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ABSTRACT

A pressing question facing policy makers today in developing a long-term strategy
to manage carbon emissions from the electric power sector is how to appropriately
balance investment in R&D for driving innovation in emerging low- and zero-
carbon technologies with investment in commercially available technologies for
meeting existing energy needs. Likewise, policy makers need to determine how
to allocate limited funding across multiple technologies. Unfortunately, existing
modeling tools to study these questions lack a realistic representation of electric
power system operations, the innovation process, or both. In this paper, we present
a new modeling framework for long-term R&D and electricity generation capacity
planning that combines an economic representation of endogenous non-linear
technical change with a detailed representation of the power system. The model
captures the complementary nature of technologies in the power sector; physical
integration constraints of the system; and the opportunity to build new knowledge
capital as a non-linear function of R&D and accumulated knowledge, reflective
of the diminishing marginal returns to research inherent in the energy innovation
process. Through a series of numerical experiments and sensitivity analyses—
with and without carbon policy—we show how using frameworks that do not
incorporate these features can over- or under-estimate the value of different
emerging technologies, and potentially misrepresent the cost-effectiveness of
R&D opportunities.
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1. INTRODUCTION

Effectively managing carbon dioxide (CO2) emissions from fossil-based electric power
generation is critical for implementing a comprehensive global climate change mitigation strategy
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and sustainable energy plan. In the United States, for example, the electric power generation sector
is responsible for approximately forty percent of the country’s annual emissions (EIA 2014). Un-
fortunately, many technologies for significantly reducing CO2 emissions from the electricity sector
are either in early conceptual stages or are only available at relatively high costs or small scales,
requiring additional research and development (R&D). Meanwhile, the industry continues to meet
electricity demand with carbon-emitting technologies that are both commercially available and
economically viable. To address the dilemma of resolving the need for new electricity supply with
emission reduction goals, policy makers are searching for cost-effective investment portfolios for
R&D in emerging electricity technologies and new generation capacity at the utility or power
producer level (DOE 2015). On one hand, incentivizing existing low-carbon technology adoption
can play an important role in near-term carbon reductions. On the other hand, supporting R&D can
benefit long-term carbon reductions by commercializing new, less expensive low-carbon technol-
ogies for the future. What is the right balance between, and timing for, these two efforts?

Existing models used to support these decisions are limited in scope in that they either
represent the power sector well or the process of technical change with additional scrutiny, but not
both. Yet, we know from the long-standing research efforts of both the power sector modeling and
innovation modeling communities that each of these sub-systems has several layers of operational
and process-level details that are important when developing conclusions for policy decision sup-
port. There are multiple pathways through which technical change happens, and models of the
energy innovation process have been endogenizing these pathways with increasing rigor. The elec-
tric power system is a complex sociotechnical machine; electricity models used by utilities, gov-
ernments, and other stakeholders have become very sophisticated in capturing essential details about
resource availability and power flow, and their impact on long-term capacity planning.

In this paper, we explore socially optimal low-carbon joint R&D and capital investment
portfolios for the electric power generation sector, using a model with endogenous non-linear R&D
and a detailed representation of the power system. We present a new integrated modeling approach
that considers the complementary roles that generation technologies play within the power system,
the physical integration constraints they face, and the economics at play in electric utilities’ least-
cost investment decisions. Specifically, the model uses a combination of electricity demand in
multiple time-slices for the year, and the engineering costs and operating constraints of the electricity
supply technologies to endogenously choose the cost-effective portfolio of generation capacity at
a given time. In contrast, simple coarse representations of the power sector often use capacity factors
and a pre-determined merit order for each supply technology to exogenously capture aggregate
annual production. Our model also considers specific characteristics of the innovation process,
including the opportunity to build new knowledge capital as a non-linear function of R&D invest-
ments and the current state of technical knowledge. The model explicitly represents the diminishing
marginal returns to research that is inherent in the energy innovation process, as well.

A set of numerical experiments and sensitivity analyses is used to illustrate the impact of
adding these features on the optimal R&D and capacity investment portfolio. Results show that
exclusion of key technology characteristics and electricity system operational details can cause
under- or over-estimating the cost-effectiveness of R&D investments. The role of solar is high-
lighted, whereby the benefit of solar R&D investment can be understated if its niche role to provide
power during specific segments of the day is not represented. Likewise, the role of baseload tech-
nologies such as coal with CCS or nuclear is shown to be highly sensitive to the inclusion or
exclusion of specific technology-specific operating constraints (e.g., ramp rates) relative to each
other. We also show that introducing diminishing marginal returns to R&D translates into higher
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1. See Santen (2012) Chapter 3 for a comprehensive review of state-of-the-art electricity generation capacity planning
models, state-of-the-art energy-economy models incorporating technological change, and models used for joint capacity
and R&D planning. For brevity, we focus the literature review on the final of these.

optimal R&D investments when compared to models that ignore this inherent characteristic of
innovation. Overall, results expose the interaction between R&D and capacity deployment: the
benefit of R&D investment is realized once a technology is deployed and supplying electricity at
a lower cost than the alternate technology that would generate electricity in its place.

The remainder of this paper is organized as follows. Section 2 provides a review of the
existing literature related to optimal R&D and capacity investment planning in the electricity gen-
eration sector, focusing on the subset of models that study joint R&D and capacity portfolios.
Section 3 formulates the specific investment problem we seek to solve, and describes the structure
and calibration of the new modeling approach. Section 4 presents the results of the reference version
of the model, and then compares them to results from a number of alternate models to illustrate the
impact of our approach. Section 5 provides a discussion of the results and suggests future research
directions.

2. LITERATURE REVIEW

Existing models to inform optimal low-carbon R&D and capital investment portfolios for
the electric power generation sector have characteristically excluded one of two critical aspects of
the electricity industry and the energy R&D process that can provide useful insight to policy
makers—an explicit, detailed engineering cost representation of the power generation sector or a
detailed endogenous representation of R&D and the energy innovation process. Although there is
considerable literature on both detailed engineering models of the power sector and on economic
models of technical change, models for jointly studying capacity and R&D portfolios are few and
still require fundamental improvements.1 Online Appendix A summarizes this general dichotomy
by listing the features of many well-known studies and models used to inform policy in this area.

First, models in this area can lack detail about the critical structure of, and engineering
constraints within, the electric power system. The necessary cooperation between highly complex,
time-dependent technical operations and the infrastructure itself sets electricity apart from other
large-scale, commodity-delivering infrastructure systems. This feature requires a diverse portfolio
of generating technologies during any given period of time in the system to complement one another
to deliver reliable electricity. Research is underway to integrate more engineering detail into eco-
nomic modeling frameworks (e.g., Tapia-Ahumada, Octaviano, Rausch, & Pérez-Arriaga 2014;
Shawhan et al. 2014), but the typical approach for studying the energy R&D and capital investment
planning problem thus far still uses a “top-down” economic perspective (e.g., Goulder & Schneider
1999; van der Zwaan, Gerlagh, Klaassen, & Schrattenholzer 2002; Buonanno, Carraro, & Galeotti
2003; Popp 2004; Popp 2006; Nordhaus 2010; Pugh et al. 2011; Hartley et al. 2016). Top-down
economic models use either general equilibrium or inter-temporal optimal growth frameworks, and
while they can be very useful for capturing economic feedbacks between sectors and for describing
the impact of price changes, they lack detail about technology types; disaggregated capital, variable,
and other fixed costs; physical operational constraints (e.g., solar and wind variability, nuclear plant
cycling); and other important dynamics of the sectors and industries they represent. In addition,
these models typically represent large aggregate time-steps, such as annual energy demand, without
any information on inter-annual variability. For the electric power sector, this does not allow for
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generation technology expansion decisions to account for how different technologies within the
system complement and interact with each other. For example, technologies that cannot cycle
quickly or cost-effectively, such as coal or nuclear generation, are complemented by technologies
that can efficiently cycle, such as natural gas turbines. A model that represents these technologies
as competing on aggregated costs to provide annual energy services will miss these critical inter-
actions.

Conversely, studies that represent engineering details of the power system typically omit
an explicit endogenous detailed representation of the energy R&D process. While these models can
rigorously capture technology-specific costs, temporal variability in power supply and demand,
intermittency of renewable resources, and physical constraints of the system, due to data and other
limitations most existing models for electricity investment portfolio planning rely on exogenous
time trends or experience curves to represent the change in costs of different technologies over
time, neglecting the explicit role of R&D (e.g., Short et al. 2011; Ross 2008; Grubb, Kohler, and
Anderson 2002; Messner 1997; Mattheson & Wene 1997; Loulou, Goldstein, & Noble 2004; EIA
2009; Seebregts et al. 1999; Berglund & Soderholm 2006; Kypreos & Barreto 2000).

Models that incorporate both the technological details of the electricity sector and the key
features of the innovation process are relatively rare, and they use a few different approaches. Some
that have combined electricity sector engineering cost details and endogenous R&D assume linear
(or one-to-one) relationships between R&D investment decisions and new knowledge creation (e.g.,
Kouvaritakis, Soria, & Isoard 2000; Turton & Barreto 2004; Barreto & Kypreos 2004; Miketa &
Schrattenhozler 2004). While these models help address the shortfalls of status-quo models as
described above, a linear approach does not capture diminishing marginal returns inherent to the
research process for which there is empirical evidence and theoretical support. The functional form
of the returns to R&D is a critical assumption, because empirical studies suggest that the state of
scientific knowledge significantly affects the overall outcome of the R&D investment at a given
point in time (Popp, Newell, & Jaffe 2010; Popp 2002).

Other models have targeted adding technological details of the power sector alongside key
features of the innovation process using a “hybrid” approach, which aim to link engineering-cost
and economic models in order to capture the full range of specifications needed to inform policy
(e.g., Manne, Mendelsohn, & Richels 1995; Bosetti, Carraro, Galeotti, Massetti, & Tavoni 2006).
For example, Bosetti et al. (2006) assumes a non-linear functional form for returns to R&D that
exhibits diminishing returns within an energy planning model. However, this study and other similar
hybrid modeling efforts still rely on relatively coarse resolutions for specific aspects of their elec-
tricity sector representations. Examples include accounting for multiple technologies but prescribing
exogenous operational details, and integrating detailed costs but omitting inter-annual variability in
demand.

Finally, recent studies have emerged that investigate the role of uncertainty in R&D with
respect to electricity sector technologies (e.g., Blanford 2009; Baker and Solak 2011; Ybema et al.
1998; Bosetti & Tavoni 2009; Kypreos & Barreto 2000; Messner et al. 1995; Grubb 2002; Grubler
& Gritsevskii 1997; Webster et al. 2015). For example, Blanford (2009) explores R&D investment
strategies for the power sector under plausible alternative technological change pathways using an
electricity model with engineering details and a stochastically structured R&D module. Bosetti &
Tavoni (2009) develop a stochastic version of a hybrid energy and R&D planning model to consider
uncertainty about the effectiveness of R&D programs. Baker and Solak (2011) present a stochastic
top-down economic modeling framework to study optimal electricity R&D investment portfolios
under endogenous technological change uncertainties. Webster et al. (2015) construct a top-down
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2. We refer to the “optimal” investment strategy here, and throughout the remainder of the paper, in reference to our
numerical implementation of the investment problem rather than to an “absolute” optimum.

3. For the purpose of presentation, the equations shown below are in some cases condensed versions of the fully detailed
model in the Appendix.

stochastic model of the climate and economy studying R&D portfolios into two substitutable back-
stop technologies under R&D uncertainties. While these studies raise the important question about
the role of uncertainty in R&D planning for the electric power generation sector, each model still
makes the practical trade-off of using limited details in either the representation of the innovation
process or in the representation of power system operations to focus on the role of uncertainty.

The framework presented in this paper contributes to the literature by considering the
economic details of the innovation process and the engineering details of the power system within
a single, integrated model to study joint portfolios of R&D and generation capacity investment. It
includes a state-of-the-art learning-by-searching process that represents endogenous non-linear
R&D effects with diminishing returns, and also includes power sector operational constraints and
interannual variability in demand and renewable generation. The contribution of this research is
primarily methodological, and includes a stepwise discussion of the impact each of these details
has on optimal inter-temporal R&D and capacity portfolios to further the dialogue on the value of
incorporating these features into models to inform policy.

3. MODELING FRAMEWORK

We begin with a traditional engineering cost-based electricity generation capacity expan-
sion optimization model (e.g., Turvey & Andersen 1997; Hobbs 1995) with ten technology cate-
gories, and modify it to simultaneously choose R&D investments for four emerging low-carbon
technologies: coal with carbon capture and sequestration (coal with CCS), nuclear, wind, and solar.2

The model includes technology specific costs; temporal load variability; and engineering constraints
governing the power balance, supply reliability, intermittent wind and solar power, and constraints
on cycling nuclear generators. We build upon previous modeling work in the literature that incor-
porates both endogenous experience curves and endogenous R&D dynamics to allow overnight
capital costs to evolve as a function of capital investments and technological innovation (e.g.,
Barreto & Kypreos 2004; Fischer & Newell 2008). However, the new model of the innovation
process exhibits diminishing returns with increasing research effort (e.g., Popp 2004; Popp 2006;
Bosetti et al. 2006). The planning horizon is sixty years, with capital investment and R&D invest-
ment decisions made every five years. A centralized planning approach is used, which assumes that
a central decision maker simultaneously makes national investment and generation decisions. This
centralized approach is appropriate for the type of long-range strategic policy and technology-
planning that our method is intended to address. For this class of long-term planning studies, it is
not necessarily relevant or useful to represent individual firms because of the large structural un-
certainties inherent in short-term market behaviors of individual firms over these time scales (Pérez-
Arriaga & Meseguer 1997). Below, we present the key features of the model, data, calibration, and
solution approach. Full model details are provided in Online Appendix B.3

3.1 Objective

Every five years, the decision maker chooses new power plant capacities, NCg,t, for each
technology g, and R&D investments, RDg,t, for the subset of emerging technologies, to minimize
the net present value of total system costs,
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Table 1: Electricity Generator Data

Tech
Initial

Capacity Heat Rate
Initial

Capital Cost
Fixed O&M

Cost
Initial Fuel

Cost

Other
Variable

Cost
Annual

Availability

Old Coal 300 10.00 1204 23.410 2.28 4.14 85
New Coal 1 8.80 3167 35.970 2.28 4.25 85
Coal with CCS 1 12.00 5099 76.620 2.28 9.05 80
Old Steam Gas 100 9.46 390 25.256 5.16 3.85 80
Gas Combined

Cycle
200 6.43 1003 14.620 5.16 3.11 90

Gas Combustion
Turbine

100 9.75 665 6.700 5.16 9.87 90

Hydro 100 10.34 1320 12.700 — 3.20 90
Nuclear 100 10.40 5355 85.663 0.62 0.48 90
Wind 50 — 2438 28.070 — — 30
Solar 1 — 4755 16.700 — — 95a

a The availability rate for solar is high due to the technology only operating during peak solar demand slices.
Units: Initial Capacity is in GW. Heat Rate is in MMBtu/MWh. Initial Capital Cost is in $/kW-knowledge unit. Fixed O&M
Cost is in $/kW-year. Initial Fuel Cost is in $/MMBtu. Other Variable Cost is in $/MWh. Annual Availability is in %.
References: Short et al., 2011; EIA, 2010a; EIA, 2010b

4. Demand is represented in the model as inelastic, fixed at the level shown for each step in Figure C1.

G,T – tmin [(FC + VC + RD ](1 + r) (1)∑ g,t g,t g,tg,t
NC ,RDg,t g,t

where FCg,t represents the total fixed costs (overnight capital and fixed O&M costs) of technology
category g in period t, VCg,t, represents the total variable costs (fuel and variable O&M costs) of
technology g in period t, and r is the discount rate.

In addition to the constraints that define the design and operation of the underlying electric
power system, summarized below, the key constraint driving the optimal investment strategy is a
cumulative carbon emissions cap, ecap,

T
E ≤ ecap (2)∑ tt

where Et represents total carbon emissions from the electricity sector during each period. The
existence of a cumulative cap forces a choice between reducing emissions now versus later, given
current technology costs and future R&D-based cost-reduction potential.

3.2 Electricity System Operations

We parameterize the power system model to be qualitatively representative of the U.S.
generation portfolio and electricity demand (EIA 2014; Short et al. 2011). Table 1 lists the tech-
nology categories and associated values used for key parameters in the generation expansion prob-
lem. Electricity demand is characterized using an annual load duration curve with seventeen time
slices representing four seasons, four daily segments within each season, and a “super peak” rep-
resenting the highest forty (non-consecutive) hours of demand. Figure C1 in Online Appendix C
shows the duration and power level associated with each segment of the load duration curve.4
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Key constraints of the traditional power generation expansion planning and optimal dis-
patch problem are retained, including those dictating energy demand balance, reliability of supply,
and energy resource availability. To this model, we introduce several additional details. First, we
represent to first order the effects of intermittent renewable resources and the dominant operational
constraints of nuclear power plants. Using a net-load approach, both solar power and nuclear power
are defined as “non-dispatchable,” and all other technologies compete on cost in order to meet
demand. Wind is modeled as “dispatchable” and thus includes the possibility of curtailment. Solar
power is also represented as operating only during demand slices that correspond to daytime hours.
Second, a high retirement rate is used for old coal and old oil/gas steam plants, because a very large
capacity of these technologies is expected to retire in the U.S. over the next one to two decades. A
high retirement rate for nuclear power is also included, given the aging stock of the U.S. nuclear
fleet. Conversely, new investments in old coal technology, old oil/gas steam, and hydropower are
not allowed in the model because these technologies are outdated or near their energy resource
limits in the U.S. Third, we represent the inability to scale up emerging technologies rapidly and
without limit by assuming a constraint on the rate of change of installed capacities between periods.
Tables C1–C3 in Online Appendix C show the values assumed for these growth rates and other
system parameters.

It is important to note that there are many relationships and levels of detail that can be
used to represent the engineering reality of the electric power system and its operations, and existing
industry standard power system models have become very sophisticated in many regards. This can
include describing the chronological dispatch of generators on an hourly basis; unit-commitment
features of individual generators; geographic (meteorological) variability of wind and solar energy
resources; heterogeneity in the electricity supply resource portfolios across different regions; the
impact of congestion and other transmission constraints; and the different incentives and competitive
conditions electric utilities face in different market structures across the U.S. The balance of features
represented within a specific model typically matches the planning horizon of the problem. For
tractability, medium-term models (up to one year) tend to represent detailed security-constrained
unit commitment and hourly chronological dispatch but not capacity expansion. Longer range
planning models (10–50 + years) will include capacity and transmission expansion, and geographic
variation, but not hourly chronological dispatch or unit commitment. At present, models that include
both detailed operations and hourly chronological dispatch alongside capacity expansion are rare,
and those that exist tend to rely on simplified representations of unit commitment and network
operations, and represent time through snapshot days or weeks in order to keep computer run times
manageable.

The main objective of this paper is to investigate how the integration of power system and
innovation process details into a single framework to study the joint R&D and capacity investment
problem for the electricity sector results in different investment strategies from when these features
are not considered. Thus, to keep the insights clear, we use a model that is as simple as possible
with the minimum amount of added realities, and study whether even this level of introduction
makes a non-negligible difference. Because simplifications such as the use of time slices to represent
annual demand, aggregation of individual generating units into technology groups, and prescription
of dispatchable versus “must-run” technologies can introduce bias in operations (and therefore
optimal future investments) by making resources appear more or less productive than they actually
are, we discuss the sensitivity of our results and impacts of other model structures. However, we
leave the full integration of the new framework into models with higher temporal and spatial
resolution to future research.
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5. For consistency, one-factor LBD parameter values were re-constructed from the 2FLC values employed by Barreto
& Kypreos (2004), based on achieving the same cost-reduction over capital stocks.

3.3 Technical Change Dynamics

The innovation process is represented in the model through two distinct complementary
pathways. Building on the recent empirical and numerical modeling literature, we use a two-factor
learning curve (2FLC) to simultaneously represent learning-by-doing (LBD) and learning-by-
searching (LBS) (e.g., Klaassen, Miketa, Larsen, & Sundqvist 2005; Soderholm & Klaassen 2007;
Miketa & Schrattenholzer 2004; Barreto & Kypreos 2004; Jamasb 2007). Through the 2FLCs, the
overnight capital cost of a technology decreases in the technical knowledge stock for the technology,
and also decreases in the cumulative capacity installed. While the 2FLC formulation applies to the
emerging technology groups (coal with CCS, nuclear, wind, and solar), all technologies for which
new capacity can be added continue to learn via LBD implemented with a traditional one-factor
learning curve.

The technical change dynamics in the model are summarized with the following three
equations:

β ϕNEWK = α RD KS (3)g,t g g,t g,t

Cg,0C = (4)g,t g g1g 2g(IC )(KS )g,t g,t

KS = NEWK + d KS (5)g,t + 1 g,t g g,t

Equation (3) represents the production of new knowledge, NEWKg,t, for technology g in
time period t, defining it as a function of R&D investment, RDg,t, and the cumulative technical
knowledge stock, KSg,t, for technology g in time period t. The parameter βg represents the contri-
bution of R&D dollars invested in the creation of new knowledge, φg represents the contribution
of the current knowledge stock in the creation of new knowledge, and αg is a technology-specific
scalar used to calibrate the behavior of the new innovation possibilities frontier to the current
learning literature. Diminishing returns to research are incorporated in this “innovation possibilities
frontier (IPF),” by constraining the sum of βg, and φg to less than 1.0.

Equation (4) represents the two-factor learning curve that combines LBD and LBS. Cg,t is
the capital cost of technology g in time period t, Cg,0 is the initial capital cost at unit capacity and
knowledge stock, ICg,t is the cumulative installed capacity in GW of technology g in time period
t, KSg,t is once again the cumulative knowledge stock for technology g in time period t, and g1g

and g2g are the learning-by-doing and learning-by-research output elasticities for technology g,
respectively. As indicated by the subscript g, the parameters g1g and g2g are technology specific;
their interpretation follows directly from traditional experience curve “progress-ratio” calculations
where 1–2gi describes the cost reduction that occurs from a doubling of capital stock (g1) or knowl-
edge stock (g2) (e.g., Ibenholt 2002). For the non-emerging technology groups, g2g is set to zero,
resulting in one factor LBD curves driving reductions in overnight capital costs.5 Technology-
specific parameters of the IPF and 2FLC, listed in Table 2, are calibrated to estimates in the pub-
lished literature. Specifically, the scaling parameter, αg, minimizes the sum of squared differences
between capital cost reductions as formulated here, and capital cost reductions based on published
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Table 2: Reference Model Technical Change Parameters

Technology
Learning-by-Doing

Elasticity g1
Learning-by-Searching

Elasticity g2 IPF a IPF β IPF ϕ

Coal with CCSa 0.05889 0.02915 0.1853 0.1 0.54
Nuclear 0.05889 0.02915 0.1853 0.1 0.54
Wind 0.25154 0.10470 0.1856 0.1 0.54
Solar 0.41504 0.15200 0.1760 0.1 0.54

Original Sources: Barreto & Kypreos 2004; Popp 2006
a The lack of historical experience with carbon capture and sequestration technology in the electric power sector makes it
difficult to find reliable learning data for use in numerical models of technological change. Other authors have used learning
rates for coal SO2 scrubbing technology or NOx reduction technologies and applied them to coal with CCS technology in
numerical decision support models (e.g., Rubin, Taylor, Yeh, & Hounshell 2004). This paper uses the history of nuclear
fission technology and its learning rates as a proxy for coal with CCS (both are capital-intensive, large baseload technologies
with significant challenges to space, scale up, public acceptance, permitting, waste, etc.).

two-factor LBD and LBS rates, and R&D and knowledge stock output elasticities (Barreto &
Kypreos 2004; Popp 2006). Equation (5) represents the knowledge building process, capturing the
stock nature of knowledge capital. The parameter NEWKg,t represents the new knowledge gained
for technology g during period t through the innovation possibilities frontier, and dg represents a
technology-specific decay rate for the knowledge stock from one period to the next.

Several caveats are worth stating. The wide range of estimates in the published literature
on learning rates, existing debate on the appropriateness of using historical data to estimate future
costs for emerging technologies, and specification challenges of including endogenous technological
change curves in optimization models are issues that have previously been documented (e.g., Nor-
dhaus 2014; Anadon et al., 2014). Additionally, LBS and LBD are just two of many possible
pathways of technical change; spillovers, learning-by-interacting, and exogenous economy-wide
innovation represent additional important pathways. Comprehensively incorporating the full range
of pathways for change is beyond the scope of this paper. However, we acknowledge that these
additional mechanisms exist, and can impact the specific numerical results presented here. Follow-
ing the presentation of results, we return to this issue and provide a discussion.

3.4 Numerical Implementation

We solve the electricity generation capital and R&D investment planning problem nu-
merically, as a non-linear program. We use the GAMS modeling environment, and a standard non-
linear programming (NLP) solver, CONOPT. A 20-point seeding algorithm is also used to set initial
values widely distributed over the solution space. The optimum is the solution to the NLP that
minimizes total system costs across all twenty seeds. We address terminal conditions for this multi-
period decision problem by running the 60-year planning problem for an additional 40 years. Results
from only the first 12 (5-year) periods are used in each of the analyses to ensure that decisions
being made at or near the end of the planning horizon are not “end-of-world” artifacts or a result
of artificially imposed terminal conditions.

4. RESULTS

In this section, we present results from three numerical modeling experiments, and sum-
marize a series of related sensitivity analyses. As described above, the reference model includes
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6. A 50% reduction is equivalent to an average of 1000 million metric tons CO2 reduction per year, which corresponds
to an approximately $40/metric ton carbon price in 2010 and $10–15/metric ton carbon price in 2050 (due to path dependent
and technology advancement effects). All dollars are expressed as 2005$. Source: Morris, J., Paltsev, S., and J. Reilly (2008),
“Marginal Abatement Costs and Marginal Welfare Costs for Greenhouse Gas Emissions Reductions: Results from the EPPA
Model,” MIT Joint Program on the Science and Policy of Global Change Report No. 164, November 2008.

7. Variation in carbon limit stringency was tested, with 25-percent and 75-percent below business-as-usual scenarios
also. Results were qualitatively similar to the median 50-percent reduction scenario with the same technologies being selected
for R&D and capacity investments, and magnitudes decreasing (or increasing) monotonically with decreasing (or increasing)
stringency. We therefore present results from the 50-percent scenario as representative of a carbon limit.

8. When engineering details of power system operations and merit-order effects are considered in combination with
endogenous learning opportunities, as in the current modeling framework, it is not uncommon to witness significant wind
technology deployment. Fuel costs are zero, other variable costs are among the lowest in the technology suite, and overnight
capital costs become low due to cumulative LBD, LBS, and other effects). In our results, the amount of wind (or any other
technology) R&D and deployment can also be attributed to previous technology support policies such as a production tax
credit or state RPS since implicit in the learning rates, and thus costs, is the effect of past installations motivated by these
policies. Note, however, that technology capital costs do not directly reflect the impact of such support policies.

four “emerging” technologies—wind, solar, coal with CCS, and nuclear—each with a distinct en-
gineering cost structure (e.g., fuel costs, initial capital costs) and learning potentials as shown in
Tables 1 and 2. It is the interaction of the cost structure, cost-reduction potentials, carbon reduction
potential, and role of each emerging technology within the power system that determines the optimal
R&D and capacity investment strategies. We first present the optimal investment strategy from the
reference model with no carbon limit and then with a stringent cumulative carbon limit equivalent
to reducing 2010 business-as-usual carbon emissions from the power generation sector by fifty
percent annually.6,7 In the subsequent sections, we present how the R&D and capacity investment
portfolio changes when we change how the power system or the innovation process is represented
in the modeling framework.

4.1 Reference Optimal Investment Strategy

When carbon emissions from the power generation sector are allowed to grow uncon-
strained, the new modeling framework with endogenous R&D-based technical change and dimin-
ishing returns shows that it is optimal in the near-term to invest aggressively in wind R&D, to a
lesser extent in solar PV R&D, and then to decrease investments in both technologies to a negligible
amount after twenty to forty years (Figure 1a). The temporal pattern of optimal capacity investments
(deployment) for the reference model (Figure 2a) helps explain this behavior. Several gigawatts of
wind are installed in the second and third periods in order to make up a sizeable share of the total
installed capacity by the fourth period. R&D investments reflect this deployment pattern as the
decision is driven by the benefit of the investment, realized when a technology is deployed. R&D
investments occur early and aggressively to reduce costs as much as possible before massive de-
ployments. Solar PV deployments in years 25 through 45 occur on a much smaller scale, but solar
R&D investments similarly reflect capacity increases over time. Investments begin early in order
to reduce capital costs as much as possible (although to a lesser extent than for wind), and they
occur over a longer interval of time because deployments occur further in the future.

Note that wind and solar PV technology R&D and deployments appear even in the absence
of a carbon emissions limit; this is due to their particular cost structures and the presence of learning
in the model. Wind technology is already close to being cost-competitive with the other technolo-
gies’ capital costs. Because of its competitive cost and relatively rapid learning rate, near-term R&D
investments and deployment in wind yields significant cost savings during future installations,
which in turn encourages further deployment.8,9 Solar PV technology, despite significantly higher
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9. While capital and other engineering costs for wind power decrease to the point of being cost-competitive with some
conventional technologies, other constraints continue to exist (e.g., transmission capacity) that can prevent actual wind
deployment, and these are not represented in our model.

10. The numerical model considers the possibility that coal with CCS and nuclear power technologies can incur an
upper bound in deployment for political or physical reasons (e.g., concerns about nuclear waste disposal or public safety,
physical limitation of carbon sequestration sites) by including a maximum installed capacity of 30% (for each) of total
system capacity. However, neither constraint is active in the solution, indicating that the results are robust to these types of
concerns within this limit.

capital costs compared with other technologies, is also developed and deployed due to its high
learning potential (both through experience and R&D). In contrast, low-carbon coal with CCS and
carbon-free nuclear, both technologies with relatively high overnight capital costs but lower learning
potentials, do not have sufficient incentive for either R&D or deployment in the absence of a carbon
constraint. Figure 1b shows the relative allocation of R&D for the optimal investment strategy in
each period, and indicates the substantial early R&D investment in wind technology, followed by
delayed, but prolonged investment in solar PV. For the remainder of the paper, we present the
optimal R&D investment strategy in terms of the ratio of R&D by technology to the total R&D,
and emphasize insights into the relative investment allocation, rather than the absolute magnitudes
from our model.

Under a stringent carbon limit, one that is equivalent to constraining annual carbon emis-
sions from the power generation sector to fifty percent of “business-as-usual” emissions (from
2010), the optimal strategy is to choose R&D and capital investments in nuclear technology, in
addition to the same absolute wind and solar R&D and capital investments as with no carbon limit.
Nuclear technology R&D investments occur more gradually than wind and solar, peaking after 35
years, just before new nuclear capital investments occur (Figures 1c and 2c). Because nuclear
generation is baseload (operating for most hours of the year), emits no carbon, and has lower capital
and operating costs than coal with CCS—the alternative baseload low carbon technology, it plays
an important role in reducing cumulative carbon emissions. Note the significant amount of electricity
generated by nuclear in Figure 2b under a carbon limit. However, the deployment of nuclear is
deferred until later periods to take advantage of the capital cost reductions from early R&D in-
vestments. Under the carbon limit, nuclear technology has the largest share of R&D (Figure 1d).
We note that neither R&D nor deployment of coal with CCS occurs in the optimal strategy for the
reference model. This is a result of its higher overnight capital costs and fuel costs relative to
alternative low-carbon technologies, a “must run” constraint imposed on substitutable baseload
nuclear power in the model, and its relatively lower learning rates.10 The specific role of coal with
CCS is discussed again in Section 4.2 in more detail.

4.2 Effect of Power System Operational Constraints and Interannual Variability

The results described above are obtained using an engineering cost-based structure for the
model instead of an economic modeling structure commonly used for joint R&D and capacity
investment studies. The objective was to explore the effect of including operating constraints on
generating technologies and of explicitly modeling variability within a year for demand, wind and
solar availability, and their correlation with each other. In this section, we present results obtained
with alternative formulations of the model with important engineering constraints changed to in-
vestigate whether and how the optimal investment strategy is different than the reference model’s
strategy.
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Figure 3: Ratio of Optimal R&D Investments to Total R&D Investments per Period
without Power System Details Modeled

Using a “simplified” power system model, we neglect explicit representations of temporal
load variability, time-of-day output constraints for solar PV, and the inability of nuclear plants to
cost-effectively manage repeated start-up and shut-downs. We assume an average value for annual
demand, solar PV output that assumes a fixed average annual capacity factor (30%) for all hours
of the year, and neglect the baseload must-run constraint placed on nuclear power generation in the
reference model. These assumptions are consistent with the way top-down economic energy models
that focus on the rest of the economy represent a simplified electricity sector—using aggregate
annual demands, operational details via technology-specific capacity factors or direct levelized costs
(see Section 2), and perfect substitutability between technologies. In the simplified model, the
endogenous non-linear innovation process is left in its original form from the reference model.

Figures 3 and 4 present the optimal R&D and capacity investments, respectively, from the
simplified power system model. Without a carbon limit, the R&D investment strategy focuses solely
on wind technology. R&D into solar PV technology is not part of the investment strategy, which
differs significantly from the results obtained with the reference model. As expected, solar PV
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Figure 4: Optimal Installed Capacities without Power System Details Modeled

technology is also dropped from the deployment plan, with wind making up the balance. With a
carbon limit, R&D and capital investments in solar are effectively zero. Further, in contrast to the
reference model, wind R&D investments continue throughout the sixty-year planning horizon. The
simplified model’s strategy also includes investment in both baseload low-carbon technologies,
nuclear and coal with CCS. Investment in nuclear R&D is still optimal under the simplified model,
and remains at a relatively high share throughout the planning horizon (instead of initially low and
gradually increasing over time). However, the role of coal with CCS generation changes dramati-
cally, with R&D and capital investments throughout the planning horizon. In fact, by the seventh
period coal with CCS receives the largest share of R&D expenditures across the four emerging
technologies.

Why are R&D investments in coal with CCS justified under a carbon limit in the simplified
model, and how does this generalize across different conditions? One reason is the absence of the
must-run constraint on nuclear generation. Without this constraint, both coal with CCS and nuclear
compete on their cost merits to meet electricity demand. Nuclear generation, initially with lower
overnight capital cost, is deployed sooner in the simplified model than in the reference model, and
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therefore calls for high R&D investment shares in early periods. Coal with CCS is initially higher
cost, and is deployed in later periods after R&D investments have had sufficient time to reduce
capital costs and increase its competitiveness. The R&D investment share in coal with CCS begins
low in the early periods, and rises swiftly over the next few periods. This is due to the nature of
the non-linear response of cost-reductions to increasing installed capacity and knowledge stock.

The reason why solar PV R&D is not included in the optimal strategy of the simplified
power system model is because the model does not differentiate between the times when this
technology is and is not available. Solar generation is assumed to be available at any time of day
or in any season regardless of solar incidence, but only and always at 30% output, as opposed to
the much higher levels for some seasons and times of day. A maximum capacity factor of 30%
combined with its high initial capital cost, makes this technology cost-ineffective compared to other
technologies (e.g., wind, natural gas). Solar technology is less valuable in the underlying generation
resource portfolio when the correlation between demand and availability is not represented; the
benefit of cost-reduction through R&D investments thus diminish, as well.

In addition to developing the simplified model, we also constructed a highly-detailed en-
gineering operations model on a test-system, against which we compared results to a replica of the
reference model on the same test-system. The objective of the test was to determine whether in-
creasing the level of engineering detail further—in an effort to mimic state-of the-art power systems
models—resulted in amplified and unidirectional changes to those seen when moving from the
simplified model to the reference model. Online Appendix D provides a detailed discussion of this
analysis. Overall, the test shows that common methods for designating technologies as “baseload”
versus otherwise available need to be carefully considered in the context of defining relative positons
of substitutable technologies. The analysis also highlights that keeping the relative positions of
technologies with respect to satisfying demand in a given hour may likely be the more important
driver in understanding cost-effective R&D investment opportunities than simply adding engineer-
ing reality. Understanding these positions further would be a valuable line for future research.

Overall, our results show that using economic modeling frameworks without a minimum
level of temporal resolution to represent the variability inherent in renewables can underestimate
the value of variable generation technologies such as solar PV in a resource portfolio, and therefore
can also underestimate the cost-effectiveness of their R&D opportunities. For baseload technologies
with specific engineering constraints such as nuclear and CCS, preserving their relative operating
positions through a consistent set of constraints appears to be an additional important consideration
for understanding the corresponding value of R&D investment into these technologies. As such,
the numerical results caution against drawing premature conclusions about a specific direction for
R&D investments with increasing modeling detail. Instead, they support a more general point that
increasing the reality with which the power system is represented can indeed change the optimal
investment strategy and priorities for certain technology over others.

4.3 Effect of Diminishing Returns to Research

A second contribution of this work is the incorporation of diminishing returns to research
into an R&D and capital investment planning model for the power sector. Here, we demonstrate
the impact of representing this phenomenon, relative to an approach that assumes linear R&D-
knowledge building relationships without diminishing returns, common in prior studies. We for-
mulate a third version of the model, which replicates the reference version from Section 3.3 with
an important change in the mechanism through which knowledge increases about emerging tech-
nologies. Specifically, in this version, we replace Equation (3) in the reference model with:
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Figure 5: Optimal R&D Investments without Diminishing Returns to Research

NEWK = RD , (6)g,t g,t

where new knowledge, NEWKg,t, for technology, g, in time, t, is a one-to-one function of the dollars
invested in technology, g, and time, t. This formulation closely matches the dominant assumption
in many energy models, which equates R&D dollars with new knowledge. We refer to this version
as the “linear R&D” model.

Figure 5 shows the optimal R&D investment strategies with and without a carbon limit
when the linear knowledge production function (6) is assumed, omitting diminishing returns. In the
absence of a carbon limit, the relative shares of R&D investments into wind and solar PV in the
early years is approximately the same as the shares of these technologies with diminishing returns,
but R&D into solar ceases after the twenty-five years. The same pattern holds for wind and solar
R&D investment under a carbon limit. In the linear R&D model, R&D into nuclear technology
under the carbon limit has a higher optimal share in the first ten years, after which investment stops
abruptly. In contrast, when diminishing returns are considered (Figure 1), nuclear R&D increases
gradually, becoming the dominant R&D investment for most of the planning horizon.

In general, ignoring decreasing marginal returns from research overestimates the effect of
R&D into technologies. The linear R&D model also chooses a different temporal path of optimal
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Figure 6: Optimal Installed Capacities without Diminishing Returns to Research, under a
Carbon Limit

R&D investments, leading to a “boom-and-bust” pattern of increased R&D in early periods, after
which the R&D levels are zero. This is particularly true for technologies such as solar PV and
nuclear, which are not deployed until later in the horizon and for which investment in the reference
model is spread out over many periods. For technologies with low learning-by-searching rates but
large capacity deployments in the reference model (e.g., nuclear under a carbon limit), the linear
R&D model chooses a disproportionate level of R&D effort in the early periods. The shift in the
timing of R&D in turn, tracks the optimal capital investment pattern, which includes earlier de-
ployment of nuclear generation (Figure 6), displacing combined cycle natural gas plants during
those periods. A similar pattern is seen for nuclear technology R&D investments under a carbon
constraint in the engineering cost model of Barreto & Kypreos (2004), which assumes linear R&D-
based knowledge building and the same low learning rate. In their model, technologies with higher
learning rates witness continued R&D investment over the planning horizon.

As mentioned earlier in the text, we note that our implementation of the model includes
only the learning-by-searching and learning-by-doing components of technical change, but that
other important pathways for technology improvement and cost-reductions are in reality present.
We would not expect the inclusion of an exogenous technical change rate to affect the insights from
the current results, as the priority orders of R&D and capital investments for technologies are based
on their competitive merits in relation to each other; the same cost reduction applied across all
technologies would not change their competitive roles. However, inclusion of other pathways such
as spillovers or learning-by-interaction could change the results more meaningfully. For example,
if knowledge gained by improving component technologies to support integration of intermittent
wind power can spillover to solar, the optimal strategy may include decreased R&D investment
into solar, as the model sees less need for R&D for the same amount of absolute technical change.
This is but one example of many that deserves more systematic study in future research efforts.

5. SENSITIVITY ANALYSES

Finally, in addition to exploring the effect of power system details and diminishing returns
to research on the optimal investment strategy via the numerical experiments above, we performed
a series of sensitivity analyses. A detailed description and discussion of each is provided in Online
Appendix E.



Inter-temporal R&D and Capital Investment Portfolios / 19

Copyright � 2017 by the IAEE. All rights reserved.

The first sensitivity analysis explored the changes in the optimal investment strategy for
different values of key innovation parameters: the impact on new knowledge from R&D expendi-
tures and from the existing knowledge stock level. A benefit of representing endogenous learning-
by-searching with an innovation possibilities frontier (IPF), such as Equation (3) of the reference
model, is the ability to explicitly study assumptions about the effect of R&D efficiency (parameter
β) and existing knowledge stock level efficiency (parameter ϕ) on the inter-temporal knowledge
building process, and consequently on the optimal investment strategy. This is relevant in light of
evidence in the empirical literature showing variation across energy technologies in the contribution
of their knowledge stocks to successful innovation (Popp et al., 2013). When compared side-by-
side, we conclude that the sensitivity of the optimal investment strategy in terms of relative R&D
shares to both R&D investment and knowledge stock elasticities is similar in that for those tech-
nologies with high learning rates and early period R&D investments, the share of R&D investment
tends to decrease (or stay constant) with increasing values for these parameters. On the other hand,
for technologies with low learning rates (e.g., nuclear) and deferred R&D investments, the share
of R&D investment tends to increase for higher values of these parameters. One noteworthy dif-
ference in the sensitivities however is that the impact of the knowledge stock elasticity is large
enough to change the priority ordering of R&D investments under a carbon limit.

The second sensitivity analysis explored the effect of regional heterogeneity in the elec-
tricity supply base (including renewable resources) on the optimal investment strategy, comparing
results from a small windy coal- and gas-heavy region and a much larger sunny, coal- and nuclear-
heavy region to the national-level reference model results. The interpretation of R&D and technical
change is more complex for a regional analysis. Knowledge gained from R&D or experience about
these technologies is not likely to be contained within a region, so there is a limit to the value in
determining “optimal” regional R&D allocations. Nevertheless, the focus of this sensitivity analysis
is the adaptability of the modeling framework to the underlying characteristics of the electricity
system represented, and the robustness of the temporal pattern of R&D priorities tracking the
deployment needs of the underlying power system. Results show that under a carbon limit requiring
large carbon emissions reductions, nuclear continues to play an important role in new capacity, and
therefore increased R&D investments in nuclear are optimal in earlier periods. Additionally, we
show that irrespective of climate policy, there is a reliance on a region’s highest quality renewable
energy resource, and preferential R&D investment in it.

6. CONCLUDING DISCUSSION

In this paper, we have presented a modeling framework for balancing investments in R&D
and generation capacity infrastructure in the electric power sector. Specifically, the framework adds
to the current state-of-the-art modeling in this area, which is predominantly top-down. We integrate
an explicit bottom-up structure for representing important power system details, such as temporal
load variability, technology-specific operational constraints, intermittent renewable generation, and
technology-specific engineering and fuel costs, with a non-linear innovation possibilities frontier
function for representing a process of knowledge building that captures the amount of R&D in-
vested, the current state of knowledge, and diminishing returns.

In our new model, deployment via capacity investment for the most competitive emerging
technologies (e.g., wind power) are made early with and without carbon limits, to meet electricity
demand. Without limits on carbon the remaining deployment of new capacity is made up of efficient,
flexible, and low cost technologies (e.g., gas plants), whereas with limits on carbon, higher-cost
carbon-free technologies with additional operational constraints such as nuclear power are deployed.
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The deployment of a technology such as nuclear in the presence of a carbon limit occurs because
its baseload nature affords deep emission cuts.

R&D investments track deployment patterns, preceding them based on current installed
capacities and learning potentials as their benefits are realized when a technology is deployed and
meeting electricity demand at a lower cost than the next marginal producer. R&D investments in
early periods are optimal for technologies with high learning rates, but play an overall less dramatic
role in meeting demand (e.g., both wind and solar are intermittent generating technologies). Fol-
lowing this, a greater share of R&D investment is allocated to wind than solar in the new model,
because solar is represented as more resource constrained. Conversely, lower initial levels of R&D
that increase gradually over time appear optimal for technologies with lower learning rates and
deferred deployment (e.g., nuclear).

The modeling experiments in this paper demonstrate the impacts of embedding power
sector details, such as operational constraints and interannual variability, and diminishing returns
to energy R&D in state-of-the-art modeling frameworks for assessing joint R&D and capacity
investment portfolios. The additional engineering cost and operations details of the electric power
system provide a more precise look at the role that different technologies play to meet demand,
and this, in turn, provides a better foundation to determine the optimal level of R&D that should
be spent to support some emerging technologies over others.

Results show that when key characteristics of the electricity sector such as load variability,
intermittent generation, and operational constraints such as cycling are excluded, the investment
strategy can differ significantly from the reference solution. Specifically, under a carbon limit, the
strategy from a simplified model can exclude investments in higher cost, intermittent renewables
with high learning potentials (e.g., solar PV). In contrast, the reference model chooses an alternate
investment path inclusive of these technologies, considering the niche roles for different intermittent
renewable resources such as wind and solar PV. Our results also show that investment strategies
for baseload technologies with significant engineering operating constraints and thermal inertias
such as coal with CCS or nuclear power can be highly sensitive to the manner in which their
operational constraints are imposed in the model, relative to other substitutable technologies. While
this result seems obvious in hindsight, our numerical results support the notion that when integrating
a model of power system operations and innovation to study joint R&D and capital investment
decisions, it is not simply additional detail that matters. Preserving the relative contributions of
different technologies to each other, and being consistent in representing their operational con-
straints while doing so, is important as well. Cost assumptions and engineering details included in
the models impact the optimal investment strategy because they provide a more precise view of the
usefulness and role of a technology relative to others in the actual system.

Sensitivity analyses and additional investigation into the effects of incorporating further
power system details such as regional heterogeneity in existing capacity and renewable resource
potential, support the broad conclusion that optimal joint R&D and capacity portfolios are sensitive
to the level of representation of the power system and innovation processes in the model (see Section
3.5). When the new framework is applied to different regions, priorities for capacity and R&D
investments shift. We conclude that R&D investments track the technology groups in the system
that represent the long-run least cost option, but only once the opportunities for cost reduction
through innovation are factored in. For example, in a system with a high existing nuclear resource
base, additional R&D and capacity investments in nuclear are preferred early because costs are
reduced dramatically in the near term, and over time. In a system with a more diversified existing
portfolio, early investments are diversified until a clear winner is revealed to continue receiving
R&D investment.
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Finally, our results show that if diminishing returns to research effort are not explicitly
represented in the model of innovation, the optimal strategy exhibits overinvestment in the near-
term and underinvestment in later periods. This results from the fact that the average return rate
from R&D investments appears to be much higher in a model without diminishing returns, thus
reducing the benefit of continued investments. Additionally, the sensitivity of the optimal R&D
investment strategy to the characteristics of the innovation process—elasticities of new knowledge
to R&D and to knowledge stock— are similar to each other in that for the technologies with high
learning rates and early period R&D investments, R&D investment tends to decrease (or stay
constant) with increasing values for both innovation process characteristics. On the other hand, for
technologies with low learning rates (e.g., nuclear) and deferred R&D investments, R&D investment
tends to increase with higher values for these elasticities.

For future research, we have already identified above that a more systematic exploration
of the change in direction and magnitude of the investment strategies with increasing power system
detail would be beneficial to the energy modeling community. This effort was beyond the scope of
the current paper. We have also noted the open opportunity to consider additional pathways of
technical change in this type of a modeling framework. Beyond these topics, several additional
directions for future research are worth considering.

First, it would be valuable to study the optimal R&D investment strategy under uncertainty
in the return rate for R&D programs (R&D efficiency) and knowledge stock strength given the
sensitivity of optimal R&D investments to the components of the knowledge building process, and
the paucity of data available to estimate the value of these innovation process characteristics, One
such study is Santen (2012), and Section 2 discusses other work in this area in the existing literature,
but in general this is an open area of research that would benefit from multiple perspectives and
new modeling frameworks.

Second, we have developed the current model using an engineering cost structure with the
intention of presenting a framework that could be used as the “bottom-up” component of a more
integrated hybrid modeling effort. There are many feedbacks between the electricity sector and the
rest of the economy, as well as between the energy innovation that occurs in the electricity sector
and the rest of the economy. The integration of a modeling framework such as the one presented
here into a hybrid model that represents the feedbacks between sectors of the economy would be
a valuable contribution.

Third, due to our focused research objective, we have used a model that relies on a single,
aggregated entity that engages in innovative activity and chooses R&D investments only in response
to opportunities for minimizing system-wide costs. However, in reality, innovation occurs via sev-
eral different institutions, by both public and private entities that respond to different incentives.
Representing public and private innovation separately in a model like the one we present here could
help inform the allocation of R&D funds across different actors, as would characterizing and rep-
resenting other key features of the innovation process such as R&D feedbacks upstream at the
technology suppliers from downstream deployment at the utilities and power producers.
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