
On the well-posedness of a multiscale mathematical model for
Lithium-ion batteries

J.I. Díaza,b, D. Gómez-Castroa,c, A.M. Ramosa,b

aInstituto de Matemática Interdisciplinar, Universidad Complutense de Madrid,
Plaza de Ciencias, 3, 28040 Madrid (Spain),

bDept. of Applied Mathematics and Mathematical Analysis, Universidad Complutense de Madrid,
Plaza de Ciencias, 3, 28040 Madrid (Spain),

cDepartamento de Matemática Aplicada, Escuela Técnica Superior de Ingeniería - ICAI,
Universidad Pontificia Comillas, C/ Alberto Aguilera, 25, 28015 Madrid (Spain)

Abstract

We consider the mathematical treatment of a system of nonlinear partial differential equations based on
a model, proposed in 1972 by J. Newman, in which the coupling between the Lithium concentration,
the phase potentials and temperature in the electrodes and the electrolyte of a Lithium battery cell is
considered. After introducing some functional spaces well-adapted to our framework we obtain some rig-
orous results showing the well-posedness of the system, first for some short time and then, by considering
some hypothesis on the nonlinearities, globally in time. As far as we know, this is the first result in the
literature proving existence in time of the full Newman model, which follows previous results by the third
author in 2016 regarding a simplified case.
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1. Introduction

Let us suppose we have a mathematical system of differential equations equations involving, after a
homogenization process (or other methods), two different scales, that we may call macro and micro, for
simplicity. A macro-scale domain is given by x ∈ (0, L), where different processes may occur in three
relevant subintervals: (0, L1), (L1, L1 + δ) and (L1 + δ, L). At each point x ∈ (0, L1) ∪ (L1 + δ, L) we
consider that there is a micro scale domain given by a sphere with radius R(x) > 0. Different processes
are modeled in each scale with differential equations, which are coupled at different levels, including
boundary conditions.

Let us considered, motivated by the modeling of charge transport in Lithium batteries (as we will
show below) the following (relatively) abstract framework (which can be generalized to other cases).

Our system has 5 unknowns functions: u(x, t), v(x; r, t), ϕ(x, t), φ(x, t) and θ(t) such that

• u : (0, L)× (0, tend)→ R,

• v : Ωδ × (0, tend)→ R,

• ϕ : (0, L)× (0, tend)→ R,

• φ : (0, L1) ∪ (L1 + δ, L)× (0, tend)→ R,

• θ : (0, tend)→ R,
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where tend > 0 and Ωδ = {(x, r) : x ∈ (0, L1) ∪ (L1 + δ, L) and r ∈ [0, R(x)]}. Those functions satisfy the
following system of macro scale equations:

ε
∂u

∂t
− L1u = F1(x, u, v, ϕ, φ, θ) in (0, L)× (0, tend),

with suitable boundary and initial conditions, and, for each t ∈ (0, tend) :
−L2ϕ+ L3f(u) = F3(x, u, v, ϕ, φ, θ) in (0, L),
−L4φ = F4(x, u, v, ϕ, φ, θ) in (0, L1) ∪ (L1 + δL),
with suitable boundary conditions.

(1)
This system is coupled with the following system of micro scale diffusion equation:

For almost each x ∈ (0, L1) ∪ (L1 + δ, L) :
∂v

∂t
− 1
r2

∂

∂r

(
r2D2

∂v

∂r

)
= 0 in (0, R(x))× (0, tend)

∂v

∂r
(x; 0, ·) = 0 in (0, tend)

−D2
∂v

∂r
(x;R(x), ·) = F2(x, u, v, ϕ, φ, θ) in (0, tend)

v(·, 0) = v0 in (0, L).

(2)

In the equations written above L1 to L4 are second order differential operators (which may also depend
on x, u, v, ϕ, φ and θ), ε is a function depending on x ∈ (0, L) and f , F1, F2, F3 and F4 are real-valued
functions.

Finally, we add the following initial value problem:{
θ′(t) = f(t, θ(t);u, v, ϕ, φ)
θ(0) = θ0,

(3)

where the dependence of f on u, v, ϕ, φ may be global in space.
The question that arises is the following. Under which conditions can we prove existence and/or

uniqueness of a local (in time) solution (u, v, ϕ, φ, θ) of equations (1)–(3) and under which conditions is
it global in time?

We study here a particular interesting case arising in the modeling of Lithium batteries. Lithium-ion
batteries are currently extensively used for storing electricity in mobile devices, from phones to cars.
Nevertheless they are still many drawbacks for them, as their reduced charge capacity, the long time
needed to charge them, thermal runaways, etc. Therefore, a lot of research is being done in order to
improve these devices. A good mathematical model of the transport mechanisms within batteries is very
important in that research in order to understand the physics involved in the processes and to allow quick
numerical experiments. But this models need to be well understood from a mathematical point of view,
so that conclusions extracted from them are more rigorous. The well-posedness of the mathematical
models being used is, therefore, one of the key points to be considered. This is, indeed, the goal of this
paper.

In [31] a full model for Lithium ion batteries was presented, based on on the well known J. Newman
model (see [27]), and partial results for the well posedness were given. In this paper, we intend to complete
those well-posedness results and study the regularity of the solutions. Let us write the complete system
as presented in [31] but using in the electrolyte the electric potential measured by a reference Lithium
electrode (ϕe) instead of its real electric potential. This is done because in electrochemical applications
the potential in an electrolyte is typically measured by inserting a reference electrode of a pure compound,
tipically a Lithium electrode (see [7, 33, 35]). Local existence means that we are able to prove existence
of solutions if the final time tend is “small enough”. In a special case, we will show that tend can be taken
as large as wanted, making the existence of solutions global in time.
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A typical Lithium-ion battery cell has three regions: a porous negative electrode, a porous positive
electrode and an electro-blocking separator. Furthermore, the cell contains an electrolyte, which is a con-
centrated solution containing charged species that move along the cell in response to an electrochemical
potential gradient.

Let L be the length of a cell of a battery, L1 be the length of the negative electrode and δ the length
of the separator. We assume the radius of an electrode particle to be Rs(x), with

Rs(x) =
{
Rs,− if x ∈ (0, L1),
Rs,+ if x ∈ (L1 + δ, L).

(4)

A schematic representation of a cell is given in Figure 1.
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Figure 1: Schematic representation of a battery. Dark gray disks represent negative electrode particles, light gray disks
represent positive electrode particles, the dotted region represents the presence of electrolyte. On both sides of the cell the
lined region represents the current collectors.

The unknowns in the system of equations that we study are:

• The concentration of Lithium ions in the electrolyte ce = ce(x, t) in every macroscopic point x ∈
(0, L).

• The concentration of Lithium ions in the electrodes cs = cs(r, t;x), which for every macroscopic
point x ∈ (0, L1)∪ (L1 + δ, L) is defined in a microscopic ball of radius Rs(x), with r indicating the
distance to the center. We assume radial symmetry in the diffusion taking place in each particle.
Therefore, we do not need to consider angular coordinates.

• The electric potential φs = φs(x, t) in the electrodes.

• The electric potential measured by a reference Lithium electrode in the electrolyte, ϕe = ϕe(x, t).

• The temperature T (t) in the cell.

The system of equations is given by (5)–(9) below.
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The transport of Lithium through the electrolyte can be modeled by the following macro-scale system
of equations (conservation of Lithium in the electrolyte):

∂ce
∂t
− ∂

∂x

(
De

∂ce
∂x

)
= αej

Li, in (0, L)× (0, tend),

∂ce
∂x

(0, t) = ∂ce
∂x

(L, t) = 0, t ∈ (0, tend),

ce(x, 0) = ce,0(x), x ∈ (0, L),

(5)

where jLi= jLi(x, ce(x, t), cs(Rs(x), t;x), ϕe(x, t), φs(x, t), T (t)) is the reaction current resulting from in-
tercalation on Li into solid electrode particles and represents the Lithium flux between the electrodes and
the electrolyte (which is a nonlinear function of all the variables, an expression that will be given later),
De > 0 is a diffusion function, αe > 0 is constant and ce,0 is a known initial state.

The transport of Lithium through the electrodes can be modeled, at almost every macroscopic point
x ∈ (0, L1)∪ (L1 + δ, L), by the following micro-scale system of equations (conservation of Lithium in the
electrodes), written in radial coordinates due to the radial symmetry:

∂cs
∂t
− Ds

r2
∂

∂r

(
r2 ∂cs
∂r

)
= 0, in (0, Rs(x))× (0, tend),

∂cs
∂r

(0, t;x) = 0, t ∈ (0, tend),

−Ds
∂cs
∂r

(Rs(x), t;x) = αs(x)jLi t ∈ (0, tend),

cs(r, 0;x) = cs,0(r;x), r ∈ (0, Rs(x)),

(6)

where Ds > 0 is a diffusion coefficient and αs > 0, both with a constant value in (0, L1) and another
constant in (L1 + δ, L). Furthermore cs,0 is a radially symmetric initial state. Notice that problem (6) is
written in spherical coordinates.

The electric potential in the electrodes, φs, and the electric potential measured by a reference Lithium
electrode in the electrolyte, ϕe, can be modelled, for each t ∈ (0, tend), by the following equations
expressing the conservation of charge in the electrolyte:

− ∂

∂x

(
κ
∂ϕe

∂x

)
+ αϕeT

∂

∂x

(
κ
∂

∂x
(fϕe(ce))

)
= jLi, in (0, L),

∂ϕe

∂x
(0, t) = ∂ϕe

∂x
(L, t) = 0.

(7)

and the conservation of charge in the electrodes

− ∂

∂x

(
σ
∂φs

∂x

)
= −jLi, in (0, L1) ∪ (L1 + δ, L),

σ(0)∂φs

∂x
(0, t) = σ(L)∂φs

∂x
(L, t) = −I(t)

A
,

∂φs

∂x
(L1, t) = ∂φs

∂x
(L1 + δ, t) = 0,

(8)

where κ = κ(ce, T ), given by a function κ ∈ C2((0,+∞)2), κ > 0, and σ ∈ L∞((0, L1) ∪ (L1 + δ, L)) are
conductivity coefficients (uniformly positive), αϕe ≥ 0 is a constant, fϕe ∈ C2(0,+∞), A is the cross-
sectional area (also the currect collector area) and I, the input current, is a piecewise constant function
defined for t ∈ [0, tIend]. Naturally, if the input current is defined up to a time tIend, then we can only
expect to solve the system up to a time tend ≤ tIend.
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Finally, we consider the temperature T = T (t) inside the battery, which we consider spatially constant.
Its time evolution is given by

dT
dt (t) = −αT (T (t)− Tamb) + FT (ce(·, t), cs(Rs(·), t; ·), ϕe(·, t), φs(·, t), T (t)), t ∈ (0, tend),

T (0) = T0,
(9)

where αT is a positive constant, Tamb represents the ambient temperature, T0 ≥ 0 is an initial known
temperature and FT is a continuous functional that represents the effect of the other variables over T
(an expression that will be given later). FT may depend of the values at time t of functions ce, cs, ϕe and
φs locally or globally in space (see (20) - (24)).

In [31], instead of equations (5), (7) and (8) the author consider the equations

εe
∂ce
∂t
− ∂

∂x

(
Deε

p
e
∂ce
∂x

)
= αej

Li, in (0, L)× (0, tend),

− ∂

∂x

(
εpeκ

∂ϕe

∂x

)
+ αϕeT

∂

∂x

(
εpeκ

∂

∂x
(fϕe(ce))

)
= jLi, in (0, L),

− εsσ
∂φs

∂x2 = −jLi, in (0, L1) ∪ (L1 + δ, L).

where εe > 0 is constant in (0, L1), (L1, L1 +δ), (L1 +δ, L) and εs in (0, L1), (L1 +δ, L). This general case,
which is not in divergence form for ce and ϕe, introduces an extra level of difficulty we will not consider
here. The same techniques we present in this paper apply to that case, but with the introduction of some
additional technicalities (see, e.g., [16, 4] and the references therein).

Here we have considered εe constant in (0, L), and therefore we can remove it by assimilating εp−1
e in

De, ε−1
e in αe and εpe in κ.

We simplify the domain notation by introducing the following sets:

Jδ = (0, L1) ∪ (L1 + δ, L) (10)

Dδ =
⋃
x∈Jδ

{x} × [0, Rs(x)]. (11)

In fact, we will consider Rs constant in both (0, L1) and (L1 + δ, L) as in (4) (see Figure 2).

Jδ

0 L1 L1 + δ L

0

Rs,−

0

Rs,+
Dδ

Figure 2: Domains Jδ (spatial domain of definition of ce, ϕe, φs) and Dδ (spatial domain of definition of cs). Notice that,
since we are using a radial coordinate, every segment {x} × [0, Rs(x)] in Dδ represents a ball {x} ×BRs(x) in {x} × R3.

The analytical expression of jLi is given as follows, for (ce, cs, ϕe, φs, T ) ∈ R5:

jLi(x, ce, cs, ϕe, φs, T ) =
{
j

Li(x, ce, cs, T, η(x, ce, cs, ϕe, φs, T )), x ∈ Jδ,
0, otherwise,

(12)

η(x, ce, cs, ϕe, φs, T ) = φs − ϕe − U(x, ce, cs, T ), x ∈ Jδ, (13)

where U is the open circuit potential and η the surface overpotential of the corresponding electrode re-
action.
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There is no common agreement on the structural assumptions of U . Some papers use a fitting
function either polynomial [36] or exponential [6], whereas other authors propose an improved version
with logarithmic behaviour close to the limit cases [32, 35]. We will start working in a general framework,
which contains as a particular important example the Butler-Volmer flux (see [27, 31, 35]), in which the
functions are taken as

j
Li = cαae cαcs (cs,max − cs)αah

(
x,

1
T
η

)
(14)

h(x, η) = δ1(x) exp(αaη)− δ2(x) exp(−αcη), (15)
fϕe(ce) = ln ce, (16)

αa ∈ (0, 1), (17)
αc ∈ (0, 1), (18)

where δ1, δ2 are positive and constant in each electrode, cs,max is a constant that represents the maximum
value of cs, αa and αc (dimensionless constants) are anodic and cathodic coefficients, respectively, for an
electrode reaction.

Function U was later proposed in [32] as

U = −α(x)T ln cs + β(x)T ln(cs,max − cs) + γ(x)T ln ce + p(ce, cs, T ), (19)

where α, β, γ are positive functions in L∞(Jδ) and p is a smooth bounded function.

The following particular choice of FT can be considered (see, e.g., [31]):

FT = qr + qj + qc + qe, (20)

qr = A

∫ L

0
jLiη dx, (21)

qj = A

∫
Jδ

σ

(
∂φs

∂x

)2
+A

∫ L

0

[
κ

(
∂ϕe

∂x

)2
+ αsTκ

(
∂ ln ce
∂x

)(
∂ϕe

∂x

)]
dx, (22)

qc = Rf

A
I(t)2, (23)

qe = TA

∫
Jδ

[
jLi ∂U

∂T

(
cs(Rs(x), t;x)

cs,max

)]
dx, (24)

where ln is the natural logarithm and Rf is the film resistance of the electrodes.

We point out that T has been assumed to be uniform across the whole cell. Nonetheless, a more
complete model (specially one dealing with temperature blow up) with a heat diffusion equation could
be used. The study of blow up in this type of equations has been largely studied (see, for example, [2, 12]).

Using this model the voltage at time t of the cell can be estimated (see [31]) as

V (t) = φs(L, t)− φs(0, t)−
Rf

A
I. (25)

The model, as written above, presents a number of difficulties: pseudo-two dimensional (P2D) model,
elliptic equations coupled with parabolic equations, discontinuities in space of some of the involved func-
tions, the fact that jLi is not smooth and not monotone, etc. As far as we know there is no proof in the
literature of the global existence of solution before this work.

In order to state the results, we will introduce the following definitions, which we introduce as a
mathematical tool:

cs,B(x, t) = cs(Rs(x), t;x), (26)
ϕe,Li(x, t) = ϕe(x, t)− αϕeT (t)fϕe(ce(x, t)). (27)
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Notice that cs,B represents the only values of cs that affect jLi and ϕe,Li is the solution of
− ∂

∂x

(
κ
∂ϕe,Li

∂x

)
= jLi, in (0, L),

κ
∂ϕe,Li

∂x
= 0, at {0, L},

(28)

which is a system simpler than (7).

First we will state four general results for a large class of functions jLi, regarding the local in time
existence of solutions of the general abstract problem and their maximal extension in time. Although the
detailed expression of the assumptions are only given in the next section the reader can be aware now of
the different nature of our mathematical results.

Theorem 1 (Well-posedness with general flux and nature of the possible blow-up). Let assumptions 2.1,
2.2, 2.3 and 2.5 hold. Then, if tend is small enough, there exists a unique weak-mild solution by parts of
(5)-(9) (in the sense of Definition 2.9 and satisfying Assumption 2.13).

Moveover, there exists a unique maximal extension defined for t ∈ [0, tend) where tend is some constant
tend ≤ tIend. If tend < tIend then one the following conditions holds as t↗ tend:

min
Jδ×[0,t]

cs,B → 0 or max
Jδ×[0,t]

cs,B → cs,max or min
[0,L]×[0,t]

ce → 0 or max
[0,t]×[0,L]

ce → +∞

or min
[0,t]

T → 0 or max
[0,t]

T → +∞. (29)

We remark that without assumption 2.13 existence for potentials ϕe, φs can only be established up to
a constant (as expected).

In the particular case of jLi being the Butler-Volmer flux, given by (12)-(19), under some physically
reasonable hypothesis on the parameters (see Assumptions 2.19, 2.20, 2.21, 2.24 below), we will prove a
general existence result, and characterize the nature of possible blow up. It states that, under reasonable
extra conditions, the non-physical obstructions for well-possedness cs,B → 0, cs,max or ce → 0,+∞ that
appear in Theorem 1, are not the cause of the blow-up behaviour of local solutions.

Theorem 2 (Well-posedness for the Butler-Volmer flux and nature of the possible blow-up). Let As-
sumptions 2.1, 2.2, 2.5, 2.19, 2.20, 2.21 and 2.24 hold. Then, if tend is small enough, there exists a
unique weak-mild solution by parts of (5)-(9) (in the sense of Definition 2.9 and satisfying assumption
2.13). This solution admits a unique maximal extension in time with tend ≤ tIend.

Moveover, if tend < tIend then, as t↗ tend either

max
Jδ×[0,t]

|φs − ϕe,Li| → +∞ or min
[0,t]

T → 0 or max
[0,t]

T → +∞. (30)

Furthermore,
0 < cs < cs,max and ce > 0, ∀ 0 ≤ t < tend. (31)

In the last part of this paper (see Section 2.6), we give an ad hoc modification of the system for which
we can state a global existence theorem by removing, in two steps, the impediments to global existence
of solutions given by (30). Actually, since the blow-up conditions (30) do not correspond to the physical
intuition, it is likely that the solutions do not, in fact, develop this kind of behaviour.

In a first stage we will find a bound for the flux with respect to φs − ϕe,Li, and show:

Theorem 3 (Blow up behaviour when jLi is bounded with respect to φs − ϕe,Li). Let Assumptions 2.1,
2.2, 2.5, 2.19, 2.20, 2.24 and 2.27 hold. Then, if tend is small enough, there exists a unique weak-mild
solution by parts of (5) - (9) (in the sense of Definition 2.9 and satisfying Assumption 2.13). This
solution admits a unique maximal extension in time with tend ≤ tIend. If tend < tIend, as t → tend then
either

min
[0,t]

T → 0 or max
[0,t]

T → +∞. (32)
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Finally, by assuming some additional conditions (see Assumptions 2.27, 2.29) we will obtain a bound
for the temperature T and prove what can be considered a first global existence result in the literature
for this system:

Theorem 4 (Global existence in a modified case). Let assumptions 2.1, 2.2, 2.5, 2.19, 2.20, 2.24, 2.27
and 2.29 hold. Then, there exists a unique weak-mild solution by parts of (5) - (9), defined for t ∈ [0, tIend]
(in the sense of Definition 2.8 and satisfying Assumption 2.13).

2. Mathematical framework

2.1. Regularity assumptions of the nonlinear terms and initial data
Our most general formulation in this paper concerns the case of considering the following regularity

conditions on the data:

Assumption 2.1. Let us take the data:

ce,0 ∈ H1(0, L), ce,0 > 0,
cs,0 ∈ C(Dδ), 0 < cs,0 < cs,max

T0 > 0
I ∈ Cpart([0, tIend]), 0 < tend ≤tIend < +∞,

where Cpart denotes the set of piecewise continuous functions

Cpart([a, b]) = {f : [a, b]→ R : ∃ a = t0 < t1 < · · · < tN = b such that f ∈ C([ti−1, ti])}. (33)

Notice that this implies that the lateral limits f(t±i ) exist, but need not coincide. 4

Assumption 2.2. De ∈ L∞(0, L), κ ∈ C2((0,+∞)2), σ ∈ L∞(Jδ), De ≥ De,0 > 0, κ ≥ κ0 > 0, σ ≥ σ0 >
0 and fϕe ∈ C2((0,+∞)). 4

The key ingredient of our approach is to choose some suitable convex subsets of some appropriate
functional spaces. The choice of spaces well adapted to the system is a delicate matter, and errors or
loose approaches to this might result in incorrect results (for an explanation of this philosophy see, e.g.,
[9]). Let us define the open convex sets where we expect to find the solutions:

X = H1(0, L)× C(Jδ)× R,

KX =
{

(ce, cs,B , T ) ∈ X : ce > 0, 0 < cs,B < cs,max, T > 0
}
,

Y = L∞(0, L)× C(Jδ)× R,
Z = H1(0, L)× C(Jδ)×H1(0, L)×H1(Jδ)× R,

KZ =
{

(ce, cs,B , ϕe, φs, T ) ∈ Z : (ce, cs,B , T ) ∈ KX

}
,

where H1(a, b) is the usual Sobolev space over the interval (a, b) (see, e.g., [10, 30]). It is important to
point out that H1(a, b) ↪→ C([a, b]). Finally, we define

Xφ =
{

(u, v) ∈ H1(0, L)×H1(Jδ) :
∫ L

0
u(x) dx = 0

}
, (34)

the natural space in which we will look for the pair (ϕe, φs).

Instead of narrowly focusing on (14)-(18) we shall state an assumption (sufficient to prove Theorem
1) satisfied by a broader family of functions:

8



Assumption 2.3. For the flux function we assume:

j
Li ∈ C2(Jδ × (0,+∞)× (0, cs,max)× (0,+∞)× R), (35)
U ∈ C2(Jδ × (0,+∞)× (0, cs,max)× (0,+∞)), (36)

such that
∂j

Li

∂η
(x, ce, cs, T, η) > 0, (37)

for all (x, ce, cs, T, η) ∈ Jδ × (0,+∞)× (0, cs,max)× (0,+∞)× R. 4

Remark 2.4. In particular, it follows from Assumption 2.3 (in particular due to (35) and (37) applying
the Mean Value Theorem) that there exists a positive continuous function FLi satisfying(

j
Li(x, ce, cs, T, η)− jLi(x, ce, cs, T, η̂)

)
(η − η̂) = FLi (x, ce, cs, T, η, η̂) |η − η̂|2 , (38)

for all x ∈ Jδ, ce > 0, cs ∈ (0, cs,max), T > 0 and η, η̂ ∈ R.

Finally, on the temperature term FT we will require the following:

Assumption 2.5. FT ∈ C1(KZ ;R) (in the sense of the Fréchet derivative). 4

2.2. Definition of weak solution
We introduce the natural space for radial solutions

H1
r (0, R) = {u : (0, R)→ R measurable such that u(r)r, u′(r)r ∈ L2(0, R)}

with the norm
‖u‖2H1

r (0,R) =
∫ R

0
|u(r)|2r2 dr +

∫ R

0
|u′(r)|2r2 dr

and the space

L2(Jδ;H1
r (0, Rs(·))) =

{
u : Dδ → R measurable such that

∫ L

0
‖u(x, ·)‖2H1

r (0,Rs(x)) dx < +∞
}
.

Remark 2.6. Even though we will always present the variables as (x, t), or (r, t;x), it will sometimes
be mathematically advantageous to consider maps t ∈ [0, t0] 7→ u(·, t) ∈ X, where X will be a space
of spatial functions, in which we will use the notations C([0, t0];X) or L2(0, t0;X), depending on the
regularity .

Definition 2.7. We define a weak solution of (5) - (9) as a quintuplet

(ce, cs, ϕe, φs, T ) ∈ L2(0, tend; K̃Z),

K̃Z = H1(0, L)× L2(Jδ;H1
r (0, Rs(·)))×H1(0, L)×H1(Jδ)× R,

such that

−
tend∫
0

L∫
0

ce
dηe
dt ψe dxdt+

tend∫
0

L∫
0

De
∂ce
∂x

dψe

dx ηe dxdt =
tend∫
0

L∫
0

αej
Liηeψe dx−

L∫
0

ce,0η(0)ψe dx, (39)

for all ηe ∈ D([0, tend)) = {f ∈ C∞([0, tend)) : suppf ⊂ [0, tend) is compact} (see, e.g. [25, 30]) and
ψe ∈ H1(0, L); For a.e. x ∈ Jδ

−
tend∫
0

Rs(x)∫
0

cs
dηs
dt Ψsr

2 dr dt+
tend∫
0

Rs(x)∫
0

Dsηs
∂cs
∂r

∂Ψs

∂r
r2 dr dt

= −
tend∫
0

αs(x)jLiηsΨs dt−
Rs(x)∫
0

cs,0η(0)Ψsr
2 dr, (40)
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for all ηs ∈ D([0, tend)) and Ψs ∈ H1
r (0, Rs(x)) radially symmetric. For every t ∈ (0, tend)∫ L

0
κ
∂ϕe

∂x

dψe

dx dx−
∫
Jδ

jLiψe dx =
∫ L

0
καϕeT

∂

∂x
(fϕe(ce))dψe

dx dx, ∀ψe ∈ H1(0, L) (41)∫
Jδ

σ
∂φs

∂x

dψs

dx dx+
∫
Jδ

jLiψs dx = I(t)
A

(ψs(0)− ψs(L)), ∀ψs ∈ H1(Jδ) (42)

and

T (t) = T0 +
∫ t

0
(−αT (T (s)− Tamb))+∫ t

0
FT (ce(·, s), cs,B(·, s), ϕe(·, s), φs(·, s), T (s))) ds. (43)

2.3. Definition of weak-mild solution
Dealing directly with the weak formulation is technically very difficult. On the other hand, solutions

in the classical sense (having all the necessary derivatives) may not exist. There is an intermediate type
of solutions, known as “mild solutions”. As a general rule (and in particular this applies to our problem),
any classical solution is a mild solution and any mild solution is a weak solution.

Let us introduce this kind of solutions in the simplest case: the heat equation. Consider the problem
∂u

∂t
−∆u = f in Ω×(0, tend),

u = 0 on ∂Ω×(0, tend),
u(·, 0) = u0, in Ω,

(44)

in a bounded, smooth domain Ω ⊂ RN . Let u0 ∈ L2(Ω) and f ∈ L2((0, tend)×Ω). One can construct, as
an intermediate step, the solution of the following problem

∂v

∂t
−∆v = 0 in Ω×(0, tend),

v = 0 on ∂Ω×(0, tend),
v(·, 0) = u0, in Ω,

(45)

by considering the decomposition of L2(Ω) in terms of eigenfunctions of −∆. Let us write the unique
solution of (45) as v(t) = S(t)u0. The operator S(t) is a semigroup (see [10]), and has some interesting
properties we will not discuss. A solution u of problem the non homogeneous problem (44) can be written,
for every t ∈ [0, tend], as

u(t) = S(t)u0 +
∫ t

0
S(t− s)f(s) ds. (46)

This kind of solution is known as a “mild solution”. As in [17], one can define the “Green operator” for
problem (44) as the function

Gtend : f 7→ S(·)u0 +
∫ ·

0
S(· − s)f(s) ds. (47)

In our problem we will need to work with a suitable Green operator associated to each of the equa-
tions. Assuming Assumptions 2.2, we will define several Green operators.

For any t0 > 0 we define (see [20]):

Gce,t0 : L2((0, L)×(0, t0)) → C([0, t0];H1(0, L)),
f 7→ V,

10



as the solution of the problem
∂V

∂t
− ∂

∂x

(
De

∂

∂x
V

)
= f, (x, t) ∈ (0, L)× (0, t0),

∂V

∂x
(0, t) = ∂V

∂x
(L, t) = 0, t ∈ (0, t0),

V (x, 0) = ce,0(x), x ∈ (0, L).

For system (6) we will need to do some extra work due to the fact that the equation is only “pseudo
2D”. First we define the solution of problem (6) for every x fixed

Gcs,R,t0 : C([0, R])× C([0, t0]) → C([0, R]×[0, t0]),
(u0, g) 7→ V,

by solving the corresponding problem
∂V

∂t
− 1
r2

∂

∂r

(
Dsr

2V
)

= 0, (y, t) ∈ (0, R)× (0, t0),

−Ds
∂V

∂r
(R, t) = g, t ∈ (0, t0),

V (r, 0) = u0(r), r ∈ (0, R).

The next step is to consider the dependence on x. Therefore we construct the Green operator associated
to problem (6) collecting all x ∈ Jδ:

Gcs,t0 : C(Jδ × [0, t0]) → C(Dδ × [0, t0]),
g 7→ W,

given by
W (r, x, t) = Gcs,Rs(x),t0(cs,0(x, ·), g(x, ·))(r, t).

Finally, we consider the Green operator for the system (9) as the function

GT,t0 : C([0, t0];Z) → C([0, t0]),
(ce, cs,B, ϕe, φs, T ) 7→ W

defined as

W (t) = T0 +
∫ t

0
(−αT (T (s)− Tamb) +

∫ t

0
FT (ce(·, s), cs,B(·, s), ϕe(·, s), φs(·, s), T (s))) ds.

This operator is well-defined and of class C1 due to Assumption 2.5. It will be useful to introduce the
following Nemistkij operators:

NjLi : KZ → C([0, L1]) ∩ C([L1, L1 + δ]) ∩ C([L1 + δ, L])
(ce, cs,B , ϕe, φs, T ) 7→ jLi ◦ (ce, cs,B , ϕe, φs, T )

NjLi,t0 : C([0, t0];KZ) → C([0, t0]; C([0, L1]) ∩ C([L1, L1 + δ]) ∩ C([L1 + δ, L]))
(ce, cs,B , ϕe, φs, T ) 7→ jLi ◦ (ce, cs,B , ϕe, φs, T ).

It is well known (see, e.g., [21]) that these operators are locally Lipschitz continuous and C1 (in the sense
of the Fréchet derivative), properties that will be used in the proof of Theorem 1, due to the regularity
of the elements of the composition (i.e. (35) and (36)).

Definition 2.8 (Weak-mild solution). We define a “weak-mild solution of (5)–(9)” as a quintuplet
(ce, cs, ϕe, φs, T ) ∈ C([0, tend);KZ) such that there exists 0 < tend ≤ tIend for which:

11



1. (ϕe, φs) is a weak solutions of system (7)–(8) for the functions ce, cs, T given in the quintuplet, in
the sense that, for every t ∈ [0, tend) the weak formulations (41), (42) hold.

2. (ce, cs, T ) is a mild solutions of the system (5), (6), (9) for the functions ϕe, φs given in the quintuplet,
in the sense that for every t0 < tend:

(ce, cs, T ) =
(
Gce,t0

(
αeNjLi,t0

)
, Gcs,t0

(
αsNjLi,t0

)
, GT,t0

)
◦ (ce|t<t0 , cs|R=Rs(x),t<t0 , ϕe|t<t0 , φs|t<t0 , T |t<t0). (48)

Definition 2.9 (Piecewise weak-mild solution). We define a “piecewise weak-mild solution” as a quin-
tuplet (ce, cs, ϕe, φs, T ) such that there exists a partition {t0, · · · , tN} of [0, tend] such that in [ti, ti+1]
(ce, cs, ϕe, φs, T ) is a weak-mild solution in the previous sense, with (ce, cs, T )(ti) as initial condition in
the interval [ti, ti+1].

Remark 2.10. It is well known that for problems of type (44), any piecewise weak-mild solution is a
weak solution.

Definition 2.11. Given a solution (in any of the previous senses) (ce, cs, ϕe, φs, T ) ∈ C([0, a),KZ), we
say that (c̃e, c̃s, ϕ̃e, φ̃s, T̃ ) ∈ C([0, b),KZ) is an “extension” of (ce, cs, ϕe, φs, T ) if it is also a solution (in
the same sense), b ≥ a and

(c̃e, c̃s, ϕ̃e, φ̃s, T̃ )|t≤a = (ce, cs, ϕe, φs, T ).
We say that the extension is “proper” if b > a. We say that an extension is “maximal” if it does not
admit a proper extension.

Notice that the contribution of cs can be studied, basically, as a 1D behaviour on Jδ. More precisely,
we consider the Green operator on the boundary of the balls BRs(x), which we will show that contains
all the necessary information

Gcs,B,t0 : C(Jδ × [0, t0]) → C(Jδ × [0, t0]),
g 7→ W,

where
W (x, t) = (Gcs,t0(g))(Rs(x), x, t).

In this sense we can rewrite (48) in terms of the restriction cs,B, instead of cs, as follows:

Proposition 2.12. In Definitions 2.9 and 2.11, condition (48) is equivalent to the following property:
(ce, cs,B, T ) ∈ C([0, tend);X) such that

(ce, cs,B , T ) =
(
Gce,t0

(
αeNjLi,t0

)
, Gcs,B,t0

(
αsNjLi,t0

)
, GT,t0

)
◦ (ce|t<t0 , cs,B|t<t0 , ϕe|t<t0 , φs|t<t0 , T |t<t0). (49)

Proof. It is trivial that (48) implies (49). Let us consider a quintuplet (ce, cs,B , ϕe, φs, T ) that satisfies
(49). Let us construct a solution (ce, cs, ϕe, φs, T ) of (5)–(9) in the sense of Definition 2.8. Define, for any
t0 < tend

j̃Li = NjLi,t0(ce|t<t0 , cs,B|t<t0 , ϕe|t<t0 , φs|t<t0 , T |t<t0). (50)
Define cs(x, r, t) to be the solution, for every x ∈ Jδ, of the problem

∂cs
∂t
−Ds

1
r2

∂

∂r

(
r2 ∂cs
∂r

)
= 0, 0 < r < Rs(x),

cs = cs,B, r = Rs(x),
∂cs
∂r

= 0, r = 0,

cs = cs,0, t = 0.

(51)

Since cs = cs,B on ∂BRs(x), due to (50), we have that

j̃Li(x, t) = jLi(x, ce(x, t), cs(Rs(x), x, t), ϕe(x, t), φs(x, t), T (t)), (x, t) ∈ Jδ × (0, t0).
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Furthermore, since cs,B = (Gcs,t0 j̃
Li)|R=Rs(x) then cs and Gcs,t0 j̃

Li are solutions of the same parabolic
problem (51) and, by the uniqueness of the solutions,

cs = Gcs,t0 j̃
Li.

Therefore (ce, cs, ϕe, φs, T ) is a solution of (5)–(9) in the sense of Definition 2.8, up to time t0, which can
be arbitrarily close to tend.

2.4. Assumptions and results regarding Theorem 1
It was first shown in [31] that the uniqueness of solutions (ϕe, φs) of system (7)–(8) holds up to a

constant relating the difference between ϕe and φs. To avoid this we set the following assumption:

Assumption 2.13. As in (27), we define

ϕe,Li = ϕe − αϕeTfϕe(ce), (52)

and assume that ∫ L

0
ϕe,Li dx = 0. (53)

This can be done because (ϕe, φs) is defined up to a constant. 4

Remark 2.14. We recall that C([a, b]) ⊂ H1(a, b). Thus, since 0 < ce ∈ H1(a, b) then, min[0,L] ce > 0,
so fϕe(ce) ∈ H1(0, L).

Remark 2.15. Another alternative to get the uniqueness of solution is to use the condition φs|x=0 = 0,
instead of (53), setting the value 0 of the potential in one of the walls.

The idea of the proof of Theorem 1 (which is done in Section 5) is the following. First we will show
(see Proposition 2.16 and its proof in Section 3) that we can solve (7) and (8) to obtain (ϕe, φs) if cs, ce, T
are given, extending to the nonlinear case the study for the linearized equation proved in [31]. Then we
will apply a fixed point argument to the evolution problems (5), (6) and (9) to obtain the conclusion.

Proposition 2.16. Let (ce, cs,B, T ) ∈ KX , I ∈ R and let Assumptions 2.2, 2.3 hold. Then there exists
ϕe ∈ H1(0, L) and φs ∈ H1(Jδ) satisfying the elliptic equations (7) and (8) in the weak sense (41) and
(42). Furthermore, given two solutions (ϕe, φs), (ϕ̂e, φ̂s) there exists a constant C ∈ R such that

ϕe − ϕ̂e = φs − φ̂s = C.

Hence we have uniqueness up to a constant. In particular, there exists a unique solution (ϕe, φs) satisfying
Assumption 2.13.

Due to this proposition we know that the following functions are well defined:

Gφ : KX × R → H1(0, L)×H1(Jδ)
(ce, cs,B, T, I) 7→ (ϕe, φs), (54)

G̃φ : KX × R → KZ

(ce, cs,B, T, I) 7→ (ce, cs,B, Gφ(ce, cs,B, T, I), T ), (55)

where (ϕe, φs) ∈ H1(0, L)×H1(Jδ) is the (unique) solution of (41)–(42) satisfying (53). Assuming now
that I is a continuous function, i.e. I ∈ C([0, tIend]), we define the Green operator, for t0 < tIend:

G̃φ,t0 : C([0, t0];KX) → C([0, t0];KZ)
(ce, cs,B, T ) 7→ W,

where
W (t) = G̃φ(ce(t), cs,B(t), T (t), I(t)).

In Section 3 we will prove that
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Proposition 2.17. Let Assumptions 2.2, 2.3 hold. Then, the operator G̃φ : KX × R → KZ is C1 (in
the sense of the Fréchet derivative).

Remark 2.18. Since we will allow for charge and discharge cycles, we allow for I to be piecewise
continuous, and this is why we define the piecewise weak-mild solution (see Definition 2.9).

The proof of the local existence of solutions will be based on finding a unique fixed point, in
C([0, t0];KX) for t0 small enough, of the operator problem

(ce, cs,B, T ) =
(
Gce,t0

(
αaNjLi,t0

)
, Gcs,B,t0

(
αsNjLi,t0

)
, GT,t0

)
◦ G̃φ,t0(ce, cs,B, T ).

2.5. Assumptions and remarks regarding Theorem 2
In Theorem 1 one of the reasons of a finite existence time could be that cs,B → 0, cs,max or ce → 0.

This conditions do not, a priori, pose a relevant physical problem since the battery may very well be
completely full or empty. However, the generality of our setting allows for no better statement. Let us
study the case which seems to be the most relevant for the modeling of Lithium-ion batteries by consid-
ering new assumptions.

Assumption 2.19. There exists a constant κ1 such that κ(ce, T ) ≤ κ1 and fϕe(·) = ln(·). 4

Assumption 2.20. cs,max < 1 in the units considered to solve the problem. 4

This is purely technical, but it seems reasonable since, in empirical cases in the literature, typically
cs,max ∼ 10−2 mol cm−3. In particular, in [36] the authors take cs,max = 1.6× 10−2 mol cm−3.

Let us consider the following special nonlinear terms (which, for a broader generality, include some
extra constants with respect to (14)–(18)), which we will take as assumption in Theorem 2

Assumption 2.21. We assume that

j̄Li(x, ce, cs, T, η) = cαa
e cαs

s (cs,max − cs)βah
(
x,
η

T

)
,

h(x, s) = h+(x, s)− h−(x, s),
h+(x, s) = δ1(x) exp(γ1s),
h−(x, s) = δ2(x) exp(−γ2s),

η(x, ce, cs, ϕe, φs, T ) = φs − ϕe − U(x, ce, cs, T ).

where αa, αs, βa ∈ (0, 1), γ1, γ2 > 0 and δ1(x), δ2(x) > 0 are constant in each electrode. Notice that γ1, γ2
are constant but not dimensionless. Furthermore, we consider U slightly more general than (19):

U(x, ce, cs, T ) = −λmin(x, T ) ln cs + λmax(x, T ) ln(cs,max − cs) + µ(x, T ) ln ce + p(ce, cs, T ), (56)

where λmin, λmax, µ are given smooth nonnegative scalar functions and p is a continuous bounded function
[0,+∞)× [0, cs,max]× (0,+∞)→ R with global bound denoted by ‖p‖L∞ (Figure 3 shows a typical graph
of U). 4

Remark 2.22. It is a routine matter to check that this jLi satisfies Assumption 2.3.

1

cs
cs,max

U

Figure 3: Possible representation of U
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Remark 2.23. Under Assumption 2.21 we can write jLi(x, ce, cs, T, η(x, ce, cs, ϕe, φs, T )) = j
Li
+ − j

Li
− ,

where

j̄Li
+ = δ1(x)cαa

e cαs
s (cs,max − cs)βa exp

(γ1

T
(φs − ϕe − U(x, ce, cs, T ))

)
, (57)

and

j̄Li
− = δ2(x)cαa

e cαs
s (cs,max − cs)βa exp

(
−γ2

T
(φs − ϕe − U(x, ce, cs, T ))

)
. (58)

Substituting (56) into (57)-(58) we have

j
Li
+ = δ1(x)c

αa−γ1
(
αϕe +µ(x,T )

T

)
e c

αs+γ1
λmin(x,T )

Ts (cs,max − cs)βa−γ1
λmax(x,T )

T

× exp
(γ1

T
(φs − ϕe,Li)

)
exp

(
−γ1

T
p(ce, cs, T )

)
, (59)

j
Li
− = δ1(x)c

αa+γ2
(
αϕe +µ(x,T )

T

)
e c

αs−γ2
λmin(x,T )

Ts (cs,max − cs)βa+γ2
λmax(x,T )

T

× exp
(
−γ2

T
(φs − ϕe,Li)

)
exp

(γ2

T
p(ce, cs, T )

)
, (60)

On the exponents we will consider the following assumption (see Remark 2.26):

Assumption 2.24. For all T > 0 and x ∈ [0, L]

αa − γ1

(
αϕe + µ(x, T )

T

)
≤ 1 (61)

αa + γ2

(
αϕe + µ(x, T )

T

)
≥ 1 (62)

αs + γ1
λmin(x, T )

T
≥ 1, (63)

βa + γ2
λmax(x, T )

T
≥ 1. (64)

4

Remark 2.25. Notice that the conditions (61)-(64) can be also written as:

λmin(x, T ) ≥ 1− αs

γ1
T > 0, λmax(x, T ) ≥ 1− βa

γ2
T > 0, (65)

αϕe + µ(x, T )
T

≥ 1− αa

γ2
, αϕe + µ(x, T )

T
≥ αa − 1

γ1
. (66)

Theorem 2 gives a sufficient condition so that, under the structural consideration of a potential U similar
to the one considered by Ramos-Please [32], should there be a blow-up of the solution, this is not caused
by the non-physical behaviour ce → 0,+∞ or cs → 0, cs,max as t→ tend. Remark 2.26 gives an intuition
of why this happens. On the other hand, if this conditions are not satisfied, then the toy models (72)-
(73) suggest that if the sufficient conditions in Theorem 2 are not satisfied, then it could happen that
ce → 0,+∞ or cs → 0, cs,max. The suggestion of the potential in Ramos-Please [32] was motivated by
physical consideration, and not by the mathematical theory. Nonetheless, this seems to be the exact right
structure for the mathematical theory. This is a notion of robustness to this proposal.

Considering the parameters used by some authors (see, e.g., [36])

αs = βa = αa = 1
2 (67)

γ1 = α̂aF

R
= 5805.5 C K J−1 γ2 = α̂cF

R = 5805.5 C K J−1 (68)
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(where α̂a, α̂c are non-dimensional charge transfer coefficients, F is the Faraday’s constant and R is the
universal gas constant), we have

1− αs

γ1
= 1− βa

γ2
= 1− αs

γ1
= 1− αs

γ2
= 8, 61× 10−5J C−1 K−1. (69)

Considering (19), as in [32], we have

λmin = α(x)T, λmax = β(x)T, µ(x) = γ(x)T. (70)

And so Assumption 2.24 translates into

α(x), β(x) ≥ 8.61× 10−5JC−1K−1, γ(x) ≥ −αϕe + 8.61× 10−5JC−1K−1. (71)

Remark 2.26. It is well known that equations of the form

ut −∆u+ uq = f ≥ 0 (72)

with q < 1 can have a solution u 6≡ 0 such that {x ∈ (0, L) : u(x, t) = 0} has positive measure for all
time t after an initial time t0. These regions are known as “dead cores” and a detailed analysis of this
phenomenon can be found, for instance, in [14, 15]. On the other hand, if we study the equation

ut −∆u = uq + f, (73)

we see that, if q > 1 then the solution can blow up u → +∞ for a finite time, whereas there is no blow
up if q ≤ 1. As we will see in the proof of Theorem 2, we can bound ce and cs by solutions of problems
of type (72), where the conditions (61)–(64) define the exponents q appearing in (72) and (73). Taking
into account these results it seems that, if these conditions are not satisfied, it is likely that the solutions
ce or cs reach 0 in finite time, which is a non-physical behaviour.

2.6. Assumptions and remarks regarding Theorems 3 and 4
Tackling an example of global existence of solutions for the model seems to be a Herculean mission.

However, if we assume some nicer behaviour of the nonlinear term U , at least far from the natural
“working” conditions of the system, then we can establish a result of global existence of solutions.

2.6.1. Truncated potential behaviour
In this section we strive to make some small modifications to the problem so that we can show that the

charge potentials do not blow up in finite time. First let us assume that for large difference of potentials
the flux is constant. We slightly modify (59)-(60) to the following new hypothesis:

Assumption 2.27. Let jLi(x, ce, cs, T, η(x, ce, cs, ϕe, φs, T )) = j
Li
+ − j

Li
− where

j
Li
+ = c

αa−γ1
(
αϕe +µ(x,T )

T

)
e c

αs+γ1
λmin(x,T )

Ts (cs,max − cs)βa−γ1
λmax(x,T )

T

×H
(γ1

T
(φs − ϕe,Li)

)
exp

(
−γ1

T
p(ce, cs, T )

)
, (74)

j
Li
− = c

αa+γ2
(
αϕe +µ(x,T )

T

)
e c

αs−γ2
λmin(x,T )

Ts (cs,max − cs)βa+γ2
λmax(x,T )

T

×H
(
−γ2

T
(φs − ϕe,Li)

)
exp

(γ2

T
p(ce, cs, T )

)
, (75)

and H is a bounded smooth cut-off function of the exponential:

H(s) =
{

exp(s), s ≤ s∞,
ζ(s), s > s∞,

(76)

where s∞ is an arbitrarily large but fixed cut-off value, and ζ is such that ζ ′ > 0. 4

Remark 2.28. Notice that (74)-(75) is (59)-(60) when H(s) = exp(s).

This modification allows us to prove Theorem 3 (see Section 7.1).
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2.6.2. Truncated temperature behaviour
Due to the the delicate interconnectedness of the different terms in FT it is too difficult to prove a

global existence theorem. Nonetheless, since many authors consider that the temperature is constant in
the cell (see [13, 18, 33]), we will allow ourselves a substantial simplification on the structural assumption
for FT , in order to obtain the global uniqueness result avoiding the appearance of possible blow-up
phenomena, which are related with the potential of Lithium batteries for thermal runaway and explosion
under high temperature operation (see [36]).

Assumption 2.29. Assume that FT is linear in T

FT = BT (ce, cs, ϕe, φs) + TAT (ce, cs, ϕe, φs), (77)

and consider the that BT is a nonnegative bounded function BT ∈ [0, BT ] and that AT is bounded
AT ∈ [AT , AT ], where BT , AT , BT ∈ R are constant numbers. 4

This assumptions allow us to prove the result of global existence of solutions given in Theorem 4 (see
Section 7.2).

Remark 2.30. The case FT ≡ 0 is a particular case satisfying Assumptions 2.29, including the case of
T just following Newton’s law of cooling (if αT 6= 0) or T ≡ T0, constant temperature (if αT = 0).

3. Green operator for the semilinear elliptic system (7)-(8). Proof of Proposition 2.16 and
2.17

The idea of the proof of Proposition 2.16 is to follow the idea for “low overpotentials” in [31], but
replacing Lax-Milgram’s theorem by the Brézis theory of “pseudo monotone operators” (see [8]). Under
some special assumptions, this result is sometimes referred to as Minty-Browder’s theorem [26, 11] (see,
e.g., [34]). Uniqueness up to a constant was already proved in [31].

Let us define, for a given (ce, cs,B, T ) ∈ KX , the following function:

η0(x) = −αϕeTfϕe(ce(x))− U(x, ce(x), cs,B(x), T ), ∀x ∈ Jδ,

which corresponds to η|φs−ϕe,Li=0. Since (ce, cs,B, T ) is known we can define, for x ∈ [0, L] and Φ ∈ R,

jLi(x,Φ) =
{
j

Li(x, ce(x), cs,B(x), T,Φ + η0(x)) x ∈ Jδ,
0 x ∈ (L1, L1 + δ).

(78)

Notice that
jLi(x, φs(x)− ϕe,Li(x)) = jLi(x, ce(x), cs,B(x), ϕe(x), φs(x), T ). (79)

We also define

jLi
0 (x) = jLi(x, 0) (80)

which corresponds to jLi|φs−ϕe,Li=0.

Remark 3.1. Given (ce, cs,B, T ) ∈ KX , due to (35) and (36) we have jLi
0 ∈ L∞(0, L) ∩ C(Jδ).

Proof of Proposition 2.16. We rewrite (41)–(42) in terms of ϕe,Li, defining κ̃(x) = κ(ce(x), T ) ∈ C([0, L]),
as ∫ L

0
κ̃
∂ϕe,Li

∂x

dψe

dx −
∫
Jδ

jLiψe dx = 0,∫
Jδ

σ
∂φs

∂x

dψs

dx dx+
∫
Jδ

jLiψs dx = − I
A

(ψs(L)− ψs(0)), ∀(ψe, ψs) ∈ Xφ.
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Adding both equations we obtain that (41)–(42) is equivalent to∫ L

0
κ̃
∂ϕe,Li

∂x

dψe

dx dx+
∫
Jδ

σ
∂φs

∂x

dψs

dx dx+
∫
Jδ

jLi(ψs − ψe) dx = − I
A

(ψs(L)− ψs(0)), ∀(ψe, ψs) ∈ Xφ.

(81)
Let us define, for x ∈ [0, L] and Φ ∈ R,

ĵLi(x,Φ) = jLi(x,Φ)− jLi
0 (x). (82)

Notice that ĵLi(x, 0) = 0. We can rewrite (81) as∫ L

0
κ̃
∂ϕe,Li

∂x

dψe

dx dx+
∫
Jδ

σ
∂φs

∂x

dψs

dx dx+
∫
Jδ

ĵLi(x, φs − ϕe,Li)(ψs − ψe) dx

= − I
A

(ψs(L)− ψs(0))−
∫
Jδ

jLi
0 (x)(ψs − ψe) dx.

Let us define the operator A1 : XΦ → X∗φ by

〈A1(ϕe,Li, φs), (ψe, ψs)〉 =
∫
Jδ

ĵLi(x, φs − ϕe,Li)(ψs − ψe) dx,

for all (ϕe,Li, φs), (ψe, ψs) ∈ Xφ. Since H1(Jδ) ⊂ C(Jδ) and (ϕe,Li, φs) ∈ Xφ → ĵLi(x, φs − ϕe,Li) ∈ C(Jδ)
is bounded and continuous (due to (35) and (36)) we have that A1 : Xφ → X∗φ is bounded continuous.
Furthermore, applying (79), (82) and Remark 2.4 (due to Assumption 2.3), we can show that A1 is a
monotone operator since, for all (ϕe,Li, φs), (ϕ̃e,Li, φ̃s) ∈ Xφ we have that

〈A1(ϕe,Li, φs)−A1(ϕ̃e,Li, φ̃s), (ϕe,Li, φs)− (ϕ̃e,Li, φ̃s)〉

=
∫
Jδ

(
ĵLi(x, φs − ϕe,Li)− ĵLi(x, φ̃s − ϕ̃e,Li)

)(
φs − ϕe,Li − (φ̃s − ϕ̃e,Li)

)
dx

=
∫
Jδ

(
jLi(x, φs − ϕe,Li)− jLi(x, φ̃s − ϕ̃e,Li)

)(
φs − ϕe,Li − (φ̃s − ϕ̃e,Li)

)
dx

=
∫
Jδ

(
j

Li(x, ce, cs,B, φs − ϕe,Li + η0)− jLi(x, ce, cs,B, T, φ̃s − ϕ̃e,Li + η0)
)

×
(
φs − ϕe,Li − (φ̃s − ϕ̃e,Li)

)
dx

=
∫
Jδ

FLi(x, ce(x), cs(x), T, η(x), η̃(x))
(
φs − ϕe,Li − (φ̃s − ϕ̃e,Li)

)2
dx

for all (ϕe,Li, φs), (ψe, ψs) ∈ Xφ, due to (38) (which is true due to Assumption 2.3), where

η(x) = φs(x)− ϕe,Li(x)− αϕeTfϕe(ce)− U(x, ce, cs, T ),

η̃(x) = φ̃s(x)− ϕ̃e,Li(x)− αϕeTfϕe(ce)− U(x, ce, cs, T ).

Therefore, for all (ψe, ψs) ∈ Xφ,

〈A1(φs, ϕe,Li)−A1(φ̃s, ϕ̃e,Li), (φs, ϕe,Li)− (φ̃s, ϕ̃e,Li)〉 ≥ C
∫
Jδ

(
φs − ϕe,Li − (φ̃s − ϕ̃e,Li)

)2
dx, (83)

where

C = C
(
ce, cs, T, φs − ϕe,Li, (φ̃s − ϕ̃e,Li)

)
= min
x∈Jδ

∫
Jδ

FLi(x, ce(x), cs(x), T, η(x), η̃(x)) > 0.

Let the operator A : Xφ → X∗φ be defined by:

〈A(φs, ϕe,Li), (ψs, ψe)〉 =
∫ L

0
κ̃
∂ϕe,Li

∂x

dψe

dx dx+
∫
Jδ

σ
∂φs

∂x

dψs

dx dx+ 〈A1(φs, ϕe,Li), (ψs, ψe)〉. (84)

18



Then A is a bounded, continuous, monotone operator. Moreover, it is coercive due to the Poincaré-
Wirtinger inequality ‖ϕe,Li‖L2(0,L) ≤ C‖∇ϕe,Li‖L2(0,L) and (83). Hence, there exists a unique solution of
the system (7)-(8), due to the Minty-Browder theorem.

Remark 3.2. Of course if (ϕe, φs) is a solution of the system (7)-(8) and C is a constant then (ϕe +
C, φs + C) is also a solution. However, there exists only one solution in Xφ.

Remark 3.3. The main part of the proof above was to apply the monotonicity of jLi with respect to
φs − ϕe,Li. The idea behind this monotonicity method has to do with the convexity of the associated
energy functional.

We have so far proved that the map Gφ given by (54) is well-defined. We prove now, applying the
Implicit Function Theorem, that this map is C1.

Proof of Proposition 2.17. We will apply the implicit function theorem for the Banach space-valued map-
ping F : X̂ × Ŷ → Ẑ, to solve for an operator Ĝφ : U ⊂X̂ → Ŷ in an expression of the form

F (x̂, Ĝφ(x̂)) = 0, for all x̂ ∈ U. (85)

The choice of functional spaces will be

X̂ = C>k0([0, L])× R×KX , Ŷ = Xφ, Ẑ = X∗φ, (86)

with
C>κ0([0, L]) = {κ̃ ∈ C([0, L]) : κ̃ > κ0}, for some κ0 > 0. (87)

We will then check that

Gφ(ce, cs,B, T, I) = Ĝφ(κ(ce, T ), I, ce, cs,B, T ) + (αϕeTfϕe(ce), 0), (88)

due to the definition of ϕe,Li (see (52)). Notice that X̂ is an open set of a Banach space, and therefore
we can consider the Implicit Function Theorem (see, e.g., [24]) in this setting. We will use the notation

x̂ = (κ̃, I, ce, cs,B, T )∈ X̂, ŷ = (ϕe,Li, φs) = (u, v)∈ Ŷ .

We consider the maps A1, A2, A3, A4 : X̂ × Ŷ → Ẑ, given by

A1(x̂, ŷ)(ψe, ψs) = A1(x̂, u)(ψe) =
∫ L

0
κ̃(x)u′(x)ψ′e(x) dx

A2(x̂, ŷ)(ψe, ψs) = A2(v)(ψs) =
∫
Jδ

σ(x)v′(x)ψ′s(x) dx

η0(x, x̂(x)) = −αϕeTfϕe(ce(x))− U(x, ce(x), cs,B(x), T )

A3(x̂, ŷ)(ψe, ψs) =
∫
Jδ

j
Li(x, x̂(x), v(x)− u(x) + η0(x, x̂(x))) · (ψs(x)− ψe(x)) dx

A4(x̂, ŷ)(ψe, ψs) = A4(I)(ψs) = I

A
(ψs(L)− ψs(0))

F = A1 + · · ·+A4.

Our definition of weak solution is precisely

F (x̂, ŷ) = 0
Ẑ
. (89)

The function A4 is linear and continuous, therefore C∞. It is automatic to see that

D
ŷ
A4 = 0.

On the other hand, A1, A2 are multilinear and continuous, and therefore of class C1. In particular, for
ŷ = (u, v), ¯̂y = (ū, v̄) ∈ XΦ we have

DuA1(κ̃, u)(ū) = A1(κ̃, ū)
DvA2(u)(v̄) = A2(v̄)
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Since ∂j
Li

∂η is of class C1 (see (35) in Assumption 2.3), then A3 is also of class C1 and

D(u,v)A3(x̂, u, v)(ū, v̄)(ψe, ψs) =
∫
Jδ

g(v̄ − ū)(ψs − ψe) dx.

where, for x ∈ Jδ,

g(x) = ∂j
Li

∂η
(x, x̂(x), v(x)− u(x) + η0(x, x̂(x))).

Let x̂0 = (κ̃, ce, cs,B, T ) ∈ X̂, and let ŷ0 = (u0, v0) = (ϕe,Li, φs) ∈ Xφ be the solution found in Proposition
2.16. Then g(x) > 0 is in C(Jδ). Therefore, there exists a constant g0 such that g(x) ≥ g0 > 0 in Jδ.
Then

D(u,v)F (x̂0, ŷ0) : (ū, v̄) ∈ Xφ → X∗φ

understood as a bilinear form

G((ū, v̄), (ψe, ψs)) =
∫ L

0
κ̃ū′ψ′e +

∫
Jδ

σv̄′ψ′s +
∫
Jδ

g(x)(ū− v̄)(ψs − ψe),

is continuous and coercive in Xφ×Xφ. Therefore, by Lax-Milgram’s theorem D(u,v)F (x̂0, ŷ0) is bijective.
Then, by the Implicit Function Theorem applied to F , there exists a unique C1 function Ĝφ : U → Xφ,
defined in a neighbourhood U of x̂0 in X̂, such that (85) holds.
Since (ce, T ) ∈ H1(0, L) × R 7→ κ(ce, T ) ∈ C([0, L]) is also C1 (the function κ is of class C2 due to
Assumptions 2.2) we have that the map

(ce, cs,B, T, I) ∈ KX × R J7−→ (κ(ce, T ), I, ce, cs,B, T ) ∈ X̂

is C1. Let us choose a point (c0e , c0s,B, T 0, I0) ∈ KX ×R, and let x̂0 = (κ(c0e , T 0), I0, c0e , c
0
s,B, T

0) ∈ X̂. Let
U ⊂ X̂ be a suitable neighbourhood of x̂0 so that Ĝφ : U → Xφ is defined satisfying (85). Taking the
neighbourhood of (c0e , c0s,B, T 0, I0) given by V = J−1(U) ⊂ KX × R, the composition

(ce, cs,B, T, I) ∈ V J7−→ (κ(ce, T ), I, ce, cs,B, T ) ∈ U Ĝφ7−→ (ϕe,Li, φs) ∈ Xφ

is C1. We finally consider the following translation (which is also of class C1)

τ : V ×Xφ −→ H1(0, L)×H1(Jδ)
(ce, cs,B, T, I, ϕe,Li, φs) 7−→ (ϕe, φs) = (ϕe,Li + αϕeTfϕe(ce), φs).

Due to the uniqueness (up to a constant) result we proved in Proposition 2.16,

τ ◦ (Id, Ĝφ ◦ J) : V ⊂ KX × R −→ H1(0, L)×H1(Jδ)

is the map Gφ|V (as constructed in (54) through Proposition 2.16). Thus, Gφ is of class C1 in a neigh-
bourhood of (c0e , c0s,B, T 0, I0). Since this argument holds over any point (c0e , c0s,B, T 0, I0) ∈ KX × R, we
have shown that Gφ is of class C1 over KX × R. This implies that G̃φ is also C1 and it concludes the
proof.

Therefore, as an immediate consequence of Proposition 2.17, we have the following lemma in terms
of the space of piecewise continuous functions Cpart defined by (33):

Lemma 3.4. Let I ∈ C([0, t0]) then G̃φ,t : C([0, t0],KX)→ C([0, t0],KZ) is locally Lipschitz continuous.
If I ∈ Cpart([0, t0]) then G̃φ,t : C([0, t0],KX)→ Cpart([0, t0],KZ) is locally Lipschitz continuous.
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4. Regularity of the Green operators Gce,t and Gcs,B,t

The regularity of Gce,t is a well-known property:

Gce,t0 : L2((0, t0)× (0, L))→ C([0, t0];H1(0, L)).

This operator has a nice representation formula

(Gce,t0f)(t) = S(t)ce,0 +
∫ t

0
S(t− s)f(s) ds,

where S(t)u0 is the solution of 
∂u

∂t
− ∂

∂x

(
De

∂ce
∂x

)
= 0, (0, L)× R,

∂u

∂x
= 0, {0, L} × R,

u(0) = u0, t = 0.

A number of properties can be easily derived from this expression. For instance, the continuous depen-
dence with respect to the data:

‖Gce,t0f −Gce,t0g‖C([0,t0];H1(0,L)) ≤ ρ(t0)‖f − g‖L2(0,t0;H1(0,L)),

where ρ is and increasing, continuous function such that ρ(0) = 0.
The term Gcs,B,t is a little trickier. First we recall (see [3, 28]) that, for any q > 2:

Gcs,R,t0 : C((0, R))× Lq(0, t0)→ C([0, t0]× [0, R]),

and
‖Gcs,R,t0(u0, g)‖L∞(0,t0;L∞(BR)) ≤ C(‖u0‖L∞(BR) + ‖g‖Lq(0,t0)).

Therefore, due to the linearity of the equation, for x, y in the same connected component of Jδ, we have
that:

‖Gcs,R,t0(u0, g)−Gcs,R,t0(v0, h)‖L∞(0,T ;L∞(BR)) ≤ C(‖u0 − v0‖L∞(BR) + ‖g − h‖Lq(0,T )).

This solves the problem of continuity of Gcsg with respect to x via the continuous dependence of the
operator. Since cs,0 is continuous, working in each component we can prove directly that

Gcs,B,t0 : C(Jδ;Lq(0, t0))→ C(Jδ × [0, t0]),

is Lipschitz continuous. Furthermore it is easy to check that

Gcs,B,t0 : C(Jδ × [0, t0])→ C(Jδ × [0, t0]).

We also have the following time estimate, for t0 ≥ 0,

‖Gcs,B,t0g −Gcs,B,t0h‖L∞([0,t0]×Jδ) ≤ Ct
1
q

0 ‖g − h‖L∞((0,t0)×Jδ).

By defining the vectorial Green operator for the evolutionary part

Gt = (Gce,tGcs,t, GT,t) : C([0, t];Y )→ C([0, t];X),

due to the previous results, we have

‖Gty−Gtŷ‖C([0,t];X) ≤ ρ(t)‖y− ŷ‖C([0,t];Y ), (90)

where ρ is a continuous function such that ρ(0) = 0.
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5. Proof of Theorem 1

Proof of Theorem 1. First, let us assume that I is continuous. Let us define the function

f(ce, cs,B, ϕe, φs, T ) =
(
αe(x)NjLi(ce, cs,B, ϕe, φs, T ),

αφsNjLi(ce, cs,B, ϕe, φs, T ),

− hAs(T − Tamb) + FT

)
.

It is clear that f : KX → Y is locally Lipschitz continuous (due to the definition and regularity of NjLi

and FT ). Let us define, for any t > 0,

ft : C([0, t];KX)→ C([0, t];Y ),

by ft(x)(s) = f(x(s)) for s ∈ [0, t]. This operator is also locally Lipschitz continuous. Let x = (ce, cs,B, T ).
Then we can rewrite the fixed point problem (49) (which was our definition of weak-mild solution of (5)-
(9)) as

x = Gt ◦ ft ◦ G̃φ,t(x). (91)

Since ft ◦ G̃φ,t : C([0, t0],KX) → C([0, t0], Y ) is locally Lipschitz continuous (due to Lemma 3.4), we can
set a bounded neighbourhood U ⊂ KX around x(0) = (ce(0), cs,B(0), T (0)) ∈ KX , and a bounded set
V ⊂ Y , such that the composition

ft ◦ G̃φ,t0 : C([0, t0],U)→ C([0, t0],V)

is globally Lipschitz continuous. Due to the continuity of Gt and the fact that G0 ≡ x(0) ∈ KX , there
exists t1 > 0 such that

Gt1 : C([0, t1],V)→ C([0, t1],U).
Therefore, due to (90), we obtain that, for t2 = min{t0, t1} > 0 we have that

Gt2 ◦ ft ◦ G̃φ,t2 : C([0, t2],U)→ C([0, t2],U)

is a contracting map. Then, we can apply the Banach fixed point theorem to find a unique solution of
problem (91). If I is Cpart then one can simply paste the mild solutions from the different time partitions.
In this sense there exists a unique “piecewise weak-mild solution”.
Applying classical results, there exists a maximal existence time tend ≤ tIend. If tend < tIend then
d(x(t), ∂KX) → 0 or ‖x(t)‖X → +∞ as t → tend. This is equivalent to (29) and the proof is com-
plete.

6. Proof of Theorem 2

There are a number of papers studying the semilinear equation ut − ∆u = f(u) with Robin type
boundary conditions, and its eventual possible blow up, depending on the growth of f . Some of the most
classical results are due to Amann [1] (for some more recent works, see e.g., [29]).

Let us assume that the solution (ce, cs,B, ϕe, φs, T ) is defined in [0, t0), where 0 < t0 < tIend, and
assume that (30) does not hold as t↗ t0. We will show that (29) does not hold, and therefore tend > t0.
We can think of the problem written in the following way

∂ce
∂t
− ∂

∂x

(
De

∂ce
∂x

)
+ C1c

αa+γ2
(
αϕe +µ(T̂ )

T̂

)
e = C2c

αa−γ1
(
αϕe +µ(T̂ )

T̂

)
e ≥ 0,

where C1 and C2 are functions which we will show can be estimated. We can define

µ = max
[0,L]×[0,t0]

(
αϕe + µ(x, T (t))

T (t)

)
,

µ = min
[0,L]×[0,t0]

(
αϕe + µ(x, T (t))

T (t)

)
≥ 1,

C1 = max
x∈Jδ

(δ1 + δ2)
(

max
[0,L]

αe

)
exp

(
γ1 + γ2

min[0,t0] T (t) (‖ψs − ϕe‖L∞ + ‖p‖L∞)
)
.
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Notice that, since cs,max < 1, we can conclude that 0 ≤ C1, C2 ≤ C1. Finally, we can define some
increasing continuous functions β1, β2 such that β1(0) = β2(0) = 0, with β2 Lipschitz continuous and

max{sαa−γ1µ, sαa−γ1µ} ≤ β1(s) ≤ 1 + s,

β2(s) ≥ max{sαa+γ2µ, sαa+γ2µ},

so that we can construct the supersolution ce and subsolution ce defined as solutions, respectively, of
∂ce
∂t
− ∂

∂x

(
De

∂ce
∂x

)
= Cβ1(ce) (x, t) ∈ (0, L)× (0, tend),

ce(0) = ce,0 t = 0,
∂nce = 0 x ∈ {0, L},
∂ce

∂t
− ∂

∂x

(
De

∂ce

∂x

)
+ Cβ2(ce) = 0 (x, t) ∈ (0, L)× (0, tend),

ce(0) = ce,0 t = 0,
∂nce = 0 x ∈ {0, L}.

Using the conditions on the exponents given by Assumptions 2.24, we deduce that ce, ce are continuous,
globally defined in time and

min
[0,L]×[0,t0]

ce > 0 max
[0,L]×[0,t0]

ce < +∞.

We also have that 
∂cs
∂t
− Ds

r2
∂

∂r

(
r2 ∂cs
∂r

)
= 0, (x, r, t) ∈ Dδ × (0, t0),

∂cs
∂r

+ C3c
αs+γ1

λmin(x,T )
Ts = αcsj

Li
− ≥ 0, r = Rs(x),

cs = cs,0 t = 0,

where C3 is a suitable function, such that if we define

λmin = min
[0,L]×[0,t0]

λmin(x, T (t))
T (t) ,

λmin = max
[0,L]×[0,t0]

λmin(x, T (t))
T (t)

C3 = max
x∈Jδ

(δ1 + δ2)
(

max
[0,L]

αs

)(
max

α∈{αa±γ1,2µ,αa±γ1,2µ}
‖ce‖αL∞

)

× exp
(

1
min[0,t0]T (t)max{γ1, γ2}(‖ψs − ϕe‖L∞ + ‖p‖L∞)

)
,

then 0 ≤ C3 ≤ C3. Now, let β3 be a monotone increasing locally Lipschitz continuous function such that
β3(0) = 0 and

β3(s) ≥ max{sαcs+γ1λmin , sαcs+γ1λmin}.

We construct the subsolution cs, for every t0 < +∞, as the solution of
∂cs

∂t
− Ds

r2
∂

∂r

(
r2 ∂cs

∂r

)
= 0, (x, y, t) ∈ (x, r, t) ∈ Dδ × (0, t0),

∂ncs + C3σ(cs) = 0, r = Rs(x),
cs(x, y, t) = min

σ∈Jδ
cs,0(σ, y) t = 0,
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so that, by the comparison principle, we have that 0 < cs ≤ cs, (by applying Assumptions 2.24). Finally,
if we write

∂

∂t
(cs,max − cs)−

Ds

r2
∂

∂r

(
r2 ∂(cs,max − cs)

∂r

)
= 0 (x, y, t) ∈ (x, r, t) ∈ Dδ × (0, t0),

∂

∂r
(cs,max − cs) + C4(cs,max − cs)βa+γ2

λmax(T )
T = jLi

+ ≥ 0 r = Rs(x),

cs,max − cs = cs,max − cs,0 t = 0,

(92)

since 0 ≤ C4 ≤ C3, if we introduce

λmax = min
[0,L]×[0,t0]

λmax(x, T (t))
T (t) ,

λmax = max
[0,L]×[0,t0]

λmax(x, T (t))
T (t)

and define β4 as a monotone increasing locally Lispchitz continuous function such that β4(0) = 0 and

β4(s) ≥ max
{
sαcs+γ2λmax , sαcs+γ2λmax

}
then, by defining c̃s as the solution of

∂c̃s
∂t
− Ds

r2
∂

∂r

(
r2 ∂c̃s
∂r

)
= 0 (x, y, t) ∈ D3D

δ × (0, t0),

∂

∂r
c̃s + C3β4(c̃s) = 0 |y| = Rs(x)

c̃s(x, y, t) = min
σ∈Jδ

(cs,max − cs,0(σ, y)) t = 0,

we arrive to the definition of the searched function cs = cs,max − c̃s. We have that c̃s > 0 (due to
Assumption 2.24) and c̃s is a subsolution of (92). Hence c̃s ≤ cs,max − cs. Therefore we have that
cs ≤ cs < cs,max. Putting these two bounding solutions together we conclude

0 < cs ≤ cs ≤ cs < cs,max.

Hence (29) does not hold as t ↗ t0. Applying Theorem 1 we obtain that tend > t0. Therefore, either
tend = tIend or (30).

7. Proof of a global in time existence result

7.1. On the truncated potential case. Proof of Theorem 3
Proof of Theorem 3. Assume that (32) does not hold as t → t0 with 0 < t0 < tIend. We can substitute
the constants in the proof of Proposition 3

C1 = max
x∈Jδ

(δ1 + δ2)
(

max
[0,L]

αe

)
exp

(
γ1 + γ2

min[0,t0] T
‖p‖L∞

)
, (93)

C3 = max
x∈Jδ

(δ1 + δ2)
(

max
[0,L]

αs

)(
max

α∈{αa±γ1,2µ,αa±γ1,2µ}
‖ce‖αL∞

)
‖H‖L∞ exp

(
γ1 + γ2

min[0,t0] T
‖p‖L∞

)
, (94)

and repeat the argument. We get good bounds for ce, cs,B for t ∈ [0, t0], which do not depend on
‖φs − ϕe,Li‖L∞ . Hence, applying Lemma 3.4 we can obtain some estimates of φs and ϕe,Li in [0, t0].
Therefore, by Theorem 2, we have that tend > t0. Hence, by contraposition, if tend < tIend then (32) must
hold.

7.2. On the truncated temperature case. Proof of Theorem 4
Proof of Proposition 4. It is immediate to establish global sub and supersolutions for T , which ensure
(32) does not happen, and hence we get the global existence of solutions.
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8. Final remarks

8.1. Mass conservation and derived properties
We begin by analyzing the compatibility conditions for the elliptic problems with Neumann boundary

conditions. The compatibility conditions for the existence of φs are∫ L1

0
jLi dx = +I(t)

A
,

∫ L

L1+δ
jLi dx = −I(t)

A
. (95)

Hence, we deduce that ∫ L

0
jLi dx = 0. (96)

This is also the compatibility condition for system (8).
Let us take a look at the mass balance condition. From system (6) we observe that

d
dt

(∫ L

0
ce dx

)
=
∫ L

0

(
∂

∂t
ce

)
dx =

∫ L

0
αej

Li dx+De

(
∂ce
∂x

(L)−∂ce
∂x

(0)
)

= 0.

Thus, as expected, the mathematical model satisfies that the total concentration in the electrolyte is
constant. Since ce ≥ 0 (we have constructed the convex spaces KX and KZ so that the solution of the
mathematical model satisfies this condition, which is consistent with the physics of the problem since it
is a concentration) this conclusion also implies that ‖ce‖L1(0,L) is constant. In other words, as a whole,
the electrolyte is saturated of Lithium. Any Lithium contribution from an electrode is immediately com-
pensated somewhere else.

In fact, if one considers the Lithium concentration in the anode and cathode, for the pseudo two-
dimensional (P2D) model considered here, one gets

d
dt

4π
L1∫
0

Rs,−∫
0

csr
2 dr dx

 = 4π
L1∫
0

Rs,−∫
0

∂cs
∂t
r2 dr dx = 4π

L1∫
0

Rs,−∫
0

Ds
∂

∂r

(
r2 ∂cs
∂r

)
dr dx

= −4π
∫ L1

0
R2

s,−αs,−j
Li dx = −4π

R2
s,−αs,−I(t)

A
,

and, analogously,

d
dt

4π
L∫

L1+δ

Rs,+∫
0

csr
2 dr dx

= +4π
R2

s,+αs,+I(t)
A

.

If
R2

s,+αs,+ = R2
s,−αs,−, (97)

then the P2D model satisfies that any lose of Lithium in its anode is instantaneously received by its cath-
ode and viceversa. Otherwise, there would appear to be a net variation in the total amount of Lithium
in the solid phase.

The state of the charge at time t of the cell, SOC(t), can be then estimated as a normalized average
of the mass of Lithiun in one of the electrodes, typically the negative one (see [31]):

SOC(t) = 3
L1(Rs,−)3

∫ L1

0

∫ Rs,−

0
r2 cs(r, t;x)

cs,max
dr dx.
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8.2. Model validation and identification of parameters
In order to validate the model and identify suitable parameters, it is often necessary to compare the

solutions of the model with real-world data and minimize some error functional using suitable parameter
identification techniques and minimization algorithms (see, e.g., [19, 22, 23]). Since internal properties
of the battery such as the spatial distribution of Lithium ions cannot be measured during operation, it is
standard to measure only the temperature T (on the outside of the battery, but it is a safe assumption
that the temperature is spatially homogeneous) and the output voltage V (see, for example, [5, 37]),
which can be estimated by using (25).

9. Conclusions

In this work, we have shown that the system of equations (5)–(9) has a unique solution (under some
mild conditions). In the most general setting, only local in time existence result can be shown, and the
nature of the possible blow-up is characterized. The most difficult part of the study of an eventual possible
blow-up is the structure of the open circuit potential U . By considering the model of U given by (56),
which was proposed in [32], we can rule out some non-physical behaviours as the possible causes of blow-
up, by making some assumptions on the coefficients. Finally, for the sake of mathematical completeness,
we provide some extra conditions that allow for global uniqueness in time and make some comments
regarding the conservation of Lithium in the model and the model validation.
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