

# ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) MÁSTER EN INGENIERÍA INDUSTRIAL

# CLIMATIZACIÓN DE UN HOTEL EN PONTEVEDRA

Autor: Paula Melero Álvarez

Director: Fernando Cepeda Fernández

# AUTORIZACIÓN PARA LA DIGITALIZACIÓN, DEPÓSITO Y DIVULGACIÓN EN RED DE PROYECTOS FIN DE GRADO, FIN DE MÁSTER, TESINAS O MEMORIAS DE BACHILLERATO

#### 1º. Declaración de la autoría y acreditación de la misma.

El autor D. Paula Melero Álvarez, como alumna de la Universidad Pontificia Comillas DECLARA ser el titular de los derechos de propiedad intelectual de la obra: Climatización de un hotel en Pontevedra, que ésta es una obra original, y que ostenta la condición de autor en el sentido que otorga la Ley de Propiedad Intelectual.

#### 2°. Objeto y fines de la cesión.

Con el fin de dar la máxima difusión a la obra citada a través del Repositorio institucional de la Universidad, el autor **CEDE** a la Universidad Pontificia Comillas, de forma gratuita y no exclusiva, por el máximo plazo legal y con ámbito universal, los derechos de digitalización, de archivo, de reproducción, de distribución y de comunicación pública, incluido el derecho de puesta a disposición electrónica, tal y como se describen en la Ley de Propiedad Intelectual. El derecho de transformación se cede a los únicos efectos de lo dispuesto en la letra a) del apartado siguiente.

#### 3º. Condiciones de la cesión y acceso

Sin perjuicio de la titularidad de la obra, que sigue correspondiendo a su autor, la cesión de derechos contemplada en esta licencia habilita para:

- a) Transformarla con el fin de adaptarla a cualquier tecnología que permita incorporarla a internet y hacerla accesible; incorporar metadatos para realizar el registro de la obra e incorporar "marcas de agua" o cualquier otro sistema de seguridad o de protección.
- b) Reproducirla en un soporte digital para su incorporación a una base de datos electrónica, incluyendo el derecho de reproducir y almacenar la obra en servidores, a los efectos de garantizar su seguridad, conservación y preservar el formato.
- c) Comunicarla, por defecto, a través de un archivo institucional abierto, accesible de modo libre y gratuito a través de internet.
- d) Cualquier otra forma de acceso (restringido, embargado, cerrado) deberá solicitarse expresamente y obedecer a causas justificadas.
- e) Asignar por defecto a estos trabajos una licencia Creative Commons.
- f) Asignar por defecto a estos trabajos un HANDLE (URL persistente).

#### 4°. Derechos del autor.

El autor, en tanto que titular de una obra tiene derecho a:

- a) Que la Universidad identifique claramente su nombre como autor de la misma
- b) Comunicar y dar publicidad a la obra en la versión que ceda y en otras posteriores a través de cualquier medio.
- c) Solicitar la retirada de la obra del repositorio por causa justificada.
- d) Recibir notificación fehaciente de cualquier reclamación que puedan formular terceras personas en relación con la obra y, en particular, de reclamaciones relativas a los derechos de propiedad intelectual sobre ella.

#### 5°. Deberes del autor.

El autor se compromete a:

- a) Garantizar que el compromiso que adquiere mediante el presente escrito no infringe ningún derecho de terceros, ya sean de propiedad industrial, intelectual o cualquier otro.
- b) Garantizar que el contenido de las obras no atenta contra los derechos al honor, a la intimidad y a la imagen de terceros.
- c) Asumir toda reclamación o responsabilidad, incluyendo las indemnizaciones por daños, que pudieran ejercitarse contra la Universidad por terceros que vieran infringidos sus derechos e intereses a causa de la cesión.

d) Asumir la responsabilidad en el caso de que las instituciones fueran condenadas por infracción de derechos derivada de las obras objeto de la cesión.

#### 6°. Fines y funcionamiento del Repositorio Institucional.

La obra se pondrá a disposición de los usuarios para que hagan de ella un uso justo y respetuoso con los derechos del autor, según lo permitido por la legislación aplicable, y con fines de estudio, investigación, o cualquier otro fin lícito. Con dicha finalidad, la Universidad asume los siguientes deberes y se reserva las siguientes facultades:

- La Universidad informará a los usuarios del archivo sobre los usos permitidos, y no garantiza ni asume responsabilidad alguna por otras formas en que los usuarios hagan un uso posterior de las obras no conforme con la legislación vigente. El uso posterior, más allá de la copia privada, requerirá que se cite la fuente y se reconozca la autoría, que no se obtenga beneficio comercial, y que no se realicen obras derivadas.
- La Universidad no revisará el contenido de las obras, que en todo caso permanecerá bajo la responsabilidad exclusive del autor y no estará obligada a ejercitar acciones legales en nombre del autor en el supuesto de infracciones a derechos de propiedad intelectual derivados del depósito y archivo de las obras. El autor renuncia a cualquier reclamación frente a la Universidad por las formas no ajustadas a la legislación vigente en que los usuarios hagan uso de las obras.
- La Universidad adoptará las medidas necesarias para la preservación de la obra en un futuro.
- La Universidad se reserva la facultad de retirar la obra, previa notificación al autor, en supuestos suficientemente justificados, o en caso de reclamaciones de terceros.

Madrid, a 16. De Julio de 2018.

**ACEPTA** 

Fdo.

Declaro, bajo mi responsabilidad, que el Proyecto presentado con el título Climatización de un hotel en Pontevedra

en la ETS de Ingeniería - ICAI de la Universidad Pontificia Comillas en el curso académico 2017-2018 es de mi autoría, original e inédito y no ha sido presentado con anterioridad a otros efectos. El Proyecto no es plagio de otro, ni total ni parcialmente y la información que ha sido tomada de otros documentos está debidamente referenciada.

Fdo.: Paula Melero Álvarez Fecha: 13 / 07 / 2018

Autorizada la entrega del proyecto

EL DIRECTOR DEL PROYECTO

tout whi

Fdo.: Fernando Cepeda Fernández Fecha: 13 / 07 / 2018



# ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) MÁSTER EN INGENIERÍA INDUSTRIAL

# CLIMATIZACIÓN DE UN HOTEL EN PONTEVEDRA

Autor: Paula Melero Álvarez

Director: Fernando Cepeda Fernández

CLIMATIZACIÓN DE UN HOTEL EN PONTEVEDRA

Autor: Melero Álvarez, Paula.

Director: Cepeda Fernández, Fernando.

Entidad Colaboradora: ICAI- Universidad Pontificia Comillas.

**RESUMEN DEL PROYECTO** 

El objetivo de este proyecto se centra en la definición de los sistemas de climatización y

ventilación de un hotel situado en Pontevedra, con la finalidad de alcanzar una solución

satisfactoria con un coste razonable cumpliendo con la normativa vigente del Reglamento de

Instalaciones Térmicas en los Edificios (RITE) y el Código Técnico de Edificación (CTE),

siendo capaz de proporcionar unas condiciones de confort requeridas.

El edificio objeto está destinado al uso terciario del hospedaje, que tiene un uso previsto de 24

horas diarias durante los 7 días de la semana, considerando 52 semanas anuales, por lo que se

obtienen un total de 8,760 horas de uso por año. Este edificio consta de 3 sótanos con función de

aparcamiento (los cuales no serán climatizados), un semisótano con restaurante y cafetería, una

planta de acceso con vestíbulo, salas de estar, despachos y una habitación de minusválidos y

cuatro plantas superiores que estarán destinadas a las habitaciones. La última planta, planta bajo

cubierta, albergará también la sala de máquinas donde se instalará la caldera y las bombas. En

total se han climatizado 53 estancias.

Los datos de las condiciones climáticas de la provincia de Pontevedra han sido obtenidos

mediante La Guía Técnica de Condiciones Climáticas Exteriores de Proyecto IDEA, estos datos

serán usados como condiciones exteriores de cálculo Se han establecido las temperaturas de 24°C

en verano y 22°C en invierno como las temperaturas interiores de confort de cada estancia a

climatizar y una humedad relativa de 50% en ambos casos.

Estas condiciones climatológicas junto con la ocupación, las horas de uso, la iluminación (carga

interna de 25W/m<sup>2</sup>), equipos electrónicos en uso (carga sensible 100W/habitación y 20W/m<sup>2</sup>

resto de dependencias) y la descripción de cerramientos formarán parte de las hipótesis de diseño que serán la base del cálculo de cargas.

El análisis del cálculo de cargas a partir de las hipótesis de diseño es imprescindible para la posterior proyección de los equipos de climatización que deben ser capaz de satisfacer las pérdidas térmicas más desfavorables que se den en el hotel a lo largo del año y con competa ocupación. Es por ello que para llevar a cabo el cálculo de cargas se debe tener en cuenta las ganancias exteriores y las interiores que afectan a cada estancia individualmente tanto para invierno como para verano.

Para las *cargas térmicas de verano* se ha determinado la hora y el mes más desfavorable para cada estancia, lo cual depende de las condiciones interiores y exteriores de diseño, la orientación de las fachadas exteriores, los coeficientes de transmisión y las características de uso de la estancia. Las cargas internas en verano quedan definidas a partir de su ocupación y cualquier fuente de energía, mientras que las cargas exteriores se tienen en cuenta la insolación y transmisión a través del vidrio, las aportaciones por muros, techo y suelo. Para las *cargas térmicas de invierno* se elige como hora y mes más desfavorable para todas las estancias, enero a las 8:00 am. Las cargas internas en invierno son favorables por lo tanto no se tienen en cuenta, y para las cargas exteriores se tienen en cuenta las pérdidas por transmisión la estancia y los muros, suelos, techos o locales no climatizados y las cargas del aire exterior.

Tras ello quedarán definidas las características que han de tener los equipos de climatización necesarios en cada estancia y los <u>equipos terminales</u> que han de compensar todas las cargas térmicas. Con el cálculo de las cargas térmicas se obtiene un total de 133.04 kW en verano y 82.65 kW en invierno que han de ser combatidos por el *grupo frigorífico y la caldera* respectivamente que serán los encargados de la producción de agua de frío y calor.

La potencia que suministran será la potencia máxima de las estancias correspondientes. Mediante dos bombas gemelas, el agua proporcionada por los sistemas de producción de frío y calor hasta un colector. Este primer circuito es un circuito primario, tras el colector, se suministra el agua a los climatizadores y a los Fan-coils, mediante dos circuitos secundarios. Para el grupo frigorífico el salto térmico entre la entrada y la salida ha de ser de 5°C, saliendo del grupo a 7°C y

retornando de cada circuito de Fan-Coils y climatizadores a 12°C. En el caso del grupo calorífico, saldrá a 50°C, retornando a 40°C lo que supone un salto térmico de 10°C.

La <u>climatización</u> del hotel se ha basado en un sistema de climatizadores que trabajan junto a Fancoils, esto proporciona de forma individualizada las condiciones necesarias de cada estancia. Dos *climatizadores* situados en la cubierta del edificio suministrarán el aire a todas las plantas. El semisótano, planta de acceso y primera planta se abastecerán del aire proporcionado por el climatizador 1, las plantas segunda, tercera y cuarta se abastecerán del aire proporcionado por el segundo climatizador. Estos climatizadores proporcionan el aire que permitan vencer las cargas máximas de las estancias, este aire es impulsado en por una red de conductos que conectan el climatizador con cada Fan-coil.

El *Fan-coil* de cada estancia es de 4 tubos, que permitirá compensar la fuerte carga latente de las zonas mediante la producción de agua caliente y agua fría. Además, precisan de un sistema de retorno integrado, aspiran el aire por una rejilla de retorno. Se instalarán en los falsos techos y serán de tipo FLS para las habitaciones y de tipos Cassette para el resto de estancias.

Para el transporte de agua caliente y agua fría en la instalación se precisará de una red de <u>tuberías</u>, que conectará el grupo frigorífico y la caldera con los climatizadores y los Fan-coils. Será una distribución de cuatro tubos de acero (DIN 2440), dos de agua caliente y dos de agua fría y cada uno de ellos se ocuparán de la impulsión y el retorno. Además, se ha dividido esta red de tuberías en dos circuitos diferentes (circuitos secundarios). El primer circuito alimentará a los climatizadores y el segundo a los Fan-Coils. Para el dimensionamiento de esta red, primero se ha calculado el caudal necesario de cada estancia y para evitar los altos niveles sonoros la pérdida de carga ha de ser inferior a 30 mm.c.a/ml y la velocidad del agua menor que 2m/s.

Para este transporte de agua se precisa de <u>bombas</u> que impulsen y retornen el agua desde el grupo calorífico o frigorífico hasta los elementos terminales de cada dependencia. Estas bombas tendrán una bomba gemela en paralelo para que en caso de avería no se interrumpa el funcionamiento de la instalación, por lo que, en total se dispondrá de 12 bombas.

Para transportar el aire que es tratado en cada climatizador hasta cada estancia y su correspondiente retorno de aire, se precisa de una red de <u>conductos</u>. Esta red parte desde cada climatizador, llega a las distintas estancias por los patinillos y distribuyéndose por los falsos techos de cada planta. Todas las estancias poseen un conducto de *impulsión* de aire primario desde el climatizador al Fan-coil escogido para cada una de ellas, cuyo fluido es el aire exterior tratado y que se mezclará con el caudal de retorno gracias a la ayuda de un regulador de caudal, este es absorbido por el Fan-coil y forman el aire de impulsión. Para evitar sobrepresiones, condensaciones y malos olores se realizará una extracción de aire en cada estancia. Cabe destacar que Fan-coils de tipo Cassette no se precisa de difusor ni de conducto de impulsión ni de retorno. La pérdida de carga debe estar comprendida entre los 0.08 mm.c.a y 0.1 mm.c.a y la velocidad del aire ha de ser menor a 10 m/s para asegurar los niveles de ruido permitidos. Además, se debe tener en cuenta que la altura máxima del conducto no ha de sobrepasar los 500mm dado que el falso techo tiene esa dimensión y el factor de forma de los conductos tiene que ser inferior a 3.

Los <u>elementos de difusión</u> como rejillas y difusores se distribuirán de forma uniforme a lo largo de la estancia. Para su elección se ha tenido en cuenta que su potencia sonora sea inferior a 40dB de acuerdo con los requerimientos del RITE, además de la sección de los conductos calculada y del caudal de aire necesario.

Por último, se ha calculado el precio total de la instalación que alcanza los 398,661.98 € (Trescientos noventa y ocho mil seiscientos sesenta y un euros con 98 céntimos)

La memoria incluirá en forma de anexos todos los cálculos realizados, las tablas auxiliares utilizadas, los catálogos de todos los distintos elementos que serán instalados, los planos del edificio, así como un pliego de condiciones y el presupuesto desarrollado.

AIR CONDITIONING OF A HOTEL IN PONTEVEDRA

Author: Melero Álvarez, Paula.

Director: Cepeda Fernández, Fernando.

Collaborating Entity: ICAI- Universidad Pontificia Comillas.

PROJECT SUMMARY

The <u>objective</u> of this project focuses on the definition of air conditioning and ventilation systems

of a hotel located in Pontevedra, with the aim of reaching a satisfactory solution with a

reasonable cost complying with the current regulations of the Regulation of Thermal Installations

in Buildings (RITE) and the Technical Building Code (CTE), being able to provide the required

comfort conditions.

The building is intended for the tertiary use of the accommodation, which has an intended use of

24 hours a day, 7 days a week, considering 52 annual weeks, for a total of 8,760 hours of use per

year. This building consists of 3 basements with parking function (which will not be air-

conditioned), a semi-basement with restaurant and cafeteria, an access floor with lobby, living

rooms, offices and a disabled bedroom and four upper floors that will be used for the bedrooms.

The last floor will also house the engine room where the boiler and pumps will be installed. In

total, 53 rooms have been air-conditioned.

The data of the climatic conditions of the province of Pontevedra have been obtained through the

Technical Guide of External Climatic Conditions of the IDEA Project, these data will be used as

external calculation conditions The temperatures of 24°C in summer and 22°C in winter have

been established as interior comfort temperatures of each room to be heated and a relative

humidity of 50% in both cases. These weather conditions together with the occupation, hours of

use, lighting (internal load of 25W/m2), electronic equipment in use (sensitive load 100W/room

and 20W/m2 rest of the rooms) and the description of enclosures will be part of the design

hypotheses that will be the basis of the load calculation.

The analysis of the <u>calculation of loads</u> from the design hypothesis is essential for the subsequent projection of the air conditioning equipment. They must be able to satisfy the most unfavorable thermal losses that occur in the hotel throughout the year and with full occupancy. That is why to carry out the calculation of loads should take into account the external and internal gains that affect each stay individually for both winter and summer.

For the *summer thermal loads*, the hour and the most unfavorable month for each stay has been determined, which depends on the interior and exterior design conditions, the orientation of the exterior facades, the transmission coefficients and the characteristics of use of the stay. The internal loads in summer are defined from their occupation and any source of energy, while the external loads are taken into account the insolation and transmission through the glass, the contributions by walls, roof and floor. For *winter thermal loads*, the most unfavourable hour and the month are chosen for all rooms, January at 8:00 a.m. The internal loads in winter are favourable, therefore, they are not taken into account, and for the external loads, the losses due to transmission of the room between the walls, floors, ceilings or unheated premises and loads of the outside air are taken into account.

After that, the characteristics that the air conditioning equipment must have in each room and the <u>terminal equipment</u> that has to compensate for all the thermal loads will be defined. With the calculation of the thermal loads, a total of 133.04 kW in summer and 82.65 kW in winter are obtained, which must be combated by the *refrigeration unit and the boiler*, respectively, they will be responsible for the production of cold and hot water.

The power they supply will be the maximum power of the corresponding rooms. By means of two twin pumps, the water provided by the cold and heat production systems up to a collector. This first circuit is a primary circuit, after the collector, the water is supplied to the air conditioners and to the Fan-coils, by means of two secondary circuits. For the refrigeration group, the thermal jump between the entrance and the exit must be of 5°C, leaving the group at 7°C and returning of each circuit of Fan-Coils and air conditioners at 12°C. In the case of the calorific group, it will leave at 50°C, returning to 40°C, which means a thermal jump of 10°C.

The <u>air conditioning</u> of the hotel has been based on a system of air conditioners that work together with Fan-coils, this provides in an individualized way the necessary conditions of each

room. Two *air conditioners* located on the roof of the building will provide air to all floors. The basement, access floor and first floor will be supplied with air provided by the air conditioner 1, the second, third and fourth floors will be supplied with the air provided by the air conditioner 2. These air conditioners provide the air to overcome the maximum loads of the rooms, this air is driven by a network of ducts that connect the air conditioner with each Fan-coil.

The *Fan-coil* of each room is 4 tubes, which will allow compensating the strong latent load of the zones through the production of hot water and cold water. In addition, they require an integrated return system, they suck the air through a return grid. They will be installed in the false ceilings and will be of the FLS type for the rooms and Cassette types for the rest of the rooms.

For the transport of hot water and cold water in the installation, a network of <u>pipes</u> will be needed, which will connect the refrigeration unit and the boiler with the air conditioners and Fancoils. It will be a distribution of four steel pipes (DIN 2440), two hot water pipes and two cold water pipes, each one of which will handle the drive and return. In addition, this network of pipes has been divided into two different circuits (secondary circuits). The first circuit will feed the air conditioners and the second circuit the Fan-Coils. For sizing this network, the necessary flow rate of each room has been calculated first and to avoid high sound levels the pressure loss must be less than 30 mm.c.a / ml and the water velocity is less than 2m / s.

For this transport of water, <u>pumps</u> are required to drive and return the water from the heating or cooling group to the terminal elements of each unit. These pumps will have a twin pump in parallel so that in case of a breakdown the operation of the installation will not be interrupted, therefore, a total of 12 pumps will be available.

To transport the air that is treated in each air conditioner to each room and its corresponding return of air, a network of <u>ducts</u> is needed. This network starts from each air conditioner, reaching the different rooms through the bracket and distributes itself through the false ceilings of each floor. All rooms have a primary air drive from the air conditioner to the Fan-coil chosen for each of them, whose fluid is treated outside air and will mix with the return flow thanks to the help of a flow regulator, this is absorbed by the Fan-coil and forms the driving air. To avoid overpressure, condensation and bad odours, an air extraction will be carried out in each room. It

should be noted that Fan-coils of the Cassette type do not require a diffuser or a drive or return duct. The head loss must be between 0.08 mm.c.a and 0.1 mm.c.a and the air velocity must be less than 10 m/s to ensure the noise levels allowed. In addition, it must be taken into account that the maximum height of the duct must not exceed 500mm since the false ceiling has that dimension and the form factor of the ducts must be less than 3.

The <u>diffusion elements</u> such as grids and diffusers will be distributed evenly throughout the room. For its selection, it has been taken into account that its sound power is less than 40dB in accordance with the requirements of the RITE, in addition to the section of the calculated ducts and the air flow required.

Finally, the total price of the installation has been calculated, which reaches € 398,661.98 (Three hundred and ninety-eight thousand six hundred and sixty-one euros and 98 cents). The report will include in the form of annexes all the calculations made, the auxiliary tables used, the catalogues of all the different elements that will be installed, the plans of the building, as well as a list of conditions and the budget developed.

# TENSITAS COMPENSATION OF THE PROPERTY OF THE P

## UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Índice de Contenidos

| Parte I   | Memoria descriptiva   | Î   |
|-----------|-----------------------|-----|
| Parte II  | Planos                |     |
| Parte III | Anexos                |     |
| Parte IV  | Pliego de condiciones |     |
| Parte V   | Presupuesto           | 213 |



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# CONTROLLER STATE OF THE STATE O

#### UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Parte I MEMORIA

# **DESCRIPTIVA**



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Índice de la Memoria Descriptiva

| Cap | ítulo I | 1 Objetivo y contenido del proyecto            | 9  |
|-----|---------|------------------------------------------------|----|
|     | 1.1     | Alcance                                        | 10 |
|     | 1.2     | Metodología de trabajo                         | 10 |
|     | 1.3     | Descripción del edificio                       | 11 |
|     | 1.3.    | 1 Estancias a climatizar                       | 12 |
| Cap | ítulo 2 | 2 Hipótesis de diseño                          | 13 |
|     | 2.1     | Ocupación                                      | 13 |
|     | 2.1.    | 1 Horarios de funcionamiento                   | 13 |
|     | 2.1.2   | 2 Niveles de ocupación                         | 13 |
|     | 2.2     | Condiciones exteriores de cálculo              | 14 |
|     | 2.3     | Condiciones interiores de cálculo              | 16 |
|     | 2.3.    | 1 Temperatura y humedad                        | 16 |
|     | 2.3.2   | 2 Calidad del aire interior                    | 16 |
|     | 2.4     | Descripción de cerramientos                    | 18 |
|     | 2.5     | Cargas internas                                | 19 |
|     | 2.5.    | 1 Carga sensible y carga latente               | 19 |
|     | 2.5.2   | 2 Iluminación y equipos eléctricos en uso      | 19 |
| Cap | ítulo 3 | 3 Cálculo de cargas térmicas                   | 21 |
|     | 3.1     | Base de cálculo de cargas térmicas de verano   | 21 |
|     | 3.1.    | 1 Cargas exteriores en verano                  | 22 |
|     | 3.1.2   | 2 Cargas interiores en verano                  | 25 |
|     | 3.2     | Resultados cargas térmicas verano              | 25 |
|     | 3.3     | Base de cálculo de cargas térmicas de invierno | 31 |
|     | 3.3.    | 1 Cargas exteriores en invierno                | 31 |
|     | 3.3.2   | 2 Cargas interiores en invierno                | 34 |
|     | 3.4     | Resultados cargas térmicas de invierno         | 34 |
| Cap | ítulo 4 | 4 Red de conductos                             | 37 |
|     | 4.1     | Diseño de la red de conductos                  | 38 |
|     |         |                                                |    |



# ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

| 4.2        | Cálculo de la red de conductos           | 39 |
|------------|------------------------------------------|----|
| 4.2.1      | Cálculo de los conductos de impulsión    | 39 |
| 4.2.2      | 2 Cálculo de los conductos de retorno    | 43 |
| 4.3        | Difusores                                | 47 |
| 4.3.1      | Diseño de los difusores                  | 47 |
| 4.3.2      | 2 Cálculo de los difusores               | 48 |
| 4.4        | Rejillas                                 | 52 |
| 4.4.1      | Cálculo de las rejillas                  | 52 |
| Capítulo 5 | 5 Red de tuberías                        | 61 |
| 5.1        | Diseño de la red de tuberías             | 61 |
| 5.2        | Cálculo de las tuberías                  | 61 |
| 5.2.1      | Dimensionamiento de las tuberías de agua | 65 |
| Capítulo ( | 6 Sistema de climatización               | 69 |
| 6.1        | Climatizadores                           | 70 |
| 6.1.1      | Diseño de los climatizadores             | 70 |
| 6.1.2      | 2 Cálculo de los climatizadores          | 71 |
| 6.2        | Fan-coils                                | 72 |
| 6.2.1      | Diseño de los fan-coils                  | 72 |
| 6.2.2      | 2 Cálculo de los Fan-coils               | 72 |
| 6.3        | Sistema de producción de calor y frío    | 76 |
| 6.3.1      | l Grupo frigorífico                      | 76 |
| 6.3.2      | 2 Caldera                                | 77 |
| Capítulo 7 | 7 Bombas                                 | 79 |
| 7.1        | Diseño de bombas                         | 79 |
| 7.2        | Dimensionamiento de bombas               | 80 |
| Capítulo 8 | Normativa de aplicación                  | 81 |
| Capítulo 9 | O Referencias                            | 83 |



## ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Índice de Tablas

| Tabla 1: Estancias a climatizar                                                           | 12 |
|-------------------------------------------------------------------------------------------|----|
| Tabla 2: Ocupación proporcionada por los planos                                           | 14 |
| Tabla 3: Niveles de ocupación en función de la utilización                                | 14 |
| Tabla 4: Temperaturas exteriores de cálculo                                               | 15 |
| Tabla 5: Situación geográfica                                                             | 15 |
| Tabla 6: Velocidad media del viento                                                       | 15 |
| Tabla 7: Temperaturas interiores de cálculo                                               | 16 |
| Tabla 8: Caudal en función de la caudal de aire interior.                                 | 17 |
| Tabla 9: Caudal de renovación de aire forzada                                             | 18 |
| Tabla 10: Coeficiente de transmisión de cerramientos                                      | 18 |
| Tabla 11: Cargas térmicas verano                                                          | 30 |
| Tabla 12: Factores de viento y coeficientes de régimen en función del tipo de cerramiento | 33 |
| Tabla 13: Cargas térmicas invierno                                                        | 36 |
| Tabla 14: Conductos impulsión climatizador 1                                              | 41 |
| Tabla 15: Conductos impulsión climatizador 2                                              | 43 |
| Tabla 16: Conductos extracción climatizador 1                                             | 45 |
| Tabla 17: Conductos extracción climatizador 2                                             | 47 |
| Tabla 18: Difusores de impulsión                                                          | 51 |
| Tabla 19: Difusores de extracción                                                         | 52 |
| Tabla 20: Cálculo de las rejillas de impulsión                                            | 55 |
| Tabla 21: Cálculo de las rejillas de retorno                                              | 58 |
| Tabla 22: Cálculo de las rejillas de extracción                                           | 59 |
| Tabla 23: Caudales de agua de la red de tuberías                                          | 64 |
| Tabla 24: Dimensionamiento de la red de tuberías de agua                                  | 68 |
| Tabla 25: Elección de climatizadores                                                      | 71 |
| Tabla 26 Cálculo de Fan-coils                                                             | 75 |
| Tabla 27: Características del grupo frigorífico                                           | 77 |
| Tabla 28: Selección de bombas                                                             | 80 |



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)



#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Índice de Ecuaciones

| Ecuación 1: Insolación a través del vidrio                  | 22 |
|-------------------------------------------------------------|----|
| Ecuación 2: Transmisión de calor a través del vidrio        | 23 |
| Ecuación 3: Diferencia de temperatura a través del vidrio   | 23 |
| Ecuación 4: Aportaciones por muros, techo o suelo           | 24 |
| Ecuación 5: Diferencia de temperatura equivalente corregida | 24 |
| Ecuación 6: Pérdidas por transmisión                        | 31 |
| Ecuación 7: Carga introducción aire exterior                | 33 |
| Ecuación 8: Factor de forma de los conductos                | 39 |
| Ecuación 9: Caudal de agua de la red de tuberías            | 61 |



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Capítulo 1 OBJETIVO Y CONTENIDO DEL

#### **PROYECTO**

El objetivo de este proyecto se centra en la definición de los sistemas de climatización y ventilación de un hotel situado en Pontevedra, con la finalidad de alcanzar una solución satisfactoria con un coste razonable de acuerdo con la normativa vigente en cuanto al Reglamento de Instalaciones Térmicas en los Edificios (RITE)<sup>[1]</sup> y el Código Técnico de Edificación (CTE)<sup>[2]</sup>, siendo capaz de proporcionar unas condiciones de confort requeridas.

Actualmente las técnicas de climatización y su manejo están en auge, esto ha proporcionado en mí un interés que ha derivado en la realización de este proyecto. Además, las ganas de poner en práctica mis conocimientos teóricos adquiridos a lo largo de mis estudios realizados en la Universidad Pontificia de Comillas, son mi principal motivación para este proyecto.

Para la consecución de este objetivo se dimensionarán los equipos de climatización del hotel, los cuales varían entre invierno (calefacción) y verano (refrigeración), y se seleccionarán los elementos de ejecución (entre ellos la maquinaria necesaria, elementos de difusión como climatizadores, tuberías, conductos de impulsión y retornos de aire, rejillas).

Tras este previo análisis y dimensionado se trabajará con el sistema integrado de control de la instalación, cuyo objetivo reside en su correcto funcionamiento y la facilidad de uso y mantenimiento.

Finalmente, tras la elección de los equipos que se han de instalar y los materiales necesarios para su ejecución, se evaluará el coste de la solución diseñada.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 1.1 ALCANCE

De forma general, el alcance contemplado en este proyecto es el siguiente:

- Cálculo de cargas incidentes en cada estancia.
- Diseño de los sistemas de climatización.
- Red de distribución de agua enfriada y caliente (bombas, tubería, valvulería, aislamientos, etc.) desde las centrales de producción a los diferentes elementos terminales encargados de acondicionar los diferentes recintos a los que dan servicio.
- Una serie de equipos terminales a los que se les suministra agua fría / caliente.
   Estos elementos serán Fan-coils
- Red de distribución de aire exterior (conductos, aislamientos, elementos terminales de distribución de aire, tomas de aire exterior, elementos de equilibrado y regulación de caudal, compuertas cortafuegos, rejillas, etc.)
- Documentación y legalización de la instalación.

#### 1.2 METODOLOGÍA DE TRABAJO

Se realizará un estudio detallado de las condiciones que influyen en el diseño, con la voluntad de conseguir un compromiso entre estética, técnica y coste diseñando así un sistema de climatización óptimo para el hotel.

El primer estudio que se ha de analizar es el cálculo de las cargas de invierno verano mediante el apoyo de hojas de cálculo. Para ello se evaluarán los casos más desfavorables dependiendo de la hora y el mes en el caso del régimen de verano, también se tendrán en cuenta su orientación y la localización de cada zona a climatizar.



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

Tras el cálculo de las cargas térmicas en régimen de verano, se calcularán las cargas térmicas en el régimen de invierno. Una vez obtenidas todas las cargas de las distintas zonas de climatización, se hallarán los caudales de ventilación, de impulsión y de retorno de cada una de las zonas del edificio, así como los equipos de verano e invierno.

Gracias al conocimiento de los caudales, se especificarán que difusores y qué rejillas serán utilizados en los conductos de impulsión y de retorno.

El último cálculo a realizar será el dimensionado de los conductos y tuberías y se estudiará la presión que como mínimo han de satisfacer las bombas para alcanzar la presión estática disponible en el caso más desfavorable del edificio.

Tras los cálculos se han de elaborar los planos de las instalaciones, el pliego de condiciones y se finalizará con un presupuesto del proyecto.

#### 1.3 **DESCRIPCIÓN DEL EDIFICIO**

El edificio objeto está destinado al uso terciario del hospedaje, consta de 3 sótanos con función de aparcamiento (los cuales no serán climatizados), un vestíbulo y una cafetería en la planta baja del edificio, destinando las cuatro plantas superiores a la instalación de las habitaciones del hotel.



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 1.3.1 ESTANCIAS A CLIMATIZAR

La Tabla 1 muestra las estancias a climatizar en cada planta y su funcionalidad.

| Planta     | Estancia                |  |
|------------|-------------------------|--|
|            | Salón 1                 |  |
| Semisótano | Salón 2                 |  |
|            | Restauración            |  |
|            | Habitación minusválidos |  |
|            | Vestíbulo               |  |
|            | Sala de estar           |  |
| Acceso     | Zona salas 1            |  |
|            | Zona salas 2            |  |
|            | Recepción               |  |
|            | Despacho                |  |
| Planta 1   | 12 x Habitación doble   |  |
| Planta 2   | 12 x Habitación doble   |  |
| DI 4 2     | 10 x Habitación doble   |  |
| Planta 3   | 1 x Habitación triple   |  |
| DI 4 4     | 7 x Habitación doble    |  |
| Planta 4   | 1 x Habitación triple   |  |

Tabla 1: Estancias a climatizar

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Capítulo 2 HIPÓTESIS DE DISEÑO

Las siguientes hipótesis de diseño son los datos de partida para la realización de los cálculos de las cargas del hotel.

#### 2.1 OCUPACIÓN

#### 2.1.1 HORARIOS DE FUNCIONAMIENTO

Se ha previsto para el hotel un uso de 24 horas diarias durante los 7 días de la semana, considerando 52 semanas anuales. Es por tanto que se obtiene un total de 8,760 horas de uso por año.

#### 2.1.2 NIVELES DE OCUPACIÓN

Las ocupaciones de algunas de las estancias han sido proporcionadas, de antemano, por los planos del hotel tal y como se muestran en la Tabla 2.

Los niveles de ocupación de aquellas estancias que no han sido proporcionados por los planos se han estimado en función de la utilización de cada una y se muestran en Tabla 3.



#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

| Planta     | Zona          | Ocupación   |
|------------|---------------|-------------|
|            | Salón 1       | 14 personas |
| Semisótano | Salón 2       | 36 personas |
|            | Cafetería     | 6 personas  |
| A          | Despacho      | 5 personas  |
| Acceso     | Sala de estar | 13 personas |

Tabla 2: Ocupación proporcionada por los planos

| Zona                 | Ocupación               |  |
|----------------------|-------------------------|--|
| Habitaciones dobles  | 2 personas / habitación |  |
| Habitaciones triples | 3 personas / habitación |  |
| Vestíbulo            | 5 m2 / persona          |  |
| Zonas de Salas       | 5 m2 / persona          |  |
| Recepción            | 5 m2 / persona          |  |

Tabla 3: Niveles de ocupación en función de la utilización

#### 2.2 CONDICIONES EXTERIORES DE CÁLCULO

Se toman las correspondientes condiciones exteriores a Pontevedra para niveles percentiles estacionales del 1% en verano y del 99% en invierno, conforme a lo establecido por la Asociación Técnica Española de Climatización y Refrigeración(ATECYR)<sup>[4]</sup>según se muestra en la Tabla 4, Tabla 5 y Tabla 6.



#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

| Temperaturas                        | Invierno | Verano |
|-------------------------------------|----------|--------|
| Temperatura seca (°C)               | 3.3      | 29,4   |
| Temperatura húmeda (°C)             | -        | 22     |
| Temperatura húmeda coincidente (°C) | -        | 22     |
| Temperatura de terreno (°C)         | 9.9      | -      |

Tabla 4: Temperaturas exteriores de cálculo

| Situación geográfica |              |  |
|----------------------|--------------|--|
| Longitud             | 8° 36' 59''W |  |
| Latitud              | 42° 26' 24'' |  |
| Altitud              | 107 m        |  |

Tabla 5: Situación geográfica

| Viento (velocidad media) | 2,06 m/s |
|--------------------------|----------|

Tabla 6: Velocidad media del viento



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 2.3 CONDICIONES INTERIORES DE CÁLCULO

#### 2.3.1 TEMPERATURA Y HUMEDAD

Las condiciones interiores consideradas para el cálculo de las cargas térmicas se muestran en la Tabla 7.

| Temperatura y humedad | Invierno | Verano |
|-----------------------|----------|--------|
| Ts (°C)               | 22       | 24     |
| HR (%)                | -        | 50     |

Tabla 7: Temperaturas interiores de cálculo

#### 2.3.2 CALIDAD DEL AIRE INTERIOR

Como renovación de aire forzada se tomarán los valores de El Reglamento RITE en su IT 1.1.4.2.2 [1] que define:

"En función del uso del edificio o local, la categoría de calidad del aire interior (IDA) que se deberá alcanzar será, como mínimo, la siguiente:

- IDA 1 (aire de óptima calidad): hospitales, clínicas, laboratorios y guarderías.
- IDA 2 (aire de buena calidad): oficinas, residencias (locales comunes de hoteles y similares, residencias de ancianos y de estudiantes), salas de lectura, museos, salas de tribunales, aulas de enseñanza y asimilables y piscinas.
- IDA 3 (aire de calidad media): edificios comerciales, cines, teatros, salones de actos, habitaciones de hoteles y similares, restaurantes,



#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

cafeterías, bares, salas de fiestas, gimnasios, locales para el deporte (salvo piscinas) y salas de ordenadores.

- IDA 4 (aire de calidad baja) "

El Reglamento RITE establece los valores de caudal en dm³/s·persona en su apartado IT 1.1.4.2.3<sup>[1]</sup>, mostrados en la Tabla 8.

| IDA   | Caudal (dm³/s·persona)          |  |
|-------|---------------------------------|--|
| IDA 1 | 20 dm <sup>3</sup> /s·persona   |  |
| IDA 2 | 12.5 dm <sup>3</sup> /s⋅persona |  |
| IDA 3 | 8 dm <sup>3</sup> /s·persona    |  |
| IDA 4 | 5 dm <sup>3</sup> /s·persona    |  |

Tabla 8: Caudal en función de la caudal de aire interior.

En base a ello, se han establecido las condiciones de ventilación en función de la sala a climatizar que se muestran en la Tabla 9.

| Sala a climatizar | IDA   | Caudal                          | Caudal                         |
|-------------------|-------|---------------------------------|--------------------------------|
| Habitaciones      | IDA 3 | 8 dm³/s·persona                 | 28.8 m <sup>3</sup> /h·persona |
| Bar y restaurante | IDA 3 | 8 dm <sup>3</sup> /s·persona    | 28.8 m <sup>3</sup> /h·persona |
| Vestíbulo         | IDA 2 | 12.5 dm <sup>3</sup> /s·persona | 45 m³/h·persona                |
| Sala a climatizar | IDA   | Caudal                          | Caudal                         |



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

| Salas de estar | IDA 2 | 12.5 dm <sup>3</sup> /s·persona | 45 m <sup>3</sup> /h·persona |
|----------------|-------|---------------------------------|------------------------------|
| Despachos      | IDA 2 | 12.5 dm³/s·persona              | 45 m³/h·persona              |
| Recepción      | IDA 2 | 12.5 dm³/s·persona              | 45 m <sup>3</sup> /h·persona |

Tabla 9: Caudal de renovación de aire forzada

#### 2.4 **DESCRIPCIÓN DE CERRAMIENTOS**

De acuerdo con el Código Técnico de Edificación<sup>[2]</sup> y las características constructivas de los mismos, los coeficientes de transmisión de los cerramientos del edificio se muestran en la Tabla 10.

| Cerramiento               | Coeficiente de transmisión       |  |
|---------------------------|----------------------------------|--|
| Cristales                 | 1.72 kcal / h⋅m²⋅°K              |  |
| Muros exteriores          | 0.44 kcal / h⋅m²⋅°K              |  |
| Tabiques                  | 0.50 kcal / h⋅m²⋅°K              |  |
| Tejado (Cubierta terraza) | 0.40 kcal / h⋅m²⋅°K              |  |
| Tejado (Cubierta jardín)  | 0.29 kcal / h m <sup>2</sup> ·°K |  |
| Suelos interiores         | 0.49 kcal / h⋅m²⋅°K              |  |
| Suelos exteriores         | 0.47 kcal / h⋅m²⋅°K              |  |
| Techos                    | 0.49 kcal / h⋅m²⋅°K              |  |
| Puertas                   | 0.50 kcal / h⋅m²⋅°K              |  |

Tabla 10: Coeficiente de transmisión de cerramientos

Además, a todas las superficies de cristal del hotel se ha aplicado un Factor de Ganancia Solar (F.G.S) de 0.4

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 2.5 CARGAS INTERNAS

La generación de calor producida por personas, la iluminación y los equipos en uso de la sala a climatizar han de tenerse en cuenta a efectos del cálculo de cargas internas.

#### 2.5.1 CARGA SENSIBLE Y CARGA LATENTE

Existen dos tipos de aportes calóricos que se deben a la diferencia de temperatura entre el ambiente y el cuerpo humano y a la actividad de cada ocupante:

- Calor sensible: calor producido por un incremento de temperatura en el interior del edificio.
- Calor latente: aumento de la humedad absoluta a causa de un cambio de fase.

Se obtiene un valor de 61 kcal/h de carga sensible y 52 kcal/h de carga latente para una temperatura de 24°C, gracias a la ayuda de la tabla que se encuentra en el apartado 2.1 del Capítulo 2 de la Parte III.

## 2.5.2 ILUMINACIÓN Y EQUIPOS ELÉCTRICOS EN USO

Como carga interna de iluminación se considera una carga media de 25 W/m<sup>2</sup> y como carga sensible debida a los equipos eléctricos en uso se considera en las habitaciones 100W/habitación y en el resto de dependencias una carga de 20W/m<sup>2</sup>.



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Capítulo 3 CÁLCULO DE CARGAS TÉRMICAS

El análisis del cálculo de cargas a partir de las hipótesis de diseño mencionadas en el Capítulo 2 de la Parte I es imprescindible para la posterior proyección de los equipos de climatización que deben ser capaz de satisfacer las pérdidas térmicas más desfavorables que se den en el hotel a lo largo del año y con competa ocupación.

Es por ello que para llevar a cabo el cálculo de cargas se debe tener en cuenta las ganancias exteriores y las interiores que afectan a cada estancia individualmente tanto para invierno como para verano. Tras ello quedarán definidas las características que han de tener los equipos de climatización necesarios en cada estancia.

#### 3.1 BASE DE CÁLCULO DE CARGAS TÉRMICAS DE VERANO

En primer lugar, se ha de determinar la hora y el mes más desfavorable para cada estancia, lo cual depende de las condiciones interiores y exteriores de diseño, la orientación de las fachadas exteriores, los coeficientes de transmisión y las características de uso de la estancia.

A continuación, se definen las distintas aportaciones que se han tenido en cuenta para el cálculo de cargas. Hay que destacar que se ha aplicado un coeficiente de seguridad del 10% para asegurar que las pérdidas no afectan a la climatización.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 3.1.1 CARGAS EXTERIORES EN VERANO

El efecto de la insolación a través del vidrio, la transmisión de calor por conducción del vidrio, los muros, el techo y el suelo son los principales factores de la carga exterior de verano. El aporte de cada uno de ellos queda definido en las siguientes ecuaciones (Ecuación 1, Ecuación 2, Ecuación 3, Ecuación 4, y Ecuación 5)

#### 3.1.1.1 Insolación a través del vidrio

$$Q_I = M_a \cdot M_v \cdot L \cdot Alt. \cdot F_a \cdot F_v \cdot K \cdot S$$

Ecuación 1: Insolación a través del vidrio

Donde:

Q<sub>I</sub>: Máxima carga térmica en Kcal/h por insolación

Ma: Máxima aportación de la radiación solar a través del cristal.

 $M_{\nu}$ : Coeficiente de corrección debido a la pérdida de carga producida por el tipo de marco de la ventana.

L: Coeficiente de corrección debido a la pérdida de carga producida por la suciedad en el cristal de la ventana.

Alt.: Coeficiente por altitud.

Fa: Factor de almacenamiento a través del vidrio.

F<sub>v</sub>: Factor de ganancia a través del vidrio.

K: Coeficiente de transmisión. (Apartado 2.4 de la Parte I)

S: Superficie del vidrio (m<sup>2</sup>)



## ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 3.1.1.2 Transmisión a través del vidrio

$$Q_V = \Delta T \cdot K \cdot S$$

Ecuación 2: Transmisión de calor a través del vidrio

Donde:

Q<sub>V</sub>: Máxima carga térmica por diferencia de temperatura en Kcal /h.

ΔT: Diferencia de temperatura corregida que se obtiene a través de la Ecuación 3.

$$\Delta T = T_{Ext} - C_1 - C_2 - T_{Int}$$

Ecuación 3: Diferencia de temperatura a través del vidrio

Donde:

T<sub>Ext</sub>: Temperatura exterior considerada.

C<sub>1</sub>: Corrección de la temperatura en función de la hora considerada.

C<sub>2</sub>: Corrección de la temperatura en función del mes considerado.

T<sub>Int</sub>: Temperatura interior del local.

K: Coeficiente de transmisión. (Apartado 2.4 de la Parte I)

S: Superficie del vidrio (m<sup>2</sup>)



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 3.1.1.3 Aportaciones por muros, techo o suelo

$$Q = \Delta Te \cdot K \cdot S$$

Ecuación 4: Aportaciones por muros, techo o suelo

Donde:

Q: Máxima carga térmica por la aportación de muros, techo o suelo en Kcal /h.

 $\Delta$ Te: Diferencia de temperatura equivalente corregida que se obtiene a través de la Ecuación 5.

$$\Delta Te = a + \Delta T_{es} + b \cdot \frac{R_S}{R_M} (\Delta T_{em} - \Delta T_{es})$$

Ecuación 5: Diferencia de temperatura equivalente corregida

Donde:

a: Corrección proporcionada dependiendo de la diferencia de temperatura exterior e interior.

 $\Delta T_{em}$ : Diferencia equivalente de temperatura a la hora considerada para la pared a la sombra.

 $\Delta T_{es}$ : Diferencia equivalente de temperatura a la hora considerada para la pared soleada.

b: Coeficiente que considera el color de la cara exterior de la pared.

Rs: Máxima insolación correspondiente al mes y latitud supuestos.

R<sub>M</sub>: Máxima insolación correspondiente en el mes de Julio a 40° latitud Norte.

K: Coeficiente de transmisión. (Apartado 2.4 de la Parte I)

S: Superficie del vidrio (m<sup>2</sup>)



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 3.1.2 CARGAS INTERIORES EN VERANO

Las personas y los equipos electrónicos de cada estancia, como pueden ser, aparatos de climatización, dispositivos de iluminación o cualquier fuente de energía, general una carga que es la carga interior de verano. Estos valores vienen definidos en el apartado 2.5 de la Parte I.

## 3.2 RESULTADOS CARGAS TÉRMICAS VERANO

Las hojas de cálculo utilizadas se muestran en el capítulo 2.3.1 de la Parte III. En estas hojas se muestran las cargas del conjunto de cada planta a climatizar, no de las estancias por individualizado.

Los resultados obtenidos de las hojas de cálculo correspondientes a cada estancia individualizada se muestran a continuación en la Tabla 11.



| Planta     | Estancia          | Gran calor<br>total (Kcal/h) | Calor<br>efectivo<br>(Kcal/h) | Calor<br>latente<br>(Kcal/h) | Calor<br>sensible<br>(Kcal/h) | Aire<br>suministrado<br>(m³/h) | Alumbrado<br>(W) | Aire Exterior<br>(m³/h) | Personas | m²/pers | Calor total  por m <sup>2</sup> (Kcal/h·m <sup>2</sup> ) |
|------------|-------------------|------------------------------|-------------------------------|------------------------------|-------------------------------|--------------------------------|------------------|-------------------------|----------|---------|----------------------------------------------------------|
|            | Salón 1           | 4,878.12                     | 3,313.09                      | 901.60                       | 2,411.48                      | 788.07                         | 753              | 403.20                  | 14       | 2.15    | 162.01                                                   |
| Semisótano | Salón 2           | 12,169.85                    | 8,145.49                      | 2,319.84                     | 5,825.65                      | 1,903.81                       | 1777             | 1036.80                 | 36       | 1.97    | 171.26                                                   |
|            | Cafetería         | 2,585.02                     | 1,914.30                      | 386.97                       | 1,527.32                      | 499.12                         | 522              | 172.80                  | 6        | 3.48    | 123.92                                                   |
|            | Hab.<br>Minusvál. | 1,859.32                     | 1,651.42                      | 126.92                       | 1,524.51                      | 498.21                         | 591              | 57.60                   | 2        | 11.81   | 78.72                                                    |
|            | Sala de estar     | 6,843.15                     | 4,572.46                      | 909.65                       | 3,662.81                      | 1,197.00                       | 1320             | 585.00                  | 13       | 4.06    | 129.63                                                   |
|            | Vestíbulo         | 3,253.35                     | 2,772.26                      | 267.63                       | 2,504.63                      | 818.51                         | 443              | 159.55                  | 4        | 5.00    | 183.52                                                   |
| Acceso     | Zona salas 1      | 6,900.76                     | 5,483.45                      | 689.10                       | 4,794.36                      | 1,566.78                       | 1211             | 435.84                  | 10       | 5.00    | 142.50                                                   |
|            | Zona salas 2      | 6,752.16                     | 5,154.28                      | 631.49                       | 4,522.78                      | 1,478.03                       | 1144             | 411.66                  | 9        | 5.00    | 147.62                                                   |
|            | Recepción         | 1,839.04                     | 1,262.28                      | 214.71                       | 1,047.57                      | 342.34                         | 413              | 148.59                  | 3        | 5.00    | 111.39                                                   |
|            | Despacho          | 2,695.98                     | 1,822.63                      | 349.79                       | 1,472.85                      | 481.32                         | 577              | 225.00                  | 5        | 4.62    | 116.76                                                   |



| Planta   | Estancia | Gran calor<br>total (Kcal/h) | Calor<br>efectivo<br>(Kcal/h) | Calor<br>latente<br>(Kcal/h) | Calor<br>sensible<br>(Kcal/h) | Aire<br>suministrado<br>(m3/h) | Alumbrado<br>(W) | Aire Exterior<br>(m3/h) | Personas | m2/pers | Calor total  por m2  (Kcal/h·m2) |
|----------|----------|------------------------------|-------------------------------|------------------------------|-------------------------------|--------------------------------|------------------|-------------------------|----------|---------|----------------------------------|
|          | 1        | 1,573.13                     | 1,458.42                      | 120.36                       | 1,338.06                      | 437.27                         | 449              | 57.6                    | 2        | 8.97    | 87.65                            |
|          | 2        | 2,240.67                     | 2,017.09                      | 128.66                       | 1,888.43                      | 617.14                         | 510              | 57.6                    | 2        | 10.20   | 109.83                           |
|          | 3        | 1,453.18                     | 1,338.47                      | 120.36                       | 1,218.11                      | 398.07                         | 343              | 57.6                    | 2        | 6.86    | 105.94                           |
|          | 4        | 2,089.13                     | 1,974.42                      | 120.36                       | 1,854.06                      | 605.90                         | 369              | 57.6                    | 2        | 7.37    | 141.72                           |
|          | 5        | 1,537.73                     | 1,423.02                      | 120.36                       | 1,302.66                      | 425.71                         | 417              | 57.6                    | 2        | 8.35    | 92.11                            |
| DI 1     | 6        | 1,987.53                     | 1,672.82                      | 120.36                       | 1,552.46                      | 507.34                         | 641              | 57.6                    | 2        | 12.82   | 69.70                            |
| Planta 1 | 7        | 1,189.44                     | 965.87                        | 128.66                       | 837.21                        | 273.60                         | 507              | 57.6                    | 2        | 10.15   | 58.62                            |
|          | 8        | 1,178.84                     | 955.27                        | 128.66                       | 826.61                        | 270.13                         | 499              | 57.6                    | 2        | 9.98    | 59.05                            |
|          | 9        | 2,129.79                     | 1,906.22                      | 128.66                       | 1,777.56                      | 580.90                         | 445              | 57.6                    | 2        | 8.91    | 119.55                           |
|          | 10       | 1,429.14                     | 1,205.57                      | 128.66                       | 1,076.91                      | 351.93                         | 343              | 57.6                    | 2        | 6.86    | 104.10                           |
|          | 11       | 2,133.71                     | 1,936.83                      | 127.25                       | 1,809.58                      | 591.37                         | 386              | 57.6                    | 2        | 7.72    | 138.16                           |
|          | 12       | 1,666.79                     | 1,459.08                      | 127.41                       | 1,331.67                      | 435.18                         | 320              | 57.6                    | 2        | 6.39    | 130.35                           |



| Planta   | Estancia | Gran calor<br>total (Kcal/h) | Calor<br>efectivo<br>(Kcal/h) | Calor<br>latente<br>(Kcal/h) | Calor<br>sensible<br>(Kcal/h) | Aire<br>suministrado<br>(m3/h) | Alumbrado<br>(W) | Aire Exterior<br>(m3/h) | Personas | m2/pers | Calor total por m2 (Kcal/h·m2) |
|----------|----------|------------------------------|-------------------------------|------------------------------|-------------------------------|--------------------------------|------------------|-------------------------|----------|---------|--------------------------------|
|          | 1        | 1,568.13                     | 1,453.42                      | 120.36                       | 1,333.06                      | 435.64                         | 449              | 57.6                    | 2        | 8.97    | 87.38                          |
|          | 2        | 2,234.67                     | 2,011.09                      | 128.66                       | 1,882.43                      | 615.17                         | 510              | 57.6                    | 2        | 10.20   | 109.53                         |
|          | 3        | 1,453.18                     | 1,338.47                      | 120.36                       | 1,218.11                      | 398.07                         | 343              | 57.6                    | 2        | 6.86    | 105.94                         |
|          | 4        | 2,089.13                     | 1,974.42                      | 120.36                       | 1,854.06                      | 605.90                         | 369              | 57.6                    | 2        | 7.37    | 141.72                         |
|          | 5        | 1,534.73                     | 1,420.02                      | 120.36                       | 1,299.66                      | 424.72                         | 417              | 57.6                    | 2        | 8.35    | 91.93                          |
| Dlanta 2 | 6        | 1,982.53                     | 1,667.82                      | 120.36                       | 1,547.46                      | 505.71                         | 641              | 57.6                    | 2        | 12.82   | 69.51                          |
| Planta 2 | 7        | 1,183.44                     | 959.87                        | 128.66                       | 831.21                        | 271.64                         | 507              | 57.6                    | 2        | 10.15   | 58.32                          |
|          | 8        | 1,173.84                     | 950.27                        | 128.66                       | 821.61                        | 268.50                         | 499              | 57.6                    | 2        | 9.98    | 58.80                          |
|          | 9        | 2,129.79                     | 1,906.22                      | 128.66                       | 1,777.56                      | 580.90                         | 445              | 57.6                    | 2        | 8.91    | 119.55                         |
|          | 10       | 1,429.14                     | 1,205.57                      | 128.66                       | 1,076.91                      | 351.93                         | 343              | 57.6                    | 2        | 6.86    | 104.10                         |
|          | 11       | 2,133.71                     | 1,936.83                      | 127.25                       | 1,809.58                      | 591.37                         | 386              | 57.6                    | 2        | 7.72    | 138.16                         |
|          | 12       | 1,666.79                     | 1,459.08                      | 127.41                       | 1,331.67                      | 435.18                         | 320              | 57.6                    | 2        | 6.39    | 130.35                         |



| Planta   | Estancia | Gran calor<br>total (Kcal/h) | Calor<br>efectivo<br>(Kcal/h) | Calor<br>latente<br>(Kcal/h) | Calor<br>sensible<br>(Kcal/h) | Aire<br>suministrado<br>(m3/h) | Alumbrado<br>(W) | Aire Exterior<br>(m3/h) | Personas | m2/pers | Calor total  por m2  (Kcal/h·m2) |
|----------|----------|------------------------------|-------------------------------|------------------------------|-------------------------------|--------------------------------|------------------|-------------------------|----------|---------|----------------------------------|
|          | 1.1      | 1,690.71                     | 1,581.28                      | 119.95                       | 1,461.33                      | 477.56                         | 535              | 57.6                    | 2        | 10.71   | 78.94                            |
|          | 1.2      | 1,124.73                     | 1,012.95                      | 64.83                        | 948.12                        | 309.84                         | 287              | 28.8                    | 1        | 11.48   | 98.01                            |
|          | 2        | 1,504.46                     | 1,389.75                      | 120.36                       | 1,269.38                      | 414.83                         | 360              | 57.6                    | 2        | 7.21    | 104.37                           |
|          | 3        | 2,091.13                     | 1,976.42                      | 120.36                       | 1,856.06                      | 606.55                         | 369              | 57.6                    | 2        | 7.37    | 141.86                           |
|          | 5        | 1,790.53                     | 1,675.82                      | 120.36                       | 1,555.46                      | 508.32                         | 641              | 57.6                    | 2        | 12.82   | 69.82                            |
| Planta 3 | 6        | 1,999.44                     | 975.87                        | 128.66                       | 847.21                        | 276.87                         | 507              | 57.6                    | 2        | 10.15   | 59.11                            |
|          | 7        | 1,174.84                     | 951.27                        | 128.66                       | 822.61                        | 268.83                         | 499              | 57.6                    | 2        | 9.98    | 58.85                            |
|          | 8        | 2,138.79                     | 1,915.22                      | 128.66                       | 1,786.56                      | 583.84                         | 445              | 57.6                    | 2        | 8.91    | 120.05                           |
|          | 9        | 1,435.14                     | 1,211.57                      | 128.66                       | 1,082.91                      | 353.89                         | 343              | 57.6                    | 2        | 6.86    | 104.54                           |
|          | 10       | 1,918.93                     | 1,745.25                      | 126.92                       | 1,618.33                      | 528.87                         | 386              | 57.6                    | 2        | 7.72    | 124.25                           |
|          | 11       | 1,963.98                     | 1,790.30                      | 126.92                       | 1,663.38                      | 543.59                         | 320              | 57.6                    | 2        | 6.39    | 153.59                           |



| Planta      | Estancia | Gran calor<br>total (Kcal/h) | Calor<br>efectivo<br>(Kcal/h) | Calor<br>latente<br>(Kcal/h) | Calor<br>sensible<br>(Kcal/h) | Aire<br>suministrado<br>(m3/h) | Alumbrado<br>(W) | Aire Exterior<br>(m3/h) | Personas | m2/pers | Calor total  por m2  (Kcal/h·m2) |
|-------------|----------|------------------------------|-------------------------------|------------------------------|-------------------------------|--------------------------------|------------------|-------------------------|----------|---------|----------------------------------|
|             | 1        | 2,255.28                     | 1,919.91                      | 193.49                       | 1,726.43                      | 564.19                         | 1022             | 86.4                    | 3        | 13.63   | 55.17                            |
|             | 2        | 1,096.74                     | 873.17                        | 128.66                       | 744.51                        | 243.30                         | 351              | 57.6                    | 2        | 7.02    | 78.14                            |
|             | 3        | 1,082.52                     | 858.94                        | 128.66                       | 730.28                        | 238.65                         | 348              | 57.6                    | 2        | 6.96    | 77.75                            |
| Planta Bajo | 4        | 1,567.58                     | 1,384.13                      | 125.75                       | 1,258.38                      | 411.23                         | 650              | 57.6                    | 2        | 12.99   | 60.33                            |
| Cubierta    | 5        | 1,457.60                     | 1,249.70                      | 126.92                       | 1,122.78                      | 366.92                         | 528              | 57.6                    | 2        | 10.55   | 69.05                            |
|             | 6        | 1,861.21                     | 1,653.31                      | 126.92                       | 1,526.40                      | 498.82                         | 25               | 57.6                    | 2        | 6.59    | 141.14                           |
|             | 7        | 1,206.85                     | 1,014.25                      | 126.25                       | 888.00                        | 290.20                         | 398              | 57.6                    | 2        | 7.96    | 75.77                            |
|             | 8        | 1,192.67                     | 969.09                        | 128.66                       | 840.43                        | 274.65                         | 430              | 57.6                    | 2        | 8.60    | 69.38                            |

Tabla 11: Cargas térmicas verano



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 3.3 BASE DE CÁLCULO DE CARGAS TÉRMICAS DE INVIERNO

En el cálculo de cargas térmicas de invierno, sólo se han de combatir las pérdidas que se deben a la transmisión de calor a través de cerramientos, techo, suelo, locales no climatizados y cristales. Además, se ha de tener en cuenta el aire exterior que se ha de tratar. Cabe notar que las cargas debidas al calor interno son favorables a estos cálculos por lo tanto se despreciarán.

#### 3.3.1 CARGAS EXTERIORES EN INVIERNO

La pérdida de calor por transmisión determina este cálculo de cargas exteriores. Debido a que las estancias quedarán sometidas a sobrepresión al introducir el aire tratado del exterior, no se tendrán en cuenta las infiltraciones ni las pérdidas que esto produce.

## 3.3.1.1 Pérdidas por transmisión

Estas pérdidas se producen con la transmisión entre la estancia y los muros, suelos, techos o locales no climatizados. Se calcula mediante la Ecuación 6.

$$Q = \Delta T \cdot K \cdot S \cdot f_v \cdot C_{p,regimen}$$

Ecuación 6: Pérdidas por transmisión

# THE STATE OF THE S

## UNIVERSIDAD PONTIFICIA COMILLAS

## ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

Donde:

Q: Máxima carga térmica por la aportación de muros, techo o suelo en Kcal /h.

 $\Delta$ T: Diferencia de temperatura entre el interior y el exterior (El incremento para locales no climatizados será la mitad de esta diferencia).

K: Coeficiente de transmisión.

F<sub>v</sub>: Factor de vientos. Depende de la orientación de la fachada, la altitud y latitud del edificio.

C<sub>p, régimen</sub>: Coeficiente de régimen.

En la Tabla 12 se muestra los distintos valores que tiene cada cerramiento de  $f_v$  y  $C_{p,\,r\acute{e}gimen}$  en función de la orientación.

| Cerramiento | Orientación | fv   | Cp,regimen |
|-------------|-------------|------|------------|
| Cristal     | N           | 1.35 | 1.15       |
| Cristal     | NE          | 1.35 | 1.15       |
| Cristal     | Е           | 1.25 | 1.10       |
| Cristal     | SE          | 1.15 | 1.10       |
| Cristal     | S           | 1.00 | 1.10       |
| Cristal     | SO          | 1.10 | 1.10       |
| Cristal     | О           | 1.20 | 1.15       |
| Cristal     | NO          | 1.25 | 1.15       |



## ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

| Cerramiento          | Orientación | fv   | Cp,regimen |
|----------------------|-------------|------|------------|
| Muro Ext.            | N           | 1.20 | 1.15       |
| Muro Ext             | NE          | 1.20 | 1.15       |
| Muro Ext             | Е           | 1.15 | 1.10       |
| Muro Ext.            | SE          | 1.10 | 1.10       |
| Muro Ext.            | S           | 1.00 | 1.10       |
| Muro Ext.            | SO          | 1.05 | 1.10       |
| Muro Ext.            | О           | 1.10 | 1.15       |
| Muro Ext             | NO          | 1.15 | 1.15       |
| Cubierta             | Н           | 1.00 | 1.15       |
| Suelo                | -           | 1.00 | 1.15       |
| Local no climatizado | -           | 1.00 | 1.00       |

Tabla 12: Factores de viento y coeficientes de régimen en función del tipo de cerramiento

## 3.3.1.2 Cargas del aire exterior

Al introducir el aire exterior se genera un calor en cada estancia tal y como se muestra en la

$$Q_{AE} = \Delta T \cdot 0.3 \cdot C_{AE}$$

Ecuación 7: Carga introducción aire exterior

Donde:

 $\Delta$ T: Diferencia de temperatura entre el interior y el exterior.

CAE: Caudal de aire exterior

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 3.3.2 CARGAS INTERIORES EN INVIERNO

Tal y como se mencionaba al principio de este apartado, las cargas debido al calor interno son favorables y no se tienen en cuenta.

## 3.4 RESULTADOS CARGAS TÉRMICAS DE INVIERNO

Las hojas de cálculo utilizadas se muestran en el capítulo 2.3.2 de la Parte III. En estas hojas se muestran las cargas del conjunto de cada planta a climatizar, no de las estancias por individualizado.

Los resultados obtenidos de las hojas de cálculo correspondientes a cada estancia individualizada se muestran a continuación en la Tabla 13

| Planta     | Estancia                   | Pérdidas<br>transmisión<br>(Kcal/h) | Pérdidas<br>aire exterior<br>(Kcal/h) | Pot. total<br>calefacción<br>(Kcal/h) | Potencia<br>total m <sup>2</sup><br>(Kcal/h m <sup>2</sup> ) |
|------------|----------------------------|-------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------------------------------|
|            | Salón 1                    | 443.11                              | 2,261.95                              | 2,705.06                              | 89.84                                                        |
| Semisótano | Salón 2                    | 1,117.08                            | 5,816.45                              | 6,933.53                              | 97.57                                                        |
|            | Cafetería                  | 495.54                              | 969.41                                | 1,464.95                              | 70.23                                                        |
|            | Habitación<br>minusválidos | 580.33                              | 323.14                                | 903.46                                | 38.25                                                        |
|            | Sala de estar              | 1,247.60                            | 3,281.85                              | 4,529.45                              | 85.80                                                        |
|            | Vestíbulo                  | 680.24                              | 895.07                                | 1,575.31                              | 88.86                                                        |
| Acceso     | Zona salas 1               | 893.29                              | 2,445.07                              | 3,338.36                              | 68.94                                                        |
|            | Zona salas 2               | 703.54                              | 2,309.43                              | 3,012.97                              | 65.87                                                        |
|            | Recepción                  | 345.05                              | 833.59                                | 1,178.64                              | 71.39                                                        |
|            | Despacho                   | 512.78                              | 1,262.25                              | 1,775.03                              | 76.87                                                        |



|          |          | Pérdidas    | Pérdidas      | Pot. total  | Potencia    |
|----------|----------|-------------|---------------|-------------|-------------|
| Planta   | Estancia | transmisión | aire exterior | calefacción | total m2    |
|          |          | (Kcal/h)    | (Kcal/h)      | (Kcal/h)    | (Kcal/h m2) |
|          | 1        | 525.01      | 323.14        | 848.14      | 47.26       |
|          | 2        | 532.83      | 323.14        | 855.96      | 41.96       |
|          | 3        | 348.68      | 323.14        | 671.81      | 48.98       |
|          | 4        | 494.29      | 323.14        | 817.43      | 55.45       |
|          | 5        | 338.84      | 323.14        | 661.97      | 39.65       |
| D1       | 6        | 646.17      | 323.14        | 969.30      | 37.80       |
| Planta 1 | 7        | 223.39      | 323.14        | 546.52      | 26.93       |
|          | 8        | 346.60      | 323.14        | 669.74      | 33.55       |
|          | 9        | 531.15      | 323.14        | 854.28      | 47.95       |
|          | 10       | 255.72      | 323.14        | 578.85      | 42.17       |
|          | 11       | 583.55      | 323.14        | 906.69      | 58.71       |
|          | 12       | 476.07      | 323.14        | 799.20      | 62.50       |
|          | 1        | 441.11      | 323.14        | 764.24      | 42.58       |
|          | 2        | 505.09      | 323.14        | 828.22      | 40.60       |
|          | 3        | 352.99      | 323.14        | 676.12      | 49.29       |
|          | 4        | 494.29      | 323.14        | 817.43      | 55.45       |
|          | 5        | 277.16      | 323.14        | 600.29      | 35.96       |
| <b>.</b> | 6        | 526.28      | 323.14        | 849.41      | 33.12       |
| Planta 2 | 7        | 190.97      | 323.14        | 514.11      | 25.34       |
|          | 8        | 315.89      | 323.14        | 639.02      | 32.01       |
|          | 9        | 531.15      | 323.14        | 854.28      | 47.95       |
|          | 10       | 255.72      | 323.14        | 578.85      | 42.17       |
|          | 11       | 583.55      | 323.14        | 906.69      | 58.71       |
|          | 12       | 476.07      | 323.14        | 799.20      | 62.50       |



| Planta      | Estancia | Pérdidas<br>transmisión<br>(Kcal/h) | Pérdidas<br>aire exterior<br>(Kcal/h) | Pot. total<br>calefacción<br>(Kcal/h) | Potencia<br>total m2<br>(Kcal/h m2) |
|-------------|----------|-------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------|
|             | 1.1      | 510.94                              | 323.14                                | 834.07                                | 38.94                               |
|             | 1.2      | 329.71                              | 161.57                                | 491.28                                | 42.81                               |
|             | 2        | 339.89                              | 323.14                                | 663.02                                | 46.00                               |
|             | 3        | 548.26                              | 323.14                                | 871.40                                | 59.11                               |
|             | 4        | 277.16                              | 323.14                                | 600.29                                | 35.96                               |
| Planta 3    | 5        | 570.44                              | 323.14                                | 893.58                                | 34.84                               |
| Pianta 3    | 6        | 285.83                              | 323.14                                | 608.97                                | 30.01                               |
|             | 7        | 322.87                              | 323.14                                | 646.01                                | 32.36                               |
|             | 8        | 583.54                              | 323.14                                | 906.67                                | 50.89                               |
|             | 9        | 275.77                              | 323.14                                | 598.91                                | 43.63                               |
|             | 10       | 605.35                              | 323.14                                | 928.49                                | 60.12                               |
|             | 11       | 529.14                              | 323.14                                | 852.28                                | 66.65                               |
|             | 1        | 955.41                              | 484.70                                | 1,440.12                              | 35.23                               |
|             | 2        | 447.88                              | 323.14                                | 771.02                                | 54.93                               |
|             | 3        | 379.48                              | 323.14                                | 702.62                                | 50.46                               |
| Planta Bajo | 4        | 773.96                              | 323.14                                | 1,097.10                              | 42.22                               |
| Cubierta    | 5        | 681.39                              | 323.14                                | 1,004.52                              | 47.59                               |
|             | 6        | 351.40                              | 323.14                                | 674.54                                | 51.15                               |
|             | 7        | 522.79                              | 323.14                                | 845.93                                | 53.11                               |
|             | 8        | 444.08                              | 323.14                                | 767.22                                | 44.63                               |

Tabla 13: Cargas térmicas invierno

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Capítulo 4 RED DE CONDUCTOS

Para transportar el aire que es tratado en cada climatizador hasta cada estancia y su correspondiente retorno de aire, se precisa de una red de conductos. Esta red parte desde cada climatizador, ambos situados en la cubierta y llega a las distintas estancias por los patinillos y distribuyéndose por los falsos techos de cada planta. Los planos de los conductos se muestran en el Capítulo 1 de la Parte II

Todas las estancias poseen un conducto de impulsión de aire primario desde el climatizador al Fan-coil escogido para cada una de ellas, cuyo fluido es el aire exterior tratado y que se mezclará con el caudal de retorno gracias a la ayuda de un regulador de caudal, este es absorbido por el Fan-coil y forman el aire de impulsión.

Para evitar sobrepresiones, condensaciones y malos olores se realizará una extracción de aire en cada estancia.

Para los Fan-coils de tipo Cassette no se precisa de difusor ni de conducto de impulsión ni de retorno, ya que cogen el aire de retorno por el centro y lo impulsan perimetralmente por los 4 lados llamados vías. Los Fan-coils modelo FLS se precisa de un conducto de impulsión y de retorno que conecte el equipo con la rejilla indicada.



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 4.1 **DISEÑO DE LA RED DE CONDUCTOS**

El primer paso del diseño de esta red de conductos es la correcta distribución de los difusores del conducto de impulsión. Estos difusores se distribuirán a lo largo de la superficie del techo de cada estancia cumpliendo las siguientes normas: (Estas normas quedan expuestas en el apartado 1.6.2 de la Parte III.)

- Norma 1: la distancia entre difusores contiguos ha de ser de 3.6 m. En caso de no poderse cumplir este requisito, se ha de procurar que la distancia entre ellos sea de 2.4m a 3m intentando que la distancia sea múltiplo de 0.6m, dado que las placas que cubren el falso techo poseen dichas dimensiones.
- Norma 2: la distancia entre el difusor y la pared ha de ser el 50 % de la distancia entre difusores contiguos. Esto evitará fuertes corrientes y permitirá que toda la superficie de la estancia se vea climatizada.

Tras la disposición de los difusores se dimensiona la red de conductos de impulsión. Este cálculo se hará con la ayuda de las tablas y diagramas adjuntados en el apartado 2.4 de la Parte III y cumpliendo unos requisitos que se mencionarán más adelante.

En función del caudal de impulsión, primero, se calculará el diámetro circular equivalente con la ayuda del diagrama para el cálculo de pérdidas de carga de aire de los conductos circulares que se muestra en el apartado 2.4.1 de la Parte III. La pérdida de carga debe estar comprendida entre los 0.08 mm.c.a y 0.1 mm.c.a y la velocidad del aire ha de ser menor a 10 m/s para asegurar los niveles de ruido permitidos. Para poder ahorrar espacio y poder incorporar los conductos en el falso techo, se hallan las dimensiones para el conducto rectangular a partir del diámetro equivalente y con ayuda de la tabla mostrada en el apartado 2.4.1 de la Parte III. Además, se debe tener en cuenta que la altura máxima del conducto no ha de sobrepasar los 500mm dado que el falso techo tiene esa dimensión y el



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

factor de forma de los conductos tiene que ser inferior a 3 tal y como se explica en la Ecuación 8.

Factor de forma = 
$$\frac{\cot a \ mayor}{\cot a \ menor} < 3$$

Ecuación 8: Factor de forma de los conductos

Tras el dimensionamiento, se calcula la pérdida de carga que irá desde el difusor hasta el climatizador, dicha pérdida de carga se calcula para el recorrido de mayor distancia. A esta pérdida de carga se le añade la pérdida de carga de los elementos terminales, los codos, reducciones o incorporaciones de esta red de conducto que depende de la velocidad del caudal que recorra ese tramo. En apartado 2.4.3 de la Parte III se muestran las tablas utilizadas para las pérdidas de carga de cada climatizador.

Este mismo proceso se realiza para los conductos de retorno, partiendo de los caudales de retorno y para la extracción.

#### 4.2 CÁLCULO DE LA RED DE CONDUCTOS

#### 4.2.1 CÁLCULO DE LOS CONDUCTOS DE IMPULSIÓN

Tal y como se ha descrito anteriormente, se ha de diseñar una red de conductos de impulsión del aire exterior tratado por cada climatizador. Además cada Fan-coil ha de conectarse con la rejilla de impulsión de cada estancia, pero estas medidas no son necesarias obtenerlas, simplemente deberán tener las dimensiones de las rejillas calculadas en el apartado 4.4.1.1 de la Parte I y las del equipo de impulsión correspondiente.

Este cálculo se ha realizado con las hojas de cálculo mostradas en el apartado2.4.3 de la Parte III. A continuación, en la Tabla 14 y Tabla 15 se muestran los resultados del cálculo de la red de conductos de impulsión.



| Planta     | Tramo   | Caudal de<br>impulsión (m³/h) | Ø eq. (mm) | Dimensión (c. mayor x<br>c. menor) (mm.c.a) |
|------------|---------|-------------------------------|------------|---------------------------------------------|
|            | SS6-SS5 | 172.80                        | 150        | 150x150                                     |
|            | SS5-SS4 | 518.40                        | 220        | 300x150                                     |
| G : 44     | SS4-SS3 | 864.00                        | 260        | 300x200                                     |
| Semisótano | SS3-SS2 | 1,209.60                      | 300        | 300x300                                     |
|            | SS2-SS1 | 1,411.20                      | 320        | 300x300                                     |
|            | SS1-A0  | 1,612.80                      | 340        | 400x300                                     |
|            | A6-A5   | 217.92                        | 160        | 200x150                                     |
|            | A5-A4   | 435.84                        | 200        | 300x150                                     |
|            | A4-A3   | 641.67                        | 240        | 300x200                                     |
|            | A3-A2   | 847.50                        | 260        | 300x200                                     |
|            | A2-A1   | 905.10                        | 280        | 300x300                                     |
|            | A1-A0   | 1,130.10                      | 280        | 300x300                                     |
| Acceso     | A12-A11 | 195.00                        | 150        | 150x150                                     |
|            | A11-A10 | 390.00                        | 200        | 250x150                                     |
|            | A10-A8  | 585.00                        | 220        | 250x200                                     |
|            | A9-A8   | 159.55                        | 140        | 150x150                                     |
|            | A8-A7   | 744.55                        | 260        | 300x200                                     |
|            | A7-A0   | 893.14                        | 270        | 300x200                                     |
|            | A0-P1.0 | 3,636.04                      | 450        | 500x400                                     |



| Planta   | Tramo       | Caudal de<br>impulsión (m³/h) | Ø eq. (mm) | Dimensión (c. mayor x<br>c. menor) (mm.c.a) |
|----------|-------------|-------------------------------|------------|---------------------------------------------|
|          | P1.6-P1.5   | 57.6                          | 95         | 150x150                                     |
|          | P1.5-P1.4   | 115.20                        | 130        | 150x150                                     |
|          | P1.4-P1.3   | 172.80                        | 150        | 150x150                                     |
|          | P1.3-P1.2   | 230.40                        | 160        | 200x150                                     |
|          | P1.2-P1.1   | 288.00                        | 180        | 200x150                                     |
|          | P1.1-P1.0   | 345.60                        | 190        | 200x200                                     |
| D1 4- 1  | P1.13-P1.12 | 57.60                         | 95         | 150x150                                     |
| Planta 1 | P1.12-P1.11 | 115.20                        | 130        | 150x150                                     |
|          | P1.11-P1.10 | 172.80                        | 150        | 150x150                                     |
|          | P1.10-P1.9  | 230.40                        | 160        | 200x150                                     |
|          | P1.9-P1.8   | 288.00                        | 180        | 200x150                                     |
|          | P1.8-P1.7   | 345.60                        | 190        | 200x200                                     |
|          | P1.7-P1.0   | 403.20                        | 200        | 200x200                                     |
|          | P1.7-Clim1  | 4,384.84                      | 500        | 500x400                                     |

Tabla 14: Conductos impulsión climatizador 1



| D.I.                                                     | TI.         | Caudal de        | <i>d</i> ( ) | Dimensión (c. mayor x                                                                                                            |
|----------------------------------------------------------|-------------|------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------|
| Planta                                                   | Tramo       | impulsión (m3/h) | Ø eq. (mm)   | c. menor (mm.c.a)                                                                                                                |
|                                                          | P2.6-P2.5   | 57.6             | 95           | 150x150                                                                                                                          |
|                                                          | P2.5-P2.4   | 115.20           | 130          | 150x150                                                                                                                          |
|                                                          | P2.4-P2.3   | 172.80           | 150          | 150x150                                                                                                                          |
|                                                          | P2.3-P2.2   | 230.40           | 160          | 200x150                                                                                                                          |
|                                                          | P2.2-P2.1   | 288.00           | 180          | 200x150                                                                                                                          |
|                                                          | P2.1-P2.0   | 345.60           | 190          | 200x200                                                                                                                          |
| D1                                                       | P2.13-P2.12 | 57.60            | 95           | 150x150                                                                                                                          |
| Planta 2                                                 | P2.12-P2.11 | 115.20           | 130          | 150x150                                                                                                                          |
|                                                          | P2.11-P2.10 | 172.80           | 150          | 150x150                                                                                                                          |
|                                                          | P2.10-P2.9  | 230.40           | 160          | 200x150                                                                                                                          |
|                                                          | P2.9-P2.8   | 288.00           | 180          | 200x150                                                                                                                          |
|                                                          | P2.8-P2.7   | 345.60           | 190          | 200x200                                                                                                                          |
| P2.8-P2.7 345.60<br>P2.7-P2.0 403.20<br>P2.0-P3.0 748.80 | 403.20      | 200              | 200x200      |                                                                                                                                  |
|                                                          | P2.0-P3.0   | 748.80           | 250          | 150x150<br>150x150<br>150x150<br>150x150<br>200x150<br>200x200<br>150x150<br>150x150<br>150x150<br>200x150<br>200x150<br>200x200 |
|                                                          | P3.6-P3.5   | 57.6             | 95           | 150x150                                                                                                                          |
|                                                          | P3.5-P3.4   | 115.20           | 130          | 150x150                                                                                                                          |
|                                                          | P3.4-P3.3   | 172.80           | 150          | 150x150                                                                                                                          |
|                                                          | P3.3-P3.2   | 230.40           | 160          | 200x150                                                                                                                          |
|                                                          | P3.2-P3.1   | 288.00           | 180          | 200x150                                                                                                                          |
|                                                          | P3.1-P3.0   | 345.60           | 190          | 200x200                                                                                                                          |
| Planta 3                                                 | P3.13-P3.12 | 28.80            | 75           | 150x150                                                                                                                          |
| 1 Iailta 3                                               | P3.12-P3.11 | 86.40            | 110          | 150x150                                                                                                                          |
|                                                          | P3.11-P3.10 | 144.00           | 140          | 200x150                                                                                                                          |
|                                                          | P3.10-P3.9  | 201.60           | 160          | 200x150                                                                                                                          |
|                                                          | P3.9-P3.8   | 259.20           | 170          | 200x150                                                                                                                          |
|                                                          | P3.8-P3.7   | 316.80           | 180          | 200x200                                                                                                                          |
|                                                          | P3.7-P3.0   | 374.40           | 200          | 200x200                                                                                                                          |
|                                                          | P3.0-P4.0   | 1,468.80         | 320          | 400x300                                                                                                                          |



## ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

| Planta   | Tramo      | Caudal de<br>impulsión (m3/h) | Ø eq. (mm) | Dimensión (c. mayor x<br>c. menor (mm.c.a) |
|----------|------------|-------------------------------|------------|--------------------------------------------|
|          | P4.4-P4.3  | 57.60                         | 95         | 150x150                                    |
|          | P4.3-P4.2  | 115.20                        | 130        | 150x150                                    |
|          | P4.2-P4.1  | 172.80                        | 150        | 150x150                                    |
|          | P4.1-P4.0  | 230.40                        | 160        | 150x150                                    |
| Dlamta 4 | P4.9-P4.8  | 57.60                         | 95         | 150x150                                    |
| Planta 4 | P4.8-P4.7  | 115.20                        | 130        | 150x150                                    |
|          | P4.7-P4.6  | 172.80                        | 150        | 150x150                                    |
|          | P4.6-P4.5  | 216.00                        | 160        | 150x150                                    |
|          | P4.5-P4.0  | 259.20                        | 170        | 200x150                                    |
|          | P4.0-Clim2 | 1,641.60                      | 340        | 400x300                                    |

Tabla 15: Conductos impulsión climatizador 2

## 4.2.2 CÁLCULO DE LOS CONDUCTOS DE RETORNO

Cada Fan-coil ha de conectarse con la rejilla de retorno de cada estancia, pero estas medidas no son necesarias obtenerlas, simplemente deberán tener las dimensiones de las rejillas calculadas en el apartado 4.4.1.2 de la Parte I y las del equipo correspondiente, en este caso Fan-coils, calculados en el apartado 6.2.2de la Parte I.

Además, se dispone de una red de conductos de retorno que van de la rejilla de extracción al climatizador. Esto evitará la sobrepresión que se produce cuando la diferencia entre el volumen de retorno y el impulsado es mayor que el volumen de la estancia.



## ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

Este cálculo se ha realizado con las hojas de cálculo mostradas en el apartado2.4.3 de la Parte III.

A continuación, en la Tabla 16 y Tabla 17se muestran los resultados del cálculo de la red de conductos de impulsión.

| Planta               | Tramo   | Caudal de<br>extracción (m³/h) | Ø eq. (mm)                 | Dimensión (c. mayor x<br>c. menor) (mm.c.a) |
|----------------------|---------|--------------------------------|----------------------------|---------------------------------------------|
| Planta<br>Semisótano | SS6-SS5 | 110.20                         | 130                        | 150x150                                     |
|                      | SS5-SS4 | 384.74                         | 200                        | 200x200                                     |
| C                    | SS4-SS3 | 659.28                         | 240                        | 250x200                                     |
| Semisotano           | SS3-SS2 | 933.82                         | 280 300x200<br>300 300x300 |                                             |
|                      | SS2-SS1 | 1,090.26                       | 300                        | 300x300                                     |
|                      | SS1-A0  | 1,246.69                       | 280 300x200                |                                             |
|                      | A6-A5   | 145.28                         | 140                        | 150x150                                     |
|                      | A5-A4   | 290.56                         | 180                        | 200x150                                     |
|                      | A4-A3   | 427.78                         | 200                        | c. menor) (mm.c.a)  130                     |
| A                    | A3-A2   | 565.00                         | 230                        |                                             |
| Acceso               | A2-A1   | 565.00                         | 230                        | 250x200                                     |
|                      | A1-A0   | 720.73                         | 250                        | 250x200                                     |
|                      | A12-A11 | 142.21                         | 140                        | 150x150                                     |
|                      | A11-A10 | 284.42                         | 180                        | 200x150                                     |



| Planta    | Tramo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Caudal de<br>extracción (m3/h) | Ø eq. (mm)                                                                                                                                                                                                                                                                                                                                                                                                                 | Dimensión (c. mayor x<br>c. menor) (mm.c.a) |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|           | A10-A8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 426.63                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                        | 200x200                                     |
|           | A9-A8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 106.37                         | 130                                                                                                                                                                                                                                                                                                                                                                                                                        | 150x150                                     |
| Acceso    | A8-A7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 533.00                         | 220                                                                                                                                                                                                                                                                                                                                                                                                                        | 200x200                                     |
|           | A7-A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 632.06                         | 240                                                                                                                                                                                                                                                                                                                                                                                                                        | 250x200                                     |
|           | A0-P1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,599.48                       | acción (m3/h)       Ø eq. (mm)         426.63       200         106.37       130         533.00       220         632.06       240         2,599.48       400         19.24       65         30.51       75         46.93       90         51.08       95         51.08       95         51.08       95         16.45       60         29.83       75         37.34       85         44.85       90         52.36       95 | 500x300                                     |
|           | P1.6-P1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.24                          | 65                                                                                                                                                                                                                                                                                                                                                                                                                         | 150x150                                     |
|           | P1.5-P1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.51                          | 75                                                                                                                                                                                                                                                                                                                                                                                                                         | 150x150                                     |
|           | P1.4-P1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46.93                          | 90                                                                                                                                                                                                                                                                                                                                                                                                                         | 150x150                                     |
|           | P1.3-P1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51.08                          | 95                                                                                                                                                                                                                                                                                                                                                                                                                         | 150x150                                     |
|           | P1.2-P1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51.08                          | 95                                                                                                                                                                                                                                                                                                                                                                                                                         | 150x150                                     |
| Planta 1  | Tramo         extracción (m3/h)         Ø eq. (may)           A10-A8         426.63         200           A9-A8         106.37         130           A8-A7         533.00         220           A7-A0         632.06         240           A0-P1.0         2,599.48         400           P1.6-P1.5         19.24         65           P1.5-P1.4         30.51         75           P1.4-P1.3         46.93         90           P1.3-P1.2         51.08         95           P1.2-P1.1         51.08         95           P1.1-P1.0         51.08         95           P1.11-P1.10         16.45         60           P1.10-P1.9         29.83         75           P1.9-P1.8         37.34         85           P1.8-P1.7         44.85         90           P1.7-P1.0         52.36         95 | 95                             | 150x150                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |
| Flailla 1 | P1.11-P1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.45                          | 60                                                                                                                                                                                                                                                                                                                                                                                                                         | 150x150                                     |
|           | P1.10-P1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29.83                          | 75                                                                                                                                                                                                                                                                                                                                                                                                                         | 150x150                                     |
|           | P1.9-P1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37.34                          | 85                                                                                                                                                                                                                                                                                                                                                                                                                         | 150x150                                     |
|           | P1.8-P1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44.85                          | 90                                                                                                                                                                                                                                                                                                                                                                                                                         | 150x150                                     |
|           | P1.7-P1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52.36                          | 95                                                                                                                                                                                                                                                                                                                                                                                                                         | 150x150                                     |
|           | P1.0-Clim1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,702.92                       | 400                                                                                                                                                                                                                                                                                                                                                                                                                        | 500x300                                     |

Tabla 16: Conductos extracción climatizador 1



| Planta   | Tramo       | Caudal de<br>extracción (m³/h) | Ø eq. (mm) | Dimensión (c. mayor x<br>c. menor) (mm.c.a) |
|----------|-------------|--------------------------------|------------|---------------------------------------------|
|          | P2.6-P2.5   | 19.24                          | 65         | 150x150                                     |
|          | P2.5-P2.4   | 30.51                          | 75         | 150x150                                     |
|          | P2.4-P2.3   | 46.93                          | 90         | 150x150                                     |
|          | P2.3-P2.2   | 51.08                          | 95         | 150x150                                     |
|          | P2.2-P2.1   | 51.08                          | 95         | 150x150                                     |
| Dl 2     | P2.1-P2.0   | 51.08                          | 95         | 150x150                                     |
| Planta 2 | P2.11-P2.10 | 16.45                          | 60         | 150x150                                     |
|          | P2.10-P2.9  | 29.83                          | 75         | 150x150                                     |
|          | P2.9-P2.8   | 37.34                          | 85         | 150x150                                     |
|          | P2.8-P2.7   | 44.85                          | 90         | 150x150                                     |
|          | P2.7-P2.0   | 52.36                          | 95         | 150x150                                     |
|          | P2.0-P3.0   | 103.44                         | 130        | 150X150                                     |
|          | P3.6-P3.5   | 19.24                          | 65         | 150x150                                     |
|          | P3.5-P3.4   | 30.51                          | 75         | 150x150                                     |
|          | P3.4-P3.3   | 46.93                          | 90         | 150x150                                     |
|          | P3.3-P3.2   | 51.08                          | 95         | 150x150                                     |
|          | P3.2-P3.1   | 51.08                          | 95         | 150x150                                     |
| DI       | P3.1-P3.0   | 51.08                          | 95         | 150x150                                     |
| Planta 3 | P3.11-P3.10 | 14.36                          | 55         | 150x150                                     |
|          | P3.10-P3.9  | 27.74                          | 75         | 150x150                                     |
|          | P3.9-P3.8   | 35.26                          | 80         | 150x150                                     |
|          | P3.8-P3.7   | 35.26                          | 80         | 150x150                                     |
|          | P3.7-P3.0   | 35.26                          | 80         | 150x150                                     |
|          | P3.0-P4.0   | 189.78                         | 150        | 150x150                                     |



## ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

| Planta   | Tramo     | Caudal de<br>extracción (m³/h) | Ø eq. (mm) | Dimensión (c. mayor x<br>c. menor) (mm.c.a) |
|----------|-----------|--------------------------------|------------|---------------------------------------------|
|          | P4.3-P4.2 | 18.04                          | 65         | 150x150                                     |
|          | P4.2-P4.1 | 27.84                          | 75         | 150x150                                     |
|          | P4.1-P4.0 | 33.86                          | 80         | 150x150                                     |
| DI4 4    | P4.8-P4.7 | 15.83                          | 60         | 150x150                                     |
| Planta 4 | P4.7-P4.6 | 31.33                          | 80         | 150x150                                     |
|          | P4.6-P4.5 | 31.33                          | 80         | 150x150                                     |
|          | P4.5-P4.0 | 31.33                          | 80         | 150x150                                     |
|          | P4.0-P3.0 | 65.19                          | 100        | 150x150                                     |

Tabla 17: Conductos extracción climatizador 2

#### 4.3 **DIFUSORES**

Para evitar corrientes, los difusores se colocan de forma uniforme a lo largo de cada estancia, si lo precisan.

## 4.3.1 DISEÑO DE LOS DIFUSORES

Los Fan-coils tipo Cassette no precisan de difusores dado que retornan el aire por el centro y lo impulsan por los 4 laterales, llamados vías, pero estos no recogen la extracción por lo que necesitaríamos difusores de extracción para las estancias que precisen de estos Fan-coils. Para los Fan-coils tipo FLS, si se necesitan difusores, tanto de impulsión como de extracción.

Los elementos de difusión empleados serán difusores rotacionales.



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 4.3.2 CÁLCULO DE LOS DIFUSORES

Hay que tener en cuenta para su selección los siguientes parámetros:

- Caudal de aire necesitado por cada estancia
- Sección calculada de los conductos
- Potencia sonora inferior a 40dB (para cumplir las especificaciones del RITE<sup>[1]</sup>)

Los difusores seleccionados son del fabricante TROX serie VDW, cuyo catálogo se muestra en el apartado 1.6 de la Parte III

## 4.3.2.1 Cálculo de los difusores de impulsión

En la Tabla 18 se muestran los difusores de impulsión elegidos para las distintas estancias.

|            |           | Caudal de |        | Caudal    | Nivel  | Pérdida       |
|------------|-----------|-----------|--------|-----------|--------|---------------|
| Planta     | Estancia  | impulsión | Modelo | máximo    | sonoro | de carga      |
|            |           | $(m^3/h)$ |        | $(m^3/h)$ | (dB)   | ( <i>Pa</i> ) |
|            | Salón 1   | 788.07    | N/A    | N/A       | N/A    | N/A           |
| Semisótano | Salón 2   | 1,903.81  | N/A    | N/A       | N/A    | N/A           |
|            | Cafetería | 499.12    | N/A    | N/A       | N/A    | N/A           |



| Planta   | Estancia        | Caudal de<br>impulsión<br>(m³/h) | Modelo   | Caudal<br>máximo<br>(m³/h) | Nivel<br>sonoro<br>(dB) | Pérdida<br>de carga<br>(Pa) |
|----------|-----------------|----------------------------------|----------|----------------------------|-------------------------|-----------------------------|
|          | Hab.<br>Minusv. | 498.21                           | 600 x 24 | 570                        | 35                      | 22                          |
|          | Sala estar      | 1,197.00                         | N/A      | N/A                        | N/A                     | N/A                         |
|          | Vestíbulo       | 818.51                           | N/A      | N/A                        | N/A                     | N/A                         |
| Acceso   | Zona salas 1    | 1,566.78                         | N/A      | N/A                        | N/A                     | N/A                         |
|          | Zona salas 2    | 1,478.03                         | N/A      | N/A                        | N/A                     | N/A                         |
|          | Recepción       | 342.34                           | N/A      | N/A                        | N/A                     | N/A                         |
|          | Despacho        | 481.32                           | N/A      | N/A                        | N/A                     | N/A                         |
|          | 1               | 437.27                           | 600 x 24 | 480                        | 30                      | 16                          |
|          | 2               | 617.14                           | 652 x 54 | 720                        | 35                      | 24                          |
|          | 3               | 398.07                           | 600 x 24 | 400                        | 25                      | 11                          |
|          | 4               | 605.90                           | 600 x 48 | 700                        | 35                      | 25                          |
|          | 5               | 425.71                           | 600 x 24 | 480                        | 30                      | 16                          |
| DI4- 1   | 6               | 507.34                           | 600 x 24 | 570                        | 35                      | 22                          |
| Planta 1 | 7               | 273.60                           | 400 x 16 | 280                        | 30                      | 22                          |
|          | 8               | 270.13                           | 400 x 16 | 280                        | 30                      | 22                          |
|          | 9               | 580.90                           | 600 x 48 | 700                        | 35                      | 25                          |
|          | 10              | 351.93                           | 600 x 24 | 400                        | 25                      | 11                          |
|          | 11              | 591.37                           | 600 x 24 | 675                        | 40                      | 31                          |
|          | 12              | 435.18                           | 600 x 24 | 480                        | 30                      | 16                          |



| Planta   | Estancia | Caudal de<br>impulsión | Modelo   | Caudal<br>máximo | Nivel<br>sonoro | Pérdida<br>de carga |
|----------|----------|------------------------|----------|------------------|-----------------|---------------------|
| 1 tanta  | Litancia | $(m^3/h)$              | Moucio   | $(m^3/h)$        | (dB)            | (Pa)                |
|          | 1        | 435.64                 | 600 x 24 | 480              | 30              | 16                  |
|          | 2        | 615.17                 | 652 x 54 | 720              | 35              | 24                  |
|          | 3        | 398.07                 | 600 x 24 | 400              | 25              | 11                  |
|          | 4        | 605.90                 | 600 x 48 | 700              | 35              | 25                  |
|          | 5        | 424.72                 | 600 x 24 | 480              | 30              | 16                  |
| Dl 2     | 6        | 505.71                 | 600 x 24 | 570              | 35              | 22                  |
| Planta 2 | 7        | 271.64                 | 400 x 16 | 280              | 30              | 22                  |
|          | 8        | 268.50                 | 400 x 16 | 280              | 30              | 22                  |
|          | 9        | 580.90                 | 600 x 48 | 700              | 35              | 25                  |
|          | 10       | 351.93                 | 600 x 24 | 400              | 25              | 11                  |
|          | 11       |                        | 40       | 31               |                 |                     |
|          | 12       | 435.18                 | 600 x 24 | 480              |                 | 16                  |
|          | 1.1      | 477.56                 | 600 x 24 | 480              | 30              | 16                  |
|          | 1.2      | 309.84                 | 400 x 16 | 325              | 35              | 30                  |
|          | 2        | 414.83                 | 600 x 24 | 480              | 30              | 16                  |
|          | 3        | 606.55                 | 600 x 48 | 700              | 35              | 25                  |
|          | 4        | 424.72                 | 600 x 24 | 480              | 30              | 16                  |
| Dlanta 2 | 5        | 508.32                 | 600 x 24 | 570              | 35              | 22                  |
| Planta 3 | 6        | 276.87                 | 400 x 16 | 280              | 30              | 22                  |
|          | 7        | 268.83                 | 400 x 16 | 280              | 30              | 22                  |
|          | 8        | 583.84                 | 600 x 48 | 700              | 35              | 25                  |
|          | 9        | 353.89                 | 600 x 24 | 400              | 25              | 11                  |
|          | 10       | 528.87                 | 600 x 24 | 570              | 35              | 22                  |
|          | 11       | 543.59                 | 600 x 24 | 570              | 35              | 22                  |



## ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

| Planta    | Estancia | Caudal de<br>impulsión<br>(m³/h) | Modelo   | Caudal<br>máximo<br>(m³/h) | Nivel<br>sonoro<br>(dB) | Pérdida<br>de carga<br>(Pa) |
|-----------|----------|----------------------------------|----------|----------------------------|-------------------------|-----------------------------|
|           | 1        | 564.19                           | 600 x 24 | 570                        | 35                      | 22                          |
|           | 2        | 243.30                           | 400 x 16 | 280                        | 30                      | 22                          |
|           | 3        | 238.65                           | 400 x 16 | 240                        | 16                      | 25                          |
| Planta 4  | 4        | 411.23                           | 600 x 24 | 480                        | 30                      | 16                          |
| Piailla 4 | 5        | 366.92                           | 500 x 24 | 390                        | 35                      | 25                          |
|           | 6        | 498.82                           | 600 x 24 | 570                        | 35                      | 22                          |
|           | 7        | 290.20                           | 400 x 16 | 325                        | 35                      | 30                          |
|           | 8        | 274.65                           | 400 x 16 | 280                        | 30                      | 22                          |

Tabla 18: Difusores de impulsión

# 4.3.2.2 Cálculo de los difusores de extracción

Para las habitaciones se extrae 100 m³/h eso implica que todas las habitaciones poseerán un difusor de extracción de iguales características. En la Tabla 19 se muestran los difusores de extracción elegidos para las distintas estancias de.

| Planta     | Estancia  | Caudal de<br>extracción<br>(m³/h) | Modelo         | Caudal<br>máximo<br>(m³/h) | Nivel<br>sonoro<br>(dB) | Pérdida<br>de carga<br>(Pa) |
|------------|-----------|-----------------------------------|----------------|----------------------------|-------------------------|-----------------------------|
|            | Salón 1   | 312.87                            | 500 x 24       | 325                        | 30                      | 17                          |
| Semisótano | Salón 2   | 823.62                            | 3 x (400 x 16) | 280                        | 30                      | 22                          |
|            | Cafetería | 110.22                            | 300 x 8        | 155                        | 25                      | 21                          |



## ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

| Planta         | Estancia     | Caudal de<br>extracción<br>(m³/h) | Modelo        | Caudal<br>máximo<br>(m³/h) | Nivel<br>sonoro<br>(dB) | Pérdida<br>de carga<br>(Pa) |
|----------------|--------------|-----------------------------------|---------------|----------------------------|-------------------------|-----------------------------|
|                | Hab. Minusv. | 100                               | 300 x 8       | 155                        | 25                      | 21                          |
|                | Sala estar   | 426.63                            | 3 x (300 x 8) | 155                        | 25                      | 21                          |
|                | Vestíbulo    | 106.37                            | 300 x 8       | 155                        | 25                      | 21                          |
| <b>A</b> aaaaa | Zona salas 1 | 290.56                            | 400 x 16      | 325                        | 35                      | 30                          |
| Acceso         | Zona salas 2 | 274.44                            | 400 x 16      | 280                        | 30                      | 17                          |
|                | Recepción    | 99.06                             | 300 x 8       | 155                        | 25                      | 21                          |
|                | Despacho     | 155.73                            | 300 x 8       | 183                        | 30                      | 30                          |
|                | Habitaciones | 100                               | 300 x 8       | 155                        | 25                      | 21                          |

Tabla 19: Difusores de extracción

## 4.4 **REJILLAS**

Al igual que los difusores, para evitar corrientes, las rejillas se distribuirán de manera uniforme.

## 4.4.1 CÁLCULO DE LAS REJILLAS

Las rejillas se han dimensionado considerando los siguientes aspectos:

- Caudal de aire necesario
- Pérdida de carga < 25 Pa
- Potencia sonora < 40 dB

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

Las rejillas seleccionadas son del fabricante TROX, cuyo catálogo se muestra en el apartado 1.7 de la Parte III

# 4.4.1.1 Cálculo de las rejillas de impulsión

La Tabla 20 muestra la selección de las rejillas de retorno en la red de conductos.

| Planta     | Estancia         | Caudal de<br>impulsión<br>(m³/h) | Dimensión<br>rejilla HxL<br>(mm) | Pérdida<br>carga<br>(mm.c.a) | Potencia<br>sonora<br>(dB) |
|------------|------------------|----------------------------------|----------------------------------|------------------------------|----------------------------|
| Semisótano | Salón 1          | 788.07                           | N/A                              | N/A                          | N/A                        |
|            | Salón 2          | 1,903.81                         | N/A                              | N/A                          | N/A                        |
|            | Cafetería        | 499.12                           | N/A                              | N/A                          | N/A                        |
|            | Hab.<br>Minusvá. | 498.21                           | 165 x 325                        | 18                           | 28                         |
|            | Sala estar       | 1,197.00                         | N/A                              | N/A                          | N/A                        |
|            | Vestíbulo        | 818.51                           | N/A                              | N/A                          | N/A                        |
| Acceso     | Zona salas 1     | 1,566.78                         | N/A                              | N/A                          | N/A                        |
|            | Zona salas 2     | 1,478.03                         | N/A                              | N/A                          | N/A                        |
|            | Recepción        | 342.34                           | N/A                              | N/A                          | N/A                        |
|            | Despacho         | 481.32                           | N/A                              | N/A                          | N/A                        |
|            | 1                | 437.27                           | 165 x 325                        | 18                           | 28                         |
| Planta 1   | 2                | 617.14                           | 225 x 325                        | 21                           | 31                         |
|            | 3                | 398.07                           | 125 x 325                        | 22                           | 30                         |
|            | 4                | 605.90                           | 225 x 325                        | 21                           | 31                         |
|            | 5                | 425.71                           | 165 x 325                        | 18                           | 28                         |
|            | 6                | 507.34                           | 165 x 425                        | 17                           | 27                         |
|            | 7                | 273.60                           | 165 x 225                        | 17                           | 25                         |



|          |          | Caudal de | Dimensión   | Pérdida  | Potencia |
|----------|----------|-----------|-------------|----------|----------|
| Planta   | Estancia | impulsión | rejilla HxL | carga    | sonora   |
|          |          | $(m^3/h)$ | (mm)        | (mm.c.a) | (dB)     |
|          | 8        | 270.13    | 165 x 225   | 17       | 25       |
|          | 9        | 580.90    | 165 x 425   | 17       | 27       |
| Planta 1 | 10       | 351.93    | 125 x 325   | 22       | 30       |
|          | 11       | 591.37    | 165 x 425   | 17       | 27       |
|          | 12       | 435.18    | 165 x 325   | 18       | 28       |
|          | 1        | 435.64    | 165 x 325   | 18       | 28       |
|          | 2        | 615.17    | 225 x 325   | 21       | 31       |
|          | 3        | 398.07    | 125 x 325   | 22       | 30       |
|          | 4        | 605.90    | 225 x 325   | 21       | 31       |
|          | 5        | 424.72    | 165 x 325   | 18       | 28       |
| DI4- 2   | 6        | 505.71    | 165 x 425   | 17       | 27       |
| Planta 2 | 7        | 271.64    | 165 x 225   | 17       | 25       |
|          | 8        | 268.50    | 165 x 225   | 17       | 25       |
|          | 9        | 580.90    | 165 x 425   | 17       | 27       |
|          | 10       | 351.93    | 125 x 325   | 22       | 30       |
|          | 11       | 591.37    | 165 x 425   | 17       | 27       |
|          | 12       | 435.18    | 165 x 325   | 18       | 28       |
|          | 1.1      | 477.56    | 165 x 325   | 18       | 28       |
| Planta 3 | 1.2      | 309.84    | 125 x 325   | 22       | 30       |
|          | 2        | 414.83    | 165 x 325   | 18       | 28       |
|          | 3        | 606.55    | 225 x 325   | 21       | 31       |
|          | 4        | 424.72    | 165 x 325   | 18       | 28       |
|          | 5        | 508.32    | 165 x 425   | 17       | 27       |
|          | 6        | 276.87    | 165 x 225   | 17       | 25       |



| Planta      | Estancia | Caudal de<br>impulsión<br>(m³/h) | Dimensión<br>rejilla HxL<br>(mm) | Pérdida<br>carga<br>(mm.c.a) | Potencia<br>sonora<br>(dB) |
|-------------|----------|----------------------------------|----------------------------------|------------------------------|----------------------------|
|             | 7        | 268.83                           | 165 x 225                        | 17                           | 25                         |
|             | 8        | 583.84                           | 165 x 425                        | 17                           | 27                         |
| Planta 3    | 9        | 353.89                           | 125 x 325                        | 22                           | 30                         |
|             | 10       | 528.87                           | 165 x 425                        | 17                           | 27                         |
|             | 11       | 543.59                           | 165 x 425                        | 17                           | 27                         |
|             | 1        | 564.19                           | 165 x 425                        | 17                           | 27                         |
|             | 2        | 243.30                           | 165 x 225                        | 17                           | 25                         |
|             | 3        | 238.65                           | 165 x 225                        | 17                           | 25                         |
| Planta Bajo | 4        | 411.23                           | 165 x 325                        | 18                           | 28                         |
| Cubierta    | 5        | 366.92                           | 125 x 325                        | 22                           | 30                         |
|             | 6        | 498.82                           | 165 x 325                        | 18                           | 28                         |
|             | 7        | 290.20                           | 165 x 225                        | 17                           | 25                         |
|             | 8        | 274.65                           | 165 x 225                        | 17                           | 25                         |

Tabla 20: Cálculo de las rejillas de impulsión

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# 4.4.1.2 Cálculo de las rejillas de retorno

La Tabla 21 muestra la selección de las rejillas de retorno en la red de conductos.

| Planta     | Estancia                   | Caudal de<br>retorno<br>(m³/h) | Dimensión<br>rejilla<br>HxL (mm) | Pérdida<br>carga<br>(mm.c.a) | Potencia<br>sonora<br>(dB) |
|------------|----------------------------|--------------------------------|----------------------------------|------------------------------|----------------------------|
| Semisótano | Salón 1                    | 384.87                         | N/A                              | N/A                          | N/A                        |
|            | Salón 2                    | 867.01                         | N/A                              | N/A                          | N/A                        |
|            | Cafetería                  | 326.32                         | N/A                              | N/A                          | N/A                        |
|            | Habitación<br>minusválidos | 440.61                         | 165 x 325                        | 14                           | 32                         |
|            | Sala de estar              | 612.00                         | N/A                              | N/A                          | N/A                        |
|            | Vestíbulo                  | 658.96                         | N/A                              | N/A                          | N/A                        |
| Acceso     | Zona salas 1               | 1,130.94                       | N/A                              | N/A                          | N/A                        |
|            | Zona salas 2               | 1,066.37                       | N/A                              | N/A                          | N/A                        |
|            | Recepción                  | 193.75                         | N/A                              | N/A                          | N/A                        |
|            | Despacho                   | 256.32                         | N/A                              | N/A                          | N/A                        |
|            | 1                          | 379.67                         | 165 x 225                        | 22                           | 36                         |
| Planta 1   | 2                          | 559.54                         | 165 x 325                        | 20                           | 37                         |
|            | 3                          | 340.47                         | 165 x 225                        | 22                           | 36                         |
|            | 4                          | 548.30                         | 165 x 325                        | 20                           | 37                         |
|            | 5                          | 368.11                         | 165 x 225                        | 22                           | 36                         |
|            | 6                          | 449.74                         | 165 x 325                        | 14                           | 32                         |
|            | 7                          | 216.00                         | 125 x 225                        | 20                           | 34                         |
|            | 8                          | 212.53                         | 125 x 225                        | 20                           | 34                         |



|          |          | Caudal de | Dimensión | Pérdida  | Potencia |
|----------|----------|-----------|-----------|----------|----------|
| Planta   | Estancia | retorno   | rejilla   | carga    | sonora   |
|          |          | $(m^3/h)$ | HxL (mm)  | (mm.c.a) | (dB)     |
|          | 9        | 523.30    | 165 x 325 | 20       | 37       |
| Planta 1 | 10       | 294.33    | 125 x 225 | 20       | 34       |
| Pianta i | 11       | 533.77    | 165 x 325 | 20       | 37       |
|          | 12       | 377.58    | 165 x 225 | 22       | 36       |
|          | 1        | 378.04    | 165 x 225 | 22       | 36       |
|          | 2        | 557.57    | 165 x 325 | 20       | 37       |
|          | 3        | 340.47    | 165 x 225 | 22       | 36       |
|          | 4        | 548.30    | 165 x 325 | 20       | 37       |
|          | 5        | 367.12    | 165 x 225 | 22       | 36       |
| DI 4 2   | 6        | 448.11    | 165 x 325 | 14       | 32       |
| Planta 2 | 7        | 214.04    | 125 x 225 | 20       | 34       |
|          | 8        | 210.90    | 125 x 225 | 20       | 34       |
|          | 9        | 523.30    | 165 x 325 | 20       | 37       |
|          | 10       | 294.33    | 125 x 225 | 20       | 34       |
|          | 11       | 533.77    | 165 x 325 | 20       | 37       |
|          | 12       | 377.58    | 165 x 225 | 22       | 36       |
|          | 1.1      | 419.96    | 165 x 325 | 14       | 32       |
|          | 1.2      | 281.04    | 125 x 225 | 20       | 34       |
|          | 2        | 357.23    | 165 x 225 | 22       | 36       |
| Planta 3 | 3        | 548.95    | 165 x 325 | 20       | 37       |
|          | 4        | 367.12    | 165 x 225 | 22       | 36       |
|          | 5        | 450.72    | 165 x 325 | 14       | 32       |
|          | 6        | 219.27    | 125 x 225 | 20       | 34       |



| Planta      | Estancia | Caudal de<br>retorno<br>(m³/h) | Dimensión<br>rejilla<br>HxL (mm) | Pérdida<br>carga<br>(mm.c.a) | Potencia<br>sonora<br>(dB) |
|-------------|----------|--------------------------------|----------------------------------|------------------------------|----------------------------|
|             | 7        | 211.23                         | 125 x 225                        | 20                           | 34                         |
|             | 8        | 526.24                         | 165 x 325                        | 20                           | 37                         |
| Planta 3    | 9        | 296.29                         | 125 x 225                        | 20                           | 34                         |
|             | 10       | 471.27                         | 165 x 325                        | 14                           | 32                         |
|             | 11       | 485.99                         | 165 x 325                        | 14                           | 32                         |
|             | 1        | 477.79                         | 165 x 325                        | 14                           | 32                         |
|             | 2        | 185.70                         | 125 x 225                        | 9                            | 24                         |
|             | 3        | 181.05                         | 125 x 225                        | 9                            | 24                         |
| Planta Bajo | 4        | 353.63                         | 165 x 225                        | 22                           | 36                         |
| Cubierta    | 5        | 309.32                         | 165 x 225                        | 22                           | 36                         |
|             | 6        | 441.22                         | 165 x 325                        | 14                           | 32                         |
|             | 7        | 232.60                         | 125 x 225                        | 20                           | 34                         |
|             | 8        | 217.05                         | 125 x 225                        | 20                           | 34                         |

Tabla 21: Cálculo de las rejillas de retorno

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# 4.4.1.3 Cálculo de las rejillas de extracción

La Tabla 22 muestra la selección de las rejillas de extracción en la red de conductos.

| Planta     | Estancia                   | Caudal de<br>extracción<br>(m³/h) | Dimensión<br>rejilla HxL<br>(mm) | Pérdida<br>carga<br>(mm.c.a) | Potencia<br>sonora<br>(dB)) |
|------------|----------------------------|-----------------------------------|----------------------------------|------------------------------|-----------------------------|
|            | Salón 1                    | 312.87                            | 165 x 225                        | 22                           | 36                          |
| Semisótano | Salón 2                    | 823.62                            | 3 x (125 x 225)                  | 20                           | 34                          |
|            | Cafetería                  | 110.22                            | 125 x 225                        | 9                            | 24                          |
|            | Habitación<br>minusválidos | 100                               | 125 x 225                        | 9                            | 24                          |
|            | Sala de estar              | 426.63                            | 165 x 325                        | 14                           | 32                          |
|            | Vestíbulo                  | 106.37                            | 125 x 225                        | 9                            | 24                          |
| Acceso     | Zona salas 1               | 290.56                            | (125 x 225)                      | 20                           | 34                          |
|            | Zona salas 2               | 274.44                            | (125 x 225)                      | 20                           | 34                          |
|            | Recepción                  | 99.06                             | 125 x 225                        | 9                            | 24                          |
|            | Despacho                   | 155.73                            | 125 x 225                        | 9                            | 24                          |
| _          | Habitaciones               | 100                               | 125 x 225                        | 9                            | 24                          |

Tabla 22: Cálculo de las rejillas de extracción



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Capítulo 5 RED DE TUBERÍAS

Para el transporte de agua caliente y agua fría en la instalación se precisará de una red de tuberías, que conectará el grupo frigorífico y la caldera con los climatizadores y los Fan-coils.

#### 5.1 **DISEÑO DE LA RED DE TUBERÍAS**

Para el diseño de esta red se ha optado por una distribución de cuatro tubos de acero (DIN 2440), dos de agua caliente y dos de agua fría y cada uno de ellos se ocuparán de la impulsión y el retorno.

#### 5.2 CÁLCULO DE LAS TUBERÍAS

Para el dimensionamiento de esta red, primero se ha calculado el caudal necesario de cada estancia. En la Ecuación 9 se muestra el cálculo de este caudal.

$$Q = \frac{Potencia}{\Delta T \cdot C_{esp}}$$

Ecuación 9: Caudal de agua de la red de tuberías

Donde:

Q: Caudal de agua (caliente/fría) (L/h)

P: Potencia (frigorífica/calorífica) (Kcal/h)

 $C_{esp} = 1$  por tratarse de agua



#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### ΔT: Incremento de temperatura (°C)

- Verano:  $\Delta T = 5^{\circ}$ C, (Se impulsa agua a 12°C y el retorno se hace a 7°C)
- Invierno  $\Delta T = 10^{\circ}$ C, (Se impulsa agua a 50°C y el retorno se hace a 40°C)

A continuación, en la Tabla 23 se muestra el cálculo de los caudales de agua requeridos para cada estancia.

| Planta     | Estancia                   | Potencia<br>frigorífica<br>(Kcal/h) | Potencia<br>calorífica<br>(Kcal/h) | Caudal<br>agua fría<br>(L/h) | Caudal agua<br>caliente (L/h) |
|------------|----------------------------|-------------------------------------|------------------------------------|------------------------------|-------------------------------|
|            | Salón 1                    | 4,878.12                            | 2,705.06                           | 975.62                       | 270.50                        |
| Semisótano | Salón 2                    | 12,169.85                           | 6,933.53                           | 2,433.96                     | 693.35                        |
|            | Cafetería                  | 2,585.02                            | 1,464.95                           | 517.00                       | 146.49                        |
|            | Habitación<br>minusválidos | 1,859.32                            | 903.46                             | 371.86                       | 90.35                         |
|            | Sala de estar              | 6,843.15                            | 4,529.45                           | 1,368.63                     | 452.94                        |
|            | Vestíbulo                  | 3,253.35                            | 1,575.31                           | 650.67                       | 157.53                        |
| Acceso     | Zona salas 1               | 6,900.76                            | 3,338.36                           | 1,380.15                     | 333.84                        |
|            | Zona salas 2               | 6,752.16                            | 3,012.97                           | 1,350.43                     | 301.30                        |
|            | Recepción                  | 1,839.04                            | 1,178.64                           | 367.81                       | 117.86                        |
|            | Despacho                   | 2,695.98                            | 1,775.03                           | 539.20                       | 177.50                        |



| Planta   | Estancia | Potencia<br>frigorífica<br>(Kcal/h) | Potencia<br>calorífica<br>(Kcal/h) | Caudal<br>agua fría<br>(L/h) | Caudal agua<br>caliente (L/h) |
|----------|----------|-------------------------------------|------------------------------------|------------------------------|-------------------------------|
|          | 1        | 1,573.13                            | 848.14                             | 314.63                       | 84.81                         |
|          | 2        | 2,240.67                            | 855.96                             | 448.13                       | 85.60                         |
|          | 3        | 1,453.18                            | 671.81                             | 290.64                       | 67.18                         |
|          | 4        | 2,089.13                            | 817.43                             | 417.83                       | 81.74                         |
|          | 5        | 1,537.73                            | 661.97                             | 307.55                       | 66.20                         |
| DI 4 1   | 6        | 1,987.53                            | 969.30                             | 397.50                       | 96.93                         |
| Planta 1 | 7        | 1,189.44                            | 546.52                             | 237.89                       | 54.65                         |
|          | 8        | 1,178.84                            | 669.74                             | 235.77                       | 66.97                         |
|          | 9        | 2,129.79                            | 854.28                             | 425.96                       | 85.43                         |
|          | 10       | 1,429.14                            | 578.85                             | 285.83                       | 57.89                         |
|          | 11       | 2,133.71                            | 906.69                             | 426.74                       | 90.67                         |
|          | 12       | 1,666.79                            | 799.20                             | 333.36                       | 79.92                         |
|          | 1        | 1,568.13                            | 764.24                             | 313.63                       | 76.42                         |
|          | 2        | 2,234.67                            | 828.22                             | 446.93                       | 82.82                         |
|          | 3        | 1,453.18                            | 676.12                             | 290.64                       | 67.61                         |
|          | 4        | 2,089.13                            | 817.43                             | 417.83                       | 81.74                         |
|          | 5        | 1,534.73                            | 600.29                             | 306.95                       | 60.03                         |
| DI 0     | 6        | 1,982.53                            | 849.41                             | 396.51                       | 84.94                         |
| Planta 2 | 7        | 1,183.44                            | 514.11                             | 236.69                       | 51.41                         |
|          | 8        | 1,173.84                            | 639.02                             | 234.77                       | 63.90                         |
|          | 9        | 2,129.79                            | 854.28                             | 425.96                       | 85.43                         |
|          | 10       | 1,429.14                            | 578.85                             | 285.83                       | 57.89                         |
|          | 11       | 2,133.71                            | 906.69                             | 426.74                       | 90.67                         |
|          | 12       | 1,666.79                            | 799.20                             | 333.36                       | 79.92                         |



| Planta      | Estancia | Potencia<br>frigorífica | Potencia<br>calorífica | Caudal<br>agua fría | Caudal agua    |
|-------------|----------|-------------------------|------------------------|---------------------|----------------|
| Тиши        | Estancia | (Kcal/h)                | (Kcal/h)               | (L/h)               | caliente (L/h) |
|             | 1.1      | 1,690.71                | 834.07                 | 338.14              | 83.41          |
|             | 1.2      | 1,124.73                | 491.28                 | 224.95              | 49.13          |
|             | 2        | 1,504.46                | 663.02                 | 300.89              | 66.30          |
|             | 3        | 2,091.13                | 871.40                 | 418.23              | 87.14          |
|             |          |                         |                        |                     |                |
|             | 4        | 1,534.73                | 600.29                 | 306.95              | 60.03          |
| Planta 3    | 5        | 1,790.53                | 893.58                 | 358.11              | 89.36          |
|             | 6        | 1,999.44                | 608.97                 | 399.89              | 60.90          |
|             | 7        | 1,174.84                | 646.01                 | 234.97              | 64.60          |
|             | 8        | 2,138.79                | 906.67                 | 427.76              | 90.67          |
|             | 9        | 1,435.14                | 598.91                 | 287.03              | 59.89          |
|             | 10       | 1,918.93                | 928.49                 | 383.79              | 92.85          |
|             | 11       | 1,963.98                | 852.28                 | 392.80              | 85.23          |
|             | 1        | 2,255.28                | 1,440.12               | 451.06              | 144.01         |
|             | 2        | 1,096.74                | 771.02                 | 219.35              | 77.10          |
|             | 3        | 1,082.52                | 702.62                 | 216.50              | 70.26          |
| Planta Bajo | 4        | 1,567.58                | 1,097.10               | 313.52              | 109.71         |
| Cubierta    | 5        | 1,457.60                | 1,004.52               | 291.52              | 100.45         |
|             | 6        | 1,861.21                | 674.54                 | 372.24              | 67.45          |
|             | 7        | 1,206.85                | 845.93                 | 241.37              | 84.59          |
|             | 8        | 1,192.67                | 767.22                 | 238.53              | 76.72          |

Tabla 23: Caudales de agua de la red de tuberías



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 5.2.1 DIMENSIONAMIENTO DE LAS TUBERÍAS DE AGUA

Con el caudal de cada tramo, se puede hallar el diámetro requerido de cada tubería gracias a las tablas adjuntadas en el apartado 2.5 de la Parte III.

Se tienen que tener en cuenta, para evitar los altos niveles sonoros, las siguientes restricciones:

- Pérdida de carga <= 30 mm.c.a/ml
- $V_{agua} \le 2m/s$

A continuación, en la Tabla 24se muestra el diámetro seleccionado para cada tramo, dependiendo si es la tubería de agua caliente o fría.

| Planta     | Tramo   | Caudal agua<br>caliente (L/h) | Ø agua<br>caliente (in) | Caudal agua<br>fría (L/h) | Ø agua<br>fría (in) |
|------------|---------|-------------------------------|-------------------------|---------------------------|---------------------|
|            | SS6-SS5 | 270.5                         | 1/2 ''                  | 975.96                    | 1 1/4 ''            |
|            | SS5-SS4 | 501.61                        | 3/4 ''                  | 1787.28                   | 1 1/4 ''            |
| G          | SS4-SS3 | 732.73                        | 3/4 ''                  | 2598.6                    | 1 1/2 ''            |
| Semisótano | SS3-SS2 | 963.85                        | 1"                      | 3409.92                   | 1 1/2 ''            |
|            | SS2-SS1 | 1037.095                      | 1"                      | 3668.42                   | 1 1/2 ''            |
|            | SS1-A0  | 1110.34                       | 1"                      | 3926.92                   | 1 1/2 ''            |
|            | A6-A5   | 166.92                        | 1/2 ''                  | 690.075                   | 3/4 ''              |
|            | A5-A4   | 333.84                        | 3/4 ''                  | 1380.15                   | 1 ''                |
| Planta     | A4-A3   | 484.49                        | 3/4 ''                  | 2055.365                  | 1 1/4 ''            |
| Acceso     | A3-A2   | 635.14                        | 3/4 ''                  | 2730.58                   | 1 1/4 ''            |
|            | A2-A1   | 725.49                        | 3/4 ''                  | 3102.44                   | 1 1/2 ''            |
|            | A1-A0   | 902.99                        | 1 "                     | 3641.64                   | 1 1/2 ''            |



| Planta   | Tramo       | Caudal agua           | Ø agua        | Caudal agua | Ø agua    |
|----------|-------------|-----------------------|---------------|-------------|-----------|
| Piania   | Tramo       | caliente (L/h)        | caliente (in) | fría (L/h)  | fría (in) |
|          | A12-A11     | 150.98                | 1/2 ''        | 456.21      | 3/4 ''    |
|          | A11-A10     | 301.96                | 1/2 ''        | 912.42      | 1''       |
|          | A10-A8      | 452.94                | 3/4 ''        | 1368.63     | 1"        |
| Planta   | A9-A8       | 157.53                | 1/2 ''        | 650.67      | 1"        |
| Acceso   | A8-A7       | 610.47                | 3/4 ''        | 2019.3      | 1 1/4 ''  |
|          | A7-A0       | 728.33                | 3/4 ''        | 2387.11     | 1 1/2 ''  |
|          | A0-P1.0     | 2741.66               | 1 1/4 ''      | 9955.67     | 2 1/2''   |
|          | P1.13-P1.12 | 85.6                  | 1/2 ''        | 448.13      | 3/4 ''    |
|          | P1.12-P1.11 | 170.41                | 1/2 ''        | 762.76      | 1"        |
|          | P1.11-P1.10 | 237.59                | 1/2 ''        | 1053.4      | 1"        |
|          | P1.10-P1.9  | 319.33 1/2 "          |               | 1471.23     | 1 1/4 ''  |
|          | P1.9-P1.8   | 385.53 <b>3/4 ''</b>  |               | 1778.78     | 1 1/4 ''  |
|          | P1.8-P1.7   | 433.995 <b>3/4 ''</b> |               | 1957.535    | 1 1/4 ''  |
| DI . 1   | P1.7-P1-0   | 482.46                | 3/4 ''        | 2136.29     | 1 1/4 ''  |
| Planta 1 | P1.6-P1.5   | 79.92                 | 1/2 ''        | 333.36      | 3/4 ''    |
|          | P1.5-P1.4   | 170.59                | 1/2 ''        | 760.1       | 1"        |
|          | P1.4-P1.3   | 228.48                | 1/2 ''        | 1045.93     | 1"        |
|          | P1.3-P1.2   | 313.91                | 1/2 ''        | 1471.89     | 1 1/4 ''  |
|          | P1.2-P1.1   | 380.88                | 3/4 ''        | 1707.66     | 1 1/4 ''  |
|          | P1.1-P1-0   | 435.53                | 3/4 ''        | 1945.55     | 1 1/4 ''  |
|          | P1.0-P2.0   | 3,659.65              | 2"            | 14,038.00   | 2 ½"      |
|          | P2.13-P2.12 | 82.82                 | 1/2 ''        | 446.93      | 3/4 ''    |
| DI : 2   | P2.12-P2.11 | 159.24                | 1/2 ''        | 760.56      | 1"        |
| Planta 2 | P2.11-P2.10 | 226.85                | 1/2 ''        | 1051.2      | 1"        |
|          | P2.10-P2.9  | 308.59                | 1/2 ''        | 1469.03     | 1 1/4 ''  |



| Planta   | Tramo       | Caudal agua    | Ø agua        | Caudal agua | Ø agua    |
|----------|-------------|----------------|---------------|-------------|-----------|
| Тини     | Tramo       | caliente (L/h) | caliente (in) | fría (L/h)  | fría (in) |
|          | P2.9-P2.8   | 368.62         | 3/4 ''        | 1775.98     | 1 1/4 ''  |
|          | P2.8-P2.7   | 411.09         | 3/4 ''        | 1954.235    | 1 1/4 ''  |
|          | P2.7-P2-0   | 453.56         | 3/4 ''        | 2132.49     | 1 1/4 ''  |
|          | P2.6-P2.5   | 79.92          | 1/2 ''        | 333.36      | 3/4 ''    |
| DI       | P2.5-P2.4   | 170.59         | 1/2 ''        | 760.1       | 1"        |
| Planta 2 | P2.4-P2.3   | 228.48         | 1/2 ''        | 1045.93     | 1"        |
|          | P2.3-P2.2   | 313.91         | 1/2 ''        | 1471.89     | 1 1/4 ''  |
|          | P2.2-P2.1   | 377.81         | 3/4 ''        | 1706.66     | 1 1/4 ''  |
|          | P2.1-P2-0   | 429.22         | 3/4 ''        | 1943.35     | 1 1/4 ''  |
|          | P2.0-P3.0   | 4,542.43       | 2"            | 18,113.03   | 2 ½"      |
|          | P3.13-P3.12 | 49.13          | 3/8 ''        | 224.95      | 1/2 ''    |
|          | P3.12-P3.11 | 132.54         | 3/8 ''        | 563.09      | 3/4 ''    |
|          | P3.11-P3.10 | 198.84         | 1/2 ''        | 863.98      | 1 ''      |
|          | P3.10-P3.9  | 285.98         | 1/2 ''        | 1282.21     | 1 ''      |
|          | P3.9-P3.8   | 346.01         | 3/4 ''        | 1589.16     | 1 1/4 ''  |
|          | P3.8-P3.7   | 390.69         | 3/4 ''        | 1768.22     | 1 1/4 ''  |
| DI 2     | P3.7-P3-0   | 435.37         | 3/4 ''        | 1947.27     | 1 1/4 ''  |
| Planta 3 | P3.6-P3.5   | 85.23          | 3/8 ''        | 392.8       | 3/4 ''    |
|          | P3.5-P3.4   | 178.08         | 1/2 ''        | 776.5       | 3/4''     |
|          | P3.4-P3.3   | 237.97         | 1/2 ''        | 1063.53     | 1 "       |
|          | P3.3-P3.2   | 328.64         | 3/4 ''        | 1491.29     | 1 1/4 ''  |
|          | P3.2-P3.1   | 393.24         | 3/4 ''        | 1726.26     | 1 1/4 ''  |
|          | P3.1-P3-0   | 454.14         | 3/4 ''        | 1966.15     | 1 1/4 ''  |
|          | P3.0-P4.0   | 5,431.94       | 2 ½"          | 22,027.87   | 3"        |



| Planta   | Tramo      | Caudal agua<br>caliente (L/h) | Ø agua<br>caliente (in) | Caudal agua<br>fría (L/h) | Ø agua<br>fría (in) |
|----------|------------|-------------------------------|-------------------------|---------------------------|---------------------|
|          | P4.9-P4.8  | 109.71                        | 1/2 ''                  | 313.52                    | 1/2 ''              |
|          | P4.8-P4.7  | 179.97                        | 1/2 ''                  | 530.02                    | 3/4 ''              |
|          | P4.7-P4-6  | 257.07                        | 1/2 ''                  | 749.37                    | 1 ''                |
|          | P4.6-P4-5  | 329.075                       | 1/2 ''                  | 974.9                     | 1 ''                |
| Bajo     | P4.5-P4.0  | 401.08                        | 3/4 ''                  | 1200.43                   | 1 ''                |
| Cubierta | P4.4-P4.3  | 100.45                        | 1/2 ''                  | 291.52                    | 1/2 ''              |
|          | P4.3-P4.2  | 167.9                         | 1/2 ''                  | 663.76                    | 3/4 ''              |
|          | P4.2-P4.1  | 252.49                        | 1/2 ''                  | 905.13                    | 1 ''                |
|          | P4.1-P4-0  | 329.21                        | 1/2 ''                  | 1143.66                   | 1 ''                |
|          | P4.0-Bomba | 6,162.23                      | 2 1/2"                  | 24,371.87                 | 3"                  |

Tabla 24: Dimensionamiento de la red de tuberías de agua

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Capítulo 6 SISTEMA DE CLIMATIZACIÓN

Tras el cálculo de las cargas térmicas de verano y de invierno de cada estancia, la red de tuberías y la red de conductos, se procede a la determinación del sistema de climatización a emplear. Dicho sistema ha de ser el más apropiado para combatir las cargas anteriormente mencionadas y cumpliendo las condiciones que el RITE<sup>[1]</sup> requiere.

La climatización del hotel se ha basado en un sistema de climatizadores que trabajan junto a Fan-coils, esto proporciona de forma individualizada las condiciones necesarias de cada estancia.

Dos climatizadores situados en la cubierta del edificio suministrarán el aire a todas las plantas. El semisótano, planta de acceso y primera planta se abastecerán del aire proporcionado por el climatizador 1, las plantas segunda, tercera y cuarta se abastecerán del aire proporcionado por el segundo climatizador.

Estos climatizadores proporcionan el aire que permitan vencer las cargas máximas de las estancias, este aire es impulsado en por una red de conductos que conectan el climatizador con cada Fan-coil.

El Fan-coil de cada estancia es de 4 tubos, que permitirá compensar la fuerte carga latente de las zonas mediante la producción de agua caliente y agua fría. Además, precisan de un sistema de retorno integrado, aspiran el aire por una rejilla de retorno.

Se precisa de un grupo frigorífico, una caldera y una red de tuberías para el suministro de agua a los climatizadores de la instalación, ambos están situados en la cubierta del edificio.



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 6.1 **CLIMATIZADORES**

El aire introducido a cada estancia del hotel es impulsado por los climatizadores situados en la cubierta del hotel. Estos climatizadores impulsarán el caudal necesario del aire exterior tratado mediante la ayuda de la red de conductos.

#### 6.1.1 DISEÑO DE LOS CLIMATIZADORES

Se han seleccionado dos climatizadores, uno suministra el aire al semisótano, la Planta de Acceso y la Primera Planta, mientras que el segundo suministra el aire exterior tratado al resto de plantas (Plantas segunda, tercera y cuarta). Dado que estos climatizadores alimentan el aire primario de los Fan-coils de cada estancia se tiene que tener en cuenta que la potencia sensible que se ha de calcular para estos climatizadores ha de ser la suma de las potencias sensibles de aire exterior de cada estancia. Para cada climatizador se posee una batería de calor y otra de frío además de un ventilador centrífugo de impulsión.

También han de encargarse de la extracción de aire de las habitaciones y resto de estancias, por lo tanto, contaran con un ventilador centrífugo de extracción y con la ayuda de un recuperador se aprovechará parte de esa energía El resto de cargas de cada estancia son compensadas por cada Fan-coil.

# THE PROPERTY OF THE PROPERTY O

#### UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# 6.1.2 CÁLCULO DE LOS CLIMATIZADORES

Para la elección de los climatizadores, se ha tenido en cuenta los siguientes parámetros:

- Caudales:

- Potencia:

o Impulsión

o Frigorífica y su caudal de agua fría

Extracción

o Calorífica y su caudal de agua caliente

En la Tabla 25 se muestran las características de los climatizadores, seleccionados del catálogo adjunto en el apartado 1.1 de la Parte III.

| Clima                 | tizador          | Climatizador 1       | Climatizador 2       |
|-----------------------|------------------|----------------------|----------------------|
| Pot. frigorífica (kW) |                  | 18.35                | 6.76                 |
| Caudal ag             | ua fría (l/h)    | 3,156.21             | 1,162.6              |
| Pot. calo             | rífica (kW)      | 28.22                | 12.02                |
| Caudal agua           | ı caliente (l/h) | 2,426.91             | 1,033.72             |
| Caudal de             | Impulsión        | 4,327.24             | 1,843.2              |
| aire (m3/h)           | Extracción       | 1,456.23             | 254.97               |
| Ma                    | arca             | TROX                 | TROX                 |
| Mo                    | delo             | Serie X-CUBE compact | Serie X-CUBE compact |

Tabla 25: Elección de climatizadores

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 6.2 FAN-COILS

Los Fan-coils son los encargados de combatir la carga del local, es decir, el calor efectivo en verano y las pérdidas de carga de invierno, ya que los climatizadores, tal y como se ha comentado anteriormente, son los encargados de tratar el aire exterior mediante el circuito de aire primario.

#### 6.2.1 DISEÑO DE LOS FAN-COILS

Se ha optado por instalar al menos un Fan-coil en cada estancia. Su instalación es de 4 tubos, lo que permite climatizar cada estancia de forma individual.

La forma de trabajo de los Fan-coils consiste en que tratan un caudal de aire exterior que procede del circuito primario del climatizador, ese caudal es necesario para renovar el aire interior de cada estancia. Este aire se impulsará después de haber sido mezclado con el caudal de retorno y tras realizar el intercambio de calor con las tuberías de agua fría o caliente según las necesidades requeridas.

Se han seleccionado dos tipos de Fan-coils, para las habitaciones se han instalado Fan-coils modelo FLS tipo horizontal sin envolvente (Batería 3 + 1R), su ventaja es la posibilidad de ocultarse en el falso techo y éste mismo hará de plenum para posibilitar el flujo de aire de retronó. Para el resto de zonas se han seleccionado Fan-coils tipo Cassette, cuyo retorno es tomado por el centro e impulsan aire por sus laterales.

#### 6.2.2 CÁLCULO DE LOS FAN-COILS

La Tabla 26 muestra la selección de los Fan-coils para las distintas estancias. Esta selección se ha llevado a cabo teniendo en cuenta que la potencia máxima



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

suministrada por el Fan-coil sea mayor que la potencia requerida, tanto frigorífica como calorífica. Los catálogos se muestran en el apartado 1.21.2de la Parte III.

| Planta     | Estancia                | Potencia<br>total<br>frigorífica<br>(Kcal/h) | Potencia<br>total<br>calefacción<br>(m³/h) | Modelo     | Potencia<br>frigorífica<br>(W) | Potencia<br>calorífica<br>(W) |
|------------|-------------------------|----------------------------------------------|--------------------------------------------|------------|--------------------------------|-------------------------------|
|            | Salón 1                 | 4,878.12                                     | 2,705.06                                   | FCS 80     | 5,103                          | 5,431                         |
| Semisótano | Salón 2                 | 12,169.85                                    | 6,933.53                                   | 3 x FCS 80 | 5,103                          | 5,431                         |
|            | Cafetería               | 2,585.02                                     | 1,464.95                                   | 2 x FCS 30 | 2,891                          | 2,818                         |
|            | Habitación<br>minusvál. | 1,859.32                                     | 903.46                                     | FLS 150    | 1,870                          | 1,990                         |
|            | Sala de estar           | 6,843.15                                     | 4,529.45                                   | 3 x FCS 30 | 2,891                          | 2,818                         |
|            | Vestíbulo               | 3,253.35                                     | 1,575.31                                   | FCS 50     | 4,453                          | 3,146                         |
| Acceso     | Zona salas 1            | 6,900.76                                     | 3,338.36                                   | 2 x FCS 50 | 4,453                          | 3,146                         |
|            | Zona salas 2            | 6,752.16                                     | 3,012.97                                   | 2 x FCS 50 | 4,453                          | 3,146                         |
|            | Recepción               | 1,839.04                                     | 1,178.64                                   | FCS 30     | 2,891                          | 2,818                         |
|            | Despacho                | 2,695.98                                     | 1,775.03                                   | FCS 30     | 2,891                          | 2,818                         |
|            | 1                       | 1,573.13                                     | 848.14                                     | FLS 150    | 1,870                          | 1,990                         |
|            | 2                       | 2,240.67                                     | 855.96                                     | FLS 350    | 3,010                          | 2,990                         |
| Planta 1   | 3                       | 1,453.18                                     | 671.81                                     | FLS 150    | 1,870                          | 1,990                         |
|            | 4                       | 2,089.13                                     | 817.43                                     | FLS 250    | 2,260                          | 2,320                         |
|            | 5                       | 1,537.73                                     | 661.97                                     | FLS 150    | 1,870                          | 1,990                         |

| Dlanta | Estancia | Potencia Potencia <b>Modelo</b> | Potencia | Potencia |             |            |
|--------|----------|---------------------------------|----------|----------|-------------|------------|
| Planta | Estancia | total                           | total    | Moaeio   | frigorífica | calorífica |



|          |    | frigorífica | calefacción |           | (W)   | (W)   |
|----------|----|-------------|-------------|-----------|-------|-------|
|          |    | (Kcal/h)    | $(m^3/h)$   |           |       |       |
|          | 6  | 1,987.53    | 969.30      | 2xFLS 150 | 1,870 | 1,990 |
|          | 7  | 1,189.44    | 546.52      | FLS 150   | 1,870 | 1,990 |
|          | 8  | 1,178.84    | 669.74      | FLS 150   | 1,870 | 1,990 |
| Planta 1 | 9  | 2,129.79    | 854.28      | FLS 250   | 2,260 | 2,320 |
|          | 10 | 1,429.14    | 578.85      | FLS 150   | 1,870 | 1,990 |
|          | 11 | 2,133.71    | 906.69      | FLS 250   | 2,260 | 2,320 |
|          | 12 | 1,666.79    | 799.20      | FLS 150   | 1,870 | 1,990 |
|          | 1  | 1,568.13    | 764.24      | FLS 150   | 1,870 | 1,990 |
|          | 2  | 2,234.67    | 828.22      | FLS 350   | 3,010 | 2,990 |
|          | 3  | 1,453.18    | 676.12      | FLS 150   | 1,870 | 1,990 |
|          | 4  | 2,089.13    | 817.43      | FLS 250   | 2,260 | 2,320 |
|          | 5  | 1,534.73    | 600.29      | FLS 150   | 1,870 | 1,990 |
| Dl4- 2   | 6  | 1,982.53    | 849.41      | 2xFLS 150 | 1,870 | 1,990 |
| Planta 2 | 7  | 1,183.44    | 514.11      | FLS 150   | 1,870 | 1,990 |
|          | 8  | 1,173.84    | 639.02      | FLS 150   | 1,870 | 1,990 |
|          | 9  | 2,129.79    | 854.28      | FLS 250   | 2,260 | 2,320 |
|          | 10 | 1,429.14    | 578.85      | FLS 150   | 1,870 | 1,990 |
|          | 11 | 2,133.71    | 906.69      | FLS 250   | 2,260 | 2,320 |
|          | 12 | 1,666.79    | 799.20      | FLS 150   | 1,870 | 1,990 |

|        |          | Potencia    | Potencia    |        | Potencia    | Potencia   |
|--------|----------|-------------|-------------|--------|-------------|------------|
| Planta | Estancia | total       | total       | Modelo | frigorífica | calorífica |
|        |          | frigorífica | calefacción |        | (W)         | (W)        |



## ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

|           |     | (Kcal/h) | $(m^3/h)$ |           |       |       |
|-----------|-----|----------|-----------|-----------|-------|-------|
|           | 1.1 | 1,690.71 | 834.07    | FLS 150   | 1,870 | 1,990 |
|           | 1.2 | 1,124.73 | 491.28    | FLS 150   | 1,870 | 1,990 |
|           | 2   | 1,504.46 | 663.02    | FLS 150   | 1,870 | 1,990 |
|           | 3   | 2,091.13 | 871.40    | FLS 250   | 2,260 | 2,320 |
|           | 4   | 1,534.73 | 600.29    | FLS 150   | 1,870 | 1,990 |
| Dl 2      | 5   | 1,790.53 | 893.58    | FLS 150   | 1,870 | 1,990 |
| Planta 3  | 6   | 1,999.44 | 608.97    | 2xFLS 150 | 1,870 | 1,990 |
|           | 7   | 1,174.84 | 646.01    | FLS 150   | 1,870 | 1,990 |
|           | 8   | 2,138.79 | 906.67    | FLS 250   | 2,260 | 2,320 |
|           | 9   | 1,435.14 | 598.91    | FLS 150   | 1,870 | 1,990 |
|           | 10  | 1,918.93 | 928.49    | FLS 250   | 2,260 | 2,320 |
|           | 11  | 1,963.98 | 852.28    | FLS 250   | 2,260 | 2,320 |
|           | 1   | 2,255.28 | 1,440.12  | 2xFLS 150 | 1,870 | 1,990 |
|           | 2   | 1,096.74 | 771.02    | FLS 150   | 1,870 | 1,990 |
|           | 3   | 1,082.52 | 702.62    | FLS 150   | 1,870 | 1,990 |
| Planta 4  | 4   | 1,567.58 | 1,097.10  | FLS 150   | 1,870 | 1,990 |
| r iaina 4 | 5   | 1,457.60 | 1,004.52  | FLS 150   | 1,870 | 1,990 |
|           | 6   | 1,861.21 | 674.54    | FLS 250   | 2,260 | 2,320 |
|           | 7   | 1,206.85 | 845.93    | FLS 150   | 1,870 | 1,990 |
|           | 8   | 1,192.67 | 767.22    | FLS 150   | 1,870 | 1,990 |

Tabla 26 Cálculo de Fan-coils

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 6.3 SISTEMA DE PRODUCCIÓN DE CALOR Y FRÍO

La caldera y el grupo frigorífico son los encargados de la producción del agua de calor y frío, respectivamente. La potencia que suministran será la potencia máxima de las estancias correspondientes. Mediante un circuito primario se impulsa, gracias a dos bombas gemelas, el agua proporcionada por los sistemas de producción y calor hasta un colector. Este primer circuito es un circuito primario, tras el colector, se suministra el agua a los climatizadores y a los Fan-coils, mediante el circuito secundario.

#### 6.3.1 Grupo frigorífico

Para la alimentación de los climatizadores y de las baterías de los Fan-coils se precisa de un sistema de refrigeración que produzca el agua fría, este se situará en la cubierta del edificio.

#### 6.3.1.1 Diseño del grupo frigorífico

El agua del equipo frigorífico ha de cumplir que el salto térmico entre la entrada y la salida sea de 5°C, por lo tanto, cumple las siguientes características:

- La salida de agua del equipo ha de ser de 7°C
- La salida de agua de los climatizadores y de los Fan-coils ha de ser de 12°C.

## 6.3.1.2 Cálculo del grupo frigorífico

Ya que se necesitan las cargas térmicas totales de verano de cada estancia y estas no son simultaneas en hora y mes, no se puede utilizar el sumatorio de éstas para el cálculo, por lo que, para el cálculo de la potencia frigorífica total se ha utilizado las cargas totales del edificio. Tal y como se ve en la Tabla 27, la potencia



#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

frigorífica requerida es menor de 400kW, por lo que basándonos en el RITE, solo se necesita de un equipo frigorífico. El grupo frigorífico seleccionado es condensado por aire con ventilador axial. El catálogo del equipo seleccionado se encuentra en el apartado 1.21.3de la Parte III.

| Grupo frigorífico            |                          |         |              |                                               |  |  |
|------------------------------|--------------------------|---------|--------------|-----------------------------------------------|--|--|
| Pot. frigorífica<br>(kcal/h) | Pot. frigorífica<br>(kW) | Marca   | Modelo       | Potencia frigorífica<br>proporcionada<br>(kW) |  |  |
| 114,412                      | 133.04                   | CARRIER | 30RBS039-160 | 160kW                                         |  |  |

Tabla 27: Características del grupo frigorífico

#### 6.3.2 CALDERA

Para la alimentación de los climatizadores y de las baterías de los Fan-coils se precisa de un sistema de refrigeración que produzca el agua caliente.

#### 6.3.2.1 Diseño de la caldera

El agua de la caldera ha de cumplir que el salto térmico entre la entrada y la salida sea de 10°C, por lo tanto, cumple las siguientes características:

- La salida de agua del equipo ha de ser de 50°C
- El retorno del agua desde los climatizadores y de los Fan-coils ha de ser de 40°C.



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 6.3.2.2 Cálculo de la caldera

Al contrario que con las cargas térmicas de verano, las cargas térmicas de invierno si tienen simultaneidad en hora y mes, por lo que se puede utilizar el sumatorio de la carga total de cada estancia para el cálculo. Tal y como se ve en la, la potencia frigorífica requerida es menor de 400kW, por lo que, basándonos en el RITE, solo se necesita de un equipo calorífico. La caldera seleccionada es de condensación a gas. El catálogo del equipo seleccionado se encuentra en el apartado 1.21.4de la Parte III.

| Caldera                     |                         |           |                          |                                              |  |  |
|-----------------------------|-------------------------|-----------|--------------------------|----------------------------------------------|--|--|
| Pot. calorífica<br>(kcal/h) | Pot. calorífica<br>(kW) | Marca     | Modelo                   | Potencia calorífica<br>proporcionada<br>(kW) |  |  |
| 71,082.52                   | 82.65                   | VIESSMANN | VITOCROSSAL<br>100 – CI1 | 80 – 318 kW                                  |  |  |

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Capítulo 7 BOMBAS

Con la finalidad de suministrar el caudal necesario, a los equipos terminales de cada estancia que compensen las cargas, tener suficiente presión en el tramo con mayor pérdida de carga para el impulso de esta agua y volver por el retorno, se precisan de bombas que impulsen el agua de los sistemas de producción de calor y frío hasta las baterías de los equipos terminales de cada local.

Es por ello, que se han diseñado tres circuitos, uno de aire primario que va de los grupos de producción de calor y frío hasta el colector, y dos circuitos secundarios, el primero de ellos transporta el agua del colector a los climatizadores y el segundo a los Fan-coils.

#### 7.1 **DISEÑO DE BOMBAS**

Se precisa de dos circuitos que las bombas han de impulsar, el circuito primario es el que va de los Se ha de calcular la pérdida de carga del recorrido más crítico, aquel de mayor longitud. La pérdida de carga que ha de sopesar las bombas no solo es la pérdida de carga provocada por el desplazamiento del agua, sino que también se ha tenido en cuenta la pérdida que provocan los codos, las divisiones o incorporaciones de red, la variación de dimensión de las tuberías y la pérdida de carga de los elementos terminales, filtros y válvulas. Tras la suma de todos los elementos se obtendrá la altura efectiva necesaria para cada bomba.

Se va a disponer de dos bombas, llamadas bombas gemelas, es decir, cada bomba posee una bomba paralela para que, en caso de avería, la climatización del edificio no se interrumpe. Cabe destacar que las válvulas son compartidas entre la bomba principal y la gemela de repuesto.

# THE WATER TO SERVICE THE PROPERTY OF THE PROPE

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 7.2 **DIMENSIONAMIENTO DE BOMBAS**

Con la ayuda de las hojas de cálculo mostradas en el apartado 1.22.5 de la Parte III se ha hallado la pérdida de carga total que han de combatir cada una de las 12 bombas (recordamos que habrá un total de 6 bombas gemelas). Las bombas serán de serie del fabricante GRUNDFOS, de la serie TP y TPE y estarán situadas en la planta bajo cubierta, junto a la caldera.

En la tabla Tabla 28 se muestra un resumen de cada bomba, estas bombas se han seleccionado gracias al Product Center<sup>[5]</sup> de la marca GRUNDFOS que permite hallar la bomba que mejor cumpla las condiciones requeridas.

Los catálogos de dichas bombas se encuentran en el apartado 1.5 de la Parte III.

| Bombas  | Circuito                | Caudal de  | Pérdida de    | Marca    | Modelo      |  |
|---------|-------------------------|------------|---------------|----------|-------------|--|
|         |                         | agua (l/h) | carga (m.c.a) |          |             |  |
| 1 - 2   | Fan-coils Agua fría     | 21,207.01  | 8,57          | GRUNDFOS | TP 50-180/2 |  |
| 3 - 4   | Fan-coils Agua Caliente | 9,326.08   | 6,75          | GRUNDFOS | TP 32-90/2  |  |
| 5 - 6   | Clim. Agua Fría         | 4,318.81   | 8,30          | GRUNDFOS | TP 32-90/2  |  |
| 7 - 8   | Clim. Agua Caliente     | 3,460.63   | 5,54          | GRUNDFOS | TP 25-80/2  |  |
| 9 - 10  | Enfriadora              | 22,882.40  | 8,07          | GRUNDFOS | TP 50-180/2 |  |
| 11 - 12 | Caldera                 | 7,108.25   | 4,77          | GRUNDFOS | TPD 40-60/2 |  |
|         |                         |            |               |          |             |  |

Tabla 28: Selección de bombas

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Capítulo 8 NORMATIVA DE APLICACIÓN

Durante la realización de este proyecto, se ha tenido en cuenta las siguientes normativas legales vigentes que hacen posible su aplicación:

- Normas UNE de aplicación en la climatización
- Código Técnico de la Edificación (CTE)
- Reglamentos de Instalaciones Térmicas en los Edificios (R.I.T.E.) [Real Decreto 1027/2007, 20 Julio]





ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Capítulo 9 REFERENCIAS

- [1] El Reglamento RITE en su IT 1.1.4.2.2
- [2] Código técnico de la edificación
- [3] Norma Básica de la Edificación NBE-CT-79
- [4] Asociación Técnica Española de Climatización y Refrigeración (ATECYR)
- [5] [Web] Product Selection, GRUNDFOS <a href="https://product-selection.grundfos.com/catalogue.product%20families.q%26h%20tp.ht">https://product-selection.grundfos.com/catalogue.product%20families.q%26h%20tp.ht</a>
  <a href="mailto:ml?custid=BGE&familycode=TPFAM&flow=0&head=0&lang=ESP&time=1529593965029&qcid=394095538">https://product-selection.grundfos.com/catalogue.product%20families.q%26h%20tp.ht</a>
  <a href="mailto:time=1529593965029&qcid=394095538">time=1529593965029&qcid=394095538</a>



# RESITAS CONFILER

#### UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Parte II PLANOS



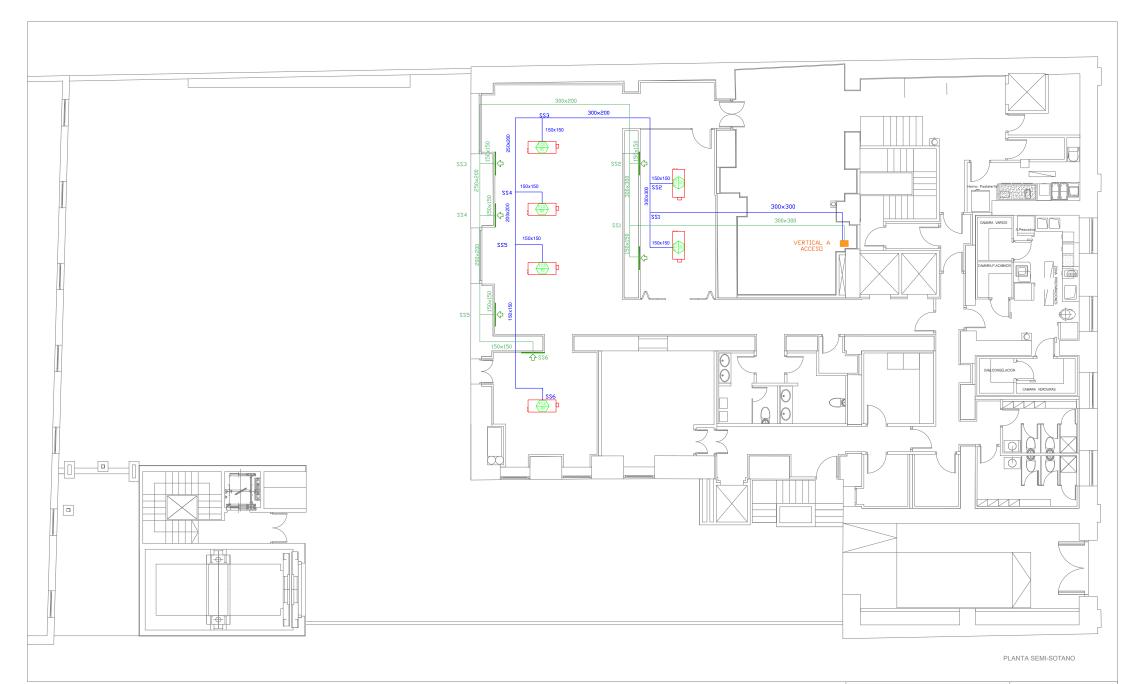
# WERSTASSON THE PROPERTY OF THE

## UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Índice de Planos

| Capítulo 1 | Planos de la red de conductos | . 89 |
|------------|-------------------------------|------|
| Capítulo 2 | Planos de la red de tuberías  | . 97 |
| Capítulo 3 | Esquema de principio          | 105  |

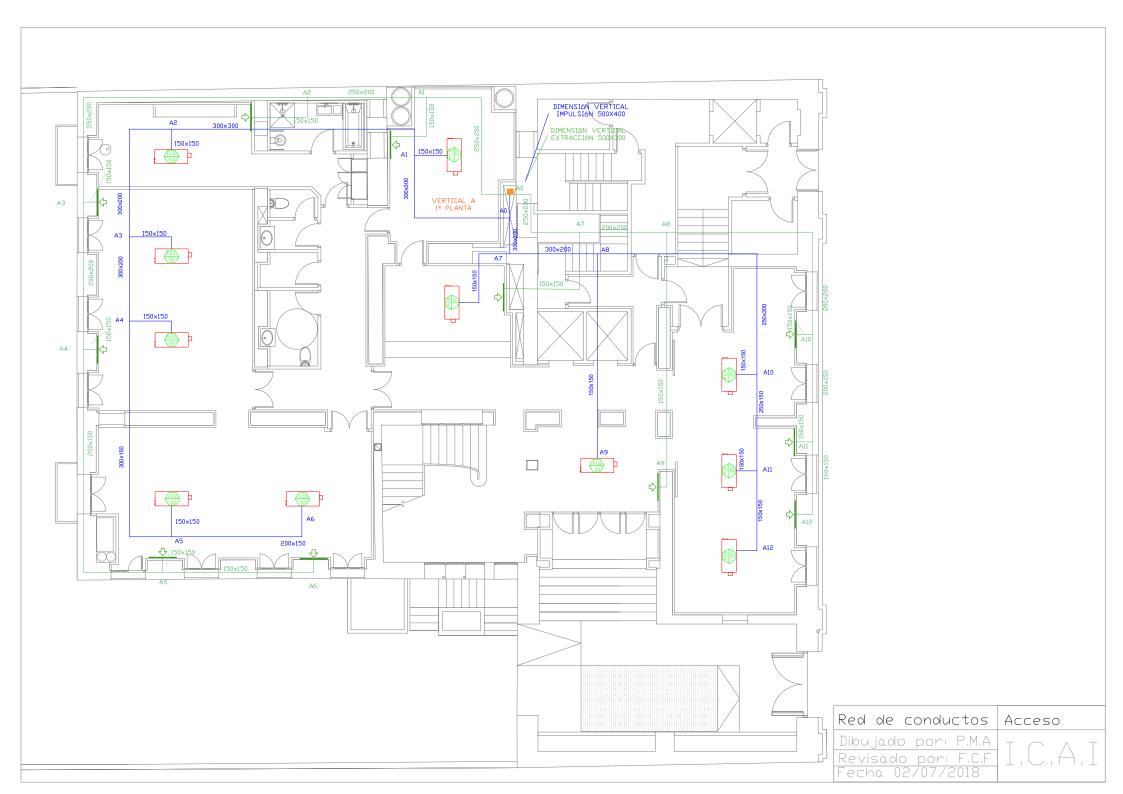




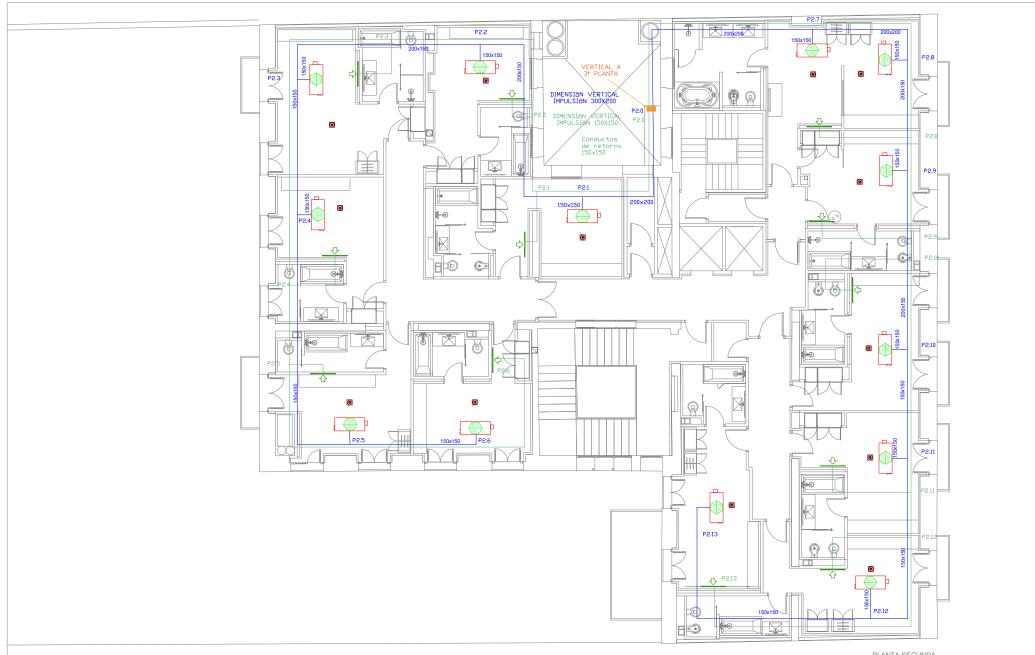

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Capítulo 1 PLANOS DE LA RED DE CONDUCTOS



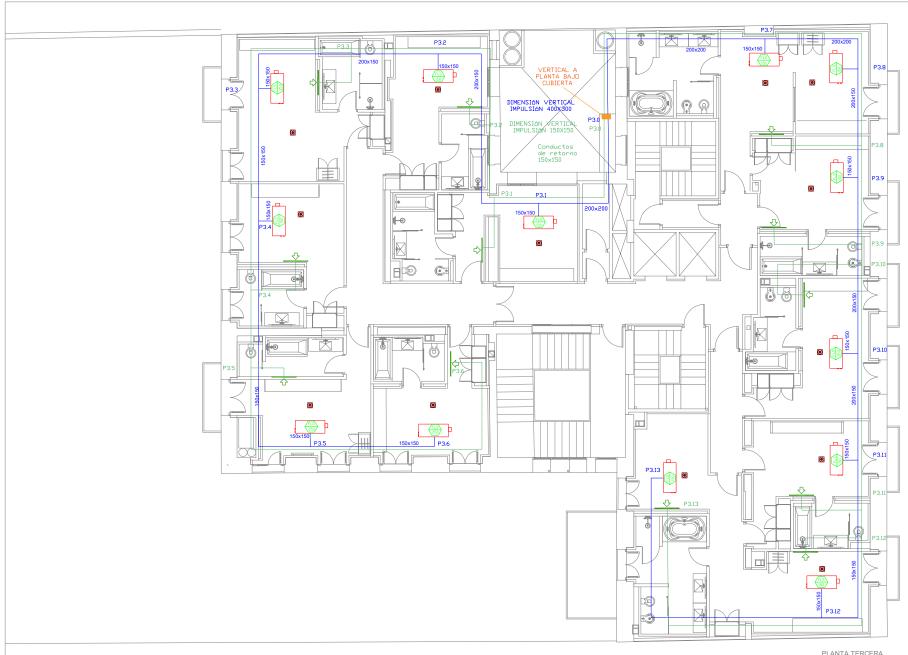



Red de conductos Semisótano


Dibujado por: P.M.A

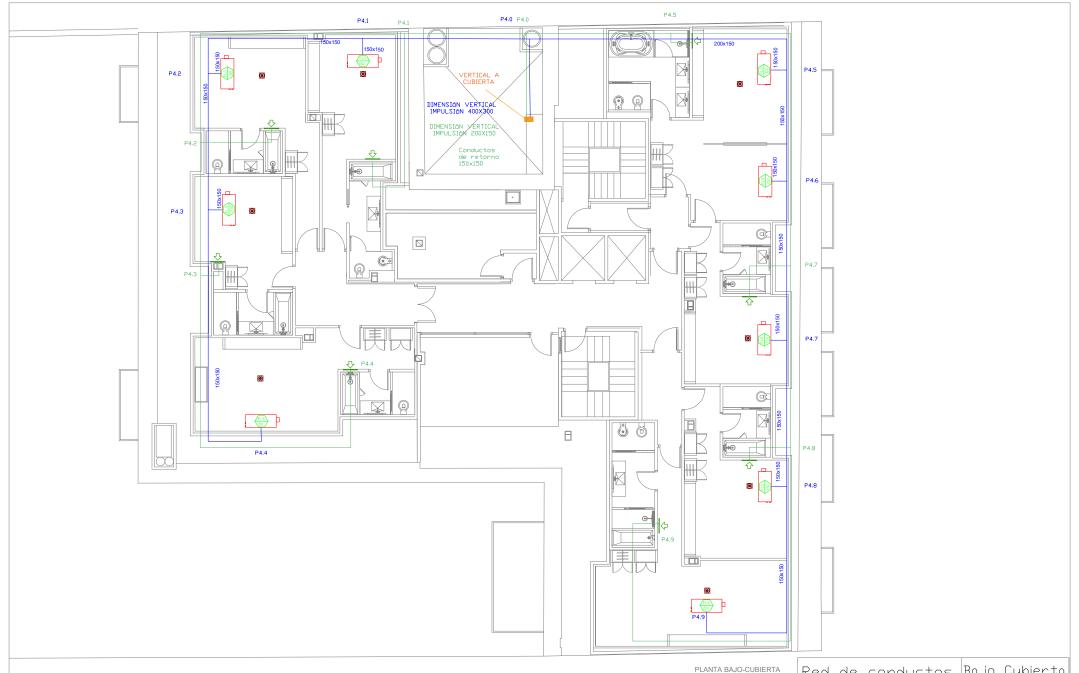
Revisado por: F.C.F

Fecha 02/07/2018









PLANTA SEGUNDA

| Red de conductos    | 2º Planta |
|---------------------|-----------|
| Dibujado por: P.M.A | т 🔿 🔥 т   |
| Revisado por: F.C.F |           |
| Fecha 02/07/2018    |           |



PLANTA TERCERA

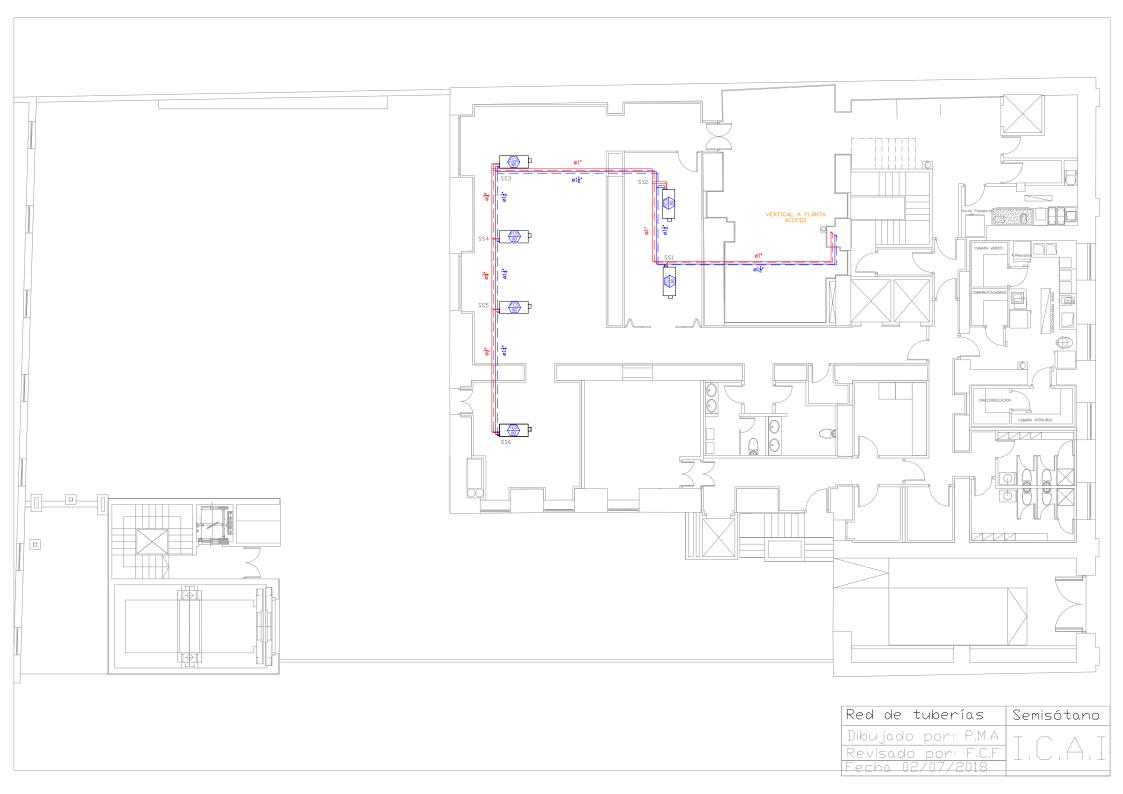
| Red de conductos    | 3ª | Planta   |   |
|---------------------|----|----------|---|
| Dibujado por: P.M.A | Т  | $\wedge$ | Т |
| Revisado por: F.C.F |    | LA       |   |
| Fecha 02/07/2018    |    |          |   |

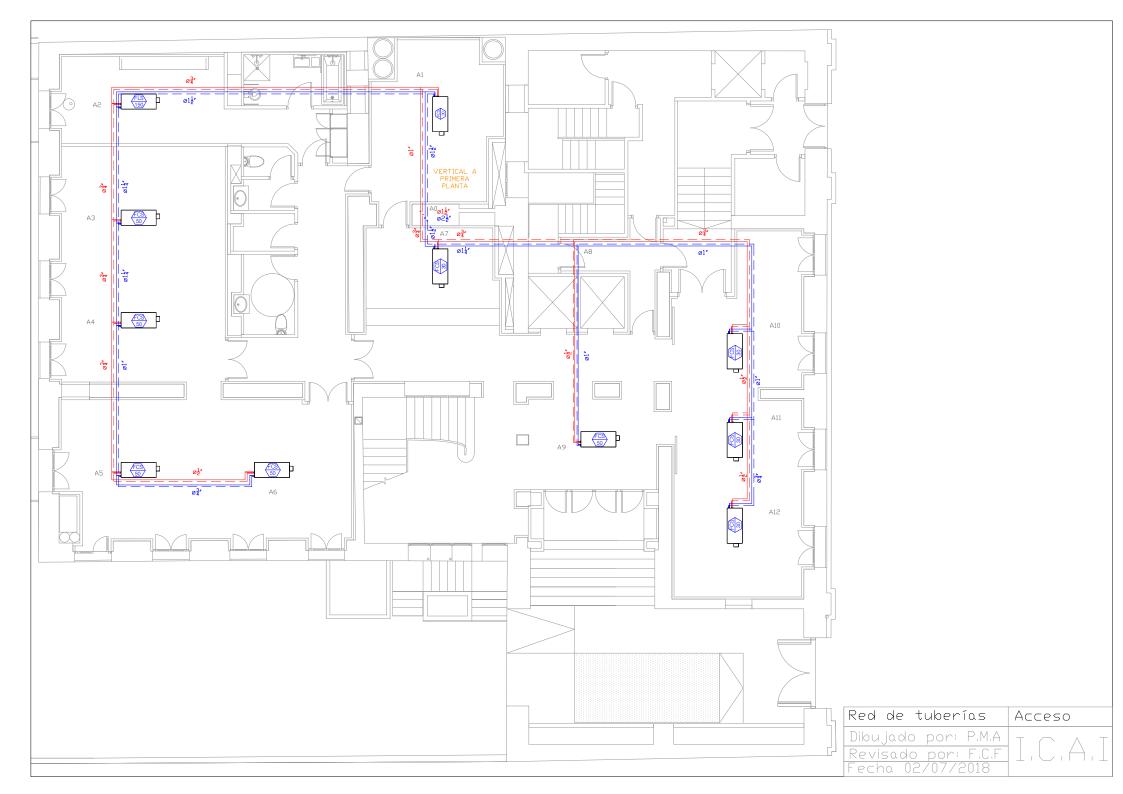


Red de conductos Bajo Cubierta Dibujado por: P.M.A

Revisado por: F.C.F Fecha 02/07/2018

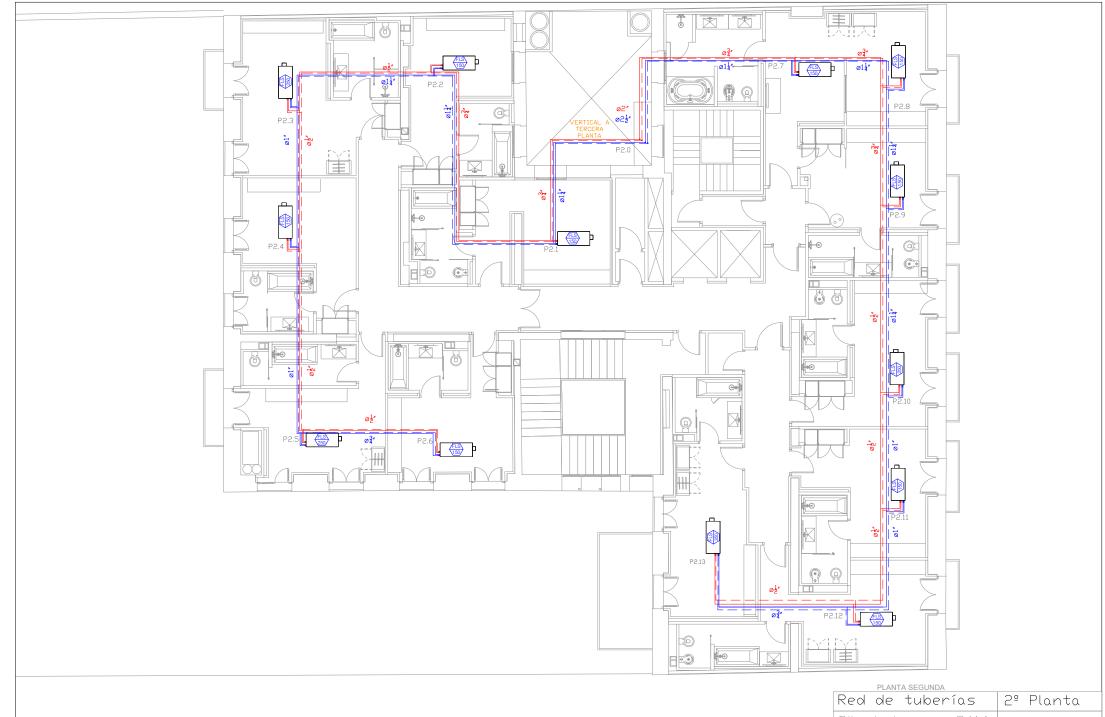
# THE TAS CONTERNATION OF THE PROPERTY OF THE PR


# UNIVERSIDAD PONTIFICIA COMILLAS


ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)


# Capítulo 2 PLANOS DE LA RED DE TUBERÍAS



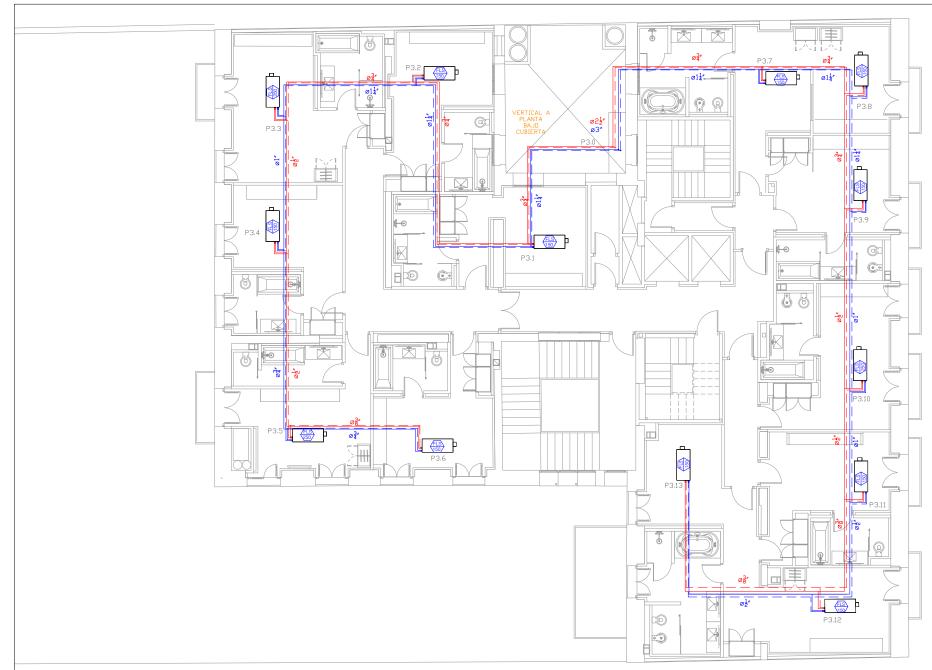

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)





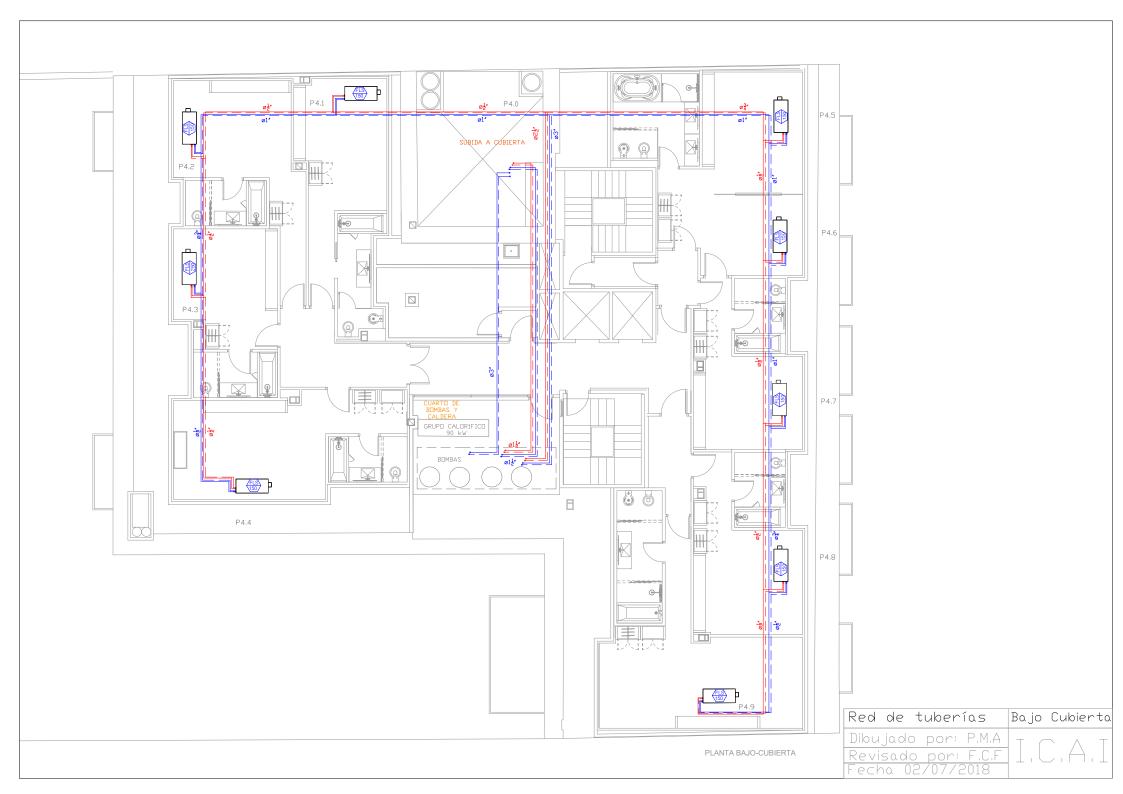


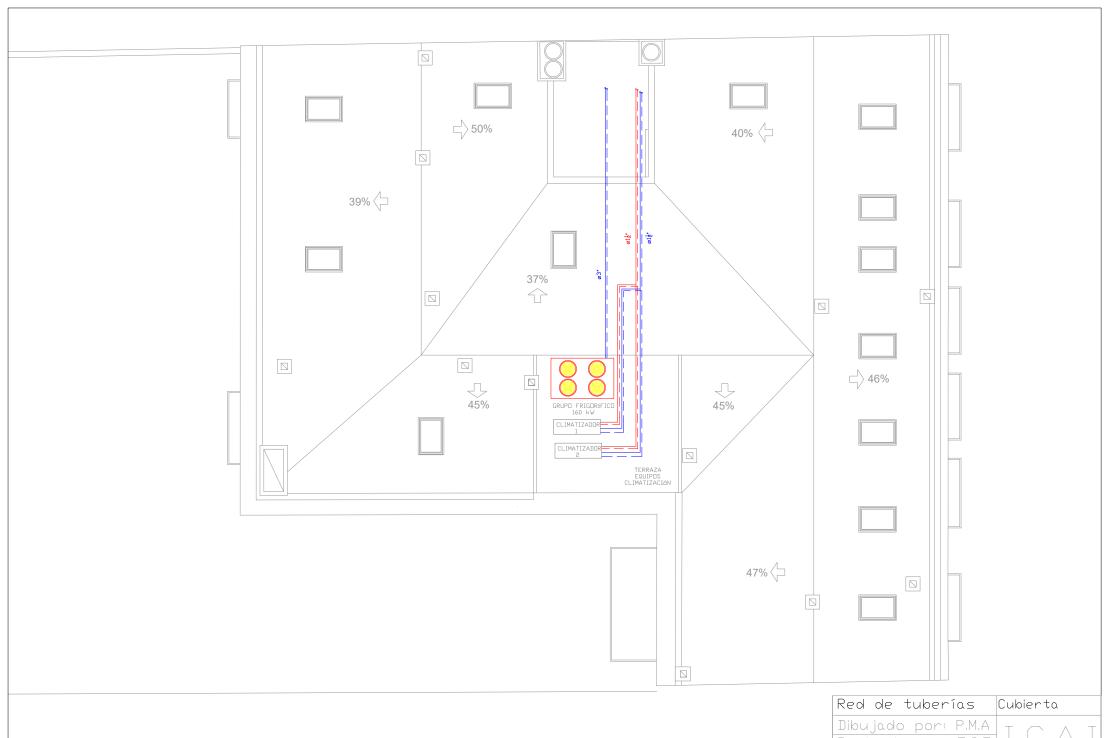
| PLANTA PRIMERA | Red de tuberías     | 1º Planta    |
|----------------|---------------------|--------------|
|                | Dibujado por: P.M.A | $T \cap A T$ |
|                | Revisado por: F.C.F |              |
|                | Fecha 02/07/2018    |              |




Red de tuberías 2º Planta

Dibujado por: P.M.A


Revisado por: F.C.F


Eecha 02/07/2018



PLANTA TERCERA

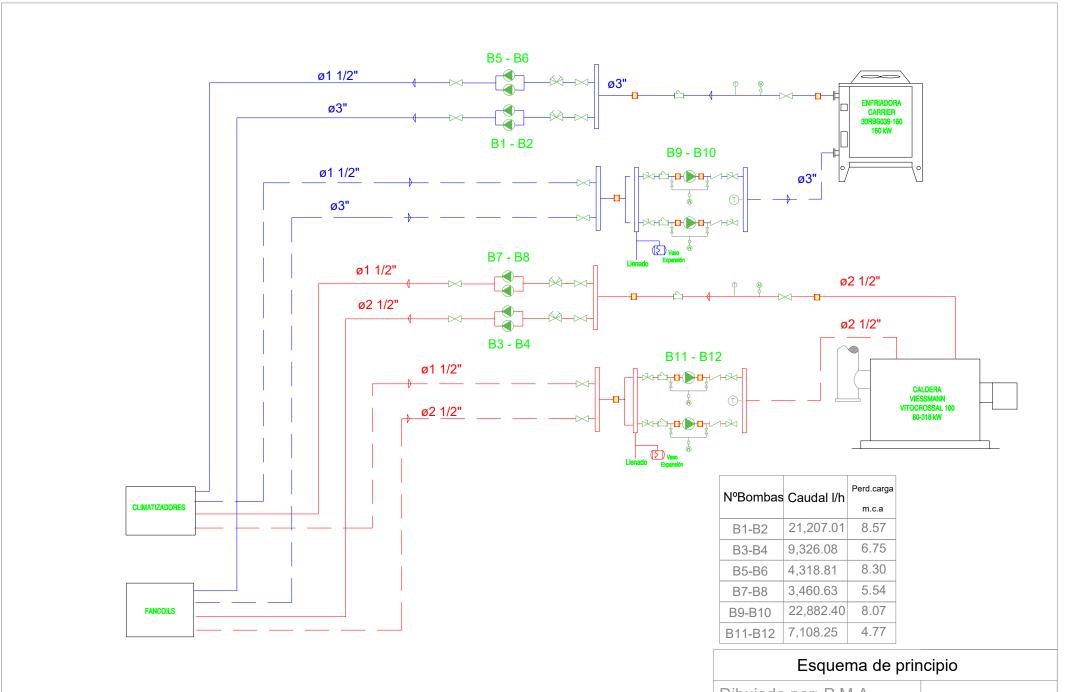
| Red de tuberías     | 3º Planta                  |
|---------------------|----------------------------|
| Dibujado por: P.M.A | $T \cap A T$               |
| Revisado por: F.C.F | $  \bot, \bigcup, A, \bot$ |
| Fecha 02/07/2018    |                            |





Dibujado por: P.M.A Revisado por: F.C.F Fecha 02/07/2018

# TENSITA SO CONTENTS OF THE PROPERTY OF THE PRO


# UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Capítulo 3 ESQUEMA DE PRINCIPIO



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)



Dibujado por: P.M.A

Revisado por: F.C.F

Fecha 02/07/2018

I.C.A.I



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# TO THE POST OF THE

# UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Parte III ANEXOS



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# THE PROPERTY OF THE PARTY OF TH

# UNIVERSIDAD PONTIFICIA COMILLAS

# ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Índice de Anexos

| Capítulo 1 | Catálogos                                                 | 113 |
|------------|-----------------------------------------------------------|-----|
| 1.1        | Catálogo de climatizadores                                | 113 |
| 1.2        | Catálogo de Fan-coils                                     | 114 |
| 1.2.1      | serie FLS Termoven                                        | 114 |
| 1.2.2      | Catálogo de Fan-coils tipo Cassette Termoven              | 118 |
| 1.3        | Catálogo del grupo frigorífico                            | 121 |
| 1.4        | Catálogo del grupo calorífico                             | 122 |
| 1.5        | Catálogo de las bombas                                    | 129 |
| 1.5.1      | Catálogo de las bombas 1 y 2                              | 129 |
| 1.5.2      | 2 Catálogo de las bombas 3 y 4                            | 131 |
| 1.5.3      | Catálogo de las bombas 5 y 6                              | 133 |
| 1.5.4      | Catálogo de las bombas 7 y 8                              | 135 |
| 1.5.5      | Catálogo de las bombas 9 y 10                             | 137 |
| 1.5.6      | Catálogo de las bombas 11 y 12                            | 139 |
| 1.6        | Catálogos de difusores                                    | 141 |
| 1.6.1      | Difusores Rotacionales                                    | 141 |
| 1.6.2      | 2 Disposición de los difusores                            | 143 |
| 1.7        | Catálogo de las rejillas                                  | 144 |
| 1.7.1      | Catálogo de las rejillas de impulsión                     | 144 |
| 1.7.2      | Catálogo de las rejillas de retorno                       | 145 |
| Capítulo 2 | Tablas                                                    | 147 |
| 2.1        | Tabla de ganancias debidas a los ocupantes                | 147 |
| 2.2        | Tabla de datos geográficos y climatológicos en Pontevedra | 148 |
| 2.3        | Tablas del cálculo de cargas                              | 149 |
| 2.3.1      | Tablas del cálculo de cargas de verano                    | 149 |
| 2.3.2      | Tablas del cálculo de cargas de invierno                  | 155 |
|            |                                                           |     |



# ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

| 2.4.1 Diagrama para el cálculo de pérdidas de carga de aire en los conductos circular    | es  |
|------------------------------------------------------------------------------------------|-----|
|                                                                                          | 159 |
| 2.4.2 Diagrama de transformación de los conductos rectangulares en conductos circu       |     |
| a iguales pérdidas de carga                                                              | 160 |
| 2.4.3 Cálculo de la pérdida de carga en la red de conductos                              | 161 |
| 2.5 Cálculo de la altura efectiva de las bombas en la red de tuberías                    | 165 |
| 2.5.1 Tabla de cálculo de tuberías de acero para agua caliente y fría                    | 165 |
| 2.5.1 Tabla de la longitud equivalente de accesorios en tuberías                         | 166 |
| 2.5.2 Cálculo de la altura efectiva de las bombas, en el circuito de agua fría de los Fa | ın- |
| coils                                                                                    | 167 |
| 2.5.3 Cálculo de la altura efectiva de las bombas, en el circuito de agua caliente de la | os  |
| Fan-coils                                                                                | 167 |
| 2.5.4 Cálculo de la altura efectiva de las bombas, en el circuito de agua fría de los    |     |
| climatizadores                                                                           | 168 |
| 2.5.5 Cálculo de la altura efectiva de las bombas, en el circuito de agua caliente de la | os  |
| climatizadores                                                                           | 168 |
| 2.5.6 Cálculo de la altura efectiva de la bomba, en el circuito del grupo frigorífico    | 169 |
| 2.5.7 Cálculo de la altura efectiva de la bomba, en el circuito de la caldera            | 169 |



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Capítulo 1 CATÁLOGOS

# 1.1 CATÁLOGO DE CLIMATIZADORES



PÁGINA PRINCIPAL > Productos > Unidades de tratamiento de aire > Serie X-CUBE compact

#### Serie X-CUBE compact



#### TYPE X-CUBE COMPACT

Las unidades X-CUBE compact combinan las ventajas más significativas de la tecnología X-CUBE del GRUPO TROX, bajo un elemento de dimensiones reducidas especialmente pensado para instalaciones de tamaño medio y/o pequeño. Se tratan de unas unidades para el tratamiento del aire compactas y eficaces, pre-configuradas desde fábrica y listas para funcionar.

Eficiencia energética, ventiladores plug fan con motores EC que garantizan una mayor eficacia y un menor ruido, con posibilidad de incorporar una amplia gama de accesorios como: recuperadores de calor, control de ventilación por CO2 o una unidad de control de sala fácilmente conectable al cuadro de mando del X-CUBE, como algunas de sus principales posibilidades.

X- CUBE compact de TROX, gran rendimiento en un espacio reducido. Resumen de las principales prestaciones técnicas de estos equipos:

- Para caudales de aire desde 600 hasta 6.000 m3/h
- Máxima eficiencia energética con un alto incremento de la presión total
- Elevado nivel de higiene (en cumplimiento con la norma VDI 6022)
- · Sección de recuperación de calor mediante recuperadores rotativos o estáticos
- Filtración de aire mediante filtros mini-pliegue o NanoWave
- Ejecución para instalación a intemperie disponible
- Conectores rápidos (plug & play)
- · Lado de funcionamiento intercambiable a posteriori
- Incluye comunicación por Bus para conexión con el sistema de gestión del edificio (BMS)



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# 1.2 CATÁLOGO DE FAN-COILS

## 1.2.1 SERIE FLS TERMOVEN







# ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

SERIE FLS

## **DENOMINACION / ACCESORIOS**



## DENOMINACION

| SERIE | TAMAÑO | MOD | ELO  | INSTALACIÓN | FILAS | ACCESORIOS |
|-------|--------|-----|------|-------------|-------|------------|
| FLS   | 150    | S   | SE   |             | 2R    | Voc Table  |
|       | 250    | SR  | SRE  | 2T          | 3R    | Ver Tabla  |
|       | 350    | P   | PE   |             | 4R    |            |
|       | 550    | Т   |      |             | 2+1R  |            |
|       | 850    | TFH | TFHE | 4T          | 3+1R  |            |
|       | 1150   | TFV | TFVE |             | 3+1K  |            |

| EJEMPLO | FL | 450 | TFV | 2T | 3R | K/BH |
|---------|----|-----|-----|----|----|------|

| MODELO |                         |      |                                        |  |  |  |  |
|--------|-------------------------|------|----------------------------------------|--|--|--|--|
|        | S in Envolvente         |      | Con Envolvente                         |  |  |  |  |
| S      | Suelo                   | SE   | Suelo con envolvente                   |  |  |  |  |
| SR     | Suelo altura reducida   | SRE  | Suelo altura reducida con envolvente   |  |  |  |  |
| P      | Pared                   | PE   | Pared con envolvente                   |  |  |  |  |
| T      | Techo                   |      |                                        |  |  |  |  |
| TFV    | Techo filtro vertical   | TFVE | Techo filtro vertical con envolvente   |  |  |  |  |
| TFH    | Techo filtro horizontal | TFHE | Techo filtro horizontal con envolvente |  |  |  |  |

| A    | Toma aire exterior (Sólo modelos S y SE) |  |
|------|------------------------------------------|--|
| BE   | Batería eléctrica (Kw/nº Etapas)         |  |
| ED   | Batería expansión directa                |  |
| MP   | Motor potenciado                         |  |
| AH   | Aislamiento antihumedad (1)              |  |
| BH   | Bandeja antihumedad (2)                  |  |
| BS   | Bandeja lateral supletoria (3)           |  |
| K    | Kit de válvula de 3 vías Todo/Nada (4)   |  |
| CT   | Conmutador techo 3 velocidades           |  |
| TB4  | Termostato bulbo 4T (3)                  |  |
| TBIV | Termostato bulbo Invierno/Verano (3)     |  |
| S    | Silenblock                               |  |

- (1) Diverso aislamiento exterior, en modelos sin envolvente.
- (2) Bandeja doble cubriendo todo el Fan-coil, sólo en techos sin envolvente.
- (3) Sólo en modelos verticales.
- (4) No incluidas válvulas de corte ni manguitos.

8

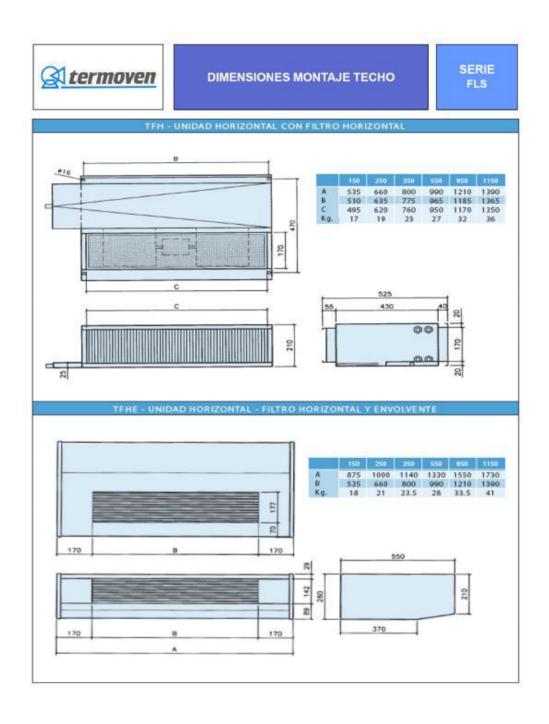


# ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)



# **DATOS TÉCNICOS**

SERIE FLS


|                          |                                         | INISTA      | LACIÓN A | TUROS    | BATERÍA 3     | 1+1D      |          |            |
|--------------------------|-----------------------------------------|-------------|----------|----------|---------------|-----------|----------|------------|
|                          |                                         | III         | EACIOI 4 | 10003.   | DAILKIA       | WIN.      |          |            |
| TAMAÑOS                  | - 8                                     | Velocidades | 150      | 250      | 350           | 550       | 850      | 1150       |
|                          |                                         | 1           | 429      | 461      | 596           | 760       | 1073     | 1225       |
|                          |                                         | 2           | 382      | 417      | 513           | 665       | 953      | 1105       |
|                          |                                         | 3           | 347      | 383      | 456           | 576       | 831      | 1011       |
| Caudal de aire           | m3/h                                    | 4           | 297      | 343      | 389           | 519       | 734      | 873        |
|                          |                                         | 5           | 231      | 280      | 285           | 386       | 544      | 668        |
|                          |                                         | 6           | 203      | 254      | 249           | 342       | 493      | 590        |
|                          |                                         | 1           | 1870     | 2260     | 3010          | 3970      | 5340     | 6250       |
|                          |                                         | 2           | 1780     | 2160     | 2800          | 3720      | 5150     | 5950       |
| Data and Establish Tatal | w                                       | 3           | 1710     | 2080     | 2640          | 3450      | 4720     | 5690       |
|                          | W                                       | 4           | 1590     | 1970     | 2420          | 3250      | 4420     | 5270       |
|                          |                                         | 5           | 1400     | 1760     | 2010          | 2710      | 3700     | 4500       |
|                          |                                         | 6           | 1300     | 1670     | 1830          | 2500      | 3480     | 4160       |
|                          |                                         | 1           | 1610     | 1850     | 2430          | 3150      | 4300     | 4970       |
|                          |                                         | 2           | 1490     | 1740     | 2200          | 2880      | 4010     | 4650       |
| Potencia Frigorifica     | Watios                                  | 3           | 1400     | 1640     | 2030          | 2610      | 3630     | 4380       |
|                          | *************************************** | 4           | 1270     | 1520     | 1810          | 2430      | 3330     | 3960       |
|                          |                                         | 5           | 1070     | 1320     | 1450          | 1950      | 2690     | 3270       |
|                          |                                         | 6           | 972      | 1230     | 1310          | 1780      | 2500     | 2980       |
|                          |                                         | 1           | 1990     | 2320     | 2990          | 3840      | 5070     | 5870       |
|                          |                                         | 2           | 1870     | 2190     | 2750          | 3570      | 4760     | 5560       |
| Potencia Calorifica      | Watios                                  | 3           | 1780     | 2090     | 2570          | 3280      | 4410     | 5290       |
|                          |                                         | 4           | 1630     | 1960     | 2350          | 3090      | 4110     | 4870       |
|                          |                                         | 5           | 1410     | 1750     | 1950          | 2590      | 3450     | 4160       |
|                          |                                         | 6           | 1310     | 1650     | 1790          | 2400      | 3260     | 3870       |
|                          |                                         | I/h (frío)  | 321      | 389      | 517           | 682       | 918      | 1075       |
| Caudal de Agua Pérdida   | I/h m.c.a.                              | I/h (calor) | 174      | 202      | 261           | 336       | 443      | 514        |
| Carga Agua               |                                         | Frío        | 0,24     | 0,40     | 0,78          | 1,53      | 1,38     | 2,07       |
|                          |                                         | Calor       | 0,45     | 0,70     | 1,30          | 2,44      | 0,67     | 0,99       |
|                          |                                         | 1           | 58       | 65       | 68            | 80        | 110      | 124        |
|                          |                                         | 2           | 47       | 53       | 54            | 64        | 89       | 101        |
|                          | W                                       | 3<br>4      | 40       | 44       | 44            | 54        | 77       | 85         |
|                          |                                         | 5           | 35       | 37       | 36            | 45        | 64       | 72         |
|                          |                                         | 6           | 24       | 27       | 24            | 32        | 45       | 49         |
|                          |                                         | 1           | 21<br>55 | 23<br>56 | 21<br>53      | 27<br>55  | 39<br>60 | 42<br>60   |
|                          |                                         | 2           | 52       | 53       | 49            | 51        | 56       | 59         |
| Potencia sonora          |                                         | 3           | 49       | 53       | 49            | 47        | 50       | 59         |
| (UNE EN ISO 3741)        | dB(A)                                   | 4           | 49       | 48       | 41            | 44        | 49       | 51         |
|                          |                                         | 5           | 40       | 42       | 31            | 37        | 49       | 44         |
|                          |                                         | 6           | 36       | 42       | 27            | 35        | 42       | 41         |
|                          |                                         | V           | 30       | 40       | 21            | 33        | 40       | 41         |
| Conditions 1             | dentile 37                              | F           | rio      |          | Aire: 27°C BS | - 199C BH | Agua     | : 7/12 °C  |
| THEOLOGIC                | elación 2T<br>elación 4T                | C           | alor     |          | Aire: 200     | C BS      | Agua     | : 50°C (1) |
| Insti                    | nacion 41                               | C           | HOT      |          | Aire: 200     | L B3      | Agua     | : 70/60°C  |

(1): Mismo caudal de agua que para frio

13



# ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)





ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# 1.2.2 CATÁLOGO DE FAN-COILS TIPO CASSETTE TERMOVEN





**FAN-COILS TIPO CASSETTE** 








## ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

FCS

# IDENTIFICACIÓN SELECCIÓN RÁPIDA





# Selección Rápida

|        | Caudal                             |                       | 2 TUBOS                  | 4 TUBOS               |                          |                          |
|--------|------------------------------------|-----------------------|--------------------------|-----------------------|--------------------------|--------------------------|
| Modelo | Vel. Máxima<br>(M <sup>3</sup> /h) | Potencia<br>Total (W) | Potencia<br>Sensible (W) | Potencia<br>Calor (W) | Potencia 4T<br>Total (W) | Potencia 4T<br>Calor (W) |
| FCS-20 | 750                                | 2.330                 | 1.780                    | 2.730                 |                          | -                        |
| FCS-30 | 750                                | 3.270                 | 2.270                    | 3.210                 | 2.890                    | 2.810                    |
| FCS-40 | 750                                | 4.330                 | 2.970                    | 4.240                 |                          |                          |
| FCS-50 | 875                                | 5.000                 | 3.350                    | 5.830                 | 4.450                    | 3.140                    |
| FCS-80 | 1.375                              | 7.650                 | 5.470                    | 7.890                 | 5.100                    | 5.430                    |
| FCS-90 | 1.600                              | 9.070                 | 6.200                    | 10.980                | 8.070                    | 6.000                    |

# Datos nominales de funcionamiento

| FRÍO     | Aire | 27 ºC - 50º %  |
|----------|------|----------------|
|          | Agua | 7 °C - 12 °C   |
| CALOR    | Aire | 20 ºC          |
|          | Agua | 50 ºC - 45 ºC  |
| CALOR 4T | Aire | 20 ºC          |
|          | Agua | 70 ºC - 60 º C |

## Dimensiones interiores (mm)

| Modelos           | Largo | Ancho | Alto |
|-------------------|-------|-------|------|
| FCS - 20/30/40/50 | 587   | 587   | 295  |
| FCS - 80/90       | 1.162 | 587   | 295  |



# ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)



# TABLA DE SELECCIÓN NUMÉRICA FAN-COILS

FCS

| Modelo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FCS-20   | FCS-30 | FCS-40    | FCS-50     | FCS-80      | FCS-90   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-----------|------------|-------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vel. máxima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 750      | 750    | 750       | 875        | 1.375       | 1.600    |
| CAUDAL DE AIRE (MI/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vel. media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 600      | 600    | 600       | 750        | 1.100       | 1.375    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vel. mínima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 425      | 425    | 425       | 650        | 775         | 1.185    |
| Modelo 2T (Instala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ción a 2 tul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oos)     |        |           |            |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vel. máxima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,335    | 3,276  | 4.337     | 5.003      | 7.654       | 9.074    |
| Potencia Frigorifica<br>Total (wabos)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vel. media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.173    | 2.930  | 3.872     | 4.588      | 6.867       | 8.384    |
| Total (Manual)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vel. mínima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.901    | 2.412  | 3.161     | 4.243      | 5.654       | 7.698    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vel. máxima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.781    | 2.269  | 2.973     | 3.348      | 5.471       | 6.202    |
| Potencia Frigorifica<br>Sensible (watios)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vel. media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.561    | 1.964  | 2.567     | 3.026      | 4.735       | 5.620    |
| Scholor (mados)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vel. mínima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.262    | 1,549  | 2.019     | 2.745      | 3.718       | 5.087    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vel. máxima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.731    | 3.214  | 4.242     | 5.831      | 7.891       | 10.984   |
| Potencia<br>Calorifica (watios)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vel. media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.374    | 2.747  | 3.566     | 5.156      | 6.824       | 9.867    |
| Salaringa (waasa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vel. minima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.893    | 2.134  | 2.764     | 4.591      | 5.194       | 8.617    |
| Caudal de Agua (I/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 401      | 563    | 746       | 860        | 1.316       | 1.560    |
| Pérdida de carga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | frio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0      | 1,0    | 2,1       | 1,7        | 1,3         | 1,1      |
| en agua (m.c.d.a.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | calor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,8      | 0,9    | 1,9       | 1,6        | 1,1         | 1,0      |
| Modelo 4T (Instala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ción a 4 tul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bos)     |        |           |            |             |          |
| THE RESIDENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vel. máxima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 38       | 2.891  |           | 4.453      | 5.103       | 8.077    |
| Potencia Frigorifica<br>Total (watios)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vel. media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 2.581  |           | 4.047      | 4.578       | 7.370    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vel. mínima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 2.107  |           | 3,706      | 3.769       | 6.732    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vel. máxima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 1.982  |           | 2.831      | 3.648       | 5.218    |
| Potencia Frigorifica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vel. media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100      | 1.711  |           | 2.552      | 3.156       | 4.719    |
| Sensible (watios)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vel. mínima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (6)      | 1.346  | 90        | 2.307      | 2.479       | 4.256    |
| Caudal de Agua Frio (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 497    | - (4)     | 765        | 877         | 1.389    |
| Pérdida de Carga en Aş                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pua Frio (m.c.d.a.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 823      | 1,6    | **        | 1,9        | 1,0         | 1,2      |
| and the second s | Vel. máxima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120      | 2.818  | 147       | 3.146      | 5.431       | 6.000    |
| Potencia<br>Calculfina (untina)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vel. media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (C.)     | 2.453  | 10.00     | 2.860      | 4.725       | 5.462    |
| Calorifica (watios)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vel. mínima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 1.966  | -         | 2.614      | 3.766       | 4.973    |
| Caudal de Agua Calor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (L/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (+)      | 246    |           | 275        | 475         | 525      |
| Pérdida de Carga en Ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100      | 1,4    | 14.1      | 1,7        | 0,9         | 1,1      |
| Datos Nominales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | de Funcior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | namient  | 0      |           |            |             |          |
| Frio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Aire (Entrad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |        |           | Agua (Entr | adal: 7º C  |          |
| Calor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aire (Entrad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a): 20°C |        |           | Agua (Entr | ada): 50° C |          |
| Calor (4T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aire (Entrad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a): 20°C |        |           |            | ada): 70º C |          |
| Pesos (Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20       | 21     | 22        | 24         | 41          | 45       |
| Dimensiones Embal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | aie (mm.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20       |        | 680 x 350 |            | 1360 x 6    |          |
| Niveles Sonoros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 100 %  | 000 N 000 |            | 1000 A 0    | 00 A 000 |
| Niveles de presión                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vel. máxima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45       | 46     | 46        | 51         | 49          | 55       |
| Sonora dB(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vel. media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38       | 39     | 39        | 47         | 44          | 53       |
| (Medida según normas<br>LINE-74-03488 equivalente<br>a ISO 3744/198)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vel. minima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29       | 30     | 30        | 44         | 35          | 50       |
| Consumos Eléctri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | In recognition and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3452     | 50     | 888       |            | 2//         |          |
| Potencia absorbida a cau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | William Control of the Control of th | 80       | 80     | 80        | 98         | 116         | 183      |
| Intensidad (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,313    | 0,313  | 0,313     | 0,390      | 0,469       | 0,763    |



#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# 1.3 CATÁLOGO DEL GRUPO FRIGORÍFICO



Gama de enfriadoras aire-agua. 11 tamaños con capacidades comprendidas entre 39 y 160 Kw. Aplicaciones comerciales o industriales.

#### Características

- ESEER hasta 4,3
- Módulo hidrónico con posibilidad de bomba de velocidad variable opcional
- Muy bajo nivel sonoro
- Control Prodialog + de altas prestaciones

#### Tecnología

- Compresores scroll con R410a, libres de mantenimiento y bajo nivel de ruido y vibración
- Rangos de funcionamiento de temperatura exterior: +48ºC a -10ºC
- Ventiladores patentados "Flying Bird IV" de bajo nivel sonoro, con motores de dos velocidades
- Protecciones del evaporador y módulo hidrónico hasta -20°C
- Control Pro-Dialog +: Por microprocesador, auto-adaptativo, con funciones de diagnóstico e históricos de funcionamiento

#### Eficiencia

- Elevados rendimientos a carga parcial. ESEER hasta 4,3 según modelos
- Válvulas de expansión electrónicas: mayor eficiencia a carga parcial
- Posibilidad de bombas de agua de velocidad variable de menor consumo
- Modo nocturno, con limitación de la capacidad y de la velocidad del ventilador: reducción del consumo de energía y del nivel sonoro
- Cambio de punto de consigna basado en temperatura de retorno o de aire exterior

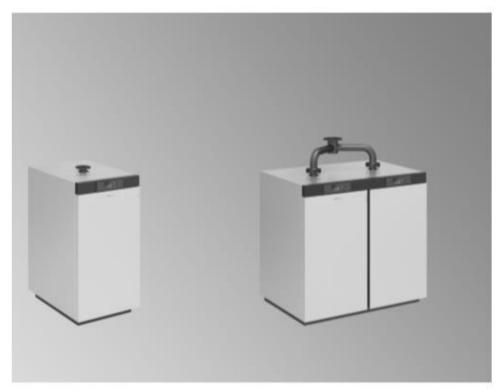
#### Instalación

- Módulo hidrónico integrado opcional, con 6 posibilidades de selección de bombas (incluyendo velocidad variable):
   Flexibilidad en la instalación, reducción del espacio necesario y menor tiempo de instalación
- Rápida puesta en servicio, con prueba de funcionamiento antes de salir de fábrica y prueba rápida para verificación de componentes en obra
- Conexiones eléctricas simplificadas
- Interface LCD con iluminación y menús intuitivos



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### CATÁLOGO DEL GRUPO CALORÍFICO 1.4


# VIESMANN

# VITOCROSSAL 100 Caldera de condensación a gas de 80 a 318 kW de 240 a 638 kW

#### Datos técnicos

N.º de pedido y precios: consultar Lista de precios





VITOCROSSAL 100 Modelo CI1

Caldera de condensación a gas para gas natural Con quemador cilíndrico MatriX modulante con Lambda Pro Control



#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### Resumen de las ventajas

- Unidad de condensación con quemador cilíndrico MatriX con Lambda Pro Control, también disponible en secuencia doble de 240 a 636 kW en una carcasa.
- Caldera disponible como unidad precableada y premontada o por elementos.
- Rendimiento estacional hasta 98 % (Hs)/ 109 % (Hi)
- Elevada fiabilidad y larga vida útil gracias a la superficie de transmisión con aberturas de rejilla integral de acero inoxidable resistente a la corrosión
- Combustión poco contaminante mediante regulación de combus-tión de autocalibración en función del gas e intercambiador de calor de acero inoxidable muy eficiente

  Funcionamiento con desgaste reducido gracias a un amplio rango
- de modulación y tiempos prolongados de funcionamiento del quemador sin comportamiento del ciclo
- Quemador cilíndrico MatriX con Lambda Pro Control con un rango de modulación de entre el 20 y el 100 % para un funcionamiento poco contaminante
- Funcionamiento especialmente silencioso
- Ocupa poco espacio y es compacta, ideal cuando existen condi-ciones de montaje difíciles
- Fácil montaje gracias a sus ruedas integradas y a su embalaje adaptado.
- Es posible escoger entre funcionamiento estanco y presurizado
- Regulación Vitotronic de fácil manejo con visualización de texto y de gráficos



- Aislamiento térmico de alta eficacia
- Regulación de caldera Vitotronic
- Revestimiento de primera calidad Quemador cilíndrico MatriX modulante con Lambda Pro Control
- Superficie de transmisión con aberturas de rejilla integral de acero inoxidable resistente a la corrosión
- Tapa de inspección para un mantenimiento sencillo
- Ruedas integradas para un montaje sencillo Patas de altura regulable

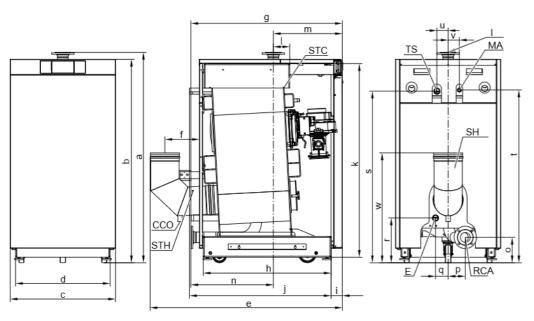


# ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Datos técnicos de la caldera

| Margen de potencia térmica útil               |         |         |          |          |            |          |           |           |
|-----------------------------------------------|---------|---------|----------|----------|------------|----------|-----------|-----------|
| TI/TR = 50/30                                 | kW      | 16 - 80 | 32 - 120 | 32 - 160 | 48 - 200   | 48 - 240 | 64 - 280  | 64 - 318  |
| TI/TR = 80/60                                 | kW      | 15 - 74 | 29 - 110 | 29 - 146 | 44 - 184   | 44 - 220 | 58 - 258  | 58 - 291  |
| Carga térmica nominal                         | kW      | 76      | 113      | 151      | 189        | 226      | 264       | 300       |
| N.º de distintivo de homologación             |         |         |          | CE       | E-0085CR03 | 91       |           |           |
| Temperatura de servicio admisible             | °C      |         |          |          | 95         |          |           |           |
| Temperatura admisible de impul-               | °C      |         |          |          | 110        |          |           |           |
| sión                                          |         |         |          |          |            |          |           |           |
| (= temperatura de seguridad)                  |         |         |          |          |            |          |           |           |
| Presión máx. de servicio admisi-              | bar     |         |          |          | 6          |          |           |           |
| ble                                           |         |         |          |          |            |          |           |           |
|                                               | MPa     |         |          |          | 0,6        |          |           |           |
| Presión mín. de servicio adm.                 | bar     |         |          |          | 0,5        |          |           |           |
|                                               | MPa     |         |          |          | 0,05       |          |           |           |
| Presión de prueba                             | bar     |         |          |          | 7,8        |          |           |           |
|                                               | MPa     |         |          |          | 0,78       |          |           |           |
| Dimensiones del cuerpo de la cal-<br>dera     |         |         |          |          |            |          |           |           |
| Longitud/medida de introducción*1             | mm      | 660/450 | 780/570  | 780/570  | 900        | 900      | 1010      | 1010      |
| Anchura                                       | mm      | 680     | 680      | 680      | 680        | 680      | 680       | 680       |
| Altura                                        | mm      | 1459    | 1459     | 1459     | 1459       | 1459     | 1459      | 1459      |
| Dimensiones totales sin pieza de              |         | 1,00    | 1100     | 1100     | 1.100      | 1100     | 1100      |           |
| conexión de la caldera                        |         |         |          |          |            |          |           |           |
| Longitud q                                    | mm      | 745     | 875      | 875      | 980        | 980      | 1090      | 1090      |
| Anchura c                                     | mm      | 750     | 750      | 750      | 750        | 750      | 750       | 750       |
| Altura a                                      | mm      | 1500    | 1500     | 1500     | 1500       | 1500     | 1500      | 1500      |
| Dimensiones de bancada                        |         |         |          |          |            |          |           |           |
| Longitud                                      | mm      | 750     | 850      | 850      | 1000       | 1000     | 1100      | 1100      |
| Anchura                                       | mm      | 800     | 800      | 800      | 800        | 800      | 800       | 800       |
| Altura                                        | mm      | 100     | 100      | 100      | 100        | 100      | 100       | 100       |
| Peso                                          |         |         |          |          |            |          |           |           |
| Peso total de Unit                            | kg      | 238     | 295      | 295      | 340        | 340      | 385       | 385       |
| Unit embalado                                 | kg      | 288     | 345      | 345      | 390        | 390      | 435       | 435       |
| Cuerpo de la caldera                          | kg      | 183     | 230      | 230      | 265        | 265      | 300       | 300       |
| Cuerpo de la caldera con palé de              | kg      | 210     | 260      | 260      | 295        | 295      | 330       | 330       |
| transporte                                    |         |         |          |          |            |          |           |           |
| Quemador                                      | kg      | 10      | 11       | 11       | 15         | 15       | 15        | 15        |
| Volumen de agua                               | I       | 65      | 103      | 103      | 145        | 145      | 180       | 180       |
| Conexiones                                    |         |         |          |          |            |          |           |           |
| Impulsión de caldera                          | PN 6 DN | 50      | 50       | 50       | 65         | 65       | 65        | 65        |
| Retorno de caldera                            | PN 6 DN | 50      | 50       | 50       | 65         | 65       | 65        | 65        |
| Toma de seguridad                             | R       | 11/4    | 11/4     | 11/4     | 11/4       | 11/4     | 11/4      | 11/4      |
| Vaciado                                       | R       | 11/4    | 11/4     | 11/4     | 11/4       | 11/4     | 11/4      | 11/4      |
| Sifón con conducto de vaciado de              | mm      | 20      | 20       | 20       | 20         | 20       | 20        | 20        |
| condensados                                   |         |         |          |          |            |          |           |           |
| Índices de humos <sup>*2</sup>                |         |         |          |          |            |          |           |           |
| Temperatura (con una temperatura              |         |         |          |          |            |          |           |           |
| de retorno de 30 °C)                          |         |         |          |          |            |          |           |           |
| <ul> <li>Con potencia térmica útil</li> </ul> | °C      | 45      | 45       | 45       | 45         | 45       | 45        | 45        |
| <ul> <li>Con carga parcial</li> </ul>         | °C      | 35      | 35       | 35       | 35         | 35       | 35        | 35        |
| Temperatura (con una temperatura              | °C      | 65      | 65       | 65       | 65         | 65       | 65        | 65        |
| de retorno de 60 °C)                          |         |         |          |          |            |          |           |           |
| Caudal másico (con gas natural)               |         |         |          |          |            |          |           |           |
| <ul> <li>Con potencia térmica útil</li> </ul> | kg/h    | 120     | 180      | 240      | 300        | 360      | 420       | 477       |
| <ul> <li>Con carga parcial</li> </ul>         | kg/h    | 36      | 54       | 72       | 90         | 108      | 126       | 143       |
| Conexión de humos                             | DN      | 200     | 200      | 200      | 200        | 200      | 200       | 200       |
| Tiro necesario en                             | mbar    | 0,7     | 0,7      | 0,7      | 0,7        | 0,7      | 0,7<br>70 | 0,7<br>70 |
| Toma de salida de humos                       | Pa      | 70      | 70       | 70       | 70         | 70       |           |           |




# ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### Datos técnicos de la caldera (continuación)

| Margen de potencia térmica útil   |    |                               |          |            |               |           |          |          |
|-----------------------------------|----|-------------------------------|----------|------------|---------------|-----------|----------|----------|
| TI/TR = 50/30                     | kW | 16 - 80                       | 32 - 120 | 32 - 160   | 48 - 200      | 48 - 240  | 64 - 280 | 64 - 318 |
| TI/TR = 80/60                     | kW | 15 - 74                       | 29 - 110 | 29 - 146   | 44 - 184      | 44 - 220  | 58 - 258 | 58 - 291 |
| Rendimiento                       |    |                               |          | -          |               |           | Siz.     |          |
| Carga térmica 30 % - Temp. 50/30  | %  |                               |          | hasta 97   | ,2 (PCS) / 10 | 8 (PCI)   |          |          |
| °C                                |    |                               |          |            |               | 8 6       |          |          |
| Carga térmica 100 % - Temp. 80/60 | %  | hasta 87,6 (PCS) / 97,3 (PCI) |          |            |               |           |          |          |
| °C                                |    |                               |          |            |               |           |          |          |
| Rendimiento estacional            |    |                               |          |            |               |           |          |          |
| Temp. 40/30 °C                    | %  |                               |          | hasta 98,8 | 8 (PCS) / 109 | 7,7 (PCI) |          |          |
| Pérdida por disposición de servi- | %  | 0,6                           | 0,5      | 0,3        | 0,6           | 0,6       | 0,6      | 0,6      |
| cio qB,70                         |    |                               |          |            |               |           |          |          |
| NOx                               |    | NOx clase 6, < 56 mg/kWh      |          |            |               |           |          |          |

| Datos técnicos caldera doble                 |    |      |      |      |      |      |      |
|----------------------------------------------|----|------|------|------|------|------|------|
| Potencia térmica útil                        | kW | 240  | 320  | 400  | 480  | 560  | 636  |
| Caldera doble compuesta por 2 calderas, cada | kW | 120  | 160  | 200  | 240  | 280  | 318  |
| una con                                      |    |      |      |      |      |      |      |
| Dimensiones totales sin pieza de conexión de |    | 2    |      |      |      |      | 70   |
| la caldera                                   |    |      |      |      |      |      |      |
| Longitud                                     | mm | 875  | 875  | 980  | 980  | 1090 | 1090 |
| Anchura                                      | mm | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 |
| Altura                                       | mm | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 |
| Peso total                                   | kg | 590  | 590  | 680  | 680  | 770  | 770  |
| Volumen de agua                              | 1  | 206  | 206  | 290  | 290  | 360  | 360  |

#### Datos técnicos



STH Sonda de temperatura de humos R 1/8 SH Salida de humos DN 200

Vaciado

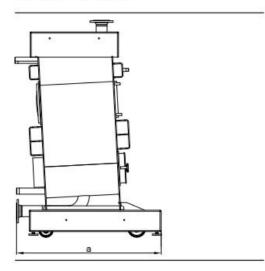
CCO Conducto de vaciado de condensados

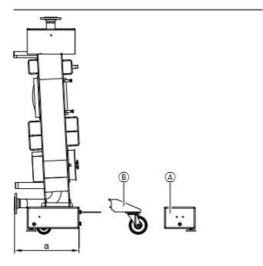
RCA Retorno de caldera STC Sonda de temperatura de caldera R 1/8

Impulsión de caldera

Manómetro R ½

Toma de seguridad (válvula de seguridad)





# ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### Datos técnicos de la caldera (continuación)

| Potencia térmica útil | kW | Hasta 80 | 120 y 160 | 200 y 240 | 280 y 318 |  |  |  |
|-----------------------|----|----------|-----------|-----------|-----------|--|--|--|
| а                     | mm |          | 1500      |           |           |  |  |  |
| b                     | mm |          |           | 50        |           |  |  |  |
| С                     | mm |          |           | 50        |           |  |  |  |
| d                     | mm |          |           | 74        |           |  |  |  |
| е                     | mm | 1024     | 1148      | 1251      | 1370      |  |  |  |
| f                     | mm | 235      | 235       | 241       | 245       |  |  |  |
| g                     | mm | 745      | 875       | 980       | 1090      |  |  |  |
| h                     | mm | 570      | 682       | 798       | 910       |  |  |  |
| i                     | mm | 83       | 92        | 77        | 80        |  |  |  |
| j                     | mm | 660      | 780       | 900       | 1010      |  |  |  |
| k                     | mm |          |           | 80        |           |  |  |  |
| I                     | mm | 168      | 198       | 166       | 117       |  |  |  |
| m                     | mm | 491      | 500       | 486       | 892       |  |  |  |
| n                     | mm | 250      | 360       | 485       | 588       |  |  |  |
| 0                     | mm | 213      | 209       | 183       | 181       |  |  |  |
| q                     | mm |          |           | 0         |           |  |  |  |
| r                     | mm | 337      | 331       | 325       | 319       |  |  |  |
| s                     | mm | 1240     | 1234      | 1228      | 1223      |  |  |  |
| t                     | mm | 1249     | 1242      | 1236      | 1230      |  |  |  |
| u                     | mm |          | 80        |           |           |  |  |  |
| V                     | mm |          | 8         | 0         |           |  |  |  |
| W                     | mm | 80       | 794       | 788       | 783       |  |  |  |

#### Medidas de introducción





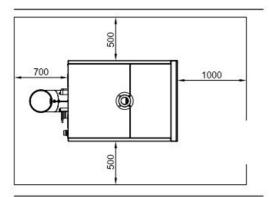
- Riel inferior
- Riel inferior
   Escuadra de sujeción con rueda

## Medida de introducción a

| kW | Hasta 80 | 120 y 160 | A partir de 200 |
|----|----------|-----------|-----------------|
| mm | 450      | 570       | 680             |

#### Indicación

En calderas de hasta 160 kW se pueden desmontar el riel inferior del cuerpo de la caldera para un montaje más sencillo.



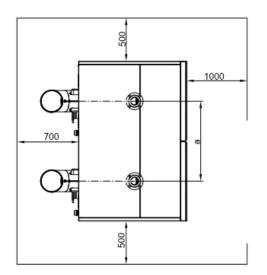

## ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### Datos técnicos de la caldera (continuación)

#### Emplazamiento

#### Distancias mínimas




#### Emplazamiento

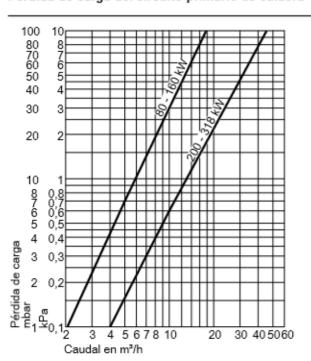
- No debe haber contaminación del aire por hidrocarburos halogenados clorofluorados (p. ej., presentes en aerosoles, pinturas, disolventes y productos de limpieza)

  Se debe evitar un ambiente muy polvoriento

  La humedad del aire debe ser moderada

- Debe estar protegido de las heladas y bien ventilado De lo contrario, podrían producirse averías y daños en la instalación. En locales en los que se prevea contaminación del aire por hidrocarburos halogenados clorofluorados solo se puede instalar la caldera de funcionamiento estanco.




a = 750



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Datos técnicos de la caldera (continuación)

# Pérdida de carga del circuito primario de caldera



La Vitocrossal 100 solo es apta para calefacciones de agua caliente con bomba.



#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 1.5 CATÁLOGO DE LAS BOMBAS

#### 1.5.1 CATÁLOGO DE LAS BOMBAS 1 Y 2





#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)



Empresa: Creado Por: Teléfono:

Datos: 21/06/2018 Posición | Contar | Descripción Potencia nominal - P2: 0.75 kW Potencia (P2) requerida por la bomba: 0.75 kW Frecuencia de alimentación: 50 Hz Frecuencia de alimentación: Tensión nominal: 3 x 220-240D/380-415Y V 3.30/1.90 A Corriente nominal: Intensidad de arranque: 580-620 % Cos phi - Factor de potencia: 0.81-0.71 Velocidad nominal: 2840-2870 rpm Eficiencia: IE3 80,7% Rendimiento del motor a carga total: 80.7 % Rendimiento del motor a 3/4 de carga: 82.7 % Rendimiento del motor a 1/2 carga: 81.7 % Número de polos: Grado de protección (IEC 34-5): 55 Dust/Jetting Clase de aislamiento (IEC 85): F Índice eficiencia mínima, MEI ≥: 0.70 Estado ErP: Prod. independiente (directiva EuP) Peso neto: 29.6 kg Peso bruto: 33.1 kg Volumen: 0.06 m3 Danish VVS No.: 381813180 Norwegian NRF no.: 9043557 Country of origin: Custom tariff no.: HU 84137051



#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

### 1.5.2 CATÁLOGO DE LAS BOMBAS 3 Y 4

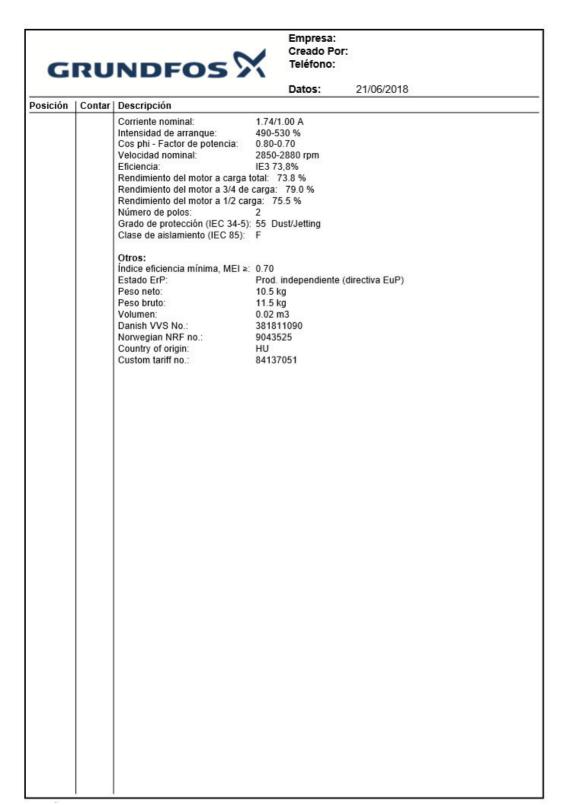
Potencia nominal - P2:

Tensión nominal:

Frecuencia de alimentación:

Potencia (P2) requerida por la bomba: 0.37 kW




0.37 kW

3 x 220-240D/380-415Y V

50 Hz



#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)





#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

### 1.5.3 CATÁLOGO DE LAS BOMBAS 5 Y 6



Empresa: Creado Por: Teléfono:

Datos: 21/06/2018

Posición | Contar | Descripción

1 TD

TP 32-90/2 A-O-A-BQQE



Código: 98346582

Bomba de una etapa, acoplamiento cerrado y voluta con puertos de aspiración y descarga en línea de idéntico diámetro. El diseño de la bomba incluye un sistema de extracción superior que facilita el desmontaje del cabezal motor (el motor, el cabezal de la bomba y el impulsor) con fines de mantenimiento o reparación sin necesidad de desconectar las tuberías de la carcasa de la bomba.

La bomba está equipada con un cierre de fuelle de caucho no equilibrado. El cierre mecánico satisface los requisitos establecidos por la norma EN 12756. La conexión de las tuberías se lleva a cabo por medio de conexiones de unión de PN 10 (norma ISO 228-1).

La bomba está equipada con un motor asíncrono refrigerado por ventilador.

Líquido:

Líquido bombeado: Agua

Rango de temperatura del líquido: -25 .. 120 °C Liquid temperature during operation: 50 °C Densidad: 988 kg/m³ Viscosidad cinemática: 0.55 mm2/s

Técnico:

Velocidad para datos de bomba: 2865 rpm Caudal real calculado: 4661 l/h Altura resultante de la bomba: 9.686 m Diámetro real del impulsor: 89 mm

Código del cierre. 1:Tipo 2:Cara giratoria 3:Cara estacionaria 4:Cierre secunda.: BQQE

Tolerencia de curva: ISO9906:2012 3B

Materiales:

Cuerpo hidráulico: Fundición

EN-JL1030 ASTM A48-30 B

Impulsor: Composite PES/PP 30% GF

Instalación:

Rango de temperaturas ambientes: -30 .. 40 °C Presión de trabajo máxima: 10 bar

Tipo de brida: UNION
Diámetro de conexiones: G 2
Presión: PN 10

Distancia entre conexiones de aspiración y descarga: 180 mm

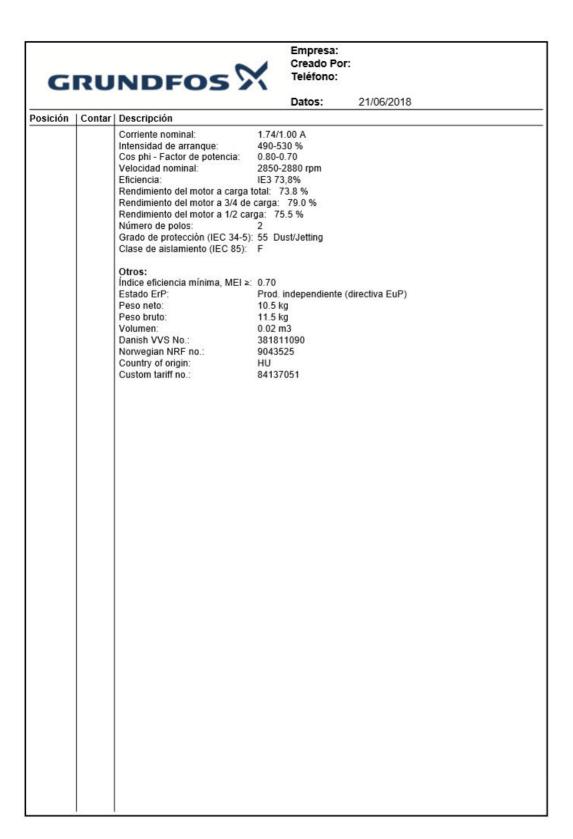
Tamaño de la brida del motor: FT85

Datos eléctricos:

 Tipo de motor:
 71A

 Clase eficiencia IE:
 IE3

 Potencia nominal - P2:
 0.37 kW


 Potencia (P2) requerida por la bomba:
 0.37 kW

Frecuencia de alimentación: 50 Hz

Tensión nominal: 3 x 220-240D/380-415Y V



#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)





#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

### 1.5.4 CATÁLOGO DE LAS BOMBAS 7 Y 8



Empresa: Creado Por: Teléfono:

Datos: 21/06/2018

Posición | Contar | Descripción

1 TP 25-80/2 A-O-A-BQQE



Código: 98282096

Bomba de una etapa, acoplamiento cerrado y voluta con puertos de aspiración y descarga en línea de idéntico diámetro. El diseño de la bomba incluye un sistema de extracción superior que facilita el desmontaje del cabezal motor (el motor, el cabezal de la bomba y el impulsor) con fines de mantenimiento o reparación sin necesidad de desconectar las tuberías de la carcasa de la bomba.

La bomba está equipada con un cierre de fuelle de caucho no equilibrado. El cierre mecánico satisface los requisitos establecidos por la norma EN 12756. La conexión de las tuberías se lleva a cabo por medio de conexiones de unión de PN 10 (norma ISO 228-1).

La bomba está equipada con un motor asíncrono refrigerado por ventilador.

Líquido:

Líquido bombeado: Agua

Rango de temperatura del líquido: -25 .. 120 °C Liquid temperature during operation: 50 °C Densidad: 988 kg/m³ Viscosidad cinemática: 0.55 mm2/s

Técnico:

Velocidad para datos de bomba: 2820 rpm Caudal real calculado: 3687 l/h Altura resultante de la bomba: 6.284 m Diámetro real del impulsor: 80 mm

Código del cierre. 1:Tipo 2:Cara giratoria 3:Cara estacionaria 4:Cierre secunda.: BQQE

Tolerencia de curva: ISO9906:2012 3B

Materiales:

Cuerpo hidráulico: Fundición

EN-JL1020 ASTM A48-25B

Impulsor: Composite PES/PP 30% GF

Instalación:

Rango de temperaturas ambientes: -30 .. 40 °C

Presión de trabajo máxima: 10 bar Tipo de brida: UNION Diámetro de conexiones: G 1 1/2 Presión: PN 10

Distancia entre conexiones de aspiración y descarga: 180 mm

Tamaño de la brida del motor: FT75

Datos eléctricos:

Tipo de motor: SIEMENS
Potencia nominal - P2: 0.18 kW
Potencia (P2) requerida por la bomba: 0.18 kW

Frecuencia de alimentación: 50 Hz

Tensión nominal: 3 x 220-240D/380-415Y V

Corriente nominal: 0.90/0.52 A



## ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

| G        | RU     | NDFOS \$                                                                                                                                                      | Empresa:<br>Creado Por<br>Teléfono:                                                                  | T.              |
|----------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------|
|          |        |                                                                                                                                                               | Datos:                                                                                               | 21/06/2018      |
| Posición | Contar | Descripción                                                                                                                                                   |                                                                                                      |                 |
|          |        | Cos phi - Factor de potencia:<br>Velocidad nominal:<br>Número de polos:<br>Grado de protección (IEC 34-5):<br>Clase de aislamiento (IEC 85):                  | 0.79-0.71<br>2800-2850 rpm<br>2<br>55 Dust/Jetting<br>F                                              |                 |
|          |        | Otros:  Índice eficiencia mínima, MEI ≥: Estado ErP: Peso neto: Peso bruto: Volumen: Danish VVS No.: Norwegian NRF no.: Country of origin: Custom tariff no.: | 0.55<br>Prod. independiente<br>8.1 kg<br>9.1 kg<br>0.02 m3<br>381810080<br>9043511<br>HU<br>84137051 | (directiva EuP) |
|          |        |                                                                                                                                                               |                                                                                                      |                 |
|          |        |                                                                                                                                                               |                                                                                                      |                 |
|          |        |                                                                                                                                                               |                                                                                                      |                 |
|          |        |                                                                                                                                                               |                                                                                                      |                 |
|          |        |                                                                                                                                                               |                                                                                                      |                 |
|          |        |                                                                                                                                                               |                                                                                                      |                 |



#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

### 1.5.5 CATÁLOGO DE LAS BOMBAS 9 Y 10

GRUNDFOS X

Empresa: Creado Por: Teléfono:

Datos: 21/06/2018

Posición | Contar | Descripción 1 | TPD 40-60/2 A-F-A-BQQE

Código: 98455942

Bomba doble de una etapa, acoplamiento cerrado y voluta con puertos de aspiración y descarga en línea de idéntico diámetro. La bomba doble cuenta con dos cabezales motores paralelos. El diseño de la bomba incluye un sistema de extracción superior que facilita el desmontaje del cabezal motor (el motor, el cabezal de la bomba y el impulsor) con fines de mantenimiento o reparación sin necesidad de desconectar las tuberías de la carcasa de la bomba.

Cada cabezal motor está equipado con un cierre de fuelle de caucho no equilibrado. El cierre mecánico satisface los requisitos establecidos por la norma EN 12756. La conexión de las tuberías se lleva a cabo por medio de bridas DIN de PN 6/10 (normas EN 1092-2 e ISO 7005-2).

Cada cabezal motor está equipado con un motor asíncrono refrigerado por ventilador de idéntico tamaño.

Líquido:

Líquido bombeado: Agua

Rango de temperatura del líquido: -25 .. 120 °C Liquid temperature during operation: 50 °C Densidad: 988 kg/m³ Viscosidad cinemática: 0.55 mm2/s

Técnico:

Velocidad para datos de bomba: 2890 rpm Caudal real calculado: 7250 l/h Altura resultante de la bomba: 4.969 m Diámetro real del impulsor: 70 mm

Código del cierre. 1:Tipo 2:Cara giratoria 3:Cara estacionaria 4:Cierre secunda.: BQQE

Tolerencia de curva: ISO9906:2012 3B

Materiales:

Cuerpo hidráulico: Fundición

EN-JL1040 ASTM A48-40 B

Impulsor: Acero inoxidable

DIN W.-Nr. 1.4301

AISI 304

Instalación:

Rango de temperaturas ambientes: -30 .. 40 °C

 Presión de trabajo máxima:
 10 bar

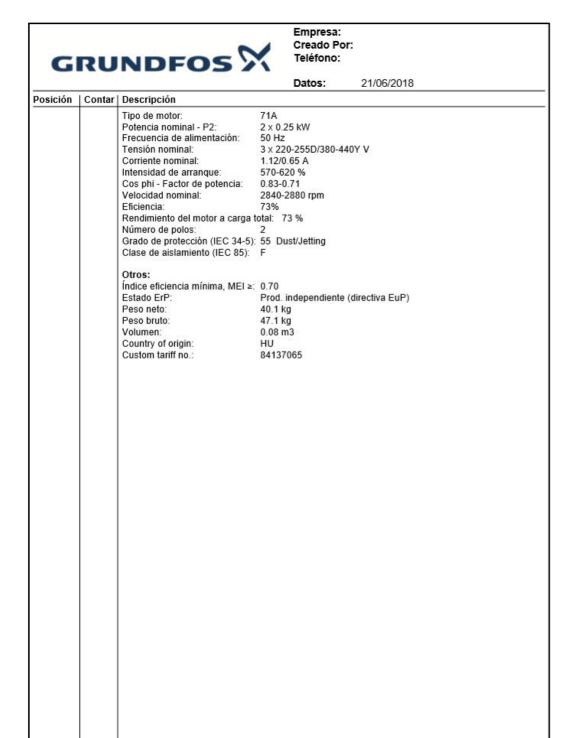
 Tipo de brida:
 DIN

 Diámetro de conexiones:
 DN 40

 Aspiración:
 DN 40

 Descarga:
 DN 40

 Presión:
 PN 6/10


Distancia entre conexiones de aspiración y descarga: 250 mm

Tamaño de la brida del motor: FT85

Datos eléctricos:



#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)





ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

### 1.5.6 CATÁLOGO DE LAS BOMBAS 11 Y 12



Empresa: Creado Por: Teléfono:

Datos: 21/06/2018

Posición | Contar | Descripción

1 TPD 50-180/2 A-F-A-BQQE



Código: 98957985

Bomba doble de una etapa, acoplamiento cerrado y voluta con puertos de aspiración y descarga en línea de idéntico diámetro. La bomba doble cuenta con dos cabezales motores paralelos. El diseño de la bomba incluye un sistema de extracción superior que facilita el desmontaje del cabezal motor (el motor, el cabezal de la bomba y el impulsor) con fines de mantenimiento o reparación sin necesidad de desconectar las tuberías de la carcasa de la bomba.

Cada cabezal motor está equipado con un cierre de fuelle de caucho no equilibrado. El cierre mecánico satisface los requisitos establecidos por la norma EN 12756. La conexión de las tuberías se lleva a cabo por medio de bridas DIN de PN 6/10 (normas EN 1092-2 e ISO 7005-2).

Cada cabezal motor está equipado con un motor asíncrono refrigerado por ventilador de idéntico tamaño

Líquido:

Líquido bombeado: Agua

Rango de temperatura del líquido: -25 .. 120 °C Liquid temperature during operation: 60 °C Densidad: 983.2 kg/m³ Viscosidad cinemática: 0.48 mm2/s

Técnico:

Velocidad para datos de bomba: 2850 rpm Caudal real calculado: 21500 l/h Altura resultante de la bomba: 8.866 m Diámetro real del impulsor: 100 mm

Código del cierre. 1:Tipo 2:Cara giratoria 3:Cara estacionaria 4:Cierre secunda.: BQQE

Tolerencia de curva: ISO9906:2012 3B

Materiales

Cuerpo hidráulico: Fundición

EN-JL1040

ASTM A48-40 B
Impulsor: Acero inoxidable

DIN W.-Nr. 1.4301 AISI 304

Instalación:

Rango de temperaturas ambientes: -30 .. 60 °C

 Presión de trabajo máxima:
 10 bar

 Tipo de brida:
 DIN

 Diámetro de conexiones:
 DN 50

 Aspiración:
 DN 50

 Descarga:
 DN 50

 Presión:
 PN 6/10

Distancia entre conexiones de aspiración y descarga: 280 mm

Tamaño de la brida del motor: FT100

Datos eléctricos:



#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

Empresa: Creado Por:

**GRUNDFOS** Teléfono: Datos: 21/06/2018 Posición | Contar | Descripción Tipo de motor: 80A IE3 2 x 0.75 kW Clase eficiencia IE: Potencia nominal - P2: Frecuencia de alimentación: 50 Hz 3 x 220-240D/380-415Y V Tensión nominal: 3.30/1.90 A Corriente nominal: 580-620 % Intensidad de arranque: Cos phi - Factor de potencia: 0.81-0.71 Velocidad nominal: 2840-2870 rpm IE3 80,7% Rendimiento del motor a carga total: 80.7 % Rendimiento del motor a 3/4 de carga: 82.7 % Rendimiento del motor a 1/2 carga: 81.7 % Número de polos: Grado de protección (IEC 34-5): 55 Dust/Jetting Clase de aislamiento (IEC 85): F Índice eficiencia mínima, MEI ≥: 0.70 Estado ErP: Prod. independiente (directiva EuP) Peso neto: 59.8 kg Peso bruto: 66.8 kg Volumen: 0.12 m3 Country of origin: HU 84137065 Custom tariff no .:

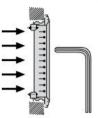
#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 1.6 CATÁLOGOS DE DIFUSORES

#### 1.6.1 DIFUSORES ROTACIONALES



#### Medición de caudal de aire


Impulsión · Retorno

El caudal de aire se puede determinar midiendo la velocidad del mismo, para la posición "recta" de las lamas, mediante un tubo de Pitot o un anemómetro.

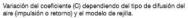
Con el tubo de Pitot se mide la velocidad efectiva de impulsión del aire entre lamas, debiéndose efectuar varias lecturas en diferentes puntos.

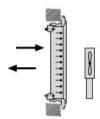
La media aritmética de las diferentes lecturas permite determinar el caudal de aire.



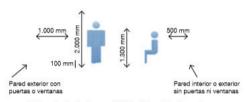





En el medio del deflector se efectuará de 4-6 puntos de medición por difusor dependiendo del tamaño.


En el caso de utilizar un anemómetro, el caudal se determina mediante la siguiente fórmula:

 $V_h (m^s/h) = V \text{ media } x S_{eff} x C x 3.600$ 


Siendo C la constante indicada en la tabla adjunta.

|                    | Tipo de difusión del aire |         |  |  |  |  |  |  |
|--------------------|---------------------------|---------|--|--|--|--|--|--|
| Modelo de rejillas | Impulsión                 | Retorno |  |  |  |  |  |  |
| Serie AT · VAT     | 1,33                      | 1,6     |  |  |  |  |  |  |
| Serie AH · AF      | 1,33                      | 1,9     |  |  |  |  |  |  |
| Serie AR           | 10211                     | 3,2     |  |  |  |  |  |  |
| Serie AE           | -                         | 1,6     |  |  |  |  |  |  |





#### Definición de zona ocupada · Niveles sonoros para el interior



Distancia desde la superficie interior del elemento

TROX TECHNIK

| Comercial<br>Cultural y Religioso<br>Jocente<br>Hospitalario<br>Jolio<br>Residencial | Valores máximos de<br>presiones sonoras en dB(A) |    |  |  |  |  |  |
|--------------------------------------------------------------------------------------|--------------------------------------------------|----|--|--|--|--|--|
| Administrativo y de Oficinas                                                         | 45                                               | -  |  |  |  |  |  |
| Comercial                                                                            | 55                                               | -  |  |  |  |  |  |
| Cultural y Religioso                                                                 | 40                                               |    |  |  |  |  |  |
| Docente                                                                              | 45                                               | -  |  |  |  |  |  |
| Hospitalario                                                                         | 40                                               | 30 |  |  |  |  |  |
| Ooio                                                                                 | 50                                               | -  |  |  |  |  |  |
| Residencial                                                                          | 40                                               | 30 |  |  |  |  |  |
| Vivienda:                                                                            |                                                  |    |  |  |  |  |  |
| Piezas habitables excepto cocina                                                     | 35                                               | 30 |  |  |  |  |  |
| Pasillos, Aseos y Cocinas                                                            | 40                                               | 35 |  |  |  |  |  |
| Zonas de acceso común                                                                | 50                                               | 40 |  |  |  |  |  |
| Espacios comunes:                                                                    | 50                                               | -  |  |  |  |  |  |
| Vestíbulos y Pasillos                                                                | 55                                               | -  |  |  |  |  |  |
| Espacios de Servicio:                                                                |                                                  |    |  |  |  |  |  |
| Aseos, Cocinas, Lavaderos                                                            |                                                  |    |  |  |  |  |  |



#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

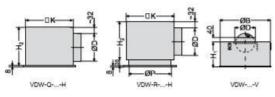
#### **Difusores rotacionales**

Serie VDW



#### Descripción · Ejecuciones

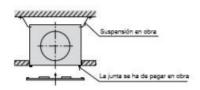
Difusor rotacional Serie VDW, en ejecución cuadrada o circular, con deflectores que permiten la modificación de la dirección de la vena de aire. De elevada inducción, consigue una rápida reducción de la temperatura y la velocidad del aire con diferencias máximas de ± 10K. Reducido nivel sonoro. La altura mínima de instalación es de 2.6 m aproximadamente.


Como se desprende, las ejecuciones disponibles son:

VDW-R: Ejecución circular.

VDW-Q: Ejecución cuadrada.

En ambos casos, el difusor se suministra con plenum de conexión vertical (...-V) u horizontal (...-H). Adicionalmente, pueden incluirse compuertas de regulación (..-M), Juntas de estanqueidad, etc... Para más opciones, consulte nuestra página web www.trox.es.






#### Detalles de montaje

El plenum de conexión se suspende del techo gracias a los soportes previstos para ello en su parte superior.

El difusor frontal se monta en el plenum mediante un tornillo central a un travesaño, que queda oculto tras un embellecedor.



|          |     | D        | atos téc | nicos    |          |          |
|----------|-----|----------|----------|----------|----------|----------|
| Tamaño   | Lwa | 25 dB(A) | 30 dB(A) | 35 dB(A) | 40 dB(A) | 45 dB(A) |
| 300 x 8  | Q   | 155      | 183      | 215      | 260      | 306      |
| 300 X 8  | Δр  | 21       | 30       | 41       | 60       | 83       |
| 100 10   | Q   | 240      | 280      | 325      | 390      | 455      |
| 400 x 16 | Δр  | 16       | 22       | 30       | 43       | 59       |
| 500 x 24 | Q   | 265      | 325      | 390      | 470      | 570      |
| 500 X 24 | Δр  | 11       | 17       | 25       | 36       | 53       |
| 600 x 24 | Q   | 400      | 480      | 570      | 675      | 800      |
| 000 X 24 | Δр  | 11       | 16       | 22       | 31       | 44       |
| 600 x 48 | Q   | 480      | 585      | 700      | 840      | 1.000    |
| 000 X 48 | Δр  | 12       | 17       | 25       | 36       | 52       |
| 000-00   | Q   | 500      | 590      | 720      | 825      | 1.000    |
| 652 x 54 | Δр  | 12       | 17       | 24       | 33       | 44       |
| 005 70   | Q   | 790      | 950      | 1.140    | 1.365    | 1.625    |
| 825 x 72 | Δр  | 11       | 16       | 23       | 32       | 46       |

Calculados con plenum de conexión horizontal.

L<sub>wa</sub> en dB(A): Nivel de potencia sonora Q en m³/h: Caudal de aire Δp en Pa: Pérdida de carga



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 1.6.2 DISPOSICIÓN DE LOS DIFUSORES

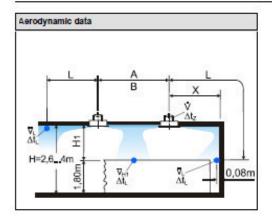


## **Easy Product Finder**

Date: 02.06.2015 / ES Project 1 Position.001

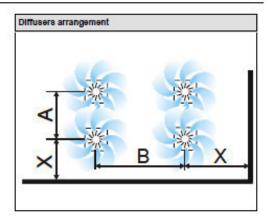


#### VDW-Q-Z-H-M/600x24/0/0/0/RAL 9010


Face plate Supply/Extract air Connection Volume control damper Size

QZHM 600x24 0 Surface Total amount 1

Square Supply air Side entry plenum

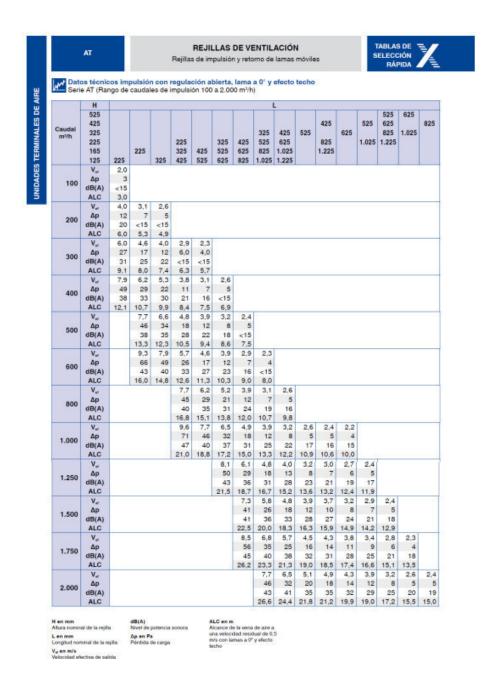

Volume control damper with adjustment lever

black plastic blades Standard finish RAL 9010 (Pure white) Gloss level 50%



| Volume flow V:                            | 160 Vs   |
|-------------------------------------------|----------|
| Temperature difference Δt <sub>2</sub> :  | -10,0 K  |
| Distance H1:                              | 1,20 m   |
| Temperature difference Δt <sub>H1</sub> : | -0.4 K   |
| Air velocity v <sub>H1</sub> :            | 0,18 m/s |
| Temperature difference Δt <sub>i</sub> :  | -0,4 K   |
| Air velocity v <sub>L</sub> :             | 0,26 m/s |

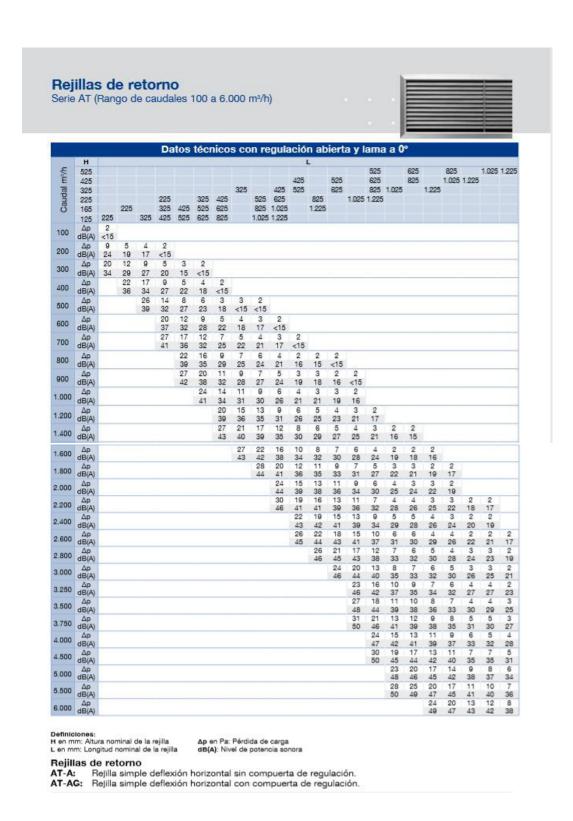
| Acoustic Data - Su | ipply air |     |     |       |
|--------------------|-----------|-----|-----|-------|
| Damper angle       | 0.        | 45* | 90* |       |
| $\Delta p_t$       | 25        | 35  | 78  | Pa    |
| L <sub>WA</sub>    | 35        | 35  | 37  | dB(A) |
| Lwnc               | 29        | 30  | 33  |       |




A = 3,60 m, B = 3,60 m, X = 1,80 m



## 1.7 CATÁLOGO DE LAS REJILLAS


## 1.7.1 CATÁLOGO DE LAS REJILLAS DE IMPULSIÓN





ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 1.7.2 CATÁLOGO DE LAS REJILLAS DE RETORNO





ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## Capítulo 2 TABLAS

#### 2.1 TABLA DE GANANCIAS DEBIDAS A LOS OCUPANTES

|                                         |                                                    |                  |                  |           |          | TEMP      | RATUR    | RA SECA   | DEL LO   | CAL (°C)  |         |           |          |
|-----------------------------------------|----------------------------------------------------|------------------|------------------|-----------|----------|-----------|----------|-----------|----------|-----------|---------|-----------|----------|
| GRADO                                   | TIPO DE APLICACIÓN                                 | Metabo-<br>lismo | Metabo-<br>lismo | 28        |          | 27        | 4        | 26        |          | 24        |         | 21        |          |
| DE ACTIVIDAD                            | TIFO DE AFEICACION                                 | hombre<br>adulto | medio * (kcal/h) | kca       | I/h      | kcal      | /h       | kca       | l/h      | kcal/l    | h .     | kca       | sl/h     |
|                                         |                                                    | (kcal/h)         |                  | Sensibles | Latentes | Sensibles | Latentes | Sensibles | Latentes | Sensibles | atentes | Sensibles | Latentes |
| Sentados, en reposo                     | Teatro, escuela primaria                           | 98               | 88               | 44        | 44       | 49        | 39       | 53        | 35       | 58        | 30      | 65        | 23       |
| Sentados, trabajo<br>muy ligero         | Escuela secundaria                                 | 113              | 100              | 45        | 55       | 48        | 52       | 54        | 46       | 60        | 40      | 68        | 32       |
| Empleado de oficina                     | Oficina, hotel, aparta-<br>mento, escuela superior | 120              |                  |           |          |           |          |           |          |           |         |           |          |
| De pie, marcha<br>lenta                 | Almacenes, tienda                                  | 139              | 113              | 45        | 68       | 50        | 63       | 54        | 59       | 61        | 52      | 71        | 42       |
| Sentado, de pie                         | Farmacia                                           | 139              |                  |           |          |           |          |           | La       | -         |         | 73        | 53       |
| De pie, marcha<br>lenta                 | Banco                                              | 139              | 126              | 45        | 81       | 50        | 76       | 55        | 71       | 64        | 62      | 73        | 53       |
| Sentado                                 | Restaurante **                                     | 126              | 139              | 48        | 91       | 55        | 84       | 61        | 78       | 71        | 68      | 81        | 58       |
| Trabajo ligero en el<br>banco de taller | Fábrica, trabajo ligero                            | 202              | 189              | 48        | 141      | 55        | 134      | 62        | 127      | 74        | 115     | 92        | 97       |
| Baile o danza                           | Sala de baile                                      | 227              | 214              | 55        | 159      | 62        | 152      | 69        | 145      | 82        | 132     | 101       | 113      |
| Marcha, 5 km/h                          | Fábrica, trabajo bas-<br>tante penoso              | 252              | 252              | 68        | 184      | 76        | 176      | 83        | 169      | 96        | 156     | 116       | 136      |
| Trabajo penoso                          | Pista de bowling *** Fábrica                       | 378              | 365              | 113       | 252      | 117       | 248      | 122       | 243      | 132       | 233     | 152       | 213      |

<sup>\*</sup> El « metabolismo medio » corresponde a un grupo compuesto de adultos y de niños de ambos sexos, en las proporciones normales. Estos valores se han obtenido a base de las hipótesis siguientes:

Metabolismo mujer adulta = Metabolismo hombre adulto × 0,85 -Metabolismo niño = Metabolismo hombre adulto × 0,75

<sup>\*\*</sup> Estos valores comprenden una mejora de 13 kcal/h (50 % calor sensible y 50 % calor latente) por ocupante, para tener en cuenta el calor desprendido por los platos.

<sup>\*\*\*</sup> Bowling - Admitir una persona por pista jugando, y todas las otras sentadas (100 kcal/h) o de pie (139 kcal/h).



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 2.2 TABLA DE DATOS GEOGRÁFICOS Y CLIMATOLÓGICOS EN PONTEVEDRA

| Provincia    |            |              |              | Estación             |                      |          |                       | Indicativo                         |
|--------------|------------|--------------|--------------|----------------------|----------------------|----------|-----------------------|------------------------------------|
| Pontevedra   | Ponte      | vedra (Moure | nte)         |                      |                      |          |                       | 1484C                              |
| UBICA        | CIÓN: ENTO | ORNO CIUDAD  | 1            |                      | Iº DE OBSI           | ERVACION | ES Y PERIOI           | 00                                 |
| a.s.n.m. (m) | Lat.       | Lo           | ng.          | T seca               | Hum. rel             | ativa    | T terreno             | Rad                                |
| 107          | 42°26'2    | 4" 08°36     | 5'59"W       | 87.600<br>1998-2007) | (2) 18.9<br>(1998-20 |          | 14.600<br>(1998-2007) |                                    |
|              | CONDICIO   | NES PROYECT  | TO CALEFACCI | ÓN (TEMPER           | ATURA SE             | A EXTER  | OR MÍNIMA             | )                                  |
| TSMIN (°C)   | TS_9       | 9,6 (°C)     | TS_ 99 (°C   | OM                   | DC (°C)              | HUM      | oin (%)               | OMA (°C)                           |
| -2,0         |            | 2,1          | 3,3          |                      | 9,8                  |          | 78                    | 29,4                               |
|              | CONDICION  | ES PROYECTO  | REFRIGERAC   | IÓN (TEMPE           | RATURA SE            | CA EXTE  | RIOR MÁXIM            | A)                                 |
|              |            | THC_0,4 (°   | _            | _                    | -                    | 5_2 (°C) | THC_2 (°              | THE RESERVE OF THE PERSON NAMED IN |
| 39,5         | 31,5       | 22,5         | 29,4         | 22,                  | 0                    | 27,5     | 21,3                  | 16,1                               |
| co           | NDICIONES  | PROYECTO R   | REFRIGERACIO | ÓN (TEMPER/          | TURA HÚA             | MEDA EXT | ERIOR MÁXI            | MA)                                |
| TH_ 0,4 (°C) |            | 0,4 (°C)     | TH_1(°C)     |                      | 1 (°C)               |          | 2 (°C)                | TSC_2 (°C)                         |
| 22,8         | 3          | 31,5         | 22,0         |                      | 80,8                 |          | 21,0                  | 29,6                               |
|              |            |              | VALORES N    | NEDIOS MENS          | SUALES               |          |                       |                                    |
| Mes          | TA (°C)    | TASOL (°C)   | GD 15 (°C)   | GD 20                | GDR 2                | o RAE    | H(kWh/m³              | día) TTERR (°                      |
| Enero        | 9,6        | 10,9         | 170          | 323                  | 0                    |          |                       | 9,9                                |
| Febrero      | 10,0       | 11,7         | 144          | 283                  | 0                    |          |                       | 10,2                               |
| Marzo        | 12,1       | 13,8         | 107          | 247                  | 3                    |          |                       | 12,5                               |
| Abril        | 12,7       | 14,4         | 92           | 223                  | 3                    |          |                       | 14,7                               |
| Mayo         | 15,4       | 17,1         | 46           | 157                  | 14                   |          |                       | 18,0                               |
| Junio        | 18,7       | 20,5         | 11           | 78                   | 40                   |          |                       | 21,7                               |
| Julio        | 20,0       | 22,0         | 4            | 56                   | 58                   |          |                       | 23,4                               |
| Agosto       | 20,3       | 22,3         | 2            | 48                   | 58                   |          |                       | 23,9                               |
| Septiembre   | 18,3       | 20,3         | 7            | 77                   | 26                   |          |                       | 21,2                               |
| Octubre      | 15,4       | 17,1         | 34           | 147                  | 5                    |          |                       | 17,4                               |
|              |            |              |              |                      |                      |          |                       |                                    |
| Noviembre    | 11,8       | 13,3         | 105          | 246                  | 0                    |          |                       | 13,1                               |

Rosa de los vientos: velocidad media 2,06 m/s



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 2.3 TABLAS DEL CÁLCULO DE CARGAS

### 2.3.1 TABLAS DEL CÁLCULO DE CARGAS DE VERANO

## 2.3.1.1 Cálculo de cargas de verano del semisótano

|                                                                             |             |               |        | CAL         | .cı   | JLO D    | E EXIGEN      | CIAS F                         | RIGO        | RIFIC     | CAS           |          |           |               |
|-----------------------------------------------------------------------------|-------------|---------------|--------|-------------|-------|----------|---------------|--------------------------------|-------------|-----------|---------------|----------|-----------|---------------|
| Proyec                                                                      | eto:        | <u> </u>      |        |             |       |          | Hotel Ponteve | dra                            |             |           |               | <u> </u> |           |               |
| Planta                                                                      | <b>1</b> :  | SE            | MISO'  | rano        |       | Zona:    |               |                                | TOTAL       |           |               |          | 12 de     | junio de 2018 |
| DIMENSIC                                                                    | NES:        |               | х      |             | -     | 122,03   | m2            | HORA                           | SOLAR:      |           | 17            |          |           |               |
| CONC                                                                        |             | SUPERFICIE    | GAN.   | SOLAR O I   | DIF.  | FACTOR   | Kcal/h        | MES:                           |             | л         | JLIO          | 1        | PONTE     | VEDRA         |
|                                                                             |             | GANANCIA S    | OLAR-  | CRISTAL     |       |          | TOTALES       | CONDICIO                       | NES         | BS        | BH            | %HR      | TR        | Gr/Kgr        |
| NORTE                                                                       | Cristal     |               | m2 x   | 44          | x     | 0,40     |               | Exterior                       | es          | 27,0      | 21,3          | 60       |           | 13,5          |
| NE                                                                          | Cristal     |               | m2 x   | 32          | х     | 0,40     |               | Interior                       | es          | 24,0      | 17,0          | 50       |           | 9,2           |
| ESTE                                                                        | Cristal     |               | m2 x   | 32          | x     | 0,40     |               | DIFERENC                       | IA          | 3,0       |               |          |           | 4,3           |
| SE                                                                          | Cristal     |               | m2 x   | 32          | x     | 0,40     |               | 8                              |             |           | CALOR LA      | TENTE    |           |               |
| SUR                                                                         | Cristal     |               | m2 x   | 32          | x     | 0,40     |               | Infiltración                   |             | m3/h x    | 4,3           | х        | 0,72      |               |
| so                                                                          | Cristal     |               | m2 x   | 304         | ×     | 0,40     |               | Personas                       | 56          | Pe        | rsonas        | ×        | 52        | 2.912         |
| OESTE                                                                       | Cristal     |               | m2 x   | 510         | x     | 0,40     |               | 2                              | plicaciones |           | 7             |          |           |               |
| NO                                                                          | Cristal     |               | m2 x   | 402         | x     | 0,40     |               | N.                             |             |           |               | S        | UBTOTAL   | 2.912         |
|                                                                             | Claraboya   |               | m2 x   | 232         | x     | 0,40     |               | COEFICIENTE DE SEGURIDAD 5     |             |           |               |          |           | 146           |
|                                                                             | GANANC      | IA SOLAR Y TR | ANS. P | AREDES Y T  | ECH   | os       | TOTALES       | 2                              |             | CAL       | OR LATE       | NTE DEL  | LOCAL     | 3.058         |
| NORTE                                                                       | Pared       | 18,75         | m2 x   | 0,5         | ×     | 0,44     | 4             | Aire Ext.                      | 1.612,80    | m3/h x    | 4,3 x         | 0,10     | BF x 0,72 | 502           |
| NE                                                                          | Pared       |               | m2 x   | 1,6         | x     | 0,44     |               | 100                            | CALOR I     | ATENT     | E EFECT       | IVO DEL  | LOCAL     | 3.560         |
| ESTE                                                                        | Pared       | 32,43         | m2 x   | 1,6         | ×     | 0,44     | 23            |                                |             |           |               |          |           | 11 000        |
| SE                                                                          | Pared       |               | m2 x   | 2,7         | x     | 0,44     |               | 1 '                            | CALOR TO    | LOCAL     | 11.228        |          |           |               |
| SUR                                                                         | Pared       | 13,44         | m2 x   | 7,2         | x     | 0,44     | 43            |                                |             | CA        | LOR AIRE      | EXTERIOR |           |               |
| so                                                                          | Pared       | -             | m2 x   | 13,8        | ×     | 0,44     |               | Sensible                       | 1.612,80    | m3/h x    | 3,0 x (1-     | 0,10 BF  | ) x 0,3   | 1.306         |
| OESTE                                                                       | Pared       | 15,00         | m2 x   | 13,3        | x     | 0,44     | 88            | Latente                        | 1.612,80    | m3/h x    | 4,3 x (1-     | 0,10 BF  | ) x 0,72  | 4.515         |
| NO                                                                          | Pared       |               | m2 x   | 6,1         | ×     | 0,44     |               |                                |             |           |               | S        | UBTOTAL   | 5.821         |
| 1                                                                           | ejado-Sol   |               | m2 x   | 15,5        | ×     | 0,40     |               |                                |             |           |               |          |           | 47.040        |
| Tejad                                                                       | o-Sombra    |               | m2 x   |             | x     | 0,40     |               | 1                              | GRA         | IN C      | ALOR :        | TOTAL    | l         | 17.049        |
|                                                                             | SANANCIA    | TRANSM. EXC   | EPTO   | PAREDES Y   | _     |          | TOTALES       |                                |             |           | A.D.          | Ρ.       |           |               |
| To                                                                          | tal Cristal |               | m2 x   | 3,0         | ×     | 1,72     |               | FACTOR 7.668 Efec. Sens. Local |             |           |               | Local    |           |               |
| 30.7                                                                        | ques LNC    | 36.93         | m2 x   | 1,5         | x     | 0,50     | 28            | CALOR<br>SENSIBLE              | 11.22       | 8         | Efec. Total L |          | -         | 0,68          |
|                                                                             | echo LNC    | 30,11         | m2 x   | 1,5         | x     | 0,49     | 22            |                                |             | Indicado= |               |          |           | °C            |
| -                                                                           | Suelo       | 23,30         | m2 x   | 1,5         | x     | 0,49     | 17            | ×                              | ADP Selec   |           |               | 12       |           | °C            |
| Sue                                                                         | lo exterior | 98,74         | m2 x   | 3,0         | ×     | 0,47     | 139           | 0                              |             |           | DE AIRE       |          | TRADO     | I *           |
| 540                                                                         | Puertas     | 12,18         | m2 x   | 3,0         | ×     | 0,50     | 18            | ▲T=(1-0,15                     |             | 24,0      |               | 12       |           | 10.20         |
| - 1                                                                         | nfiltración | 12,10         | m3/h x | 3,0         | x     | 0,30     | 10            |                                | 7.668       |           | Sensib        | le Local | 740.7     | 10,2.         |
| ,                                                                           |             | CALOR         | _      |             | ^     | 0,50     | TOTALES       | CAUDAL DE<br>AIRE M3/H         | 0.3 X       |           | 10.2          | ▲T       | -         | 2.506         |
| Personas                                                                    |             | 56            | _      | ersonas     | x     | 61       | 3,416         | Observacio                     |             |           | ,.            | -        | _         |               |
| Alumbrad                                                                    | 0           | 3.052         | _      | tios x 0.86 | ×     | 1,25     | 3.281         | CDBETTACIO                     |             |           |               |          |           |               |
| Aplicacion                                                                  |             | 3.052         | ,,,,   | 100         | ×     | 0,86     | 3.281         |                                |             |           |               |          |           |               |
| Potencia                                                                    | , 010.      |               |        | 100         | x     | 0,66     |               | N°                             | DE O.T.:    |           |               |          | _         |               |
|                                                                             | s Adicional |               |        |             | ×     |          |               | ×                              | JLADO POR:  |           |               |          |           |               |
| Ganancia                                                                    | Autonal     | us            |        |             | X     | SUBTOTAL | 7.165         | CALC                           | LIDO FOR:   |           |               |          |           |               |
| COPPIC                                                                      | PAITP N     | SEGURIDAD     |        | 2           | 5     | %        |               | 1                              |             |           |               |          |           |               |
| COEF IC                                                                     | DATE DE     |               | TOR    | CENCIPIE    |       |          | 358           | 1                              |             |           |               |          |           |               |
| CALOR SENSIBLE DEL LOCAL  Aire Exterior 1.612,80 m3/h x 3.0 x 0,10 BF x 0,3 |             |               |        |             | 7.523 | 1        |               |                                |             |           |               |          |           |               |
| All                                                                         |             | ALOR SENSI    |        |             |       |          | 145           | 1                              |             |           |               |          |           |               |
|                                                                             | C           | ALOR SENSI    | BLE    | EFECTIVO    | , DE  | L LOCAL  | 7.668         |                                |             |           |               |          |           |               |



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 2.3.1.2 Cálculo de cargas de verano de la planta de acceso

|           |                                                      |               |                                  | CAL                                     | .Cl   | JLO D    | E EXIGEN      | CIAS I                 | FRIGOR                                   | RIFIC        | CAS           |          |           |                |
|-----------|------------------------------------------------------|---------------|----------------------------------|-----------------------------------------|-------|----------|---------------|------------------------|------------------------------------------|--------------|---------------|----------|-----------|----------------|
| Proye     | eto:                                                 |               |                                  |                                         |       |          | Hotel Ponteve | dra                    |                                          |              |               |          |           | - 3 d- 2010    |
| Planta    | a:                                                   |               | ACCE                             | so                                      |       | Zona:    |               |                        | TOTAL                                    |              |               |          | 12 0      | e June de 2018 |
| DIMENSIO  | NES:                                                 | F-1           | х                                |                                         | -     | 227.91   | m2            | HORA                   | SOLAR:                                   |              | 16            |          |           |                |
| CONC      | EPTO                                                 | SUPERFICIE    | GAN.                             | SOLAR O I                               | OIF.  | FACTOR   | Kcal/h        | MES:                   |                                          | AG           | OSTO          | 1        | PONTE     | VEDRA          |
|           |                                                      | GANANCIA S    | OLAR-                            |                                         |       |          | TOTALES       | CONDICIO               | NES                                      | BS           | BH            | %HR      | TR        | Gr/Kgr         |
| NORTE     | Cristal                                              |               | m2 x                             | 34                                      | х     | 0.40     |               | Exterior               | es                                       | 27.0         | 21.6          | 62       |           | 13.9           |
| NE        | Cristal                                              |               | m2 x                             | 34                                      | х     | 0.40     |               | Interior               | es                                       | 24.0         | 17.0          | 50       |           | 9.2            |
| ESTE      | Cristal                                              | 8.40          | m2 x                             | 34                                      | х     | 0.40     | 114           | DIFERENC               | IA                                       | 3.0          |               |          |           | 4.7            |
| SE        | Cristal                                              |               | m2 x                             | 34                                      | x     | 0.40     |               |                        |                                          |              | CALOR LA      | TENTE    |           |                |
| SUR       | Cristal                                              | 15.05         | m2 x                             | 76                                      | х     | 0.40     | 458           | Infiltración           |                                          | m3/h x       | 4.7           | x        | 0.72      |                |
| so        | Cristal                                              |               | m2 x                             | 438                                     | х     | 0.40     |               | Personas               | 46                                       | Pe           | rsonas        | ×        | 52        | 2,392          |
| OESTE     | Cristal                                              | 12.94         | m2 x                             | 514                                     | x     | 0.40     | 2,660         | - 1                    | Aplicaciones                             |              |               |          |           |                |
| NO        | Cristal                                              |               | m2 x                             | 260                                     | х     | 0.40     |               |                        |                                          |              |               | S        | UBTOTAL   | 2,392          |
|           | Claraboya m2 x 317 x 0.40 COEFICIENTE DE SEGURIDAD 5 |               |                                  |                                         |       |          |               |                        |                                          |              | 5             | %        | 120       |                |
|           | GANANC                                               | IA SOLAR Y TR | ANS. P                           | AREDES Y T                              | ECH   | os       | TOTALES       |                        |                                          | CAL          | OR LATE       | NTE DEL  | LOCAL     | 2,512          |
| NORTE     | Pared                                                | 31.71         | m2 x                             |                                         | х     | 0.44     |               | Aire Ext.              | 2,070.00                                 | m3/h x       | 4.7 x         | 0.10     | BF x 0,72 | 706            |
| NE        | Pared                                                |               | m2 x                             | 1.1                                     | x     | 0.44     |               |                        | CALOR I                                  | ATENT        | E EFECT       | IVO DEL  | LOCAL     | 3,218          |
| ESTE      | Pared                                                | 29.43         | m2 x                             | 1.1                                     | х     | 0.44     | 14            |                        |                                          |              |               |          |           |                |
| SE        | Pared                                                |               | m2 x                             | 4.4                                     | x     | 0.44     |               | 1 '                    | CALOR TO                                 | LOCAL        | 21,783        |          |           |                |
| SUR       | Pared                                                | 29.50         | m2 x                             | 8.8                                     | x     | 0.44     | 114           | CALOR AIRE EXTERIOR    |                                          |              |               | ł        |           |                |
| so        | Pared                                                | -             | m2 x                             | 12.2                                    | ×     | 0.44     |               | Sensible               | 2,070.00                                 | m3/h x       | 3.0 x (1-     | 0.10 BF  | ) x 0,3   | 1,677          |
| OESTE     | Pared                                                | 23.32         | m2 x                             | 8.8                                     | x     | 0.44     | 90            | Latente                | 2,070.00                                 | m3/h x       | 4.7 x (1-     | 0.10 BF  | ) x 0,72  | 6,358          |
| NO        | Pared                                                |               | m2 x                             | 1.1                                     | x     | 0.44     |               |                        | -,                                       |              |               |          | UBTOTAL   | 8,035          |
|           | ejado-Sol                                            |               | m2 x                             | 13.8                                    | ×     | 0,40     |               |                        | 92392790                                 | Parami Param |               |          |           |                |
|           | o-Sombra                                             |               | m2 x                             |                                         | ×     | 0.40     |               | 1                      | GRA                                      | IN C         | ALOR :        | TOTAL    | l         | 29,818         |
| -         |                                                      | TRANSM. EXC   |                                  | PAREDES Y                               |       | 1,5100   | TOTALES       | _                      |                                          |              | A.D.          | р.       |           |                |
|           | tal Cristal                                          | 36.39         | m2 x                             | 3.0                                     | ×     | 1.72     | 188           | FACTOR                 | 18,56                                    | 5            | Efec. Sens. I |          |           |                |
|           | ques LNC                                             | 206.10        | m2 x                             | 1.5                                     | ×     | 0.50     | 155           | CALOR<br>SENSIBLE      | 21,78                                    |              | Efec. Total L |          | 1 -       | 0.85           |
|           | echo LNC                                             | 112.96        | m2 x                             | 1.5                                     | ×     | 0.49     | 83            | DENOIDEE               |                                          | Indicado=    | Licc. Folds L | .000     |           | °C             |
| 5.        | Suelo                                                | 110.12        | m2 x                             | 1.5                                     | ×     | 0.49     | 81            |                        | ADP Selec                                |              |               | 12       |           | °C             |
| Euro      | lo exterior                                          | 110.12        | m2 x                             | 3.0                                     | - 100 | 0.49     | 01            |                        | 743000 000000000000000000000000000000000 |              | DE AIRE       | 0.000    | TRADO     | -0             |
| Sue       | Puertas                                              | 39.07         | m2 x                             | 3.0                                     | ×     | 0.50     | 59            | AT-14 0 45             |                                          | 24.0         | ) DE AIRE     | 12       |           | 10.20          |
|           |                                                      | 39.07         |                                  |                                         | ×     |          | 39            |                        | BF)x(°C Loc<br>18,56                     |              | Consibi       |          | ADP)=     | 10.20          |
|           | nfiltración                                          | CALOR         | m3/h x                           | 3.0                                     | x     | 0.30     | 7071150       | CAUDAL DE<br>AIRE M3/H | 10.57.07                                 |              | 17775         | le Local | -         | 6,067          |
| Danasanas |                                                      |               | CALOR INTERNO TOTALES 0,3 X 10.2 |                                         |       |          |               |                        |                                          | A 1          |               | 2 38     |           |                |
| Personas  | _                                                    | 46            |                                  | ersonas                                 | x     | 61       | 2,806         | Observacio             | ones:                                    |              |               | -        | _         |                |
| Alumbrad  | 23                                                   | 6,290         | Wa                               | tios x 0,86                             | x     | 1.25     | 6,762         |                        |                                          |              |               |          | _         |                |
| Aplicacio | ies, etc.                                            |               |                                  | 4,558                                   | x     | 0.86     | 3,920         |                        | 0.000.00                                 |              |               |          |           |                |
| Potencia  | . Adlala :                                           |               | ,                                |                                         | х     |          |               | 173                    | O DE O.T.:                               |              |               |          |           |                |
| Ganancia  | s Adicional                                          | es            | 2                                |                                         | х     | ermmom:: | 48            | CALC                   | ULADO POR:                               |              |               |          |           |                |
| COEFIC    | ENTE DE                                              | SEGURIDAD     |                                  |                                         | 5     | SUBTOTAL | 17,504<br>875 | 1                      |                                          |              |               |          |           |                |
|           |                                                      |               | LOR                              | SENSIBLE                                |       |          | 18,379        | 1                      |                                          |              |               |          |           |                |
| Δii       | e Exterior                                           | 2,070.00      | m3/h x                           |                                         | 0.10  | _        | 186           | 1                      |                                          |              |               |          |           |                |
| 7         |                                                      | ALOR SENSI    |                                  | 100000000000000000000000000000000000000 |       |          | 18,565        | 1                      |                                          |              |               |          |           |                |
|           |                                                      |               |                                  |                                         |       |          | 10,303        |                        |                                          |              |               |          |           |                |



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 2.3.1.3 Cálculo de cargas de verano de la primera planta

|                                                                           |                                                                   |                      |        | CAL         | .Cl    | JLO D    | E EXIGEN      | CIAS I                          | FRIGO        | RIFIC           | CAS           |          |           |              |
|---------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------|--------|-------------|--------|----------|---------------|---------------------------------|--------------|-----------------|---------------|----------|-----------|--------------|
| Proyec                                                                    | eto:                                                              |                      |        |             |        |          | Hotel Ponteve | dra                             |              |                 |               |          |           |              |
| Planta                                                                    | <b>1</b> :                                                        | P                    | LANTA  | A 1         |        | Zona:    |               |                                 | TOTAL        |                 |               |          | 12 de     | June de 2018 |
| DIMENSIO                                                                  | ATT C                                                             |                      | x      |             | _      | 208.80   | m2            | HORA                            | SOLAR:       |                 | 16            |          |           |              |
| CONC                                                                      |                                                                   | SUPERFICIE           | GAN.   | SOLAR O I   | OIF.   | FACTOR   | Kcal/h        | MES:                            |              | AG              | OSTO          | 1        | PONTE     | VEDRA        |
|                                                                           |                                                                   | GANANCIA S           | OLAR-  | CRISTAL     |        |          | TOTALES       | CONDICIO                        | NES          | BS              | ВН            | %HR      | TR        | Gr/Kgr       |
| NORTE                                                                     | Cristal                                                           |                      | m2 x   | 34          | х      | 0.40     |               | Exterior                        | es           | 27.0            | 21.6          | 62       |           | 13.9         |
| NE                                                                        | Cristal                                                           |                      | m2 x   | 34          | х      | 0.40     |               | Interior                        | es           | 24.0            | 17.0          | 50       |           | 9.2          |
| ESTE                                                                      | Cristal                                                           | 16.54                | m2 x   | 34          | х      | 0.40     | 225           | DIFERENC                        | IA           | 3.0             |               |          |           | 4.7          |
| SE                                                                        | Cristal                                                           |                      | m2 x   | 34          | х      | 0.40     |               |                                 |              |                 | CALOR LA      | TENTE    |           |              |
| SUR                                                                       | Cristal                                                           | 8.70                 | m2 x   | 76          | х      | 0.40     | 264           | Infiltración                    |              | m3/h x          | 4.7           | x        | 0.72      |              |
| so                                                                        | Cristal                                                           |                      | m2 x   | 438         | х      | 0.40     |               | Personas                        | 24           | Per             | rsonas        | ×        | 52        | 1,248        |
| OESTE                                                                     | Cristal                                                           | 14.43                | m2 x   | 514         | х      | 0.40     | 2,967         | ,                               | Aplicaciones |                 |               |          |           |              |
| NO                                                                        | Cristal                                                           |                      | m2 x   | 260         | x      | 0.40     |               |                                 |              |                 |               | S        | UBTOTAL   | 1,248        |
|                                                                           | Claraboya                                                         |                      | m2 x   | 317         | x      | 0.40     |               | COEFICIE                        | NTE DE SEG   | URIDAD          |               | 5        | %         | 62           |
|                                                                           | GANANCIA SOLAR Y TRANS. PAREDES Y TECHOS TOTALES CALOR LATENTE DE |                      |        |             |        |          |               |                                 |              |                 |               | NTE DEL  | LOCAL     | 1,310        |
| NORTE                                                                     | Pared                                                             | 38.31                | m2 x   |             | х      | 0.44     |               | Aire Ext.                       | 691.20       | m3/h x          | 4.7 x         | 0.10     | BF x 0,72 | 236          |
| NE                                                                        | Pared                                                             |                      | m2 x   | 1.1         | х      | 0.44     |               |                                 | CALOR I      | ATENT           | E EFECT       | IVO DEL  | LOCAL     | 1,546        |
| ESTE                                                                      | Pared                                                             | 41.04                | m2 x   | 1.1         | x      | 0.44     | 20            |                                 |              |                 |               |          |           | 45.055       |
| SE                                                                        | Pared                                                             |                      | m2 x   | 4.4         | ×      | 0.44     |               | 1 '                             | CALOR TO     | TAL E           | EFECTIV       | O DEL    | LOCAL     | 17,275       |
| SUR                                                                       | Pared                                                             | 23.53                | m2 x   | 8.8         | х      | 0.44     | 91            |                                 |              | CAI             | LOR AIRE      | EXTERIOR | l.        |              |
| so                                                                        | Pared                                                             |                      | m2 x   | 12.2        | ×      | 0,44     |               | Sensible                        | 691.20       | m3/h x          | 3.0 x (1-     | 0.10 BF  | ) x 0,3   | 560          |
| OESTE                                                                     | Pared                                                             | 36.72                | m2 x   | 8.8         | x      | 0.44     | 142           | Latente                         | 691.20       | m3/h x          | 4.7 x (1-     | 0.10 BF  | ) x 0.72  | 2,123        |
| NO                                                                        | Pared                                                             |                      | m2 x   | 1.1         | ×      | 0.44     |               | -                               |              |                 |               | S        | UBTOTAL   | 2,683        |
| T                                                                         | ejado-Sol                                                         |                      | m2 x   | 13.8        | x      | 0,40     |               |                                 |              |                 |               |          |           |              |
| Teiad                                                                     | o-Sombra                                                          |                      | m2 x   |             | x      | 0,40     |               | 1                               | GRA          | IN C            | ALOR :        | COTAL    | l         | 19,958       |
|                                                                           |                                                                   | TRANSM. EXC          |        | PAREDES Y   |        |          | TOTALES       | A.D.P.                          |              |                 |               |          |           |              |
|                                                                           | tal Cristal                                                       | 39.67                | m2 x   | 3.0         | ×      | 1.72     | 205           | FACTOR 15,729 Efec. Sens. Local |              |                 |               |          |           |              |
|                                                                           | ques LNC                                                          | 284.30               | m2 x   | 1.5         | ×      | 0.50     | 213           | CALOR<br>SENSIBLE               | 17,27        |                 | Efec. Total L |          | -         | 0.91         |
|                                                                           | echo LNC                                                          | 201100               | m2 x   | 1.5         | ×      | 0.49     |               |                                 |              | Indicado=       |               |          |           | °C           |
|                                                                           | Suelo                                                             | 73.70                | m2 x   | 1.5         | ×      | 0.49     | 54            |                                 | ADP Sele     |                 |               | 12       |           | °C           |
| Suel                                                                      | lo exterior                                                       | 75.70                | m2 x   | 3.0         | ×      | 0.47     |               | -                               |              |                 | DE AIRE       |          | TRADO     |              |
| 000                                                                       | Puertas                                                           | 42.16                | m2 x   | 3.0         | ×      | 0.50     | 63            | ▲T=(1-0,15                      |              | 24.0            |               | 12       |           | 10.20        |
| -                                                                         | nfiltración                                                       | 12.10                | m3/h x | 3.0         | x      | 0.30     |               | CALIDAL DE                      | 15,72        |                 | Sensibl       |          | 742.7     | 10120        |
| -                                                                         |                                                                   | CALOR                |        |             | ^      | 0.50     | TOTALES       | AIRE M3/H                       | 0,3 X        |                 | 10.2          | ▲T       | -         | 5,140        |
| Personas                                                                  | CALOR INTERNO                                                     |                      |        |             |        |          |               |                                 |              | <del> -</del> - |               |          |           |              |
| Alumbrad                                                                  |                                                                   | 5,229                |        | tios x 0,86 | ×      | 1.25     | 5,621         | UDBervaciones:                  |              |                 |               |          |           |              |
| Aplicacion                                                                |                                                                   | 5,229                | -74    | 4,176       | ×      | 0.86     |               |                                 |              |                 |               |          |           |              |
| Potencia                                                                  | , 0.0.                                                            |                      |        | -,110       | ×      | 0.00     | 3,331         | N                               | ° DE O.T.:   |                 |               |          |           |              |
|                                                                           | s Adicional                                                       | es                   |        |             | ×      |          |               |                                 | ULADO POR:   |                 |               |          |           |              |
| Gamanolas                                                                 | - Autorioriai                                                     | -                    |        |             | ^      | SUBTOTAL | 14,921        | C.L.C.                          | _ wo rok.    |                 |               |          |           |              |
| CORRIGI                                                                   | PNTP NE                                                           | SEGURIDAD            |        |             | 5      | %        | 746           | 1                               |              |                 |               |          |           |              |
| COEFICI                                                                   | LENIE DE                                                          |                      | TOD    | CHAICTETT   | _      |          |               | 1                               |              |                 |               |          |           |              |
| CALOR SENSIBLE DEL LOCAL  Aire Exterior 691.20 m3/h x 3.0 x 0.10 BF x 0.3 |                                                                   |                      |        |             | 15,667 | 1        |               |                                 |              |                 |               |          |           |              |
| Air                                                                       |                                                                   | 691.20<br>ALOR SENSI |        |             |        |          | 15,729        | 1                               |              |                 |               |          |           |              |
|                                                                           | C.                                                                | WTOK SENSI           | DLE    | ELECTIVO    | , DE   | L LOCAL  | 15,729        |                                 |              |                 |               |          |           |              |



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 2.3.1.4 Cálculo de cargas de verano de la segunda planta

|            |             |               |        | CAL         | .Cl  | JLO D    | E EXIGEN      | CIAS I              | FRIGO        | RIFIC     | CAS           |          |                     |                |  |
|------------|-------------|---------------|--------|-------------|------|----------|---------------|---------------------|--------------|-----------|---------------|----------|---------------------|----------------|--|
| Proyec     | eto:        |               |        |             |      |          | Hotel Ponteve | dra                 |              |           |               |          |                     | - J d- 2010    |  |
| Planta     | <b>1</b> :  | P             | LANTA  | A 2         |      | Zona:    |               |                     | TOTAL        |           |               |          | 12 a                | e June de 2018 |  |
| DIMENSIO   | NES.        |               | ×      |             |      | 208.80   | m2            | HORA                | SOLAR:       |           | 16            |          |                     |                |  |
|            | EPTO        | SUPERFICIE    | GAN.   | SOLAR O I   | OIF. | FACTOR   | Kcal/h        | MES:                |              | AG        | OSTO          | 1        | PONTE               | PONTEVEDRA     |  |
|            |             | GANANCIA S    | OLAR-  |             |      |          | TOTALES       | CONDICIO            | NES          | BS        | BH            | %HR      | TR                  | Gr/Kgr         |  |
| NORTE      | Cristal     |               | m2 x   | 34          | x    | 0.40     |               | Exterior            | es           | 27.0      | 21.6          | 62       |                     | 13.9           |  |
| NE         | Cristal     |               | m2 x   | 34          | х    | 0.40     |               | Interior            | es           | 24.0      | 17.0          | 50       |                     | 9.2            |  |
| ESTE       | Cristal     | 16.54         | m2 x   | 34          | x    | 0.40     | 225           | DIFERENC            | IA           | 3.0       |               |          |                     | 4.7            |  |
| SE         | Cristal     |               | m2 x   | 34          | х    | 0.40     |               |                     |              |           | CALOR LA      | TENTE    |                     |                |  |
| SUR        | Cristal     | 8.70          | m2 x   | 76          | х    | 0.40     | 264           | Infiltración        |              | m3/h x    | 4.7           | x        | 0.72                |                |  |
| so         | Cristal     |               | m2 x   | 438         | х    | 0.40     |               | Personas            | 24           | Pe        | rsonas        | ×        | 52                  | 1,248          |  |
| OESTE      | Cristal     | 14.43         | m2 x   | 514         | x    | 0.40     | 2,967         |                     | Aplicaciones |           |               |          |                     |                |  |
| NO         | Cristal     |               | m2 x   | 260         | ×    | 0.40     |               |                     |              |           |               | S        | UBTOTAL             | 1,248          |  |
|            |             |               |        |             |      |          |               |                     |              |           | 5             | %        | 62                  |                |  |
|            |             | IA SOLAR Y TR |        |             |      |          | TOTALES       |                     |              | CAL       | OR LATE       |          | 1.0                 | 1,310          |  |
| NORTE      | Pared       | 38.31         | m2 x   |             | x    | 0.44     | TOTALLS       | Aire Ext.           | 691.20       | m3/h x    | 4.7 x         | 0.10     | BF x 0.72           | 236            |  |
| NE         | Pared       | 50.51         | m2 x   | 1.1         | ×    | 0.44     |               | TELL DIE.           |              |           | E EFECT       |          |                     | 1,546          |  |
| ESTE       | Pared       | 41.04         | m2 x   | 1.1         | ×    | 0.44     | 20            |                     |              |           |               |          |                     | 1,540          |  |
| SE         | Pared       | 41.04         | m2 x   | 4.4         | ×    | 0.44     | 20            | (                   | CALOR TO     | O DEL     | LOCAL         | 17,230   |                     |                |  |
| SUR        | Pared       | 23.53         | m2 x   | 8.8         | _    | 0.44     | 91            | CALOR AIRE EXTERIOR |              |           |               |          |                     |                |  |
|            |             | 23.53         |        |             | х    |          | 91            | Sensible            | 204.00       |           |               |          |                     | 560            |  |
| SO         | Pared       | 00.70         | m2 x   | 12.2        | x    | 0.44     | 142           |                     | 691.20       | m3/h x    | 3.0 x (1-     | 0.10 BF  | ) x 0,3             | 2,123          |  |
| OESTE      | Pared       | 36.72         | m2 x   | 8.8         | x    | 0.44     | 142           | Latente             | 691.20       | m3/h x    | 4.7 x (1-     | 0.10 BF  | ) x 0,72<br>UBTOTAL |                |  |
| NO         | Pared       |               | m2 x   | 1.1         | x    | 0.44     |               |                     |              |           |               |          | UBTOTAL             | 2,683          |  |
|            | ejado-Sol   |               | m2 x   | 13.8        | x    | 0.40     |               |                     | GRA          | N C       | ALOR 7        | TOTAL    |                     | 19,913         |  |
|            | o-Sombra    |               | m2 x   |             | X    | 0.40     |               |                     |              |           |               |          | ,                   |                |  |
|            |             | A TRANSM. EXC |        |             |      |          | TOTALES       | A.D.P.              |              |           |               |          |                     |                |  |
|            | tal Cristal | 39.67         | m2 x   | 3.0         | x    | 1.72     | 205           | FACTOR<br>CALOR     | 15,68        |           | Efec. Sens. I |          | -                   | 0.91           |  |
|            | ques LNC    | 284.30        | m2 x   | 1.5         | x    | 0.50     | 213           | SENSIBLE            | 17,23        |           | Efec. Total L | ocal.    |                     |                |  |
| Т          | echo LNC    | 15.41         | m2 x   | 1.5         | x    | 0.49     | 11            |                     | ADP          | Indicado= |               |          |                     | °C             |  |
|            | Suelo       |               | m2 x   | 1.5         | x    | 0.49     |               |                     | ADP Sele     |           |               | 12       |                     | °C             |  |
| Suel       | lo exterior |               | m2 x   | 3.0         | x    | 0.47     |               |                     | С            | ANTIDA    | DE AIRE       | SUMINIS  | TRADO               |                |  |
|            | Puertas     | 42.16         | m2 x   | 3.0         | x    | 0.50     | 63            | ▲T=(1-0,15          | BF)x(°C Loc  | 24.0      | -             | 12       | ADP)=               | 10.20          |  |
| li         | nfiltración |               | m3/h x | 3.0         | x    | 0.30     |               | CAUDAL DE           | 15,68        | 4         | Sensibl       | le Local | _                   | 5,125          |  |
|            |             | CALOR         | INTER  | NO          |      |          | TOTALES       | AIRE M3/H           | 0,3 X        |           | 10.2          | ▲T       |                     | 0,120          |  |
| Personas   |             | 24            | Р      | 'ersonas    | х    | 61       | 1,464         | Observacio          | ones:        |           |               |          |                     |                |  |
| Alumbrad   | 0           | 5,229         | Wa     | tios x 0,86 | x    | 1.25     | 5,621         |                     |              |           |               |          |                     |                |  |
| Aplicacion | nes, etc.   |               |        | 4,176       | x    | 0.86     | 3,591         |                     |              |           |               |          |                     |                |  |
| Potencia   |             |               |        |             | х    |          |               | N                   | ° DE O.T.:   |           | •             | •        |                     |                |  |
| Ganancias  | s Adicional | es            |        |             | х    |          |               | CALC                | ULADO POR:   |           |               |          |                     |                |  |
|            |             |               |        |             | _    | SUBTOTAL | 14,878        |                     |              |           |               |          |                     |                |  |
| COEFICI    | ENTE DE     | SEGURIDAD     |        |             | 5    | %        | 744           | 1                   |              |           |               |          |                     |                |  |
|            |             | CA            | LOR    | SENSIBLE    | DE   | L LOCAL  | 15,622        | 1                   |              |           |               |          |                     |                |  |
| Air        | e Exterior  |               | m3/h x | 3.0 x       | 0.10 |          | 62            | i                   |              |           |               |          |                     |                |  |
|            | C           | ALOR SENSI    |        |             |      |          | 15,684        | i                   |              |           |               |          |                     |                |  |
|            |             |               |        |             |      |          | 15,004        |                     |              |           |               |          |                     |                |  |



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 2.3.1.5 Cálculo de cargas de verano de la tercera planta

|             |                                                 |                                                              |        | CAL         | CI   | II O D   | E EXIGEN      | CIASI                              | RIGO         | SIEIC     | :AS           |                |          |              |
|-------------|-------------------------------------------------|--------------------------------------------------------------|--------|-------------|------|----------|---------------|------------------------------------|--------------|-----------|---------------|----------------|----------|--------------|
| Dmarra      |                                                 |                                                              |        | CAL         |      |          | Hotel Ponteve |                                    | RIGOI        | VIFIC     | <b>,</b>      |                |          |              |
| Proye       | 300:                                            |                                                              |        |             |      |          | rocei Fonceve | ura                                |              |           |               |                | 12 de    | June de 2018 |
| Planta      | ı:                                              | P                                                            | LANTA  | A 3         |      | Zona:    |               |                                    | TOTAL        |           |               |                |          |              |
| DIMENSIO    | MFC.                                            |                                                              | х      |             | _    | 204.04   | m2            | HORA                               | SOLAR:       |           | 16            |                |          |              |
| CONC        |                                                 | SUPERFICIE                                                   | GAN.   | SOLAR O I   | DIF. | FACTOR   | Kcal/h        | MES:                               |              | AG        | OSTO          | 1              | PONTE    | VEDRA        |
|             |                                                 | GANANCIA S                                                   | OLAR-  | TEMP.       |      |          | TOTALES       | CONDICIO                           | NES          | BS        | ВН            | %HR            | TR       | Gr/Kgr       |
| NORTE       | Cristal                                         | G/H/H/H/GH/ G                                                | m2 x   | 34          | ×    | 0.40     | TOTALLS       | Exterior                           |              | 27.0      | 21.6          | 62             |          | 13.9         |
| NE          | Cristal                                         |                                                              | m2 x   | 34          | ×    | 0,40     |               | Interior                           |              | 24.0      | 17.0          | 50             |          | 9.2          |
| ESTE        | Cristal                                         | 16.70                                                        | m2 x   | 34          | x    | 0,40     | 227           | DIFERENC                           |              | 3.0       |               |                |          | 4.7          |
| SE          | Cristal                                         |                                                              | m2 x   | 34          | x    | 0.40     |               | DILLIGHCIA                         |              |           | CALOR LA      | TENTE          |          |              |
| SUR         | Cristal                                         | 8.70                                                         | m2 x   | 76          | x    | 0.40     | 264           | Infiltración                       |              | m3/h x    | 4.7           | x              | 0.72     |              |
| so          | Cristal                                         |                                                              | m2 x   | 438         | ×    | 0.40     |               | Personas                           | 23           | Pe        | rsonas        | ×              | 52       | 1,196        |
| OESTE       | Cristal                                         | 14.43                                                        | m2 x   | 514         | ×    | 0.40     | 2,967         | ,                                  | Aplicaciones |           |               |                |          | ,,,,,,       |
| NO          | Cristal                                         |                                                              | m2 x   | 260         | ×    | 0.40     | ,,,,,,        | Apricaciones                       |              |           |               | S              | UBTOTAL  | 1,196        |
|             | Claraboya                                       |                                                              | m2 x   | 317         | x    | 0.40     |               | COEFICIE                           | NTE DE SEG   | 5         | %             | 60             |          |              |
|             |                                                 | IA SOLAR Y TRANS. PAREDES Y TECHOS TOTALES CALOR LATENTE DEL |        |             |      |          |               |                                    | LOCAL        | 1,256     |               |                |          |              |
| NORTE       | Pared                                           | 38.31                                                        | m2 x   |             | ×    | 0,44     | 1011120       | Aire Ext. 662.40 m3/h x 4.7 x 0.10 |              |           |               | BF x 0,72      | 226      |              |
| NE          | Pared                                           |                                                              | m2 x   | 1.1         | ×    | 0,44     |               |                                    | CALOR I      | ATENT     | E EFECT       | VO DEL         |          | 1,482        |
| ESTE        | Pared                                           | 47.38                                                        | m2 x   | 1.1         | ×    | 0.44     | 23            |                                    |              |           |               |                |          |              |
| SE          | Pared                                           |                                                              | m2 x   | 4.4         | ×    | 0.44     |               | CALOR TOTAL EFECTIVO D             |              |           | O DEL         | LOCAL          | 14,337   |              |
| SUR         | Pared                                           | 23.53                                                        | m2 x   | 8.8         | x    | 0,44     | 91            |                                    |              | CA        | LOR AIRE      | EXTERIOR       |          |              |
| so          | Pared                                           | 20100                                                        | m2 x   | 12.2        | ×    | 0,44     |               | Sensible                           | 662.40       | m3/h x    | 3.0 x (1-     | 0.10 BF        | ) x 0,3  | 537          |
| OESTE       | Pared                                           | 36.72                                                        | m2 x   | 8.8         | ×    | 0.44     | 142           | Latente                            | 662,40       | m3/h x    | 4.7 x (1-     | _              | ) x 0,72 | 2,035        |
| NO          | Pared                                           | 00172                                                        | m2 x   | 1.1         | ×    | 0.44     |               |                                    | 002110       | mom x     | 411 14 (1-    |                | UBTOTAL  | 2,571        |
|             | ejado-Sol                                       |                                                              | m2 x   | 13.8        |      | 0.40     |               |                                    |              |           |               |                |          |              |
|             | o-Sombra                                        |                                                              | m2 x   | 1010        | ×    | 0,40     |               | ł                                  | GRA          | IN C      | ALOR T        | COTAL          | l        | 16,908       |
|             |                                                 | TRANSM. EXC                                                  |        | PAREDES Y   | _    |          | TOTALES       | A.D.P.                             |              |           |               |                |          |              |
|             | tal Cristal                                     | 39.83                                                        | m2 x   | 3.0         | ×    | 1.72     | 206           |                                    |              |           |               |                |          |              |
|             | ques LNC                                        | 285.02                                                       | m2 x   | 1.5         | -    | 0.50     | 214           | CALOR<br>SENSIBLE                  | 14,33        |           | Efec. Total L |                | -        | 0.90         |
|             | echo LNC                                        | 74.76                                                        | m2 x   | 1.5         | ×    | 0.49     | 55            | 02.10.022                          |              | Indicado= | L.00. 1010. L | -              |          | °C           |
|             | Suelo                                           | 4.96                                                         | m2 x   | 1.5         | ×    | 0.49     | 4             |                                    | ADP Sele     |           |               | 12             |          | °C           |
| Sue         | lo exterior                                     | 4.50                                                         | m2 x   | 3.0         | ×    | 0.47     |               |                                    |              |           | DE AIRE       |                | TRADO    |              |
| Jue         | Puertas                                         | 44.02                                                        | m2 x   | 3.0         | ×    | 0.47     | 66            | ▲T=(1-0,15                         |              | 24.0      |               | 12             | ADP)=    | 10.20        |
| <u> </u>    | nfiltración                                     | 74.02                                                        | m3/h x | 3.0         | ×    | 0.30     | - 00          |                                    | 12.85        |           | Sensibl       |                | AUI J    | 10.20        |
| <del></del> |                                                 | CALOR                                                        |        |             | _ ^  | 0.30     | TOTALES       | CAUDAL DE<br>AIRE M3/H             | 0,3 X        |           | 10.2          | ▲T             | -        | 4,201        |
| Personas    |                                                 | 23                                                           |        | ersonas     | ×    | 61       |               | Observacio                         |              |           | <u>-</u>      | <del>-</del> - |          |              |
| Alumbrad    | 0                                               | 5,109                                                        | _      | tios x 0.86 | ×    | 1.25     | 5,492         | ODBETTACIO                         |              |           |               |                |          |              |
| Aplicacio   |                                                 | 5,105                                                        | -74    | 1,200       | ×    | 0.86     | 1,032         |                                    |              |           |               |                |          |              |
| Potencia    | , 0.0.                                          |                                                              |        | 1,200       | ×    | 0.00     | 1,032         | N                                  | ° DE O.T.:   |           |               |                |          |              |
|             | ancias Adicionales x                            |                                                              |        |             |      |          |               |                                    | ULADO POR:   |           |               |                |          |              |
| Cananola    | - Amorolla                                      |                                                              |        |             | ^    | SUBTOTAL | 12,186        |                                    |              |           |               |                |          |              |
| COEFIC      | ENTE DE                                         | SEGURIDAD                                                    |        |             | 5    | %        | 609           | 1                                  |              |           |               |                |          |              |
|             |                                                 |                                                              | LOR    | SENSIBLE    | _    |          | 12,795        | 1                                  |              |           |               |                |          |              |
| Δir         | Aire Exterior 662.40 m3/h x 3.0 x 0.10 BF x 0.3 |                                                              |        |             | 60   | 1        |               |                                    |              |           |               |                |          |              |
|             | CALOR SENSIBLE EFECTIVO DEL LOCAL               |                                                              |        |             |      |          | 12,855        | 1                                  |              |           |               |                |          |              |
|             | CALOR SENSIBLE EFECTIVO DEL LOCA                |                                                              |        |             |      |          | 12,000        |                                    |              |           |               |                |          |              |



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 2.3.1.6 Cálculo de cargas de verano de la planta bajo cubierta

|            |                                                 |               |        | CAL         | .Cl  | JLO D    | E EXIGEN      | CIAS I                             | RIGO         | RIFIC     | CAS           |          |           |                |
|------------|-------------------------------------------------|---------------|--------|-------------|------|----------|---------------|------------------------------------|--------------|-----------|---------------|----------|-----------|----------------|
| Proye      | cto:                                            |               |        |             |      |          | Hotel Ponteve | dra                                |              |           |               |          | 12.4      | e June de 2018 |
| Planta     | a:                                              | P             | LANT   | A 4         |      | Zona:    |               |                                    | TOTAL        |           |               |          | 12 0      | e June de 2018 |
| DIMENSIO   | ONES:                                           |               | х      |             | -    | 162.15   | m2            | HORA                               | SOLAR:       |           | 17            |          |           |                |
| CONC       | EPTO                                            | SUPERFICIE    | GAN.   | SOLAR O I   | DIF. | FACTOR   | Kcal/h        | MES:                               |              | л         | JLIO          |          | PONTE     | VEDRA          |
|            |                                                 | GANANCIA S    | OLAR-  |             |      |          | TOTALES       | CONDICIO                           | NES          | BS        | BH            | %HR      | TR        | Gr/Kgr         |
| NORTE      | Cristal                                         |               | m2 x   | 44          | х    | 0.40     |               | Exterior                           | es           | 27.0      | 21.3          | 60       |           | 13.5           |
| NE         | Cristal                                         |               | m2 x   | 32          | х    | 0.40     |               | Interior                           | es           | 24.0      | 17.0          | 50       |           | 9.2            |
| ESTE       | Cristal                                         |               | m2 x   | 32          | х    | 0.40     |               | DIFERENC                           | IA           | 3.0       |               |          |           | 4.3            |
| SE         | Cristal                                         |               | m2 x   | 32          | х    | 0.40     |               |                                    |              |           | CALOR LA      | TENTE    |           |                |
| SUR        | Cristal                                         |               | m2 x   | 32          | х    | 0.40     |               | Infiltración m3/h x 4.3            |              |           | 4.3           | x        | 0.72      |                |
| so         | Cristal                                         |               | m2 x   | 304         | х    | 0.40     |               | Personas                           | 17           | Per       | rsonas        | ×        | 52        | 88             |
| OESTE      | Cristal                                         |               | m2 x   | 510         | х    | 0.40     |               | 1                                  | Aplicaciones |           |               |          |           |                |
| NO         | Cristal                                         |               | m2 x   | 402         | х    | 0.40     |               |                                    |              |           |               | UBTOTAL  | 88        |                |
|            | Claraboya                                       |               | m2 x   | 232         | х    | 0.40     |               | COEFICIE                           | NTE DE SEG   | URIDAD    |               | 5        | %         | 4-             |
|            | GANANC                                          | IA SOLAR Y TR | ANS. P | AREDES Y T  | ECH  | os       | TOTALES       |                                    |              | CAL       | OR LATER      | TE DEL   | LOCAL     | 928            |
| NORTE      | Pared                                           | 39.84         | m2 x   | 0.5         | х    | 0.44     | 9             | Aire Ext. 489.60 m3/h x 4.3 x 0.10 |              |           |               |          | BF x 0,72 | 15             |
| NE         | Pared                                           |               | m2 x   | 1.6         | х    | 0.44     |               | CALOR LATENTE EFECTIVO DE          |              |           | VO DEL        | LOCAL    | 1,080     |                |
| ESTE       | Pared                                           | 54.96         | m2 x   | 1.6         | х    | 0.44     | 39            | CALOR TOTAL EFECTIVO DEL           |              |           |               | T 003T   | 8,999     |                |
| SE         | Pared                                           |               | m2 x   | 2.7         | х    | 0.44     |               |                                    |              |           |               | LOCAL    | 0,993     |                |
| sur        | Pared                                           | 39.86         | m2 x   | 7.2         | х    | 0.44     | 126           |                                    |              | CAI       | LOR AIRE      | EXTERIOR | l.        | •              |
| so         | Pared                                           |               | m2 x   | 13.8        | х    | 0.44     |               | Sensible                           | 489.60       | m3/h x    | 3.0 x (1-     | 0.10 BF  | ) x 0,3   | 39             |
| OESTE      | Pared                                           | 42.23         | m2 x   | 13.3        | х    | 0.44     | 247           | Latente                            | 489.60       | m3/h x    | 4.3 x (1-     | 0.10 BF  | ) x 0,72  | 1,37           |
| NO         | Pared                                           |               | m2 x   | 6.1         | х    | 0.44     |               |                                    |              |           |               | 5        | UBTOTAL   | 1,76           |
| 1          | Tejado-Sol                                      | 162.15        | m2 x   | 15.5        | х    | 0.40     | 1,005         |                                    | CDA          | N C       | AT OD I       | IOM A T  |           | 10 766         |
| Tejad      | lo-Sombra                                       |               | m2 x   |             | х    | 0.40     |               | 1                                  | GRA          | IN CA     | ALOR 1        | DIAL     |           | 10,766         |
| (          | GANANCIA                                        | TRANSM. EXC   | EPTO   | PAREDES Y   | TEC  | HOS      | TOTALES       | A.D.P.                             |              |           |               |          |           |                |
| Т          | otal Cristal                                    |               | m2 x   | 3.0         | х    | 1.72     |               | FACTOR                             | 7,918        | 3         | Efec. Sens. I | .ocal    |           |                |
| Tab        | iques LNC                                       | 207.32        | m2 x   | 1.5         | х    | 0.50     | 155           | CALOR<br>SENSIBLE                  | 8,999        | )         | Efec. Total L | ocal     | -         | 0.88           |
| Т          | echo LNC                                        |               | m2 x   | 1.5         | x    | 0.49     |               |                                    | ADP          | Indicado= |               |          |           | °C             |
|            | Suelo                                           | 46.08         | m2 x   | 1.5         | х    | 0.49     | 34            |                                    | ADP Selec    | ccionado= |               | 12       |           | °C             |
| Sue        | lo exterior                                     |               | m2 x   | 3.0         | x    | 0.47     |               |                                    | C            | ANTIDAI   | DE AIRE       | SUMINIS  | TRADO     |                |
|            | Puertas                                         | 26.68         | m2 x   | 3.0         | x    | 0.50     | 40            | ▲T=(1-0,15                         | BF)x(°C Loc  | 24.0      | -             | 12       | ADP)=     | 10.2           |
|            | nfiltración                                     |               | m3/h x | 3.0         | x    | 0.30     |               | CAUDAL DE                          | 7,918        |           | Sensibl       | e Local  | _         |                |
|            |                                                 | CALOR         |        |             | _    |          | TOTALES       | AIRE M3/H                          | 0,3 X        |           | 10.2          | ▲T       | -         | 2,588          |
| Personas   |                                                 | 17            | Р      | ersonas     | x    | 61       | 1,037         | Observacio                         | nes:         |           |               |          |           |                |
| Alumbrad   | lo                                              | 3,752         | Wa     | tios x 0,86 | x    | 1.25     | 4,033         |                                    |              |           |               |          |           |                |
| Aplicacion | nes, etc.                                       | _,,           |        | 900         | -    | 0.86     | 774           |                                    |              |           |               |          |           |                |
| Potencia   | ,                                               |               |        |             |      | 5.00     |               | N                                  | ° DE O.T.:   |           |               |          |           | I              |
|            | s Adicional                                     | es            |        |             | ×    |          |               |                                    | JLADO POR:   |           |               |          |           |                |
|            |                                                 |               |        |             | -    | SUBTOTAL | 7,499         |                                    |              |           |               |          |           |                |
| COEFIC     | IENTE DE                                        | SEGURIDAD     |        |             | 5    | %        | 375           | 1                                  |              |           |               |          |           |                |
|            |                                                 |               | LOR    | SENSIBLE    |      |          | 7,874         | 1                                  |              |           |               |          |           |                |
| Air        | Aire Exterior 489.60 m3/h x 3.0 x 0.10 BF x 0.3 |               |        |             |      | 44       | 1             |                                    |              |           |               |          |           |                |
|            |                                                 | 700100        |        | 0.0 2       | 00   | Di 2 0,0 | 44            | 1                                  |              |           |               |          |           |                |



#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 2.3.2 TABLAS DEL CÁLCULO DE CARGAS DE INVIERNO

## 2.3.2.1 Cálculo de cargas de invierno del semisótano

#### CARGAS POR TRANSMISION INVIERNO

| Temp. Exterior                   | 3,3 | °C |
|----------------------------------|-----|----|
| Temp. Exterior<br>Temp. Interior | 22  | °C |
| Temp. TERRENO                    | 9,9 | °C |

| MODULO    | ORIENT. | ancho | alto | Sup.bruta | Descuento | Sup.Neta | K          | Taint - Taext | fv   | C.p.regimen | TOTAL    |
|-----------|---------|-------|------|-----------|-----------|----------|------------|---------------|------|-------------|----------|
| 1A        |         | (m)   | (m)  | (m2)      | (m2)      | (m2)     | Kcal/hm2°C | (°C)          |      |             | (Kcal/h) |
| CRISTAL   | N       |       |      | 0,00      |           | 0,0      | 1,72       | 18,7          | 1,35 | 1,15        | 0        |
| CRISTAL   | NE      |       |      | 0,00      |           | 0,0      | 1,72       | 18,7          | 1,35 | 1,15        | 0        |
| CRISTAL   | E       |       |      | 0,00      |           | 0,0      | 1,72       | 18,7          | 1,25 | 1,10        | 0        |
| CRISTAL   | SE      |       |      | 0,00      |           | 0,0      | 1,72       | 18,7          | 1,15 | 1,10        | 0        |
| CRISTAL   | S       | l .   |      | 0,00      |           | 0,0      | 1,72       | 18,7          | 1,00 | 1,10        | 0        |
| CRISTAL   | SO      |       |      | 0,00      |           | 0,0      | 1,72       | 18,7          | 1,10 | 1,10        | 0        |
| CRISTAL   | 0       |       |      | 0,00      |           | 0,0      | 1,72       | 18,7          | 1,20 | 1,15        | 0        |
| CRISTAL   | NO      |       |      | 0,00      |           | 0,0      |            | 18,7          |      |             | 0        |
| MURO EXT. | N       |       |      | 18,8      |           | 18,8     | 0,44       | 18,7          |      |             | 213      |
| MURO EXT. | NE      |       |      | 0,0       |           | 0,0      | 0,44       | 18,7          | 1,20 | 1,15        | 0        |
| MURO EXT. | E       | l     |      | 32,4      |           | 32,4     | 0,44       | 18,7          | 1,15 | 1,10        | 338      |
| MURO EXT. | SE      |       |      | 0,0       |           | 0,0      | 0,44       | 18,7          | 1,10 | 1,10        | 0        |
| MURO EXT. | S       |       |      | 13,4      |           | 13,4     | 0,44       | 18,7          | 1,00 | 1,10        | 122      |
| MURO EXT. | so      |       |      | 0,0       |           | 0,0      | 0,44       | 18,7          | 1,05 | 1,10        | 0        |
| MURO EXT. | 0       | l     |      | 15,0      |           | 15,0     | 0,44       | 18,7          | 1,10 | 1,15        | 156      |
| MURO EXT. | NO      | l     |      | 0,0       |           | 0,0      | 0,44       | 18,7          | 1,15 | 1,15        | 0        |
| CUBIERTA  | H       |       |      | 0,0       |           | 0,0      | 0,40       | 18,7          | 1,00 | 1,15        | 0        |
| SUELO     |         |       |      | 98,7      |           | 98,7     | 0,47       | 12,1          | 1,00 | 1,15        | 646      |
| LNC       |         |       |      | 102,5     |           | 102,5    | 0,50       | 9,4           | 1,00 | 1,00        | 479      |
| VOLUMEN   | 0       |       |      |           |           |          |            |               |      | TOTAL       | 1953     |

CAUDAL m3/h Kcal/h AIRE EXTERIOR 1.812.80 9047.808

## 2.3.2.2 Cálculo de cargas de invierno de la planta de acceso

#### CARGAS POR TRANSMISION INVIERNO

| Temp. Exter  | 3,3 °C |
|--------------|--------|
| Temp. Interi | 22 °C  |
| Temp. TERF   | 9,9 °C |

| MODULO    | ORIENT. | ancho | alto | Sup.bruta | Descuento | Sup.Neta | K          | Taint - Taext | fv       | C.p.regimen | TOTAL    |
|-----------|---------|-------|------|-----------|-----------|----------|------------|---------------|----------|-------------|----------|
| ACCESO    |         | (m)   | (m)  | (m2)      | (m2)      | (m2)     | Kcal/hm2°C | (°C)          |          |             | (Kcal/h) |
| CRISTAL   | N       |       |      | 0,00      |           | 0,0      | 1,72       | 18,7          | 1,35     | 1,15        | 0        |
| CRISTAL   | NE      |       |      | 0,00      |           | 0,0      | 1,72       | 18,7          | 1,35     | 1,15        | 0        |
| CRISTAL   | E       |       |      | 8,40      |           | 8,4      | 1,72       | 18,7          | 1,25     | 1,10        | 371      |
| CRISTAL   | SE      |       |      | 0,00      |           | 0,0      | 1,72       | 18,7          | 1,15     | 1,10        | 0        |
| CRISTAL   | s       |       |      | 15,05     |           | 15,1     | 1,72       |               | 1,00     | 1,10        | 532      |
| CRISTAL   | SO      |       |      | 0,00      |           | 0,0      | 1,72       | 18,7          | 1,10     | 1,10        | 0        |
| CRISTAL   | 0       |       |      | 12,94     |           | 12,9     | 1,72       | 18,7          | 1,20     | 1,15        | 574      |
| CRISTAL   | NO      |       |      | 0,00      |           | 0,0      | 1,72       | 18,7          | 1,25     | 1,15        | 0        |
| MURO EXT. | N       |       |      | 31,7      |           | 31,7     | 0,44       | 18,7          | 1,20     | 1,15        | 360      |
| MURO EXT. | NE      |       |      | 0,0       |           | 0,0      | 0,44       | 18,7          | 1,20     | 1,15        | 0        |
| MURO EXT. | E       |       |      | 29,4      |           | 29,4     | 0,44       | 18,7          | 1,15     | 1,10        | 306      |
| MURO EXT. | SE      |       |      | 0,0       |           | 0,0      | 0,44       | 18,7          | 1,10     | 1,10        | 0        |
| MURO EXT. | S       |       |      | 29,5      |           | 29,5     | 0,44       | 18,7          | 1,00     | 1,10        | 267      |
| MURO EXT. | SO      |       |      | 0,0       |           | 0,0      | 0,44       | 18,7          | 1,05     | 1,10        | 0        |
| MURO EXT. | 0       |       |      | 23,3      |           | 23,3     |            | 18,7          | 1,10     | 1,15        | 243      |
| MURO EXT. | NO      |       |      | 0,0       |           | 0,0      | 0,44       | 18,7          | 1,15     | 1,15        | 0        |
| CUBIERTA  | H       |       |      | 0,0       |           | 0,0      | 0,40       | 18,7          | 1,00     | 1,15        | 0        |
| SUELO     |         |       |      | 0,0       |           | 0,0      | 0,47       | 12,1          | 1,00     |             | 0        |
| LNC       |         |       |      | 468,3     |           | 468,3    | 0,50       | 9,4           | 1,00     | 1,00        | 2189     |
|           |         |       |      |           |           |          |            | <u> </u>      | <u> </u> |             |          |
| VOLUMEN   | 0       |       |      |           |           |          |            |               |          | TOTAL       | 4843     |

 CAUDAL

 m3/h
 Kcal/h

 AIRE EXTEF
 2.070,00
 11612,7



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 2.3.2.3 Cálculo de cargas de invierno de la primera planta

#### CARGAS POR TRANSMISION INVIERNO

| Temp. Exter  | 3.3 | °C |
|--------------|-----|----|
| Temp. Interi | 22  | °C |
| Temp. TER    | 9.9 | °C |

| MODULO    | ORIENT. | ancho | alto | Sup.bruta | Descuento | Sup.Neta | K          | Taint - Taext | fv   | C.p.regimen | TOTAL    |
|-----------|---------|-------|------|-----------|-----------|----------|------------|---------------|------|-------------|----------|
| 1         |         | (m)   | (m)  | (m2)      | (m2)      | (m2)     | Kcal/hm2°C | (°C)          |      |             | (Kcal/h) |
| CRISTAL   | N       |       |      | 0.00      |           | 0.0      | 1.72       | 18.7          | 1.35 | 1.15        | 0        |
| CRISTAL   | NE      |       |      | 0.00      |           | 0.0      |            |               | 1.35 |             |          |
| CRISTAL   | E       |       |      | 16.54     |           | 16.5     | 1.72       | 18.7          | 1.25 | 1.10        | 731      |
| CRISTAL   | SE      |       |      | 0.00      |           | 0.0      |            |               | 1.15 | 1.10        | 0        |
| CRISTAL   | S       |       |      | 8.70      |           | 8.7      | 1.72       |               | 1.00 |             |          |
| CRISTAL   | SO      |       |      | 0.00      |           | 0.0      | 1.72       | 18.7          | 1.10 | 1.10        | 0        |
| CRISTAL   | 0       |       |      | 14.43     |           | 14.4     | 1.72       | 18.7          | 1.20 | 1.15        | 640      |
| CRISTAL   | NO      |       |      | 0.00      |           | 0.0      |            | 18.7          | 1.25 |             |          |
| MURO EXT. | N       |       |      | 38.3      |           | 38.3     | 0.44       | 18.7          | 1.20 | 1.15        | 435      |
| MURO EXT. | NE      |       |      | 0.0       |           | 0.0      | 0.44       | 18.7          | 1.20 | 1.15        |          |
| MURO EXT. | E       |       |      | 41.0      |           | 41.0     | 0.44       | 18.7          | 1.15 | 1.10        | 427      |
| MURO EXT. | SE      |       |      | 0.0       |           | 0.0      | 0.44       | 18.7          | 1.10 | 1.10        | 0        |
| MURO EXT. | S       |       |      | 23.5      |           | 23.5     | 0.44       | 18.7          | 1.00 | 1.10        | 213      |
| MURO EXT. | SO      |       |      | 0.0       |           | 0.0      | 0.44       | 18.7          | 1.05 | 1.10        | 0        |
| MURO EXT. | 0       |       |      | 36.7      |           | 36.7     | 0.44       | 18.7          | 1.10 | 1.15        | 382      |
| MURO EXT. | NO      |       |      | 0.0       |           | 0.0      | 0.44       | 18.7          | 1.15 | 1.15        | 0        |
| CUBIERTA  | H       |       |      | 0.0       |           | 0.0      | 0.40       | 18.7          | 1.00 | 1.15        | 0        |
| SUELO     |         |       |      | 0.0       |           | 0.0      | 0.47       | 12.1          | 1.00 | 1.15        | 0        |
| LNC       |         |       |      | 400.2     |           | 400.2    | 0.50       | 9.4           | 1.00 | 1.00        | 1871     |
|           |         |       |      |           |           |          |            |               |      |             |          |
| VOLUMEN   | 0       |       |      |           |           |          |            |               |      | TOTAL       | 5008     |

CAUDAL m3/h Kcal/h AIRE EXTEF 691.20 3877.632

## 2.3.2.4 Cálculo de cargas de invierno de la segunda planta

#### CARGAS POR TRANSMISION INVIERNO

| Temp. Exter  | 3.3 | °C |
|--------------|-----|----|
| Temp. Interi | 22  | °C |
| Temp. TERF   | 9.9 | °C |

| MODULO    | ORIENT. | ancho | alto | Sup.bruta | Descuento | Sup.Neta | K          | Taint - Taext | fv   | C.p.regimen | TOTAL    |
|-----------|---------|-------|------|-----------|-----------|----------|------------|---------------|------|-------------|----------|
| 1A        |         | (m)   | (m)  | (m2)      | (m2)      | (m2)     | Kcal/hm2°C | (°C)          |      |             | (Kcal/h) |
| CRISTAL   | N       |       |      | 0.00      |           | 0.0      | 1.72       | 18.7          | 1.35 | 1.15        | 0        |
| CRISTAL   | NE      |       |      | 0.00      |           | 0.0      | 1.72       | 18.7          | 1.35 | 1.15        | 0        |
| CRISTAL   | E       |       |      | 16.54     |           | 16.5     | 1.72       | 18.7          | 1.25 | 1.10        | 731      |
| CRISTAL   | SE      |       |      | 0.00      |           | 0.0      | 1.72       | 18.7          | 1.15 | 1.10        | 0        |
| CRISTAL   | S       |       |      | 8.70      |           | 8.7      | 1.72       | 18.7          | 1.00 | 1.10        | 308      |
| CRISTAL   | SO      |       |      | 0.00      |           | 0.0      | 1.72       | 18.7          | 1.10 | 1.10        | 0        |
| CRISTAL   | 0       |       |      | 14.43     |           | 14.4     | 1.72       | 18.7          | 1.20 | 1.15        | 640      |
| CRISTAL   | NO      |       |      | 0.00      |           | 0.0      | 1.72       | 18.7          | 1.25 | 1.15        | 0        |
| MURO EXT. | N       |       |      | 38.3      |           | 38.3     | 0.44       | 18.7          | 1.20 | 1.15        | 435      |
| MURO EXT. | NE      |       |      | 0.0       |           | 0.0      | 0.44       | 18.7          | 1.20 | 1.15        | 0        |
| MURO EXT. | E       |       |      | 41.0      |           | 41.0     | 0.44       | 18.7          | 1.15 | 1.10        | 427      |
| MURO EXT. | SE      |       |      | 0.0       |           | 0.0      | 0.44       | 18.7          | 1.10 | 1.10        | 0        |
| MURO EXT. | S       |       |      | 23.5      |           | 23.5     | 0.44       | 18.7          | 1.00 | 1.10        | 213      |
| MURO EXT. | SO      |       |      | 0.0       |           | 0.0      | 0.44       | 18.7          | 1.05 | 1.10        | 0        |
| MURO EXT. | 0       |       |      | 36.7      |           | 36.7     | 0.44       | 18.7          | 1.10 | 1.15        | 382      |
| MURO EXT. | NO      |       |      | 0.0       |           | 0.0      | 0.44       | 18.7          | 1.15 | 1.15        | 0        |
| CUBIERTA  | H       |       |      | 0.0       |           | 0.0      | 0.40       | 18.7          | 1.00 | 1.15        | 0        |
| SUELO     |         |       |      | 0.0       |           | 0.0      | 0.47       | 12.1          | 1.00 | 1.15        | 0        |
| LNC       |         |       |      | 341.9     |           | 341.9    | 0.50       | 9.4           | 1.00 | 1.00        | 1598     |
|           |         |       |      |           |           |          |            |               |      |             |          |
| VOLUMEN   | 0       |       |      |           |           |          |            |               |      | TOTAL       | 4735     |

 CAUDAL
 M3/h
 Kcal/h

 AIRE EXTEF
 691.20
 3877.632



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 2.3.2.5 Cálculo de cargas de invierno de la tercera planta

#### CARGAS POR TRANSMISION INVIERNO

| Temp. Exter  |     | °C |
|--------------|-----|----|
| Temp. Interi | 22  | °C |
| Temp. TER    | 9.9 | °C |

| MODULO    | ORIENT. | ancho | alto | Sup.bruta | Descuento | Sup.Neta | K          | Taint - Taext | fv   | C.p.regimen | TOTAL    |
|-----------|---------|-------|------|-----------|-----------|----------|------------|---------------|------|-------------|----------|
| 3         |         | (m)   | (m)  | (m2)      | (m2)      | (m2)     | Kcal/hm2°C | (°C)          |      |             | (Kcal/h) |
| CRISTAL   | N       |       |      | 0.00      |           | 0.0      | 1.72       | 18.7          | 1.35 | 1.15        | 0        |
| CRISTAL   | NE      |       |      | 0.00      |           | 0.0      | 1.72       | 18.7          | 1.35 | 1.15        | 0        |
| CRISTAL   | E       |       |      | 16.70     |           | 16.7     | 1.72       | 18.7          | 1.25 | 1.10        | 739      |
| CRISTAL   | SE      |       |      | 0.00      |           | 0.0      | 1.72       | 18.7          | 1.15 | 1.10        | 0        |
| CRISTAL   | s       |       |      | 8.70      |           | 8.7      | 1.72       | 18.7          | 1.00 | 1.10        | 308      |
| CRISTAL   | SO      |       |      | 0.00      |           | 0.0      | 1.72       |               | 1.10 | 1.10        | 0        |
| CRISTAL   | 0       |       |      | 14.43     |           | 14.4     | 1.72       | 18.7          | 1.20 | 1.15        | 640      |
| CRISTAL   | NO      |       |      | 0.00      |           | 0.0      | 1.72       |               | 1.25 |             | 0        |
| MURO EXT. | N       |       |      | 38.3      |           | 38.3     | 0.44       |               | 1.20 |             | 435      |
| MURO EXT. | NE      |       |      | 0.0       |           | 0.0      | 0.44       |               | 1.20 |             | 0        |
| MURO EXT. | E       |       |      | 47.4      |           | 47.4     | 0.44       |               | 1.15 | 1.10        | 493      |
| MURO EXT. | SE      |       |      | 0.0       |           | 0.0      | 0.44       |               | 1.10 |             | 0        |
| MURO EXT. | S       |       |      | 23.5      |           | 23.5     | 0.44       |               | 1.00 | 1.10        | 213      |
| MURO EXT. | SO      |       |      | 0.0       |           | 0.0      | 0.44       |               | 1.05 |             | 0        |
| MURO EXT. | 0       |       |      | 36.7      |           | 36.7     | 0.44       |               | 1.10 |             | 382      |
| MURO EXT. | NO      |       |      | 0.0       |           | 0.0      | 0.44       |               | 1.15 |             | 0        |
| CUBIERTA  | н       |       |      | 0.0       |           | 0.0      | 0.40       |               | 1.00 |             | 0        |
| SUELO     |         |       |      | 0.0       |           | 0.0      | 0.47       |               | 1.00 |             | 0        |
| LNC       |         |       |      | 408.8     |           | 408.8    | 0.50       | 9.4           | 1.00 | 1.00        | 1911     |
| VOLUMEN   | 0       |       |      |           |           |          |            |               |      | TOTAL       | 5121     |

 CAUDAL

 m3/h
 Keal/h

 AIRE EXTEF
 682.40
 3716.064

## 2.3.2.6 Cálculo de cargas de invierno de la planta bajo cubierta

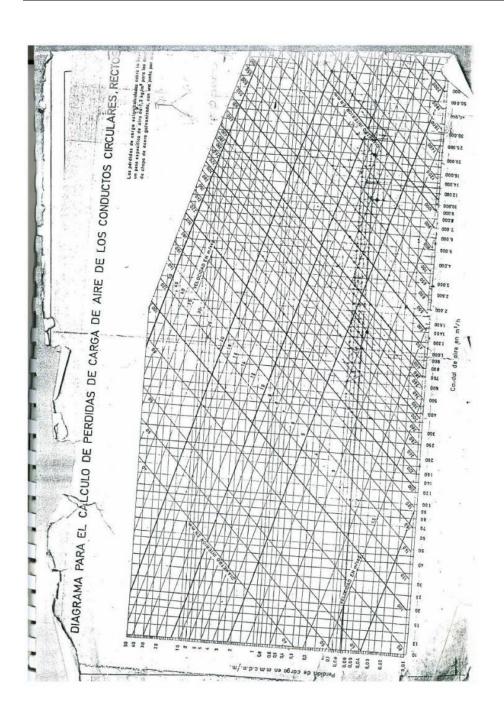
#### CARGAS POR TRANSMISION INVIERNO

| Temp. Exter  | 3.3 °C |
|--------------|--------|
| Temp. Interi | 22 °C  |
| Temp. TERI   | 9.9 °C |

| MODULO          | ORIENT. | ancho | alto | Sup.bruta | Descuento | Sup.Neta | K          | Taint - Taext | fv   | C.p.regimen | TOTAL    |
|-----------------|---------|-------|------|-----------|-----------|----------|------------|---------------|------|-------------|----------|
| 4               |         | (m)   | (m)  | (m2)      | (m2)      | (m2)     | Kcal/hm2°C | (°C)          |      |             | (Kcal/h) |
| CRISTAL         | N       |       |      | 0.00      |           | 0.0      |            |               | 1.35 | 1.15        | 0        |
| CRISTAL         | NE      |       |      | 0.00      |           | 0.0      | 1.72       | 18.7          | 1.35 | 1.15        | 0        |
| CRISTAL         | E       |       |      | 0.00      |           | 0.0      | 1.72       | 18.7          | 1.25 | 1.10        | 0        |
| CRISTAL         | SE      |       |      | 0.00      |           | 0.0      | 1.72       | 18.7          | 1.15 | 1.10        | 0        |
| CRISTAL         | S       |       |      | 0.00      |           | 0.0      | 1.72       | 18.7          | 1.00 | 1.10        | 0        |
| CRISTAL         | SO      |       |      | 0.00      |           | 0.0      | 1.72       | 18.7          | 1.10 | 1.10        | 0        |
| CRISTAL         | 0       |       |      | 0.00      |           | 0.0      |            |               | 1.20 | 1.15        | 0        |
| CRISTAL         | NO      |       |      | 0.00      |           | 0.0      | 1.72       | 18.7          | 1.25 | 1.15        | 0        |
| MURO EXT.       | N       |       |      | 39.8      |           | 39.8     | 0.44       | 18.7          | 1.20 | 1.15        | 452      |
| MURO EXT.       | NE      |       |      | 0.0       |           | 0.0      | 0.44       | 18.7          | 1.20 | 1.15        | 0        |
| MURO EXT.       | E       |       |      | 55.0      |           | 55.0     | 0.44       | 18.7          | 1.15 | 1.10        | 572      |
| MURO EXT.       | SE      |       |      | 0.0       |           | 0.0      | 0.44       | 18.7          | 1.10 | 1.10        | 0        |
| MURO EXT.       | S       |       |      | 39.9      |           | 39.9     | 0.44       | 18.7          | 1.00 | 1.10        | 361      |
| MURO EXT.       | SO      |       |      | 0.0       |           | 0.0      | 0.44       | 18.7          | 1.05 | 1.10        | 0        |
| MURO EXT.       | 0       |       |      | 42.2      |           | 42.2     | 0.44       | 18.7          | 1.10 | 1.15        | 440      |
| MURO EXT.       | NO      |       |      | 0.0       |           | 0.0      | 0.44       | 18.7          | 1.15 | 1.15        | 0        |
| <b>CUBIERTA</b> | Н       |       |      | 162.2     |           | 162.2    | 0.40       | 18.7          | 1.00 | 1.15        | 1395     |
| SUELO           |         |       |      | 0.0       |           | 0.0      | 0.47       | 12.1          | 1.00 | 1.15        | 0        |
| LNC             |         |       |      | 280.1     |           | 280.1    | 0.50       | 9.4           | 1.00 | 1.00        | 1309     |
|                 |         |       |      |           |           |          |            |               |      |             |          |
| VOLUMEN         | 0       |       |      |           |           |          |            |               |      | TOTAL       | 4529     |

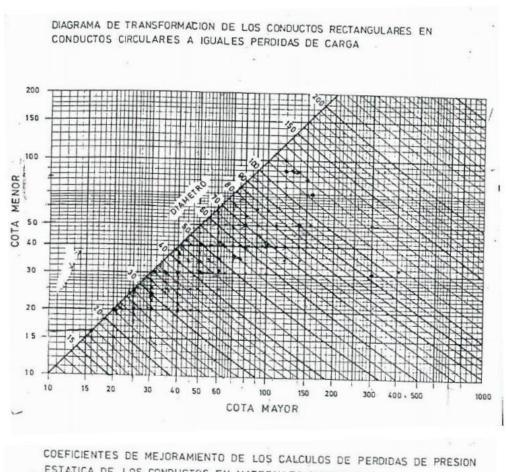
CAUDAL m3/h Kcal/h AIRE EXT. 489.60 2746.656




ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)


### 2.4 CÁLCULO DE LA RED DE CONDUCTOS

## 2.4.1 DIAGRAMA PARA EL CÁLCULO DE PÉRDIDAS DE CARGA DE AIRE EN LOS CONDUCTOS CIRCULARES



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 2.4.2 DIAGRAMA DE TRANSFORMACIÓN DE LOS CONDUCTOS RECTANGULARES EN CONDUCTOS CIRCULARES A IGUALES PÉRDIDAS **DE CARGA**



ESTATICA DE LOS CONDUCTOS EN MATERIALES DIFERENTES.

Conductos de acero galvanizado con una junta por metro. 1,00 Conductos de acero galvanizado sin junta. 0.85 Conductos de aluminio. 0.90 Conductos de Uralita. 1,50 Conductos en albaniteria lisa. 1,55



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 2.4.3 CÁLCULO DE LA PÉRDIDA DE CARGA EN LA RED DE CONDUCTOS

## 2.4.3.1 Cálculo de la pérdida de carga en la red de conductos de impulsión para el climatizador 1

|            |          | Ø eq. | axb     | Long. | Tipo Acces | L. eq. | nº acces, | L. Total       | mm.c.a/ml | Total |
|------------|----------|-------|---------|-------|------------|--------|-----------|----------------|-----------|-------|
| SS6-SS5    | 172.80   | 150   | 150x150 | 5.2   | Reducción  | 1.83   | 1         | 7.03           | 0.08      | 0.56  |
| SS5-SS4    | 518.40   | 220   | 300x150 | 3.6   | Reducción  | 2.5    | 1         | 6.1            | 0.09      | 0.55  |
| SS4-SS3    | 864.00   | 260   | 300x200 | 3.6   | Codo       | 1.47   | 1         | 5.07           | 0.1       | 0.51  |
| SS3-SS2    | 1,209.60 | 300   | 300x300 | 9.53  | Reducción  | 4.13   | 1         | 13.66          | 0.09      | 1.23  |
| SS2-SS1    | 1,411.20 | 320   | 300x300 | 3.6   | Codo       | 2.05   | 1         | 5.65           | 0.09      | 0.51  |
| SS1-A0     | 1,612.80 | 340   | 400x300 | 21.64 | T          | 8.28   | 1         | 29.92          | 0.095     | 2.84  |
| A0-P1.0    | 3,636.04 | 450   | 500x400 | 3     | T          | 14     | 2         | 31             | 0.1       | 3.10  |
| P1.0-Clim1 | 4,384.84 | 500   | 500x400 | 12.5  | Codo       | 2.66   | 1         | 15.16          | 0.09      | 1.36  |
| A6-A5      | 217.92   | 160   | 200x150 |       |            |        |           |                |           |       |
| A5-A4      | 435.84   | 200   | 300x150 |       |            |        |           |                |           |       |
| A4-A3      | 641.67   | 240   | 300x200 |       |            |        |           |                |           |       |
| A3-A2      | 847.50   | 260   | 300x200 |       |            |        |           |                |           |       |
| A2-A1      | 905.10   | 280   | 300x300 |       |            |        |           |                |           |       |
| A1-A0      | 1,130.10 | 280   | 300x300 |       |            |        |           |                |           |       |
| A12-A11    | 195.00   | 150   | 150x150 |       |            |        |           |                |           |       |
| A11-A10    | 390.00   | 200   | 250x150 |       |            |        |           |                |           |       |
| A10-A8     | 585.00   | 220   | 250x200 |       |            |        |           |                |           |       |
| A9-A8      | 159.55   | 140   | 150x150 |       |            |        |           |                |           |       |
| A8-A7      | 744.55   | 260   | 300x200 |       |            |        |           |                |           |       |
| A7-A0      | 893.14   | 270   | 300x200 |       |            |        |           |                |           |       |
| A0-P1.0    | 3,636.04 | 450   | 500x400 |       |            |        |           |                |           |       |
| P1.6-P1.5  | 57.6     | 95    | 150x150 |       |            |        |           |                | Г         |       |
| P1.5-P1.4  | 115.20   | 130   | 150x150 |       |            |        |           |                |           |       |
| P1.4-P1.3  | 172.80   | 150   | 150x150 |       |            |        |           |                |           |       |
| P1.3-P1.2  | 230.40   | 160   | 200x150 |       |            |        |           |                |           |       |
| P1.2-P1.1  | 288.00   | 180   | 200x150 |       |            |        |           |                |           |       |
| P1.1-P1.0  | 345.60   | 190   | 200x200 |       |            |        |           |                |           |       |
| 1.13-P1.12 | 57.60    | 95    | 150x150 |       |            |        |           |                |           |       |
| 1.12-P1.11 | 115.20   | 130   | 150x150 |       |            |        |           |                |           |       |
| 1.11-P1.10 | 172.80   | 150   | 150x150 |       |            |        |           |                |           |       |
| P1.10-P1.9 | 230.40   | 160   | 200x150 |       |            |        |           |                |           |       |
| P1.9-P1.8  | 288.00   | 180   | 200x150 |       |            |        |           |                |           |       |
| P1.8-P1.7  | 345.60   | 190   | 200x200 |       |            |        |           |                |           |       |
| P1.7-P1.0  | 403.20   | 200   | 200x200 |       |            |        |           |                |           |       |
| P1.0-Clim1 | 4,384.84 | 500   | 500x400 |       |            |        |           |                |           |       |
| Clim1      | 4,384.84 |       |         |       |            |        |           |                |           |       |
|            |          |       |         |       |            |        |           | Subtotal       |           | 10.66 |
|            |          |       |         |       |            |        |           | Perdida en dif | usion     | 2.1   |
|            |          |       |         |       |            |        |           | Coef. Seg. %   |           | 10%   |



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# 2.4.3.2 Cálculo de la pérdida de carga en la red de conductos de impulsión para el climatizador 2

| P2.5-P2.4 115.20 130 150x150 7.84 Reduction 1.83 1 9.87 0.09 0.8703   P2.4-P2.3 172.80 150 150x150 4.35 Reduction 1.83 1 6.18 0.09 0.5662   P2.4-P2.3 172.80 150 150x150 7.73 Code 0.88 2 9.49 0.1 0.949   P2.2-P2.1 288.00 180 200x150 10.79 Code 0.88 2 12.55 0.08 1.004   P2.2-P2.1 288.00 180 200x150 10.79 Code 0.88 2 12.55 0.08 1.004   P2.3-P2.12 57.60 95 150x150 9.16 Code 0.88 2 12.55 0.08 1.004   P2.1-P2.10 345.80 190 200x200   P2.1-P2.11 115.20 130 150x150 9.16 Code 0.88 2 10.92 0.1 1.092   P2.1-P2.10 172.80 150 150x150 5.02 Reduction 1.83 1 6.85 0.09 0.6165   P2.1-P2.10 172.80 150 150x150 6.36 Reduction 1.83 1 6.77 0.09 0.6093   P2.1-P2.9 230.40 160 200x150 6.36 Reduction 3.26 1 9.62 0.1 0.992   P2.9-P2.8 288.00 180 200x150 6.36 Reduction 3.26 1 9.62 0.1 0.992   P2.9-P2.8 288.00 180 200x150 6.36 Reduction 3.26 1 9.62 0.1 0.992   P2.9-P2.0 403.20 200 200x200 10.97 T 6.71 2 24.39 0.09 2.1951   P2.9-P2.0 403.20 200 200x200 10.97 T 6.71 2 24.39 0.09 2.1951   P2.9-P2.0 403.20 200 200x200 3.00 T 6.71 2.00 16.42 0.10 1.28   P2.9-P3.0 1.641.60 340 400x300 3.00 T 8.28 1.00 11.28 0.10 1.28   P3.9-P3.4 115.20 130 150x150   P3.8-P3.4 115.20 130 150x150   P3.8-P3.4 115.20 130 150x150   P3.8-P3.4 115.20 130 150x150   P3.8-P3.7 318.80 180 200x200   P3.8-P3.7 318.80 180 200x200   P3.8-P3.8 259.20 170 200x150   P3.8-P3.7 318.80 180 200x200   P3.8-P3.7 318.80 200x200   P3.8-P3.80 374.40 200 200x200   P3.8-P3.80 3 | ramo        | Q        | છ eq. | axb     | Long. | TIPO Acces                                       | L. eq. | n° acces,                                        | L. Fotal        | mm.c.a/mi | Total  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|-------|---------|-------|--------------------------------------------------|--------|--------------------------------------------------|-----------------|-----------|--------|
| P2.4-P2.3 172.80 150 150 150.150.150.4.35 Redución 1.83 1 0.18 0.09 0.5562 P2.3-P2.2 239.40 160 200.150 17.73 Codo 0.88 2 12.55 0.08 1.094 P2.3-P2.1 288.00 180 200.150 10.79 Codo 0.88 2 12.55 0.08 1.094 P2.3-P2.1 288.00 180 200.150 10.79 Codo 0.88 2 12.55 0.08 1.094 P2.3-P2.1 288.00 180 200.150 10.79 Codo 0.88 2 12.55 0.08 1.094 P2.3-P2.1 257.60 95 150.150 9.16 Codo 0.88 2 10.92 0.1 1.092 P2.3-P2.1 115.20 150 150 150.150 9.16 Codo 0.88 2 10.92 0.1 1.092 P2.3-P2.1 115.20 150 150 150.150 4.94 Redución 1.83 1 6.77 0.09 0.003 P2.3-P2.8 288.00 160 200.150 4.94 Redución 1.83 1 6.77 0.09 0.003 P2.3-P2.8 288.00 180 200.150 4.43 Codo 0.88 1 5.31 0.08 0.444 P2.3-P2.0 403.20 200 200.200 10.97 Y 6.71 2 24.39 0.09 2.165 P2.3-P2.0 403.20 200 200.200 10.97 Y 6.71 2 24.39 0.09 2.165 P2.3-P3.0 1.488.80 320 400.300 3.00 Y 6.71 2 24.39 0.09 2.165 P3.3-P3.0 1.488.80 320 400.300 3.00 Y 8.28 1.00 11.28 0.10 1.28 P3.3-P3.1 15.20 150 150 150.150 150.150 P3.3 10.08 12.24 P3.3-P3.3 17.2 10 150 150 150.150 P3.3 10.08 12.24 P3.3-P3.3 17.2 10 150 150.150 P3.3 150.150 P3.3 17.2 10.1 12.2 10.1 12.2 10.1 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 12.3 10.0 1.2 12.2 1 | P2.6-P2.5   | 57.6     | 95    | 150x150 | 5.8   | Codo                                             | 0.88   | 1                                                | 6.68            | 0.1       | 0.668  |
| P23-P22 230.40 160 200x150 7.73 Codo 0.88 2 9.49 0.1 0.949 P23-P21 288.00 180 200x150 10.79 Codo 0.88 2 12.55 0.08 1.004 P21-P2U 345.00 190 200x150 10.79 Codo 0.88 2 12.55 0.08 1.004 P21-P2U 345.00 190 200x200 5.34 1 0 6.71 2 18.76 0.00 1.8824 P21-P2U 135.20 130 150x150 9.16 Codo 0.88 2 10.92 0.1 1.002 P21-P211 115.20 130 150x150 5.02 Reducción 1.83 1 6.85 0.09 0.6165 P21-P21-P2 1 115.20 130 150x150 4.04 Reducción 1.83 1 6.85 0.09 0.6165 P21-P2-P2 200.40 160 200x150 4.38 Reducción 3.88 1 6.77 0.09 0.6003 P21-P2-P2 288.00 180 200x150 4.33 Codo 0.88 1 6.37 0.00 0.6424 P23-P2-P2 288.00 180 200x150 4.33 Codo 0.88 1 6.37 0.00 0.6424 P23-P2-P2 300x160 200 200x200 10.97 6.71 2 24.39 0.09 2.1651 P20-P30 748.80 250 300x200 3.00 T 6.71 2 0.0 16.42 0.10 1.642 P30-P4 0.93 0 16.41.60 340 400x300 3.00 T 6.71 2.00 16.42 0.10 1.642 P30-P4 115.20 130 150x150 3.50 Codo 2.05 1.00 5.55 0.09 0.4995 P30-P3 1 748.80 320 400x200 3.00 T 8.28 1.00 11.28 0.10 1.128 P40-P3 3 172-P3 180 150 150x150 3.50 Codo 2.05 1.00 5.55 0.09 0.4995 P33-P3 3 172-P3 180 150 150x150 3.50 Codo 2.05 1.00 5.55 0.09 0.4995 P33-P3 3 172-P3 180 150 150x150 3.50 Codo 2.05 1.00 5.55 0.09 0.4995 P33-P3 3 345.60 180 200x150 3.30 T 8.28 1.00 11.28 0.10 1.128 P3.P3 3 172-P3 180 140 100 100x150 3.30 T 8.28 1.00 11.28 0.10 1.38 P3.P3 12 288.00 75 150x150 3.30 T 8.28 1.00 1.30 1.30 1.30 1.30 1.30 1.30 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P2.5-P2.4   | 115.20   | 130   | 150x150 | 7.84  | Reducción                                        | 1.83   | 1                                                | 9.67            | 0.09      | 0.8703 |
| P2.2.P.2.1 288.00 180 200x150 10.79 Codo 0.88 2 12.55 0.08 1.004 P2.1.P.2.1 24.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P2.4-P2.3   |          |       | 150x150 | 4.35  | Reducción                                        | 1.83   | 1                                                | 6.18            | 0.09      | 0.5562 |
| P2.1+P2.U 345.8U 19U 20UX20U 5.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P2.3-P2.2   | 230.40   | 160   | 200x150 | 7.73  | Codo                                             | 0.88   | 2                                                | 9.49            | 0.1       | 0.949  |
| 213-P2-12 57-60 95 150x150 9.16 Codo 0.88 2 10.92 0.1 1.092 213-P2-11 115.20 130 150x150 50 2 Reducción 1.83 1 6.85 0.09 0.6165 211-P2-10 172.80 150 150x150 494 Reducción 1.83 1 6.77 0.09 0.6065 211-P2-10 172.80 150 150x150 63 8 Reducción 1.83 1 6.77 0.09 0.6003 211-P2-10 172.80 150 150x150 63 8 Reducción 1.83 1 6.77 0.09 0.6003 211-P2-10 172.80 150 150x150 63 8 Reducción 1.83 1 6.77 0.09 0.6003 212-P2-P2-P2-P2-P2-P2-P2-P2-P2-P2-P2-P2-P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P2.2-P2.1   | 288.00   | 180   | 200x150 | 10.79 | Codo                                             | 0.88   | 2                                                | 12.55           | 0.08      | 1.004  |
| 212.P2.11 115.20 130 150x150 5.02 Reduccion 1.83 1 6.85 0.09 0.5165 1211.P2.10 172.80 150 150x150 4.94 Reduccion 1.83 1 6.77 0.09 0.5052 172.10.P2.9 230.40 160 200x150 6.36 Reduccion 3.26 1 9.62 0.1 0.86 1.72.10.P2.9 1.72.80 150 150x150 4.44 Reduccion 3.26 1 9.62 0.1 0.86 1.72.10.P2.9 1.72.80 150 150x150 4.43 Codo 0.88 1 5.31 0.08 0.4248 172.P2.2 430.50 190 200x200 10.97 7 6.71 2.00 16.42 0.10 0.86 1.72.P2.0 403.20 200 200x200 10.97 7 6.71 2.00 16.42 0.10 1.64 1.72.P2.0 403.20 200 200x200 3.00 7 6.71 2.00 16.42 0.10 1.64 1.72.P2.0 403.20 200 200x200 3.00 7 7 6.71 2.00 16.42 0.10 1.64 1.72.P2.0 403.20 200 200x200 3.00 7 8.28 1.00 11.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.10 1.28 0.1 | P2.1-P2.0   | 345.60   |       | 200x200 | 5.34  |                                                  | 6.71   | 2                                                | 18.76           | 0.09      | 1.6884 |
| 2.11-P2-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P2.13-P2.12 | 57.60    |       | 150x150 | 9.16  | Codo                                             | 0.88   | 2                                                | 10.92           | 0.1       | 1.092  |
| P2.10-P2.9 230.40 180 200x150 6.38 Reducción 3.26 1 9.62 0.1 0.962 P2.P2.P2.P2.P2.P2.P2.P2.P2.P2.P2.P2.P2.P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P2.12-P2.11 |          |       | 150x150 |       | Reducción                                        | 1.83   | 1                                                | 6.85            | 0.09      | 0.6165 |
| P2.9-P2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P2.11-P2.10 |          |       | 150x150 |       | Reducción                                        |        | 1                                                |                 | 0.09      | 0.6093 |
| PZBP27 345.80 190 200x200 3.11 Reducion 3.26 1 6.37 0.09 0.733 PZ.PP20 403.20 200 200x200 10.97 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P2.10-P2.9  |          |       |         |       |                                                  |        | 1                                                |                 |           |        |
| P2.7P2.0 403.20 200 200.200 10.97 T 6.71 2 243.9 0.09 2.1951 P2.0P3.0 748.80 250 300.200 3.00 T 6.71 2.00 16.42 0.10 1.62 P3.0P4.0 1.468.80 320 400.300 3.00 T 8.28 1.00 11.28 0.10 1.128 P3.0P4.0 1.468.80 320 400.300 3.50 Codo 2.05 1.00 5.55 0.09 0.4995 P3.0P3.0 1.641.60 340 400.300 3.50 Codo 2.05 1.00 5.55 0.09 0.4995 P3.5P3.4 115.20 130 150.150 P3.4-P3.3 172.80 150 150.150 P3.4-P3.3 128.800 180 200.150 P3.4-P3.1 288.00 180 200.150 P3.1-P3.1 288.00 180 200.150 P3.1-P3.1 288.00 180 200.150 P3.1-P3.1 288.00 140 100 150.150 P3.1-P3.10 144.00 140 200.150 P3.1-P3.10 P3.1-P3.10 144.00 140 200.150 P3.1-P3.10 P3.1-P3.1-P3.10 P3.1-P3.10 P3.1-P3.1-P3.10 P3.1-P3.10 P3.1-P3.10 P3.1-P3.10 P3.1-P3.1-P3.10 P3.1-P3.1-P3.10 P3.1-P3.10 P3.1-P3.10 P3.1-P3.1-P3.10 P3.1-P3.10 P3.1-P |             |          |       |         | 4.43  | Codo                                             |        | 1                                                | 5.31            |           | 0.4248 |
| P2.0P3.0 74.880 250 300;200 3.00 T 6.71 2.00 16.42 0.10 1.842 P3.0P4.0 1,468.80 320 400;300 3.00 T 8.28 1.00 11.28 0.10 1.828 P4.0P3.0 1,641.80 340 400;300 3.50 Codo 2.05 1.00 5.55 0.09 0.4995 P3.0P3.5 57.6 95 150;150 P3.4P3.3 172.80 150 150;150 P3.4P3.3 172.80 150 150;150 P3.4P3.3 172.80 150 150;150 P3.4P3.1 288.00 180 200;150 P3.1P3.10 2345.60 190 200;200 P3.1P3.10 144.00 140 200;150 P3.1P3.11 88.40 110 150;150 P3.1P3.18 144.00 140 200;150 P3.4P3.8 201.80 160 200;150 P3.4P4.2 3 115.20 130 150;150 P3.4P4.2 115.20 130 150;150 P4.4P4.3 57.60 95 150;150 P4.4P4.3 57.60 95 150;150 P4.4P4.3 172.80 150 150;150 P4.4P4.8 172.80 150 150;150 P4.4P4 | P2.8-P2.7   |          |       |         | 3.11  | Reduccion                                        |        | 1                                                |                 |           | 0.5/33 |
| P3.0P4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |          |       |         | 10.97 | T                                                | 6.71   |                                                  |                 | 0.09      | 2.1951 |
| P4.0-P3.0 1,641.80 340 400x300 3.50 Code 2.05 1.00 5.55 0.09 0.4995 P3.0-P3.5 57.6 95 150x150 973.5-P3.4 115.20 130 150x150 973.5-P3.4 115.20 130 150x150 973.4-P3.3 172.80 160 200x150 973.4-P3.3 172.80 160 200x150 973.4-P3.3 172.80 180 200x150 973.1-P3.10 200x150 973.1-P3.10 345.60 190 200x200 973.1-P3.10 144.00 140 200x150 973.1-P3.11 88.40 110 150x150 973.1-P3.11 88.40 110 150x150 973.1-P3.11 88.40 110 150x150 973.1-P3.10 144.00 140 200x150 973.1-P3.10 144.00 140 200x150 973.1-P3.10 144.00 140 200x150 973.1-P3.0 200x150 973.1-P3.0 200x150 973.1-P3.0 345.80 180 200x200 973.7-P3.0 374.40 200 200x200 973.7-P3.0 374.40 200x200 973.7-P3.0 374.0 200x200 973.7-P3.0 200x200 973.7-P3.0 200x200 973.7-P3.0 200x2 |             |          |       |         |       | T                                                |        |                                                  |                 |           |        |
| P3.6-P3.5 57.6 95 150x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |          |       |         |       | T                                                |        |                                                  |                 |           |        |
| P3.5-P3.4 115.20 130 150x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P4.0-P3.0   | 1,641.60 | 340   | 400x300 | 3.50  | Codo                                             | 2.05   | 1.00                                             | 5.55            | 0.09      | 0.4995 |
| P3.5-P3.4 115.20 130 150x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P3.6-P3.5   | 57.6     | 95    | 150x150 |       |                                                  |        |                                                  |                 |           |        |
| P3.4-P3.3 172.80 150 150x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |          |       |         |       | <del>                                     </del> |        | <del>                                     </del> |                 |           |        |
| P3.3-P3.2 28.00 180 200x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P3.4-P3.3   |          |       |         |       | <del>                                     </del> |        |                                                  |                 |           |        |
| P3.2-P3.1 288.00 180 200x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P3.3-P3.2   |          |       |         |       | <del>                                     </del> |        |                                                  |                 |           |        |
| P3.1-P3.0 345.80 190 200x200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |          |       |         |       | _                                                |        |                                                  |                 |           |        |
| 3.13-P3.12   28.80   75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P3.1-P3.0   |          |       |         |       | <del>                                     </del> |        |                                                  |                 |           |        |
| 144.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P3.13-P3.12 | 28.80    |       | 150x150 |       | <del>                                     </del> |        |                                                  |                 |           |        |
| 144.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P3.12-P3.11 | 86.40    | 110   | 150x150 |       | <del>                                     </del> |        |                                                  |                 | t         |        |
| P3.9-P3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P3.11-P3.10 |          |       |         |       | 1                                                |        |                                                  |                 |           |        |
| P3.8-P3.7 316.80 180 200x200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P3.10-P3.9  | 201.60   | 160   | 200x150 |       |                                                  |        |                                                  |                 |           |        |
| P3.7-P3.0 374.40 200 200x200 P3.0-P4.0 1,468.80 320 400x300 P4.9-P4.0 1,468.80 320 400x300 P4.9-P4.9 P4.9-P4.3 P4.2 115.20 130 150x150 P4.1-P4.0 230.40 160 150x150 P4.9-P4.8 57.60 95 150x150 P4.9-P4.6 172.80 180 180x150 P4.9-P4.6 172.80 180x150 P4.9-P4.9-P4.9-P4.9-P4.9-P4.9-P4.9-P4.9-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P3.9-P3.8   | 259.20   | 1/0   | 200x150 |       |                                                  |        |                                                  |                 |           |        |
| P3.0-P4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P3.8-P3.7   | 316.80   | 180   | 200x200 |       |                                                  |        |                                                  |                 |           |        |
| P4.4-P4.3 57.60 95 150x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P3.7-P3.0   | 374.40   | 200   | 200x200 |       |                                                  |        |                                                  |                 |           |        |
| P4.3-P4.2 115.20 130 150x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P3.0-P4.0   | 1,468.80 | 320   | 400x300 |       |                                                  |        |                                                  |                 |           |        |
| P4.3-P4.2 115.20 130 150x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D4 4 D4 2   | 57.80    | 05    | 150-150 |       | + +                                              |        |                                                  |                 |           |        |
| P4.2-P4.1 172.80 150 150x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |          |       |         |       | +                                                |        |                                                  |                 |           |        |
| P4.1-P4.0 230.40 160 150x150 P4.9-P4.8 57.60 95 150x150 P4.9-P4.8 57.60 95 150x150 P4.8-P4.7 115.20 130 150x150 P4.7-P4.6 172.80 150 150x150 P4.7-P4.6 259.20 170 200x150 P4.5-P4.0 259.20 170 200x150 P4.5-P4.0 259.20 170 200x150 P4.0-Clim2 1,958.40 340 400x300 Subtotal P4.0-Clim2 216.00 Subtotal 10.01 Perdida en difusion 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |          |       |         |       | + +                                              |        |                                                  |                 |           |        |
| P4.9-P4.8 57.60 95 150x150 95 150x150 974.8-P4.7 115.20 130 150x150 974.8-P4.7 115.20 130 150x150 974.8-P4.5 172.80 150 150x150 974.8-P4.5 218.00 180 150x150 974.5-P4.0 259.20 170 200x150 974.0-Clim2 1,958.40 340 400x300 974.0-Clim2 216.00 974.0-Clim2 216.00 974.0-Clim2 216.00 974.0-Clim2 974. |             |          |       |         |       | + +                                              |        |                                                  |                 |           |        |
| P4.8-P4.7 115.20 130 150x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |          |       |         |       |                                                  |        |                                                  |                 |           |        |
| P4.7-P4.8 172.80 150 150x150 P4.8-P4.5 218.00 180 150x150 P4.8-P4.0 259.20 170 200x150 P4.0-Clim2 1,958.40 340 400x300 Subtotal 10.01 Perdida en difusion 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |          |       |         |       | + +                                              |        |                                                  |                 |           |        |
| P4.6-P4.5 216.00 160 150x150 P4.5-P4.0 259.20 170 200x150 P4.0-Clim2 1,958.40 340 400x300 Subtotal 10.01 Perdida en difusion 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |          |       |         |       | +                                                |        |                                                  |                 |           |        |
| P4.5-P4.0 259.20 170 200x150 P4.0-Clim2 1,958.40 340 400x300 Subtotal 10.01 Perdida en difusion 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |          |       |         |       | +                                                |        |                                                  |                 |           |        |
| P4.0-Clim2 1,958.40 340 400x300 Subtotal 10.01 Perdida en difusion 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |          |       |         |       | + +                                              |        | _                                                |                 |           |        |
| Clim2   Z16.00   Subtotal   10.01   Perdida en difusion   2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |          |       |         |       | + +                                              |        |                                                  |                 |           |        |
| Subtotal 10.01 Perdida en difusion 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -           |          | 340   | 400X300 |       | +                                                |        |                                                  | L               |           |        |
| Perdida en difusion 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CIIMZ       | 216.00   |       |         |       |                                                  |        |                                                  |                 |           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |       |         |       |                                                  |        |                                                  |                 |           | 10.01  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |       |         |       |                                                  |        |                                                  | Perdida en difu | sion      | 2.1    |

Página **| 162** 



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# 2.4.3.1 Cálculo de la pérdida de carga en la red de conductos de retorno para el climatizador 1

| Iramo       | Q        | Ø eq. | axb     | Long. | Tipo Acces | L. eq. | n° acces, | L. Lotal       | mm.c.a/ml | Lotal |
|-------------|----------|-------|---------|-------|------------|--------|-----------|----------------|-----------|-------|
| SS6-SS5     | 110.20   | 130   | 150x150 | 5.2   | Reducción  | 1.27   | 1         | 6.47           | 0.08      | 0.52  |
| SS5-SS4     | 384.74   | 200   | 200x200 | 3.6   | Reducción  | 2.5    | 1         | 6.1            | 0.08      | 0.49  |
| SS4-SS3     | 659.28   | 240   | 250x200 | 3.6   | Codo       | 1.19   | 1         | 4.79           | 0.095     | 0.46  |
| SS3-SS2     | 933.82   | 280   | 300x200 | 9.53  | Reducción  | 3.26   | 1         | 12.79          | 0.08      | 1.02  |
| SS2-SS1     | 1,090.26 | 300   | 300x300 | 3.6   | Codo       | 2.05   | 1         | 5.65           | 0.08      | 0.45  |
| SS1-A0      | 1,246.69 | 300   | 300x300 | 21.64 | Т          | 8.28   | 1         | 29.92          | 0.1       | 2.99  |
| A0-P1.0     | 2,599.48 | 400   | 500x300 | 3     | T          | 10.02  | 2         | 23.04          | 0.1       | 2.30  |
| P1.0-Clim1  | 2,702.92 | 400   | 500x300 | 12.5  | Codo       | 2.05   | 1         | 14.55          | 0.09      | 1.31  |
| A6-A5       | 145.28   | 140   | 150x150 |       |            |        |           |                |           |       |
| A5-A4       | 290.56   | 180   | 200x150 |       |            |        |           |                |           |       |
| A4-A3       | 427.78   | 200   | 200x200 |       |            |        |           |                |           |       |
| A3-A2       | 565.00   | 230   | 250x200 |       |            |        |           |                |           |       |
| A2-A1       | 565.00   | 230   | 250x200 |       |            |        |           |                |           |       |
| A1-A0       | 720.73   | 250   | 250x200 |       |            |        |           |                |           |       |
| A12-A11     | 142.21   | 140   | 150x150 |       |            |        |           |                |           |       |
| A11-A10     | 284.42   | 180   | 200x150 |       |            |        |           |                |           |       |
| A10-A8      | 426.63   | 200   | 200x200 |       |            |        |           |                |           |       |
| A9-A8       | 106.37   | 130   | 150x150 |       |            |        |           |                |           |       |
| A8-A7       | 533.00   | 220   | 200x200 |       |            |        |           |                |           |       |
| A7-A0       | 632.06   | 240   | 250x200 |       |            |        |           |                |           |       |
| A0-P1.0     | 2,599.48 | 400   | 500x300 |       |            |        |           |                |           |       |
| P1.6-P1.5   | 19.24    | 65    | 150x150 |       |            |        |           |                |           |       |
| P1.5-P1.4   | 30.51    | 75    | 150x150 |       |            |        |           |                |           |       |
| P1.4-P1.3   | 46.93    | 90    | 150x150 |       |            |        |           |                |           |       |
| P1.3-P1.2   | 51.08    | 95    | 150x150 |       |            |        |           |                |           |       |
| P1.2-P1.1   | 51.08    | 95    | 150x150 |       |            |        |           |                |           |       |
| P1.1-P1.0   | 51.08    | 95    | 150x150 |       |            |        |           |                |           |       |
| P1.11-P1.10 | 16.45    | 60    | 150x150 |       |            |        |           |                |           |       |
| P1.10-P1.9  | 29.83    | 75    | 150x150 |       |            |        |           |                |           |       |
| P1.9-P1.8   | 37.34    | 85    | 150x150 |       |            |        |           |                |           |       |
| P1.8-P1.7   | 44.85    | 90    | 150x150 |       |            |        |           |                |           |       |
| P1.7-P1.0   | 52.36    | 95    | 150x150 |       |            |        |           |                |           |       |
| P1.0-Clim1  | 2,702.92 | 400   | 500x300 |       |            |        |           |                |           |       |
| Clim1       | 2,702.92 |       |         |       |            |        |           |                |           |       |
|             |          |       |         |       |            |        |           | Subtotal       |           | 9.54  |
|             |          |       |         |       |            |        |           | Perdida en dif | usion     | 2.1   |



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# 2.4.3.2 Cálculo de la pérdida de carga en la red de conductos de retorno para el climatizador 2

| P26-P25 1924 65 150x150 5.8 Codo 0.88 1 6.68 0.08 0.53 P25-P24 30.51 75 150x150 7.84 Reducción 0.82 1 8.66 0.1 0.87 P24-P23 46.93 90 150x150 7.83 Reducción 1.27 1 5.62 0.08 0.45 P23-P22 510.8 95 150x150 7.73 Codo 0.88 2 9.49 0.08 0.76 P22-P21 510.8 95 150x150 10.79 Codo 0.88 2 12.55 0.08 1.00 P22-P21 510.8 95 150x150 10.79 Codo 0.88 2 12.55 0.08 1.00 P21-P2.0 510.8 95 150x150 5.34 T 2.07 2 9.48 0.08 0.76 P21-P21 0 16.45 60 150x150 4.94 Reducción 0.46 1 5.4 0.09 0.49 P21-P21 0 16.45 60 150x150 4.94 Reducción 0.46 1 5.4 0.09 0.49 P21-P2-P2 8 37.34 85 150x150 4.43 Codo 0.88 1 5.31 0.08 0.42 P2.8-P2.8 37.34 85 150x150 4.43 Codo 0.82 1 7.18 0.1 0.1 0.12 P2.8-P2.8 37.34 85 150x150 1.03 1.1 Reducción 1.27 1 4.38 0.09 0.39 P2.7-P2.0 52.36 95 150x150 10.97 1 2.07 2 15.11 0.085 1.28 P2.0-P3.0 103.44 130 150x150 3 T 2.07 1 5.07 0.08 0.41 P3.0-P4.0 189.78 150 150x150 3 T 2.07 1 5.07 0.08 0.41 P3.0-P3.4 189.78 150 150x150 3 T 2.07 1 5.07 0.08 0.41 P3.6-P3.5 19.24 65 150x150 10.97 1 5.07 0.08 0.41 P3.8-P3.5 19.24 65 150x150 10.97 1 5.07 0.08 0.44 P3.8-P3.5 19.24 65 150x150 10.97 1 5.07 0.08 0.44 P3.8-P3.5 19.24 65 150x150 10.97 1 5.07 0.08 0.44 P3.8-P3.5 150.8 95 150x150 10.97 1 5.07 0.08 0.44 P3.8-P3.5 150.8 95 150x150 10.97 1 5.07 0.08 0.44 P3.8-P3.5 150.8 95 150x150 10.97 1 5.07 0.08 0.44 P3.8-P3.5 150.8 95 150x150 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 1 5.00 | Tramo      | Q      | Ø eq. | axb     | Long. | Tipo Acces | L. eq. | n° acces, | L. Lotal | mm.c.a/ml | Lotal |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|-------|---------|-------|------------|--------|-----------|----------|-----------|-------|
| P24.P23 46.93 90 150x150 4.35 Reducción 1.27 1 5.62 0.08 0.45 P23.P22 51.08 95 150x150 7.73 Codo 0.88 2 9.49 0.08 0.76 P22.P2.1 51.08 95 150x150 10.79 Codo 0.88 2 12.55 0.08 1.00 P21.P2.0 51.08 95 150x150 10.79 Codo 0.88 2 12.55 0.08 1.00 P21.P2.0 10.64.5 60 150x150 4.94 Reducción 0.46 1 5.4 0.09 0.49 P2.11.P2.10 16.45 60 150x150 4.94 Reducción 0.46 1 5.4 0.09 0.49 P2.11.P2.10 16.45 60 150x150 4.94 Reducción 0.82 1 7.18 0.1 0.72 P2.9.P2.9 29.83 75 150x150 4.34 Codo 0.88 1 5.31 0.08 0.42 P2.9.P2.7 44.85 90 150x150 4.31 Reducción 0.82 1 7.18 0.1 0.72 P2.P2.P2.0 52.36 95 150x150 10.97 T 2.07 2 15.11 0.085 1.28 P2.P2.P3.0 10.344 130 150x150 10.97 T 2.07 2 15.11 0.085 1.28 P2.P2.P3.0 10.344 130 150x150 3 T 2.07 1 5.07 0.08 0.41 P3.0.P4.0 189.78 150 150x150 3 T 2.07 1 5.07 0.08 0.41 P3.0.P4.0 189.78 150 150x150 3 T 2.07 1 5.07 0.08 0.41 P3.P3.P3.4 30.51 75 150x150 10.97 T 5.07 0.08 1 4.88 0.09 0.44 Codo 0.88 1 4.88 0.09 0.44 P3.P3.P3.1 150.0 95 150x150 10.97 1 5.07 0.08 0.41 P3.P3.P3.1 150.0 95 150x150 10.97 1 5.07 0.08 0.41 P3.P3.P3.1 150.0 95 150x150 10.97 1 5.07 0.08 0.41 P3.P3.P3.1 150.0 95 150x150 10.97 1 5.07 0.08 0.42 P3.P3.P3.1 150.0 95 150x150 10.97 1 5.07 0.08 0.43 1 4.88 0.09 0.44 Codo 0.88 1 4.88 0.09 0.44 Codo 0.88 1 1 4.88 0.09 0.48 Codo 0.88 1 1 4.88 0.09 0.48 Codo 0.48 1 1 4.88 0.09 0.48 Co | P2.6-P2.5  | 19.24  |       | 150x150 |       |            | 0.88   | 1         | 6.68     | 0.08      | 0.53  |
| P23-P22 5108 95 150x150 7.73 Codo 0.88 2 9.49 0.08 0.76 P2.1-P2.0 51.08 95 150x150 10.79 Codo 0.88 2 12.55 0.08 1.00 P2.1-P2.0 51.08 95 150x150 5.34 T 2.07 2 9.48 0.08 0.76 P2.1-P2.0 16.45 60 150x150 4.94 Reducción 0.46 1 5.4 0.09 0.49 P2.1-P2.10 P2.9 29.83 75 150x150 6.36 Reducción 0.82 1 7.18 0.1 0.72 P2.9-P2.8 37.34 85 150x150 6.36 Reducción 0.82 1 7.18 0.1 0.72 P2.9-P2.8 37.34 85 150x150 4.94 Codo 0.88 1 5.31 0.08 0.42 P2.7-P2.0 52.36 95 150x150 10.97 T 2.07 2 15.11 0.085 0.28 P2.7-P2.0 52.36 95 150x150 10.97 T 2.07 2 15.11 0.085 1.28 P2.0-P3.0 103.44 130 150x150 3 T 2.07 1 5.07 0.08 0.41 P3.0-P3.0 189.78 150 150x150 3 T 2.07 1 5.07 0.08 0.41 P3.0-P3.0 189.78 150 150x150 3 T 2.07 1 5.07 0.08 0.41 P3.0-P3.4 30.51 75 150x150 4 Codo 0.88 1 4.88 0.09 0.44 P3.0-P3.5 1.93 40.93 90 150x150 5 T 2.8 P3.3-P3.2 51.08 95 150x150 95  |            |        |       |         |       | Reducción  |        | 1         |          |           |       |
| P2.P-2.1 51.08 95 150x150 10.79 Codo 0.88 2 12.55 0.08 1.00 P2.11-P2.10 51.08 95 150x150 5.34 T 2.07 2 9.48 0.08 0.76 P2.11-P2.10 16.45 60 150x150 4.94 Reducción 0.46 1 5.4 0.09 0.49 P2.10-P2.9 29.83 75 150x150 6.36 Reducción 0.82 1 7.18 0.1 0.72 P2.9-P2.8 37.34 85 150x150 4.34 Codo 0.88 1 5.31 0.08 0.42 P2.9-P2.8 37.34 85 150x150 10.97 T 2.07 2 15.11 0.08 0.42 P2.8-P2.7 44.85 90 150x150 10.97 T 2.07 2 15.11 0.08 0.42 P2.P2.P-2.0 52.36 95 150x150 10.97 T 2.07 2 15.11 0.085 1.28 P2.P-2.P3.0 103.44 130 150x150 3 T 2.07 1 5.07 0.08 0.41 P3.0-P4.0 189.78 150 150x150 3 T 2.07 1 5.07 0.08 0.41 P3.0-P4.0 189.78 150 150x150 3 T 2.07 1 5.07 0.085 0.43 P3.8-P3.3 46.93 90 150x150 10.97 P3.3-P3.3 15.0 8 95 150x150 10.97 P3.3-P3.3 51.08 95 150x150 10.97 P3.3-P3.1 51.08 95 150x150 10.97 P3.3-P3.9 27.74 75 150x150 10.97 P3.3-P3.9 35.26 80 150x150 9 19.3 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |        |       |         |       | Reducción  |        | 1         |          |           |       |
| P2.11-P2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |        |       |         |       |            |        |           |          |           |       |
| P2.11-P2.10 16.45 60 150x150 4.94 Reducción 0.46 1 5.4 0.09 0.49 P2.10-P2.9 29.83 75 150x150 6.36 Reducción 0.82 1 7.18 0.1 0.72 P2.9-P2.8 37.34 85 150x150 4.43 Codo 0.88 1 5.31 0.08 0.42 P2.9-P2.8 37.34 85 150x150 3.11 Reducción 1.27 1 4.38 0.09 0.39 P2.9-P2.7 44.85 90 150x150 3.11 Reducción 1.27 1 4.38 0.09 0.39 P2.7-P2.0 52.36 95 150x150 10.97 T 2.07 2 15.11 0.085 1.28 P2.0-P3.0 103.44 130 150x150 3 T 2.07 1 5.07 0.08 0.41 P3.0-P4.0 189.78 150 150x150 3 T 2.07 1 5.07 0.08 0.41 P3.0-P4.0 189.78 150 150x150 3 T 2.07 1 5.07 0.085 0.43 P4.0-Clim2 254.97 170 200x150 4 Codo 0.88 1 4.88 0.09 0.44 P3.6-P3.5 19.24 65 150x150 4 Codo 0.88 1 4.88 0.09 0.44 P3.8-P3.4 30.51 75 150x150 P3.3-P3.4 30.51 75 150x150 P3.3-P3.4 30.51 75 150x150 P3.3-P3.4 30.51 75 150x150 P3.7-P3.0 51.08 95 150x150 P3.7-P3.0 51.08 95 150x150 P3.1-P3.10 14.36 55 150x150 P3.7-P3.0 52.6 80 150x150 P4.7-P4.0 33.86 80 150x150 P4.7-P4.0 33.88 80 150x150 P4.7-P4.0 33.88 80 150x150 P4.7-P4.0 33.88 80 150x150 P4.7-P4.0 33.38 80 150x150 P4.7-P4. |            |        |       |         |       | Codo       |        | 2         |          |           |       |
| P2.10-P2.9 29.83 75 150x150 6.36 Reducción 0.82 1 7.18 0.1 0.72 P2.9-P2.8 37.34 85 150x150 4.43 Codó 0.88 1 5.31 0.08 0.42 P2.8-P2.7 44.85 90 150x150 3.11 Reducción 1.27 1 4.38 0.09 0.39 P2.7-P2.0 52.36 95 150x150 10.97 T 2.07 2 15.11 0.085 1.28 P2.7-P2.0 103.44 130 150x150 3 T 2.07 1 5.07 0.08 0.41 P3.0-P4.0 189.78 150 150x150 3 T 2.07 1 5.07 0.08 0.41 P3.0-P4.0 189.78 150 150x150 3 T 2.07 1 5.07 0.085 0.43 P4.0-Clim2 254.97 170 200x150 4 Codó 0.88 1 4.88 0.09 0.44 P3.3-P3.3 46.93 90 150x150 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |        |       |         |       | T          |        | 2         |          |           |       |
| P2.9-P2.8 37.34 85 150x150 4.43 Codo 0.88 1 5.31 0.08 0.42 P2.8-P2.7 44.85 90 150x150 3.11 Reducción 1.27 1 4.38 0.09 0.39 P2.7-P2.0 52.36 95 150x150 10.97 T 2.07 2 15.11 0.085 1.28 P2.0-P3.0 103.44 130 150x150 3 T 2.07 1 5.07 0.08 0.41 P3.0-P4.0 189.78 150 150x150 3 T 2.07 1 5.07 0.08 0.41 P3.0-P4.0 189.78 150 150x150 3 T 2.07 1 5.07 0.085 0.43 P4.0-Clim2 254.97 170 200x150 4 Codo 0.88 1 4.88 0.09 0.44 P3.6-P3.5 19.24 65 150x150 P3.5-P3.4 30.51 75 150x150 P3.5-P3.4 30.51 75 150x150 P3.3-P3.3 46.93 90 150x150 P3.3-P3.3 46.93 90 150x150 P3.1-P3.0 51.08 95 150x150 P3.1-P3.0 14.36 55 150x150 P3.1-P3.0 14.36 55 150x150 P3.1-P3.0 95 150x150 P3.1-P3.0 14.36 55 150x150 P3.1-P3.0 19.3 92.774 75 150x150 P3.1-P3.0 19.3 92.774 75 150x150 P3.1-P3.0 19.3 92.774 75 150x150 P3.3-P3.8 35.26 80 150x150 P3.3-P3.9 27.74 75 150x150 P3.3-P3.0 35.26 80 150x150 P3.3-P4.0 189.78 150 150x150 P3.3-P4.0 189.78 150 150x150 P3.1-P4.0 189.78 150 150x150 P4.3-P4.2 18.04 65 150x150 P4.3-P4.2 18.04 65 150x150 P4.3-P4.2 18.04 65 150x150 P4.3-P4.2 18.04 65 150x150 P4.3-P4.5 150x150 P4.3-P4.5 31.33 80 150x150 P4.5-P4.0 31.33 80 150x150                                                                                                                                                                                                                                                                                                                     |            |        |       |         |       |            |        | 1         |          |           |       |
| P2.8-P2.7 44.85 90 150x150 3.11 Reducción 1.27 1 4.38 0.09 0.39 P2.7-P2.0 52.36 95 150x150 10.97 T 2.07 2 15.11 0.085 1.28 P2.0-P3.0 103.44 130 150x150 3 T 2.07 1 5.07 0.08 0.41 P3.0-P4.0 189.78 150 150x150 3 T 2.07 1 5.07 0.08 0.41 P3.0-P4.0 189.78 150 150x150 3 T 2.07 1 5.07 0.085 0.43 P4.0-Clim2 254.97 170 200x150 4 Codo 0.88 1 4.88 0.09 0.44 P3.6-P3.5 1 9.24 65 150x150 P3.4-P3.3 46.93 90 150x150 P3.4-P3.3 46.93 90 150x150 P3.4-P3.3 46.93 90 150x150 P3.1-P3.1 51.08 95 150x150 P3.1-P3.1 51.08 95 150x150 P3.1-P3.0 14.36 55 150x150 P3.3-P3.8 35.26 80 150x150 P3.3-P3.8 35.26 80 150x150 P3.7-P3.0 35.26 80 150x150 P3.7-P3.0 35.26 80 150x150 P3.7-P3.0 35.26 80 150x150 P3.7-P3.0 189.78 150 150x150 P3.7-P3.0 33.86 80 150x150 P3.7-P3.0 33.80 150x150 P3.7-P3.0 33.80 80 150x150 P3.7-P3.0 33.80 80 150x150 P4.7-P4.6 31.33 80 150x150 P4.7-P4.0 31.33 80 150x150 P4.7-P4.0 31.33 80 150x150 P4.7-P4.6 31.33 80 150x150 P4.7-P4.6 31.33 80 150x150 P4.7-P4.0 31.33 80 150x150 P4.7-P4.0 31.33 80 150x150 P4.7-P4.6 31.33 80 150x1 |            |        |       |         |       |            |        | 1         |          |           |       |
| P2.7-P2.0         52.36         95         150x150         10.97         T         2.07         2         15.11         0.085         1.28           P2.0-P3.0         103.44         130         150x150         3         T         2.07         1         5.07         0.08         0.41           P3.0-P4.0         189.78         150         150x150         3         T         2.07         1         5.07         0.08         0.41           P4.0-Clm2         254.97         170         200x150         4         Codo         0.88         1         4.88         0.09         0.44           P3.6-P3.5         19.24         65         150x150         P3.1-P3.0         150x150         P3.1-P3.3         46.93         90         150x150         P3.1-P3.3         46.93         90         150x150         P3.1-P3.3         46.93         90         150x150         P3.1-P3.0         15.08         95         150x150         P3.9-P3.8         35.26         80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |        |       |         |       | Codo       |        | 1         |          |           |       |
| P2.0-P3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |        |       |         |       | Reducción  |        |           |          |           |       |
| P3.0-P4.0         189.78         150         150x150         3         T         2.07         1         5.07         0.085         0.43           P4.0-Clim2         254.97         170         200x150         4         Codo         0.88         1         4.88         0.09         0.44           P3.6-P3.5         19.24         65         150x150         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |        |       |         |       | T          |        | 2         |          |           |       |
| P4.0-Clim2         254.97         170         200x150         4         Codo         0.88         1         4.88         0.09         0.44           P3.6-P3.5         19.24         65         150x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |        |       |         |       | T          |        | 1         |          |           |       |
| P3.6-P3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |        |       |         |       | T          |        | 1         |          |           |       |
| P3.5-P3.4 30.51 75 150x150 P3.4-P3.3 46.93 90 150x150 P3.2-P3.1 51.08 95 150x150 P3.1-P3.0 51.08 95 150x150 P3.1-P3.0 14.36 55 150x150 P3.1-P3.9 27.74 75 150x150 P3.9-P3.8 35.26 80 150x150 P3.8-P3.7 35.26 80 150x150 P3.7-P3.0 15.26 80 150x150 P3.7-P3.0 35.26 80 150x150 P3.7-P3.0 35.26 80 150x150 P3.8-P3.7 35.26 80 150x150 P4.3-P4.0 189.78 150 150x150 P4.3-P4.2 18.04 65 150x150 P4.1-P4.0 33.86 80 150x150 P4.1-P4.0 31.33 80 150x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P4.0-Clim2 | 254.97 | 170   | 200x150 | 4     | Codo       | 0.88   | 1         | 4.88     | 0.09      | 0.44  |
| P3.4-P3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P3.6-P3.5  | 19.24  | 65    | 150x150 |       |            |        |           |          |           |       |
| P3.3-P3.2 51.08 95 150x150 P3.2-P3.1 51.08 95 150x150 P3.1-P3.0 51.08 95 150x150 P3.11-P3.10 14.36 55 150x150 P3.11-P3.10 14.36 55 150x150 P3.10-P3.9 27.74 75 150x150 P3.9-P3.8 35.26 80 150x150 P3.8-P3.7 35.26 80 150x150 P3.7-P3.0 35.26 80 150x150 P3.0-P4.0 189.78 150 150x150 P4.3-P4.2 18.04 65 150x150 P4.2-P4.1 27.84 75 150x150 P4.8-P4.7 15.83 60 150x150 P4.8-P4.7 15.83 60 150x150 P4.8-P4.7 15.83 60 150x150 P4.8-P4.7 15.83 80 150x150 P4.8-P4.9 31.33 80 150x150 P4.6-P4.5 31.33 80 150x150 P4.0-Clim2 254.97 170 150x150 P4.0-Clim2 254.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P3.5-P3.4  | 30.51  | 75    | 150x150 |       |            |        |           |          |           |       |
| P3.2-P3.1 51.08 95 150x150 P3.1-P3.0 51.08 95 150x150 P3.11-P3.10 14.36 55 150x150 P3.10-P3.9 27.74 75 150x150 P3.9-P3.8 35.26 80 150x150 P3.8-P3.7 35.26 80 150x150 P3.8-P3.7 35.26 80 150x150 P3.9-P3.0 35.26 80 150x150 P3.0-P4.0 189.78 150 150x150 P4.3-P4.2 18.04 65 150x150 P4.3-P4.2 18.04 65 150x150 P4.1-P4.0 33.86 80 150x150 P4.8-P4.7 15.83 60 150x150 P4.8-P4.7 15.83 60 150x150 P4.7-P4.6 31.33 80 150x150 P4.6-P4.5 31.33 80 150x150 P4.0-Clim2 254.97 170 150x150 P4.0-Clim2 254.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P3.4-P3.3  | 46.93  | 90    | 150x150 |       |            |        |           |          |           |       |
| P3.1-P3.0         51.08         95         150x150           P3.11-P3.10         14.36         55         150x150           P3.10-P3.9         27.74         75         150x150           P3.9-P3.8         35.26         80         150x150           P3.8-P3.7         35.26         80         150x150           P3.7-P3.0         35.26         80         150x150           P3.0-P4.0         189.78         150         150x150           P4.3-P4.2         18.04         65         150x150           P4.2-P4.1         27.84         75         150x150           P4.1-P4.0         33.86         80         150x150           P4.8-P4.7         15.83         60         150x150           P4.8-P4.6         31.33         80         150x150           P4.5-P4.0         31.33         80         150x150           P4.5-P4.0         31.33         80         150x150           P4.5-P4.0         31.33         80         150x150           P4.0-Clim2         254.97         170         150x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P3.3-P3.2  | 51.08  | 95    | 150x150 |       |            |        |           |          |           |       |
| P3.11-P3.10 14.36 55 150x150 P3.10-P3.9 27.74 75 150x150 P3.9-P3.8 35.26 80 150x150 P3.8-P3.7 35.26 80 150x150 P3.8-P3.7 35.26 80 150x150 P3.7-P3.0 35.26 80 150x150 P3.0-P4.0 189.78 150 150x150 P3.0-P4.0 189.78 150 150x150 P3.0-P4.0 189.78 150 150x150 P4.3-P4.2 18.04 65 150x150 P4.3-P4.2 18.04 65 150x150 P4.1-P4.0 33.86 80 150x150 P4.1-P4.0 33.86 80 150x150 P4.8-P4.7 15.83 60 150x150 P4.8-P4.7 15.83 60 150x150 P4.8-P4.7 15.83 80 150x150 P4.8-P4.7 15.83 80 150x150 P4.8-P4.0 31.33 80 150x150 P4.8-P4.0 31.33 80 150x150 P4.6-P4.5 31.33 80 150x150 P4.6-P4.5 31.33 80 150x150 P4.6-P4.5 31.33 80 150x150 P4.6-P4.0 94.0 P4.6-P4.0 94.0 P4.0 P4.0 P4.0 P4.0 P4.0 P4.0 P4.0 P                                                                                                                                                                                                                                                                                                                                                                | P3.2-P3.1  | 51.08  | 95    | 150x150 |       |            |        |           |          |           |       |
| P3.10-P3.9 27.74 75 150x150 P3.9-P3.8 35.26 80 150x150 P3.8-P3.7 35.26 80 150x150 P3.7-P3.0 35.26 80 150x150 P3.0-P4.0 189.78 150 150x150 P4.3-P4.2 18.04 65 150x150 P4.2-P4.1 27.84 75 150x150 P4.1-P4.0 33.86 80 150x150 P4.8-P4.7 15.83 60 150x150 P4.7-P4.6 31.33 80 150x150 P4.7-P4.6 31.33 80 150x150 P4.6-P4.5 31.33 80 150x150 P4.6-P4.5 31.33 80 150x150 P4.6-P4.0 31.33 80 150x150 P4.0-Clim2 254.97 170 150x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P3.1-P3.0  | 51.08  | 95    | 150x150 |       |            |        |           |          |           |       |
| P3.9-P3.8       35.26       80       150x150         P3.8-P3.7       35.26       80       150x150         P3.7-P3.0       35.26       80       150x150         P3.0-P4.0       189.78       150       150x150         P4.3-P4.2       18.04       65       150x150         P4.2-P4.1       27.84       75       150x150         P4.1-P4.0       33.86       80       150x150         P4.8-P4.7       15.83       60       150x150         P4.7-P4.6       31.33       80       150x150         P4.6-P4.5       31.33       80       150x150         P4.5-P4.0       31.33       80       150x150         P4.5-P4.0       31.33       80       150x150         P4.0-Clim2       254.97       170       150x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |        |       |         |       |            |        |           |          |           |       |
| P3.8-P3.7       35.26       80       150x150         P3.7-P3.0       35.26       80       150x150         P3.0-P4.0       189.78       150       150x150         P4.3-P4.2       18.04       65       150x150         P4.2-P4.1       27.84       75       150x150         P4.1-P4.0       33.86       80       150x150         P4.8-P4.7       15.83       60       150x150         P4.7-P4.6       31.33       80       150x150         P4.6-P4.5       31.33       80       150x150         P4.5-P4.0       31.33       80       150x150         P4.0-Clim2       254.97       170       150x150         Clim2       254.97       170       150x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |        |       | 150x150 |       |            |        |           |          |           |       |
| P3.7-P3.0 35.26 80 150x150 P3.0-P4.0 189.78 150 150x150  P4.3-P4.2 18.04 65 150x150 P4.2-P4.1 27.84 75 150x150 P4.1-P4.0 33.86 80 150x150 P4.8-P4.7 15.83 60 150x150 P4.8-P4.7 15.83 80 150x150 P4.6-P4.5 31.33 80 150x150 P4.6-P4.5 31.33 80 150x150 P4.6-P4.5 31.33 80 150x150 P4.6-P4.0 31.33 80 150x150 P4.0-Clim2 254.97 170 150x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |        |       |         |       |            |        |           |          |           |       |
| P3.0-P4.0 189.78 150 150x150  P4.3-P4.2 18.04 65 150x150  P4.2-P4.1 27.84 75 150x150  P4.1-P4.0 33.86 80 150x150  P4.8-P4.7 15.83 60 150x150  P4.7-P4.6 31.33 80 150x150  P4.6-P4.5 31.33 80 150x150  P4.6-P4.5 31.33 80 150x150  P4.6-P4.0 31.33 80 150x150  P4.0-Clim2 254.97 170 150x150  Clim2 254.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |        |       |         |       |            |        |           |          |           |       |
| P4.3-P4.2 18.04 65 150x150 P4.2-P4.1 27.84 75 150x150 P4.1-P4.0 33.86 80 150x150 P4.8-P4.7 15.83 60 150x150 P4.7-P4.6 31.33 80 150x150 P4.6-P4.5 31.33 80 150x150 P4.5-P4.0 31.33 80 150x150 P4.6-P4.5 13.33 80 150x150 P4.6-P4.5 31.33 80 150x150 P4.6-P4.0 31.33 80 150x150 P4.0-Clim2 254.97 170 150x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |        |       |         |       |            |        |           |          |           |       |
| P4.2-P4.1 27.84 75 150x150 P4.1-P4.0 33.86 80 150x150 P4.8-P4.7 15.83 60 150x150 P4.7-P4.6 31.33 80 150x150 P4.6-P4.5 31.33 80 150x150 P4.5-P4.0 31.33 80 150x150 P4.5-P4.0 131.33 80 150x150 P4.5-P4.0 131.33 80 150x150 P4.0-Clim2 254.97 170 150x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P3.0-P4.0  | 189.78 | 150   | 150x150 |       |            |        |           |          |           |       |
| P4.1-P4.0     33.86     80     150x150       P4.8-P4.7     15.83     60     150x150       P4.7-P4.6     31.33     80     150x150       P4.6-P4.5     31.33     80     150x150       P4.5-P4.0     31.33     80     150x150       P4.0-Clim2     254.97     170     150x150       Clim2     254.97     170     150x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P4.3-P4.2  | 18.04  | 65    | 150x150 |       |            |        |           |          |           |       |
| P4.1-P4.0     33.86     80     150x150       P4.8-P4.7     15.83     60     150x150       P4.7-P4.6     31.33     80     150x150       P4.6-P4.5     31.33     80     150x150       P4.5-P4.0     31.33     80     150x150       P4.0-Clim2     254.97     170     150x150       Clim2     254.97     170     150x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P4.2-P4.1  | 27.84  | 75    | 150x150 |       |            |        |           |          |           |       |
| P4.7-P4.6 31.33 80 150x150 P4.6-P4.5 31.33 80 150x150 P4.5-P4.0 31.33 80 150x150 P4.0-Clim2 254.97 170 150x150  Clim2 254.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P4.1-P4.0  |        | 80    | 150x150 |       |            |        |           |          |           |       |
| P4.6-P4.5 31.33 80 150x150 P4.5-P4.0 31.33 80 150x150 P4.0-Clim2 254.97 170 150x150  Clim2 254.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P4.8-P4.7  | 15.83  | 60    | 150x150 |       |            |        |           |          |           |       |
| P4.5-P4.0 31.33 80 150x150 P4.0-Clim2 254.97 170 150x150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P4.7-P4.6  | 31.33  | 80    | 150x150 |       |            |        |           |          |           |       |
| P4.0-Clim2 254.97 170 150x150 Clim2 254.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P4.6-P4.5  | 31.33  | 80    | 150x150 |       |            |        |           |          |           |       |
| Clim2 254.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P4.5-P4.0  | 31.33  | 80    | 150x150 |       |            |        |           |          |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P4.0-Clim2 | 254.97 | 170   | 150x150 |       |            |        |           |          |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Clim2      | 254.97 |       |         |       |            |        |           |          |           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHITZ      | 204.01 | I     |         |       |            |        |           | Subtotal |           | 8.08  |

 Subtotal
 8.08

 Perdida en difusion
 2.1

 Coer. Seg. %
 10%

 TOTAL
 112

## THE PARTY OF THE P

#### UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

### 2.5 CÁLCULO DE LA ALTURA EFECTIVA DE LAS BOMBAS EN LA RED DE TUBERÍAS

## 2.5.1 TABLA DE CÁLCULO DE TUBERÍAS DE ACERO PARA AGUA CALIENTE Y FRÍA

|            |          |      |      |      |       |        | D      | N 2440   |        |        |        |        |         |
|------------|----------|------|------|------|-------|--------|--------|----------|--------|--------|--------|--------|---------|
| Ø          | pulgadas | 3/8" | 1/2" | 3/4" | 1"    | 1 1/4" | 1 1/2" | 2"       | 2 1/2" | 3"     | 4"     | 5"     | 6"      |
| nomimal    | mm       | 10   | 15   | 20   | 25    | 32     | 40     | 50       | 65     | 80     | 100    | 125    | 150     |
| Ø interior | mm       | 12,5 | 16   | 21,6 | 27,2  | 35,9   | 41,8   | 53       | 68,8   | 80,8   | 105,3  | 130    | 155,4   |
| Perdida de |          | 12,0 |      | Lijo | 2.,,2 | cojo   |        | DAL EN I |        | oojo   | 100,0  | 100    | 100,1   |
| mm.c.      |          |      |      |      |       |        |        | IDAD EN  |        |        |        |        |         |
|            |          | 49   | 130  | 210  | 394   | 848    | 1.273  | 2.441    | 4.915  | 7.472  | 15.299 | 26.967 | 43.037  |
| 3          | 3        | 0.11 | 0.18 | 0.16 | 0.19  | 0.23   | 0.26   | 0,31     | 0.37   | 0.40   | 0.49   | 0.56   | 0.63    |
|            |          |      |      |      |       |        |        |          |        |        |        |        |         |
| 4          |          | 65   | 136  | 248  | 466   | 992    | 1.491  | 2.818    | 5.675  | 8.780  | 17.666 | 31.139 | 49.695  |
|            |          | 0,15 | 0,19 | 0,19 | 0,22  | 0,27   | 0,30   | 0,35     | 0,42   | 0,48   | 0,56   | 0,65   | 0,73    |
| 5          | ;        | 81   | 136  | 280  | 527   | 1.124  | 1.690  | 3.200    | 6.453  | 9.997  | 20.142 | 34.814 | 56.810  |
|            |          | 0,18 | 0,19 | 0,21 | 0,25  | 0,31   | 0,34   | 0,40     | 0,48   | 0,54   | 0,64   | 0,73   | 0,83    |
| 6          | :        | 97   | 136  | 310  | 584   | 1.231  | 1.851  | 3.505    | 7.069  | 10.951 | 22.065 | 38.957 | 62.232  |
|            | ' I      | 0,22 | 0,19 | 0,23 | 0,28  | 0,34   | 0,37   | 0,44     | 0,53   | 0,59   | 0,70   | 0,82   | 0,91    |
| 7          |          | 101  | 149  | 339  | 631   | 1.348  | 2.029  | 3.847    | 7.771  | 11.828 | 23.833 | 42.079 | 67.218  |
| ,          | ·        | 0,24 | 0,21 | 0.26 | 0.30  | 0,37   | 0.41   | 0,48     | 0.58   | 0,64   | 0.76   | 0,88   | 0,98    |
|            |          | 101  | 159  | 362  | 683   | 1.441  | 2.169  | 4.112    | 8.307  | 12.645 | 26.003 | 44.984 | 71.859  |
| 8          | 3        | 0.24 | 0,22 | 0,27 | 0.33  | 0.40   | 0.44   | 0.52     | 0.62   | 0,69   | 0.83   | 0.94   | 1,05    |
|            |          | 101  | 170  | 388  | 724   | 1.550  | 2.335  | 4.362    | 8.811  | 13.667 | 27.581 | 47.713 | 76.218  |
| 9          | )        |      |      |      |       |        |        |          |        |        |        |        |         |
|            |          | 0,24 | 0,24 | 0,29 | 0,35  | 0,43   | 0,47   | 0,55     | 0,68   | 0,74   | 0,88   | 1,00   | 1,12    |
| 10         | 0        | 101  | 181  | 409  | 773   | 1.634  | 2.462  | 4.674    | 9.288  | 14.407 | 29.073 | 50.294 | 80.341  |
|            |          | 0,21 | 0,25 | 0,31 | 0,37  | 0,45   | 0,50   | 0,59     | 0,69   | 0,78   | 0,93   | 1,05   | 1,18    |
| 1          | 1        | 101  | 190  | 434  | 811   | 1.714  | 2.582  | 4.902    | 9.741  | 15.110 | 30.492 | 52.749 | 86.245  |
|            |          | 0,22 | 0,26 | 0,33 | 0,39  | 0,47   | 0,52   | 0,62     | 0,73   | 0,82   | 0,97   | 1,10   | 1,26    |
| 4          | 2        | 101  | 201  | 453  | 847   | 1.790  | 2.696  | 5.120    | 10.361 | 15.782 | 31.848 | 56.332 | 90.080  |
| 1          | 2        | 0,23 | 0,28 | 0,34 | 0,41  | 0,49   | 0,55   | 0,64     | 0.77   | 0,85   | 1,02   | 1,18   | 1,32    |
|            | _        | 106  | 209  | 472  | 882   | 1.890  | 2.850  | 5.329    | 10.784 | 16.426 | 33.148 | 58.633 | 93.758  |
| 1          | 3        | 0.24 | 0.29 | 0.38 | 0.42  | 0.52   | 0.58   | 0,67     | 0.81   | 0.89   | 1.06   | 1,23   | 1,37    |
|            |          | 110  | 219  | 496  | 927   | 1.961  | 2.958  | 5.530    | 11.191 | 17.046 | 34.399 | 60.846 | 97.298  |
| 14         | 4        | 0,25 | 0.30 | 0.38 | 0.44  | 0,54   | 0,60   | 0.70     | 0.84   | 0.92   | 1,10   | 1,27   | 1,42    |
|            |          |      |      |      |       |        |        |          |        |        |        |        |         |
| 1          | 5        | 115  | 227  | 513  | 960   | 2.030  | 3.061  | 5.724    | 11.584 | 17.644 | 35.607 | 62.982 | 100.713 |
|            |          | 0,26 | 0,31 | 0,39 | 0,46  | 0,58   | 0,62   | 0,72     | 0,87   | 0,98   | 1,14   | 1,32   | 1,47    |
| 10         | 6        | 119  | 234  | 530  | 991   | 2.097  | 3.162  | 6.013    | 11.964 | 18.223 | 36.774 | 65.047 | 104.016 |
|            |          | 0,27 | 0,32 | 0,40 | 0,47  | 0,58   | 0,64   | 0,76     | 0,89   | 0,99   | 1,17   | 1,36   | 1,52    |
| 1          | 7        | 123  | 241  | 546  | 1.022 | 2.161  | 3.259  | 6.198    | 12.332 | 18.784 | 37.906 | 67.049 | 107.217 |
|            | <b>'</b> | 0,28 | 0,33 | 0,41 | 0,49  | 0,59   | 0,66   | 0,78     | 0,92   | 1,02   | 1,21   | 1,40   | 1,57    |
| -          |          | 127  | 251  | 569  | 1.051 | 2.224  | 3.354  | 6.377    | 12.690 | 19.329 | 39.005 | 68.993 | 110.325 |
| 1          | 8        | 0,29 | 0,35 | 0.43 | 0,50  | 0,61   | 0,68   | 0,80     | 0,95   | 1,05   | 1,24   | 1.44   | 1,62    |
|            |          | 131  | 258  | 584  | 1.095 | 2.319  | 3.446  | 6.552    | 13.037 | 20.251 | 40.936 | 70.883 | 113.348 |
| 1          | 9        | 0,30 | 0,38 | 0.44 | 0.52  | 0,64   | 0.70   | 0.82     | 0.97   | 1,10   | 1,31   | 1,48   | 1,66    |
|            |          |      |      |      |       | 2.380  |        |          |        |        |        |        |         |
| 2          | 0        | 134  | 264  | 599  | 1.123 |        | 3.535  | 6.722    | 13.376 | 20.778 | 41.999 | 72.725 | 116.293 |
|            |          | 0,30 | 0,37 | 0,45 | 0,54  | 0,65   | 0,72   | 0,85     | 1,00   | 1,13   | 1,34   | 1,52   | 1,70    |
| 2          | 1        | 139  | 271  | 614  | 1.151 | 2.438  | 3.680  | 6.888    | 13.706 | 21.291 | 43.037 | 74.521 | 119.165 |
|            | -        | 0,31 | 0,37 | 0.47 | 0,55  | 0,67   | 0.74   | 0,87     | 1,02   | 1,15   | 1,37   | 1,56   | 1,75    |
| 2          | 2        | 142  | 280  | 629  | 1.178 | 2.496  | 3.767  | 7.051    | 14.029 | 21.792 | 44.049 | 76.274 | 121.969 |
| 2.         | •        | 0,32 | 0,39 | 0,48 | 0,56  | 0,68   | 0,76   | 0,89     | 1,05   | 1,18   | 1,41   | 1,60   | 1,79    |
| -          | 2        | 145  | 287  | 643  | 1.204 | 2.552  | 3.852  | 7.209    | 14.344 | 22.281 | 45.039 | 77.989 | 124.710 |
| 2          | 3        | 0,33 | 0,40 | 0,49 | 0,58  | 0,70   | 0,78   | 0,91     | 1,07   | 1,21   | 1,44   | 1,63   | 1,83    |
|            |          | 149  | 293  | 665  | 1.230 | 2.607  | 3.934  | 7.364    | 14.932 | 22.761 | 46.008 | 79.666 | 127.393 |
| 2          | 4        | 0.34 | 0,40 | 0.50 | 0,59  | 0,72   | 0,80   | 0,93     | 1,12   | 1,23   | 1,47   | 1,67   | 1,87    |
|            |          | 153  | 299  | 679  | 1.255 | 2.661  | 4.016  | 7.516    | 15.240 | 23.230 | 46.957 | 81.309 | 130.019 |
| 2          | 5        | 0,35 | 0,41 | 0,51 | 0.60  | 0,73   | 0,81   | 0.95     |        | 1,28   | 1,50   | 1,70   |         |
|            |          |      | 305  | 692  |       |        | 4.095  |          | 1,14   |        |        |        | 1,90    |
| 2          | 6        | 156  |      |      | 1.280 | 2.713  |        | 7.665    | 15.541 | 23.690 | 47.887 | 82.919 | 132.594 |
|            |          | 0,35 | 0,42 | 0,52 | 0,61  | 0,74   | 0,83   | 0,97     | 1,16   | 1,28   | 1,53   | 1,74   | 1,94    |
| 2          | 7        | 159  | 311  | 705  | 1.323 | 2.765  | 4.173  | 7.811    | 15.838 | 24.141 | 48.799 | 84.499 | 135.120 |
|            | •        | 0,36 | 0,43 | 0,53 | 0,63  | 0,76   | 0,84   | 89,0     | 1,18   | 1,31   | 1,56   | 1,77   | 1,98    |
| 2          | 0        | 162  | 320  | 718  | 1.347 | 2.816  | 4.250  | 7.954    | 16.128 | 24.584 | 49.694 | 86.049 | 137.600 |
| 2          | 0        | 0,37 | 0,44 | 0,54 | 0,64  | 0,77   | 0,86   | 1,00     | 1,21   | 1,33   | 1,59   | 1,80   | 2,02    |
|            | _        | 165  | 325  | 731  | 1.371 | 2.865  | 4.325  | 8.095    | 16.414 | 25.019 | 50.574 | 87.572 | 140.035 |
| 2          | 9        | 0.37 | 0.45 | 0.55 | 0.66  | 0.79   | 0.88   | 1.02     | 1.23   | 1.38   | 1.61   | 1.83   | 2,05    |
|            |          | 168  | 331  | 743  | 1.394 | 2.914  | 4.399  | 8.379    | 16.694 | 25.447 | 51.438 | 89.069 | 142.429 |
| 3          | 0        | 0,38 | 0,46 | 0,58 | 0,67  | 0.80   | 0.89   | 1,05     | 1,25   | 1,38   | 1,64   | 1,86   | 2,09    |
| 3          |          |      |      |      |       |        |        |          |        |        |        |        |         |



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 2.5.1 Tabla de la longitud equivalente de accesorios en tuberías

| Accesori                | ios/Válvulas       |      |      |      |      |        |        | Longi | tud equivalen | te (m) |      |      |      |      |      |              |
|-------------------------|--------------------|------|------|------|------|--------|--------|-------|---------------|--------|------|------|------|------|------|--------------|
| ø                       | pulgadas           | 3/8" | 1/2" | 3/4" | 1"   | 1 1/4" | 1 1/2" | 2"    | 2 1/2"        | 3"     | 4"   | 5"   | 6"   | 8"   | 10"  | 12"          |
| ы                       | mm                 | 10   | 15   | 20   | 25   | 32     | 40     | 50    | 65            | 80     | 100  | 125  | 150  | 200  | 250  | 300          |
| Codo a 45               | 0                  |      |      |      | 0,3  | 0,3    | 0,6    | 0,6   | 0,9           | 0,9    | 1,2  | 1,5  | 2,1  | 2,7  | 3,3  | 3,9          |
| Codo a 90               | 0                  |      |      | 8    | 0,6  | 0,9    | 1,2    | 1,5   | 1,8           | 2,1    | 3    | 3,6  | 4,2  | 5,4  | 6,6  | 8,1          |
| Codo a 90               | º Radio largo      |      |      | 40.  | 0,6  | 0,6    | 0,6    | 0,9   | 1,2           | 1,5    | 1,8  | 2,4  | 2,7  | 3,9  | 4,8  | 5,4          |
| Té o Cruz               |                    |      |      | 0    | 1,5  | 1,8    | 2,4    | 3     | 3,6           | 4,5    | 6    | 7,5  | 9    | 10,5 | 15   | 18           |
| Válv MAR                | IPOSA              |      |      |      |      |        |        | 1,8   | 2,1           | 3      | 3,6  | 3,6  | 3    | 3,6  | 5,7  | 6,4          |
| Válv COM                | PUERTA             |      | 0,18 | 0,21 | 0,27 | 0,3    | 0,46   | 0,7   | 0,85          | 0,98   | 1,2  | 1,8  | 2,1  | 2,7  | 3,6  | 3,9          |
| Válv RETE<br>clapeta os | ENCION de scilante |      |      | 12   | 1,5  | 2,1    | 2,7    | 3,3   | 4,2           | 4,8    | 6,6  | 8,3  | 10,4 | 13,5 | 16,5 | 19,5         |
| Válv RETE<br>asiento    | ENCION de          |      |      | 10   |      |        |        | 12,1  | 18,9          | 19,7   | 25,4 | 30,5 | 35,9 | 47,3 | 61,9 | # (5)<br>(4) |
| Válv BOL                | A                  |      | 0,18 | 0,21 | 0,27 | 0,3    | 0,46   | 0,7   | 0,85          | 0,98   | 1,2  | 1,8  | 2,1  |      |      |              |
| Filtros de              | agua               |      | 1,5  | 1,7  | 1,8  | 2,6    | 2,6    | 3,2   | 9             | 10     | 15   | 15,4 | 19   | 36   | 50   | 64           |
|                         | - 1                |      |      |      |      |        |        |       |               |        |      |      |      |      |      |              |
|                         |                    |      |      |      |      |        |        |       |               |        |      |      |      |      |      |              |
|                         | - 3                |      |      | 2    |      |        |        | 2     |               |        | 2    |      | 1    |      |      |              |
|                         | - 1                |      |      |      |      |        |        |       |               |        |      |      |      |      |      | +            |
|                         | - 8                |      |      | 2    |      |        |        |       |               |        |      |      |      |      |      |              |

## TO MATERIA SO

#### UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 2.5.2 CÁLCULO DE LA ALTURA EFECTIVA DE LAS BOMBAS, EN EL CIRCUITO DE AGUA FRÍA DE LOS FAN-COILS

Instalación: Aqua fría
Circuito: Cirucuito 1: Fancoils
Bomba: Bomba 1 y 2

| TRAMO      | Q(I/h)   | DN    | Perd.   | ٧    |      |     |      | codo |      |     | es   |     | luc. | Tot |     | )LA  |     | RIP  |     | TRO  |     | NTO  | R   |      |      | EG   | Tot   | Perd. en | Perd.    |
|------------|----------|-------|---------|------|------|-----|------|------|------|-----|------|-----|------|-----|-----|------|-----|------|-----|------|-----|------|-----|------|------|------|-------|----------|----------|
| TIVAMO     | Q(I/II)  | DIN   | mm.c.a. | (m/s | (ml) | uds | perd | uds  | perd | uds | perd | uds | perd | acc | uds | perd | uds  | perd | válv. | el tramo | acumulad |
| SS6-SS5    | 975.96   |       |         | 0.3  | 5.2  |     |      |      |      |     |      |     |      | 0   |     |      |     |      |     |      |     |      |     |      |      |      | 0     | 20.80    | 20.80    |
| SS5-SS4    | 1787.3   | 1 1/4 | 12      | 0.5  | 3.6  |     |      |      |      |     |      |     |      | 0   |     |      |     |      |     |      |     |      |     |      |      |      |       | 43.20    | 64.00    |
| SS4-SS3    | 2598.6   | 1 1/2 | 12      | 0.6  | 3.6  | 1   | 1.2  |      |      |     |      |     |      | 1.2 |     |      |     |      |     |      |     |      |     |      |      |      |       | 57.60    | 121.60   |
| SS3-SS2    | 3409.9   | 1 1/2 |         | 0.7  | 9.5  | 1   | 1.2  |      |      |     |      |     |      | 1.2 |     |      |     |      |     |      |     |      |     |      |      |      |       | 203.87   | 325.47   |
| SS2-SS1    | 3668.4   | 1 1/2 | 21      | 0.7  | 3.6  | 1   | 1.2  |      |      |     |      |     |      | 1.2 |     |      |     |      |     |      |     |      |     |      |      |      |       | 100.80   | 426.27   |
| SS1-A0     | 3926.9   | 1 1/2 | 24      | 0.8  | 13   | 2   | 1.2  |      |      |     |      |     |      | 2.4 |     |      |     |      |     |      |     |      |     |      |      |      |       | 360.48   | 786.75   |
| A0-P1.0    | 9955.7   | 2 1/2 | 12      | 0.8  | 3    |     |      |      |      | 1   | 3.6  |     |      | 3.6 |     |      |     |      |     |      |     |      |     |      |      |      |       | 79.20    | 865.95   |
| P1.0-P2.0  | 10874    | 2 1/2 | 14      | 0.8  | 3    |     |      |      |      | - 1 | 3.6  |     |      | 3.6 |     |      |     |      |     |      |     |      |     |      |      |      |       | 92.40    | 958.35   |
| P2.0-P3.0  | 14950    | 2 1/2 | 25      | 1.4  | 3    |     |      |      |      | - 1 | 3.6  |     |      | 3.6 |     |      |     |      |     |      |     |      |     |      |      |      |       | 165.00   | 1,123.35 |
| P3.0-P4.0  | 18863    | 3     | 18      | 1.1  | 3    |     |      |      |      | - 1 | 4.5  |     |      | 4.5 |     |      |     |      |     |      |     |      |     |      |      |      |       | 135.00   | 1,258.35 |
| P4.0-Bomb  | 21207    | 3     | 21      | 1.2  | 6    |     |      |      |      |     |      |     |      | 0   |     |      |     |      |     |      |     |      |     |      |      |      |       | 126.00   | 1,384.35 |
| IMPULSIÓN  | I + RETO | RNO   |         |      |      |     |      |      |      |     |      |     |      | 0   |     |      |     |      |     |      |     |      |     |      |      |      |       | 1,384.35 | 2,768.70 |
| VALV. BATE | RIA FAN  | 1 1/4 |         | 0.3  |      |     |      |      |      |     |      |     |      | 0   | 1   | 0.3  |     |      | 1   | 2.6  | 1   |      |     |      | 1    | 9.5  |       | 49.60    | 2,818.30 |
| VALV. BOME | 21207    | 3     | 21      | 1.2  |      |     |      |      |      |     |      |     |      | 0   |     |      | 4   | 3    | 1   | 10   |     |      | 1   | 4.8  | 1    | 20   |       | 976.50   | 3,794.80 |
|            |          |       |         |      |      |     |      |      |      |     |      |     |      | 0   |     |      |     |      |     |      |     |      |     |      |      |      |       |          |          |
|            |          |       |         |      |      |     |      |      |      |     |      |     |      | 0   |     |      |     |      |     |      |     |      |     |      |      |      |       |          |          |
|            |          |       |         |      |      |     |      |      |      |     |      |     |      | 0   |     |      |     |      |     |      |     |      |     |      |      |      |       |          |          |
|            |          |       |         |      |      |     |      |      |      |     |      |     |      |     |     |      |     |      |     |      |     |      |     |      |      |      |       |          |          |
|            |          |       |         |      |      |     |      |      |      |     |      |     |      |     |     |      |     |      |     |      |     |      |     |      |      |      |       |          |          |
|            |          |       |         |      |      |     |      |      |      |     |      |     |      |     |     |      |     |      |     |      |     |      |     |      | Subt | otal |       |          | 3,794.80 |

| bateria (mm.c.a.         | )        | 2,000.00 |
|--------------------------|----------|----------|
| valv control             |          | 2,000.00 |
|                          | total    | 7,794.80 |
|                          | % segur. | 10.00%   |
| ALTURA EFECT<br>BOMBA (M |          | 8.57     |

### 2.5.3 CÁLCULO DE LA ALTURA EFECTIVA DE LAS BOMBAS, EN EL CIRCUITO DE AGUA CALIENTE DE LOS FAN-COILS

| TRAMO      | Q(I/h)   | DN    | Perd.   | V    |      |     |      | codo |      |     | es   |     | luc. | Tot |     | LA   |     | RIP  |     | TRO  |     | NTO  | R   |      |      | EG   | Tot   | Perd. en | Perd.    |
|------------|----------|-------|---------|------|------|-----|------|------|------|-----|------|-----|------|-----|-----|------|-----|------|-----|------|-----|------|-----|------|------|------|-------|----------|----------|
| TRAMO      |          |       | mm.c.a. | (m/s | (ml) | uds | perd | uds  | perd | uds | perd | uds | perd | acc | uds | perd | uds  | perd | válv. | el tramo |          |
| SS6-SS5    | 975.96   | 1 1/4 | 4       | 0.3  | 5.2  |     |      |      |      |     |      |     |      | 0   |     |      |     |      |     |      |     |      |     |      |      |      |       | 20.80    | 20.8     |
| SS5-SS4    | 1787.3   | 1 1/4 | 12      | 0.5  | 3.6  |     |      |      |      |     |      |     |      | 0   |     |      |     |      |     |      |     |      |     |      |      |      |       | 43.20    | 64.00    |
| SS4-SS3    | 2598.6   |       |         |      |      |     | 1.2  |      |      |     |      |     |      | 1.2 |     |      |     |      |     |      |     |      |     |      |      |      |       | 57.60    | 121.60   |
| SS3-SS2    | 3409.9   |       |         |      | 9.5  | - 1 | 1.2  |      |      |     |      |     |      | 1.2 |     |      |     |      |     |      |     |      |     |      |      |      |       | 203.87   | 325.47   |
| SS2-SS1    | 3668.4   | 1 1/2 | 21      | 0.7  | 3.6  | 1   | 1.2  |      |      |     |      |     |      | 1.2 |     |      |     |      |     |      |     |      |     |      |      |      |       | 100.80   | 426.27   |
| SS1-A0     | 3926.9   |       |         |      | 13   | 2   | 1.2  |      |      |     |      |     |      | 2.4 |     |      |     |      |     |      |     |      |     |      |      |      |       | 360.48   | 786.7    |
| A0-P1.0    | 9955.7   |       |         | 0.8  | 3    |     |      |      |      | 1   | 3.6  |     |      | 3.6 |     |      |     |      |     |      |     |      |     |      |      |      |       | 79.20    | 865.98   |
| P1.0-P2.0  | 10874    |       |         |      | 3    |     |      |      |      | 1   | 3.6  |     |      | 3.6 |     |      |     |      |     |      |     |      |     |      |      |      |       | 92.40    | 958.35   |
| P2.0-P3.0  | 14950    |       |         |      | 3    |     |      |      |      | 1   | 3.6  |     |      | 3.6 |     |      |     |      |     |      |     |      |     |      |      |      |       | 165.00   | 1,123.3  |
| P3.0-P4.0  | 18863    |       | 18      |      | 3    |     |      |      |      | 1   | 4.5  |     |      | 4.5 |     |      |     |      |     |      |     |      |     |      |      |      |       | 135.00   | 1,258.3  |
| P4.0-Bomb  | 21207    | 3     | 21      | 1.2  | 6    |     |      |      |      |     |      |     |      | 0   |     |      |     |      |     |      |     |      |     |      |      |      |       | 126.00   | 1,384.3  |
| IMPULSIÓN  |          |       |         |      |      |     |      |      |      |     |      |     |      | 0   |     |      |     |      |     |      |     |      |     |      |      |      |       | 1,384.35 | 2,768.70 |
| VALV. BATE | RIA FANO | 1 1/4 |         | 0.3  |      |     |      |      |      |     |      |     |      | 0   | 1   | 0.3  |     |      | 1   | 2.6  | 1   |      |     |      | - 1  | 9.5  |       | 49.60    | 2,818.30 |
| VALV. BOME | 21207    | 3     | 21      | 1.2  |      |     |      |      |      |     |      |     |      | 0   |     |      | 4   | 3    | 1   | 10   |     |      | 1   | 4.8  | - 1  | 20   |       | 976.50   | 3,794.80 |
|            |          |       |         |      |      |     |      |      |      |     |      |     |      | 0   |     |      |     |      |     |      |     |      |     |      |      |      |       |          |          |
|            |          |       |         |      |      |     |      |      |      |     |      |     |      | 0   |     |      |     |      |     |      |     |      |     |      |      |      |       |          |          |
|            |          |       |         |      |      |     |      |      |      |     |      |     |      | 0   |     |      |     |      |     |      |     |      |     |      |      |      |       |          |          |
|            |          |       |         |      |      |     |      |      |      |     |      |     |      |     |     |      |     |      |     |      |     |      |     |      |      |      |       |          |          |
|            |          |       |         |      |      |     |      |      |      |     |      |     |      |     |     |      |     |      |     |      |     |      |     |      |      |      |       |          |          |
|            |          |       |         |      |      |     |      |      |      |     |      |     |      |     |     |      |     |      |     |      |     |      |     |      | Subt | otal |       |          | 3,794.80 |

| bateria (mm.c.a.         | )        | 2,000.00 |
|--------------------------|----------|----------|
| valv control             |          | 2,000.00 |
|                          | total    | 7,794.80 |
|                          | % segur. | 10.00%   |
| ALTURA EFECT<br>BOMBA (M |          | 8.57     |



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 2.5.4 CÁLCULO DE LA ALTURA EFECTIVA DE LAS BOMBAS, EN EL CIRCUITO DE AGUA FRÍA DE LOS CLIMATIZADORES

Instalación: Circuito: Bomba: Aqua fría Cirucuito 2: Climatizadores Bomba 5 v 6

|                 |         |         | Perd.    |         |        | cod | os 90° | cod | os 45° | 1   | tes  | rec | duc. |               | BO  | LA   | MA  | RIP  | FILT | RO   | ASIE | NTO  | RE  | ΕT   | RI    | G    |              | Perd. en | Perd.                    |
|-----------------|---------|---------|----------|---------|--------|-----|--------|-----|--------|-----|------|-----|------|---------------|-----|------|-----|------|------|------|------|------|-----|------|-------|------|--------------|----------|--------------------------|
| TRAMO           | Q(I/h)  | DN      | mm.c.a./ | V (m/s) | L (ml) | uds | perd   | uds | perd   | uds | perd | uds | perd | Tot<br>acces. | uds | perd | uds | perd | uds  | perd | uds  | perd | uds | perd | uds   | perd | Tot<br>válv. | ol tramo | acumula<br>da<br>(mm.c.a |
| Clim 1          | 3156.21 | 1 1/2 " | 16       | 0.64    | 1.5    | - 1 | 1.2    |     |        | 1   | 0.6  |     |      | 1.8           |     |      |     |      |      |      |      |      |     |      |       |      | 0            | 52.80    | 52.8                     |
| Clima 1 - Clima | 4318.81 | 1 1/2 " | 29       | 0.88    | 3      |     |        |     |        | 1   | 0.6  |     |      | 0.6           |     |      |     |      |      |      |      |      |     |      |       |      | 0            | 104.40   | 157.20                   |
| IMPULSIÓN + F   | RETORNO |         |          |         |        |     |        |     |        |     |      |     |      |               |     |      |     |      |      |      |      |      |     |      |       |      | 0            | 157.20   | 314.40                   |
| VALV. BATERIA   | CLIM    | 1 1/2 " | 16       | 0.64    |        |     |        |     |        |     |      |     |      |               | 1   | 0.5  |     |      | 1    | 2.6  | 1    | 11   |     |      | 1     | 11   | 25.1         | 400.96   | 715.36                   |
| VALV. BOMBA     |         | 1 1/2 " | 29       | 0.88    |        |     |        |     |        |     |      |     |      |               |     |      | 4   | 1.5  | 1    | 9    |      |      | 1   | 2.7  | 1     | 11   | 28.7         | 832.30   | 1,547.66                 |
|                 |         |         |          |         |        |     |        |     |        |     |      |     |      |               |     |      |     |      |      |      |      |      |     |      |       |      |              |          |                          |
|                 |         |         |          |         |        |     |        |     |        |     |      |     |      |               |     |      |     |      |      |      |      |      |     |      |       |      |              |          |                          |
|                 |         |         |          |         |        |     |        |     |        |     |      |     |      |               |     |      |     |      |      |      |      |      |     |      |       |      |              |          |                          |
|                 |         |         |          |         |        |     |        |     |        |     |      |     |      |               |     |      |     |      |      |      |      |      |     |      |       |      |              |          |                          |
|                 |         |         |          |         |        |     |        |     |        |     |      |     |      |               |     |      |     |      |      |      |      |      |     |      |       |      |              |          |                          |
|                 |         |         |          |         |        |     |        |     |        |     |      |     |      |               |     |      |     |      |      |      |      |      |     |      | Subto | tal  |              |          | 1 547 6                  |

| bateria (mm.c.a.)           |          | 3,000.00 |
|-----------------------------|----------|----------|
| valv control                |          | 3,000.00 |
|                             | total    | 7,547.66 |
|                             | % segur. | 10.00%   |
| ALTURA EFECTI<br>BOMBA (M.C |          | 8.30     |

#### 2.5.5 CÁLCULO DE LA ALTURA EFECTIVA DE LAS BOMBAS, EN EL CIRCUITO DE AGUA CALIENTE DE LOS CLIMATIZADORES

Instalación: Circuito: Bomba:

Aqua caliente
Cirucuito 2: Climatizadores
Romba 6 v 7

|                   |         |         | Perd. |         |        | cod | os 90° | code | os 45° | t   | es   | ге  | duc. |            | BO  | LA   | MA  | RIP  | FILT | RO   | ASIE | NTO  | RE  | ΕT   | RE    | G    |              | Perd. en | Perd.                    |
|-------------------|---------|---------|-------|---------|--------|-----|--------|------|--------|-----|------|-----|------|------------|-----|------|-----|------|------|------|------|------|-----|------|-------|------|--------------|----------|--------------------------|
| TRAMO             | Q(I/h)  | DN      |       | V (m/s) | L (ml) | uds | perd   | uds  | perd   | uds | perd | uds | perd | Tot acces. | uds | perd | uds | perd | uds  | perd | uds  | perd | uds | perd | uds   | perd | Tot<br>válv. | ol tramo | acumula<br>da<br>(mm.c.a |
| Clim 1            | 2426.91 | 1 1/2 " | 10    | 0.5     | 1.5    | 1   | 1.2    |      |        | 1   | 0.6  |     |      | 1.8        |     |      |     |      |      |      |      |      |     |      |       |      | 0            | 33.00    | 33.0                     |
| Clima 1 - Clima 2 | 3460.63 | 1 1/2"  | 20    | 0.72    | 3      |     |        |      |        | 1   | 0.6  |     |      | 0.6        |     |      |     |      |      |      |      |      |     |      |       |      | 0            | 72.00    | 105.00                   |
| IMPULSIÓN + RET   | ORNO    |         |       |         |        |     |        |      |        |     |      |     |      |            |     |      |     |      |      |      |      |      |     |      |       |      | 0            | 105.00   |                          |
| VALV. BATERIA CL  | IM      | 1 1/2 " | 10    | 0.5     |        |     |        |      |        |     |      |     |      |            | 1   | 0.5  |     |      | 1    | 2.6  | 1    | 11   |     |      | 1     | 11   | 25.1         | 250.60   | 460.60                   |
| VALV. BOMBA       |         | 1 1/2"  | 20    | 0.72    |        |     |        |      |        |     |      |     |      |            |     |      | 4   | 1.5  | 1    | 9    |      |      | 1   | 2.7  | 1     | 11   | 28.7         | 574.00   | 1,034.60                 |
|                   |         |         |       |         |        |     |        |      |        |     |      |     |      |            |     |      |     |      |      |      |      |      |     |      |       |      |              |          |                          |
|                   |         |         |       |         |        |     |        |      |        |     |      |     |      |            |     |      |     |      |      |      |      |      |     |      |       |      |              |          |                          |
|                   |         |         |       |         |        |     |        |      |        |     |      |     |      |            |     |      |     |      |      |      |      |      |     |      |       |      |              |          |                          |
|                   |         |         |       |         |        |     |        |      |        |     |      |     |      |            |     |      |     |      |      |      |      |      |     |      |       |      |              |          |                          |
|                   |         |         |       |         |        |     |        |      |        |     |      |     |      |            |     |      |     |      |      |      |      |      |     |      |       |      |              |          |                          |
|                   |         |         |       |         |        |     |        |      |        |     |      |     |      |            |     |      |     |      |      |      |      |      |     |      | Subto | tal  |              |          | 1,034.60                 |

| bateria (mm.c.a.)           |          | 2,000.00 |
|-----------------------------|----------|----------|
| valv control                |          | 2,000.00 |
|                             | total    | 5,034.60 |
|                             | % segur. | 10.00%   |
| ALTURA EFECTI<br>BOMBA (M.C |          | 5.54     |



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## 2.5.6 CÁLCULO DE LA ALTURA EFECTIVA DE LA BOMBA, EN EL CIRCUITO DEL GRUPO FRIGORÍFICO

Instalación: Agua fría

Circuito: Cirucuito: Grupo frigorífico

|                |         |     |                          |         |        | codo | s 90° | code | os 45° | te  | es   | rec | luc. |                   | BO  | LA   | MA  | RIP  | FIL. | TRO  | ASIE | NTO  | R   | ET   | R    | G    |      |                                   | Perd.    |
|----------------|---------|-----|--------------------------|---------|--------|------|-------|------|--------|-----|------|-----|------|-------------------|-----|------|-----|------|------|------|------|------|-----|------|------|------|------|-----------------------------------|----------|
| TRAMO          | Q(1/h)  | DN  | Perd.<br>mm.c.a. /<br>ml | V (m/s) | L (ml) | uds  | perd  | uds  | perd   | uds | perd | uds | perd | Tot<br>acc<br>es. | uds | perd | uds | perd | uds  | perd | uds  | perd | uds | perd | uds  | perd | válv | Perd. en<br>el tramo<br>(mm.c.a.) | da       |
| G. Frigorífico | 22882.4 | 3 " | 25                       | 1.26    | 3.5    |      |       |      |        |     |      |     |      |                   |     |      |     |      |      |      |      |      |     |      |      |      | 0    | 87.50                             | 87.50    |
| IMPULSIÓN + F  | RETORNO |     |                          |         |        |      |       |      |        |     |      |     |      |                   |     |      |     |      |      |      |      |      |     |      |      |      | 0    | 87.50                             | 175.00   |
| VALV. BOMBA    |         | 3 " | 25                       | 1.26    |        |      |       |      |        |     |      |     |      |                   |     |      | 4   | 3    | 1    | 10   |      |      | 1   | 4.8  | 1    | 20   | 46.5 | 1,162.50                          | 1,337.50 |
|                |         |     |                          |         |        |      |       |      |        |     |      |     |      |                   |     |      |     |      |      |      |      |      |     |      |      |      |      |                                   |          |
|                |         |     |                          |         |        |      |       |      |        |     |      |     |      |                   |     |      |     |      |      |      |      |      |     |      |      |      |      |                                   |          |
|                |         |     |                          |         |        |      |       |      |        |     |      |     |      |                   |     |      |     |      |      |      |      |      |     |      |      |      |      |                                   |          |
|                |         |     |                          |         |        |      |       |      |        |     |      |     |      |                   |     |      |     |      |      |      |      |      |     |      |      |      |      |                                   |          |
|                |         |     |                          |         |        |      |       |      |        |     |      |     |      |                   |     |      |     |      |      |      |      |      |     |      |      |      |      |                                   |          |
|                |         |     |                          |         |        |      |       |      |        |     |      |     |      |                   |     |      |     |      |      |      |      |      |     |      | Subt | otal |      |                                   | 1,337.50 |

| bateria (mm.c | .a.)                    | 3,000.00 |
|---------------|-------------------------|----------|
| valv control  |                         | 3,000.00 |
|               | total                   | 7,337.50 |
|               | % segur.                | 10.00%   |
|               | CTIVA DE LA<br>(M.C.A.) | 8.07     |

## 2.5.7 CÁLCULO DE LA ALTURA EFECTIVA DE LA BOMBA, EN EL CIRCUITO DE LA CALDERA

Instalación: Agua caliente
Circuito: Cirucuito: Caldera
Bomba: Bomba 11 y 12

|             |         |        | Perd. |         |        | cod | os 90° | cod | os 45° |     | tes  | ree | duc.        |            | BO  | LA   | MA  | RIP  | FILT | RO   | ASIE | NTO  | RE  | ΞT   | RE    | G    |              | Perd. en              | Perd.                     |
|-------------|---------|--------|-------|---------|--------|-----|--------|-----|--------|-----|------|-----|-------------|------------|-----|------|-----|------|------|------|------|------|-----|------|-------|------|--------------|-----------------------|---------------------------|
| TRAMO       | Q(I/h)  | DN     |       | V (m/s) | L (ml) | uds | perd   | uds | perd   | uds | perd | uds | perd acces. | Tot acces. | uds | perd | uds | perd | uds  | perd | uds  | perd | uds | perd | uds   | perd | Tot<br>válv. | el tramo<br>(mm.c.a.) | acumula<br>da<br>(mm.c.a. |
| Caldera     | 7108.25 |        | 7     | 0.58    | 3.5    |     |        |     |        |     |      |     |             | 0          |     |      |     |      |      |      |      |      |     |      |       |      | 0            | 24.50                 | 24.50                     |
| IMPULSIÓN + | RETORNO |        |       |         |        |     |        |     |        |     |      |     |             |            |     |      |     |      |      |      |      |      |     |      |       |      | 0            | 24.50                 | 49.00                     |
| VALV. BOMBA | 4       | 2 1/2" | 7     | 0.58    |        |     |        |     |        |     |      |     |             |            |     |      | 4   | 2.1  | 1    | 9    |      |      | 1   | 4.2  | 1     | 18.9 | 40.5         | 283.50                | 332.50                    |
|             |         |        |       |         |        |     |        |     |        |     |      |     |             |            |     |      |     |      |      |      |      |      |     |      |       |      |              |                       |                           |
|             |         |        |       |         |        |     |        |     |        |     |      |     |             |            |     |      |     |      |      |      |      |      |     |      |       |      |              |                       |                           |
|             |         |        |       |         |        |     |        |     |        |     |      |     |             |            |     |      |     |      |      |      |      |      |     |      |       |      |              |                       |                           |
|             |         |        |       |         |        |     |        |     |        |     |      |     |             |            |     |      |     |      |      |      |      |      |     |      |       |      |              |                       |                           |
|             |         |        |       |         |        |     |        |     |        |     |      |     |             |            |     |      |     |      |      |      |      |      |     |      |       |      |              |                       |                           |
|             |         |        |       |         |        |     |        |     |        |     |      |     |             |            |     |      |     |      |      |      |      |      |     |      | Subto | tal  |              |                       | 332.50                    |

| bateria (mm.c.a.)           | 2,000.00 |          |
|-----------------------------|----------|----------|
| valv control                | 2,000.00 |          |
|                             | total    | 4,332.50 |
|                             | % segur. | 10.00%   |
| ALTURA EFECTIV<br>BOMBA (M. |          | 4.77     |



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Parte IVPLIEGO DE CONDICIONES



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

## THE PARTY AS TO SELECT AS TO SE

#### UNIVERSIDAD PONTIFICIA COMILLAS

#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### Índice de Pliego de Condiciones

| Capítulo 1 | Tuberías y accesorios              | 175  |
|------------|------------------------------------|------|
| 1.1        | General                            | 175  |
| 1.2        | Soportes de tuberías               | 176  |
| 1.3        | Tuberías de acero                  | 177  |
| 1.4        | Pintura e identificación           | 178  |
| 1.5        | Accesorios                         | 179  |
| 1.5.1      | Juntas                             | .179 |
| 1.5.2      | Lubricante de roscas               | .179 |
| 1.5.3      | Derivaciones                       | .179 |
| 1.5.4      | Codos en bombas                    | .179 |
| 1.5.5      | Guías                              | .179 |
| 1.5.6      | Termómetros                        | .180 |
| 1.5.7      | Manómetros                         | .180 |
| 1.5.8      | Válvulas de seguridad              | .180 |
| 1.5.9      | Purgadores de aire                 | .181 |
| 1.5.1      | 0 Vaciados                         | .181 |
| 1.5.1      | 1 Conexiones a equipos             | .181 |
| Capítulo 2 | Valvulería en redes de agua        | 183  |
| 2.1        | General                            | 183  |
| 2.2        | Válvulas de bola                   | 184  |
| 2.3        | Válvulas de mariposa               | 185  |
| 2.4        | Válvulas de globo o de equilibrado | 185  |
| 2.5        | Válvulas de retención de resorte   | 186  |
| 2.6        | Filtros                            | 186  |
| Capítulo 3 | Colectores                         | 187  |
| Capítulo 4 | Distribución de aire               | 189  |
| 4.1        | General                            | 189  |



#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

| 4.1.1      | Entregas                                                    | 189          |
|------------|-------------------------------------------------------------|--------------|
| 4.1.2      | Varios                                                      | 189          |
| 4.2        | Conductos de aire en baja velocidad en chapa de acero galva | anizado. 190 |
| 4.2.1      | General                                                     | 190          |
| 4.2.2      | Características                                             | 191          |
| 4.2.3      | Soportes de conductos                                       | 191          |
| 4.3        | Difusión de aire                                            | 192          |
| 4.4        | Difusores                                                   | 192          |
| 4.4.1      | General                                                     | 192          |
| 4.4.2      | Criterios de instalación                                    | 193          |
| 4.5        | Rejillas                                                    | 193          |
| Capítulo 5 | Aislamiento                                                 | 195          |
| 5.1        | General                                                     | 195          |
| 5.1.1      | Entregas                                                    | 195          |
| 5.1.2      | Requisitos generales                                        | 195          |
| 5.1.3      | Instalación                                                 | 196          |
| 5.2        | Aislamiento de las redes de tuberías                        | 197          |
| Capítulo 6 | Caldera                                                     | 199          |
| Capítulo 7 | Grupos de enfriamiento                                      | 201          |
| 7.1        | General                                                     | 201          |
| 7.2        | Componentes                                                 | 202          |
| 7.2.1      | Carcasa                                                     | 202          |
| 7.2.2      | Evaporador y condensador                                    | 202          |
| 7.2.3      | Compresor                                                   | 203          |
| Capítulo 8 | Bombas centrífugas                                          | 205          |
| Capítulo 9 | Equipos de tratamiento de aire                              | 207          |
| 9.1        | General                                                     | 207          |
| 9.2        | Climatizadoras                                              | 207          |
| Capítulo 1 | 0 Fan-coils                                                 | 211          |

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### Capítulo 1 TUBERÍAS Y ACCESORIOS

#### 1.1 **GENERAL**

El suministro, montaje y puesta en servicio de las tuberías, accesorios y soportería de las redes de agua, es competencia del Contratista y han de estar de acuerdo con las características previstas.

Las tuberías deben ser rectilíneas, limpias y con aspecto ordenado usándose accesorios para los cambios de dirección y dejando las máximas alturas libres de todas las estancias, con el fin de no interferir en otras instalaciones como puede ser la instalación de la red de conductos o las eléctricas y de iluminación.

La fabricación de las tuberías ha de seguir las normas descritas y con la maquinaría precisa.

El montaje ha de ser de primera calidad y completo. Las secciones serán circulares con espesores uniformes. En caso de defectos, estos han de ser examinados cumpliendo una tolerancia de -12.5% de espesor nominal.

Siempre que sea posible y se indique en los planos, las tuberías deberán instalarse paralelas a las líneas de edificio. Toda tubería, y elementos de la red de tuberías como válvulas, etc., deberán ser instaladas separadas de otros componentes asegurando una circulación del fluido, evitando bolsas de aire y permitiendo el drenaje. Para ello se instalarán purgadores en los puntos con más altura y drenajes en los puntos con menos altura.

Las tuberías de evacuación y drenaje tendrán una pendiente mínima de 6mm por metro lineal y máxima de 10 mm por metro lineal en la dirección del agua y un diámetro de 3/8" en general y 3/4" en verticales.



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

La instalación he de ser libre de desperfectos y que permita su libre expansión.

Las tuberías deberán ser cortadas con un corte limpio sin rebabas, en las uniones roscadas y soldadas. En estas últimas los extremos de las tuberías se limarán en chaflán facilitando la robustez del cordón de soldadura.

Las tuberías de acero negro han de ser pintadas con una primera capa de pintura antioxidante.

Las uniones en "T" se realizará por unión roscada o embriada para válvulas u otros accesorios.

Las roscas se pintarán con pintura antioxidante y en la unión (roscada o embridada) se emplearán juntas de estanqueidad.

Para remediar defectos, no se admitirá el calentamiento de la tubería. Ningún doblado ha de ser inferior a 16°C.

En los lugares en que se coloquen codos o " T ", se sujetarán éstos a ambos lados, de forma que no puedan ser expulsados, por lo que la sujeción por juntas no ha de considerarse suficiente.

#### 1.2 SOPORTES DE TUBERÍAS

Las tuberías han de ser soportadas de una forma limpia y con precisión. Los soportes han de ser normalizados y su sujeción se realizará con varillas roscadas de acero cadmiado, fijadas al techo. En las paredes verticales la fijación será con pies de perfiles normalizados fijados a la pared por soldaduras. No se admitirán el uso de flejes, cadenas o alambres.

Los soportes serán de tipo abrazadera y distanciados aproximadamente 2m para tuberías menores de 1 ½" y 3m para tuberías con mayor diámetro. Las zonas con mayor movimiento como curvas han de dejarse libres

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

Se podrán hacer uso de soportes comunes cuando dos o más tuberías estén situadas a la misma altura con recorridos paralelos.

#### 1.3 TUBERÍAS DE ACERO

Los requisitos descritos a continuación han de ser cumplidos por todas las tuberías.

- Las designaciones, espesores, tolerancias, etc. se ajustarán a las normas siguientes
  - o UNE-EN 10.225, 10217, 10220, y 19050/75.
  - o Curvas y accesorios según normas de su tubería correspondiente
- El hierro presentará:
  - o Estructura fibrosa
  - Carga de rotura a la tracción superior a 40 Kg/cm<sup>2</sup>
  - Alargamiento mínimo del 15%.
  - No se permiten fisuras en n los ensayos de curvado de tubo a 180°
     con un radio interior que cuadriplique su diámetro.
- Presión de la tubería en pruebas de fábrica tiene que ser de 50 Kg/cm². En obra la presión ha de ser el doble de la prevista como trabajo, siendo el mínimo de 6 Kg/cm².
- Cumplirán en cualquier caso los mínimos exigidos por la normativa UNE (19040 ó 19041).

Para las tuberías de agua caliente o fría en circuito cerrado, los materiales de las tuberías y su montaje se realizarán de la siguiente forma:



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

- Para diámetros inferiores a 6" con accesorios y uniones roscadas para tubería de 2" e inferiores se precisa de acero forjado.
- Para diámetros superiores a 6" de uniones soldadas o embriadas, se precisa de acero estirado.

#### 1.4 PINTURA E IDENTIFICACIÓN

Se debe aplicar dos capas de pintura antioxidante a todos los elementos metálicos no galvanizados que puedan quedar expuestos a oxidación. La primera capa debe ser fuera de obra y la segunda con el elemento instalado y de la aplicación del aislamiento térmico.

La marca de pintura elegida será normalizada y de solvencia reconocida. Sólo se admitirán los envases de origen debidamente precintados. No se permitirá el uso de disolventes. Antes de la aplicación de la pintura deberá procederse a una cuidada limpieza y saneado de los elementos metálicos a proteger.

Todas las tuberías han de ser identificadas a través de toda la instalación por medio de flechas direccionales y bandas, a excepción de aquellas que no sean accesibles.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 1.5 ACCESORIOS

#### 1.5.1 **JUNTAS**

No se utilizará amianto. La presión nominal mínima será PN-10, y soportará temperaturas de hasta 200°C.

#### 1.5.2 LUBRICANTE DE ROSCAS

General: no endurecedor, no venenoso.

#### 1.5.3 **DERIVACIONES**

Para las derivaciones se pueden usar empalmes soldados. Todas las aberturas realizadas a las tuberías se harán con precisión para lograr intersecciones perfectamente acabadas.

#### 1.5.4 CODOS EN BOMBAS

Se suministrarán codos de radio largo en la succión y descarga de las bombas.

#### 1.5.5 **G**UÍAS

Se suministrarán guías, donde se indique y donde sea necesario como en liras, juntas de expansión, instaladas de acuerdo con las recomendaciones del fabricante.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 1.5.6 TERMÓMETROS

Los termómetros serán de mercurio en vidrio, con una escala adecuada para la visualización y servicio dentro de una caja metálica protectora con ventana de vidrio instalados de modo que su lectura sea sencilla.

Se instalarán donde se indique en los planos adjuntados.

#### 1.5.7 MANÓMETROS

Los manómetros han de cumplir las siguientes características:

- Con válvula de aguja de aislamiento en acero inoxidable e inmersos en glicerina.
- Los rangos serán tales que la aguja durante el funcionamiento normal esté en el medio del dial.
- La precisión será de al menos el 1%.

Los puntos de toma de presión se encuentran especificados en los planos adjuntados.

#### 1.5.8 VÁLVULAS DE SEGURIDAD

Se precisará de válvulas de seguridad para el funcionamiento completamente seguro de los sistemas.

Serán adecuadas para condiciones de trabajo entre 0 y 120°C y hasta 25 Kg/cm² y los materiales de construcción han de ser bronce y acero.



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 1.5.9 PURGADORES DE AIRE

Para evitar la formación de cámaras de aire se dispondrán de purgadores de aire si es necesario. Se pueden instalar nuevos empalmes, purgadores o válvulas si se observa una anomalía por presencia de aire, una vez las redes estén en funcionamiento.

#### 1.5.10 **VACIADOS**

Se suministrarán las válvulas de vaciado necesarias para el vaciado completo de tuberías y equipos. Estas se dirigirán directas al sumidero o desagüe. Se evitarán en cualquier caso una descarga accidental que pueda producir daños.

#### 1.5.11 CONEXIONES A EQUIPOS

Elementos de unión como latiguillos, bridas, etc. Serán dispuestos para permitir una fácil conexión y desconexión de los diferentes equipos y elementos de la red de tuberías. Estas uniones no realizan esfuerzos extras a las tuberías.



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### Capítulo 2 VALVULERÍA EN REDES DE AGUA

#### 2.1 GENERAL

El suministro, montaje y puesta en servicio de la valvulería, es competencia del Contratista y ha de estar de acuerdo con las características previstas o el juicio necesario de la Dirección de Obra para los circuitos hidráulicos.

Los apilamientos han de ser innecesarios en la realización del acopiaje, que ha de hacerse con gran cuidado.

Se rechazará cualquier elemento que durante el periodo de garantía pierda agua. La elección de las válvulas se basará en las presiones estéticas y dinámicas. Si la presión supera los 600kPa ha de ser troquelada la presión máxima a al que queda sometida.

Todas aquellas válvulas que dispongan de volantes o palancas estarán diseñadas para permitir manualmente un cierre perfecto sin necesidad de apalancamiento, ni forzamiento del vástago, asiento o disco de la válvula.

Será rechazado cualquier elemento dañado, que presente algún golpe o rayadura, por ello se ha de transportar en cajas no metálicas, impermeables y resistentes a los golpes.

Para evitar el cese de la instalación se instalarán válvulas y uniones en todos los aparatos y equipos

La presión nominal mínima será PN-10, salvo que se indique expresamente lo contrario.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

Para el purgado de los montantes principales se incluirán purgadores manuales con válvula de corte.

En los puntos bajos de los montantes se incluirán válvulas de vaciado con conexión para manguera.

Las superficies de los asientos serán mecanizadas y terminadas perfectamente, asegurando total estanqueidad al servicio especificado.

#### 2.2 VÁLVULAS DE BOLA

El objeto es el corte plenamente estanco con maniobra rápida, no debiendo emplearse para regulación. Las válvulas de esfera reunirán las características siguientes:

- Cuerpo y bola de latón durocromado
- Paso total
- Eje no expulsable, de latón niquelado o acero inoxidable
- Doble seguridad: Estanqueidad en el eje por aro de teflón con prensaestopa y dos anillos tóricos de caucho.
- Asientos y estopa de teflón
- Palanca de latón o fundición
- Condiciones de servicio: 30 bar a 100°C

La unión con tubería u otros accesorios será con rosca o brida, según se indique en el apartado de especificaciones, en cualquier caso, la normativa adoptada será DIN.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 2.3 VÁLVULAS DE MARIPOSA

El objeto es el corte del fluido, no utilizándose como unidad reguladora, salvo en caso de emergencia.

Las válvulas de mariposa deberán reunir las características siguientes:

- Tipo WAFER
- Cuerpo de fundición GG-22 o GG-26, con anillo de etileno-propileno
- Para montar entre bridas PN-10
- Con palanca de regulación variable
- Presión de trabajo 10 bar y temperaturas -20/+120 °C.
- Cuerpo monobloc de hierro fundido y sin bridas.

#### 2.4 VÁLVULAS DE GLOBO O DE EQUILIBRADO

El objeto es la regulación, forzando la pérdida y situando la bomba en el punto de trabajo necesario o como corte. La maniobra es de tipo de asiento, siendo de tipo esférico el órgano móvil. El vástago ha de quedar inmóvil ante los efectos presostáticos.

Se instalarán en todos los equipos y baterías correspondientes, mencionadas en la memoria y planos del proyecto, con una precisión del ±5% con independencia de fluctuaciones de la presión, en la medida del caudal circulante

Se incluirá una unidad, para la medición del caudal, portátil.

Si es mayor de 2" la conexión ha de ser embriada y cuerpo de fundición. Si es menor, debe ser roscada la conexión y fabricada en metal.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 2.5 VÁLVULAS DE RETENCIÓN DE RESORTE

El objeto es permitir flujo unidireccional impidiendo el flujo inverso.

El cuerpo es de fundición interior y exteriormente, con lamas de acero laminado, siendo de acero inoxidable tanto el eje como las tapas, tornillos y resorte.

Temperatura de trabajo de 110°C y una presión igual al doble de la nominal de la instalación. Son aptas para un buen funcionamiento en cualquier posición El montaje de las mismas entre las bridas de las tuberías se hará a través de tornillos pasantes.

#### 2.6 FILTROS

Los puntos de instalación de filtros quedan indicados en la memoria y en los planos adjuntos.

Cumplen las siguientes condiciones:

- Filtros tipo "Y"
- Mallas del 36% de área libre.
- Construidos con bronce si son menores de 2 ½" y si son mayores serán de hierro fundido.
- Acero inoxidable
- Serán diseñados para que permita la expulsión de la suciedad acumulada y facilite su retirada y cambio de tamiz sin su desconexión.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### Capítulo 3 COLECTORES

El suministro, montaje y puesta en servicio de los colectores, es competencia del Contratista y ha de estar de acuerdo con las características previstas o el juicio necesario de la Dirección de Obra para los circuitos hidráulicos.

La dimensión y la forma será tal que se adapte al espacio previsto de montaje, garantizando un correcto recorrido del líquido trasegado.

Las acometidas de las tuberías serán totalmente perpendiculares al eje longitudinal. Los cortes de preparación serán curvos quedando correctamente adaptadas las curvaturas del tubo y el colector. En ningún caso, los tubos sobrepasarán la superficie interior del colector. La soldadura será a tope, achaflanando los bordes, quedando el cordón uniformemente repartido.

El conjunto debidamente revisado será sometido a dos capas de pintura antioxidante.



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### Capítulo 4 DISTRIBUCIÓN DE AIRE

#### 4.1 GENERAL

#### 4.1.1 Entregas

El suministro, montaje y puesta en servicio de la red de conductos, es competencia del Contratista y ha de estar de acuerdo con las características previstas o el juicio necesario de la Dirección de Obra para los circuitos de aire. Es por tanto de su deber verificar la instalación de conductos en las salas de climatizadoras con el fabricante de las climatizadoras garantizando el montaje y condiciones reales de la instalación a las prestaciones y niveles sonoros establecidos.

#### **4.1.2 VARIOS**

El trabajo se realizará según normativa UNE.

El Contratista debe suministrar e instalar todos los elementos de soporte que sean necesarios

En los planos se indican las dimensiones de interiores libres una vez aislados (por el exterior).

Las uniones deben ser aprobadas y las juntas lisas en el interior y con terminación limpia en el exterior. Las uniones han de evitar las proyecciones salientes en las corrientes de aire, para ello han de ser estancas, con solapas en la dirección del flujo. Se ha de prevenir las vibraciones. Los ángulos tienes que ser pintados con dos capas de pintura antioxidante.



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

La relación del lado largo a lado corto del conducto será como máximo de 3.

Se han de realizar vainas cuando se atraviese un conducto por varillas soportes del falso techo, han de ser con perfil aerodinámico, estancas al aire y sin perforar el conducto. Como máximo se permite dos pasos por metro y no se admitirán en conductos con una anchura inferior a 300 mm (horizontal).

Las posiciones concretas de los elementos de difusión (difusores, rejillas, ...) y las dimensiones exactas de sus plenums se facilitan de forma orientativa en los planos y la memoria adjuntados, pero están sujetos a los condicionantes arquitectónicos. Por ello, todo cambio ha de ser presentado a la dirección y aprobado por la misma.

### 4.2 CONDUCTOS DE AIRE EN BAJA VELOCIDAD EN CHAPA DE ACERO GALVANIZADO

#### 4.2.1 GENERAL

El suministro, montaje y puesta en servicio de la red de conductos a baja velocidad, es competencia del Contratista y ha de estar de acuerdo con las características previstas o el juicio necesario de la Dirección de Obra para los circuitos de aire. Es por tanto de su deber verificar la instalación de conductos en las salas de climatizadoras con el fabricante de las climatizadoras garantizando el montaje y condiciones reales de la instalación a las prestaciones y niveles sonoros establecidos.

Todos los materiales utilizados no han de propagar el fuego, ni desprender gases tóxicos en caso de incendio.



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 4.2.2 CARACTERÍSTICAS

Los canales de aire de baja presión serán fabricados con chapa galvanizada de primera calidad, de construcción engatillada, tipo CLIMAVER PLUS, con las indicadas en los planos.

Todo el conducto perteneciente a un circuito se fabricará de acuerdo a la misma clase. Toda la chapa utilizada en la fabricación de conductos será de la misma calidad, composición y fabricante, adjuntando en los envíos los certificados de origen correspondientes.

Los conductos deberán tener suficiente resistencia para soportar los esfuerzos debidos a su propio peso, al movimiento de aire y a los propios de su manipulación.

El material, construcción y montaje de los conductos se realizarán, según las normas UNE-EN 1505, 1506, 12236, 12237, 12792, 12599 y 14239 referidas en las IT 1.3.4.2.10 del RITE.

#### 4.2.3 SOPORTES DE CONDUCTOS

Se utilizarán pletinas galvanizadas para los conductos de chapa hasta 450 mm. abrazarán el conducto por su cara inferior y se fijarán al sistema por medio de tornillos de rosca de chapa.

Se usarán varillas de acero laminado para los conductos mayores de 450 mm. de que se montarán en su cara inferior.

La separación entre soportes estará determinada por el tipo de refuerzo a utilizar, y en todo caso deberá atenerse a lo estipulado en la norma UNE-EN 12236 y 12237.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

Las partes interiores de los conductos que sean visibles desde las rejillas y difusores serán pintadas en negro. Estos materiales llevarán una capa de pintura antioxidante.

#### 4.3 **DIFUSIÓN DE AIRE**

El suministro, montaje y puesta en servicio de los elementos de distribución de aire, es competencia del Contratista y ha de estar de acuerdo con las características previstas o el juicio necesario de la Dirección de Obra para los circuitos de aire.

La regulación del volumen de aire ha de ser provistos en los elementos de impulsión, extracción o retorno.

Los elementos terminales de distribución de aire se han de proteger para evitar la entrada de elementos no deseados, una vez comprobado, su correcto montaje. Esta protección será retirada tras su comprobación.

Todos los accesorios han de ser suministrados para que el elemento quede recibido perfectamente tanto al medio de soporte como al conducto.

El material y su montaje cumplirá los mínimos exigidos en el IT 1.1.4.1.3 del RITE.

#### 4.4 **DIFUSORES**

#### 4.4.1 GENERAL

 Se suministrarán e instalarán los difusores de acuerdo con las capacidades indicadas en planos y de acuerdo a las especificaciones y condiciones del Proyecto.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

- Se indicarán en la memoria los tipos y modelos de difusor a instalar. Se adjuntarán las características de los difusores.
- En los planos se incluirán detalles de instalación en los lugares previstos
- Los difusores serán rotacionales y de la marca TROX.

#### 4.4.2 CRITERIOS DE INSTALACIÓN

- La unión entre el difusor y el plenum se realizará por un tornillo en el centro de la parte frontal del difusor, fijado al plenum embelleciendo la cabecera del tornillo. El conjunto se fijará al forjado del techo independientemente del falso techo, sin apoyarse en el falso techo.
- La conexión del conducto principal de aire al plenum del difusor se realizará con conducto circular flexible aislado, inferior a 1,5 m. No se aceptarán conexiones directas de conducto a difusor.
- La selección de difusores se ha realizado según los siguientes criterios:
  - Nivel sonoro máximo: 40 dBA
- Los difusores deberán ser de la marca TROX.

#### 4.5 **REJILLAS**

Las rejillas deberán de ser de aluminio, de los tamaños indicados en la memoria, con terminación anodizada a menos que se indique lo contrario, y deberán de ser suministradas con marco y juntas de goma para evitar fuga de aire alrededor de las unidades según se indique.



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### Capítulo 5 AISLAMIENTO

#### 5.1 **GENERAL**

#### 5.1.1 Entregas

El contratista ha de suministrar una lista de materiales con datos técnicos de cada tipo de aislamiento utilizado en el proyecto, documentando su función, calidad y características e incluyendo, al menos, las siguientes características:

- propagación de llama
- generación de humo
- características de rendimiento térmico.

Se pondrá especial atención en que el aislamiento y su espesor cumplan el apartado IT 1.2.4.2.1 del RITE.

Los accesorios utilizados y acabados finales han de incluirse para obtener un mayor detalle de los sistemas de montaje

#### 5.1.2 REQUISITOS GENERALES

La clasificación de los aislamientos ha de ser de no inflamable, no propagador de llama y no generador de humos ni productos tóxicos. Los auxiliares y accesorios han de cumplir los mismos requisitos.



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

Los tratamientos ignífugos que se requieran serán permanentes, no permitiéndose el uso de materiales para dichos tratamientos solubles al agua. Sin permitir la utilización de amianto

Se han de cumplir también con estas características:

- Ser imputrescible
- No contener sustancias que se presten a la formación de microorganismos
- No desprender olores a la temperatura de trabajo
- No provocar la corrosión de las tuberías y conductos en las condiciones de uso
- No ser alimento de roedores

#### 5.1.3 Instalación

El aislamiento deberá ser aplicado sobre superficies limpias y secas, una vez inspeccionadas y preparadas para recibir aislamiento, examinando las áreas que vayan a ser aisladas.

No se iniciará la instalación del aislamiento hasta que hayan sido instaladas las tuberías, los conductos y otros elementos salientes sobre los mismos.

El acabado final del aislamiento, en especial en zonas vistas, tendrá un aspecto uniforme, limpio y ordenado.

Tofo todo el aislamiento de tuberías deberá de aplicarse de forma continua. En caso de segmentación los segmentos deberán encajar correctamente en las superficies curvas.

Las válvulas y accesorios ocultos deberán de encontrase correctamente aislados, cuyo espesor del aislamiento deberá de ser como mínimo el de las tuberías adyacentes.

## THE RESTRICTION OF THE PROPERTY OF THE PROPERT

#### UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

Se aislarán completamente tuberías, tanques o depósitos de agua, válvulas, intercambiadores, accesorios, etc., y todos los soportes metálicos que pasen a través del aislamiento, estos, se aislarán al menos una longitud de cuatro veces el espesor del aislamiento.

#### 5.2 AISLAMIENTO DE LAS REDES DE TUBERÍAS

Se considera el siguiente tipo de aislamiento:

Aislamiento de tubería a base de coquilla de lana de vidrio, conductividad térmica 0,033 W/m°C, y terminación en hoja de papel aluminio reforzado con malla de fibra de vidrio.



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### Capítulo 6 CALDERA

El suministro, montaje y puesta en servicio de la red de la caldera, es competencia del Contratista y ha de estar de acuerdo con las características técnicas, implantación y calidades previstas en los documentos adjuntos.

El rendimiento de la caldera-quemador se ajustará al indicado en el Real Decreto 275/1995 referido en la IT 1.2.4.1.2.1 del RITE, considerándose el funcionamiento a régimen normal con la caldera limpia.

Se ha de adecuar la temperatura, a la especificada por el fabricante en la placa de la caldera, manteniendo el rendimiento mínimo indicado a una temperatura superior.

La caldera cumplirá todos los reglamentos oficiales, sometiéndose a las pruebas necesarias de presión. La caldera ha de soportar una presión hidrostática interior de 1.5 veces superior a la máxima presión en funcionamiento y como mínimo 700 KPa

La caldera ha de cumplir las siguientes características:

- De chapa de acero, calorifugada con aislante de fibra de vidrio de 70 mm de espesor.
- Caja de humos con salida horizontal, provista de puerta de seguridad antiexplosión.
- Amplia puerta frontal fácilmente adaptable para abrirse a la izquierda o la derecha según necesidades.
- Conexiones de ida y retorno situadas en la parte superior de la caldera

## TO MATRITUDE OF THE PARTY OF TH

#### UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

- Rendimiento mínimo: según especificaciones (96%)
- Equipadas con cuadro de control, que incluirá: termómetro, manómetro y termostatos

La caldera se debe suministrar completa, montada sobre una plataforma incombustible que resista la temperatura nominal de funcionamiento. Las calderas se instalarán sobre bancada de hormigón de 100 mm de altura y dimensiones en planta 150 mm mayores cada lado de la base de la caldera siguiendo las normas implantadas por el RITE.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Capítulo 7 GRUPOS DE ENFRIAMIENTO

#### 7.1 **GENERAL**

El suministro, montaje y puesta en servicio de la planta enfriadora, es competencia del Contratista y ha de estar de acuerdo con las características técnicas, implantación y calidades previstas en los documentos adjuntos.

La planta enfriadora ha de ser de agua de condensación, el tipo y potencia quedan descritas en los documentos adjuntos. Esta elección cumplirá los niveles sonoros y de vibración estipulados por el reglamento de esta área

El funcionamiento será completamente automático y vendrá provisto de alarmas y sistemas automáticos que eviten su deterioro.

El equipo ha de ser compacto, ensamblado previamente en fábrica. Su carcasa será metálica, aislada y estanca con un correspondiente tratamiento para el exterior. Este debe de estar sentado sobre una bancada, nivelada sobre soportes antivibratorios.

Llevará un microprocesador incorporado el cual permitirá el control de las funciones principales de la máquina. Adicionalmente se dispondrá de un temporizador que permitirá la mejora de los ritmos de parada.

La temperatura máxima de funcionamiento ha de ser de 521°C

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 7.2 **COMPONENTES**

#### 7.2.1 CARCASA

Preparada para el montaje y uso en intemperie. Construida de aluminio sobre un bastidor de acero laminado, metalizado o galvanizado, con paneles desmontables de cierre rápido con revestimiento interno. Este revestimiento ha de tener un material aislante termo-acústico.

La tornillería cumplirá las normas DIN con calidad 8.8 y estarán todas las piezas sometidas a un baño final bricromatizado.

#### 7.2.2 EVAPORADOR Y CONDENSADOR

A continuación, se especificarán las características del evaporador y el condensador:

#### Evaporador:

- Tipo carcasa y tubos.
- Tubo de cobre con aletas integrales.
- Contacorriente o multitubar horizontal.
- Carcasa de acero
- Haz tubular con forma de U que van recubiertos con material aislante térmico.
- Será fácilmente extraíble para su mantenimiento, posibilitando la limpieza gracias a los cabezales desmontables.

# STATE OF THE PROPERTY OF THE P

#### UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### Condensador:

- Tipo carcasa y tubo (refrigerante-agua).
- Tubo de cobre sin costura y aletas internas de aluminio buscando un rendimiento alto en el intercambio de calor.
- Fácil extracción para facilitar la limpieza gracias a los cabezales desmontables.

#### 7.2.3 Compresor

El compresor y el motor irán montados en su conjunto sobre el bastidor metálico por medio de amortiguadores. Será centrífugo accesible de tornillos semiherméticos gemelos con válvula de retención y silenciador interno.

Para el cierre en la descarga se dispondrá de una válvula de cierre.

Para cumplir las normativas sonoras, los compresores están encapsulados.

Para poder tener un mayor control del compresor y reducir la capacidad de la unidad al 20% de su plena carga, se hace uso de un control de capacidad por válvula solenoide. El compresor ha de arrancar vacío, sin carga.

Mediante una inyección directa del líquido al motor se realizará la refrigeración del mismo. Este sistema de lubricación cuenta con un prefiltro y un filtro interno



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Capítulo 8 BOMBAS CENTRÍFUGAS

El suministro, montaje y puesta en servicio de las bombas centrífugas es competencia del Contratista y ha de estar de acuerdo con las características técnicas, implantación y calidades previstas en los documentos adjuntos. Éste deberá verificar las condiciones de aspiración de todas las bombas, y proveer bombas para funcionamiento con altura manométrica adecuada.

Serán centrifugas, tipo in-line e irán acopladas por medio de acoplamientos elásticos al motor, formando unidades compactas que irán montadas sobre un bastidor de 5cm. altura máxima)

Las carcasas han de ser envolventes con conexiones de salida y entrada según la norma DIN

La potencia nominal del motor no ha de ser excedido por la potencia de freno de los motores cuando las bombas trabajan a su máxima capacidad. El dinamismo y estatismo deben estar equilibrados y deben ser seleccionados para soportar presiones superiores o iguales a la estática deducida en el proyecto.

El diseño de las bombas ha de permitir que las bombas funcionen un 25% por debajo de la capacidad de diseño.

Para asegurar un funcionamiento silencioso que cumpla con las normativas, los diámetros de los rodetes han de ser mayores que el 85% del tamaño máximo de las bombas.

En caso de agua de goteo, esta se conducirá al desagüe correspondiente.

El eje del motor y de la bomba tienen que quedar alineados (con acoplamiento elástico si no es común el eje) y con transmisión de correas trapezoidales si no están alineados, permitiendo que el conjunto motor-bomba sea fácilmente

# TO NOTE OF THE PARTY OF THE PAR

#### UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

desmontable. El conjunto estará montado con holgura a su alrededor facilitando la inspección. Se montarán en el suelo y no ejercerán esfuerzo sobre la red de distribución. Además, el eje tiene que estar completamente alineado con la bancada de hormigón.

Las bombas en línea pueden ser simples o dobles, de velocidad constante o variable, en serie o paralelo, de dos o cuatro escales, según se indique en la documentación.

El motor estará acoplado al rodete y las bocas acopladas a las tuberías con el mismo diámetro y los ejes coincidentes.



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Capítulo 9 EQUIPOS DE TRATAMIENTO DE

#### **AIRE**

#### 9.1 **GENERAL**

El suministro, montaje y puesta en servicio de los equipos de tratamiento de aire, es competencia del Contratista y ha de estar de acuerdo con las características técnicas, implantación y calidades previstas en los documentos adjuntos.

#### 9.2 **CLIMATIZADORAS**

La documentación adjuntada recoge los datos de las climatizadoras que han de ser fabricadas a medida. Estarán completamente equipadas con carcasas y plenums, ventiladores, antivibratorios, aislamientos, bandejas, baterías, filtros, sistemas de humidificación, deflectores, compuertas, alumbrado y demás elementos y accesorios necesarios. Las unidades, dentro de cada fabricante y vendedor, han de ser de primera gama.

La localización destinada a las climatizadoras está adjuntada en la documentación y es responsabilidad del contratista verificar los espacios disponibles y acceso desde el exterior del edificio a los locales destinados a los equipos. Además, se debe trasladar todos los componentes de las unidades a sus correspondientes ubicaciones.

El diseño, construcción y operación de las unidades deben ser bajo todos los caudales de trabajo, manteniendo las condiciones térmicas y acústicas de



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

proyecto, que deben lograrse en las condiciones reales de funcionamiento de las unidades, tales como locales donde se ubican y distribución de conductos.

Sin sobrepasarse las condiciones acústicas establecidas y requeridas, cada unidad será construida para operar en todas las condiciones de caudal de aire (incluyendo de 100% a 30% en las unidades de volumen variable). Para ello se medirán los niveles sonoros en los locales ocupados adyacentes a las salas de climatizadores para el cumplimiento de los requisitos acústicos. En caso de no lograrse los niveles requeridos, el contratista añadirá medidas necesarias, como silenciadores, para cumplir dichos objetivos.

La envolvente será de tipo "sándwich" acústico, de 25mm de espesor si está en el interior y de 50mm si está en el exterior y de chapa galvanizada. Esta chapa ha de ser pintada en caliente para su instalación tanto interior como intemperie.

Estará construido de forma modular, de forma que permita su desmontaje quedando los elementos internos accesibles.

El aislamiento térmico y acústico será de 25mm, sujetando todo el sándwich con una malla metálica galvanizada que impida la erosión del aislamiento por el aire.

Los filtros filtrarán el aire exterior como el de retorno, serán de baja velocidad, de fibra en V, tipo "cassette" o de tipo rotativo según se indique, con una eficacia mínima del 85%, colocados en módulos y regenerables. Estos se localizarán sobre el bastidor. La perdida de carga debe ser inferior a 5mm.c.a en filtros completamente limpios con velocidad frontal inferior a los 2.5m/seg.

La mezcla del aire de retorno y aire exterior se realizará mediante compuertas manuales cuyas lamas serán aerodinámicas, su velocidad será inferior a 5m/seg y las articulaciones se colocarán de tal manera que no interfiera con el paso del aire.

Las baterías de agua caliente y fría han de ser dimensionadas para optimizar su pérdida de carga en el aire y que la velocidad de paso no supere los 3m/seg y 3.5m/seg en las baterías de frío y calor respectivamente.

# TO SHARE SOLUTION OF THE PARTY OF THE PARTY

#### UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

Su construcción será robusta fabricadas con tubo de cobre y aletas de aluminio con colectores a un mismo lado, estos colectores serán para la impulsión y el retorno, que tendrán bridas de unión y grifos de vaciado y purga en los extremos inferiores y en el superior un manguito antivibratorio. También poseerán una válvula de presión y una vaina que permita tomar la temperatura Tanto las baterías de agua caliente como de agua fría y sus características quedan indicadas en la documentación del proyecto

Todos los componentes como baterías, compuertas de aire, filtro y ventiladores han de cumplir con las condiciones que especifica su climatizador correspondiente. Además, cada uno vendrá acompañado de antivibradores o muelles colocados en la bancada metálica cuyo rendimiento debe ser del 95%.



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Capítulo 10 FAN-COILS

El suministro, montaje y puesta en servicio de los Fan-coils es competencia del Contratista y ha de estar de acuerdo con las características técnicas, implantación y calidades previstas en los documentos adjuntos.

Se instalarán adosados al techo, en suelo, en pared o donde los documentos de proyecto lo indiquen, conectándose todas las tuberías y cables necesarias. Si incorporan envolventes éstas serán robustas, de acero con tratamiento anticorrosión, secados al horno y chasis en acero galvanizado; tendrá esquinas redondeadas y panel frontal de acceso.

Poseerán baterías de cobre con aletas de aluminio con cuellos auto distanciadores en las aletas. Dichas aletas tendrán pendiente para poder ser vaciadas y presión igual que las válvulas utilizadas.

Los tubos estarán unidos a la envolvente de forma rígida, previéndose su dilatación.

Se dispondrá de un motor para el ventilador con 3 velocidades o más, con protección térmica y reset automático. Transmisión con correa para regular el 30% de la velocidad del ventilador. El ventilador será de reacción y centrífugo, con rodamientos de acero y álabes curvos hacia adelante.

El conjunto ventilador, eje y rodamientos se montará sobre una estructura de acero unida a la del fan-coil impidiendo la transmisión de vibraciones por medio de unos anclajes antivibratorios.

Se evitara la formación de condensados con una bandeja de recogida de condensados de chapa galvanizada.



# TO MANUAL STATE OF THE PARTY OF

#### UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Parte V PRESUPUESTO



# TO MATERIAL STATES

#### UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Índice del Presupuesto

| Capítulo | 1 Presupuesto detallado                       | 217 |
|----------|-----------------------------------------------|-----|
| 1.1      | Presupuesto de los sistemas centrales         | 217 |
| 1.2      | Presupuesto de los climatizadores y Fan-coils | 218 |
| 1.3      | Presupuesto de las bombas                     | 220 |
| 1.4      | Presupuesto tuberías                          | 221 |
| 1.5      | Presupuesto valvulería                        | 223 |
| 1.6      | Presupuesto distribución de aire              | 227 |
| 1.7      | Presupuesto control automático                | 230 |
| Canítulo | 2 Resumen del presupuesto                     | 233 |



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Capítulo 1 PRESUPUESTO DETALLADO

#### 1.1 Presupuesto de los sistemas centrales

| N.º DE<br>ORDEN | DESCRIPCIÓN                                                                                                                                                                                                                                                                                                                                                   | UDS.        | €/Ud.        | TOTAL €   |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-----------|
| 1               | Sistemas centrales                                                                                                                                                                                                                                                                                                                                            |             |              |           |
| 1.1             | Grupo frigorífico marca CARRIER modelo 30RBS039-160, enfriadora de líquido refrigerada por aire.  - ESEER hasta 4.3.  - Módulo hidrónico con posibilidad de bomba de velocidad variable opcional.  - Muy bajo nivel sonoro.  - Control Prodialog + de altas prestaciones.  Pot=133.04 KW / T°:7°C-12°C                                                        | 1 ud.       | 24,048.58    | 24,048.58 |
| 1.2             | Grupo calorífico marca VIESSMANN modelo VITOCROSSAL 100 - CI1.  - Caldera condensación a gas Pot entre 80 y 318 kW Quemador cilíndrico MatriX con rango de modulación 1:5 Rendimiento estacional de 98% Elevada fiabilidad Combustión baja en emisiones Funcionamiento silencioso Acceso frontal a los componentes de control, quemador y alimentación a gas. | 1 ud        | 19,907.38    | 19,907.38 |
|                 | Pot=82.65kw / T°:40°C-50°C                                                                                                                                                                                                                                                                                                                                    |             |              |           |
|                 | Subto                                                                                                                                                                                                                                                                                                                                                         | otal sistem | as centrales | 43,955.96 |



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 1.2 Presupuesto de los climatizadores y Fan-coils

| N.º DE<br>ORDEN | DESCRIPCIÓN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UDS.  | €/Ud.     | TOTAL €   |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|-----------|
| 2               | Climatizadores y Fan-coils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |           |           |
| 2.1             | Climatizador marca X- CUBE compact de TROX, gran rendimiento en un espacio reducido. Resumen de las principales prestaciones técnicas:  - Para caudales de aire desde 600 hasta 6.000 m3/h  - Máxima eficiencia energética con un alto incremento de la presión total  - Elevado nivel de higiene (en cumplimiento con la norma VDI 6022)  - Sección de recuperación de calor mediante recuperadores rotativos o estáticos  - Filtración de aire mediante filtros mini-pliegue o NanoWave  - Ejecución para instalación a intemperie disponible  - Conectores rápidos (plug & play)  - Lado de funcionamiento intercambiable a posteriori  - Incluye comunicación por Bus para conexión con el sistema de gestión del edificio (BMS) | 2 ud. | 10,409.50 | 20,819.00 |
| 2.2             | Fan-Coil marca TERMOVEN modelo CASSETE serie FCS 30para instalación a 4 tubos.  - Instalación en falso techo - Baterías de agua de cobre o aluminio - Filtro aire de propileno - Bomba de desagüe - No precisa de red de difusores  Pot frigorífica 2,891W / Pot calorífica 2,818 W                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 ud. | 1,518.65  | 10,630.55 |
| 2.3             | Fan-Coil marca TERMOVEN modelo CASSETE serie FCS 50para instalación a 4 tubos.  - Instalación en falso techo - Baterías de agua de cobre o aluminio - Filtro aire de propileno - Bomba de desagüe - No precisa de difusores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 ud. | 1,823.98  | 9,199.90  |
|                 | Pot frigorífica 4,453 W Pot calorífica 3,146 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |           |           |



| N.º DE<br>ORDEN | DESCRIPCIÓN                                                                                                                                                                                                                                                              | UDS.       | €/Ud.       | TOTAL €   |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-----------|
| 2.4             | Fan-Coil marca TERMOVEN modelo CASSETE serie FCS 80para instalación a 4 tubos.  - Instalación en falso techo - Baterías de agua de cobre o aluminio - Filtro aire de propileno - Bomba de desagüe - No precisa de difusores  Pot frigorífica 5,103W Pot calorífica 5,431 | 4 ud.      | 2,163.76    | 8,655.04  |
| 2.5             | Fan-Coil marca TERMOVEN serie FLS 150tipo horizontal sin envolvente 3+1R  - Instalación en falso techo - Baterías de agua de cobre o aluminio - Filtro aire de propileno - Bomba de desagüe - No precisa de difusores  Pot frigorífica 1,870 W Pot calorífica 1,990W     | 36 ud.     | 406.45      | 14,632.20 |
| 2.6             | Fan-Coil marca TERMOVEN serie FLS 250tipo horizontal sin envolvente 3+1R  - Instalación en falso techo - Baterías de agua de cobre o aluminio - Filtro aire de propileno - Bomba de desagüe - No precisa de difusores  Pot frigorífica 2,260 W Pot calorífica 2,320W     | 11 ud.     | 461.36      | 5,074.96  |
| 2.7             | Fan-Coil marca TERMOVEN serie FLS 350tipo horizontal sin envolvente 3+1R  - Instalación en falso techo - Baterías de agua de cobre o aluminio - Filtro aire de propileno - Bomba de desagüe - No precisa de difusores  Pot frigorífica 3,010 W Pot calorífica 3,010W     | 2 ud.      | 589.56      | 1,179.12  |
|                 | Subtotal clim                                                                                                                                                                                                                                                            | atizadores | y Fan-coils | 70,190.77 |



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 1.3 PRESUPUESTO DE LAS BOMBAS

| N.º DE<br>ORDEN | DESCRIPCIÓN                                                                                                                                                                                  | UDS.  | €/Ud.       | TOTAL €   |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|-----------|
| 3               | Bombas                                                                                                                                                                                       |       |             |           |
| 3.1             | Bombas 1, 2, 9 y 10 marca GRUNDFOS serie  TP 50-180/20  - Grupo electrobomba centrífuga gemela "in line"  - 50 Hz  - 2 polos  - Presiones {6, 10 o 16 bar}  Perdida de carga 8.57 m / 8.07 m | 4 ud. | 3,977.00    | 15,908.00 |
| 3.2             | Bombas 3, 4,5 y 6 marca GRUNDFOS serie  TP 32-90/2  - Grupo electrobomba centrífuga gemela "in line"  - 50 Hz  - 2 polos  - Presiones {6, 10 o 16 bar}  Perdida de carga 6.75 m / 8.30 m     | 4ud.  | 933.00      | 3,732.00  |
| 3.3             | Bombas 7 y 8 marca GRUNDFOS serie <b>TP 25-80/2</b> - Grupo electrobomba centrífuga gemela "in line" - 50 Hz - 2 polos - Presiones {6, 10 o 16 bar}  Perdida de carga 5.54 m                 | 2ud.  | 878.00      | 1,756.00  |
| 3.4             | Bombas 11 y 12 marca GRUNDFOS serie <b>TP 40-60/2</b> - Grupo electrobomba centrífuga gemela "in line"  - 50 Hz  - 2 polos  - Presiones {6, 10 o 16 bar}  Perdida de carga 4.77 m            | 2ud.  | 2,376.00    | 4,752.00  |
|                 |                                                                                                                                                                                              | Subto | otal bombas | 26,148.00 |



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

#### 1.4 Presupuesto tuberías

| N.º DE<br>ORDEN | DESCRIPCIÓN                                                                                                                                              | UDS.     | €/Ud. | TOTAL 6  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|----------|
| 4               | Tuberías                                                                                                                                                 |          |       |          |
| 4.1             | Tubería de acero negro soldado DIN2440, Ø 3/8 '' - 2 capas pintura antioxidante - Espeso cumplimentando el RITE - Dimensiones detalladas en los planos   | 44.76 m  | 10.25 | 458.83   |
| 4.2             | Tubería de acero negro soldado DIN2440, Ø 1/2 '' - 2 capas pintura antioxidante - Espeso cumplimentando el RITE - Dimensiones detalladas en los planos   | 325.05 m | 12.87 | 4,183.40 |
| 4.3             | Tubería de acero negro soldado DIN2440, Ø 3/4''  - 2 capas pintura antioxidante  - Espeso cumplimentando el RITE  - Dimensiones detalladas en los planos | 350.77 m | 16.09 | 5,643.81 |
| 4.4             | Tubería de acero negro soldado DIN2440, Ø 1 "  - 2 capas pintura antioxidante  - Espeso cumplimentando el RITE  - Dimensiones detalladas en los planos   | 203.24 m | 19.51 | 3,965.13 |
| 4.5             | Tubería de acero negro soldado DIN2440, Ø 1 1/4 '' - 2 capas pintura antioxidante - Espeso cumplimentando el RITE - Dimensiones detalladas en los planos | 256.53 m | 23.27 | 5,969.34 |
| 4.6             | Tubería de acero negro soldado DIN2440, Ø1 1/2'' - 2 capas pintura antioxidante - Espeso cumplimentando el RITE - Dimensiones detalladas en los planos   | 97.77 m  | 26.09 | 2,550.92 |
| 4.7             | Tubería de acero negro soldado DIN2440, Ø 2 '' - 2 capas pintura antioxidante - Espeso cumplimentando el RITE - Dimensiones detalladas en los planos     | 14.73 m  | 33    | 485.93   |
| 4.8             | Tubería de acero negro soldado DIN2440, Ø 2 1/2'' - 2 capas pintura antioxidante - Espeso cumplimentando el RITE - Dimensiones detalladas en los planos  | 64.22 m  | 35.78 | 2,297.67 |



| N.º DE<br>ORDEN | DESCRIPCIÓN                                                                                                                                                                                                           | UDS.     | €/Ud.  | TOTAL €  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|----------|
| 4.9             | Tubería de acero negro soldado DIN2440, Ø 3 '' - 2 capas pintura antioxidante - Espeso cumplimentando el RITE - Dimensiones detalladas en los planos                                                                  | 25.23 m  | 48.29  | 1,218.55 |
| 4.10            | Colector de distribución para circuito de agua fría y agua caliente para cada uno de los dos circuitos.  - Una entrada - Dos salidas - Acero negro sin soldadura - DIN 2440 - Plancha flexible de espuma elastomérica | 4ud.     | 110.05 | 440.02   |
| 4.11            | Aislamiento de coquilla de espuma elastomérica Ø3/8"  - Cumplimentando el espesor según especificaciones del RITE  - Resistencia a la difusión de vapor de agua.                                                      | 44.76 m  | 6.89   | 308.42   |
| 4.12            | Aislamiento de coquilla de espuma elastomérica Ø1/2"  - Cumplimentando el espesor según especificaciones del RITE - Resistencia a la difusión de vapor de agua.                                                       | 325.05 m | 7.65   | 2,486.64 |
| 4.13            | Aislamiento de coquilla de espuma elastomérica Ø3/4"  - Cumplimentando el espesor según especificaciones del RITE  - Resistencia a la difusión de vapor de agua.                                                      | 350.77 m | 8.43   | 2,956.95 |
| 4.14            | Aislamiento de coquilla de espuma elastomérica Ø1'' - Cumplimentando el espesor según especificaciones del RITE - Resistencia a la difusión de vapor de agua.                                                         | 203.24 m | 9.32   | 1,894.16 |
| 4.15            | Aislamiento de coquilla de espuma elastomérica Ø1 1/4"  - Cumplimentando el espesor según especificaciones del RITE  - Resistencia a la difusión de vapor de agua.                                                    | 256.53 m | 9.98   | 2,560.12 |
| 4.16            | Aislamiento de coquilla de espuma elastomérica  Ø1 1/2''  - Cumplimentando el espesor según especificaciones del RITE - Resistencia a la difusión de vapor de agua.                                                   | 97.77 m  | 13.04  | 1,274.97 |



#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

| N.º DE<br>ORDEN   | DESCRIPCIÓN                                                                                                                                                            | UDS.    | €/Ud. | TOTAL €   |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-----------|
| 4.17              | Aislamiento de coquilla de espuma elastomérica Ø 2''  - Cumplimentando el espesor según especificaciones del RITE  - Resistencia a la difusión de vapor de agua.       | 14.73 m | 15.14 | 222.94    |
| 4.18              | Aislamiento de coquilla de espuma elastomérica   Ø2 1/2''  - Cumplimentando el espesor según  especificaciones del RITE  - Resistencia a la difusión de vapor de agua. | 64.22 m | 16.89 | 1,084.62  |
| 4.19              | Aislamiento de coquilla de espuma elastomérica Ø 3''  - Cumplimentando el espesor según especificaciones del RITE  - Resistencia a la difusión de vapor de agua.       | 25.23 m | 18.65 | 470.61    |
| Subtotal tuberías |                                                                                                                                                                        |         |       | 40,473.03 |

#### 1.5 Presupuesto valvulería

| N.º DE<br>ORDEN | DESCRIPCIÓN                                                                                                                                        | UDS.   | €/Ud. | TOTAL €  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|----------|
| 5               | VALVULERÍA                                                                                                                                         |        |       |          |
| 5.1             | Válvula de esfera PN-16,Ø3/8''  - De bola de paso total con cuerpo  - Conexiones roscadas macho - hembra  - Marca Hard 2000 (o equivalente)        | 7 ud.  | 19.56 | 136.92   |
| 5.2             | Válvula de esfera PN-16,Ø 1/2''  - De bola de paso total con cuerpo  - Conexiones roscadas macho - hembra  - Marca Hard 2000 (o equivalente)       | 84 ud. | 21.76 | 1,827.84 |
| 5.3             | Válvula de esfera PN-16,Ø <b>3/4''</b> - De bola de paso total con cuerpo  - Conexiones roscadas macho - hembra  - Marca Hard 2000 (o equivalente) | 37 ud. | 23.24 | 859.88   |



| N.º DE<br>ORDEN | DESCRIPCIÓN                                                                                                                                    | UDS.   | €/Ud.  | TOTAL €  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----------|
| 5.4             | Válvula de esfera PN-16,Ø 1''  - De bola de paso total con cuerpo - Conexiones roscadas macho - hembra - Marca Hard 2000 (o equivalente)       | 3 ud.  | 28.87  | 86.61    |
| 5.5             | Válvula de esfera PN-16,Ø 1 1/4''  - De bola de paso total con cuerpo  - Conexiones roscadas macho - hembra  - Marca Hard 2000 (o equivalente) | 1 ud.  | 41.98  | 41.98    |
| 5.6             | Válvula de regulación, PN-20, Ø 3/8''  - Fabricada en metal  - Preajuste de caudal  - Conexiones roscadas                                      | 7 ud.  | 35.89  | 251.23   |
| 5.7             | Válvula de regulación, PN-20, Ø <b>1/2''</b> - Fabricada en metal - Preajuste de caudal - Conexiones roscadas                                  | 84 ud. | 39.87  | 3,349.08 |
| 5.8             | Válvula de regulación, PN-20, Ø 3/4''  - Fabricada en metal  - Preajuste de caudal  - Conexiones roscadas                                      | 37 ud. | 41.99  | 1,553.63 |
| 5.9             | Válvula de regulación, PN-20, Ø1'' - Fabricada en metal - Preajuste de caudal - Conexiones roscadas                                            | 3 ud.  | 48.93  | 146.79   |
| 5.10            | Válvula de regulación, PN-20, Ø1 1/4'' - Fabricada en metal - Preajuste de caudal - Conexiones roscadas                                        | 1 ud.  | 84.57  | 84.57    |
| 5.11            | Válvula de regulación, PN-20, Ø 1 1/2"  - Fabricada en metal  - Preajuste de caudal  - Conexiones roscadas                                     | 2 ud.  | 100.87 | 201.74   |
| 5.12            | Válvula de regulación, PN-20, Ø 2 1/2'' - Fabricada en metal - Preajuste de caudal - Conexiones roscadas                                       | 2 ud.  | 234.87 | 469.74   |



| N.º DE<br>ORDEN | DESCRIPCIÓN                                                                                             | UDS.  | €/Ud.  | TOTAL €  |
|-----------------|---------------------------------------------------------------------------------------------------------|-------|--------|----------|
| 5.13            | Válvula de regulación, PN-20, Ø 3''  - Fabricada en metal  - Preajuste de caudal  - Conexiones roscadas | 2 ud. | 456.76 | 913.52   |
| 5.14            | Manguito antivibratorio Ø 2 1/2'' - Embriada con tirantes de acero                                      | 8 ud. | 214.78 | 1,718.24 |
| 5.15            | Manguito antivibratorio Ø 3'' - Embriada con tirantes de acero                                          | 4 ud. | 256.78 | 1,027.12 |
| 5.16            | Válvula de control 3 vías <b>Ø1 1/2''</b> - Regulación proporcional - Conexiones roscadas               | 2 ud. | 143.98 | 287.96   |
| 5.17            | Válvula de control 3 vías <b>Ø2 1/2''</b> - Regulación proporcional - Conexiones roscadas               | 2 ud. | 222.87 | 445.74   |
| 5.18            | Válvula de control 3 vías <b>Ø3''</b> - Regulación proporcional - Conexiones roscadas                   | 2 ud. | 281.98 | 563.96   |
| 5.19            | Válvula de retención PN-16, Ø1 1/2''  - Embriado  - Doble clapeta  - Cierres acero inoxidable           | 2 ud. | 203.45 | 406.90   |
| 5.20            | Válvula de retención PN-16, Ø2 1/2'' - Embriado - Doble clapeta - Cierres acero inoxidable              | 2 ud. | 228.76 | 457.52   |
| 5.21            | Válvula de retención PN-16, Ø3''  - Embriado  - Doble clapeta  - Cierres acero inoxidable               | 2 ud. | 276.54 | 553.08   |
| 5.22            | Válvula mariposa, PN-16, Ø1 1/2'' - Marca Hard 200                                                      | 8 ud. | 198.76 | 1,590.08 |
| 5.23            | Válvula mariposa, PN-16, Ø2 1/2'' - Marca Hard 200                                                      | 8 ud. | 216.75 | 1,734.00 |
| 5.24            | Válvula mariposa, PN-16, Ø3'' - Marca Hard 200                                                          | 8 ud. | 251.67 | 2,013.36 |



| N.º DE<br>ORDEN | DESCRIPCIÓN                                                                                                    | UDS.   | €/Ud.  | TOTAL €  |
|-----------------|----------------------------------------------------------------------------------------------------------------|--------|--------|----------|
| 5.26            | Filtro agua tipo Y, DN-10, Ø 3/8'' - Cartucho - Montado                                                        | 7 ud.  | 30.05  | 210.35   |
| 5.27            | Filtro agua tipo Y, DN-10, Ø <b>1/2''</b> - Cartucho - Montado                                                 | 84 ud. | 31.45  | 2,641.80 |
| 5.28            | Filtro agua tipo Y, DN-10, Ø <b>3/4''</b> - Cartucho - Montado                                                 | 37 ud. | 32.76  | 1,212.12 |
| 5.29            | Filtro agua tipo Y, DN-10, Ø 1"  - Cartucho - Montado                                                          | 3 ud.  | 37.98  | 113.94   |
| 5.30            | Filtro agua tipo Y, DN-10, Ø <b>1 1/4''</b> - Cartucho - Montado                                               | 1 ud.  | 85.67  | 85.67    |
| 5.31            | Filtro agua tipo Y, DN-10, Ø <b>1 1/2''</b> - Cartucho - Montado                                               | 2 ud.  | 134.56 | 269.12   |
| 5.32            | Filtro agua tipo Y, DN-10, Ø <b>2 1/2''</b> - Cartucho - Montado                                               | 2 ud.  | 276.58 | 553.16   |
| 5.33            | Filtro agua tipo Y, DN-10, Ø <b>3''</b> - Cartucho - Montado                                                   | 2 ud.  | 350.98 | 701.96   |
| 5.34            | Termómetro biometálico de esfera  - Dilatación de mercurio - Con vaina de montaje                              | 4 ud.  | 65.78  | 263.12   |
| 5.35            | Manómetro de esfera  - Baño en glicerina - Con purgadores de comprobación - Válvula de bola - Tubo de conexión | 6 ud.  | 75.76  | 454.56   |



#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

| N.º DE<br>ORDEN | DESCRIPCIÓN                                                                                                                                                                                                                                                                                                                                                   | UDS.    | €/Ud.        | TOTAL €   |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|-----------|
| 5.36            | Contador de llenado de instalación Ø 1 1/2" Incluye parte proporcional de tubería, accesorios y conexión flexible y según el siguiente desglose:  - 1 Filtro de 1 1/2".  - 2 válvulas de retención de 1 1/2".  - 1 válvula motorizada de 1 1/2", incluso cableado y conexionado eléctrico bajo tubo de PVC.  - 4 válvulas de corte de 1 1/2".  - 1 manómetro. | 1 ud.   | 802.46       | 802.46    |
| 5.37            | Contador de llenado de instalación Ø 2'' Incluye parte proporcional de tubería, accesorios y conexión flexible y según el siguiente desglose:  - 1 Filtro de 2".  - 2 Válvulas de retención de 2".  - 1 Válvula motorizada de 2", incluso cableado y conexionado eléctrico bajo tubo de PVC.  - 4 Válvulas de corte de 2".  - 1 Manómetro.                    | 1 ud.   | 908.76       | 908.76    |
|                 |                                                                                                                                                                                                                                                                                                                                                               | Subtota | l valvulería | 28,938.51 |

#### 1.6 Presupuesto distribución de aire

| N.º DE<br>ORDEN | DESCRIPCIÓN                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UDS.                    | €/Ud. | TOTAL €   |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|-----------|
| 6               | Distribución de aire                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |       |           |
| 6.1             | Conducto fibra de vidrio marca ISOVER mod de CLIMAVER Plus. Suministro y montaje de conductos rectangulares de aire.  - Plancha rígida de fibra de vidrio. Protección de lámina de aluminio en ambas caras  - 25 mm. de espesor  - Conductos de impulsión y retorno de aire  - Dimensiones según planos, incluye parte proporcional de embocaduras, derivaciones, elementos de fijación y soportación, piezas especiales, anclajes, (homologado, según normas UNE y NTE-ICI-22). | 3,036.15 m <sup>2</sup> | 18.96 | 57,565.40 |



| N.º DE<br>ORDEN | DESCRIPCIÓN                                                                                                                                                                                                                                                                                                                                                                                              | UDS.                  | €/Ud.  | TOTAL €   |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|-----------|
| 6.2             | Conducto de chapa de acero galvanizado CLIMAVER sección rectangular espesor 1 mm.  - Aislamiento exterior mediante manta de lana de vidrio en interiores  - Acabado en chapa de aluminio en cubierta - Dimensiones según planos, incluye parte proporcional de embocaduras, derivaciones, elementos de fijación y soportación, piezas especiales, anclajes, (homologado, según normas UNE y NTE-ICI-22). | 455.43 m <sup>2</sup> | 38.98  | 17,752.37 |
| 6.3             | Difusor rotacional marca TROX serie VDW 300x8  - Compuerta de regulación  - Deflectores para la modificación de la dirección de la vena del aire  - Reducción rápida de la velocidad del aire  - Integrado en falso techo  - Lacado a elección                                                                                                                                                           | 56 ud.                | 97.67  | 5,469.52  |
| 6.4             | Difusor rotacional marca TROX serie VDW 400x16  - Compuerta de regulación  - Deflectores para la modificación de la dirección de la vena del aire  - Reducción rápida de la velocidad del aire  - Integrado en falso techo  - Lacado a elección                                                                                                                                                          | 16 ud.                | 103.67 | 1,658.72  |
| 6.5             | Difusor rotacional marca TROX serie VDW 500x24  - Compuerta de regulación - Deflectores para la modificación de la dirección de la vena del aire - Reducción rápida de la velocidad del aire - Integrado en falso techo - Lacado a elección                                                                                                                                                              | 2 ud.                 | 127.89 | 255.78    |
| 6.6             | Difusor rotacional marca TROX serie VDW 600x24  - Compuerta de regulación  - Deflectores para la modificación de la dirección de la vena del aire  - Reducción rápida de la velocidad del aire  - Integrado en falso techo  - Lacado a elección                                                                                                                                                          | 25 ud.                | 153.46 | 3,836.5   |



| N.º DE<br>ORDEN | DESCRIPCIÓN                                                                                                                                                                                                                                 | UDS.   | €/Ud.  | TOTAL € |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|---------|
| 6.7             | Difusor rotacional marca TROX serie VDW 600x48  - Compuerta de regulación - Deflectores para la modificación de la dirección de la vena del aire - Reducción rápida de la velocidad del aire - Integrado en falso techo - Lacado a elección | 6 ud.  | 164.98 | 989.88  |
| 6.8             | Difusor rotacional marca TROX serie VDW 652x54  - Compuerta de regulación - Deflectores para la modificación de la dirección de la vena del aire - Reducción rápida de la velocidad del aire - Integrado en falso techo - Lacado a elección | 2 ud.  | 176.98 | 353.96  |
| 6.9             | Rejilla marca TROX modelo AT 125 x 225  - Aluminio - Compuerta de regulación - Lamas móviles - Incluido marco de montaje                                                                                                                    | 23 ud. | 24.56  | 564.88  |
| 6.10            | Rejilla marca TROX modelo AT 125 x 325  - Aluminio - Compuerta de regulación - Lamas móviles - Incluido marco de montaje                                                                                                                    | 7 ud.  | 24.56  | 171.92  |
| 6.11            | Rejilla marca TROX modelo AT <b>165x 225</b> - Aluminio - Compuerta de regulación - Lamas móviles - Incluido marco de montaje                                                                                                               | 23 ud. | 26.78  | 615.94  |
| 6.12            | Rejilla marca TROX modelo AT 165 x 325  - Aluminio - Compuerta de regulación - Lamas móviles - Incluido marco de montaje                                                                                                                    | 32 ud. | 29.87  | 955.84  |
| 6.13            | Rejilla marca TROX modelo AT 165 x 425  - Aluminio - Compuerta de regulación - Lamas móviles - Incluido marco de montaje                                                                                                                    | 11 ud. | 31.35  | 344.85  |



#### ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

| N.º DE<br>ORDEN                  | DESCRIPCIÓN                                                                                                              | UDS.  | €/Ud. | TOTAL €   |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------|-------|-----------|
| 6.14                             | Rejilla marca TROX modelo AT 225 x 325  - Aluminio - Compuerta de regulación - Lamas móviles - Incluido marco de montaje | 5 ud. | 32.45 | 162.25    |
| Subconjunto distribución de aire |                                                                                                                          |       |       | 90,697.81 |

# 1.7 Presupuesto control automático

| N.º DE<br>ORDEN | DESCRIPCIÓN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UDS.  | <i>€/Ud</i> . | TOTAL €   |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|-----------|
| 7               | Control automático                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |               |           |
| 7.1             | Sistema de regulación y controlministro, de SIEMENS o equivalente compuesto por:  - Puesto central de control - 1 ordenador uniwin v4 - 1 mod.crt 17" b772-1 - 1 impresora hp3820 + cable, incluye cable paralelo para conexión a pc - 1 software uniwin-rswin - 2 convertidor 232/485 de 2 hilos - 1 cuadro para if's - 1 ingeniería y - 1 formación y documentación - 1 puesta en marcha - 2 controlador program. comun.fln unidad de proceso de libre configuración (e/s), con comunicación (fln) y pantalla lcd, tensión auxiliar 230 vac, para todo tipo de funciones de control y monitorización en instalaciones técnicas de edificios 2 tarj.prog. rwp80/rwm82 64 kb tarjetas de programa para los controladores rwp/rwm, de 64 kb, en conjunto con la tarjeta de comunicación. | 1 ud. | 98,257.90     | 98,257.90 |



| N.º DE<br>ORDEN                | DESCRIPCIÓN                                                                                                                                                                                                                                                                                                                                                                       | UDS.     | €/Ud.    | TOTAL € |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|---------|
| 7.2                            | Legalización y puesta en marcha de la instalación de climatización para cumplimiento de la reglamentación vigente. Se incluyen  - Proyectos, Visados, Dictámenes, etc., necesarios para la aprobación de las instalaciones ante los organismos estatales, autonómicos o locales competentes para la autorización de la ejecución y puesta en marcha definitiva de la instalación. | INCLUIDO | INCLUIDO | -       |
| 7.3                            | Suministro de información, conteniendo: Libro completo de instrucciones de funcionamiento de la instalación de climatización, así como su mantenimiento, que contendrá como mínimo:  - Memoria explicativa.  - Relación total de todos los materiales instalados.  - Instrucciones detalladas de funcionamiento. Planos de situación de todos los elementos instalados.           | INCLUIDO | INCLUIDO | -       |
| Subconjunto control automático |                                                                                                                                                                                                                                                                                                                                                                                   |          |          |         |



ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

# Capítulo 2 RESUMEN DEL PRESUPUESTO

| N.º DE<br>ORDEN | DESCRIPCIÓN                                                    | TOTAL €                              |
|-----------------|----------------------------------------------------------------|--------------------------------------|
| 1               | Sistemas centrales                                             | 43,955.96                            |
| 2               | Climatizadores y Fan-Coils                                     | 70,190.77                            |
| 3               | Bombas                                                         | 26,148.00                            |
| 4               | Tuberías                                                       | 40,473.03                            |
| 5               | Valvulería                                                     | 28,938.51                            |
| 6               | Distribución de aire                                           | 90,697.81                            |
| 7               | Control automático                                             | 98,257.90                            |
|                 |                                                                | 398,661.98                           |
| TOTAL           | Trescientos noventa y ocho mil seiscientos se<br>con noventa y | senta y un euros<br>y ocho centimos, |