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Abstract. In this paper, we consider the different eigenvalue condition numbers for matrix
polynomials used in the literature and we compare them. One of these condition numbers is a
generalization of the Wilkinson condition number for the standard eigenvalue problem. This number
has the disadvantage of only being defined for finite eigenvalues. In order to give a unified approach
to all the eigenvalues of a matrix polynomial, both finite and infinite, two (homogeneous) condition
numbers have been defined in the literature. In their definition, very different approaches are used.
One of the main goals of this note is to show that, when the matrix polynomial has a moderate
degree, both homogeneous numbers are essentially the same and one of them provides a geometric
interpretation of the other. We also show how the homogeneous condition numbers compare with
the “Wilkinson-like” eigenvalue condition number and how they extend this condition number to
zero and infinite eigenvalues.
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1. Introduction. Let C denote the field of complex numbers. A square matrix
polynomial of grade k can be expressed (in its non-homogeneous form) as

P (λ) =

k∑
i=0

λiBi, Bi ∈ Cn×n, (1.1)

where the matrix coefficients, including Bk, are allowed to be the zero matrix. In
particular, when Bk 6= 0, we say that P (λ) has degree k. Throughout the paper, the
grade of every matrix polynomial P (λ) will be assumed to be its degree unless it is
specified otherwise.

The (non-homogeneous) polynomial eigenvalue problem (PEP) associated with a
regular matrix polynomial P (λ), (that is, det(P (λ)) 6= 0) consists of finding scalars
λ0 ∈ C and nonzero vectors x, y ∈ Cn satisfying

P (λ0)x = 0 and y∗P (λ0) = 0.

The vectors x and y are called, respectively, a right and a left eigenvector of P (λ)
corresponding to the eigenvalue λ0. In addition, P (λ) may have infinite eigenvalues.
We say that P (λ) has an infinite eigenvalue if 0 is an eigenvalue of the reversal of
P (λ), where the reversal of a matrix polynomial P (λ) of grade k is defined as

rev(P (λ)) := λkP (1/λ) . (1.2)

The numerical solution of the PEP has received considerable attention from many
research groups in the last two decades and, as a consequence, several condition
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numbers for simple eigenvalues of a matrix polynomial P (λ) have been defined in
the literature to determine the sensitivity of these eigenvalues to perturbations in the
coefficients of P (λ) [2, 3, 8]. One of these condition numbers is a natural generalization
of the Wilkinson condition number for the standard eigenproblem (see Definition 2.1).
A disadvantage of this eigenvalue condition number is that it is not defined for infinite
eigenvalues. Then, in order to study the conditioning of all the eigenvalues of a matrix
polynomial, other condition numbers are considered in the literature. These condition
numbers assume that the matrix polynomial is expressed in homogeneous form, that
is,

P (α, β) =

k∑
i=0

αiβk−iBi. (1.3)

If P (α, β) is regular, we can consider the corresponding homogeneous PEP that
consists in finding pairs of scalars (α0, β0) 6= (0, 0) and nonzero vectors x, y ∈ Cn such
that

P (α0, β0)x = 0 and y∗P (α0, β0) = 0. (1.4)

We note that the pairs (α0, β0) satisfying (1.4) are those for which det(P (α0, β0)) = 0
holds. Notice that (α0, β0) satisfies det(P (α0, β0)) = 0 if and only if det(P (cα0, cβ0)) =
0 for any nonzero complex number c. Therefore, it is natural to define an eigenvalue
of P (α, β) as any line in C2 passing through the origin consisting of solutions of
det(P (α, β)) = 0. For simplicity, we denote such a line, i.e., an eigenvalue of P (α, β),
as (α0, β0) and by [α0, β0] 6= (0, 0) a specific representative of this eigenvalue. The
vectors x, y in (1.4) are called, respectively, a right and a left eigenvector of P (α, β)
corresponding to the eigenvalue (α0, β0). For β 6= 0, we can define λ = α/β and find
a relationship between the homogeneous and the non-homogeneous expressions of a
matrix polynomial P of degree k as follows:

P (α, β) = βkP (λ).

We note also that, if (y, λ0, x) is a solution of the non-homogeneous PEP, i.e.,
an eigentriple of the non-homogeneous PEP, then (y, (α0, β0), x) is a solution of the
corresponding homogeneous PEP, for any [α0, β0] 6= (0, 0) such that λ0 = α0/β0,
including λ0 =∞ for β0 = 0.

Two homogeneous eigenvalue condition numbers (well defined for all the eigen-
values of P (α, β), finite and infinite) have been presented in the literature. One of
them is a natural generalization of the condition number defined by Stewart and Sun
in [7, Chapter VI, Section 2.1] for the eigenvalues of a pencil. This condition number
is defined in terms of the chordal distance between two lines in C2 (see Definition
2.12).

The other homogeneous eigenvalue condition number is defined as the norm of a
differential map [2, 3]. The definition of this condition number is very involved and
less intuitive than the definition of the other condition numbers that we consider in
this paper. For an explicit formula for this condition number, see Theorem 2.6.

In this paper we address the following natural questions:
• how are the two homogeneous eigenvalue condition numbers related? Are

they equivalent?
• if λ0 is a finite nonzero eigenvalue of a matrix polynomial P (λ) and (α0, β0)

is the associated eigenvalue of P (α, β) (that is, λ0 = α0/β0), how are the
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(non-homogeneous) absolute and relative eigenvalue condition numbers of λ0
and the (homogeneous) condition numbers of (α0, β0) related? Are these two
types of condition numbers equivalent in the sense that λ0 is ill-conditioned
if and only if (α0, β0) is ill-conditioned?

Partial answers to these questions are scattered in the literature written in an
implicit way so that they seem to be unnoticed by most researchers in Linear Alge-
bra. Our goal is to present a complete and explicit answer to these questions. More
precisely, we provide an exact relationship between the two homogeneous eigenvalue
condition numbers and we use this relationship to prove that they are equivalent.
Also, we obtain exact relationships between each of the non-homogeneous (relative
and absolute) and the homogeneous eigenvalue condition numbers. From these re-
lationships we prove that the non-homogeneous condition numbers are always larger
than the homogeneous condition numbers. This means that non-homogenous eigen-
values λ0 are always more sensitive to perturbations than the corresponding homo-
geneous ones (α0, β0), which is natural since λ0 = α0/β0. Moreover, we will see
that non-homogeneous eigenvalues with large or small moduli have much larger non-
homogeneous than homogeneous condition numbers. Thus, in these cases, (α0, β0) can
be very well-conditioned and λ0 very ill-conditioned. In the context of this discussion,
it is important to bear in mind that in most applications of PEPs the quantities of
interest are the non-homogeneous eigenvalues, and not the homogeneous ones.

The paper is organized as follows: Section 2 includes the definitions and expres-
sions of the different condition numbers that are used in this work. In section 3, we
establish relationships between the condition numbers introduced in section 2, and in
section 4 we present a geometric interpretation of these relationships. Section 4 also
includes a study of the computability of small and large eigenvalues. Finally, some
conclusions are discussed in section 5.

2. Eigenvalue condition numbers of matrix polynomials. In this section
we recall three eigenvalue condition numbers used in the literature and discuss some
of the advantages and disadvantages of each of them. Before recalling their definition,
we present some notation that will be used throughout the paper.

Let a and b be two integers. We define

a : b =

{
a, a+ 1, a+ 2, . . . , b, if a ≤ b,

∅, if a > b.

For any matrix A, ‖A‖2 denotes its spectral or 2-norm, i.e., its largest singular value
[7]. For any vector x, ‖x‖2 denotes its standard Euclidean norm, i.e., ‖x‖2 = (x∗x)1/2,
where the operator ()∗ stands for the conjugate-transpose of x.

2.1. Non-homogeneous eigenvalue condition numbers. Next we recall the
definition of two versions (absolute and relative) of a normwise eigenvalue condition
number introduced in [8].

Definition 2.1. Let λ0 be a simple, finite eigenvalue of a regular matrix polyno-
mial P (λ) =

∑k
i=0 λ

iBi of grade k and let x be a right eigenvector of P (λ) associated
with λ0. We define the normwise absolute condition number κa(λ0, P ) of λ0 by

κa(λ0, P ) := lim
ε→0

sup

{
|∆λ0|
ε

: [P (λ0 + ∆λ0) + ∆P (λ0 + ∆λ0)](x+ ∆x) = 0,

‖∆Bi‖2 ≤ ε ωi, i = 0 : k

}
,
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where ∆P (λ) =
∑k
i=0 λ

i∆Bi and ωi, i = 0 : k, are nonnegative weights that allow
flexibility in how the perturbations of P (λ) are measured.

For λ0 6= 0, we define the normwise relative condition number κr(λ0, P ) of λ0 by

κr(λ0, P ) := lim
ε→0

sup

{
|∆λ0|
ε|λ0|

: [P (λ0 + ∆λ0) + ∆P (λ0 + ∆λ0)](x+ ∆x) = 0,

‖∆Bi‖2 ≤ ε ωi, i = 0 : k

}
.

We will refer to κa(λ0, P ) and κr(λ0, P ), respectively, as the absolute and rel-
ative non-homogeneous eigenvalue condition numbers. Note that the absolute non-
homogeneous condition number is not defined for infinite eigenvalues while the relative
condition number is not defined for zero or infinite eigenvalues.

Remark 2.2. In the definitions of κa(λ0, P ) and κr(λ0, P ), the weights ωi can
be chosen in different ways. The most common ways are: 1) ωi = ‖Bi‖2 (relative
coefficient-wise perturbations); 2) ωi = max

i=0:k
{‖Bi‖2} (relative perturbations with re-

spect to the norm of P (λ)); 3) ωi = 1 (absolute perturbations).

An explicit formula for each of the non-homogeneous eigenvalue condition num-
bers presented above was obtained by Tisseur in [8].

Theorem 2.3. Let P (λ) be a regular matrix polynomial of grade k. Let λ0 be a
simple, finite eigenvalue of P (λ) and let x and y be, respectively, a right and a left
eigenvector of P (λ) associated with λ0. Then,

κa(λ0, P ) =
(
∑k
i=0 |λ0|iωi)‖y‖2‖x‖2
|y∗P ′(λ0)x|

,

where P ′(λ) denotes the derivative of P (λ) with respect to λ. For λ0 6= 0,

κr(λ0, P ) =
(
∑k
i=0 |λ0|iωi)‖y‖2‖x‖2
|λ0||y∗P ′(λ0)x|

.

The following technical result will be useful for the comparison of the non-
homogeneous condition numbers introduced above and the homogeneous condition
numbers that we introduce in the next subsection. We will use the concept of reversal
of a matrix polynomial defined in (1.2).

Lemma 2.4. Let P (λ) =
∑k
i=0 λ

iBi be a regular matrix polynomial. Let λ0 be a
simple, nonzero, finite eigenvalue of P (λ). Then,

κa

(
1

λ0
, revP

)
=
κr(λ0, P )

|λ0|
and κr

(
1

λ0
, revP

)
= κr(λ0, P ).

Proof. We only prove the first claim. The second claim follows immediately from
the first.

Let x and y be, respectively, a right and a left eigenvector of P (λ) associated with
λ0. It is easy to see that these vectors are also a right and a left eigenvector of revP
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associated with 1
λ0

. Notice that

κa

(
1

λ0
, revP

)
=

(
∑k
i=0

∣∣∣ 1
λ0

∣∣∣k−i ωi)‖x‖2‖y‖2
|y∗(revP )′( 1

λ0
)x|

=
(
∑k
i=0 |λ0|

i
ωi)‖x‖2‖y‖2

|λ0|k|y∗(revP )′( 1
λ0

)x|
=

(
∑k
i=0 |λ0|

i
ωi)‖x‖2‖y‖2

|λ0|2|y∗λk−20 (revP )′( 1
λ0

)x|

=
(
∑k
i=0 |λ0|

i
ωi)‖x‖2‖y‖2

|λ0|2|y∗P ′(λ0)x|
=
κr(λ0, P )

|λ0|
,

where the fourth equality follows from the facts that revP (λ) = λkP ( 1
λ ) and P (λ0)x =

0, and the first and fifth equalities follow from Theorem 2.3. Thus, the claim follows.

2.2. Homogeneous eigenvalue condition numbers. As pointed out in the
last subsection, neither of the non-homogeneous condition numbers is defined for
infinite eigenvalues. Thus, these type of eigenvalues require a special treatment in
the non-homogeneous setting. In this section we introduce two condition numbers
that allow a unified approach to all eigenvalues, finite and infinite. These condition
numbers require the matrix polynomial to be expressed in homogeneous form (see
(1.3)). This is the reason why we refer to them as homogeneous eigenvalue condition
numbers.

Remark 2.5. We recall that (α0, β0) 6= (0, 0) is an eigenvalue of P (α, β) if and
only if λ0 := α0/β0 is an eigenvalue of P (λ), where λ0 =∞ if β0 = 0.

Each of the condition numbers presented in this subsection has been defined in the
literature with a different approach. One of them is due to Stewart and Sun [7], who
define the eigenvalue condition number in terms of the chordal distance between the
exact and the perturbed eigenvalues. The other approach is due to Dedieu and Tisseur
[2, 3] and makes use of the Implicit Function Theorem to construct a differential
operator whose norm is defined to be an eigenvalue condition number. This idea was
inspired by Shub and Smale’s work [6]. These two condition numbers do not have a
specific name in the literature. We will refer to them as the Stewart-Sun condition
number and the Dedieu-Tisseur condition number, respectively.

2.2.1. Dedieu-Tisseur condition number. The homogeneous eigenvalue con-
dition number that we present in this section has been often used in recent literature
on matrix polynomials as an alternative to the non-homogeneous Wilkinson-like con-
dition number. See, for instance, [4, 5]. We do not include its explicit definition
because it is much more involved than Definition 2.1. For the interested reader, the
definition can be found in [3]. The next theorem provides an explicit formula for this
condition number.

Theorem 2.6. [3, Theorem 4.2] Let (α0, β0) be a simple eigenvalue of the regular

matrix polynomial P (α, β) =
∑k
i=0 α

iβk−iBi, and let y and x be, respectively, a left
and a right eigenvector of P (α, β) associated with (α0, β0). Then, the Dedieu-Tisseur
condition number of (α0, β0) is given by

κh((α0, β0), P ) =

(
k∑
i=0

|α0|2i|β0|2(k−i)ω2
i

)1/2

‖y‖2‖x‖2
|y∗(β0DαP (α0, β0)− α0DβP (α0, β0))x|

,

(2.1)
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where Da ≡ ∂
∂a , that is, the partial derivative with respect to a and ωi, i = 0 : k

are nonnegative weights that define how the perturbations of the coefficients Bi are
measured.

It is important to note that the expression for this eigenvalue condition number
does not depend on the choice of representative for the eigenvalue (α0, β0).

2.2.2. Stewart-Sun condition number. Here we introduce another homoge-
neous eigenvalue condition number. Its definition is easy to convey and to interpret
from a geometrical point of view.

We recall that every eigenvalue of a homogeneous matrix polynomial can be seen
as a line in C2 passing through the origin. The condition number that we present
here uses the “chordal distance” between lines in C2 to measure the distance between
an eigenvalue and a perturbed eigenvalue. This distance is defined on the projective
space P1(C).

Before introducing the chordal distance, we recall the definition of angle between
two lines.

Definition 2.7. Let x and y be two nonzero vectors in C2 and let 〈x〉 and 〈y〉
denote the lines passing through zero in the direction of x and y, respectively. We
define the angle between the two lines 〈x〉 and 〈y〉 by

θ(〈x〉, 〈y〉) := arccos
|〈x, y〉|
‖x‖2‖y‖2

, 0 ≤ θ(〈x〉, 〈y〉) ≤ π/2,

where 〈x, y〉 denotes the standard Hermitian inner product, i.e., 〈x, y〉 = y∗x.
Remark 2.8. We note that cos θ(〈x〉, 〈y〉) can be seen as the ratio between the

length of the orthogonal projection (with respect to the standard inner product in
C2) of the vector x onto y to the length of the vector x itself, that is,

cos θ(〈x〉, 〈y〉) =
‖projyx‖2
‖x‖2

,

since

projyx =
〈x, y〉y
‖y‖22

and
‖projyx‖2
‖x‖2

=
|〈x, y〉|
‖x‖2‖y‖2

.

We also have

sin θ(〈x〉, 〈y〉) =
‖x− projyx‖2

‖x‖2
.

The definition of chordal distance is given next.
Definition 2.9. [7, Chapter VI, Definition 1.20] Let x and y be two nonzero

vectors in C2 and let 〈x〉 and 〈y〉 denote the lines passing through zero in the direction
of x and y, respectively. The chordal distance between 〈x〉 and 〈y〉 is given by

χ(〈x〉, 〈y〉) := sin(θ(〈x〉, 〈y〉)).

Notice that χ(〈x〉, 〈y〉) ≤ θ(〈x〉, 〈y〉). Moreover, the chordal distance and the angle
are identical asymptotically, that is, when θ(〈x〉, 〈y〉) approaches 0.

The chordal distance between two lines 〈x〉 and 〈y〉 in C2 can also be expressed
in terms of the coordinates of the vectors x and y in the canonical basis for C2. Note
that this expression does not depend on the representatives x and y of the lines.
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Lemma 2.10. [7, page 283] If 〈α, β〉 and 〈γ, δ〉 are two lines in C2, then

χ(〈α, β〉, 〈γ, δ〉) =
|αδ − βγ|√

|α|2 + |β|2
√
|γ|2 + |δ|2

.

Remark 2.11. Notice that 0 ≤ χ(〈α, β〉, 〈γ, δ〉) ≤ 1 for all lines 〈α, β〉, 〈γ, δ〉 in
C2. Since the line 〈1, 0〉 is identified with the eigenvalue ∞ in PEPs, we see that the
chordal distance allows us to measure the distance from ∞ to any other eigenvalue
very easily. Moreover, such distance is never larger than one.

Next we introduce the homogeneous eigenvalue condition number in which the
change in the eigenvalue is measured using the chordal distance and that we baptize as
the Stewart-Sun eigenvalue condition number. This condition number was implicitly
introduced for matrix pencils in [7, page 294], although an explicit definition is not
given in [7]. See also [1, page 40] for an explicit definition of this condition number
for matrix polynomials.

Note that in Definition 2.12 below, (α0,+∆α0, β0 + ∆β0) is the unique simple
eigenvalue of (P + ∆P )(α, β) that approaches (α0, β0) when ∆P approaches zero.

Definition 2.12. Let (α0, β0) be a simple eigenvalue of a regular matrix polyno-

mial P (α, β) =
∑k
i=0 α

iβk−iBi of grade k and let x be a right eigenvector of P (α, β)
associated with (α0, β0). We define

κθ((α0, β0), P ) := lim
ε→0

sup

{
χ((α0, β0), (α0 + ∆α0, β0 + ∆β0))

ε
:

[P (α0 + ∆α0, β0 + ∆β0) + ∆P (α0 + ∆α0, β0 + ∆β0)](x+ ∆x) = 0,

‖∆Bi‖2 ≤ εωi, i = 0 : k

}
,

where ∆P (α, β) =
∑k
i=0 α

iβk−i∆Bi and ωi, i = 0 : k, are nonnegative weights that
allow flexibility in how the perturbations of P (α, β) are measured.

As far as we know, no explicit formula for the Stewart-Sun condition number is
available in the literature. We provide such an expression next.

Theorem 2.13. Let (α0, β0) 6= (0, 0) be a simple eigenvalue of P (α, β) =
∑k
i=0 α

i

βk−iBi, and let x and y be, respectively, a right and a left eigenvector of P (α, β)
associated with (α0, β0). Then,

κθ((α0, β0), P ) =

(
k∑
i=0

|α0|i|β0|k−iωi

)
‖y‖2‖x‖2

|y∗(β0DαP (α0, β0)− α0DβP (α0, β0))x|
,

(2.2)
where Da ≡ ∂

∂a , that is, the partial derivative with respect to a.
Proof. Let (P+∆P )(α, β) be a small enough perturbation of P (α, β). Then, (P+

∆P )(α, β) has a unique simple eigenvalue (α̃0, β̃0), with associated eigenvector x+∆x,
that approaches (α0, β0) when ∆P (α, β) approaches zero. Since {[α0, β0], [−β0, α0]}
is an orthogonal basis for C2 (with respect to the standard inner product), we can
choose a representative for (α̃0, β̃0) of the form

[α0, β0] + [∆α0,∆β0],

where 〈[α0, β0], [∆α0,∆β0]〉 = 0 for any given representative [α0, β0] of (α0, β0). This
implies that there exists a scalar h such that

[∆α0,∆β0] = h[−β0, α0]. (2.3)
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Expanding for these representatives the left hand side of the constraint

[P (α0 + ∆α0, β0 + ∆β0) + ∆P (α0 + ∆α0, β0 + ∆β0)](x+ ∆x) = 0

in the definition of κθ((α0, β0), P ) and keeping only the first order terms, we get

[DαP (α0, β0)∆α0 +DβP (α0, β0)∆β0]x+ P (α0, β0)∆x+ ∆P (α0, β0)x = O(ε2).

If we multiply the previous equation by y∗ on the left, taking into account that y is
a left eigenvector of P (α, β) associated with (α0, β0), we get

y∗[DαP (α0, β0)∆α0 +DβP (α0, β0)∆β0]x+ y∗∆P (α0, β0)x = O(ε2). (2.4)

Using (2.3), (2.4) becomes

y∗[DαP (α0, β0)hβ0 −DβP (α0, β0)hα0]x− y∗∆P (α0, β0)x = O(ε2).

Since (α0, β0) 6= 0 is a simple eigenvalue, by [3, Theorem 3.3],

y∗[DαP (α0, β0)β0 −DβP (α0, β0)α0]x 6= 0.

Therefore,

h =
y∗∆P (α0, β0)x

y∗[β0DαP (α0, β0)− α0DβP (α0, β0)]x
+O(ε2). (2.5)

On the other hand,

χ((α0, β0), (α0 + ∆α0, β0 + ∆β0))

ε
=

|α0∆β0 − β0∆α0|
ε
√
|α0|2 + |β0|2

√
|α0 + ∆α0|2 + |β0 + ∆β0|2

=
|h|
ε

√
|α0|2 + |β0|2√

|α0 + ∆α0|2 + |β0 + ∆β0|2
. (2.6)

Since, by (2.5),

|h|
ε
≤

(
k∑
i=0

|α0|i|β0|k−iωi

)
‖y‖2‖x‖2

|y∗(β0DαP (α0, β0)− α0DβP (α0, β0))x|
+O(ε) (2.7)

and ∆α0 and ∆β0 approach zero as ε→ 0, from (2.6) and (2.7) we get

κθ((α0, β0), P ) ≤

(
k∑
i=0

|α0|i|β0|k−iωi

)
‖y‖2‖x‖2

|y∗(β0DαP (α0, β0)− α0DβP (α0, β0))x|
.

Now we need to show that this upper bound on the Stewart-Sun condition number
can be attained. Let

∆Bi = sgn(α0
i)sgn(β0

k−i
)εωi

yx∗

‖x‖2‖y‖2
, i = 0 : k,

where sgn(z) = z
|z| if z 6= 0 and sgn(0) = 0. Note that, with this definition of ∆Bi,

we have

‖∆Bi‖2 = εωi, i = 0 : k, and |y∗∆P (α0, β0)x| = ε

(
k∑
i=0

|α0|i|β0|k−iωi

)
‖x‖2‖y‖2.

Thus, the inequality in (2.7) becomes an equality and the result follows.
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3. Comparisons of eigenvalue condition numbers of matrix polynomi-
als. In this section we provide first a comparison between the Dedieu-Tisseur and
Stewart-Sun homogeneous condition numbers and, as a consequence, we prove that
these condition numbers are equivalent up to a moderate constant depending only on
the degree of the polynomial. Then we compare the Stewart-Sun condition number
with the non-homogeneous condition number in both its absolute and relative version;
as a result, we see that these condition numbers can be very different in certain situ-
ations. A simple geometric interpretation of these differences is given in Section 4. In
the literature some comparisons can be found, as we will point out, but they provide
inequalities among the condition numbers while our expressions are equalities.

3.1. Comparison of the Dedieu-Tisseur and Stewart-Sun condition num-
bers. As mentioned earlier, the Dedieu-Tisseur and the Stewart-Sun homogeneous
condition numbers are defined following a very different approach. So it is a natural
question to determine how they are related. We start with a result known in the
literature.

Theorem 3.1. [2, Section 7][1, Corollary 2.6] Let (α0, β0) 6= (0, 0) be a sim-

ple eigenvalue of a regular matrix polynomial P (α, β) =
∑k
i=0 α

iβk−iBi of grade k.
Assuming that the same weights ωi are considered for both condition numbers, we have

κθ((α0, β0), P ) ≤ Cκh((α0, β0), P ),

for some constant C.
To provide an exact relationship between the Dedieu-Tisseur and the Stewart-Sun

homogeneous condition numbers, we simply use the explicit formulas given for them
in Theorems 2.6 and 2.13, respectively.

Theorem 3.2. Let (α0, β0) 6= (0, 0) be a simple eigenvalue of P (α, β) =
∑k
i=0 α

i

βk−iBi. Then,

κh((α0, β0), P ) =

(∑k
i=0 |α0|2i|β0|2(k−i)ω2

i

)1/2
∑k
i=0 |α0|i|β0|k−iωi

κθ((α0, β0), P ).

The following result is an immediate consequence of Theorem 3.2 and shows that,
for moderate k, both homogeneous condition numbers are essentially the same.

Corollary 3.3. Let (α0, β0) 6= (0, 0) be a simple eigenvalue of P (α, β) =∑k
i=0 α

iβk−iBi. Then,

1√
k + 1

≤ κh((α0, β0), P )

κθ((α0, β0), P )
≤ 1.

Proof. Let v := [|β0|kω0, |α0||β0|k−1ω1, . . . , |α0|kωk]T ∈ Rk+1. From Theorem
3.2, we have

κh((α0, β0), P )

κθ((α0, β0), P )
=
‖v‖2
‖v‖1

,

where ‖.‖1 denotes the vector 1-norm [7]. The result follows taking into account the
fact that 1/

√
k + 1 ≤ ‖v‖2/‖v‖1 ≤ 1.

Since the Dedieu-Tisseur and the Stewart-Sun condition numbers are equivalent
and the definition of the Stewart-Sun condition number is much simpler and intuitive,
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we do not see any advantage in using the Dedieu-Tisseur condition number. Therefore,
in the next subsection, we focus on comparing the Stewart-Sun condition number with
the non-homogeneous condition numbers. The corresponding comparisons with the
Dedieu-Tisseur condition number follow immediately from Theorem 3.2 and Corollary
3.3.

3.2. Comparison of the homogeneous and non-homogeneous eigenvalue
condition numbers. As we mentioned in Section 2, the main drawback of the non-
homogeneous condition numbers is that they do not allow a unified treatment of all
the eigenvalues of a matrix polynomial since these condition numbers are not defined
for the infinite eigenvalues. Thus, some researchers prefer to use a homogeneous eigen-
value condition number instead, although in most applications the non-homogeneous
eigenvalues λ are the relevant quantities. In this section, we give an algebraic relation-
ship between the Stewart-Sun condition number and the non-homogeneous (absolute
and relative) eigenvalue condition number. We emphasize again that, by Theorem 3.2
and Corollary 3.3, this relation also provides us with a relation between the Dedieu-
Tisseur condition number and the non-homogeneous condition numbers.

We start with the only result we have found in the literature on this topic.
Theorem 3.4. [1, Corollary 2.7] Let (α0, β0) with α0 6= 0 and β0 6= 0 be a simple

eigenvalue of a regular matrix polynomial P (α, β) =
∑k
i=0 α

iβk−iBi of grade k and
let λ0 := α0

β0
. Assuming that the same weights ωi are considered for both condition

numbers, there exists a constant C such that

κr(λ0, P ) ≤ C 1 + |λ0|2

|λ0|
κh((α0, β0), P ).

The next theorem is the main result in this section and provides exact relation-
ships between the Stewart-Sun condition number and the non-homogeneous condition
numbers. Note that in Theorem 3.5 an eigenvalue condition number of the reversal of
a matrix polynomial is used, more precisely, κa((1/λ0), revP ). For λ0 =∞, this turns
into κa(0, revP ) which can be interpreted as a non-homogeneous absolute condition
number of λ0 =∞.

Theorem 3.5. Let (α0, β0) 6= (0, 0) be a simple eigenvalue of a regular matrix

polynomial P (α, β) =
∑k
i=0 α

iβk−iBi of grade k and let λ0 := α0

β0
, where λ0 = ∞

if β0 = 0. Assume that the same weights ωi are considered in the definition of all
the condition numbers appearing below, i.e., ‖∆Bi‖2 ≤ εωi, i = 0 : k, in all of them.
Then,

(i) if β0 6= 0,

κθ((α0, β0), P ) = κa(λ0, P )
1

1 + |λ0|2
; (3.1)

(ii) if α0 6= 0,

κθ((α0, β0), P ) = κa

(
1

λ0
, revP

)
1

1 +
∣∣∣ 1
λ0

∣∣∣2 ; (3.2)

(iii) if α0 6= 0 and β0 6= 0,

κθ((α0, β0), P ) = κr(λ0, P )
|λ0|

1 + |λ0|2
. (3.3)
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Proof. Assume first that β0 6= 0, which implies that λ0 is finite. Let (α̃0, β̃0) :=
(α0+∆α0, β0+∆β0) be a perturbation of (α0, β0) small enough so that β0+∆β0 6= 0,
and let λ0 + ∆λ0 := α̃0

β̃0
. Note that

∆λ0 =
α̃0β0 − α0β̃0

β0β̃0
=
β0∆α0 − α0∆β0
β0(β0 + ∆β0)

. (3.4)

Then, we have, by Lemma 2.10,

χ((α0, β0), (α̃0, β̃0)) =
|α0∆β0 − β0∆α0|

|β0|
√

1 + |λ0|2|β0 + ∆β0|
√

1 + |λ0 + ∆λ0|2

=
|∆λ0|√

1 + |λ0|2
√

1 + |λ0 + ∆λ0|2
(3.5)

where the second equality follows from (3.4). Then, as ε→ 0 in the definition of the
condition numbers (which implies that |∆α0| and |∆β0| approach 0 as well, using a
continuity argument), we have ∆λ0 → 0. Thus, bearing in mind Definitions 2.1 and
2.12, (3.1) follows from (3.5).

Assume now that α0 6= 0 and β0 6= 0, that is, λ0 6= 0 and λ0 is not an infinite
eigenvalue. Then, from (3.5), we get

χ((α0, β0), (α̃0, β̃0)) =
|∆λ0|
|λ0|

|λ0|√
1 + |λ0|2

√
1 + |λ0 + ∆λ0|2

.

This implies (3.3). By Lemma 2.4, (3.2) follows from (3.3) for finite, nonzero eigenval-
ues. It only remains to prove (3.2) for λ0 =∞, which corresponds to (α0, β0) = (1, 0).
This follows from Theorem 2.3 applied to revP and Theorem 2.13, which yield:

κa(0, revP ) =
ωk‖x‖2‖y‖2
|y∗Bk−1x|

= κθ((1, 0), P ).

From Theorem 3.5, we immediately get

κθ((α0, β0), P ) ≤ κr(λ0, P ) for 0 < |λ0| <∞,

as a consequence of (3.3), and

κθ((α0, β0), P ) ≤ κa(λ0, P ) for 0 ≤ |λ0| <∞,

as a consequence of (3.1). In addition, Theorem 3.5 guarantees that there exist
values of λ0 for which κθ((α0, β0), P ) and κr(λ0, P ) are very different and also values
for which they are very similar. The same happens for κθ((α0, β0), P ) and κa(λ0, P ).
In the rest of this subsection we explore some of these scenarios.

The next result follows directly from Theorem 3.5 and says that for small |λ0|,
κθ((α0, β0), P ) is essentially κa(λ0, P ), while for |λ0| ≥ 1, κθ((α0, β0), P ) is essentially
κa(1/λ0, revP ).

Corollary 3.6. Let (α0, β0) 6= (0, 0) be a simple eigenvalue of a regular matrix

polynomial P (α, β) =
∑k
i=0 α

iβk−iBi of grade k and let λ0 := α0

β0
, where λ0 = ∞

if β0 = 0. Assume that the same weights ωi are considered in the definition of the
condition numbers that appear below. Then
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(i) If 0 ≤ |λ0| ≤ 1, we have

κa(λ0, P )

2
≤ κθ((α0, β0), P ) ≤ κa(λ0, P ). (3.6)

(ii) If |λ0| ≥ 1, we have

κa

(
1
λ0
, revP

)
2

≤ κθ ((α0, β0), P ) ≤ κa
(

1

λ0
, revP

)
. (3.7)

From Corollary 3.6, we can informally state that for 0 ≤ |λ0| ≤ 1, κθ((α0, β0), P )
behaves more as an absolute than as a relative eigenvalue condition number of P .
The same happens for |λ0| ≥ 1 but with respect to revP and 1/λ0.

Taking into account Lemma 2.4 and the fact that κa(λ0, P ) = κr(λ0, P ) · |λ0|, the
observations in (3.6) and (3.7) lead to the following conclusions.

Corollary 3.7. Let (α0, β0) 6= (0, 0) be a simple eigenvalue of a regular matrix

polynomial P (α, β) =
∑k
i=0 α

iβk−iBi of grade k and let λ0 := α0

β0
, where λ0 = ∞

if β0 = 0. Assume that the same weights ωi are considered in the definition of the
condition numbers appearing below. Then,

(i) If 0 < |λ0| ≤ 1, we have

κr(λ0, P )
|λ0|
2
≤ κθ((α0, β0), P ) ≤ κr(λ0, P )|λ0|,

(ii) If 1 ≤ |λ0| <∞, we have

κr(λ0, P )
1

2|λ0|
≤ κθ((α0, β0), P ) ≤ κr(λ0, P )

1

|λ0|
.

Remark 3.8. Using the results in this subsection, we can give a description
(in function of |λ0|) of the behavior of the Stewart-Sun condition number in terms
of the non-homogeneous condition numbers. For this purpose, we use κa(λ0, P ) =
κr(λ0, P )|λ0| to obtain the following relations:

(i) From (3.1), we get that, if |λ0| = 1, then

κθ((α0, β0), P ) =
κa(λ0, P )

2
=
κr(λ0, P )

2
.

(ii) From (3.6), we get, as |λ0| approaches 0,

κθ((α0, β0), P ) ≈ κa(λ0, P )� κr(λ0, P ).

(iii) From (3.7), Lemma 2.4, and the fact that κa(1/λ0, revP ) = κr(1/λ0, revP ) ·∣∣∣ 1
λ0

∣∣∣, we get, as |λ0| approaches ∞,

κθ((α0, β0), P ) ≈ κa
(

1

λ0
, revP

)
� κr

(
1

λ0
, revP

)
= κr(λ0, P )� κa(λ0, P ).

4. A geometric interpretation of the relationship between homoge-
neous and non-homogeneous condition numbers. In Theorem 3.5, we pro-
vided an exact relationship between the Stewart-Sun homogeneous condition number
and the non-homogeneous condition numbers. This relationship involves the factors
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1
1+|λ0|2 and 1

1+
∣∣∣ 1
λ0

∣∣∣2 , when the Stewart-Sun condition number is compared with the

absolute non-homogeneous condition number, and involves the factor |λ0|
1+|λ0|2 , when

the Stewart-Sun condition number is compared with the relative non-homogeneous
condition number. In this section we give a geometric interpretation of these factors,
which leads to a natural understanding of the situations discussed in Remark 3.8
where the homogeneous and non-homogeneous condition numbers can be very differ-
ent. The reader should bear in mind, once again, that in most applications of PEPs,
the quantities of interest are the non-homogeneous eigenvalues, which can be accu-
rately computed with the current algorithms only if the non-homogeneous condition
numbers are moderate.

4.1. Geometric interpretation in terms of the chordal distance. The fac-

tors 1
1+|λ0|2 , 1

1+
∣∣∣ 1
λ0

∣∣∣2 and |λ0|
1+|λ0|2 appearing in (3.1), (3.2) and (3.3), respectively, can

be interpreted in terms of the chordal distance as we show in the next theorem. We do
not include a proof of this result since it can be immediately obtained from the defini-
tion of chordal distance (Definition 2.9) and Remark 2.8. Note that χ((α0, β0), (1, 0))
can be seen as the chordal distance from “λ0 = α0

β0
to∞”, while χ((α0, β0), (0, 1)) can

be seen as the chordal distance from “λ0 = α0

β0
to 0”.

Proposition 4.1. Let (α0, β0) 6= (0, 0) and let λ0 := α0

β0
, where λ0 = ∞ if

β0 = 0. Let θ denote the angle between (α0, β0) and (1, 0). Then,

(i) If β0 6= 0, then

1

1 + |λ0|2
= χ((α0, β0), (1, 0))2 = sin2(θ).

(ii) If α0 6= 0, then

1

1 +
∣∣∣ 1
λ0

∣∣∣2 = χ((α0, β0), (0, 1))2 = cos2(θ).

(iii) If α0 6= 0 and β0 6= 0, then

|λ0|
1 + |λ0|2

= χ((α0, β0), (1, 0)) χ((α0, β0), (0, 1)) = sin(θ) cos(θ).

Remark 4.2. We notice that the conditions 0 ≤ |λ0| ≤ 1 and |λ0| ≥ 1 used in
Corollaries 3.6 and 3.7 and in Remark 3.8 are equivalent, respectively, to χ((α0, β0),
(1, 0)) ≥ 1/

√
2 and χ((α0, β0), (0, 1)) ≥ 1/

√
2, or, in other words, to sin(θ) ≥ 1/

√
2

and cos(θ) ≥ 1/
√

2.

Combining Proposition 4.1 (iii) with Theorem 3.5 (iii), we see that either when
the angle between the lines (α0, β0) and (1, 0) is very small or when the angle between
the lines (α0, β0) and (0, 1) is very small, κθ((α0, β0), P ) � κr(λ0, P ), i.e., even in
the case κθ((α0, β0), P ) is moderate and the line (α0, β0) changes very little under
perturbations, the quotient λ0 = α0/β0 can change a lot in a relative sense. This
is immediately understood geometrically in R2. The combination of the remaining
parts of Theorem 3.5 and Proposition 4.1 lead to analogous discussions. In the next
section, we make an analysis of these facts from another perspective.
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4.2. Geometric interpretation in terms of the condition number of the
cotangent function. Let α0, β0 ∈ C with β0 6= 0, let λ0 := α0

β0
, and let θ :=

θ((α0, β0), (1, 0)), that is, let θ denote the angle between the lines (α0, β0) and (1, 0).
From Proposition 4.1,

cos θ =
|λ0|√

1 + |λ0|2
, sin θ =

1√
1 + |λ0|2

.

Thus,

|λ0| =
|α0|
|β0|

= cotan θ and
1

|λ0|
= tan θ.

Note that this is also the standard definition of the cotangent and tangent func-
tions in the first quadrant of R2. The cotangent function is differentiable in (0, π/2).
Thus, the absolute condition number1 of this function is

κa,ct(θ) := |cotan′(θ)| = |1 + cotan2(θ)| = 1 + |λ0|2, (4.1)

which is huge when θ approaches zero. Moreover, the relative-absolute condition
number2 of the cotangent function is given by

κr,ct(θ) :=
|cotan′(θ)|
|cotan(θ)|

=
|1 + cotan2(θ)|
|cotan(θ)|

=
1 + |λ0|2

|λ0|
, (4.2)

which is huge when θ approaches either zero or π/2.
The tangent function is also differentiable in (0, π/2) and the absolute condition

number of this function is

κa,t(θ) := |tan′(θ)| = |1 + tan2(θ)| = 1 +

∣∣∣∣ 1

λ0

∣∣∣∣2 . (4.3)

From (3.1), (3.2), (3.3), (4.1), (4.2), and (4.3), we obtain the following result.
Theorem 4.3. Let (α0, β0) 6= (0, 0) be a simple eigenvalue of a regular matrix

polynomial P (α, β) =
∑k
i=0 α

iβk−iBi of grade k and let λ0 := α0

β0
, where λ0 = ∞ if

β0 = 0. Let θ := θ((α0, β0), (1, 0)). Assume that the same weights are considered in
the definitions of all the condition numbers appearing below. Then,

(i) If β0 6= 0, then

κa(λ0, P ) = κθ((α0, β0), P ) κa,ct(θ). (4.4)

(ii) If α0 6= 0, then

κa

(
1

λ0
, revP

)
= κθ((α0, β0), P ) κa,t(θ).

(iii) If α0 6= 0 and β0 6= 0, then

κr(λ0, P ) = κθ((α0, β0), P ) κr,ct(θ). (4.5)

1When we refer to the absolute condition number of a function of θ, we mean that we are
measuring the changes both in the function and in θ in an absolute sense.

2When we mention the relative-absolute condition number of a function of θ, we consider that
we are measuring the change in the function in a relative sense and the one in θ in an absolute sense.
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Since for lines (α0, β0) and (α̃0, β̃0) very close to each other, χ((α0, β0), (α̃0, β̃0)) ≈
θ((α0, β0), (α̃0, β̃0)) = |θ((α0, β0), (1, 0))−θ((α̃0, β̃0), (1, 0))|, equations (4.4) and (4.5)
express the non-homogeneous condition numbers of λ0 as a combination of two ef-
fects: the change of the homogeneous eigenvalue measured by θ((α0, β0), (α̃0, β̃0)) as
a consequence of perturbations in the coefficients of P (α, β) and the alteration that
this change produces in |cotan(θ)|, which depends only on the properties of cotan(θ)
and not on P (λ). In fact, with this idea in mind, Theorem 4.3 can also be obtained
directly from the definitions of the involved condition numbers.

We notice that the expressions in (4.4) and (4.5) can be interpreted as follows:
Given a matrix polynomial P (λ), the usual way to solve the polynomial eigenvalue
problem is to use a linearization L(λ) = λL1 − L0 of P (λ). A standard algorithm to
solve the generalized eigenvalue problem associated with L(λ) is the QZ algorithm.
This algorithm computes first the generalized Schur decomposition of L1 and L0, that
is, these matrix coefficients are factorized in the form L1 = QSZ∗ and L0 = QTZ∗,
where Q and Z are unitary matrices and S and T are upper-triangular matrices.
The pairs (Tii, Sii), where Sii and Tii denote the main diagonal entries of S and T in
position (i, i), respectively, are the “homogeneous” eigenvalues of L(λ) (and, therefore,
of P (λ)). In order to obtain the non-homogeneous eigenvalues of P (λ), one more step
is necessary, namely, to divide Tii/Sii. The expressions in (4.4) and (4.5) say that,
even if κθ((Tii, Sii), P ) is moderate and the pair (Tii, Sii) is “accurately computed”,
the quotient λi := Tii/Sii may be “inaccurately computed” when Sii is very close to
zero (that is, when |λi| is very large) or when Tii is close to zero (that is, when |λi| is
close to zero) since |λi| will have a huge non-homogeneous condition number. More
precisely, for the large eigenvalues, both κa(λ0, P ) and κr(λ0, P ) will be much larger
than κθ((α0, β0), P ), and for the small eigenvalues, κr(λ0, P ) will be much larger than
κθ((α0, β0), P ). This observation brings up the question of the computability of small
and large eigenvalues.

4.3. Computability of small and large eigenvalues of matrix polynomi-
als. By Remark 3.8, if |λ0| is very large, we have

κθ((λ0, 1), P )� κr(λ0, P )� κa(λ0, P ), (4.6)

and, if |λ0| is very close to 0, then

κθ((λ0, 1), P ) ≈ κa(λ0, P )� κr(λ0, P ). (4.7)

The question that we study in this section is whether or not the absolute non-
homogeneous condition number κa(λ0, P ) is always very large when |λ0| is very large,
or the relative non-homogeneous condition number κr(λ0, P ) is always very large when
either |λ0| is very close to 0 or is very large. If this was the case, then these types
of non-homogeneous eigenvalues would be always very ill-conditioned and would be
computed with such huge errors by the available algorithms that it could be simply
said that they are not computable.

We focus our answer to this question on the behavior of the eigenvalues of pencils
(that is, we focus on matrix polynomials P (λ) of grade 1). This is reasonable since,
when computing the eigenvalues of a matrix polynomial, the most common approach
is to use a linearization. In order to keep in mind that we are not working with
general matrix polynomials, we will use the notation L(λ) to denote a pencil instead
of P (λ). Moreover, we will focus on eigenvalue condition numbers with weights ωi
corresponding to the backward errors of current algorithms for generalized eigenvalue
problems.
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Let L(λ) := λB1 +B0 be a regular pencil and let λ0 be a finite, simple eigenvalue
of L(λ). Notice that, by Theorem 2.13,

κθ((λ0, 1), L) =
(ω0 + |λ0|ω1)‖y‖2‖x‖2
|y∗(B1 − λ0B0)x|

≥ (ω0 + |λ0|ω1)

‖B1‖2 + |λ0|‖B0‖2
. (4.8)

The following result is an immediate consequence of the previous inequality and
shows some important cases in which the eigenvalues of a pencil L(λ) with large or
small modulus are not computable.

Proposition 4.4. Let L(λ) = λB1 + B0 be a regular pencil and let λ0 be a
finite, simple eigenvalue of P (λ). Let ω1, ω0 be the weights used in the definition of
the non-homogeneous condition number of λ0. Then,

κa(λ0, L) ≥ 1 + |λ0|2 and κr(λ0, L) ≥ 1 + |λ0|2

|λ0|
,

(where the second inequality holds only if λ0 6= 0) if any of the following conditions
holds:

1. ω0 = ω1 = max{‖B1‖2, ‖B0‖2};
2. ωi = ‖Bi‖2 for i = 0, 1, |λ0| < 1 and ‖B1‖2 ≤ ‖B0‖2;
3. ωi = ‖Bi‖2 for i = 0, 1, |λ0| > 1 and ‖B0‖2 ≤ ‖B1‖2;
4. ωi = ‖Bi‖2 for i = 0, 1 and ‖B1‖2 and ‖B0‖2 are similar.

Proof. First assume that ω1 = ω0 = max{‖B0‖2, ‖B1‖2}. From (4.8), we get

κθ((λ0, 1), L) ≥ 1,

which implies the result by Theorem 3.5. Assume now that ωi = ‖Bi‖2 for i = 0, 1.
If |λ0| < 1 and ‖B1‖2 ≤ ‖B0‖2, then

(1− |λ0|)‖B1‖2 ≤ (1− |λ0|)‖B0‖2,

or equivalently,

‖B0‖2 + |λ0|‖B1‖2
‖B1‖2 + |λ0|‖B0‖2

≥ 1

and the result follows from (4.8), which implies κθ((λ0, 1), L) ≥ 1, and Theorem 3.5.
The proof of the result assuming 3. follows from applying 2. to revL and 1

|λ0|
and taking into account Lemma 2.4. Finally, assume that ‖B1‖2 ≈ ‖B0‖2. Then, the
result follows from 2. and 3.

Remark 4.5. We admit a certain degree of ambiguity in the meaning of “‖B1‖2
and ‖B0‖2 are similar” in the fourth set of assumptions in Proposition 4.4. It is

possible to make a quantitative assumption of the type 1
C ≤

‖B1‖2
‖B0‖2 ≤ C for some

constant C > 1, which would more laboriously lead to more complicated lower bounds
for κa(λ0, L) and κr(λ0, L) which decrease as C increases. We have preferred the
simpler but somewhat ambiguous statement in Proposition 4.4.

Taking into account Proposition 4.4, the only case left to study of the potential
non-computability of eigenvalues with small and large absolute values is when |λ0| � 1
and ‖B0‖2 � ‖B1‖2. The case in which |λ0| � 1 and ‖B0‖2 � ‖B1‖2 follows by using
the reversal of L(λ) and the fact that

κr(λ0, L) = κr

(
1

λ0
, revL

)
.
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Notice that when ‖B0‖2 � ‖B1‖2, in practice, L(λ) is essentially λB1, and since L(λ)

is regular, B1 is generically nonsingular, which implies that, when ‖B0‖2
‖B1‖2 approaches

0, all the eigenvalues of L(λ) are very close to 0, independently of the specific matrices
B0 and B1. Thus, in this trivial case, we should expect that the eigenvalues are all
well-conditioned. Next we show an example that illustrates this observation.

Example 4.6. Let ε < 1. Consider the regular pencil

L(λ) = λB1 +B0 := λ

[
1/ε 1/ε
1/ε 1

]
+

[
ε 1
1 1

]
.

We note that the standard condition numbers for inversion, i.e., ‖Bi‖2‖B−1i ‖2, of
the matrix coefficients B0 and B1 are bounded by

1

1− ε
≤ cond(B0) = cond(B1) ≤ 4

1− ε

and

2√
2
≤ ‖B0‖2 ≤ 2,

2√
2ε
≤ ‖B1‖2 ≤

2

ε
.

Thus, as ε approaches 0, cond(B0) = cond(B1) ≈ 1 and ‖B0‖2 � ‖B1‖2. Moreover,
the eigenvalues of L(λ), given by

λ0 =
ε− ε3 +

√
ε6 − 6ε4 + 8ε3 − 3ε2

2ε− 2
, λ1 =

ε− ε3 −
√
ε6 − 6ε4 + 8ε3 − 3ε2

2ε− 2

are both of order ε as ε→ 0. Additionally, the right (resp. left) eigenvectors of L(λ)
associated with λ0 and λ1 are denoted, respectively, by xλ0

and xλ1
(resp. yλ0

and
yλ1

) are given by

xλ0 = yλ0 =

(
1,
−λ0 − ε2

λ0 + ε

)T
, xλ1 = yλ1 =

(
1,
−λ1 − ε2

λ1 + ε

)T
.

Observe that, as ε→ 0, we have ‖xλ0
‖2 = ‖yλ0

‖2 ≈ ‖yλ1
‖2 = ‖xλ1

‖2 ≈
√

2 .Moreover,
we have

κθ((λ0, 1), L) =
(|λ0|‖B1‖2 + ‖B0‖2)‖yλ0

‖2‖xλ0
‖2

|y∗λ0
(B1 − λ0B0)xλ0

|
.

Some computations show that

y∗λ0
(B1 − λ0B0)xλ0 =

1

ε
− λ0ε+

(
1

ε
+ λ0ε

)(
−λ0 − ε2

λ0 + ε

)
+

[
1

ε
− λ0 +

(−λ0 − ε2)(1 + λ0)

λ0 + ε

](
−ε− ε2

2ε

)
.

Combining all this information, we deduce that κθ((λ0, 1), L) = O(ε) as ε → 0,
noticing that the numerator tends to a constant while the denominator is O(1/ε).

Then, from Theorem 3.5 and from 1+|λ0|2
|λ0| = O( 1

ε ), we have that κr(λ0, L) = O(1). It

is clear that a similar conclusion can be obtained for κr(λ1, L).
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Fig. 4.1. Plot of |λ0|, κθ((λ0, 1), L) and κr(λ0, L) against ε in Example 4.6.

In the Figure 4.1, we plot the values of |λ0|, κθ((λ0, 1), L) and κr(λ0, L) against
ε. We can observe that, as ε → 0, both |λ0| and κθ((λ0, 1), L) tend to 0 at the same
rate but that κr(λ0, L) remains essentially constant and close to 1. A similar graph
can be obtained for λ1.

In summary, we have proven that, as ε → 0, the pencil L(λ) = λB1 + B0 in
Example 4.6 has well-conditioned matrix coefficients with very different norms, it has
two eigenvalues close to 0 and they are both computable, since their non-homogeneous
relative condition numbers are approximately 1. It is easy to check that revL is an
example of a pencil that has computable very large eigenvalues. As commented before,
these pencils illustrate the only situation in which non-homogeneous eigenvalues with
very small or large modulus can be accurately computed, which corresponds to pencils
with highly unbalanced coefficients.

5. Conclusions. We have gathered together the definitions of (non-homogeneous
and homogeneous) eigenvalue condition numbers of matrix polynomials that were scat-
tered in the literature. We have also derived for the first time an exact formula to
compute one of these condition numbers (the homogeneous condition number that is
based on the chordal distance, also called Stewart-Sun condition number). On the
one hand, we have determined that the two homogeneous condition numbers studied
in this paper differ at most by a factor

√
k + 1, where k is the grade of the polyno-

mial, and so are essentially equal in practice. Since the definition of the homogeneous
condition number based on the chordal distance is considerably simpler, we believe
that its use should be preferred among the homogeneous condition numbers. On the
other hand, we have proved exact relationships between each of the non-homogeneous
condition numbers and the homogeneous condition number based on the chordal dis-
tance. This result would allow us to extend results that have been proved for the
non-homogeneous condition numbers to the homogeneous condition numbers (and
vice versa). Besides, we have provided geometric interpretations of the factor that
appears in these exact relationships, which explain transparently when and why the
non-homogeneous condition numbers are much larger than the homogeneous ones. Fi-
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nally, we have used these relationships to analyze for which cases the large and small
non-homogeneous eigenvalues of a matrix polynomial are computable with some ac-
curacy and we have seen that this is only possible in some very particular situations.
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