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Abstract. The aim of this work is the generalization for a thermosyphon model where on be considered a binary fluid, of the
theoretical results about the asymptotic behaviour of the thermosyphon model for a fluid with one-component from ([9]).

INTRODUCTION

The concern of this study is to analyze the dynamics of a fluid transporting an inner solute along an arbitrary close
geometry and subject to gravity and convection forces (thermosyphon). In the present work will be considered the
thermosyphon model with a binary fluid - fluid with a solute substance -, and we study the evolution of the velocity v,
the temperature of the fluid, T , and the solute concentration, S .

In this case the Soret’s effect is considered, which consists in a solute flux generation due to a temperature
gradient in the fluid (see [1],[7],[12]). The physical reason for this effect seems to rest on the system auto-organization
in a manner to get the most efficient heat transport (minimum entropy production). In general, the heaviest specie for
the one with the strongest interaction is accumulated in the coldest system region. The Soret’s effect is mathematically
represented as a first approximation by a coefficient ratio product and the temperature gradient, this coefficient is
denoted by Soret’s coefficient.

The evolution of the above quantities is given by the following coupled ODE/PDE system (see [6], [4], [8], [3],
[11] for further details) with periodic boundary conditions for T, S

ε dv
dt + G(v)v =

∮
[T − S ] f (x)dx, v(0) = v0

∂T
∂t + v ∂T

∂x = H (v) (Ta − T ) ,T (0, x) = T0 (x)
∂S
∂t + v ∂S

∂x = c ∂
2S
∂x2 − b ∂2T

∂x2 , S (0, x) = S 0 (x) .
(1)

We assume that the section of the loop is constant and small compared with the dimension of the physical circuit,
so that the arc length co-ordinate along the loop x gives the position in the circuit. The velocity is assumed to be
independent of the position in the circuit.

The function f describes the geometry of the loop and the distribution of gravitational forces,
∮

=
∫ 1

0 dx denotes
the path integration along the closed path of the circuit. We assume that G(v), which specifies the frictional law at the
inner wall of the loop, and H, associated to the heat flux across the loop wall, are positive and bounded away from
zero, with G(v) ≥ G0 > 0, H(v) ≥ H0 > 0. We consider G, f and H are given functions together with the constants,
b, c > 0, and the ambient temperature, Ta(x). The constant b is proportional to the Soret’s coefficient ([1]) and c is the
solute diffusion coefficient .

We note that
∮

f = 0 and all functions depending on x are 1-periodic respect to x and have zero average (see [6],
[4]). We denote by L̇2

per the functions with zero average on L2
per(0, 1) as the Sobolev’s space Ḣ2

per.
The result about the well-posedness and asymptotic behaviour for the system (1) it can be found in ([6], [4]).

In this previous works the existence and uniqueness of solution is proved for every time with initial data in suitable
framework (see also [5]). In this previous works have been studied the asymptotic behaviour of the system (1) when
time goes to infinity.



In this sense has been proved the existence of a inertial manifold associated to the functions f (loop-geometry)
and Ta (ambient temperature), using the the abstract operators theory ([2], [10]).

We denote by L̇2
per the functions of L2

per(0, 1) with zero average as the Sobolev’s space Ḣ2
per. We assume that

G∗(r) = rG(r) is locally Lipschitz, H ∈ C1, Ta ∈ Ḣ2
per and f ∈ L̇2

per are given by following Fourier expansions

Ta(x) =
∑
k∈Z∗

bke2πkix; f (x) =
∑
k∈Z∗

cke2πkix; where Z∗ = Z − {0} , (2)

while T0 ∈ Ḣ2
per and S 0 ∈ L̇2

per are given by T0(x) =
∑

k∈Z∗ ak0e2πkix, S 0(x) =
∑

k∈Z∗ dk0e2πkix.

Finally assume that T (t, x) ∈ Ḣ2
per and S (t, x) ∈ L̇2

per are given by

T (t, x) =
∑
k∈Z∗

ak(t)e2πkix and S (t, x) =
∑
k∈Z∗

dk(t)e2πkix Z∗ = Z − {0} (3)

We note that āk = −ak (d̄k = −dk) since all functions consider are real and also a0 = d0 = 0 since they have zero
average.

Now we observe the dynamics of each Fourier mode and from (1), we get the following system for the new
unknowns, v and the coefficients ak(t) and dk(t).

ε dv
dt + G(v)v =

∑
k∈Z∗ (ak(t) − dk(t))c−k

ȧk(t) + [2πkiv(t) + H(v(t))] ak(t) = H(v(t))bk

ḋk(t) +
[
2πkiv(t) + 4cπ2k2

]
dk(t) = 4bπ2k2ak(t)

(4)

We consider the functions Ta and f are given by following Fourier expansions

Ta(x) =
∑
k∈K

bke2πkix; f (x) =
∑
k∈J

cke2πkix; where J = {k ∈ Z∗/ck , 0} ,K = {k ∈ Z∗/bk , 0} with Z∗ = Z − {0} ,

(5)

and
∮

(T − S ) f =
∑

k∈(K∩J)

(ak(t) − dk(t))c−k.

We prove working with the equations (4) the velocity of the fluid is independent of the coefficients for temperature
ak(t) and the salinity dk(t) for every k ∈ Z∗ − (K ∩ J). That is, the relevant coefficients for the evolution of the velocity
are only ak(t) and dk(t) with k belonging to the set K ∩ J. This important result about the asymptotic behaviour has
been proved in ([6], [4]) using the inertial manifold theory ([2], [10]).

ASYMPTOTIC BEHAVIOUR FOR SMALL OF PARAMETER ε

In this section the fluid velocity behaviour is studied under the assumption of small values of the parameter ε, which
is related to the ratio between the effects of the fluid acceleration due to viscous forces and the acceleration due to
the effect of temperature in the fluid density (origin of the Soret effect). Considering both effects of the same order to
enable one to consider the Soret effect (relevant effect in the thermosyphon problem), there results a direct association
between the parameter ε and the fluid inertia acceleration; therefore small values of the parameter means small fluid
acceleration, which involves a behaviour close to the stationary regime (result to be proved theoretically in [6]).

We shall consider the case where the functions H and G depend on ε, i.e.

G = H = Hε(v) =
H0(v)
ε

, (6)

and we shall study the system behaviour for small values of ε.
The aim is to show, Proposition 2, that for sufficient small values of ε every solution behaves as a stationary

solution with null velocity.
Now, the reduced system behaviour is studied, equivalent to whole system in the asymptotic behaviour in the

large time, as it was shown above.



Lemma If we assume that
∫ ∞

0 |v(s)|ds < ∞, then for every η > 0 there exists t0 such that∫ t

t0
H(r)e−

∫ t
r H(e−

∫ t
r 2πikv − 1)dr ≤ η with t ≥ t0 (7)

Proof: If
∫ ∞

0 |v(s)|ds < ∞, it means that ∀δ, ∃t0(δ) > 0 /
∫ t

r |v| ≤ δ if t0 ≤ r ≤ t < ∞. Thus, ∀η there exists t0 > 0
large enough such that

|e−
∫ t

r 2πikv − 1| ≤ 4π|k|
∫ t

r
|v| ≤ η ∀t ≥ t0 (8)

and therefore
∫ t

t0
H(r)e−

∫ t
r H(e−

∫ t
r 2πikv − 1)dr ≤ η

∫ t
t0

H(r)e−
∫ t

r Hdr = η(1 − e−
∫ t

t0
H) ≤ η,∀t ≥ t0, since H is strictly

bounded away from zero, and we get (7).

Proposition 1 i) If I =
∑

k∈K∩J bkc−k =
∮

Ta f = 0 with K ∩ J a finite set, and
∫ ∞

0 |v(s)|ds < ∞, then the system
goes to the rest stationary solution, that is to say:

(v(t), ak(t), dk(t))→ (0, bk,
b
c

bk), i.e. (v(t),T (t), S (t))→ (0,Ta,
b
c

Ta)

ii) If I =
∑

k∈K∩J bkc−k , 0 then for every solution,
∫ ∞

0 |v(s)|ds = ∞ and v(t) does not converge to zero.
Proof:(see [6])
However, this last result can be refined showing the coefficients tendency to their equilibrium values as a function

of the parameter under study, ε, as following:
Proposition 2 If I =

∑
k∈K∩J bkc−k = 0 with K ∩ J a finite set, and

∫ ∞
0 |v(s)|ds < ∞, then

limsupt→∞|ak(t) − bk | ≤ ε4π|k||bk |limsupt→∞
|v(t)|

H0(v(t))
(9)

limsupt→∞|dk(t) −
b
c

bk | ≤ ε(4cπ2k2)4π|k||bk |limsupt→∞
|v(t)|

H0(v(t))
(10)

and

limsupt→∞|v(t)| ≤ ε4π
∑
K∩J

|k||bk ||c−k |limsupt→∞
1

H0(v(t))
+

+ε16cπ3
∑
K∩J

|k|3|bk ||c−k |limsupt→∞
1

H0(v(t))
(11)

Proof: To study ak(t) we defined âk = bk
∫ t

t0
Hε(r)e−

∫ t
r Hεdr = bk(1 − e−

∫ t
0 Hε ) that converges to bk for t → ∞

(limt→∞âk = bk), and defining τk(t) = ak(t) − âk, τk satisfies,

τk(t) = ak(t0)e−
∫ t

0 (2πkvi+Hε) + bk

∫ t

t0
e−
∫ t

r Hε (e−
∫ t

r 2πkvi − 1)Hε(r)dr

taking modulus and applying that |e−
∫ t

t0
2πkvi
| = 1, together with the above lemma we have that limsupt→∞|τk(t)| = 0

and moreover, we get

|τk(t)| ≤ |ak(t0)|e−
∫ t

t0
Hε

+ |bk |

∫ t
t0

Hε(r)e
∫ r

t0
Hε
|e−
∫ t

r 2πkiv − 1|dr

e
∫ t

t0
Hε

with |e−
∫ t

r 2πkiv − 1| ≤ 4π|k|
∫ t

r
|v|,

and applying the L’Hopital Lemma (see [9]) together with (6), we have

limsupt→∞|τk(t)| ≤ ε4π|k||bk |limsupt→∞
|v(t)|

H0(v(t))
(1 − e−

∫ t
0 Hε )



and we obtain (9). For dk(t) we define d̂k = (1 − e−4cπ2k2(t−t0)) b
c bk that converges to b

c bk for t → ∞ (limt→∞d̂k = b
c bk),

and defining σk(t) = dk(t) − d̂k, thus σk satisfies,

σk(t) = dk(t0)e−
∫ t

t0
(2πkvi+4cπ2k2)

+

∫ t

t0
(−4cπ2k2)e−4cπ2k2(t−r) b

c
(ak(r)e−

∫ t
r 2πkvi − bk)dr.

Now, from the above Lemma, and considering (9), we get (10). Next, reading the equation for v as

ε
dv
dt

+ G(v)v = (I1(t) − I) + (I2(t) −
b
c

I) + (1 +
b
c

)I with G = Hε(v) =
H0(v)
ε

where I1(t) =
∑

k∈K∩J ak(t)c−k and I2(t) =
∑

k∈K∩J dk(t)c−k, we get

v(t) = vt0 e−
∫ t

t0
G(v)

+ 1
ε

∫ t
0 (I1(t) − I)e−

∫ t
r G(v)dr + 1

ε

∫ t
0 Ie−

∫ t
r G(v)dr+

+ 1
ε

∫ t
0 (I2(t) − b

c I)e−
∫ t

r G(v)dr + b
cε

∫ t
0 Ie−

∫ t
r G(v)dr.

Finally, we have that for every δ > 0 there exists t0 such that |I1(t) − I| ≤ εM + δ and |I2(t) − b
c I| ≤ εN + δ, for t ≥ t0

where M = 4π
∑

K∩J |k||bk ||c−k | and N = 16cπ2∑
K∩J |k|3|bk ||c−k | and using again L’Hopital’s Lemma ( see [9]) for the

function F(t) =
∫ t

t0
1
ε
e−
∫ t

r Gdr, together with (6), we have limsupt→∞F(t) = limsupt→∞

1
ε

∫ t
t0

e
∫ r
t0

G
dr

e
∫ t
t0

G
≤ limsupt→∞

1
εG =

limsupt→∞
1

H0
, and from (9) together with (10), we get (for I = 0) the estimates on the limit of |v(t)| and we conclude.
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