	are	of	considerable	size).	

In	any	case,	the	errors	are	very	acceptable,	given	the	application	and	the	absolute	
pressure	values,	which	mean	that	the	absolute	errors	are	of	very	few	Pascals.	Refining	
the	CFD	mesh	may	have	slightly	reduced	the	errors	(if	the	sensor	readings	are	accurate	
enough),	but	it	would	have	increased	the	computation	time	considerably,	so	it	was	not	
deemed	necessary.	 Consequently,	 the	 CFD	 solver	 is	 considered	 reliable	 to	 use	 as	 an	
evaluator	for	the	optimization	process	carried	out	by	MOST-HDS13.		

RESULTS	FOR	THE	SHAPE	OPTIMIZATION	OF	THE	INLET	DUCT	OF	HRSGS	

Over	the	decades,	HRSG	inlet	ducts	have	been	designed	following	largely	the	same	
design	trend	lines.	Broadly	speaking,	the	design	of	an	HRSG	inlet	duct	has	up	to	date	
always	been	of	one	of	the	two	types	shown	in	Figure	6–2.	

	

	
Figure	6–2	-	HRSG	inlet	duct	design	types	most	widely	used	in	industry:	single	angle	inlet	duct	(left)	

and	double	angle	inlet	duct	(right).		

	

Certain	manufacturers	have	started	using	alternative	 inlet	duct	designs,	as	can	be	
seen	in	Figure	6–3.	However,	extensive	design	analyses	have	not	been	performed,	as	
far	as	we	know,	to	compare	the	different	inlet	duct	designs	alternatives	thoroughly.	

																																																								
13	 In	any	case,	 if	the	CFD	errors	were	systematic	 it	would	also	be	valid	for	an	optimization	process,	

because	 the	 final	 optimum	 solutions	would	 be	 simulated	with	 a	much	 higher	 detail.	 In	 any	 case	 it	 is	
usually	very	difficult	to	prove	that	CFD	errors	are	systematic	for	a	particular	problem.	
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Figure	6–3	-	HRSG	inlet	duct	alternative	design	types	that	some	manufacturers	are	starting	to	use.		

	

There	are	a	number	of	works	in	the	area	of	CFD	modelling	of	an	HRSG’s	inlet	duct,	
but	 to	 our	 best	 knowledge,	 a	 complete	 shape	 optimization	 analysis	 of	 this	 critical	
element	 has	 never	 been	 addressed.	 The	 aim	 of	 these	 works	 is	 to	 analyze	 the	 flow	
distribution	of	 a	 particular	 design,	 or	 the	 effects	 of	 elements	 introduced	 in	 the	 inlet	
duct	to	improve	the	flow	distribution,	such	as	Ameri	and	Dorcheh	(2013)	and	Lee	et	al.	
(2002).	More	 general	 works	 in	 the	 field	 of	 CFD	 analyses	 of	 complete	 HRSGs	 can	 be	
found	 in	 Aslam	 Bhutta	 et	 al.	 (2012),	 Daiber	 (2006),	 Galindo-García	 et	 al.	 (2012	 and	
2014),	Hedge	et	al.	(2007),	Shi	et	al.	(2009)	and	Sundén	(2007).		

The	 aim	 of	 applying	 the	MOST-HDS	 algorithm	 to	 the	 design	 of	 HRSGs	 is	 to	 yield	
optimized	geometries	for	the	inlet	ducts	of	a	wide	range	of	HRSG	families.	New	designs	
or	design-trends	may	offer	better	performance	levels	using	shorter	and	more	compact	
units,	 while	 having	 good	 velocity	 uniformity	 at	 the	 HRSG	 inlet.	 This	 is	 the	 main	
contribution	of	this	Thesis,	regarding	this	particular	industrial	problem.		

It	is	worth	noting	that	this	work	has	been	carried	out	for	various	HRSGs	families	of	a	
particular	manufacturer	and	therefore	some	of	 the	results	cannot	be	shown	fully	 for	
confidentiality	reasons.	

The	inlet	duct	geometry	is	parameterized	as	was	explained	in	Chapter	4.	Figure	6–4	
is	included	here	again,	for	the	sake	of	clarity.		
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Figure	6–4	-	Variables	used	to	parameterize	a	general	inlet	duct	for	different	HRSG	families	(x-axis	

and	y-axis	views).	

	

The	variables	used	are	reminded	here	again:	two	angles	for	the	top	wall,	two	angles	
for	the	lateral	wall	(identical	on	both	lateral	walls),	two	more	for	the	bottom	wall	and	
the	 total	 length	of	 the	 inlet	duct.	 These	 variables	 take	 into	 consideration	 the	design	
modifications	which	are	feasible	in	terms	of	manufacturing	and	assembly	in	real	power	
plants.	For	example,	curved	walls	or	more	 intermediate	angles	are	not	considered	of	
interest	and	they	are	consequently	not	included	in	this	analysis.	

The	 main	 concern	 of	 most	 HRSG	 manufacturers	 nowadays	 is	 to	 meet	 the	
requirements	 of	 the	 final	 client,	 and	 even	 improve	 them	 to	 be	 better	 than	 their	
competitors,	while	 reducing	 the	overall	 cost	of	 the	unit.	The	main	 requirement	 for	a	
modern	HRSG	 is	keeping	the	pressure	drop	across	 the	whole	unit	below	a	maximum	
allowed	threshold,	while	recovering	the	maximum	heat	available	from	the	gas	stream.	
An	 additional	 and	 very	 important	 competitive	 advantage,	 as	 has	 been	 mentioned	
above,	is	being	able	to	meet	the	performance	requirements	with	smaller	units	(mainly	
reducing	the	total	length).	
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The	application	of	the	MOST-HDS	algorithm	to	this	particular	case	of	shape	design	
optimization	 has	 produced	 very	 interesting	 results.	 In	 the	 first	 place,	 to	 show	 the	
performance	difference	of	various	HRSG	design	alternatives,	so	that	it	is	clear	that	it	is	
worth	applying	an	optimization	scheme,	two	different	designs	and	their	performance	
results	are	depicted	in	the	following	figures.	

	

	 	
Figure	6–5	-	Side	and	isometric	views	of	a	first	example	design	alternative	for	the	inlet	duct	of	an	

HRSG	(single	angle	top	plane	for	the	inlet	duct).	This	is	the	real	current	design	for	this	HRSG	family.	

	

	 	
Figure	6–6	-	Side	and	isometric	views	of	a	second	example	alternative	design	for	the	inlet	duct	of	an	
HRSG	(double	angle	top	plane	for	the	inlet	duct).	This	is	a	common	design	trend	line	which	has	

substituted,	in	many	cases,	the	more	traditional	single	angle	version.		

	

The	first	design	alternative	was	used	for	the	real	power	plant,	in	the	particular	case	
of	one	of	the	studied	HRSG	families,	and	 it	 is	currently	 in	operation	(single	angle	top	
plane	 for	 the	 inlet	 duct).	 This	 is	 a	 more	 traditional	 design.	 The	 second	 design	
alternative	has	a	double	angle	top	plane	for	the	inlet	duct,	a	design	feature	that	many	
manufacturers	 introduced	already	years	ago,	because	 it	supposedly	had	an	 improved	
performance	 over	 the	 single	 angle	 design	 (it	 is	 also	 shown	 in	 this	 Thesis	 that	 the	
double	angle	design	is	not	always	better	than	the	single	angle	design).		
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The	 performance	 results	 are	 shown	 in	 Figure	 6–7	 for	 both	 design	 alternatives.	
Performance	is	expressed	in	terms	of	pressure	drop	and	velocity	uniformity,	which	are	
the	two	attributes	selected	by	the	manufacturer,	as	explained	in	Chapter	4.	

There	is	a	considerable	improvement	in	terms	of	pressure	drop	with	the	alternative	
design,	so	it	is	worth	exploring	more	design	points	to	have	a	better	view	of	where	the	
optimum	 designs	 may	 be	 and	 if	 other	 more	 unconventional	 designs	 yield	
improvements	in	performance.	

The	application	of	MOST-HDS	had	a	Phase	0,	or	design	exploration	phase,	which	in	
this	case	had	120	design	points,	to	obtain	a	wide	representation	of	the	infinite	space	of	
solutions.	For	the	purpose	of	this	Thesis,	a	custom	DoE	scheme	was	used,	based	on	the	
authors’	experience,	but	Latin	Hypercube	Sampling	(LHS)	and	other	methods	will	also	
be	tested	in	future	work.		

Of	 particular	 importance	 is	 the	 fact	 that	 the	design	points	of	 Phase	0	need	 to	be	
checked	automatically	to	avoid	absurd	shapes	(this	is	done	automatically	by	the	MOST-
HDS	algorithm).	

Once	 the	 exploration	 phase	 has	 been	 completed,	 MOST-HDS	 carries	 out	 the	
optimization	 itself.	 The	 results	 of	 a	 one	 phase	 optimization	 for	 this	 particular	 HRSG	
family	 are	depicted	 in	 Figure	6–7.	 This	 figure	 includes	 the	 comparison	 to	 the	 results	
obtained	using	a	popular	Multi-Objective	Evolutionary	Algorithm	(MOEA),	 in	this	case	
NSGA-II,	which	 is	 included	 in	 ANSYS	 optimizer	 as	 the	 best	 choice	 for	multi-objective	
optimization	based	on	direct	search.	The	NSGA-II	optimization	was	set	up	so	that	the	
number	 of	 direct	 evaluations	 would	 be	 equivalent	 to	 the	 one-phase	 optimization	
carried	out	with	MOST-HDS.	

The	Pareto	front	shows	the	family	of	optimum	solutions,	taking	into	account	all	the	
attributes	 or	 objectives	 considered	 (in	 this	 case,	 total	 pressure	 drop	 across	 the	 inlet	
duct	and	velocity	non-uniformity	at	the	outlet	plane	of	the	inlet	duct).	All	the	solutions	
on	 the	 Pareto	 front	 are	 equally	 optimum,	 since	 the	 absolute	 optimum	would	 be	 to	
have	 pressure	 drops	 and	 velocity	 non-uniformities	 as	 close	 to	 zero	 as	 possible,	 and	
therefore	 each	 of	 the	 solutions	 on	 the	 Pareto	 front	 are	 a	 potential	 optimum	
combination	of	pressure	drop	and	velocity	non-uniformity.	
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Figure	6–7	-	Application	of	the	MOST-HDS	algorithm	to	the	shape	optimization	of	the	inlet	duct	of	a	

first	family	of	HRSGs	for	combined	cycle	power	plants.	The	results	of	the	application	of	the	NSGA-II	
evolutionary	algorithm	to	the	same	optimization	problem	are	also	shown	(purple	diamonds).		

	

The	results	of	the	120	design	points	of	Phase	0	(blue	circles)	are	shown,	alongside	
the	 results	 of	 Phase	 I,	 which	 has	 analyzed	 12	 points	 (blue	 triangles).	 The	 tolerance	
threshold	 (dotted	 line)	 was	 specified	 by	 the	 manufacturer.	 Two	 Pareto	 fronts	 are	
shown,	 as	 the	 lines	 joining	 the	 set	 of	 optimum	designs	 after	 design	 exploration	 and	
after	the	one-phase	optimization14.	

It	can	be	observed	how	the	application	of	 the	MOST-HDS	algorithm	has	produced	
an	improvement	of	the	performance	result	of	this	family	of	HRSGs.	If	we	compare	the	
results	 of	 MOST-HDS	 and	 NSGA-II,	 this	 latter	 performs	 well,	 but	 yields	 candidate	
designs	which	are	more	scattered,	many	of	which	do	not	meet	the	constraint	of	having	
a	velocity	non-uniformity	below	the	threshold	imposed	in	Figure	6–7,	they	are	globally	
further	way	from	the	Pareto	front,	and	only	one	of	the	candidate	designs	improves	the	
results	of	MOST-HDS.	This	particular	point	would	very	probably	have	been	obtained	by	
MOST-HDS	 if	 the	 tolerance	 region	 had	 been	 slightly	 expanded,	 to	 include	 more	
candidate	 points	 of	 Phase	 0.	 This	 emphasizes	 the	 importance	 of	 choosing	 an	
appropriate	tolerance	region.	In	any	case,	NSGA-II	is	a	good	optimization	algorithm	for	
a	 wide	 variety	 of	 problems,	 but	 it	 is	 considered	 that	 MOST-HDS	 can	 be	 set-up	 to	
perform	 better	 for	 problems	 of	 aerodynamic	 shape	 optimization	 involving	 big	
geometry	 changes.	 This	 is	 the	 main	 reason	 why	 the	 MOST-HDS	 algorithm	 was	
developed	in	the	first	place.		

																																																								
14	For	this	optimization,	132	design	points	were	computed,	in	an	8-core	parallel	calculation,	using	a	

32GB	RAM	computer.	Each	calculation	took	around	0.25-0.3	hours.	The	size	of	the	meshes	was	between	
1-2	million	elements.	
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Regarding	 the	 specific	 optimization	 results	 of	MOST-HDS,	 it	 is	worth	 commenting	
that,	 although	Phase	0	 selects	 the	design	points	 following	a	procedure	which	 covers	
the	area	of	the	search	region	the	designer	is	most	interested	in,	this	phase	in	itself	is	a	
mere	 design	 exploration	 and	 not	 an	 optimization	 as	 such.	 Phase	 I	 is	 the	 first	 true	
optimization	phase	of	the	MOST-HDS	algorithm.		

It	must	be	noted,	 in	any	case,	that	the	design	exploration	procedure	built	 into	the	
model	to	carry	out	the	analyses	for	Phase	0	is	already	quite	good	in	many	cases,	since	
the	design	points	calculated	yield	good	performance	results	and	cover	a	broad	area	of	
the	space	of	attributes	(or	objectives).	Hence	Phase	0	is	in	itself	valuable	in	the	sense	
that	 manufacturers	 have	 not	 performed	 such	 an	 extensive	 exploration	 of	 different	
design	 points,	 in	most	 cases.	 It	 can	 be	 seen	 that	 the	 current	 design	 trend	 lines	 (i.e.	
using	a	single	angle	design	or,	alternatively,	believing	a	double	angle	design	is	always	
better)	 can	 be	 misleading	 or,	 at	 least,	 not	 optimum,	 and	 can	 be	 improved	 even	 in	
Phase	0	 (for	this	particular	 family).	Some	of	 the	types	of	designs	 found	 in	Figure	6–7	
are	represented	in	Figure	6–8,	for	more	clarity.	

Moreover,	 unconventional	 and	 non-intuitive	 designs	 can	 prove	 to	 outperform	
traditional	designs.	As	an	example	of	this,	Figure	6–9	to	Figure	6–12	and	Table	6–2	to	
Table	 6–5	 include	 the	 comparison	 between	 several	 representative	 design	 points,	
among	all	those	simulated	in	Figure	6–7.		

In	these	figures,	it	can	be	observed	that	designs	which	are	very	similar	(i.e.	close	in	
the	space	of	variables)	and	which	would	 intuitively	be	very	close	also	 in	the	space	of	
attributes	(i.e.	have	a	very	similar	performance),	may	really	be	far	apart	in	their	results,	
whereas	quite	different	designs	may	perform	very	similarly.	It	is	worth	highlighting,	in	
particular,	 that	 double	 angle	 designs	 are	 not	 necessarily	 better	 than	 single	 angle	
designs	(for	instance,	design	points	d	and	g	are	very	close	in	performance).	This	means	
a	thorough	analysis	is	required	in	each	case,	because	traditional	design	trend	lines	may	
not	always	be	the	best	option.	

Furthermore,	both	Phase	0,	as	an	exploration	phase,	and,	most	importantly,	Phase	I,	
may	yield	unconventional	designs	or	designs	with	a	non-intuitive	performance	(design	
points	i	and,	especially,	j).	

All	the	results	of	Figure	6–9	to	Figure	6–12	support	the	importance	of	applying	an	
optimization	methodology,	 be	 it	MOST-HDS	 or	 others,	 to	 the	 problem	 of	 inlet	 duct	
design	in	HRSGs	for	combined	cycle	plants.	

	

	
Figure	6–8	-	Example	designs	obtained	for	the	shape	design	optimization	of	the	inlet	duct	of	various	

HRSG	families.		
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Figure	6–9	-	Side	view	of	example	design	points	which	are	very	close	in	the	space	of	variables	and	also	

very	close	in	the	space	of	attributes. 

	

Design	point	 Total	pressure	drop	 Velocity	non-uniformity	

a	 72%	 146%	

b	 72%	 145%	

c	 72%	 145%	

d	 75%	 139%	

Table	6–2	-	Comparison	between	different	design	points,	to	show	that	points	which	are	very	close	in	
the	space	of	variables	can	also	be	very	close	in	the	space	of	attributes.	All	results	are	with	respect	to	the	

attribute	values	of	the	current	HRSG	design	of	Figure	6–7.	

	

	
Figure	6–10	-	Side	view	of	example	design	points	which	are	very	close	in	the	space	of	variables	and	

quite	apart	in	the	space	of	attributes. 

	

Design	point	 Total	pressure	drop	 Velocity	non-uniformity	

e	 98%	 89%	

f	 96%	 102%	

Table	6–3	-	Comparison	between	different	design	points,	to	show	that	points	which	are	very	close	in	
the	space	of	variables	can	also	be	quite	apart	in	the	space	of	attributes.	All	results	are	with	respect	to	the	

attribute	values	of	the	current	HRSG	design	of	Figure	6–7.	
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Figure	6–11	-	Side	view	of	example	design	points	which	are	quite	apart	in	the	space	of	variables	and	

very	close	in	the	space	of	attributes.	

	

Design	point	 Total	pressure	drop	 Velocity	non-uniformity	

g	 71%	 139%	

h	 73%	 141%	

Table	6–4	-	Comparison	between	different	design	points,	to	show	that	points	which	are	quite	apart	in	
the	space	of	variables	can	also	be	very	close	in	the	space	of	attributes.	All	results	are	with	respect	to	the	

attribute	values	of	the	current	HRSG	design	of	Figure	6–7.	

	

	
Figure	6–12	-	Side	view	of	example	design	points	which	are	quite	unconventional	(because	they	are	
quite	radical	designs)	and	somewhat	non-intuitive	in	their	performance	(especially	design	point	j). 

	

Design	point	 Total	pressure	drop	 Velocity	non-uniformity	

i	 64%	 146%	

j	 60%	 159%	

Table	6–5	-	Comparison	between	example	design	points,	which	are	quite	unconventional	and	
somewhat	non-intuitive	in	their	performance.	All	results	are	with	respect	to	the	attribute	values	of	the	

current	HRSG	design	of	Figure	6–7.	

	



Aerodynamic	design	optimization	based	on	Multi-Attribute	Structured	Hybrid	Direct	Search	

110	

In	Phase	I,	as	can	be	observed,	the	design	points	improve	the	performance	results	
of	the	design	points	studied	in	Phase	0.	Additionally,	it	can	be	seen	how	the	application	
of	 MOST-HDS	 improves	 the	 Pareto	 front	 obtained	 in	 Phase	 0	 and	 hence	 the	
performance	 results	 of	 the	 optimum	design	 points.	 The	 geometries	 of	 the	 optimum	
designs	obtained	are,	as	has	been	shown	for	some	solutions,	quite	unconventional	and	
non-intuitive	(Figure	6–12).	All	this	has	allowed	the	manufacturer	to	have	a	new	set	of	
design	guidelines	for	its	different	HRSG	families	for	the	coming	years.		

Besides,	 the	 fact	 that	 the	manufacturer	 has	 received	 Pareto	 fronts	 similar	 to	 this	
one	shown,	for	each	of	his	main	HRSG	families,	allows	for	a	well-based	design	trade-off	
between	total	pressure	and	velocity	non-uniformity	in	each	case.	For	a	particular	type	
of	HRSG,	design	points	with	 lower	total	pressure	drop	may	be	preferred,	even	at	the	
expense	of	a	higher	non-uniformity	(or	vice	versa).	The	exact	geometries	obtained	for	
the	 optimum	 design	 points	 cannot	 be	 included	 in	 this	 document	 for	 confidentiality	
reasons.	

To	 have	 a	 better	 insight	 into	 the	 true	 potential	 of	 MOST-HDS	 for	 shape	 design	
optimization	involving	big	geometry	changes,	in	the	particular	case	of	inlet	duct	design	
for	 HRSGs,	 the	 algorithm	 has	 been	 applied	 to	 a	 different	 HRSG	 family,	 and	 very	
interesting	results	can	be	observed	in	the	following	figure.		

	

	
Figure	6–13	-	Application	of	the	MOST-HDS	algorithm	to	the	shape	optimization	of	the	inlet	duct	of	a	

second	family	of	HRSGs	for	combined	cycle	power	plants.	Increment	factors	(as	explained	in	Chapter	5)	
below	unity	(candidate	points	marked	with	triangles)	and	above	unity	(candidate	points	marked	with	

diamonds).		

	

Phase	0	of	MOST-HDS	has	analyzed	120	design	points	and	Phase	I	has	analyzed	10	
points.	 The	 tolerance	 threshold	 (dashed	 line)	was	 specified	 by	 the	manufacturer,	 to	
analyze	 an	 area	 of	 design	 points	 with	 comparable	 pressure	 drops	 and	 velocity	
uniformities	to	the	current	design.		
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In	particular,	for	this	case,	the	design	exploration	carried	out	in	Phase	0	(candidate	
points	marked	with	circles)	covers	a	broad	area	of	the	search	region,	but	yet	the	real	
existing	 design,	 already	 built	 and	 in	 operation	 for	 this	 particular	 HRSG	 family,	
dominates	 all	 the	 other	 candidates,	 i.e.	 it	 has	 better	 values	 for	 both	 attributes.	 This	
means	that	a	mere	design	exploration	can	be	inadequate	or	not	good	enough	in	some	
cases.	 Once	MOST-HDS	 computes	 the	 points	 for	 Phase	 I,	 the	 simulations	 show	 that	
Phase	 I	 candidate	points	 improve	considerably,	not	only	over	points	 in	Phase	0,	but,	
most	importantly,	with	respect	to	the	real	current	design	of	this	HRSG.	

For	this	second	example	HRSG	family,	an	additional	 test	has	been	performed.	The	
variable	increment	factors	used	to	obtain	new	candidate	design	points	for	Phase	I	from	
the	crossover	of	their	parents	of	Phase	0	are	tuned.	In	particular,	two	sets	of	values	are	
used.	 The	 first	 set	 (candidate	 points	 marked	 with	 triangles)	 has	 variable	 increment	
values	 below	 unity,	 which	 means	 that	 the	 crossover	 of	 the	 parent	 solutions	 lies	
between	 both	 parents	 (in	 the	 space	 of	 variables).	 The	 second	 set	 (candidate	 points	
marked	with	diamonds)	has	variable	increment	values	above	unity,	which	means	that	
the	 crossover	 of	 the	 parent	 solutions	 lies	 beyond	 the	 parent	 point	 belonging	 to	 the	
Pareto	front	(it	is	always	checked	that	the	new	variable	values	lie	within	that	variable’s	
value	range,	as	defined	by	the	designer).		

For	 this	 case,	 the	 use	 of	 increment	 factors	 above	 unity	 yields	 better	 results,	 in	
general.	However,	the	best	candidate	point	in	terms	of	total	pressure	drop	is	obtained	
with	an	increment	factor	below	unity.	Hence	the	bottom	line	is	that	both	sets	of	values	
should	be	exploited	by	MOST-HDS	(as	explained	in	detail	in	Chapter	5)	to	have	a	higher	
probability	of	 reaching	optimum	designs.	This	means	performing	searches	within	 the	
design	points	already	evaluated	and	beyond	these	points	(in	the	space	of	variables).	

CONCLUSIONS	 ON	 THE	 RESULTS	 FOR	 THE	 SHAPE	 OPTIMIZATION	 OF	 THE	 INLET	 DUCT	 OF	
HRSGS		

This	section	has	applied	the	MOST-HDS	algorithm	to	the	problem	of	inlet	duct	shape	
design	 optimization	 of	 HRSGs	 used	 in	 combined	 cycle	 power	 plants.	 The	 main	
conclusions	drawn	from	this	work,	as	well	as	an	outline	of	future	research	lines,	can	be	
summarized	in	the	following	points:	

1. The	 interest	 of	 applying	 an	optimization	methodology,	 be	 it	MOST-HDS	or	
any	other,	to	the	shape	design	optimization	of	the	inlet	duct	of	HRSGs,	has	
been	shown	to	be	very	valuable.	The	performance	results	of	different	 inlet	
duct	designs	may	not	be	 intuitive	 in	many	cases	and	can	vary	considerably	
among	different	designs.	Examples	have	been	shown	of	design	points	which	
are	 very	 similar	 and	 yet	 yield	 different	 results,	 or	 different	 designs	 which	
have	a	very	similar	performance.	

2. In	particular,	 examples	have	been	presented	of	 single	 angle	designs	which	
are	 very	 similar	 in	 performance	 to	 double	 angle	 designs,	 so	 the	 current	
design	 trend	 line	 some	 manufacturers	 follow	 of	 necessarily	 preferring	
double	angle	designs	may	be	misleading	in	some	cases.		
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3. A	design	exploration	phase	(i.e.	simulating	a	considerable	number	of	design	
points,	 based	 on	 the	 engineer’s	 experience,	 but	with	 no	 real	 optimization	
behind)	can	already	improve	the	results	of	current	designs.	However,	this	is	
not	the	case	for	some	HRSG	families,	as	has	been	shown	with	the	results	of	
the	second	HRSG	family.	Therefore,	the	best	recommendation	is	to	apply	a	
true	optimization	algorithm	for	the	shape	design	of	inlet	ducts.	

4. Improvements	in	pressure	drop	of	up	to	40%	and	in	velocity	uniformity	of	up	
to	 15%	 have	 been	 achieved,	 when	 applying	 MOST-HDS	 to	 two	 different	
HRSG	 families.	 Given	 that	 both	 improvements	 cannot	 be	 reached	 at	 the	
same	time,	optimum	trade-off	design	points	with	pressure	drop	reductions	
of	20-25%	and	comparable	velocity	uniformity	to	the	existing	designs	can	be	
obtained.		

5. Moreover,	 although	 pressure	 drop	 and	 velocity	 uniformity	 were	 the	
attributes	defined	by	the	manufacturer,	the	total	length	of	the	inlet	duct	and	
its	lateral	surface	were	also	calculated	for	the	different	design	points.	These	
two	 are	 also	 important	 variables	 due	 to	 their	 strong	 impact	 on	 cost	
reduction,	 because	 of	 material	 cost,	 and	 the	 importance	 of	 having	 more	
compact	(i.e.	shorter)	inlet	duct	designs.	Improvements	in	lateral	surface	of	
up	to	53%	and	 in	total	 inlet	duct	 length	of	up	to	48%	have	been	achieved.	
Given	 that	 both	 improvements	 cannot	 be	 reached	 at	 the	 same	 time,	
optimum	trade-off	design	points	with	lateral	surface	reductions	of	38%	and	
length	 reductions	 of	 16%	 can	 be	 obtained,	 for	 the	 two	 HRSG	 families	
presented.		

6. Taking	into	account	the	considerable	performance	improvements	achieved,	
the	applicability	of	MOST-HDS	to	other	fields	different	to	that	presented	in	
Prada-Nogueira	et	al.	(2015	and	2017)	has	been	shown.	Future	research	will	
be	 focused	 on	 generalizing	 the	 applicability	 analyses	 of	 MOST-HDS	 as	 an	
optimization	algorithm	for	even	more	fields	and	applications,	such	as	those	
described	in	Paniagua	(2014)	or	Zamorano-Rey	et	al.	(2015).	

7. Unconventional	 designs	 have	 been	 obtained,	 thanks	 to	 the	 application	 of	
MOST-HDS.	

8. For	future	work,	other	Design	of	Experiments	(DoE)	techniques,	such	as	Latin	
Hypercube	 Sampling	 (LHS),	 will	 be	 used	 for	 the	 design	 exploration	 phase;	
more	 HRSG	 families	 will	 be	 analyzed;	 and	 a	 general	 set	 of	 simple	 and	
practical	 design	 guidelines	 for	 each	 HRSG	 family	 will	 be	 developed,	 to	
improve	current	design	trend	lines.		
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To	 finish	 the	section	on	 the	 results	of	 the	application	of	MOST-HDS	 to	HRSG	 inlet	
duct	optimization,	it	is	important	to	note	that	results	of	surrogate	based	optimization	
(using	response	surfaces),	also	for	this	example	case,	will	be	presented	in	Chapter	7.	A	
specific	 chapter	 has	 been	 devoted	 to	 the	 comparison	 between	 MOST-HDS	 and	
surrogate	models,	 given	 their	 extended	 use,	 for	 the	 particular	 field	 of	 aerodynamic	
shape	optimization	with	big	geometry	changes.	

6.3.	Closed	wind	tunnel	shape	design	optimization	
The	 second	 industrial	 case	 presented	 in	 this	 Thesis	 is	 the	 aerodynamic	 shape	

optimization	 of	 closed	 wind	 tunnels.	 These	 facilities	 are	 used	 quite	 extensively	 for	
testing	 purposes	 in	 many	 different	 fields	 and	 also	 for	 leisure	 activities	 (indoor	
skydiving),	as	was	shown	in	Chapter	4.	It	is	a	very	general	example	of	the	optimization	
of	 complex	 aerodynamic	 bodies,	 to	 show	 the	 applicability	 of	 MOST-HDS	 to	 very	
different	geometries.		

The	 level	 of	 complexity	 is	 far	 bigger	 than	 for	 the	HRSG	 case	 presented	 above,	 in	
terms	 of	 the	 number	 of	 variables	 and	 parameters	 required	 to	 represent	most	 wind	
tunnel	geometries	(108	variables	for	the	wind	tunnel	case	versus	7	for	the	HRSG	case).	
This	makes	the	use	of	many	commercial	CFD	optimizer	packages	impossible,	since	they	
are	 limited	 to	 10	 independent	 variables.	Hence,	 for	 this	 case,	 an	 external	 optimizer,	
with	 the	optimization	algorithm	 selected	by	 the	user,	must	be	plugged	 into	 the	CFD	
solver	in	any	case.	

Due	to	this	complexity,	the	case	of	a	simplified	wind-tunnel	model	will	be	presented	
first	 (so	 that	 the	 results	 are	 better	 understood),	 and	 then	 the	 optimization	 of	 a	 full	
wind	tunnel	model	will	be	analyzed.	

VALIDATION	CASE	FOR	THE	ANSYS	CFD	SOLVER	FOR	WIND	TUNNEL	SIMULATIONS	

In	the	first	place,	as	was	also	done	for	the	HRSG	case,	a	brief	section	is	presented	on	
the	validation	of	the	results	of	the	CFD	solver	used	(ANSYS	v17.0)	for	the	evaluation	of	
wind	tunnels.	

Two	validation	cases	will	be	presented;	first,	the	pressure	loss	validation	for	a	small	
prototype	wind	 tunnel	used	 for	 testing;	 and	 secondly,	 the	pressure	 loss	and	velocity	
distribution	validation	for	a	 full-size	vertical	wind	tunnel	 for	 indoor	skydiving,	built	 in	
Las	 Rozas	 de	Madrid	 (Madrid	 Fly,	www.madridfly.com).	 Both	 tunnels	were	 designed	
with	 a	 very	 early	 version	 of	 the	 MOST-HDS	 algorithm,	 still	 not	 fully	 flexible	 or	
automated.	

Figure	 6–14	 and	 Figure	 6–15	 show	 the	 real	 prototype	 wind	 tunnel	 built	 and	 the	
general	drawing	of	this	horizontal	closed	wind	tunnel.	
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Figure	6–14	–	Prototype	wind	tunnel	for	testing	purposes	presented	to	validate	the	CFD	solver	used.	

	

	
Figure	6–15	-	Prototype	wind	tunnel	for	testing	purposes	presented	to	validate	the	CFD	solver	used	

(general	drawing,	not	to	scale).	

	

Figure	6–16	illustrates	the	CFD	simulation	of	the	nominal	performance	point	for	the	
wind	tunnel,	compared	to	the	measured	performance	test	of	the	real	fan	in	a	certified	
test	 rig.	 The	 pressure	 and	 flow	 deviation	 of	 the	 CFD	 solver	 versus	 the	 measured	
performance	values	was	between	5-8%	for	different	simulation	settings.	
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Figure	6–16	-	Measured	performance	curve	(pressure	drop	v.	air	flow)	for	the	fan	of	the	prototype	

wind	tunnel,	showing	the	measured	nominal	performance	point	(orange)	and	the	simulated	nominal	
performance	point	(blue).		

	

Regarding	 the	 full	 size	 vertical	wind	 tunnel	built	 for	 indoor	 skydiving,	 Figure	6–17	
depicts	the	facility	and	the	test/flight	section,	alongside	a	picture	of	the	typical	flight	of	
a	first	timer	with	instructor.	The	inlet	plane	to	the	test	or	flight	section,	which	will	be	
the	reference	plane	for	the	velocity	index	readings	shown,	is	also	indicated	in	Figure	6–
17	 for	 clarity.	 Figure	 6–18	 shows	 the	 distribution	 of	 the	 points	 where	 the	 velocity	
sensor	(Pitot	tube)	was	placed	for	the	measurements	(corrections	due	to	air	properties	
during	 the	 tests	were	 accounted	 for)	 and	 Table	 6–6	presents	 the	 comparison	of	 the	
measured	 versus	 the	 simulated	 results.	 Once	 again	 the	 accuracy	 of	 the	 ANSYS	 CFD	
solver	 is	 considered	 very	 high	 and	 adequate	 to	 carry	 out	 the	 evaluations	 for	 the	
optimization	process.			

	

	 	 	
Figure	6–17	-	Vertical	wind	tunnel	for	indoor	skydiving	(Madrid	Fly,	www.madridfly.com).	The	inlet	

plane	to	the	test	or	flight	section	is	shown	(dashed	red	line).	
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Figure	6–18	-	Distribution	of	points	for	velocity	measurements	in	the	inlet	plane	of	the	wind	tunnel	

test	or	flight	section	(measurements	were	carried	out	with	a	Pitot	tube).	

	

Measuring	
point	

Fan	power	[%]	 Velocity	deviation	with	
respect	to	average	[%]	

MEASURED	

Velocity	deviation	with	
respect	to	average	[%]	

SIMULATED	

#1	 100%	 -0,3%	 -0,8%	

#2	 100%	 -1,2%	 -1,5%	

#3	 100%	 0,2%	 0,1%	

#4	 100%	 0,4%	 0,8%	

#5	 100%	 0,4%	 0,2%	

#6	 100%	 -0,1%	 0,3%	

#7	 100%	 1,0%	 1,4%	

#8	 100%	 0,0%	 0,2%	

#9	 100%	 -0,7%	 -0,5%	

Table	6–6	-	Velocity	deviation	with	respect	to	the	average	for	9	relevant	points	(among	those	shown	
in	Figure	6–18)	in	the	inlet	plane	to	the	test	or	flight	section	of	a	vertical	wind	tunnel.	Measured	v.	CFD	

simulated	results.	

 

RESULTS	FOR	THE	SHAPE	OPTIMIZATION	OF	CLOSED	WIND	TUNNELS	

This	section	will	be	divided	into	two	parts:	in	the	first	part	a	simplified	wind	tunnel	
model	will	 be	 presented,	 to	 understand	 better	 how	 the	MOST-HDS	 algorithm	works	
and	 the	 importance	 of	 certain	 features	 of	 the	 optimization;	 in	 the	 second	 part,	 an	
example	optimization	for	a	full	wind	tunnel	model	is	presented	and	analyzed.	

Simplified	wind	tunnel	model	
The	 simplified	wind	 tunnel	model,	 already	presented	 in	Chapter	4,	 is	 represented	

once	again	in	Figure	4–9.	
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Figure	6–19	-	Low	detail	representation	of	a	wind	tunnel	design,	used	to	illustrate	better	certain	

aspects	of	the	optimization	methodology	presented	in	this	section.	Four	Bézier	curves	are	used	only.	Fan	
and	test	sections	are	both	shaded	in	this	figure	(left).	An	example	plane	containing	one	of	the	transverse	

sections	used	for	the	tunnel	geometry	discretization	is	also	shown	(right).	

	

The	first	step	is	to	obtain	the	initial	set	of	points	for	Phase	0.	In	this	case,	based	on	
our	experience,	a	design	 tree	 is	 configured	with	all	 the	possible	combinations	of	 the	
values	of	 a	 reduced	number	of	 selected	 variables.	 The	 rest	 are	 left	 constant	 for	 this	
simplified	example.	Consequently,	the	tree	for	Phase	0	will	explore	the	extreme	values	
of	each	variable’s	range.	The	tree	of	design	points	for	Phase	0	is	shown	in	Figure	6–20.	
It	sets	two	values	for	each	of	the	variables,	taking	into	account	their	hierarchy	(except	
for	 the	 low	 importance	 variable	 number	 of	 fans,	 which	 is	 considered	 constant	 and	
equal	to	1,	in	order	to	limit	the	number	of	design	points	analysed,	and	because	it	does	
not	add	value	to	the	explanation).	

	

	
Figure	6–20	-	Example	tree	of	design	point	combinations	for	Phase	0	optimization	of	the	simplified	

wind	tunnel	model.	32	wind	tunnel	designs	are	considered.	

	

The	variables	used	for	the	simplified	case	study	presented	are:	

1. Relative	position	of	fan	and	test	sections	

2. Fan	diameter	

3. Geometry	of	the	test	section	

4. Profile	for	duct	1	(i.e.	Bézier	curves	for	duct	1)	

5. Shape	of	sections	in	duct	1	
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A	minimum	and	maximum	value	 is	set	 for	 the	relative	position	of	 the	 fan	and	the	
test	section	and	for	the	fan	diameter.	These	values	are	derived	from	the	user’s	 input	
on	 the	 required	 flow,	 the	 designer’s	 estimation	 for	 the	 pressure	 drop	 and	 the	 fan	
manufacturer’s	recommendation.	

For	the	geometry	of	the	test	section	there	are	three	typical	options:	circular,	square	
and	 rectangular.	 Other	 shapes	 can	 be	 analyzed	with	 the	MOST-HDS	model,	 such	 as	
flat-oval	or	polygonal,	as	 it	 is	straightforward	to	add	these	options	to	the	model.	For	
this	simplified	example,	only	circular	and	square	test	sections	were	considered.	

In	 terms	 of	 ducts	 1	 and	 2,	 it	 is	 very	 important	 to	 highlight	 that	 we	 propose	
decoupling	 both	 optimizations	 when	 needed,	 i.e.	 the	 presented	 methodology	 will	
optimize	ducts	1	and	2	independently	and	then	combine	the	best	duct	1	with	the	best	
duct	2,	for	those	phases	in	which	this	speeds	up	the	whole	process.	

This	can	be	done	because,	 for	 the	 flow	quality	 required	 in	a	modern	wind	tunnel,	
the	flow	distribution	at	the	inlet	of	the	test	section	must	be	very	uniform	(the	level	of	
uniformity	is	determined	by	the	velocity	index	specified	by	the	user,	but	it	is	below	2-
3%	for	typical	commercial	applications).	This	means	that	the	flow	at	the	outlet	of	the	
test	section	will	be	very	similar	for	any	duct	2	which	is	good	enough	to	be	considered	a	
possible	 final	 design.	 Consequently,	 the	 optimization	 of	 duct	 1	 can	 be	 assumed	
independent	 to	 the	 optimization	 of	 duct	 2.	 Besides,	 at	 the	 fan	 inlet	 the	 flow	of	 any	
good	candidate	 to	be	 the	 final	duct	1	will	be	 reasonably	comparable	and,	given	 that	
the	fan	increases	the	flow	uniformity,	at	its	outlet	the	flow	will	be	even	more	similar,	
for	most	 duct	 1	 designs.	 This	 simplifies	 the	 optimization	 because	 it	 breaks	 the	wind	
tunnel	model	into	two	half	models	which	can	be	simulated	more	rapidly	or	with	finer	
meshes.	

For	this	example,	duct	2	is	left	constant	and	two	possible	Bézier	curves	are	used	for	
duct	1:	one	nearly	circular	and	one	skewed.		

Finally,	for	the	transverse	shape	of	ducts	1	and	2,	there	are	really	only	two	options:	
circular	 or	 square/rectangular.	 Square	 and	 rectangular	 are	 not	 really	 two	 different	
options	because	 the	 search	 region	 can	be	 simplified	 forcing	 the	algorithm	 to	 choose	
only	one	of	the	two	to	compare	with	a	circular	design,	depending	on	the	shape	of	the	
test	section	(if	circular	or	square,	the	only	transverse	shapes	used	will	be	circular	and	
square	 and	 if	 rectangular	 then	 the	 algorithm	 will	 compare	 circular	 and	 rectangular	
transverse	shapes).	Once	again,	the	model	allows	this	simplification	to	be	eliminated	if	
considered	 necessary	 for	 a	 particular	 application.	 In	 the	 example	 of	 this	 Thesis,	
however,	only	circular	and	square	shapes	are	considered	anyway.		

The	attributes	selected	to	compare	different	wind	tunnel	designs	are:	a)	fixed	cost	
(which	 includes	 materials,	 manufacturing	 and	 assembly),	 and	 b)	 mass-weighted	
average	total	pressure	drop	from	inlet	to	outlet	of	the	whole	wind	tunnel	circuit.	Total	
pressure	drop	is	a	way	of	representing	most	of	the	operating	cost,	so	the	results	are	in	
essence	figures	of	fixed	cost	versus	operating	cost.	

The	results	of	the	CFD	evaluation	of	these	32	design	points	is	presented	in	Figure	6–
21	and	their	attribute	values	are	grouped	in	Figure	6–22,	which	also	shows	the	Pareto	
front	for	Phase	0.	
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Figure	6–21	-	CFD	evaluation	results	(velocity	contour	plots	for	mid-plane,	total	pressure	drop	–	delta	

p	–	and	fixed	cost)	for	each	of	the	32	wind	tunnel	design	points	for	the	simplified	wind	tunnel	model.	
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Figure	6–22	-	Pareto	front	(red	line)	of	fixed	cost	v.	total	pressure	drop	for	32	wind	tunnel	design	

points	for	the	simplified	wind	tunnel	model.	Tolerance	threshold	(orange	line)	to	select	area	of	search	
region	where	potential	candidates	to	optimum	may	lie,	for	subsequent	optimization	phases	(values	of	

both	attributes	are	per	unit).	Maximum	attribute	ranges	are	shown	in	%.		

	

As	an	example	of	how	the	algorithm	performs,	let	us	take	models	3,	9,	10	and	12.	
They	all	lie	within	the	tolerance	threshold,	so	they	would	be	potential	candidates	to	be	
retained	for	Phase	I.	They	would	all	move	towards	model	11.	Model	3	is	relatively	close	
in	the	space	of	attributes	(less	so	in	cost	than	in	pressure	drop),	but	further	away	in	the	
space	of	variables,	so	it	would	be	kept	for	Phase	I.	Among	models	9,	10	and	12,	which	
are	 close	 both	 in	 the	 space	 of	 variables	 and	 attributes,	 a	 representative	 must	 be	
chosen.	This	is	when	clustering	would	be	used.		

For	 example,	 if	 we	 focus	 on	 model	 3,	 and	 its	 movement	 towards	 point	 11	 (this	
movement	is	in	fact	along	the	Pareto	front),	the	only	difference	between	both	design	
points	is	the	fan	diameter,	so	this	is	the	only	variable	which	would	be	changed,	for	this	
particular	 case.	 It	would	 be	 changed	 for	 design	 point	 3	 taking	 into	 account	 that	 the	
optimization	 is	 calculating	 Phase	 I	 and	 that	 the	 fan	 diameter	 is	 a	 high	 importance	
variable.	

In	this	example,	18	models	would	be	retained,	crossed	over	with	their	target	design	
points	on	 the	Pareto	 front	and	CFD	simulated	 for	Phase	 I.	 The	 results	of	a	 complete	
optimization	are	shown	for	the	full	wind	tunnel	model	in	the	next	section.		

Variable	correlation	and	sensitivity	analysis	
At	this	stage,	it	is	interesting	to	analyze	a	bit	further	the	true	independency	of	the	

selected	variables	and,	most	importantly,	their	impact	on	the	results,	since	this	is	the	
kind	 of	 analyses	 that	 MOST-HDS	 performs	 internally.	 This	 analysis	 is	 easier	 to	
understand	for	the	simplified	wind	tunnel	model.	
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The	optimization	methodology	presented	 in	this	Thesis	performs	a	smarter	search	
thanks	to	the	selection	and	hierarchy	of	the	independent	variables.	First,	it	is	relevant	
to	 check	 if	 they	 are	 truly	 independent	 and	 cover	 every	 relevant	 degree	 of	 freedom.	
Second,	 independent	 variables	 with	 a	 strong	 impact	 on	 the	 attributes	 should	 be	
variables	of	higher	hierarchy,	whereas	 those	with	a	weak	 impact	 should	be	 in	 lower	
hierarchies.	 The	 process	 of	 mapping	 the	 variables	 and	 the	 various	 hierarchies	 as	
correctly	 as	 possible	 will	 allow	 for	 an	 efficient	 breakdown	 of	 the	 problem	 into	
optimization	phases.	

In	this	section	independence	and	hierarchy	will	be	discussed	based	on	the	example	
case	 study	 here	 presented,	 but	 indicating	 how	 the	 complete	 full	 optimization	
architecture	carries	out	these	tasks	automatically.	

Regarding	independency,	it	is	quite	clear	in	this	example	that	any	of	these	variables	
can	be	modified	without	affecting	 the	values	of	 the	others,	 so	 they	are	 independent	
variables.	 As	 commented,	 this	 independency	 check	 is	 not	 as	 simple	 in	 complex	
aerodynamic	problems	and	a	more	rigorous	analysis	is	required.	Commercial	packages	
such	as	ANSYS	offer	tools	to	carry	out	complete	multi-variable	correlation	analyses.	

The	important	issue	which	is	very	well	illustrated	by	the	simplified	example	case	is	
the	 sensitivity	 of	 the	 two	 attributes	 chosen	 –	 fixed	 cost	 and	 pressure	 drop	 –	 with	
respect	to	the	variables	used.	Let	us	comment	this	in	more	detail	(refer	to	Figure	6–21	
and	Figure	6–22).	

Firstly,	 the	 relative	 position	 of	 the	 fan	 and	 the	 test	 section	 divides	 the	 32	 wind	
tunnel	 designs	 into	 two	 blocks	 of	 16	 models.	 The	 first	 16	 models	 have	 a	 relative	
position	 of	 90°,	whereas	models	 17-32	 have	 a	 relative	 position	 of	 180°.	 In	 terms	 of	
cost,	both	 relative	positions	have	quite	a	wide	 range	of	 values.	With	90°	 the	 span	 is	
slightly	smaller,	from	0.92	to	1	with	respect	to	0.88	to	1	for	180°.	Concerning	pressure	
drop,	 only	 3	 of	 the	 models	 with	 90°	 of	 relative	 position	 have	 high	 pressure	 drops	
(above	0.7).	All	other	models	yield	values	below	0.32.	In	the	case	of	180°,	the	values	of	
pressure	loss	are	much	more	scattered.	This	shows	how	the	behavior	of	the	attributes,	
especially	pressure	drop,	is	strongly	affected	by	the	relative	position	of	the	fan	and	the	
test	section.	Therefore	this	variable	is	of	a	high	importance.	

Secondly,	let	us	inspect	the	importance	of	fan	diameter.	Both	for	models	with	a	90°	
or	a	180°	relative	position	(this	shows	the	independency	of	fan	diameter	and	relative	
position),	those	models	with	smaller	diameter	have	a	lower	fixed	cost	(models	1-8	and	
17-24)	 than	models	with	 a	bigger	diameter	 (models	 9-16	 and	25-32).	 If	we	 focus	on	
pressure	 drop,	 one	 has	 to	 compare	models	with	 the	 same	 value	 for	 the	 rest	 of	 the	
variables	 and	 only	 different	 fan	 diameter.	 Thus,	 comparing	 models	 1-4	 with	 9-12,	
models	5-8	with	13-16,	models	17-20	with	25-28	and	21-24	with	29-32,	it	can	be	seen	
that,	 in	most	cases	 (especially	 for	90°),	pressure	drop	 is	always	 lower	 for	 the	smaller	
diameter	models.	This,	however,	is	not	always	the	case,	and	it	is	important	to	highlight	
models	 such	 as	model	 16.	 This	model	 is	 surprisingly	 low	 in	 terms	 of	 pressure	 drop,	
even	though	it	has	a	bigger	diameter.	However,	its	fixed	cost	is	the	highest.	This	shows	
how	unconventional	or	non-expected	designs,	which	intuitively	would	not	be	chosen,	
can	yield	optimum	designs	(in	one	or	many	attributes).		

Fan	diameter	 is	consequently	a	high	 importance	variable,	due	to	 its	strong	 impact	
on	the	attribute	values.	
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Regarding	the	next	variable,	the	geometry	of	the	test	section,	the	best	way	to	check	
its	impact	is	comparing	models	1	and	5,	2	and	6	and	so	on.	Its	impact	is	low	in	terms	of	
fixed	cost	and,	for	circular	test	sections	the	pressure	drop	is	generally	smaller,	except	
for	particular	cases	such	as,	once	again,	model	16.	For	model	16,	a	square	test	section	
can	offset	circular	test	sections,	which	intuitively	have	lower	pressure	drops	(and	this	is	
generally	true),	if	the	square	test	section	is	coupled	with	a	square	duct	1,	as	is	the	case	
in	model	16.	This	model	is	effectively	very	close	to	the	Pareto	front	(Figure	6–22)	so	it	
could	 be	 a	 candidate	 for	 optimum	 (if	 its	 design	 is	 fine-tuned	 in	 further	 optimization	
phases	to	reduce	its	cost).		

Once	again,	the	geometry	of	the	test	section	has	a	strong	impact	on	the	final	values	
of	 the	 attributes,	 mainly	 on	 the	 pressure	 drop	 (for	 instance,	 this	 can	 be	 seen	
comparing	models	 9	 and	 13,	 27	 and	 31,	 etc.).	 Consequently,	 it	 is	 a	 variable	 of	 high	
importance.		

The	next	two	variables,	profile	of	duct	1	and	shape	of	the	sections	of	duct	1,	are	set	
as	medium	 importance	variables.	 Let	us	 check	 if	 this	 is	 correct,	based	on	 the	 results	
obtained	 for	 this	 case	 study.	 It	 can	be	 seen	 that	 the	profile	 shape	affects	noticeably	
when	comparing	models	5	and	7,	14	and	16,	21	and	23,	25	and	27	and	26	and	28.	The	
shape	of	the	sections	along	the	profile	affects	substantially	in	most	models.	For	models	
1-16,	 i.e.	 for	models	with	90°	 relative	position	of	 the	 fan	and	 the	 test	 section,	 those	
designs	with	circular	test	section	and	circular	transverse	shape	in	duct	1	or	square	test	
section	and	square	transverse	shape	have	 lower	pressure	drops,	as	expected,	due	to	
the	smoother	transition.	However,	this	trend	is	maintained	for	180°	models	in	the	case	
of	 square	 test	 section	 and	 square	 transverse	 shape,	 but	 not	 for	 the	 case	 of	 designs	
with	 circular	 test	 section,	 in	 which	 the	 trend	 inverts.	 In	 models	 with	 a	 circular	 test	
section,	 the	 pressure	 drop	 is	 lower	when	 duct	 1	 is	 a	 square	 duct.	 This	 is	 quite	 eye-
catching	 and	 shows	 the	 importance	 of	 using	 intelligent,	 robust	 and	 automatic	
optimization	tools	to	find	optimum	designs,	which	would	probably	not	be	found	when	
using	trial	and	error	or	manual	optimization.	It	does	not	imply	that	there	is	no	design	
with	circular	test	section	and	circular	transverse	shape	 in	duct	1	which	can	be	better	
than	 designs	 with	 a	 square	 duct	 1,	 but	 is	 does	 illustrate	 that	 considering	 non-
conventional	or	non-intuitive	designs	can	be	very	fruitful.		

With	respect	to	cost,	the	impact	of	these	two	last	variables,	profile	and	transverse	
shape,	is	lower,	especially	in	the	case	of	90°	designs.	

It	 can	be	 concluded	 that	 the	 last	 two	variables	 considered,	profile	 and	 transverse	
shape	of	duct	1,	are	variables	with	a	minor	influence	on	the	fixed	cost	and	mostly	on	
the	pressure	drop.	This	influence	is,	in	any	case,	not	as	strong	as	that	of	the	previously	
commented	variables.	Therefore,	these	two	are	medium	importance	variables.	

This	section	has	 illustrated	the	concept	of	variable	hierarchy	and	 it	has	shown	the	
different	impact	a	variable	of	high	or	medium	importance	has	on	the	selected	design	
attributes	used	to	compare	different	solutions.	This	has	been	analyzed	for	a	simplified	
case	 study,	 but	 the	main	 conclusions	 are	 applicable	 to	 real,	more	 complex	 systems,	
such	as	the	one	presented	in	the	following	section.	
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Full	wind	tunnel	model	
The	 full	 wind	 tunnel	model,	 already	 presented	 in	 Chapter	 4,	 is	 represented	 once	

again	in	Figure	4–9.	

	

	
Figure	6–23	-	Highly	detailed	representation	of	a	generalized	wind	tunnel	design,	able	to	represent	

most	tunnel	geometries	(18-20	Bézier	curves	are	needed).		

	

The	design	points	 for	Phase	0	are	determined	following	the	same	approach	as	 for	
the	simplified	model	(Figure	6–20).		

The	 results	 of	 a	 full	 2-phase	 optimization	 are	 shown	 in	 Figure	 6–24	 (the	
optimization	is	limited	to	2	phases	because	of	computation	time15).	The	improvement	
of	the	Pareto	front	throughout	the	optimization	process	and	the	solutions	of	Phases	0,	
I	 and	 II	 can	be	observed.	 The	wide	variety	of	design	 types,	 some	more	 conventional	
and	some	more	unconventional,	is	quite	eye-catching	and	is	clearly	seen	in	this	figure.	
This	 is	 one	of	 the	 relevant	 contributions	 of	MOST-HDS,	 i.e.	 being	 able	 to	 handle	 big	
geometry	changes	in	shape	design	and	producing	disruptive	or	creative	design	points.		

	

																																																								
15	For	 this	optimization,	57	design	points	were	computed,	 in	an	8-core	parallel	 calculation,	using	a	

32GB	RAM	computer.	Each	calculation	took	around	0.75-1	hours.	The	size	of	the	meshes	was	between	
2-5	million	elements.	
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Figure	6–24	-	Results	obtained	for	a	full	wind	tunnel	2-phase	design	optimization	performed	with	the	
MOST-HDS	algorithm.	Pressure	drop	is	in	Pascals	and	the	fixed	cost	is	in	fictitious	monetary	units.	

	

As	was	analysed	for	the	HRSG	case,	the	intelligence	embedded	into	MOST-HDS	will	
automatically	tune	the	optimization	to	proceed	more	efficiently,	for	example	in	terms	
of	 the	 increment	 factors.	 Figure	 6–25	 shows	 the	 impact	 of	 using	 increment	 factors	
below	 and	 above	 unity	 for	 Phase	 II	 of	 this	 optimization.	 MOST-HDS	 automatically	
selects	the	best	values	for	the	increment	factors,	based	on	the	results	of	the	different	
CFD	evaluations.	

	

	
Figure	6–25	-	Results	obtained	for	a	full	wind	tunnel	2-phase	design	optimization	performed	with	the	

MOST-HDS	algorithm,	comparing	the	use	of	different	increment	factors	for	Phase	II:	below	unity	(light	
green	squares)	and	above	unity	(dark	green	diamonds).	Pressure	drop	is	in	Pascals	and	the	fixed	cost	is	in	

fictitious	monetary	units.	
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Let	 us	 analyze	 these	 results	 in	more	 detail,	 to	 illustrate	 important	 aspects	 of	 the	
shape	design	optimization	processes	in	cases	with	big	geometry	changes.	If	we	take	a	
closer	 look	 at	 what	 is	 happening	 with	 the	 different	 design	 points,	 from	 Phase	 0	 to	
Phase	II,	it	is	quite	interesting	to	note	that	the	search	is	advancing	in	particular	areas	of	
the	 search	 region	 (in	 the	 space	 of	 variables)	 and	 certain	 other	 areas	 of	 the	 search	
region	are	abandoned.	If	we	analyze	once	more	the	initial	tree	of	design	points,	Figure	
6–26	shows	the	regions	which	gradually	disappear	as	the	search	moves	forward.	

	

	
Figure	6–26	-	Example	tree	of	design	point	combinations	for	Phase	0	optimization	of	the	full	wind	

tunnel	model.	32	wind	tunnel	designs	are	considered.	The	areas	of	the	search	region	which	disappear	as	
the	optimization	proceeds	are	indicated.	

	

In	Phase	0	all	branches	of	the	tree	are	represented.	In	Phase	I,	in	all	12	design	points	
obtained,	 the	 bigger	 diameter	 has	 disappeared.	 Furthermore,	 for	 the	 180°	 relative	
position	of	 fan	and	test	section,	 the	circular	 test	section	disappears,	whereas	 for	90°	
and	for	the	new	position	value	which	appears	in	Phase	I	(120°),	there	are	still	circular	
and	 square	 test	 sections.	 Finally,	 for	 Phase	 II,	 not	 only	 the	 circular	 test	 sections	
continue	to	gradually	disappear,	but	also	the	90°	design	points.	Out	of	the	8	models	of	
Phase	 II	 (with	 increment	 factors	below	unity),	only	2	keep	a	circular	 test	section	and	
only	 2	 are	 90°	 design	 points.	 5	 out	 of	 the	 8	 models	 have	 unconventional	 relative	
positions	of	 fan	and	 test	 section	 (120°	and	150°)	 so	 it	 can	be	 said	 that	only	3	of	 the	
models	in	this	Phase	are	of	a	traditional	type.	

These	 are	 already	 important	 conclusions	 and	 being	 able	 to	 study	 them	 as	 the	
optimization	is	ongoing	will	allow	the	designer	to	take	decisions	on	how	to	proceed	for	
future	 optimizations	 or	 phases	 of	 this	 same	 optimization.	 The	 comments	 made	 are	
only	an	example	of	all	the	conclusions	which	can	be	drawn	from	an	optimization	study	
of	this	kind.	

To	 conclude	with	 this	 section,	 Figure	 6–27	 and	 Figure	 6–28	 represent	 the	 design	
family	types	present	throughout	the	optimization,	to	show	in	a	very	illustrative	manner	
how	the	MOST-HDS	model	can	really	handle	big	geometry	geometry	changes.	

As	a	very	important	parameter	to	assess	the	quality	of	a	wind	tunnel	is	the	velocity	
index	 in	the	test	section	(which	 is	a	measure	of	 the	velocity	profile	uniformity),	both	
figures	include	a	2D	view	of	the	velocity	contour	plots	at	the	inlet	to	each	tunnel’s	test	
section.		
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The	velocity	index	in	the	test	section	of	the	simulated	design	points	(both	for	Figure	
6–27	 and	 Figure	 6–28)	 ranges	 between	 5-7%.	 Without	 any	 means	 to	 improve	 flow	
uniformity	and	reduce	turbulence	levels	at	this	stage	inside	the	tunnel	(honeycombs	or	
screens)	these	are	reasonable	velocity	indexes	for	this	phase	of	the	optimization.	

Figure	 6–28	 shows	 a	 very	 important	 result	 which	 puts	 forward	 the	 need	 for	
optimization	schemes	which	can	handle	big	geometry	changes	for	many	applications	in	
the	 field	 of	 aerodynamic	 shape	 design.	 The	 Type	 III	 family	 of	 intermediate	 angles	
(which	 has	 either	 a	 120°	 or	 a	 150°	 relative	 position	 between	 the	 fan	 and	 the	 test	
section)	is	one	of	the	optimum	design	types	at	the	end	of	the	final	optimization	and	it	
would	 probably	 have	 never	 been	 tried	 out	 manually	 by	 most	 expert	 designers.	
Therefore	 MOST-HDS	 is	 capable	 of	 finding	 unconventional	 designs	 with	 better	
performance	than	other	more	traditional	designs.	

	

	
Figure	6–27	-	Wind	tunnel	model	families	on	the	Pareto	front	for	Phase	0	and	their	velocity	contours	

in	the	tunnel	test	section	(transverse	plane).	The	Pareto	front	for	this	phase	has	5	design	points,	2	of	type	
I	and	3	of	type	II.	

	

	
Figure	6–28	-	New	wind	tunnel	model	family	on	the	Pareto	frontier	for	Phase	I	and	its	velocity	contour	

in	the	tunnel	test	section.	The	Pareto	front	for	this	phase	has	5	design	points,	1	of	type	I,	3	of	type	II	and	
1,	quite	unconventional	design,	of	type	III.	
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CONCLUSIONS	ON	THE	RESULTS	FOR	THE	SHAPE	OPTIMIZATION	OF	CLOSED	WIND	TUNNELS	

The	main	conclusions	drawn	 from	this	 section	on	closed	wind	 tunnels,	along	with	
the	future	research	lines,	are:	

1. The	 MOST-HDS	 methodology	 is	 applicable	 to	 the	 design	 optimization	 of	
many	 kinds	 of	 complex	 aerodynamic	 bodies:	 vehicles,	 high-speed	 trains,	
aircraft,	etc.	This	has	been	shown	for	the	case	of	HRSGs	and,	in	this	section,	
for	the	case	of	closed	wind	tunnels.		

2. The	 results	 obtained	 for	 a	 full	 wind	 tunnel	 2-phase	 design	 optimization	
problem	performed	with	the	MOST-HDS	algorithm	have	been	presented	as	a	
real	 industrial	 case	 study.	 It	 can	 clearly	 be	 seen	 how	 the	 design	 points	 of	
Phase	I	improve	the	results	obtained	for	Phase	0.	Furthermore,	some	of	the	
designs	 which	 yield	 optimum	 results	 are	 substantially	 unconventional	
solutions	which	the	designer	would	probably	never	have	tried	by	himself.	

3. The	 importance	 and	 interest	 of	 the	 concepts	of	 hierarchy	of	 variables	 and	
optimization	 phases	 is	 shown.	 Thanks	 to	 these	 two	 concepts,	 many	
problems	 of	 aerodynamic	 optimization	 can	 be	 tackled	 using	 direct	 search,	
because	 the	 solutions	 computed	 with	 the	 CFD	 tool	 are	 very	 efficiently	
selected	and	they	represent	the	richness	of	the	whole	search	region,	both	in	
the	space	of	variables	and	in	the	space	of	attributes.	

4. Variable	 correlation	 and,	 most	 importantly,	 sensitivity	 analyses	 were	
presented	 conceptually,	 showing	 how	 the	 algorithm	 proceeds.	 This	
contributes	 to	 show	 the	 importance	 of	 identifying	 an	 efficient	 set	 of	 truly	
independent	variables	and	of	ranking	them	according	to	their	hierarchies,	to	
tackle	the	optimization	in	descending	order	of	variable	importance.	

5. Particular	interest	is	being	given,	in	current	research,	to	the	acceleration	of	
the	whole	procedure,	to	be	able	to	evaluate	even	more	candidate	solutions.	
This	means	 tackling	 concepts	 such	 as	mesh	morphing	 and	exploiting	 them	
for	the	final	phases	of	the	optimization,	when	geometry	changes	are	not	as	
considerable.	The	method	already	makes	extensive	use	of	the	geometry	and	
mesh	parameterization	capabilities	of	commercial	CFD	software.		

6. In	 future	 work,	 regarding	 wind	 tunnel	 design,	 fan	 systems	 using	 either	 a	
smaller	number	of	fans	of	bigger	diameter	or	a	higher	number	of	small	fans	
will	be	analyzed	and	compared,	because	both	options	are	found	in	the	State	
of	 the	 Art,	 and	 it	 is	 very	 worth	 comparing	 both	 design	 trends	 more	
thoroughly.	The	work	presented	 in	this	Thesis	has	only	been	performed	on	
single	fan	wind	tunnel	examples.	
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7. Other	aspects	which	will	be	covered	in	more	detail	 in	future	research	work	
are:	 mesh	 sensitivity	 analyses,	 and	 algorithm	 intelligence	 to	 select	 an	
efficient	mesh	 coarseness	 for	 each	 optimization	 phase;	 an	 enhanced	 fine-
tuning	 of	 the	 setup	 parameters	 in	 the	model	 (tolerance	 threshold	 values,	
etc.)	 to	 ensure	 the	 optimization	 process	 is	 more	 robust	 and	 efficient	 (for	
example	yielding	similar	relative	error	levels	for	every	phase).	

6.4.	Use	of	the	adjoint	method	for	final	fine-tuning.	
The	 use	 of	 the	 adjoint	method	 has	 become	 very	 popular	 in	many	 fields	 of	 shape	

optimization.	A	very	good	example	of	 its	application	to	aerodynamic	shape	design,	 in	
particular	for	the	nose	of	high-speed	trains,	can	be	found	in	Paniagua	(2014).	

The	adjoint	method	analyzes	the	sensitivity	of	each	of	the	attributes	defined	to	local	
variations	of	the	geometry.	Commercial	CFD	solvers	such	as	ANSYS	include	this	feature	
and	 allow	 for	 the	 computation	 of	 these	 sensitivities	 for	 a	 given	 body.	 A	 general	
example	of	the	geometry	changes	calculated	for	a	general	U-bend	example	is	shown	in	
Figure	6–29	to	illustrate	how	the	adjoint	method	works.		

	

	
Figure	6–29	-	Example	application	of	the	adjoint	method	for	the	local	fine-tuning	of	a	U-bend.	

	

Commercial	CFD	solvers	allow	the	user	to	set	a	target	for	the	desired	improvement	
of	 a	particular	objective	 (or	more	 than	one)	 and	 the	adjoint	method	will	modify	 the	
geometry	(and	the	underlying	mesh)	to	reach	that	improvement	(if	possible)	based	on	
the	calculated	sensitivities.	
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The	adjoint	method,	which	 is	a	derivative-based	method,	 is	an	 interesting	tool	 for	
the	local	fine-tuning	of	the	optimum	candidate	points	obtained	in	the	last	phase	of	an	
optimization.	 The	 MOST-HDS	 model	 makes	 use	 of	 the	 adjoint	 method	 whenever	
applicable	 to	 a	 particular	 case	 of	 shape	design	 optimization.	 In	 the	 following	 figures	
the	results	of	the	adjoint	application	to	optimum	design	points	are	presented,	both	for	
the	HRSG	inlet	duct	and	for	the	closed	wind	tunnel	cases.	In	both	examples	the	target	
has	been	 to	 reduce	 the	pressure	drop	by	10%.	The	 results	once	 the	new	geometries	
were	run	in	the	CFD	solver	prove	that	the	10%	reduction	was	achieved	in	both	cases.	
The	 figures	 show	 the	 region	 selected	 for	 the	 fine-tuning	 and	 the	 results	 for	 the	 so-
called	 Normal	 Optimal	 Displacement,	 which	 is	 the	 deformation	 the	 solver	 would	
introduce	 to	 the	 geometry	 to	 achieve	 the	 target	 improvement	 set	 by	 the	 user	 (red	
regions	 indicate	maximum	positive	deformations	and	blue	regions	 indicate	maximum	
negative	deformations).	

	

	
Figure	6–30	-	Example	application	of	the	adjoint	method	for	the	local	fine-tuning	of	one	of	the	

optimum	design	points	obtained	in	the	last	phase	of	the	optimization	process	for	the	HRSG	case.	The	
region	to	be	optimized	is	shown	alongside	two	views	of	the	results	of	the	Normal	Optimal	Displacement.	

	

	
Figure	6–31	-	Example	application	of	the	adjoint	method	for	the	local	fine-tuning	of	one	of	the	

optimum	design	points	obtained	in	the	last	phase	of	the	optimization	process	for	the	full	wind	tunnel	
case.	The	region	to	be	optimized	is	shown	alongside	a	view	of	the	results	of	the	Normal	Optimal	

Displacement.	
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The	adjoint	method	 is	 therefore	an	 interesting	 tool	 for	 shape	design	optimization	
fine-tuning.	However,	given	its	derivative-based	nature,	it	has	a	number	of	limitations.	
Firstly,	 it	 is	 a	 tool	 for	 local	optimization,	 so	 it	 is	 aimed	at	 local	 shape	changes	 in	 the	
areas	where	the	designer	believes	a	greater	 impact	on	performance	can	be	achieved	
(the	 adjoint	 can	 be	 run	 for	 different	 areas	 in	 separate	 calculations).	 Secondly,	 and	
particularly	 for	 the	 cases	 of	 aerodynamic	 shape	 optimization	 with	 big	 geometry	
changes,	 it	must	be	noted	that	adjoints	cannot	be	used	for	 transient	phenomena	so,	
for	instance,	they	are	not	applicable	generally	in	areas	of	flow	detachment	(which	are	
typical	areas	where	the	designer	would	 like	to	seek	 for	performance	 improvements).	
Finally,	 they	 may	 yield	 resulting	 geometries	 which	 are	 costly	 or	 infeasible	 to	
manufacture,	so	their	application	must	be	carried	out	wisely.		

6.5.	Benchmark	optimization.	Application	of	MOST-HDS	
to	the	WFG9	optimization	test	problem	

In	 this	 section,	 the	MOST-HDS	model	 is	 applied	 to	 a	 completely	 different	 type	 of	
problem.	Up	to	this	point,	the	cases	presented	have	been	two	real	industrial	projects	
of	aerodynamic	shape	optimization.	Now	MOST-HDS	will	be	applied	 to	a	well-known	
mathematical	 test	 problem	 used	 for	 benchmark	 optimization	 among	 different	
algorithms.	The	WFG	test	suite	presented	in	Huband	et	al.	(2006)	is	selected	over	other	
existing	 test	 suites	 for	 its	 challenging	 and	 yet	 comprehensive	 nature	 and	 because	 it	
features	 non-separable	 problems,	 particularly	 non-separable	 multimodal	 problems,	
which	is	a	feature	rarely	found	in	commonly	used	test	suites	(other	existing	test	suites	
used	in	literature	are	presented	in	the	State	of	the	Art	–	Chapter	3).		

All	 WFG	 problems	 are	 scalable,	 have	 no	 extremal	 nor	 medial	 variables,	 have	
dissimilar	 variable	 domains	 and	 Pareto	 optimal	 trade-off	 magnitudes,	 have	 known	
Pareto	optimal	 sets,	and	can	be	made	 to	have	a	distinct	many-to-one	mapping	 from	
the	 Pareto	 optimal	 set	 (space	 of	 variables)	 to	 the	 Pareto	 optimal	 front	 (space	 of	
attributes)	by	scaling	the	number	of	position	variables.		

In	particular,	 the	WFG9	 test	problem	 is	used.	 The	 selected	WFG9	problem	 is	 a	2-
objective	optimization	problem	with	the	following	features:	non-separable	objectives,	
multimodal	and	including	deceptive	minima,	with	a	strong	parameter	dependent	bias	
and	a	concave	geometry	of	the	optimal	Pareto	front.		

The	detailed	description	of	the	WFG9	can	be	found	in	Huband	et	al.	(2006)	and	the	
summary	tables	describing	the	mathematical	definition	of	the	problem	can	be	found	in	
Figure	6–32	and	Figure	6–33.	
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Figure	6–32	-	Mathematical	definition	of	the	WFG9	test	problem	used	for	benchmark	optimization	of	

the	MOST-HDS	model	(taken	from	Huband	et	al.	[2006]).	
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Figure	6–33	–	Transformation	functions	used	by	the	WFG9	test	problem	(taken	from	Huband	et	al.	

[2006]).		

	

The	MOST-HDS	model	 is	 compared	 to	 a	well-known	Multi-Objective	 Evolutionary	
Algorithm	(MOEA),	NSGA-II	(Deb	et	al.	[2002]),	which	was	the	same	algorithm	applied	
to	the	HRSG	inlet	duct	optimization	problem	in	Section	6.2.	

The	 WFG9	 problem	 chosen	 is	 set-up	 with	 4	 position-related	 variables	 and	 20	
distance-related	 variables.	 NSGA-II	 was	 run	 in	 Huband	 et	 al.	 (2006)	 with	 real-coded	
parameters,	a	mutation	probability	of	1/24,	a	crossover	probability	of	0.9,	a	crossover	
distribution	index	of	10.0,	and	a	mutation	distribution	index	of	50.0.		
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In	the	case	of	the	NSGA-II	algorithm,	the	procedure	used	in	the	work	by	Huband	et	
al.	 (2006)	 executes	 35	 runs	 of	 NSGA-II,	 with	 a	 population	 size	 of	 100,	 for	 25000	
generations.	The	non-dominated	 front	of	 the	populations	 is	 saved	 in	each	case	after	
250,	 2500,	 and	 25000	 generations.	 The	 authors	 state	 that,	 in	 the	 literature,	 a	
population	size	of	100	for	250	generations	is	a	common	choice,	so	25000	generations	
should	be	more	than	enough	to	ensure	convergence.		

The	next	step	is	to	compute	the	50%	attainment	surface	from	the	35	fronts	at	250,	
2500	and	25000	generations.	An	attainment	 surface	 is	 the	boundary	 in	 the	 space	of	
attributes	formed	by	the	obtained	front,	which	separates	the	region	dominated	by	the	
obtained	 solutions	 from	 the	 region	 that	 is	 not	 dominated	 (Fonseca	 and	 Fleming	
[1996]).	For	instance,	the	50%	attainment	surface	identifies	the	region	of	the	space	of	
attributes	 that	 is	 dominated	 by	 half	 of	 the	 given	 attainment	 surfaces,	 whereas	 the	
100%	attainment	 surface	 identifies	 the	 region	 dominated	by	 every	 given	 attainment	
surface.	 Therefore,	 for	 the	 35	 runs,	 a	 50%	 attainment	 surface	 will	 be	 that	 which	
dominates	over	half	of	the	fronts	obtained	and	which	is	dominated	by	the	other	half.	

To	begin	with,	the	results	are	shown	for	a	random	evaluation	of	the	WFG9	problem	
for	 two	different	numbers	of	 initial	 samples	 (1000	and	4600	points),	 to	 illustrate	 the	
coverage	of	 the	space	of	attributes	 for	different	 levels	of	detail	 (Figure	6–34).	This	 is	
included	 because	 MOST-HDS	 will	 select	 an	 initial	 set	 of	 1000	 evaluation	 points	 for	
Phase	0,	based	on	a	random	generation	scheme.	Any	efficient	algorithm	must	require	
less	function	evaluations	than	a	mere	random	search	to	find	the	Pareto	optimal	front	
or	to	get	as	close	as	possible	to	it16.	

	

	
Figure	6–34	-	Random	evaluation	of	the	WFG9	problem	for	a	different	number	of	initial	samples:	

1000	points	and	4600	points.	

	

																																																								
16	A	non-iterative	sampling	method	based	on	a	quasi-random	number	generator	is	called	Screening	

method	 and	 is	 occasionally	 used	 as	 an	 alternative	 to	 real	 optimization	 algorithms.	 Any	 optimization	
algorithm	must,	 at	 least,	 perform	 better	 than	 a	 Screening	method,	 for	 the	 same	 number	 of	 function	
evaluations.		
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Figure	 6–35	 shows	 the	 results	 presented	 in	 Huband	 et	 al.	 (2006)	 for	 the	 NSGA-II	
optimization	 of	 the	 WFG9	 test	 problem.	 As	 can	 be	 seen,	 the	 WFG9	 problem	 is	
challenging	 and,	 at	 250	 generations,	which	 is	 the	 number	 of	 generations	 commonly	
used	 in	 literature,	 the	NSGA-II	 algorithm	 shows	a	 good	 coverage	of	 the	Pareto	 front	
(i.e.	the	whole	range	of	the	Pareto	front	is	well	represented).	However,	convergence	is	
not	 good	 in	 all	 areas	 of	 the	 Pareto	 front.	 For	 2500	 and	 for	 25000	 generations	 the	
convergence	is	successful	and	the	Pareto	front	is	reached	very	satisfactorily.		

As	 explained	 by	 Huband	 et	 al.	 (2006),	 WFG9	 has	 position	 related	 variables	
dependent	 on	 distance	 related	 variables	 and,	 most	 importantly,	 WFG9	 is	 also	
multimodal,	and	has	a	troublesome	kind	of	non-separable	reduction.	This	makes	this	
optimization	problem	quite	challenging	for	any	optimization	algorithm.		

	

	
Figure	6–35	-	Pareto	optimal	front	and	50%	attainment	surfaces	for	NSGA-II	after	250,	2500,	and	

25000	generations	on	the	WFG9	test	problem	(taken	from	Huband	et	al.	[2006]).	

	

The	results	for	MOST-HDS	on	this	same	problem	are	presented	in	Figure	6–36,	for	a	
growing	 number	 of	 function	 evaluations.	 Figure	 6–36	 (middle	 and	 bottom),	 in	
particular,	shows	the	results	after	4600	evaluations.	 In	the	first	place,	 the	results	are	
far	 better	 than	 with	 a	 Screening	 or	 quasi-random	 method	 (refer	 to	 Figure	 6–34).	
Furthermore,	the	number	of	evaluations	required	to	produce	a	good	coverage	of	the	
Pareto	front	and	a	good	convergence	is	considerably	reduced	with	respect	to	the	250	
generation	 case	 of	 NSGA-II,	 assuming	 only	 one	 run	 and	 not	 35	 runs	 (1	 run,	 for	 a	
population	of	100	and	for	250	generations	yields	25000	function	evaluations).	This	 is	
not	 to	 say	 that	 NSGA-II	 is	 not	 a	 good	 optimization	 algorithm.	 It	 certainly	 is	 a	 very	
successful	algorithm.	It	has	to	be	understood	that	WFG9	is	a	very	challenging	problem.	
Besides,	the	NSGA-II	could	possibly	be	tuned	to	obtain	even	better	results.	Moreover,	
more	 work	 is	 in	 any	 case	 required	 on	 the	 application	 of	 MOST-HDS	 to	 other	 test	
problems.	

The	 evolution	 of	 the	 optimization	 process	 of	 MOST-HDS	 is	 in	 itself	 quite	 eye-
catching:	
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1. After	 2540	evaluations	 the	points	 are	 still	 scattered	but	 the	bias	has	been	
reduced	and	 their	distribution	 is	more	even	and	 they	are	 starting	 to	move	
clearly	 towards	 the	 Pareto	 optimal	 front,	 with	 a	 better	 coverage	 of	 the	
Pareto	front;		

2. In	 phases	 11	 to	 15	 the	 points	 are	 clearly	 progressing	 towards	 the	 Pareto	
optimal	front	and	the	coverage	is	further	improved;	

3. Finally,	 after	 4600	 evaluations	 the	 coverage	 of	 the	 Pareto	 optimal	 front	 is	
good	and	 it	 can	be	considered	 that	MOST-HDS	has	converged	successfully.	
Once	again,	it	is	worth	noting	that	performing	4600	evaluations	following	a	
smart	search	procedure,	such	as	that	proposed	by	MOST-HDS,	is	much	more	
efficient	than	the	results	obtained	with	4600	random	evaluations	(Figure	6–
34).	

	

From	 these	 results	 it	 can	 be	 concluded	 that	 MOST-HDS	 shows	 a	 promising	
performance	in	the	field	of	general	purpose	optimization.	However,	a	more	extensive	
study	needs	to	be	performed	as	part	of	the	future	work	beyond	this	Thesis.		
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Figure	6–36	–	Evaluation	results	for	the	MOST-HDS	optimization	algorithm	applied	to	the	WFG9	test	
problem:	(top)	after	10	optimization	phases	(2540	evaluations);	(middle)	after	16	phases	(4600	

evaluations);	(bottom)	a	summary	of	the	optimization	results	for	phases	11	to	16.		

	

6.6.	Final	remarks	
The	 results	 of	 the	 application	 of	MOST-HDS,	 the	 novel	 optimization	methodology	

presented	in	this	Thesis,	have	been	presented	extensively	 in	this	chapter.	As	detailed	
in	 Chapter	 5,	MOST-HDS	 proposes	 a	multi-objective,	 structured	 hybrid	 direct	 search	
optimization	 approach.	 This	 approach	 has	 shown	 to	 be	 successful	 for	 two	 real	
industrial	cases	and	for	a	benchmark	optimization	test	problem.		
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In	 the	 industrial	 cases	 addressed,	 which	 are	 aerodynamic	 shape	 design	
optimizations	 in	which	 big	 changes	 of	 the	 geometry	 are	 explored,	 the	 smart,	 robust	
and	efficient	selection	of	candidate	solutions	embedded	in	MOST-HDS	has	managed	to	
yield	 solution	designs	with	high	 improvements	over	 current	designs,	 in	 a	 reasonable	
time.	An	efficient	search	scheme	is	essential	in	any	optimization	problem	and	more	so	
when	the	evaluations	are	as	time-consuming	as	in	the	case	of	CFD	problems,	in	which	
only	hundreds	or,	at	most,	thousands	of	candidate	points	can	be	evaluated	throughout	
the	whole	optimization.	

The	MOST-HDS	 methodology	 has	 been	 applied	 to	 wind	 tunnel	 design	 and	 HRSG	
inlet	 duct	 design	 because	 these	 are	 two	 areas	 in	which	 trial	 and	 error	 is	 still	widely	
used.	The	presented	approach	evaluates	a	number	of	candidate	solutions	which	is	1	to	
2	orders	of	magnitude	the	number	of	solutions	frequently	evaluated	for	similar	cases	if	
using	 trial	 and	 error.	 The	 automated	 nature	 of	 the	 method	 yields	 project	 time	
reductions	of	5-10	times	for	the	examples	considered,	as	compared	to	the	design	cycle	
times	using	more	traditional	or	manual	methods.	

This	 methodology	 is	 flexible	 and	 can	 be	 tailored	 for	 specific	 optimization	
applications.	The	use	of	this	novel	optimization	model	in	many	aerodynamic	fields	will	
allow	 for	 the	 exploration	 of	 unconventional	 designs	 which	 can	 yield	 considerable	
improvements	over	more	traditional	concepts.	

Finally,	 a	 key	 aspect	 of	 MOST-HDS	 is	 its	 emphasis	 on	 a	 direct	 search	 or	 direct	
optimization	approach,	even	 though	 the	evaluations	are	 time-consuming.	The	use	of	
surrogate	or	approximation	models	 is	not	considered	the	most	appropriate	approach	
due	to	the	complexity	of	the	problems	addressed.	In	particular,	transient	or	advanced	
flow	 phenomena	 such	 as	 flow	 separation,	 vortices,	 etc.	 are	 not	 well	 captured	 by	
surrogate	models.	Besides,	 the	high	number	of	 independent	variables	 (and	therefore	
the	size	of	the	search	region)	makes	it	difficult	to	develop	surrogate	models	which	are	
accurate	enough.	This	will	be	analyzed	in	detail	in	Chapter	7.	
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Figure	6–31	-	Example	application	of	the	adjoint	method	for	the	local	fine-tuning	of	one	of	the	optimum	
design	points	obtained	in	the	last	phase	of	the	optimization	process	for	the	full	wind	tunnel	case.	The	
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problem:	(top)	after	10	optimization	phases	(2540	evaluations);	(middle)	after	16	phases	(4600	
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Chapter	7 -	Comparison	to	surrogate	
models		

There	are	dark	shadows	on	the	earth,	but	its	lights	are	stronger	in	the	contrast.	
	

Charles	Dickens.	

	
This	chapter	is	presented	as	a	special	section	of	the	results	obtained	in	this	Thesis	
with	the	MOST-HDS	algorithm	for	shape	design	optimization	with	big	geometry	
changes.	The	use	of	surrogate	models	to	approximate	the	full	model,	in	order	to	
reduce	 the	 evaluation	 time	 of	 the	 performance	 of	 complex	 geometries,	 has	
become	 increasingly	 popular,	 so	 there	 is	 extensive	 research	 following	 this	
approach.	Therefore,	 it	was	considered	 interesting	to	dedicate	a	 full	chapter	to	
the	 discussion	 on	 the	 advantages	 and	 the	 limitations	 of	 surrogate-based	
optimization	as	compared	to	direct	optimization.	Firstly,	Section	7.1.	presents	a	
general	 introduction.	 Section	 7.2.	 includes	 quite	 eye-catching	 results	 of	
surrogate-based	evaluations	and	surrogate-based	optimization	of	the	HRSG	inlet	
duct	case	presented	in	Chapter	6.	Section	7.3.	analyzes	a	general	summary	of	the	
main	advantages	and	limitations	of	a	surrogate-based	methodology.	 In	addition	
to	 this,	 surrogate	methods	 are	 compared	with	 direct	 optimization	 approaches,	
such	as	that	followed	by	MOST-HDS.	
	

7	
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7.1.	Introduction	
In	 the	 field	of	aerodynamics	and	 fluid	mechanics	 in	general,	 the	evaluation	of	 the	

performance	of	a	particular	design	is	often	very	costly	in	terms	of	time	or	money.	Tools	
available,	 such	 as	 CFD	 simulations,	 wind	 tunnel	 testing,	 or	 testing	 in	 the	 real	
environment,	are	complex	and	frequently	too	expensive,	at	least	for	the	design	phase	
of	 a	 project.	 Furthermore,	 in	 the	 case	 of	 optimization,	 an	 area	 in	 which	 for	 other	
applications	 it	 is	 common	 to	 perform	 thousands	 or	 millions	 of	 evaluations	 of	 the	
objective	 function,	 the	 situation	 for	 fluid	 mechanics	 problems	 is	 even	 more	
challenging.	Therefore,	an	increasingly	popular	approach	has	been	the	use	of	different	
kinds	 of	 surrogate	models,	 to	 approximate	more	 complex	 evaluation	models	 of	 the	
performance	of	the	body,	geometry	or	device	of	interest.	

Surrogate-based	evaluation,	and	more	so	surrogate-based	optimization	techniques,	
are	 certainly	 very	 interesting	 and	 useful	 tools	 for	 a	 wide	 range	 of	 applications	 (as	
shown	in	representative	and	advanced	uses	of	these	tools	such	as	Jing	et	al.	[2013]	or	
Walton	 et	 al.	 [2013]).	 However,	 it	 is	 important	 to	 realize	 that,	 at	 present,	 there	 are	
certain	 limitations	 to	 the	use	of	 this	approach.	 In	 these	cases,	direct	evaluation	with	
more	 complex	 and	 realistic	 models	 may	 be	 preferable,	 leading	 to	 direct	 search	 or	
direct	 optimization	 models.	 These	 complex	 and	 realistic	 models	 are	 also	 known	 as	
high-fidelity	models.	

As	 outlined	 in	 Robinson	 et	 al.	 (2006),	 surrogate	 models	 belong	 to	 one	 of	 the	
following	categories:	

1. Data	 fits.	 Typically	 using	 interpolation	 or	 regression	 of	 the	 high-fidelity	
model	evaluated	at	one	or	more	sample	points.	Among	this	type,	response	
surfaces	 are	 one	 of	 the	 most	 popular	 and	 strong	 tools	 available.	 A	 good	
example	 of	 the	 application	 of	 response-surfaces	 and	 a	 discussion	 on	 their	
potential	for	aerodynamic	and	shape	optimizations	can	be	found	in	Krajnovic	
(2007).	

2. Reduced	 Order	 Models	 (ROMs).	 Obtained	 with	 techniques	 such	 as	 modal	
analysis	 or	 Proper	 Orthogonal	 Decomposition	 (POD).	 The	 course	 notes	 by	
Janardhanan	 (2011)	 is	 a	 good	 description	 of	 modal	 analysis.	 The	 book	 by	
Volkwein	(2013)	is	a	very	sound	mathematical	basis	for	PODs	and	ROMs,	and	
the	 work	 by	 Walton	 et	 al.	 (2013)	 offers	 an	 interesting	 discussion	 on	 the	
applicability	of	POD	and	Radial	Basis	Functions	(RBF).	

3. Hierarchical	 models.	 They	 are	 also	 referred	 to	 as	 multi-fidelity,	 variable	
fidelity	or	variable	complexity	models.	The	low-fidelity	surrogate	may	be	the	
same	 as	 the	 high-fidelity	 model,	 but	 converged	 to	 a	 higher	 residual	
tolerance.	For	finite-element	models	the	surrogate	can	make	use	of	a	lower	
basis	function	order	than	the	high-fidelity	model,	or	it	can	also	be	the	same	
model	 on	 a	 coarser	 grid.	 The	 surrogate	 model	 may	 also	 be	 a	 simplified	
engineering	 model	 that	 neglects	 some	 of	 the	 physics	 of	 the	 real,	 full	
problem.	The	very	interesting	work	by	Robinson	et	al.	(2006),	which	we	have	
cited	 to	 describe	 the	 different	 types	 of	 surrogate	 models,	 is	 a	 very	 good	
example	of	the	use	of	hierarchical	models.	
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Already	 a	 decade	 ago,	 in	 Krajnovic	 (2007),	 we	 can	 find	 some	 interesting	
considerations	 on	 the	 potential	 of	 surrogate-based	 optimization	 for	 aerodynamic	
problems,	 in	 this	 case	 using	 response	 surfaces.	 In	 that	 work	 the	 author	 claims:	
“Although	 there	 is	 a	 number	 of	 questions	 that	 have	 to	 be	 answered	 before	 the	
surrogate-based	 optimization	 can	 become	 a	 general	 engineering	 tool	 for	 the	
aerodynamic	optimization	of	 vehicles,	 there	 is	no	doubt	 that	 it	 represents	a	 valuable	
design	strategy.	With	 increase	 in	computer	power,	the	steady	CFD	simulations	will	be	
replaced	with	more	accurate	unsteady	simulations	and	thereby	 increase	the	accuracy	
of	 the	 response	 surface	 model	 substantially.	 Despite	 the	 promising	 computer	
development,	the	use	of	gradient-based	search	algorithms	will	be	prohibited	for	many	
years	to	come	(especially	if	time-dependent	simulations	are	used).	Using	the	surrogate-
based	optimization	together	with	time-dependent	CFD	simulations	for	the	construction	
of	 the	 surrogate	model	will	 certainly	 become	an	 optimization	 tool	 that	 is	 capable	 to	
compete	 with	 physical	 optimization	 in	 wind	 tunnels	 both	 in	 terms	 of	 cost	 and	
accuracy”.	

Krajnovic	 (2007)	 is	 already	 proposing	 the	 combination	 of	 highly	 complex	 CFD	
simulations	 for	 the	 evaluation	 of	 the	 set	 of	 points	 used	 to	 generate	more	 accurate	
response	surfaces.	Today,	 ten	years	after	 this	work,	 the	most	advanced	optimization	
solvers	offered	in	commercial	packages	(by	companies	such	as	ANSYS	or	Siemens	CD-
adapco)	include	hybrid	approaches	between	surrogate-based	and	direct	optimization,	
called	adaptive	single	or	multi-objective	optimization.		

Concerning	 our	 field	 of	 interest,	 aerodynamic	 shape	 design	 optimization,	 we	will	
focus	 on	 the	 performance	 of	 response	 surfaces	 of	 various	 types.	 The	 results	 and	
observations	made	are	applicable	to	most	of	the	other	types	of	surrogate	techniques	
(ROMs	or	hierarchical	models).	

The	contribution	of	this	Thesis	in	this	chapter	is	mainly	to	present	the	limitations	of	
surrogate-based	 evaluation	 and	 surrogate-based	 optimization	 for	 cases	 of	
aerodynamic	shape	design	in	which	the	flow	regime	can	change	from	design	point	to	
design	 point	 (for	 example	 because	 of	 the	 onset	 of	 flow	 detachment).	 This	 occurs	 in	
most	 cases	 involving	 big	 geometry	 changes.	 In	 these	 cases,	 the	 robustness	 and	
accuracy	 of	 direct	 optimization	 is	 shown	 as	 an	 alternative	 approach	 to	 surrogate	
models.	

7.2.	Results	of	a	surrogate-based	approach	for	the	shape	
optimization	of	the	inlet	duct	of	HRSGs	

Firstly,	 let	 us	 compare	 the	 results	 of	 surrogate	 based	 evaluation	 to	 the	 results	
obtained	with	direct	evaluation.	Secondly,	the	results	of	surrogate-based	optimization	
and	direct	search	optimization	will	be	confronted.		
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For	this	section,	the	example	case	of	the	HRSG	inlet	duct	optimization	will	be	used.	
First,	 because	 it	 is	 more	 simple	 and	 clear	 to	 understand	 and	 will	 illustrate	 our	 key	
conclusions	 better.	 Second,	 because	 one	 of	 the	 limitations	 of	 surrogate	 models	 in	
general	is	that	cases	such	as	the	full	wind	tunnel	have	an	excessive	number	of	variables	
to	be	analyzed	with	surrogate	techniques.	For	surrogate	models	in	general	(especially	
of	 the	 response	 surface	 type),	 variables	 sets	 in	 excess	 of	 10	 to	 15	 are	 complex	 or	
impossible	 to	 handle	 (the	 wind	 tunnel	 case	 had	 108	 independent	 variables).	 If	
surrogate	models	are	to	be	used	for	these	cases,	it	is	necessary	to	carry	out	a	reduction	
of	 the	 number	 of	 variables	 or	 to	 use	 variable	 hierarchies	 to	 address	 only	 those	
variables	with	a	stronger	impact	on	the	results.	

SURROGATE-BASED	EVALUATION	

In	 the	 first	 place,	 the	 results	 of	 surrogate	 based	 evaluation	 will	 be	 compared	 to	
those	 obtained	 by	 direct	 CFD	 evaluation.	 Various	 response-surface	 models	 can	 be	
used.	To	analyze	the	accuracy	and	applicability	of	some	of	the	most	relevant,	the	CFD	
results	will	be	compared	to	the	results	obtained	with	the	following	types	of	response	
surfaces:	Neural	Network,	Genetic,	Non-Parametric	Regression	and	Kriging	(with	auto-
refinement).		

Sparse	Grid	is	another	interesting	type	of	response	surface,	which	could	not	be	used	
because	 it	 does	 not	 allow	 the	 sample	 points	 to	 be	 introduced	 by	 the	 user	 and	 it	
generates	them	automatically17.	For	the	particular	case	of	 the	HRSG	 inlet	duct,	given	
that	a	 further	 limitation	of	 response	surface	modules	 in	commercial	packages	 is	 that	
the	 user	 cannot	 introduce	 any	 kind	 of	 constraints	 on	 the	 variables,	 the	 automatic	
sampling	 generates	 absurd	 geometries	 and	 this	 makes	 the	 use	 of	 the	 Sparse	 Grid	
response	 surface	 impossible.	 For	 the	other	 four	 types	 of	 response	 surface	used,	 the	
points	were	generated	automatically	by	the	program	used	(ANSYS	in	this	case),	but	the	
absurd	 points	 could	 be	 corrected	 manually	 before	 each	 response	 surface	 was	
computed.		

Table	7–1	presents	the	results	for	the	relative	errors	of	the	values	calculated	using	
the	 different	 response	 surfaces	 with	 respect	 to	 the	 values	 calculated	 using	 CFD.	 14	
representative	design	points	(i.e.	quite	spread	out	in	the	space	of	variables)	have	been	
used	 for	 the	 comparison.	 Figure	 7–1	 shows	 these	 results	 graphically,	 so	 that	 the	
performance	of	each	response	surface	is	more	clear.		

It	is	important	to	note	that	the	prediction	of	the	results	for	a	particular	design	point,	
once	 the	 response	 surface	 has	 been	 computed,	 is	 quasi	 instantaneous,	 and	 the	
calculation	of	the	response	surface	in	the	first	place	takes	a	negligible	amount	of	time	
(a	few	seconds	in	an	i7,	8-core,	32GB	RAM	computer).	

	

																																																								
17	 Both	 Kriging	 (with	 auto-refinement)	 and	 Sparse	 Grid	 are	 the	 two	 response	 surface	 types	

recommended	 by	 ANSYS	 and	 other	 commercial	 packages	 for	 a	 higher	 accuracy.	 As	 is	 shown	 in	 this	
chapter,	Kriging	is	not	always	the	best	choice	in	terms	of	accuracy	of	the	predictions	(Sparse	Grid	could	
not	be	used,	as	explained).	However	knowing	beforehand	which	type	of	response	surface	is	best	suited	
for	a	particular	problem	is	quite	frequently	complex	or	infeasible.	
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RESPONSE	
SURFACE	
TYPE	

NEURAL	 GENETIC	 NON-PARAMETRIC	
REGRESSION	

KRIGING	+	auto-
refinement	

Design	
point	

Error	in	
total	

pressure	
drop	

Error	in	
velocity	
non-

uniformity	

Error	in	
total	

pressure	
drop	

Error	in	
velocity	
non-

uniformity	

Error	in	
total	

pressure	
drop	

Error	in	
velocity	
non-

uniformity	

Error	in	
total	

pressure	
drop	

Error	in	
velocity	
non-

uniformity	

#1	 -2%	 17%	 -2%	 6%	 -7%	 15%	 -2%	 2%	

#2	 26%	 -23%	 22%	 -17%	 27%	 -19%	 0%	 -17%	

#3	 -35%	 -9%	 -33%	 -1%	 -27%	 2%	 -43%	 2%	

#4	 7%	 -19%	 9%	 -9%	 12%	 -1%	 -11%	 -9%	

#5	 21%	 -17%	 21%	 -7%	 22%	 4%	 -1%	 -8%	

#6	 24%	 -22%	 18%	 -16%	 27%	 -17%	 -3%	 -17%	

#7	 -6%	 -14%	 -4%	 -11%	 9%	 -7%	 -22%	 -22%	

#8	 -6%	 -16%	 -6%	 -11%	 8%	 -8%	 -27%	 -21%	

#9	 -8%	 19%	 -1%	 12%	 -7%	 16%	 -2%	 14%	

#10	 3%	 -11%	 24%	 -1%	 40%	 -2%	 -12%	 -29%	

#11	 -5%	 12%	 -3%	 5%	 -8%	 9%	 -3%	 16%	

#12	 -2%	 11%	 -2%	 3%	 -2%	 -3%	 -3%	 15%	

#13	 -1%	 9%	 -2%	 2%	 5%	 -18%	 -3%	 11%	

#14	 7%	 -6%	 4%	 -12%	 13%	 -29%	 5%	 -9%	

Table	7–1	-	Relative	errors	with	respect	to	the	CFD	values	for	four	different	types	of	response	surface	
and	for	a	number	of	representative	design	points.	

			

	
Figure	7–1	-	Relative	errors	with	respect	to	the	CFD	values	for	four	different	types	of	response	surface	

and	for	a	number	of	representative	design	points.	
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For	this	particular	case,	the	genetic	type	behaves	better	for	both	attributes,	but	this	
will	be	different	for	other	examples.	The	important	observations	to	make	here	are	that	
the	relative	errors	can	reach	values	of	up	to	20%	or	higher	and,	furthermore,	that	the	
error	 is	 not	 always	 systematic	 or	 predictable.	 Besides,	 for	 many	 points,	 different	
response	 surfaces	 yield	 quite	 different	 errors,	 and	 not	 always	 in	 the	 same	 relative	
direction.	This	means	that	response	surface	approximations	have	to	be	used	sensibly	
and	the	user	should	bear	these	considerations	in	mind.	

A	method	used	to	check	the	accuracy	of	 the	data	 fit	carried	out	 to	generate	each	
response	surface	is	the	Goodness	of	Fit	(GoF).	The	GoF	is	showed	in	Figure	7–2	for	all	
four	 response-surfaces.	As	 is	 common,	Neural	 and	Genetic	 are	not	 that	 close	 to	 the	
values	 of	 the	 points	 used	 to	 compute	 the	 response	 surface.	 The	 Non-Parametric	
Regression	tries	to	force	all	points	to	be	within	a	+/-𝜀	distance	of	the	response	surface	
(this	 cannot	 be	 observed	 clearly	 in	 the	 graph	 for	 this	 case).	 The	 Kriging	 response	
surface	 matches	 the	 exact	 values	 of	 all	 sample	 points	 (including	 auto-refinement,	
which	means	 that	 additional	 sample	 points	 are	 generated	 automatically	 to	 improve	
the	 first	 version	 of	 the	 surface).	 Despite	 the	 GoF	 figures	 for	 each	 response	 surface,	
Kriging	and	Non-Parametric	Regression	are	not	necessarily	the	most	accurate	surfaces,	
as	seen	in	Table	7–1	and	Figure	7–1.	

	

	

	
Figure	7–2	-	Goodness	of	Fit	(GoF)	for	the	different	response	surfaces.	Predicted	versus	CFD	computed	
results	for	the	four	response	surface	types:	Neural	(top	left),	Genetic	(top	right),	Non-Parametric	

Regression	(bottom	left)	and	Kriging	with	auto-refinement	(bottom	right)	(all	values	are	normalized).	Red	
dots	are	for	pressure	drop	and	yellow	dots	are	for	velocity	non-uniformity.	

	



Aerodynamic	design	optimization	based	on	Multi-Attribute	Structured	Hybrid	Direct	Search	

148	

Let	us	go	a	bit	further	to	understand	the	causes	of	these	errors.	In	order	to	do	so,	
we	will	use	 the	example	design	points	of	Figure	7–3.	These	design	points	have	been	
selected,	 out	 of	 all	 of	 the	 points	 in	 Table	 7–1,	 because	 the	 flow	 regime	 changes	
abruptly	between	them.	Only	the	values	of	the	two	angles	of	the	bottom	plane	of	the	
HRSG	inlet	duct	are	modified,	keeping	the	rest	of	the	variables	constant.	The	flow	for	
points	4	and	5	is	still	attached	to	the	floor	of	the	inlet	duct,	although	it	starts	to	have	a	
minor	 detachment	 towards	 the	 end	 of	 the	 floor	 for	 design	 point	 4.	 Design	 point	 3,	
which	has	a	much	 steeper	 first	 angle	 for	 the	 floor	plane	 (i.e.	 a	big	geometry	 change	
with	respect	to	points	4	and	5),	has	a	clear	flow	detachment	and	hence	a	qualitatively	
different	flow	regime.	This	matches	nicely	with	what	is	expected	to	happen	as	the	floor	
angle	increases	and	the	result	can	be	seen	in	the	CFD	evaluation	values	of	Table	7–2.	It	
is	interesting	to	point	out	that,	while	the	pressure	drop	is	the	highest	for	point	3	and	
reduces	gradually,	the	non-uniformity	is	the	lowest	(i.e.	the	velocity	at	the	outlet	of	the	
inlet	 duct	 is	 more	 uniform)	 because	 the	 flow	 detachment	 generates	 a	 better	 flow	
distribution.	 This	 is	 reasonable	 and	 it	 is	 very	well	 captured	by	 a	 direct	 evaluation	of	
each	design	point.		

However,	if	we	analyze	the	data	of	Table	7–1	closely,	it	is	plain	to	see	three	sources	
of	error.	First,	the	different	response	surfaces	do	not	manage	to	reproduce	the	gradual	
reduction	in	the	pressure	drop	from	point	3	to	point	5	at	the	same	time	as	the	change	
in	velocity	non-uniformities.	Second,	 the	relative	error	values	are	quite	considerable,	
especially	 for	design	point	 3,	where	 flow	detachment	occurs.	 Third,	 the	error	 values	
among	the	different	response	surfaces	are	quite	different	in	some	cases;	while	some	of	
them	 underestimate	 the	 results,	 others	 overestimate	 them,	 and	 this	 is	 not	 always	
consistent	or	predictable.	As	will	be	concluded	in	the	final	section	of	this	chapter,	it	has	
been	 shown	 that	 response	 surfaces,	 and	 this	 can	 be	 extended	 to	 most	 surrogate	
models,	are	not	accurate	enough	to	predict	the	results	of	complex	fluid	problems	with	
big	 geometry	 changes	 and	 phenomena	 such	 as	 flow	 detachment.	 The	 results	 of	 the	
response	surfaces	will	only	be	acceptable	if	the	number	of	sample	points	increases	in	
the	 region	of	design	points	where	 these	phenomena	occur.	This,	 in	any	case,	means	
that	more	CFD	evaluations	are	required	to	compute	an	accurate	response	surface,	so	
surrogate	models	are	not	so	time-competitive.	For	these	cases,	direct	CFD	evaluation	
can	 yield	 better	 results	 with	 less	 evaluations	 and	 thus	 with	 a	 reduced	 computation	
time.	 This	 should	 be	 the	 approach	 used	 for	 these	 situations,	 very	 especially	 if	 an	
optimization	is	to	be	performed.		

					

	
Figure	7–3	-	Side-view	of	the	velocity	contours	for	design	points	#3,	#4	and	#5	of	Table	7–1.	
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Design	point	 Total	pressure	drop	 Velocity	non-uniformity	

#3	 100%	 100%	

#4	 63%	 109%	

#5	 57%	 105%	

Table	7–2	-	CFD	evaluation	results	for	design	points	#3,	#4	and	#5	of	Table	7–1.	

	

SURROGATE-BASED	OPTIMIZATION	

Once	the	results	of	surrogate-based	evaluation	with	different	response	surfaces	has	
been	 analyzed,	 this	 section	 presents	 the	 results	 obtained	 when	 a	 surrogate-based	
approach	 is	 followed	 for	 the	 optimization	 of	 a	 complex	 fluid	 problem,	 frequently	
involving	big	changes	of	the	body	geometry.	

The	 four	 response	 surface	 types	 of	 the	 previous	 section	 have	 been	 used	 for	 the	
shape	 optimization	 of	 the	 HRSG	 inlet	 duct	 presented	 in	 Chapter	 6.	 In	 particular	
surrogate-based	optimization	has	been	applied	to	the	first	HRSG	family	presented.	The	
results	 obtained	 for	 the	optimization	 carried	out	with	MOST-HDS	 are	 included	 again	
here	for	easier	reference	(Figure	6–7).	

	

	
Figure	7–4	-	Application	of	the	MOST-HDS	algorithm	to	the	shape	optimization	of	the	inlet	duct	of	a	
first	family	of	HRSGs	for	combined	cycle	power	plants.	Surrogate-based	optimization	results:	i)	

Unconstrained	optimization:	surrogate	predictions	(purple	circles)	v.	CFD	evaluations	(purple	squares);	ii)	
Constrained	optimization	(velocity	non-uniformity	below	a	certain	value):	surrogate	predictions	(red	

circles)	v.	CFD	evaluations	(red	square).		
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As	 can	 be	 seen	 in	 Figure	 6–7,	 the	 Phase	 0	 evaluation	 already	 improved	 the	
performance	 of	 the	 current	 design	 quite	 considerably	 and	 Phase	 I	 was	 only	 able	 to	
improve	that	slightly	further	so,	at	least	based	on	the	results	obtained	with	MOST-HDS,	
one	 could	 presume	 that	 continuing	 with	 the	 optimization	 may	 not	 produce	
considerable	improvements.	

Four	response	surfaces	have	been	generated	with	the	120	sample	points	of	Phase	0,	
the	same	points	used	for	the	MOST-HDS	optimization.	An	unconstrained	optimization	
was	launched	in	the	first	place.	In	this	case,	as	can	be	seen	in	Figure	6–7,	the	response	
surface	predicted	a	considerable	 improvement	over	 the	Pareto	 front	of	Phase	0.	The	
CFD	 evaluation	 for	 the	 predicted	 optimum	 points	 is	 also	 included.	 There	 are	
differences	in	the	results,	as	commented	in	the	section	on	surrogate-based	evaluation,	
but	 still	 the	 use	 of	 surrogates	 for	 the	 optimization	 gives	 a	 clear	 indication	 of	 an	
interesting	area	of	the	search	region	where	optimum	designs	may	lie.	

However,	to	compare	the	results	of	a	surrogate-based	optimization	to	MOST-HDS,	a	
constrained	optimization	must	be	launched.	In	this	case,	based	on	the	results	shown	in	
Figure	6–7,	some	key	observations	can	be	made:	

1. The	 surrogate-based	 optimization	 yields	 design	 points	 that	 may	 have	 an	
absurd	 geometry.	 This	 is	 because,	 at	 least	 in	 commercial	 packages,	 no	
constraints	 can	 be	 imposed	 on	 the	 variable	 values	 when	 generating	 a	
response	 surface.	 Therefore,	 the	 optimum	points	 predicted	 by	 a	 response	
surface	have	often	to	be	corrected	if	the	problem	has	these	constraints.	

2. Only	the	Neural	response	surface	was	able	to	calculate	predicted	optimum	
points.	The	other	response	surfaces	types	indicated	that	no	candidate	could	
be	found.	

3. Most	 of	 the	 predicted	 optimum	points	 appear	 to	meet	 all	 constraints	 and	
they	appear	 to	 improve	 the	Pareto	 front	of	Phase	0.	However,	once	 these	
points	are	checked	for	absurdity	only	one	real	candidate	design	point	is	left	
and,	after	a	CFD	evaluation,	it	can	be	seen	that	it	lies	above	the	velocity	non-
uniformity	level	imposed	for	the	MOST-HDS	search.	

	

Consequently,	the	results	of	the	use	of	a	surrogate-based	approach	for	optimization	
can	be	useful	and	give	strong	indications	of	where	the	optimum	designs	may	lie,	and	in	
some	 cases	 their	 results	may	be	 accurate	 enough.	However,	 they	have	 a	number	of	
limitations	 for	 complex	 problems,	 such	 as	many	 found	 in	 fluid	mechanics.	 Surrogate	
models	 are	 not	 fit	 for	 big	 geometry	 changes,	 and	 they	 frequently	 miss	 flow-
detachment	 critical	 points.	 These	 features	 are	 precisely	what	 the	 designer	wants	 to	
focus	on,	in	many	cases.	
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7.3.	 Discussion	 on	 the	 advantages	 and	 limitations	 of	 a	
surrogate-based	approach	

This	chapter	has	focused	on	the	use	of	surrogate	models	both	for	evaluation	and	for	
optimization	of	complex	problems	in	fluid	mechanics,	particularly	aerodynamic	shape	
design	 optimization	 with	 big	 geometry	 changes.	 Among	 all	 the	 types	 of	 surrogate	
models,	this	chapter	has	focused	on	the	performance	of	response	surfaces	of	various	
types.	The	results	and	observations	made	are	applicable	to	most	of	the	other	types	of	
surrogate	techniques	(ROMs	or	hierarchical	models),	although	a	more	extensive	work	
for	each	surrogate	model	would	be	necessary	to	prove	it	satisfactorily.	

In	the	first	place,	it	must	be	stated	that	surrogate	models	are	a	very	useful	tool	and	
allow	 for	 faster	 and	 more	 accurate	 evaluation	 and	 optimization	 of	 many	 complex	
problems.	However,	a	number	of	limitations	and	considerations	must	be	kept	in	mind	
to	exploit	the	potential	of	surrogate	models	more	adequately:	

1. Surrogate	models	 in	 general	 have	 a	 limitation	 on	 the	 number	 of	 input	 or	
independent	 variables	 they	 can	handle.	 This	 limit	 is	 typically	 around	10-15	
variables,	 especially	 for	 response	 surfaces.	 Besides,	 for	 some	 techniques	
used	 in	 the	 field	 of	 surrogate	models,	 such	 as	 Radial	 Basis	 Function	 (RBF)	
interpolation,	more	than	100	points	for	the	 initial	sample	set	are	too	time-
consuming	to	process	(Walton	et	al.	[2013]	and	Franke	[1982]).	If	surrogate	
models	are	to	be	used	for	 these	cases,	 it	 is	either	necessary	to	carry	out	a	
reduction	of	 the	number	of	 variables,	 or	 to	use	hierarchies	of	 variables	 to	
address	only	those	variables	with	a	stronger	impact	on	the	results,	or	to	use	
low	fidelity	models	which	are	simpler	to	handle.	

2. Some	 surrogate	 models,	 such	 as	 response	 surfaces,	 cannot	 incorporate	
constraints	 on	 variables	 to	 ensure	 the	 design	 points	 are	 not	 absurd	
geometries.	This	means	that	some	of	the	candidate	designs	they	predict	as	
potential	optima	are	not	even	feasible.	If	response	surfaces	are	to	be	used,	
checks	 for	 absurd	geometries	 should	be	 included.	 In	 the	particular	 case	of	
the	very	interesting	type	of	response	surface	referred	to	as	Sparse	Grid,	this	
means	 that	 it	 may	 not	 be	 possible	 to	 use	 because	 it	 does	 not	 allow	 the	
sample	 points	 to	 be	 introduced	 by	 the	 user	 and	 it	 generates	 them	
automatically.	For	the	particular	case	of	the	HRSG	inlet	duct,	given	that	the	
user	 cannot	 introduce	 any	 kind	 of	 constraints	 on	 the	 variables,	 the	
automatic	 generation	 of	 sample	 points	 generates	 absurd	 geometries	 and	
this	makes	the	use	of	the	Sparse	Grid	response	surface	impossible.	

3. Moreover,	 certain	 surrogate	models,	 such	 as	most	 response	 surfaces,	 are	
not	supported	for	discrete	variables.	



Aerodynamic	design	optimization	based	on	Multi-Attribute	Structured	Hybrid	Direct	Search	

152	

4. The	accuracy	of	surrogate	evaluation,	even	for	complex	fluid	problems	such	
as	unsteady	cases,	can	be	adequate.	However,	it	must	be	ensured	that	there	
is	 no	 change	 of	 flow-regime	 within	 the	 search	 region	 (i.e.	 points	 with	 or	
without	flow	detachment,	for	example).	This	is	frequently	difficult	to	ensure	
for	 shape	 optimizations	 involving	 big	 geometry	 changes.	 This	 limitation	
means	 that	 approximate	models	may	 yield	 results	 that	 cannot	 be	 trusted.	
Furthermore,	 the	 designer	 is	 quite	 commonly	 interested	 precisely	 in	
studying	 when	 a	 particular	 flow-regime	 changes.	 Some	 examples	 are	 the	
analysis	 of	 flow	 separation	 initiation,	 the	 change	 of	 turbulence	 regime,	 or	
the	onset	of	fluid	induced	vibrations.	

5. Since	many	surrogate	models	rely	on	some	sort	of	data	fit	or	 interpolation	
scheme,	prediction	errors	are	rarely	systematic,	and	can	therefore	be	in	any	
direction	with	respect	to	the	real	value.	This	means	that	error-correction	is	
difficult	or	too	complex	to	perform.	

6. In	 order	 to	 increase	 the	 accuracy	 of	 the	 surrogate	 models,	 most	 require	
more	 sample	 points	 (also	 referred	 to	 as	 snapshots)	 to	 derive	 a	 better	
approximate	model.	This	may	require	the	evaluation	of	points	in	areas	of	the	
search	region	where	the	attribute	values	may	have	strong	variations	(hence	
the	need	 for	more	points),	 but	where	 the	optimum	points	may	not	 lie,	 so	
time-consuming	CFD	evaluations	 are	wasted	 anyway.	More	efficient	 direct	
search	schemes,	such	as	that	developed	for	the	MOST-HDS	model,	may	yield	
better	results	with	less	CFD	evaluations.	

7. Given	 that	 there	 are	multiple	 surrogate	models	 available,	 it	 is	 not	 always	
easy,	or	even	possible,	to	decide	which	will	be	more	appropriate	or	accurate	
for	 a	 particular	 problem.	 Regarding	 response	 surfaces,	 both	 Kriging	 (with	
auto-refinement)	 and	 Sparse	 Grid	 are	 the	 two	 response	 surface	 types	
recommended	 by	 ANSYS	 and	 other	 commercial	 packages	 for	 a	 higher	
accuracy.	As	is	shown	in	this	chapter,	Kriging	is	not	always	the	best	choice	in	
terms	 of	 accuracy	 of	 the	 predictions	 (Sparse	 Grid	 could	 not	 be	 used,	 as	
explained).	However,	knowing	beforehand	which	type	of	response	surface	is	
best	suited	for	a	particular	problem	is	quite	frequently	complex	or	infeasible.	

8. The	 application	 of	 surrogate	 models	 for	 optimization	 of	 fluid-related	
problems	always	requires	a	final	CFD	evaluation	of	the	optimum	candidates	
to	 ensure	 that	 the	 predicted	 results	 are	 correct.	 This	means	 an	 additional	
calculation	 time,	 which	 must	 be	 accounted	 for	 when	 comparing	 a	 direct	
versus	a	surrogate-based	optimization.	
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9. For	cases	 in	which	the	CPU	time	of	a	 full-order	evaluation	 is	very	high	and	
the	variable	space	is	not	too	large,	surrogate	models	can	prove	interesting.	
For	cases	such	as	those	addressed	by	this	Thesis	(which	are	very	common	in	
industry	 and	 in	 research),	 direct	 search	 can	 be	 more	 adequate	 than	
surrogate	 models.	 This	 is	 because	 the	 full-order	 evaluation,	 although	
complex	and	requiring	CFD,	is	not	extremely	time-consuming18,	and	because	
the	variable	space	can	be	large	(more	than	10-15	variables),		

	

Taking	all	these	limitations	into	account,	it	is	considered	that	the	work	presented	in	
this	 Thesis	 is	 an	 improvement	 over	 many	 other	 techniques	 for	 aerodynamic	
optimization	 of	 complex	 components	 (wings,	 high-speed	 train	 noses,	 automotive	
designs,	 etc.),	 which	 rely	 on	 surrogate-based	 optimization.	 Those	 surrogate-based	
models	include	data	fits,	response	surfaces,	by	reduced	order	models,	and	hierarchical	
or	multi-fidelity	models,	as	explained	in	Robinson	et	al.	[2006].		

The	main	 terms	 to	 compare	 the	 approach	of	 this	 Thesis	 to	 other	 alternatives	 are	
accuracy,	 flexibility	 and	 applicability	 to	 big	 geometry	 changes.	 Surrogate	models	 are	
not	 good	 in	estimating	 strongly	non-linear	objective	 functions,	 including	phenomena	
such	as	 flow	separation.	They	are	also	poor	 in	combining	variables	of	many	different	
types	 (discrete,	 continuous,	 etc.).	 This	 is	 very	 much	 the	 case	 when	 big	 variable	
variations	are	allowed	in	aerodynamic	optimization	problems	and	when	a	whole	body	
(wind	tunnel,	for	instance)	is	optimized,	and	not	only	certain	parts	or	components	of	it.	

List	of	Figures	
Figure	7–1	-	Relative	errors	with	respect	to	the	CFD	values	for	four	different	types	of	response	surface	
and	for	a	number	of	representative	design	points.	

	
Figure	7–2	-	Goodness	of	Fit	(GoF)	for	the	different	response	surfaces.	Predicted	versus	CFD	computed	
results	for	the	four	response	surface	types:	Neural	(top	left),	Genetic	(top	right),	Non-Parametric	
Regression	(bottom	left)	and	Kriging	with	auto-refinement	(bottom	right)	(all	values	are	normalized).	Red	
dots	are	for	pressure	drop	and	yellow	dots	are	for	velocity	non-uniformity.	

	
Figure	7–3	-	Side-view	of	the	velocity	contours	for	design	points	#3,	#4	and	#5	of	Table	7–1.	

	
Figure	7–4	-	Application	of	the	MOST-HDS	algorithm	to	the	shape	optimization	of	the	inlet	duct	of	a	first	
family	of	HRSGs	for	combined	cycle	power	plants.	Surrogate-based	optimization	results:	i)	Unconstrained	
optimization:	surrogate	predictions	(purple	circles)	v.	CFD	evaluations	(purple	squares);	ii)	Constrained	
optimization	(velocity	non-uniformity	below	a	certain	value):	surrogate	predictions	(red	circles)	v.	CFD	
evaluations	(red	square).	
	

																																																								
18	 The	optimizations	 carried	out	 for	 this	 Thesis	 (closed	wind	 tunnel	 and	 industrial	boilers	 -	HRSGs)	

were	performed	 in	 an	8-core	parallel	 calculation,	 using	 a	 32GB	RAM	computer.	 Each	 calculation	 took	
around	0.25-0.3	hours	for	the	HRSG	case	and	0.75-1	hours	for	the	full	wind	tunnel	case.	The	size	of	the	
meshes	was	between	1-2	million	elements	for	the	HRSG	case	and	2-5	million	elements	for	the	full	wind	
tunnel	case.	
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Chapter	8 -	Conclusions	
It’s	more	fun	to	arrive	at	a	conclusion	than	to	justify	it.	

	
Malcolm	Forbes.	

	
This	 chapter	 summarizes	 the	 main	 conclusions	 and	 Thesis	 contributions,	 the	
results	obtained,	the	advantages	and	limitations	for	the	application	of	the	MOST-
HDS	 model	 developed	 and	 the	 future	 work	 to	 be	 carried	 out,	 based	 on	 the	
results	of	this	research.	Section	8.1	presents	and	discusses	the	general	and	most	
relevant	conclusions	and	contributions.	Section	8.2	presents	the	future	research	
work	to	be	carried	out	beyond	this	Thesis.		
	

8.1.	Conclusions	and	Thesis	contributions	
The	 problem	 this	 Thesis	 has	 dealt	 with	 has	 been	 the	 multi-attribute	 or	 multi-

objective	 aerodynamic	 shape	 optimization	 of	 real	 geometries	 of	 different	 fields	 of	
application,	subject	to	a	set	of	constraints,	and	taking	into	account	both	small	and	big	
changes	of	the	geometry	of	interest.	

The	 approach	 proposed	 for	 the	 problem	 described	 above	 has	 been	 the	
development	of	a	general	method	based	on	a	Multi-Objective	Structured	Hybrid	Direct	
Search	optimization	algorithm	(referred	to	as	MOST-HDS).	

The	 main	 conclusions	 that	 can	 be	 drawn	 from	 this	 Thesis,	 alongside	 its	 key	
contributions,	are	now	presented,	grouped	into	a	set	of	categories	for	better	clarity:	

8	
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OPTIMIZATION	APPROACH	AND	COMPARISON	TO	SURROGATE-BASED	OPTIMIZATION	

1. This	 research	 work	 has	 addressed	 optimization	 problems	 involving	 time-
consuming	 objective	 function	 evaluation,	 in	 particular	 requiring	 CFD	
evaluation.	 For	 this	 kind	 of	 optimization	 problems,	 there	 are	 two	 general	
ways	 of	 approaching	 the	 search	 process	 in	 a	 smart	 way.	 One	 is	 using	
techniques	 that	 allow	 for	 a	 faster	 evaluation	 (surrogate	models),	 because	
the	 full-order	 function	 is	 somehow	 simplified.	 The	 other	 is	 developing	
smarter	 search	 schemes	 that	 reach	 the	 optimum	 solutions	 reducing	 the	
number	of	evaluations,	but	which	introduce	little	or	no	simplification	to	the	
full-order	 model.	 This	 latter	 approach,	 called	 direct	 search	 or	 direct	
optimization,	has	been	the	technique	selected	for	this	Thesis;	

2. It	 has	 been	 shown	 that	 surrogate	models	 (mainly	 response	 surfaces	 have	
been	 analyzed	 in	 this	 Thesis)	 are	 useful	 tools	 for	 faster	 evaluation	 and	
optimization,	 but	 they	 have	 a	 number	 of	 limitations.	 The	most	 important	
ones,	applicable	to	most	types	of	surrogate	models,	are:	

a. the	number	of	input	or	independent	variables	should	not	exceed	10-
15;	

b. some	surrogate	models	cannot	incorporate	constraints	on	variables,	
for	example	to	ensure	the	design	points	are	not	absurd	geometries;	

c. a	 number	 of	 surrogate	 models	 are	 not	 supported	 for	 discrete	
variables;	

d. their	accuracy	is	compromised	when	there	is	a	change	of	flow	regime	
between	 different	 design	 points	 (such	 as	 the	 onset	 of	 flow	
detachment),	which	 are	 frequently	 cases	 of	 special	 interest	 for	 the	
designer;	

e. errors	are	not	systematic	and	are	difficult	or	too	complex	to	correct;		

f. finally,	 it	 may	 well	 happen	 that	 the	 number	 of	 CFD	 evaluations	
required	 to	 compute	 an	 accurate	 surrogate	 model	 exceeds	 the	
number	of	evaluations	needed	by	a	smart	direct	search	process.		

3. Surrogate	models	can	prove	interesting	for	cases	in	which	the	CPU	time	of	a	
full-order	evaluation	is	very	high	and	the	space	of	variables	is	not	too	large.	
However,	 direct	 search	 can	 be	more	 adequate	 than	 surrogate	models	 for	
cases	 such	 as	 those	 addressed	 by	 this	 Thesis	 (which	 are	 very	 common	 in	
industry	and	in	research).	This	is	because	the	full-order	evaluation,	although	
complex	and	requiring	CFD,	 is	not	extremely	time-consuming,	and	because	
the	space	of	variables	can	be	large	(more	than	10-15	variables).	
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4. Taking	 all	 these	 limitations	 into	 account,	 it	 is	 considered	 that	 the	 work	
presented	in	this	Thesis	contributes	to	the	State	of	the	Art	because	it	 is	an	
improvement	 over	 the	 use	 of	 surrogate-based	 models	 for	 aerodynamic	
optimization	 of	 complex	 components	 (wings,	 high-speed	 train	 noses,	
automotive	 designs,	 etc.).	 This	 is	 especially	 the	 case	 in	 terms	 of	 accuracy,	
flexibility,	applicability	to	big	geometry	changes,	and	changes	of	flow	regime.	
The	 errors	 of	 surrogate-based	 evaluation	 can	 be	 non-systematic	 and	 can	
reach	 average	 values	 of	 10-20%	 for	 real	 industrial	 cases,	 such	 as	 those	
analyzed	 in	 this	Thesis	 (refer	 to	Chapter	7	 for	more	details).	 In	 the	specific	
case	of	a	change	of	flow	regime	within	the	search	region,	the	errors	can	be	
much	higher.	

5. Direct	 search	 is	 an	 alternative	 to	 surrogate	models	 to	 tackle	 optimization	
problems	 that	 require	 time-consuming	 evaluations.	 Instead	 of	
approximating	 the	 evaluation	 model,	 direct	 search	 use	 algorithms	 with	
embedded	 intelligence	 to	 carry	 out	 an	 intelligent	 and	 efficient	 search,	
minimizing	the	number	of	evaluations.	In	order	to	justify	the	development	of	
the	novel	algorithm,	MOST-HDS,	it	 is	compared	to	one	of	the	most	popular	
Multi-Objective	Evolutionary	Algorithms	(MOEAs),	the	NSGA-II,	for	the	shape	
optimization	 of	 an	 HRSG	 inlet	 duct.	 Although	 the	 results	 obtained	 with	
NSGA-II	are	good,	clear	improvements	are	shown	with	MOST-HDS.	This	is	an	
important	 contribution	of	 this	 Thesis,	 since	NSGA-II	 is	 already	 a	 very	 good	
and	 well-known	 optimization	 algorithm.	 Using	 MOST-HDS,	 the	 candidate	
solutions	of	the	optimization	phases	are	more	concentrated	on	the	area	of	
interest	in	the	space	of	attributes,	and	there	is	a	higher	rate	of	improvement	
from	 phase	 to	 phase.	 Therefore,	 the	 optimized	 Pareto	 front	 after	 an	
equivalent	number	of	evaluations	 (i.e.	equivalent	computing	time,	because	
the	evaluations	are	the	most	time	consuming	part	of	the	process)	is	better.	
However,	much	 fine-tuning	and	upgrading	work	needs	 carrying	out	on	 the	
MOST-HDS	algorithm,	since	there	is	still	substantial	room	for	improvement.	

GENERAL	APPLICABILITY	OF	MOST-HDS:	REAL	INDUSTRIAL	CASES	

6. MOST-HDS	has	been	applied	successfully	to	two	real	 industrial	case	studies	
of	 shape	 design	 optimization:	 the	 inlet	 duct	 of	 HRSGs	 for	 combined	 cycle	
power	 plants,	 and	 closed	 wind	 tunnels.	 It	 has	 been	 shown	 that	 the	
optimization	 results	 yield	 important	 improvements	 over	 current	 existing	
designs.	 This	 is	 a	 key	 contribution	 of	 this	 Thesis,	 not	 only	 because	
performance	 results	 are	 improved	 for	 the	 optimum	 designs	 obtained,	 but	
also	because	some	of	these	designs	are	very	unconventional.	Consequently,	
this	 Thesis	 has	 allowed	 to	 develop	 a	 new	 set	 of	 design	 guidelines,	 very	
specifically	 in	 the	 case	 of	 the	 optimization	 of	 the	 industrial	 boiler	 (HRSG)	
inlet	duct.	In	this	particular	case,	for	instance,	it	is	shown	in	this	Thesis	that	
the	 double	 angle	 design	 of	 HRSG	 inlet	 ducts,	 which	 is	 the	 current	 design	
trend,	 is	 not	 always	 better	 than	 the	 single	 angle	 design,	 which	 was	 the	
traditional	guideline	followed.		
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7. The	results	obtained	 for	 the	 two	HRSG	 families	presented	show	that	 there	
are	 optimum	 trade-off	 designs	 with	 simultaneous	 reductions	 in	 pressure	
drop	of	up	 to	20-25%,	 in	 lateral	 surface	of	up	 to	38%,	and	 in	 length	of	up	
16%,	while	having	comparable	velocity	uniformities	to	the	existing	designs.	
Some	of	these	results	are	obtained	with	noticeably	unconventional	designs.	
The	length	reduction	obtained	results	in	average	savings	in	costs	of	around	
95k€	per	inlet	duct.		

8. Regarding	the	full	wind	tunnel	case,	the	pressure	drop	can	be	improved	by	
30-40%	and	the	cost	can	be	reduced	by	15-20%	(with	respect	to	designs	with	
already	a	good	performance).	Again,	some	of	these	results	are	obtained	by	
clearly	disruptive	or	creative	designs.	

9. Given	 that	 MOST-HDS	 is	 capable	 of	 addressing	 problems	 involving	 big	
geometry	 changes,	 it	 can	move	 efficiently	 throughout	 areas	 of	 the	 search	
region	which	produce	unconventional	or	non-intuitive	designs,	which	would	
probably	 never	 have	 been	 tried	 by	 the	 designer.	 This	 is	 a	 particularly	
important	contribution	of	this	Thesis,	since	there	are	very	few	references	in	
the	State	of	the	Art	addressing	big	geometry	changes	in	shape	optimization	
problems	and	very	 important	performance	improvements	can	be	achieved.	
Most	researchers	focus	on	small	geometry	changes	or,	even	more,	on	fine-
tuning	of	the	geometry	of	interest.	

10. The	MOST-HDS	methodology	 has	 been	 applied	 to	wind	 tunnel	 design	 and	
HRSG	inlet	duct	design	because	these	are	two	areas	in	which	trial	and	error	
is	 still	 widely	 used.	 The	 presented	 approach	 evaluates	 a	 number	 of	
candidate	 solutions	 that	 is	 1	 to	 2	 orders	 of	 magnitude	 higher	 than	 the	
number	of	solutions	frequently	evaluated	in	manual	trial	and	error	designs.	
The	automated	nature	of	the	method	yields	project	time	reductions	of	5-10	
times	 for	 the	examples	 considered,	as	 compared	 to	 the	design	cycle	 times	
using	more	traditional	or	manual	methods.	This	is	also	a	contribution	which	
is	very	much	worth	highlighting.	
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GENERAL	APPLICABILITY	OF	MOST-HDS:	MATHEMATICAL	TEST	FUNCTION	OPTIMIZATION	

11. MOST-HDS	 has	 also	 been	 applied	 to	 a	 very	 different	 problem:	 the	WFG9	
problem	of	the	WFG	test	suite,	a	challenging	test	function	used	in	literature	
for	 benchmark	 optimization	 among	 different	 algorithms.	 Once	 again,	 the	
popular	NSGA-II	 algorithm	 is	 used	 as	 benchmark.	 For	 a	 smaller	 number	 of	
function	evaluations,	MOST-HDS	shows	good	coverage	of	the	whole	span	of	
the	Pareto	front,	as	well	as	a	good	convergence.	Based	only	on	the	results	of	
this	test	problem,	the	performance	of	MOST-HDS	is,	at	least,	as	good	as	that	
of	 NSGA-II.	More	 extensive	 work	 will	 be	 performed	 in	 further	 benchmark	
testing	 in	 the	 future.	 Consequently,	 this	 Thesis	 contributes	 to	 general	
purpose	optimization	and,	more	 specifically,	 to	mathematical	 test	 function	
optimization,	because	it	can	beat	NSGA-II	quite	clearly	for	WFG9.	However,	
more	 research	 is	 required	 to	 compare	 it	 to	more	algorithms	and	 for	more	
test	problems.	

GENERAL	APPLICABILITY	OF	MOST-HDS:	GENERAL-PURPOSE	OPTIMIZATION	

12. Therefore,	 based	 on	 the	 results	 obtained	 in	 this	 Thesis,	 it	 can	 be	 claimed	
that	 MOST-HDS	 has	 shown	 to	 perform	 well	 in	 many	 different	 problems,	
matching	 or	 improving	 currently	 existing	 techniques.	 The	 key	 aspects	 of	
MOST-HDS	 are	 a	 structured	 optimization	 architecture	 (exploiting	 the	
concepts	of	hierarchy	of	variables	and	optimization	phases)	and	the	hybrid	
direct-search	approach.	

13. The	 use	 of	 a	 structured	 optimization	 scheme	 is	 novel	 in	 the	 field	 of	
aerodynamic	shape	optimization,	as	far	as	we	have	found	in	the	State	of	the	
Art	 reviewed.	 Hence	 this	 Thesis	 contributes	 to	 the	 research	 work	 in	 this	
field,	 since	 the	 results	 obtained	 show	 either	 clear	 improvements	 in	
performance	or	cost	reductions.	

14. In	 every	 iteration,	 MOST-HDS	 features	 the	 combination	 of	 non-gradient-
based	 and	 gradient-based	 techniques	 (i.e.	 genetic,	 gradient	 and	 swarm	
search	 intelligence).	 Other	 hybrid	 direct-search	 algorithms	 found	 in	
literature	use	a	different	combination	of	techniques	but,	most	 importantly,	
they	 do	 not	 combine	 them	 all	 in	 every	 iteration,	 using	 each	 of	 them	 for	
different	 stages	 of	 the	 optimization	 process.	 Once	 again,	 the	 approach	
followed	by	MOST-HDS	has	proved	successful,	for	the	cases	analyzed	in	this	
Thesis.	
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15. The	concepts	of	space	of	variables	and	space	of	attributes	(also	referred	to	
in	literature	as	search	space	and	fitness	space)	are	clarified,	so	that	it	can	be	
fully	understood	how	the	search	process	takes	into	account	the	position	of	
each	 design	 point	 in	 both	 spaces.	 The	 fact	 that	 the	 optimization	 process	
within	MOST-HDS	takes	 into	account	the	distance	of	candidate	solutions	 in	
both	spaces,	and	not	only	in	the	space	of	attributes,	as	is	more	frequent	in	
literature,	 is	 also	 a	 key	 contribution	 of	 this	 tool.	 The	 results	 obtained	
(Chapters	6	and	7)	show	the	potential	and	advantages	of	this	approach.		

16. Regarding	optimization	of	 fluid	mechanics	problems,	 the	MOST-HDS	model	
architecture	contributes	to	the	State	of	the	Art	because	it	carries	out	a	full	
implementation	 of	 an	 automatic	 workflow	 simulation	 environment	 for	
optimization	of	CFD	problems,	based	on	direct	 search,	 for	a	wide	 range	of	
fields.	 A	 key	 challenging	 feature	 of	 the	 architecture,	 which	 justifies	 its	
novelty,	is	that	the	optimizer	tool	is	external	to	the	CFD	solver	and	takes	full	
control	of	the	optimization	process.	An	optimization	architecture	as	general	
and	flexible	as	the	MOST-HDS	model	has	not	been	found	in	literature.	As	has	
been	mentioned	above,	this	architecture	has	shown	important	project	time	
reductions	and	an	increase	of	the	number	of	design	candidates	evaluated.	

17. The	model	 developed	 is	 thus	 a	 fully	 automatic,	 robust	 and	 highly	 flexible	
optimization	tool	which,	once	set-up	by	an	expert	engineer,	can	be	used	by	
any	non-expert	person.		

18. In	 order	 to	 justify	 the	 novelty	 of	 the	 research	 work	 carried	 out	 for	 this	
Thesis,	 and	 to	 serve	as	 a	basis	 for	 reference	 for	 future	 authors	working	 in	
this	field,	a	review	of	the	State	of	the	Art	has	been	presented,	for	the	various	
areas	applicable	to	this	work.	This	 is	considered	an	additional	contribution,	
as	 it	 offers	 an	 exhaustive	 survey	 of	 the	 research	 in	 this	 area,	 and	 such	 a	
survey	has	not	been	found	elsewhere.	

19. To	 conclude,	 it	 is	 considered	 that	 the	whole	 set	of	objectives	described	at	
the	beginning	of	this	Thesis	have	been	met	quite	successfully.	Moreover,	it	is	
believed	 that	 this	 Thesis	 has	 contributed	 to	 the	 State	 of	 the	 Art	 in	 many	
aspects.	All	of	these	contributions,	which	were	explained	in	Chapter	1,	have	
been	 analyzed	 in	 depth	 throughout	 the	 whole	 document	 and	 again,	 as	 a	
summary,	in	this	Conclusions	section.	

8.2.	Future	research	work	beyond	this	Thesis	
Apart	from	the	more	detailed	future	lines	indicated	throughout	the	document,	the	

most	relevant	future	research	lines	are	outlined	below:	

1. A	more	extensive	research	on	the	effect	of	other	initial	evaluation	sets	(i.e.	
the	points	 for	Phase	0)	on	the	type	of	problems	we	analyze	will	be	carried	
out.	In	the	case	of	this	Thesis,	a	custom	DoE	scheme	was	used,	based	on	the	
author’s	experience,	but	Latin	Hypercube	Sampling	(LHS)	and	other	methods	
will	also	be	tested	in	future	work.	
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2. Further	 developments	 will	 be	 carried	 out	 concerning:	 tolerance	 threshold	
dynamic	calculation	(other	schemes	will	be	tested);	effect	of	more	than	one	
search	 directions	 per	 point;	 increment	 factor	 dynamic	 calculation	 (other	
schemes	 will	 be	 tested);	 use	 of	 other	 concepts	 to	 assess	 success	 of	 a	
particular	phase	of	the	search;	evaluation	of	the	potential	of	mesh	morphing	
for	the	MOST-HDS	general	model.		

3. A	 more	 exhaustive	 comparison	 to	 other	 optimization	 algorithms	 for	 the	
types	of	 industrial	 problems	presented	 in	 this	 Thesis.	 Based	on	 the	 results	
obtained	 throughout	 this	 research	 work,	 other	 optimization	 tools	 are	
suspected	 to	 have	 limitations	 when	 dealing	 with	 aerodynamic	 shape	
optimization	 and	 involving	 big	 geometry	 changes.	 In	 particular,	 some	
challenges	 to	 be	 checked	 for	 are	 the	 requirement	 of	 large	 initial	 set	 of	
sample	points,	 the	poor	 coverage	of	 the	whole	Pareto	 front	 span,	 or	 slow	
convergence,	requiring	more	function	evaluations	than	MOST-HDS.	

4. The	 results	 and	 observations	 made	 concerning	 surrogate	 models	 are	
especially	focused	on	response	surfaces.	The	conclusions	on	their	limitations	
are	applicable	to	most	of	the	other	types	of	surrogate	techniques	(ROMs	or	
hierarchical	 models),	 although	 a	 more	 extensive	 work	 for	 each	 surrogate	
model	would	be	necessary	to	prove	it	completely.	

5. MOST-HDS	 will	 be	 applied	 to	 other	 areas	 of	 aerodynamic	 shape	 design	
optimization.	Potential	areas	considered	for	application	are	those	described	
in	Paniagua	(2014)	(high-speed	train	nose	design)	or	Zamorano	et	al.	(2015)	
(vortex	generator	design).	

6. Finally,	as	regards	to	the	results	of	the	benchmark	test	of	MOST-HDS	when	
applied	to	a	commonly-used	mathematic	problem,	it	can	be	concluded	that	
this	 algorithm	 shows	 a	 promising	 performance	 in	 the	 field	 of	 general	
purpose	 optimization.	 However,	 a	 more	 extensive	 study	 needs	 to	 be	
performed	as	part	of	the	future	work	beyond	this	Thesis.	
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Appendix	A	-	Illustration	of	the	MOST-HDS	
process	

Illustration	of	the	MOST-HDS	process	for	the	most	complex	case	presented,	the	
wind	tunnel	shape	optimization.	

	

1. The	MOST-HDS	user	interface	has	tree	simple	steps,	as	shown	in	Figure	0–1	

	

	
Figure	0–1	-	MOST-HDS	user	interface.	

	

2. Problem	design:	This	is	done	via	a	.txt	file	created	by	the	user.	This	file	indicates	
the	number	of	hierarchies	of	variables,	the	name	and	type	of	each	variable,	and	
their	range	of	values.	It	also	specifies	number,	name	and	type	of	attributes.	

	

A	
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Figure	0–2	-	Problem	design	input	file.	

	

3. The	Excel	tool	created	to	implement	MOST-HDS	can	generate	a	very	wide	range	
of	closed	wind	tunnel	configurations,	based	on	the	value	of	the	input	variables.	
The	 geometry	 is	 generated	 via	 Bézier	 cubic	 curves	 and	 their	 corresponding	
control	points.	The	program	carries	out	a	geometry	absurdity	check	to	validate	if	
the	geometry	has	negative	volumes,	intersections,	etc.	The	example	of	Figure	0–
3	illustrates	a	case	with	absurd	geometry.	

	

	
Figure	0–3	-	Geometry	parameterization.	

	

	



Aerodynamic	design	optimization	based	on	Multi-Attribute	Structured	Hybrid	Direct	Search	

178	

4. Phase	0	tree	generation:	the	design	points	for	the	design	exploration	of	Phase	0	
are	 generated.	 Note	 that	 the	 variables	 defined	 by	 the	 user	 (Figure	 0–2)	 are	
transformed	 to	 variables	 used	 by	 ANSYS	 to	 generate	 the	 tunnel	 geometry	
(Figure	 0–4).	 In	 ANSYS	 there	 are	 many	 more	 variables,	 hence	 not	 all	 are	
independent,	 and	 they	 are	 far	 less	 intuitive	 than	 those	 defined	 by	 the	 user,	
which	are	the	variables	used	for	the	optimization	process	itself.	

	

	
Figure	0–4	-	Generation	of	Excel	design	point	table.	In	particular,	generation	of	design	points	for	

Phase	0	(design	exploration	phase)	and	variable	transformation	to	ANSYS	variables.	
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5. ANSYS	workflow	for	wind	tunnel	shape	design	optimization.	

	

	
Figure	0–5	-	ANSYS	workflow	architecture.	
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6. ANSYS	parameter	set:	ANSYS	receives	the	variable	values	for	each	design	point	
from	the	Excel	design	point	table.		

	

	
Figure	0–6	-	ANSYS	parameter	set	with	values	received	from	Excel	for	all	the	ANSYS	variables.	

	

7. The	automatic	workflow	set	up	in	ANSYS,	based	on	the	values	of	the	variables	of	
each	 design	 point,	 creates	 the	 geometry	 (Figure	 0–7),	 generates	 the	 mesh	
(based	 on	 the	 meshing	 configuration)	 (Figure	 0–8),	 carries	 out	 the	 CFD	
simulation	 for	 each	 design	 point	 (Figure	 0–11)	 and	 finally	 feeds	 the	 values	
obtained	 for	 each	attribute	 automatically	back	 to	 the	Excel	 design	point	 table	
(Figure	 0–12).	 A	 closer	 view	 of	 the	 mesh	 is	 presented	 in	 Figure	 0–9	 and	
information	on	the	mesh	quality	(skewness)	is	given	in	Figure	0–10	(refer	to	the	
detailed	justification	in	Appendix	B	regarding	the	occasional	use	of	meshes	with	
apparently	unacceptable	skewness	values).		
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Figure	0–7	-	ANSYS	geometry	generation.	

	

	
Figure	0–8	-	ANSYS	mesh	generation.	
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Figure	0–9	-	ANSYS	mesh	generation	(detail).	

	

	
Figure	0–10	-	Example	mesh	quality	for	most	complex	design	points.	
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Figure	0–11	-	ANSYS	FLUENT	CFD	simulation	results.	

	

	
Figure	0–12	-	Attribute	values	obtained	in	ANSYS	are	fed	back	to	the	Excel	design	point	table.	
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8. Once	 the	 results	 of	 all	 the	 design	 points	 for	 a	 particular	 phase	 have	 been	
computed	and	 fed	back	 to	ANSYS,	 the	Pareto	 front	 is	automatically	 calculated	
and	 drawn.	 The	 optimization	 intelligence	 coded	 into	MOST-HDS	will	 generate	
the	design	points	to	be	simulated	in	the	next	phase	of	the	optimization.	

9. This	process	is	repeated	until	the	optimization	stopping	criteria	are	met	and	the	
final	result	for	the	optimized	Pareto	front	is	obtained	(Figure	0–15).	

	

	
Figure	0–13	-	Pareto	front	automatic	calculation.	
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Figure	0–14	-	MOST-HDS	computation	of	the	design	points	for	the	following	optimization	phase.	

	

	
Figure	0–15	-	MOST-HDS	optimization	final	result.	
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Appendix	B	-	Important	notes	on	mesh	
sensitivity	and	mesh	quality	

Important	 remarks	on	 the	mesh	sizes	used,	 the	sensitivity	of	 the	 results	 to	 the	
mesh	size	and	a	general	comment	on	mesh	qualities.	

	

B.1.	Mesh	sensitivity	
For	a	direct	search	optimization,	it	is	key	to	develop	an	efficient	search	process	and	

to	ensure	 the	calculation	 time	 is	minimized,	 so	 that	 the	best	minimum	set	of	design	
candidates	is	evaluated	in	the	shortest	time	possible.	In	order	to	achieve	the	objective	
is	minimizing	 (or	optimizing)	 the	 computation	 time	 for	 each	design	point,	 given	 that	
the	 CFD	 simulation	was	 the	most	 time	 consuming	 part	 of	 the	 process,	 an	 adequate	
range	of	mesh	sizes	had	 to	be	determined.	A	very	coarse	mesh	would	 result	 in	poor	
accuracy,	 whereas	 a	 very	 fine	 mesh	 would	 improve	 accuracy	 but	 would	 increase	
computation	 time.	 The	 determination	 of	 an	 adequate	 range	 of	 mesh	 sizes	 for	 the	
design	 configurations	 that	 were	 going	 to	 be	 considered	 did	 not	 aim	 to	 be	
mathematically	strict,	but	instead	it	aimed	at	being	reasonable	from	an	engineering	or	
industrial	 perspective.	 Therefore	 this	 Thesis	 has	 not	 followed	 the	 classical	 Grid	
Convergence	 Index	 methodology	 (GCI)	 of	 Roache	 (1994)	 or	 the	 more	 advanced	
methodologies	of	Eça	and	Hoekstra	(2014).	Instead,	the	sensitivity	analysis	carried	out	
in	this	Thesis	was	limited	to	a	comparison	of	the	results	obtained	with	increasing	mesh	
sizes.	 The	 optimum	 mesh	 size	 range	 would	 be	 the	 minimum	 size	 above	 which	 the	
results	obtained	did	not	vary	more	than	a	reasonable	threshold	for	the	relative	error	
(this	was	limited	to	3-5%).	

This	 study	 was	 carried	 out	 for	 the	 wind	 tunnel	 case,	 since	 the	 mesh	 for	 the	
industrial	boilers	was	not	as	challenging	and	even	very	refined	meshes	computed	fast.	

The	results	of	this	non-exhaustive	mesh	sensitivity	analysis	are	illustrated	in	Figure	
0–1.	The	conclusion	was	that	meshes	in	the	range	of	2-3	million	elements	marked	the	
threshold	above	which	the	results	showed	no	considerable	variation.	The	meshing	set-
up	was	done	so	that	mesh	sizes	for	most	wind	tunnels	would	be	kept	within	this	range.	
This	does	not	mean	that	certain	design	point	geometries	have	had	finer	meshes	(but	
not	coarser)	than	this	range.			

B	



Appendix	B	–	Important	notes	on	mesh	sensitivity	and	mesh	quality	

187	

	

	
Figure	0–1	-	Illustration	of	the	non-exhaustive	mesh	sensitivity	analysis	carried	out	for	this	Thesis.	

	

B.2.	Mesh	quality	
As	 already	 presented	 in	 Appendix	 A,	 a	 typical	 mesh	 for	 the	 wind	 tunnel	 case	 is	

presented	 in	 Figure	 0–2,	 a	 closer	 view	 of	 the	 mesh	 is	 shown	 in	 Figure	 0–3	 and	
information	on	the	mesh	quality	(skewness)	is	given	in	Figure	0–4.		

The	skewness	for	the	mesh	of	some	design	points	has	a	maximum	value	close	to	1	
or	even	1.	This	is	commonly	regarded	as	an	indicator	of	an	inadequate	mesh.	For	this	
particular	case,	a	trade-off	must	be	reached	between	having	an	automatic	generation	
of	 the	mesh	which	 is	 applicable	 to	 a	 very	wide	 range	of	 tunnel	 designs	 (therefore	 a	
very	 design-specific	 mesh	 set-up	 cannot	 be	 used)	 and	 having	 an	 adequate	 mesh	
quality.	It	has	been	checked	that	the	mesh	elements	with	unacceptable	skewness	are	
located	in	the	transition	from	the	tunnel	duct	to	the	fan	and,	in	some	cases,	in	a	very	
reduced	number	of	elements	in	the	transition	from	the	test	section	to	the	tunnel	duct.	
Reducing	the	skewness	would	either	mean	having	a	design-specific	mesh	set-up	which	
would	not	work	automatically	 for	 all	 generated	 tunnel	 geometries,	 or	 increasing	 the	
number	of	elements	and	thus	the	computation	time	to	unacceptable	levels.	Therefore	
the	 skewness	 of	 these	 very	 few	 elements	 has	 been	 neglected	 and	 the	meshes	with	
such	 a	 high	 skewness	 have	 been	 considered	 acceptable.	 The	 results	 obtained	 with	
these	meshes	have	been	analysed	and	they	have	been	found	to	be	coherent	with	the	
results	of	other	tunnel	geometries	with	meshes	of	much	lower	skewness.	

	



Aerodynamic	design	optimization	based	on	Multi-Attribute	Structured	Hybrid	Direct	Search	

188	

	
Figure	0–2	-	ANSYS	mesh	generation.	

	

	
Figure	0–3	-	ANSYS	mesh	generation	(detail).	
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Figure	0–4	-	Example	mesh	quality	for	most	complex	design	points.	
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