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RESUMEN DEL PROYECTO 

 

Introducción 

La predicción de valores en mercados financieros es una actividad de notable interés hoy 

en día. La necesidad de anticipar los valores de las acciones, junto con la dependencia 

que pequeñas y grandes empresas tienen en la precisión de estas estimaciones, convierten 

los modelos de predicción en un área de suma importancia para el funcionamiento de los 

mercados. 

El incremento de las necesidades de predicción en el área financiera requiere del 

desarrollo de métodos de alto rendimiento, sobre todo para aquellos datos que 

proporcionen la información necesaria para describir las tendencias económicas actuales. 

Los datos de intervalo están basados en intervalos con límite superior en inferior para 

cada medida. La información proporcionada por este tipo de datos es normalmente más 

precisa y completa que la que se puede extraer de los datos sencillos, lo que convierte a 

los datos de intervalo en una herramienta muy valiosa cuando la precisión es una prioridad 

en el análisis de datos (Maté, 2012). 

La combinación de modelos también desempeña un rol clave en la resolución de 

problemas que requieren métodos de regresión. Dicha combinación reduce el riesgo de 

pérdida de información al rechazar ciertos modelos por otros, por lo que puede ser una 

manera de mejorar la precisión de las predicciones en el campo de los mercados 

financieros (Moral Benito, 2015). La aplicación en estos mercados consiste en la 

combinación de modelos que sean capaces de predecir series temporales de intervalo 

(ITS), que son datos de intervalo registrados como una secuencia ordenada a lo largo del 

tiempo. 

 

Estado de la Técnica 

Desde que el análisis de intervalos (AI) fue usado por primera vez en 1959, varios 

estudios y aplicaciones han sido desarrollados para este tipo de datos. En cuanto a la 

predicción de datos, hay una gran gama de modelos lineales adaptados a los datos de 



intervalo, tales como la técnica Lasso, el método minMax o la aproximación 

parametrizada. El estudio de Maceda (2018) incluye y describe varios de estos métodos. 

Distintos modelos de regresión no lineales han sido estudiados por Lima Neto y De 

Carvalho (2017) a través de los experimentos de Monte Carlo, demostrando mayor 

precisión y exactitud que los métodos lineales en ciertas bases de datos. 

Las librerías de funciones de MATLAB suponen el mayor reto de este proyecto, ya que, 

actualmente, no es posible encontrar una herramienta que represente, analice y compare 

métodos de regresión, lineales y no lineales, y que permita diferentes combinaciones entre 

ellos para estudiar la combinación de modelos. 

 

Objetivo del proyecto 

Este proyecto busca crear una interfaz en MATLAB que funcione como herramienta de 

análisis, evaluación y comparación de modelos de regresión. Esta interfaz está formada 

por un conjunto de funciones que calculan los parámetros necesarios para la valoración, 

presentan los gráficos adecuados que representan y comparan modelos, y que desarrollan 

los modelos de óptimo ajuste. Los resultados obtenidos permiten extraer conclusiones 

sobre la promediación de modelos y profundizar en trabajos previos sobre el análisis de 

datos de intervalo. 

La exactitud de las predicciones financieras tiene un papel crítico en el comportamiento 

de los mercados de la economía global de hoy en día. La capacidad de predecir una caída 

en los valores de una acción determinada puede suponer la diferencia entre evitar o no 

una crisis económica. Por esta razón, la finalidad del proyecto incluye la búsqueda de las 

técnicas de mayor rendimiento en la combinación de modelos, con el objetivo de 

aplicarlas a los mercados financieros y mejorar el desempeño de las predicciones tanto 

como sea posible. 

 

Metodología 

La primera sección de esta investigación comprende un resumen de los actuales métodos 

de regresión para datos de intervalo. Incluye fuentes sobre modelos lineales y no lineales, 

su definición, características y su rendimiento en relación con el resto. 

A continuación, se presenta un marco teórico sobre la combinación de modelos, 

compuesto por el análisis y descripción de distintas técnicas de combinación y su 

aplicación a los datos de intervalo. La introducción del Puzle de Combinación de la 

Predicción da lugar a la comparación entre la combinación por media simple y 

combinaciones más complejas que difieren en los pesos asociados a cada modelo. Este 

dilema existe desde la primera introducción de la combinación de modelos por Bates y 

Granger (1969). 

Establecer los parámetros evaluadores de cada modelo es un paso clave en este análisis. 

Estos estadísticos son muy valiosos en el contraste de modelos y su rendimiento. Los 



parámetros seleccionados evalúan un rango amplio de propiedades de cada modelo, como 

la distancia entre la predicción y el valor real del intervalo, o el porcentaje de los datos 

que están cubiertos por la aproximación. Los criterios de evaluación seleccionados son 

los siguientes:  

1. U de Theil (IU). 

2. Tasa de Cubrimiento (CR). 

3. Tasa de Eficiencia (ER). 

4. Distancia Media de Error (MDE). 

Una vez el problema está definido y se selecciona la base de datos, la metodología se 

aplica de acuerdo con los siguientes pasos: 

1. Análisis del desempeño de cada modelo mediante los cuatro evaluadores 

seleccionados. Los valores obtenidos permiten la clasificación de los distintos 

modelos en cuanto a su precisión y rendimiento, proporcionando información útil 

sobre las estimaciones realizadas por ese modelo. Esto se lleva a cabo mediante 

varias funciones de MATLAB, UTheil_k, CER_k y MDE_k, que calculan la U de 

Theil, los radios de cubrimiento y eficiencia, y la distancia media de error, 

respectivamente. 

2. Elección de los modelos que van a ser combinados. La combinación de modelos 

busca potenciar las propiedades de aquellos modelos que presenten mejores 

predicciones para obtener un nuevo modelo con características mejoradas. 

DrawmultipleITSvdef permite la representación de las series temporales de 

intervalo de los modelos seleccionados y su comparativa con la serie temporal 

real, arrojando luz sobre los posibles aspectos de mejora. 

3. Implementación de la combinación de modelos. La función Combination_k 

devuelve la predicción combinada a partir de dos modelos predictores, mediante 

el método de pesos iguales y el de pesos óptimos. La función utilizada para 

calcular los pesos óptimos en una combinación de dos modelos es OptimalW. 

4. Evaluación de las mejoras obtenidas mediante la combinación. Los estadísticos 

evaluadores se calculan para el nuevo modelo, consiguiendo nuevos valores que 

son evaluados y dan lugar a las conclusiones de este proyecto.  

 

Resultados 

Cuatro estudios de caso se analizaron siguiendo la metodología expuesta con anterioridad. 

Las cuatro bases de datos evaluadas incluyen los valores del índice S&P500 durante 2017 

(uno de los índices de mercado más importantes a nivel global), los valores bursátiles de 

General Electric durante 2017 (multinacional con sectores energético, financiero, 

tecnológico e industrial), los valores de stock de Zardoya desde el inicio de 2018 al primer 

trimestre de 2019 (la principal productora de ascensores y escaleras automáticas en el 

mundo) y los valores de Visa durante 2017 (marca de pago líder). 



A continuación, se presentan los resultados obtenidos para cada caso, incluyendo tablas 

de valores y gráficos representativos. 

 

Índice S&P500 

Las predicciones hechas con seis modelos diferentes de regresión lineal se compararon 

con el método del camino aleatorio (RW). Este método realiza la predicción 

exclusivamente con el valor del último periodo, y sirve de referencia para cotejar el resto 

de métodos. 

Los resultados prueban que los seis métodos elegidos (minMax, CM, CRM, BSRM, 

CIRM y M Method) son mejores predictores que el camino aleatorio. La Tabla 1 muestra 

los valores de la U de Theil para cada método. El camino aleatorio siempre tiene de valor 

la unidad, mientras que valores inferiores a 1 significan un mejor rendimiento que este 

método de referencia. 

 
Tabla 1: Caso 1. U de Theil. 

M1 M2 M3 M4 M5 RW M6 

0.7715 0.7655 0.7484 0.7639 0.7492 1.0000 0.6194 

 

En el cálculo de los pesos óptimos para combinar modelos, llama la atención la similitud 

con la combinación por pesos iguales. Los pesos son prácticamente iguales en cada 

combinación, con valor aproximadamente igual a 0.5. Esto significa que la combinación 

óptima implica asignar la misma importancia a todos los modelos. 

Los métodos 1 (minMax) y 6 (método M) se combinaron para crear un nuevo modelo. 

Esta combinación resulta en un aumento global del rendimiento de los modelos. El 

método M aporta mejoras en los valores de la U de Theil, la tasa de eficiencia y la 

distancia media al error, mientras que el método minMax mejora la tasa de cubrimiento 

conjunta. Los resultados se muestran en la Tabla 2. 

 
Tabla 2: Caso 1. Combinación de modelos. Método 1 vs Método 6. 

MÉTODO IU CR ER MDE 

M1 0.7715 0.6693 0.6600 9255.2 

M6 0.6194 0.6143 0.8261 5688.7 

Pesos Iguales 0.6624 0.6537 0.7402 6471.6 

Pesos Óptimos 0.6625 0.6537 0.7402 6471.9 

 

Debido a las similitudes en los pesos iguales y los pesos óptimos, los valores de los 

estadísticos de contraste presentan diferencias apenas distinguibles.   

 



General Electric 

Este caso analiza datos con una tendencia bajista y ligeras fluctuaciones a lo largo del 

tiempo. El estudio de estos datos demuestra que el método de regresión que mejor se 

ajusta es una curva polinómica de cuarto grado. La Figura 1 muestra el intervalo medio 

de los datos de General Electric (valor medio de los valores inferiores y valor medio de 

los valores superiores) frente al valor medio de la predicción dada por el ajuste 

polinómico. Se incluyen también las tasas de cubrimiento y eficiencia, ambas superiores 

al ochenta por ciento. 

 

 

Figura 1: Caso 2. Intervalo medio real (Y) e intervalo medio de la predicción polinómica (Ŷ). 

 

Este modelo basado en una aproximación polinómico se combina con el camino aleatorio 

mediante media simple y mediante pesos óptimos. Los resultados se presentan en la Tabla 

3. 

 
Tabla 3: Caso 2. Combinación de modelos: Camino Aleatorio vs Ajuste Polinómico. 

METHOD IU CR ER MDE 

RW 1.0000 0.1448 0.0929 4.7741 

Polinomio 0.0942 0.8397 0.8150 0.0386 

Pesos Iguales 0.5212 0.3029 0.2760 1.3579 

Pesos Óptimos 0.0890 0.8507 0.8193 0.0340 

 

Los valores obtenidos demuestran notables mejoras con respecto a las predicciones 

individuales para la combinación mediante pesos óptimos. Los resultados de la U de Theil 

y la distancia media de error son muy próximos a cero (indicando una distancia mínima 



entre el valor real y la predicción) y los valores de las tasas de eficiencia y cubrimiento 

son superiores a los del modelo polinómico sin combinar. 

 

Zardoya 

Los datos de Zardoya se predicen utilizando métodos de tendencia, como la media, la 

mediana o los cuartiles. El comportamiento lateral de esta base de datos resulta en una 

falta de exactitud en las predicciones basadas en tendencia, con valores muy superiores a 

la unidad para la U de Theil. Los modelos evaluados son peores predictores que el camino 

aleatorio. 

La media de Aumann y la mediana de Hausdorff se evalúan como métodos de predicción, 

comparándolos y combinándolos con el camino aleatorio. Los resultados demuestran que 

prueban que estos dos métodos son lo suficientemente similares en rendimiento y 

características para ser considerados equivalentes como predictores. 

Las siguientes figuras ilustran las similitudes en la predicción de series temporales entre 

la media de Aumann (Figura 2) y la mediana de Hausdorff (Figura 3) para el caso 

Zardoya. La herramienta de MATLAB permite comparar de manera visual ambos 

métodos de predicción, sin limitarse a cálculos numéricos de estimadores. 

 

 

Figura 2: Caso 3. ITS de Zardoya (rojo), ITS del 
Camino Aleatorio (morado), ITS de la media de 

Aumann (azul). 

 

Figura 3: Caso 3. ITS de Zardoya (rojo), ITS del 
Camino Aleatorio (morado), ITS de la mediana 

de Hausdorff (azul).

 

Visa

El último estudio de caso predice datos con una marcada tendencia alcista. En este caso, 

las predicciones óptimas se obtienen a través de un ajuste exponencial. Este método de 

regresión no lineal proporciona un modelo con altos valores de radio de cobertura (CR) 



y de eficiencia (ER), y valores bajos para la U de Theil y la distancia media de error. Los 

resultados de su combinación con el camino aleatorio se muestran en la Tabla 4. 

 

Table 1: Case 4. Model Averaging: Random Walk vs Exponential Fit. 

MÉTODO IU CR ER MDE 

RW 1.0000 0.4902 0.5315 156.2200 

Exponential 0.4016 0.8322 0.8225 25.2780 

EW 0.6344 0.7018 0.7164 60.2200 

OW 0.6861 0.6739 0.6932 70.4870 

 

Los valores de los estadísticos para este método no mejoran respecto al ajuste polinómico. 

Sin embargo, este caso representa otra situación en la que la combinación de modelos 

enriquece las características de un determinado modelo, en este caso, el ajuste 

exponencial. La combinación se lleva a cabo con pesos iguales y pesos óptimos, dando 

lugar a una discrepancia respecto a los casos anteriores. En este caso, la combinación 

pesos óptimos no demuestra una clara superioridad, sino que la media simple proporciona 

mejores propiedades para todos los parámetros. 

 

Conclusiones 

Los resultados obtenidos enfatizan distintos aspectos sobre el rendimiento de los modelos 

de regresión lineales y no lineales para los datos de intervalo. 

En cuanto al Puzle de Combinación de la Predicción, se ha evidenciado que la 

combinación con pesos iguales es el método más directo, sencillo y fiable mientras que 

los modelos que se combinan tengan características similares. No obstante, en una 

situación con un modelo que destaca sobre los demás en cuanto a nivel de rendimiento y 

precisión (por ejemplo, el ajuste polinómico en el caso de General Electric), la media 

simple deja de ser el método más fiable en la combinación de modelos. En estos casos, el 

cálculo de pesos óptimos basado en el desempeño de cada modelo refuerza las 

propiedades del modelo más preciso. 

Los modelos predictivos basados en tendencias, como la media, la mediana o los cuartiles, 

han demostrado ser menos efectivos y exactos que otros métodos en conjuntos de datos 

con comportamientos laterales o fuertes tendencias crecientes. La ausencia de tendencia 

en los datos (laterales) dificulta la capacidad del modelo de predecir con exactitud los 

movimientos futuros de las acciones a partir de posibles tendencias pasadas. Por otro lado, 

tendencias que cambien muy rápidamente empeora la habilidad del modelo de adaptarse 

a los nuevos valores y hacer predicciones con precisión. 

Se ha probado que los métodos de regresión no lineal, como las curvas polinómicas o 

exponenciales, presentan radios más altos de cubrimiento y de eficiencia. Esto se traduce 

en mayor eficiencia y mejores predicciones que los métodos lineales en datos con fuertes 



tendencias alcistas o bajistas. El desarrollo de métodos no lineales podría ser el factor 

decisivo para obtener las mejores predicciones posibles para datos de intervalo. 

Finalmente, en cuanto a las recomendaciones para futuros estudios, sería interesante crear 

una aplicación mediante el complemento App Designer de MATLAB, que incluyera 

todas las funciones programadas y desarrolladas en este proyecto. Esto permitiría obtener 

los resultados a través de una interfaz visual y sencilla, facilitando las comparaciones 

entre modelos y la combinación de los mismos. 
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REGRESSION MODELS AVERAGING UNDER INTERVAL-VALUED 

DATABASES. APPLICATIONS IN FINANCIAL MARKETS 

 

Introduction 

Forecasting financial markets is an essential economic interest nowadays. The necessity 

to predict future stock values and the reliance big and small companies have on the 

goodness of these predictions turn forecasting into a fundamental research area.  

The more demanding needs of financial forecasters require the development of high-

performance methods for a kind of data with the information necessary to describe the 

current economic problems. Interval-valued (IV) data is based on intervals, with lower 

and upper limits for each measure. The information given by interval data is usually more 

accurate and complete than the one that can be extracted from single data, so it is really 

valuable when precision is a priority in data analysis (Maté, 2012). 

Model averaging also plays a key role in solving many different problems regarding 

regression methods, as the combination of predictive models reduces the risks of losing 

information when disregarding certain models. Its implementation on regression methods 

could be a way of improving forecasts’ accuracy in the desired field (Moral Benito, 2015). 

The application in financial markets goes through the combination of models that predict 

Interval Time Series (ITS), which are IV data registered as an ordered sequence 

throughout time. 

 

State of the Art 

Since IV data was used for the first time, wide research has been done on methods and 

applications regarding this kind of data. Concerning data forecasting, there is an extensive 

variety of linear regression methods that have been studied for IV data, such as the Lasso 

technique, the minMax method or the parametrized approach, summarized and described 

by Maceda (2018). Non-linear regression methods were studied by Lima Neto and De 

Carvalho (2017) through the Monte Carlo experiments, demonstrating a greater accuracy 

and precision than linear regression methods in certain interval-valued datasets. 

MATLAB’s libraries imply the primary challenge, as it is not currently possible to find a 

tool that represents, analyzes and compares regression methods, linear and non-linear, 

allowing different combinations among them to study model averaging. 

 

Project purpose 

This project aims to build a MATLAB environment that works as a tool to analyze, 

evaluate and compare several linear and non-linear regression models. This environment 

comprises a set of functions that calculate the necessary parameters for the evaluation, 



displays suitable graphs to compare the models and develop optimal fit models. The 

obtained results are used to draw conclusions on model averaging and to develop and 

deepen previous works on interval-valued data analysis.   

Accurate financial forecasts have a critical role in the markets’ behavior and the 

globalized economy we live in. This is why the main purpose includes finding the best 

performance techniques on model averaging in order to apply them to financial markets 

and improve the performance of the forecast as much as possible. 

 

Methodology 

The first section in this project comprises a review of the current regression methods that 

are suitable for interval-valued data. This bibliographic review includes sources on linear 

and non-linear models, their characteristics and definition, and their qualitative relative 

performance.  

It is followed by a theoretical framework on model averaging. Different model averaging 

methods are analyzed and described for the subsequent application to IV data. 

Challenging the Forecast Combination Puzzle unleashes the comparison between simple 

averaging and more complex weight combinations, an existing dilemma since model 

averaging was raised for the first time by Bates and Granger (1969). 

Establishing the model evaluators is another essential stage in this analysis. These statistic 

parameters are very valuable when contrasting models and comparing their performance. 

The selected evaluation parameters evaluate a range of properties of the model, such as 

the distance between the forecast and the real interval, or the percentage of interval 

covered by the prediction. The models are evaluated according to four criteria: 

1. Theil’s U. 

2. Coverage Rate. 

3. Efficiency Rate. 

4. Mean Distance Error. 

Once the problem is defined and the financial data is selected, the methodology follows 

these main steps: 

1. Analyze each model’s performance according to the four established evaluators. 

The obtained values allow the classification of the different models according to 

their accuracy and performance, providing useful information about the forecasts 

on the data. This is carried out using different MATLAB functions: UTheil_k, 

CER_k and MDE_k. 

2. Choose the models that are being combined. Model averaging looks forward 

enhancing the properties of the better predictive models in order to obtain a new 

model with improved characteristics. DrawmultipleITSvdef allows the 

representation of the selected models’ ITS and the comparison with the real ITS, 

shedding light to possible improvement features. 



3. Carry out model averaging. The function Combination_k returns the combined 

forecast averaging two different model, for both equal weights and optimal 

weights. The function used to calculate the optimal weights in a two-model 

combination is called OptimalW. 

4. Evaluate the improvements made by the averaging. The model evaluators are 

calculated again for the new model and results are evaluated. Conclusions are 

drawn on the different aspects observed through this evaluation. 

 

Results 

There are four different study cases that were analyzed and evaluated following the 

previously exposed methodology, obtaining diverse results. The four datasets evaluated 

include the S&P500 index values during 2017 (one of the most important market indexes 

in the world), stock values from General Electric in 2017 (an energetic, financial, 

technological and industrial multinational), Zardoya’s stock values during 2018 and the 

first term of 2019 (the main elevator manufacturer in the world) and stock values from 

Visa in 2017 (one of the leader payment brands). 

Results obtained after evaluating each case follow in sequence. 

 

S&P500 index 

The data was evaluated using six different linear regression methods compared to the 

random walk. Results proved that all the six methods perform better than the random walk 

when forecasting the data. This is shown in Table 1, which presents the Theil’s U values 

for each model, all lower than 1. 

 

Table 2: Case 1. Theil’s U.  

M1 M2 M3 M4 M5 RW M6 

0.7715 0.7655 0.7484 0.7639 0.7492 1.0000 0.6194 

 

When calculating the optimal weights, it stands out that the weights assigned to each 

model for an optimal combination are approximately equal in every case (0.5), this 

meaning that the best performer combination is the one that gives the same importance to 

every model. 

Methods 1 and 6 where combined to create a new model. This resulting model was an 

increase in overall performance. Method 6 improves the Theil’s U, Efficiency Rate and 

Mean Distance Error values of the first method, while the first method model contributes 

increasing the Coverage Rate of the sixth model. These results are illustrated in Table 2. 



The combination was carried out using simple averaging and optimal weights 

combination. Nevertheless, due to the values of the optimal weights when combining this 

case’s models, the differences between both averaging methods are negligible. 

 

Table 2: Case 1. Model averaging: Method 1 vs Method 6. 

METHOD IU CR ER MDE 

M1 0.7715 0.6693 0.6600 9255.2 

M6 0.6194 0.6143 0.8261 5688.7 

EW 0.6624 0.6537 0.7402 6471.6 

OW 0.6625 0.6537 0.7402 6471.9 

 

General Electric 

This case comprises a downward tendency data with small fluctuations throughout time. 

It was demonstrated that the best possible forecast was obtained through a polynomial fit 

(non-linear regression method). Figure 1 depicts the average GE interval and the average 

interval from the polynomial regression model, including the Coverage Rate and the 

Efficiency Rate, which are both higher than eighty percent. 

 

 
Figure 1: Case 2. Real average interval (Y) and polynomial forecasted average interval (Ŷ). 

 

This polynomial forecast was combined with the random walk through simple and 

optimal averaging. Results are presented in Table 3. 



Table 3: Case 2. Model averaging: Random Walk vs Polynomial. 

METHOD IU CR ER MDE 

RW 1.0000 0.1448 0.0929 4.7741 

Polynomial 0.0942 0.8397 0.8150 0.0386 

EW 0.5212 0.3029 0.2760 1.3579 

OW 0.0890 0.8507 0.8193 0.0340 

 

Obtained results showed remarkable improvements in the predictions when both models 

were combined using optimal weights. Theil’s U value and Mean Distance Error were 

close to zero (meaning the distance between the data and the forecast was minimal) and 

coverage and efficiency rates were even higher than the model’s rates alone. 

 

Zardoya 

Zardoya’s dataset was forecasted using tendency-based methods, such as the mean, the 

median or the quartiles. The data’s lateral behavior resulted in lack of accuracy in the 

predictions based on tendency, with Theil’s U values much greater than 1. The 

performance of the evaluated models was worse than the random walk. 

Aumann’s Mean and Hausdorff’s Median were evaluated as forecasting methods, 

comparing and combining them with the random walk. Results proved that these two 

methods are similar enough on performance and characteristics to be considered 

equivalent when implementing data forecasting.  

The following figures illustrate the similarities in ITS forecasting between the Aumann’s 

Mean (Figure 2) and the Hausdorff’s Median (Figure 3).

 

 

Figure 2: Case 3. Zardoya’s ITS (red), Random 

Walk’s ITS (purple), Aumann’s Mean’s ITS 

(blue). 

 

 

Figure 3. Case 3. Zardoya’s ITS (red), Random 

Walk’s ITS (purple), Hausdorff’s Median’s ITS 

(blue).



 

 

Visa 

The final study case forecasts data with a steep upward tendency. In this case, the optimal predictions 

were obtained through an exponential approach. This nonlinear regression method provides a model 

with high CR and ER values, and low Theil’s U and MDE values. Results are displayed in Table 4. 

 

Table 3: Case 4. Model Averaging: Random Walk vs Exponential Fit. 

METHOD IU CR ER MDE 

RW 1.0000 0.4902 0.5315 156.2200 

Exponential 0.4016 0.8322 0.8225 25.2780 

EW 0.6344 0.7018 0.7164 60.2200 

OW 0.6861 0.6739 0.6932 70.4870 

 

Model evaluator’s values are not as optimal as the polynomial approach. Nevertheless, this case 

shows another scenario where model averaging improves the characteristics of a certain model. Both 

optimal and equal weights were used for the combination, resulting in a discrepancy with the previous 

cases regarding the supremacy of optimal weights in model averaging: in this example, simple 

averaging provides better properties for the predictive model than the optimal weights combination. 

 

Conclusions 

Obtained results have highlighted various aspects about the performance of linear and non-linear 

forecasting methods for interval-valued data. 

Regarding the Forecast Combination Puzzle, results have demonstrated that simple average is the 

most straightforward averaging method as long as the models that are being combined present similar 

characteristics. However, in a situation where a model outstands the rest (for example, the polynomial 

approach in the General Electric case), simple averaging stops being the most reliable method for 

model averaging. In these cases, the calculation of optimal weights based on each model’s 

performance strengthen the properties of the most accurate model. 

Predictive models based on tendency parameters, such as the average, the median or the quartiles, 

have proven to be less effective and accurate than other methods for datasets with lateral behaviors 

or steep upward trends. The absence of a tendency in the data hinders the model’s ability to exactly 

predict future movements of the stock values and fast changing tendencies makes it hard for the model 

to adapt to the new values and make accurate predictions. 

It was noticed that non-linear regression methods, like polynomial or exponential approaches, present 

higher coverage and efficiency rates. They have proven to be more accurate and to have better forecast 

abilities than linear methods on datasets with strong upward and downward tendencies. The 

development of non-linear methods might be the key to attain the best possible predictions for 

interval-valued data. 

Finally, referring to potential future studies, it would be interesting to create an app using MATLAB’s 

App Designer that includes all the functions programmed and developed in this project. This could 



turn the outcome into a visual and user-friendly interface, facilitating the comparison between models 

and averaging methods. 
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1. Introduction 

Statistics applications are wider and more complex everyday thanks to the 

advances in data processing. Model averaging in particular is key in offering 

potential solutions to many problems regarding forecasting. The combination 

of predictive models can be the answer to challenges presented on areas with 

global reach, such as financial markets. The necessity to predict future stock 

values and the reliance big and small companies have on the goodness of 

these predictions makes the pursuit of solutions a fundamental economic 

interest.  

Single or crisp data analysis and its application to these problems has been 

deeply developed over the years; nevertheless, its results are not always the 

simplest or easiest ones. Crisp data may lack on the information necessary to 

describe a certain value, providing incomplete forecasts and predictions. 

The more demanding needs of financial forecasters and different day-to-day 

fields, such as risk evaluation in engineering, programming or robotics, require 

the development of methods for a different kind of data: interval-valued (IV) 

data. This type of data is based on intervals with lower and upper limits for 

each measure. The information given by interval data is usually more accurate 

and complete than that which can be extracted from single data, so it is highly 

valuable when precision is a priority in data analysis (Maté, 2012). 

A remarkable use of intervals is the study of time-based data and predicting 

series. Time series can be found in data concerning weather evolution, 

markets movement or changes in energy prices. This leads to the development 

of Interval Time Series (ITS), IV data registered as an ordered sequence 

throughout time. Arroyo and Maté (2006) prove the versatility of ITS in the 

prediction problem and forecasting.  

IV data can also provide a broader framework and better solutions to complex 

subjects regarding regression models. Forecasting financial markets, an 

essential activity for the economy, relies heavily on these regression models, 

so IV data and ITS can open new and interesting avenues here. 

Moral Benito (2015) raised the issue of the existing uncertainty when choosing 

a regression model over the space of all possible models. The information lost 

when disregarding some of the regression models is not usually taken into 

account when calculating the uncertainty associated to the model. In an 

attempt to avoid this common mistake, model averaging will be considered in 

the design of a tool that assesses the different regression methods. 

Moral Benito (2015) justified the uncertainty of regression models when 

estimating parameters depending on the chosen control variables. Figure 1 

shows the β estimates from 65,536 regression models. These models were 
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obtained from different combinations of control variables of the same data and 

evaluated according to the Bayesian Information Criterion (BIC). 

 

Figure 1: β Estimates from different candidate models. Source: Moral Benito (2015). 

Figure 1 illustrates the variability of forecasting models depending on the 

selected variables. Selecting a model over another could lead to significant 

differences on results, as the amount of discarded information affects the 

predictive abilities of the model. Finding ways to combine the most 

advantageous properties of each model represents a potential improvement 

on regression methods, suitable to IV data models and forecasts.  

This project will focus on linear and non-linear regression models in order to 

find new methods of working with both crisp and interval data, being able to 

obtain precise estimations and apply the results in the forecast of financial 

markets. The final expected output is a set of MATLAB functions that works as 

a tool to analyze and compare several models. 

 

1.1. State of the art 

Interval-valued data, despite of its many and useful possible applications, has 

not been explored as much as single data over time. According to Maté (2012), 

the first time someone used IV analysis as a tool was in 1959, when Ramon 

Moore applied IV to automatic error control. However, the research boost 

actually started in 1960, when methods and applications regarding interval-

valued data came to the forefront. 
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One of the areas in which interval-valued data has had recent advances is in 

regression models. In relation to linear regression, different methods have 

been studied over the last years to determine their performance with IV data, 

such as the Lasso technique, the parametrized approach, the Constrained 

Center and Range Method (CCRM) and the MinMax method. Nevertheless, 

Maceda (2018) concluded that there is not a favored method yet among the 

existing ones. 

Nonlinear regression and its method (NLM) for interval-valued data has been 

evaluated recently through the Monte Carlo experiments, demonstrating a 

greater accuracy and precision than linear regression methods in interval-

valued dataset and different scenarios (Lima Neto & de Carvalho, 2017). 

Extensive research has been done about Interval Time Series, mainly in the 

forecasting area. Lin and González-Rivera (2016) proposed an approach for 

data sets with interval data as the only relevant information. Assuming an 

underlying stochastic process for the IV time series, the authors developed a 

forecasting model for beef prices from 2010 to 2013 and evaluated the 

performance of this model. Figure 2 represents the actual and predicted beef 

prices (historical data provided by the United States Department of 

Agriculture). 

 

 

Figure 2: Example of ITS forecasting. Source: Lin and González-Rivera (2016). 

 

Lin and González-Rivera (2016) exploited the extreme nature of the lower and 

upper bounds of the interval, proving that IV data approaches offer much more 

information than crisp ITS models. 

Model averaging represents one of the most powerful techniques on 

regression models, but there is still a lot of work ahead the current State-of-

the-Art. Moral Benito (2015) analyzed the Bayesian Model Averaging (BMA), 

the most developed method that emphasizes on economic applications and 

has a soaring relevance in software for model averaging, and the Frequentist 
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Model Averaging (FMA), a potential future tool when dealing with endogenous 

regressors. 

The cutting-edge studies emphasize the usefulness of the BMA in situations 

of model uncertainty, due to its unambiguous, finite sample nature (Steel, 

2019). The author highlights the applicability of model averaging in economics, 

with targets such as forecasting or scenarios modelling. 

Nevertheless, the current challenge is related to MATLAB’s libraries. So far, it 

is not possible to find a tool that represents, analyzes and compares all the 

explored regression methods, linear and non-linear, and allows different 

combinations of them to study model averaging. 

 

1.2. Motivation 

The best way of approaching the challenging problems that need to be faced 

every day in relation to data predictions is with solutions at the same level. 

Regression models have already plunged into crisp data, but there are still 

abundant possibilities regarding IV data. 

As for forecasting, there is still uncertainty and lack of confidence on the results 

provided by the current methods. Analyzing more complex data such as IV 

data could provide the key factors for an accurate prediction. 

Further exploration of regression model averaging in single and interval-valued 

data could aid the financial field great, particularly in forecasting financial 

markets. This is the reason why this project looks forward to analyzing existing 

approaches to regression models and creating a visual system that helps 

moving closer the target: accurate predictions for IV databases in financial 

markets. 

With the final aim of creating a MATLAB environment that compares and 

evaluates different regression methods, this work expects to be a follow-up 

and expansion of previous works about interval-valued data and its 

applications. 

 

1.3. Objectives 

The main objectives of this project are listed below: 

- Building a set of MATLAB functions. The goal is to create a system for 

exploring different methods of regression in an original and visual way. 

- Compare the results provided by the current regression methods and 

those obtained by model averaging, in order to draw conclusions about 

the quality and precision of the different estimations. 
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- Develop and delve into previous works done on interval-valued data 

analysis. This means pushing forward the state-of-the-art on this field 

by exploring new possible applications of IV data analysis. 

- Validate the regression models applications in particular problems in 

financial markets, using interval time databases. 

 

1.4. Work Methodology 

In the early stages, this project will be based on the study and processing of 

existing data about interval-valued data, linear and non-linear regression 

models, averaging among these models, and their applications to financial 

markets. Some of the sources will be found by research and some of them will 

be provided by the director, and they will include scientific articles, papers and 

prior thesis. 

After the research is done, the work will focus on MATLAB programming, in 

order to create the necessary programs to explore, compare and average 

different regression model methods. At this stage, some functions will need to 

be created, as well as the tool and its interface. 

 

1.5. Resources 

The major resource used in this project will be MATLAB. The software from 

MathWorks will be the tool utilized to define the functions needed to create the 

different regression models and apply them to the existing data. The final goal 

is to produce a set of functions that will facilitate the averaging between 

models, both linear-linear averaging and linear-nonlinear. 

The final results and conclusions will be supported with graphs and 

screenshots from MATLAB, aiming to open a new research path or a new 

perspective regarding model averaging and, specifically, model averaging for 

financial data.  
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2. Interval Analysis 

Symbolic data is a kind of data with a more complex and complete structure 

than crisp data. It is not limited by the boundaries of a single value for each 

datum, providing wider possibilities to study existing problems in many 

different fields, such as engineering or financial markets. This type of data 

appeared for the first time in the second half of the twentieth century, in an 

attempt to fill the gaps left by single or crisp data.  

Symbolic data analysis (SDA) has been considerably developed in recent 

years, as it gives a framework able to consider the variability of the data, 

significantly reducing errors (Norhomme-Fraiture & Brito, 2011). The authors 

distinguished several types of symbolic data, including categorical data (modal 

and multi-valued) and numerical data, which comprises interval-valued data, 

histogram variables and functions.  

The subject of study in this project are interval-valued (IV) data, introduced by 

Moore (1966). The author described the interval as a number pair with a dual 

nature, representing an interval of real numbers a ≤ x ≤ b. 

This section summarizes the applications of IV data in forecasting and the main 

descriptive statistic measures for interval-valued datasets. 

 

2.1. Interval data  

Interval data is the particular case of symbolic data with a lower and upper limit 

for each value. There are two options to represent an interval. The first one is 

with its lower and upper bounds: [𝑥] = [𝑥𝐿;  𝑥𝑈], where −∞ < 𝑥𝐿 ≤  𝑥𝑈 < ∞. 

The other way to define an interval is by its center and radius (half of the 

range): [𝑥] = 〈𝑥𝐶 ;  𝑥𝑅〉, where 𝑥𝐶 = (𝑥𝐿 + 𝑥𝑈)/2 and 𝑥𝑅 = (𝑥𝑈 − 𝑥𝐿)/2. 

The range comprised by interval data allows the consideration of wider ranges 

of information, reducing the information lost when assigning a single value to 

a certain figure (as in crisp data). 

Interval Time Series (ITS) are a kind of databases described by Maté (2012) 

as a time-ordered sequence of IV data. ITS are denoted as  {[𝑥𝑡]} = {[𝑥𝑡
𝐿;  𝑥𝑡

𝑈]} 

for 𝑡 = 1, 2, … , 𝑛. They are a really valuable tool when organizing interval 

values chronologically throughout time. 
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2.2. IV data forecasting 

Like most mathematical areas, forecasting methods were originally developed 

for single valued data. These methods integrated regression models (linear 

and non-linear) or tendency-based methods, such as moving average models 

(García-Ascanio & Maté, 2010).  

Regarding interval-valued databases, different techniques have also been 

studied in the last years. Since Moore (1966) introduced the importance of 

interval analysis as a tool to deal with relevant scientific problems, updates on 

this field have been continuously made.  

A review of the main regression methods for IV data forecasting is included in 

Section 3. The evolution of these methods demonstrates the reliability they 

have on the previous ones and the importance of pushing the state-of-the-art 

if the best possible performer models are the goal. 

Forecasting has been especially developed for ITS. García-Ascanio and Maté 

(2010) proposed an approach to an electric power demand forecasting 

problem (Figure 3) using two different solutions: the vector autoregressive 

(VAR) models and the multi-layer perceptron model (iMLP), both adapted to 

interval data. 

  

 

Figure 3: ITS. Monthly electric power demand for Hour 1 in Spain, Year 2000. Source: García-Ascanio 

and Maté (2010) 

 

The authors concluded that the use of symbolic data in the energy forecasting 

field could be a potential progress from crisp data, obtaining more complete 

and rigorous results. 
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San Roque et al. (2007) provided another example of an ITS in the energetic 

field. Figure 4 illustrates the evolution throughout time of the energy prices in 

the Spanish market.  

 

 

Figure 4: ITS example. Energy price in Spain. Year 2003-2004. Source: San Roque et al. (2007) 

 

This time series was evaluated applying multi-layer perceptrons (iMLP) as 

predictive models for IV data. Results proved that this approximation was a 

valuable tool when minimizing the cost function defined by the discrepancies 

between the desired output intervals and the estimated ones. 

Regarding financial applications, Arroyo, González-Rivera and Maté (2010) 

analyzed the effect of regression IV methods on S&P500 prices. The authors 

pointed out the quality of the simple smoothing techniques when applied to 

histogram time series. 

Forecasting accuracy measures for IV data and ITS will be exposed in Section 

5, including parameters like Theil’s U, the Coverage Rate, the Efficiency Rate 

and the Mean Distance Error. These measures allow the evaluation of the 

quality of the forecasting models, providing criteria to discern accurate models 

from worse performer ones. 

 

2.3. Statistics measures for IV data  

Interval-valued databases are a source of new approaches to many kinds of 

problems, due to their descriptive nature on figures that need more than one 

value to be defined. For example, stock values over a period of time (that 
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contain maximum and minimum values) or weather forecasts (made of 

maximum and minimum temperatures). 

However, this resource would be useless without proper analytic tools for this 

kind of data. The main statistics measures for IV datasets are presented 

hereafter, providing a theoretical framework for their further application. 

 

(i) Aumann’s Mean 

This is a descriptive statistic measure for univariate interval-valued data. It is 

a central-tendency measure. Bertrand and Goupil (2000) defined the mean of 

an interval set as the mean of the centers, according to the formula that follows: 

 𝑥1̅̅̅ =
1

2𝑛
∑(𝑥𝑖

𝐿 + 𝑥𝑖
𝑈)

𝑛

𝑖=1

=
1

𝑛
∑ 𝑥𝑖

𝐶

𝑛

𝑖=1

 (1) 

Where 𝑥𝑖 represents an observed random sample of size 𝑛 from a random 

interval [𝑋].  

This mean of the centers (𝑥𝐶̅̅ ̅) can be treated as the simple mean of an IV 

database, whereas considering only the interval centers has the risk of 

mistaking IV data for crisp data. The mean of the centers is more likely to be 

contemplated as the center of gravity from the database. 

In order to include wider information about the dataset, the mean of the radii is 

defined as: 

 𝑥𝑅̅̅̅̅ =
1

𝑛
∑ 𝑥𝑖

𝑅

𝑛

𝑖=1

 (2) 

According to Maté (2019), the Aumann’s Mean is established as the mean 

value interval of the dataset: 

 [�̅�] = [𝑥𝐶̅̅ ̅ − 𝑥𝑅̅̅̅̅  , 𝑥𝐶̅̅ ̅ + 𝑥𝑅̅̅̅̅ ] (3) 

This central tendency statistic takes into account, not only the average of the 

interval, but also the range of the data. This will be the preferred measure to 

be applied in forecasts, as it is a more reliable representation of the information 

given by the interval. 

  

(ii) 1-norm Median 

The 1-norm median is one of the possible approaches for the median of a set 

of intervals. It is defined as the median of the interval-valued dataset, made 
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separately for the upper and the lower limits. Maté (2019) gathers its 

formulation as: 

 
[𝑀𝑒([𝑋])]1𝑁 = [𝑀𝑒{[𝑥1], [𝑥2], … , [𝑥𝑛]}]

= [𝑀𝑒{𝑥1
𝐿 , … , 𝑥𝑛

𝐿}, 𝑀𝑒{𝑥1
𝑈 , … , 𝑥𝑛

𝑈}] 
(4) 

Where 𝑥𝑖
𝐿 represent the lower limits of the interval and 𝑥𝑖

𝑈 stand for the upper 

limits. 

 

(iii) Haussdorff’s Median 

This interval median type is defined as the median of the IV dataset in the 

center-radius formulation. According to Maté (2019), it can be stated as: 

 

〈𝑀𝑒([𝑋])〉𝐻 = [𝑀𝑒{< 𝑥1 >, … , < 𝑥𝑛 >}]

= [𝑀𝑒{𝑥1
𝐶 , … , 𝑥𝑛

𝐶} − 𝑀𝑒{𝑥1
𝑅 , … , 𝑥𝑛

𝑅},

𝑀𝑒{𝑥1
𝐶 , … , 𝑥𝑛

𝐶} + 𝑀𝑒{𝑥1
𝑅 , … , 𝑥𝑛

𝑅}] 

(5) 

Where 𝑥𝑖
𝐶 represent the interval centers and 𝑥𝑖

𝑅 stand for the interval radii. 

Hausdorff’s median has as lower limit the difference between the centers’ 

median and the radii’s median, while the upper limit is obtained through adding 

the median of all centers and the median of all radii. 1-norm median and 

Haussdorff’s median can be both equal and different, depending on the chosen 

interval.  

Table 1 comprises a dataset of stock values from United Health Nation (an 

American healthcare company) for three months of 2017, with the maximum 

and minimum value for each month. 

 

Table 1: UNH Database 

 min Max 

April 2017 164.25 176.07 

May 2017 166.65 178.89 

June 2017 175.19 188.66 

 

Aumann’s mean, 1-norm median and Haussdorff’s mean are calculated for this 

database and presented in Table 2. These statistics are calculated for the 

three-interval dataset and, in this case, both medians present the same values. 
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Table 2: Aumann’s Mean and median intervals. UNH dataset. 

 xL xU 

Aumann’s Mean 168.70 181.21 

1-norm Median 166.65 178.89 

Haussdorff’s Median 166.65 178.89 

 

The exchangeability grade of these measures in interval forecasting will be 

addressed in following sections, comparing both statistic measures as 

predicting methods in relation to their performance and accuracy for different 

databases. 
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3. Regression methods for interval-valued data 

This section comprises a bibliographic review of the existing regression 

methods for IV data. Linear and nonlinear models will be explained and 

analyzed according to their performance and current utility. 

 

3.1. Linear regression methods 

Linear regression attempts to be a linear approach to a model that relates a 

dependent variable with one or more independent or explanatory variables. It 

has an extensive development for crisp data, both for single and multiple 

variables, but linear regression methods for interval-valued data have not been 

deeply developed so far. 

The most complex type of problems regarding regression methods are those 

where both dependent and independent variables are interval valued data. The 

equation of these problems should look like this: 𝛽0 + 𝛽1[𝑋1] + ⋯ + 𝛽𝑛[𝑋𝑛] =

[𝑌], where the X are the independent variables, Y the dependent variable and 

β the parameters of the model. 

The objective of linear regression methods is to minimize the sum of the 

squares of deviation, that is, the number obtained by adding the squares of the 

errors of all the equations in a model. 

The main existing methods of interval linear regression (ILR) are explained in 

this section and follow in sequence. 

 

(i) Centre Method (CM) 

This is the oldest method, introduced in 2000 by Billard and Diday. It deals with 

IV data as if it was crisp data, by using the centers of the intervals like single 

data and then applying the model to the upper and lower limits. 

The Sum of the squares of deviation is the square of the sum of the errors from 

the upper limit equation and the lower limit equation: 

 𝑆𝐶𝑀 = ∑(𝜖𝑙𝑖 + 𝜖𝑢𝑖)
2

𝑛

𝑖=1

 (6) 

Where 𝜖𝑙𝑖 and 𝜖𝑢𝑖 come from: 

 
𝜖𝑙𝑖 = 𝑦𝑙𝑖 − 𝛽0 − 𝛽1𝑥𝑙1 − ⋯ − 𝛽𝑛𝑥𝑙𝑛 

𝜖𝑢𝑖 = 𝑦𝑢𝑖 − 𝛽0 − 𝛽1𝑥𝑢1 − ⋯ − 𝛽𝑛𝑥𝑢𝑛 
(7) 
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The minimum value of SCM is achieved with the values of the parameters (𝛽0, 

𝛽1, …, 𝛽𝑛) obtained with a linear regression of the centers of [𝑌] and 

[𝑋1, 𝑋2, … , 𝑋𝑛]. The resulting values of the parameters can predict �̂�𝐶𝑀: 

 
�̂�𝑙𝑖 = �̂�0 + �̂�1𝑥𝑙1 + ⋯ + �̂�𝑛𝑥𝑙𝑛 

�̂�𝑢𝑖 = �̂�0 + �̂�1𝑥𝑢1 + ⋯ + �̂�𝑛𝑥𝑢𝑛 
(8) 

This method sets the basis for the ones that came after it. However, its lack of 

precision justifies its classification as rudimentary, as, by focusing on the 

centers, information such as the range of the interval is being missed. 

 

(ii) MinMax Method 

MinMax methods represent an improvement of the Center Method, introduced 

in 2002 by the same authors. The main difference with the previous work of 

the authors is the use of different parameters for the upper and the lower limits 

and handling them like different variables. 

In this case: 

 
𝜖𝑙𝑖 = 𝑦𝑙𝑖 − 𝛽0

𝑙 − 𝛽1
𝑙𝑥𝑙1 − ⋯ − 𝛽𝑛

𝑙 𝑥𝑙𝑛 

𝜖𝑢𝑖 = 𝑦𝑢𝑖 − 𝛽0
𝑢 − 𝛽1

𝑢𝑥𝑢1 − ⋯ − 𝛽𝑛
𝑢𝑥𝑢𝑛 

(9) 

The sum of the squares of deviation is the sum of the squares of the different 

errors in the upper and lower bounds: 

 𝑆𝑀𝑖𝑛𝑀𝑎𝑥 = ∑(𝜖𝑙𝑖)
2

𝑛

𝑖=1

+ ∑(𝜖𝑢𝑖)
2

𝑛

𝑖=1

 (10) 

The MinMax method requires two separate linear regressions in order to obtain 

the values of the parameters and minimize 𝑆𝑀𝑖𝑛𝑀𝑎𝑥, one for the lower values 

and another one for the upper values. 

These parameters allow to predict �̂�𝑀𝑖𝑛𝑀𝑎𝑥: 

 
�̂�𝑙𝑖 = �̂�0

𝑙 + �̂�1
𝑙𝑥𝑙1 + ⋯ + �̂�𝑛

𝑙 𝑥𝑙𝑛 

�̂�𝑢𝑖 = �̂�0
𝑢 + �̂�1

𝑢𝑥𝑢1 + ⋯ + �̂�𝑛
𝑢𝑥𝑢𝑛  

(11) 

This model increases the precision in the estimation by considering more 

information of the intervals, such as the upper and the lower limits. Symbolic 

regression approach is preferred to classical techniques (Billard & Diday, 

2002).  
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(iii) Center and Range Method (CRM) 

Lima Neto and De Carvalho developed this method in 2008. It is also a 

development of the Center Method. The Center and Range Method looks 

forward to improving the model response to complex data by adding the ranges 

of the intervals to the existing centers. To simplify the mathematical 

expressions, IV data is represented by the center and radio of each interval 

(instead of using the lower and upper limits). 

The sum to minimize in this model is the sum of the square of the errors of the 

centers and the square of the errors of the radiuses: 

 𝑆𝐶𝑅𝑀 = ∑((𝜖𝑐𝑖)
2 + (𝜖𝑟𝑖)

2

𝑛

𝑖=1

) (12) 

𝜖𝑐𝑖 and 𝜖𝑟𝑖 can be expressed as: 

 
𝜖𝑐𝑖 = 𝑦𝑐𝑖 − 𝛽0

𝑐 − 𝛽1
𝑐𝑥𝑐1 − ⋯ − 𝛽𝑛

𝑐𝑥𝑐𝑛  

𝜖𝑟𝑖 = 𝑦𝑟𝑖 − 𝛽0
𝑟 − 𝛽1

𝑟𝑥𝑟1 − ⋯ − 𝛽𝑛
𝑟𝑥𝑟𝑛 

(13) 

The values of the 𝛽 parameters that minimize 𝑆𝐶𝑅𝑀 are obtained by two a linear 

regression of the centers and an independent linear regression of the radiuses. 

�̂�𝐶𝑅𝑀 is predicted as follows: 

 
�̂�𝑐𝑖 = �̂�0

𝑐 + �̂�1
𝑐𝑥𝑐1 + ⋯ + �̂�𝑛

𝑐𝑥𝑐𝑛 

�̂�𝑟𝑖 = �̂�0
𝑟 + �̂�1

𝑟𝑥𝑟1 + ⋯ + �̂�𝑛
𝑟𝑥𝑟𝑛 

(14) 

This model provides a scatter plot solution for the centers and another one for 

the radii. The additional information about the intervals (radii) compared to the 

Center Method arranges the Center and Range Method as more accurate and 

reliable than the first one.  

 

(iv) Constrained Center and Range Method (CCRM) 

CCRM is an improvement of the Center and Range Method made by Lima 

Neto and de Carvalho in 2010. The main difference is the addition of a non-

negative restriction for the radii, forcing them to be positive. 

The sum of the squares of deviation is the same as the CRM but including the 

constraint that makes the radiuses positive: 

 
𝑆𝐶𝐶𝑅𝑀 = ∑((𝜖𝑐𝑖)

2 + (𝜖𝑟𝑖)
2

𝑛

𝑖=1

) 

𝑠. 𝑡. 𝛽𝑖
𝑟 ≥ 0, 𝑖 = 0, … . , 𝑝. 

(15) 
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This method requires from two separate regression problems to find the 

optimal values of the parameters 𝛽: one for the centers and one for the radii. 

The centers are not affected by the new constraint, nevertheless, the estimate 

of 𝛽𝑟 is solved as a constrained regression problem. 

The prediction of �̂�𝐶𝐶𝑅𝑀 can be expressed like this: 

 
�̂�𝑐𝑖 = �̂�0

𝑐 + �̂�1
𝑐𝑥𝑐1 + ⋯ + �̂�𝑛

𝑐𝑥𝑐𝑛 

�̂�𝑟𝑖 = �̂�1
𝑟𝑋𝑟 

(16) 

Compared to the CRM method, the CCRM provides the same solution for the 

centers’ approximation, but a slightly different one for the radiuses. It can be 

considered a better prediction, as it avoids illogical results such as negative 

radii. 

 

(v) Arithmetic-based simple linear regression (ABSLR) 

This method, introduced by Sinova, Colubi and González-Rodríguez (2012), 

breaks with the previous trends by using an arithmetic approach for the 

regression and by being only for simple regression. 

The approach to the sample 𝑌 is made by looking for a real value �̂� and an 

interval value �̂� and making �̂�𝑋 + �̂� an estimation of the sample. The algorithm 

to find these values: 

 
1

𝑛
∑(𝑑𝜃(𝑌, �̂�𝑋 + �̂�))

𝑛

𝑖=1

 (17) 

Once �̂� and �̂� are obtained, it is possible to predict �̂�𝐴𝐵𝑆𝐿𝑅:  

 �̂�𝐴𝐵𝑆𝐿𝑅 = �̂�𝑋 + �̂� (18) 

The ABSLR method provides a prediction of the upper and lower limits of the 

interval, with the same slope as �̂�  

 

(vi) Linear regression based on Lasso technique 

Giordani brought in this method in 2011. The ultimate goal is to find a common 

set of regression coefficients for the center and the radius. These coefficients 

must be estimated in such a way that the coefficients for the midpoints are 

close to the ones for the radii as much as possible. 

Being 𝑏𝑐 and 𝑏𝑟 the vector of the regression coefficients for the midpoint and 

the radius, respectively, and 𝑏𝑎 the vector of the additive coefficients (𝑏𝑟 = 𝑏𝑐 +

𝑏𝑎), the linear regression relationship can be expressed as: 
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𝑦𝑐 = 𝑏𝑐𝑋𝑐 + 𝜖𝑐 

𝑦𝑟 = 𝑏𝑟𝑋𝑟 + 𝜖𝑟 = (𝑏𝑐 + 𝑏𝑎)𝑋𝑟 + 𝜖𝑟 
(19) 

A constraint is also needed to ensure the positivity of the radii as well as the 

minimum value for 𝑏𝑎: 

 (𝑏𝑐 + 𝑏𝑎)𝑋𝑟 ≥ 0 (20) 

The Lasso (Least Absolute Shrinkage and Selection Operator) technique is an 

estimation method that shrinks some regression coefficients while sets other 

ones to 0. 

The estimation of �̂�𝑙𝑎𝑠𝑠𝑜 results in: 

 
�̂�𝑐 = 𝑏𝑐𝑋𝑐 

�̂�𝑟 = (𝑏𝑐 + 𝑏𝑎)𝑋𝑟 
(21) 

The linear regression method based on Lasso technique provides the same 

result as the CCRM for the radii (as they both use the same constraint for non-

negative radiuses), but a different one for the centers. 

 

(vii) Constrained center and range joint method (CCRJM) 

The Constrained Center and Range Joint method, introduced in 2017 by Ha 

and Guo, is a development of the CCRM method: it also sets a coefficient for 

the center and the radius, but in a shared way, considering the relationship 

between these two elements. 

Being the linear regression relationship the following: 

 
𝑌𝑐 = 𝑋𝛽𝑐 + 𝜖𝑐 

𝑌𝑟 = 𝑋𝛽𝑟 + 𝜖𝑟 
(22) 

The objective of the problem is to minimize the sum of the squares of the 

errors: 

 
min ∑((𝜖𝑐𝑖)

2 + (𝜖𝑟𝑖)
2

𝑛

𝑖=1

) 

𝑠. 𝑡. 𝑋𝛽𝑟 ≥ 0 

(23) 

The prediction for �̂�𝐶𝐶𝑅𝐽𝑀 is given as follows: 

 
�̂�𝑐 = 𝑋𝛽𝑐 

�̂�𝑟 = 𝑋𝛽𝑟 
(24) 
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This method gives a multiple regression solution that cannot be represented 

in a two-dimension plot, so the only way to test its effectiveness is numerically. 

 

(viii) Parametrized Approach for Linear Regression of Interval Data 

This is the most recent method, created by Souza et al in 2017. It goes a step 

forward from the MinMax method, jointing the lower and upper limits by using 

the lower limit values for the upper limit model and vice versa. As the CCRJM, 

reckons with the relationship among these two components of the interval. 

The linear regression relationship would be: 

 
𝑌𝑢 = 𝑋𝛽𝑢 + 𝜖𝑢 

𝑌𝑙 = 𝑋𝛽𝑙 + 𝜖𝑙 
(25) 

In this method, the sum of the squares of deviation needs to be minimized 

independently for the upper limit and the lower limit in order to obtain 𝛽𝑢 and 

𝛽𝑙: 

 

𝑆𝑙 = ∑(𝜖𝑙𝑖)
2

𝑛

𝑖=1

 

𝑆𝑢 = ∑(𝜖𝑢𝑖)
2

𝑛

𝑖=1

 

(26) 

After the coefficient matrix are operated, the resulting prediction for �̂�𝑝𝑎𝑟𝑎𝑚 can 

be expressed as: 

 
�̂�𝑙 = 𝑋𝛽𝑙 

�̂�𝑢 = 𝑋𝛽𝑢 
(27) 

Like in CCRJM, this method’s effectiveness can only be tested numerically, as 

the complexity of the results does not allow their representation in a 2D plot. 

 

3.2. Non-linear regression methods  

Linear regression models are not a valid method when the relation between 

the independent (X) and the dependent (Y) variables is a nonlinear function. 

These cases require non-linear regression methods, which contain nonlinear 

equations and usually need from iterative procedures to solve the model. 

These methods are useful when data presents a non-linear trend, such as 

quadratic or logarithm functions. 
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Non-linear regression methods are both more complex and more useful in 

certain problems, for example, when the function that relates the variables is 

not known. The advantages of these kind of models are now being proved with 

interval-valued data, as many real IV data problems include nonlinear 

relationships between the variables. Lima Neto and De Carvalho introduced in 

2016 a nonlinear regression method (NLM) for IV variables, a method which 

uses two independent nonlinear regression models to fit the functions.  

Considering Y the dependent variable and Xj (j=1, …, n) the independent 

predictor variables, the nonlinear regression relationship can be expressed 

like: 

 
𝑌𝑖

𝑐 = 𝑓𝑐(𝑋𝑖
𝑐, 𝜃𝑐) + 𝜖𝑖

𝑐 

𝑌𝑖
𝑟 = 𝑓𝑟(𝑋𝑖

𝑟 , 𝜃𝑟) + 𝜖𝑖
𝑟 

(28) 

Where ϵ represent the random errors, θ are vectors of unknown parameters, 

and f are non-linear functions. 

The sum of the squares of deviations is the sum of the squares of the errors: 

 𝑆𝑁𝐿𝑀 = ∑(𝜖𝑖
𝑐)2

𝑛

𝑖=1

+ ∑(𝜖𝑖
𝑟)2

𝑛

𝑖=1

 (29) 

With the errors being: 

 
𝜖𝑖

𝑐 = 𝑌𝑖
𝑐 − 𝑓𝑐(𝑋𝑖

𝑐, 𝜃𝑐) 

𝜖𝑖
𝑟 = 𝑌𝑖

𝑟 − 𝑓𝑟(𝑋𝑖
𝑟 , 𝜃𝑟) 

(30) 

In the same way as linear regression models, the ultimate goal is to estimate 

the parameters that minimize the sum of the squares of deviations by using 

optimization methods.  

Lima Neto and de Carvalho (2017) recognize and evaluate 4 optimization 

algorithms that will be explained in sequence. 

1. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method uses an 

approximate Hessian matrix1 for solving nonlinear optimization 

problems.  

2. The Stochastic Gradient method and the Conjugate Gradient method 

are based on the gradient of an objective function. There are Sub-

Gradient methods that back-up the cases when the gradient cannot be 

obtained.  

3. The Conjugate Gradient approach differs in the absence of Hessian 

matrix evaluations, inversion and storage. 

                                            

1 Square matrix of second-order partial derivatives of a scalar-valued function. 
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4. Finally, the Simulated Annealing method only utilizes the objective 

function values (and not derivatives). It is a global search algorithm 

whose utility can be found in the production of logical starting points for 

the rest of the methods. 

Summarizing, non-linear regression models aim to supplement the results of 

linear regression models in those cases where linear is not enough, either 

because of complex relations among the variable of because of lack of 

information. 
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4. Combining forecasts 

The more accurate a regression method is, the higher quality found in its 

predictions. The study and development of new regression techniques, both 

linear and non-linear, looks forward providing new models that will be able to 

discard old forecasts in favor of the newer and better ones. 

However, this constant search for new methods could lead to increasing 

errors, as rejecting a model implies rejecting useful independent information in 

two ways: one model bases its forecast on variables or information that the 

other one has not considered, and different forecasts make different 

assumptions about the relationships between the variables (Bates & Granger, 

1969). 

The combination of different forecasts is an appealing alternative to dismissing 

a certain method, offering the opportunity to bring together the properties of 

two or more models, increasing this way the quality of the forecast. By 

combining several forecasts, the estimates of the figures of interest are usually 

improved, and it is more likely to achieve unbiased results. Model or forecasts 

averaging bypasses the understatement of the real uncertainty of the models, 

as it emphasizes the value of the lost information when disregarding forecasts 

(Moral Benito, 2015). 

There are numerous procedures when combining forecasts, being some 

simpler or more accessible than others. Assigning equal weights to every 

model is definitely a simple and effective mean, yet common sense urges us 

to allocate more weight to those models who seem to hold the lower errors. 

According to Clemen and Winkler (1986), the simple average (forcing the 

weights assigned to the forecasts to be equal) is a successful approach to the 

dilemma of models’ combination. The Bayesian Model (BMA), which contracts 

the weights that would be used a priori toward equality, is another method that 

avoid the rise of extreme weights, being also a quite robust system. 

This section will analyze some of these techniques, providing examples and 

advantages of each of the averaging methods. 

 

4.1. Simple Average 

Simple averaging is the most elemental combining procedure, nonetheless, 

the combination of models using equal weights has proven to be one of the 

most effective. Under equal weights averaging, each model is given equal 

weight to obtain the combined forecast. It is particularly effective when the 

forecasts that are being combined present similar variance and correlations. 
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Being �̂�1, �̂�2, …, �̂�𝑘 the 𝑘 forecasts that are being combined, and 𝑌 the real 

variable being forecast, the combined forecast �̂�𝐶 can be estimated like: 

 �̂�𝐶 =
∑ �̂�𝑖

𝑘
𝑖=1

𝑘
 (31) 

This method deals with the forecasts from different models as if they were 

exchangeable, which is not always the case. However, the arithmetic average 

often serves as a useful benchmark and is sometimes more valid than more 

complicated combining attempts (Clemen & Winkler, 1986). 

Figure 3 illustrates an example of simple average combination with crisp data. 

The data belongs to Abbott Laboratories, an American drug company founded 

in 1888 and included in the S&P 500 index. The S&P 500 is one of the most 

important stock indexes in the US, often considered the most representative 

index of the current market situation.  

The graph shows two different predictions of the centers of the intervals 

containing the maximum and minimum values of the stocks over a certain 

month, as well as the real data and the combined forecast (�̂�𝐶) using equal 

weights. Time frame goes from December 2016 to February 2018, using data 

from the previous two years to make each prediction. Forecast 1 (�̂�1) is made 

with a random walk, while the second method (�̂�2) predicts using the mean of 

the last 24 values. 

 

Figure 5: Example of equal weights combination for crisp data. Source: Prepared by the author. 
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The Forecast Combination Puzzle stands the theory on how simple 

combinations of forecast are repeatedly found to beat and outperform 

elaborated weighted combinations 

According to Smith and Wallis (2009), the explanation for the fact that simple 

combinations outperform sophisticated combinations in empirical applications 

relies in the effect of finite-sample error when estimating the combining 

weights. A possible reason is the instability that arises when the weights are 

calculated, as this estimation is highly dispersed. The authors proved that 

optimal combining weights that are close to equality tend to be more accurate 

and fit better the resolution of the puzzle. 

Exploring the possibility of beating the simple average as a forecast combining 

method has been a branch of research since the combining forecasts dilemma 

was raised by Bates and Granger in 1969. Some of the study cases in this 

project will also follow that path, trying to find a better weighted combination 

or, on the other side, attempting to provide evidence that supports the 

superiority of simple average versus complex models. 

 

4.2. Optimal weights 

Model averaging using optimal weights aims to assign different weights to 

different models based on each model’s performance, aiming to minimize 

errors in the combined forecast. 

Bates and Granger (1969) suggested a weight calculation based on the 

variance of the errors of a certain model (𝜎𝑖) as the performance of the 

forecast, and the correlation coefficient between the errors of two models (𝜌).  

In a two-model scenario, proportionate weight 𝑤 given to the first model was 

defined as: 

 𝑤 =
𝜎2

2 − 𝜌 ∗ 𝜎1 ∗ 𝜎2

𝜎1
2 + 𝜎2

2 − 2 ∗ 𝜌 ∗ 𝜎1 ∗ 𝜎2
 (32) 

The combined forecast of the two models was calculated as: 

 �̂�𝐶 = 𝑤 ∗ �̂�1 + (1 − 𝑤) ∗ �̂�2 (33) 

  

Methods that present the lower mean-square errors are typically the ones with 

weights that adapt quickly to new values and that barely vary about the 

optimum value. This is crucial when dealing with financial data, as sudden 
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changes in the tendency are likely to occur (either upward or downward) and 

the model needs to be prepared to face them. 

A variant of this method will be proposed in the next chapter, using the Theil’s 

U as the estimator for the model’s performance. 

Benefits of using optimal instead of equal weights when combining forecasts 

include creating a compelling method for cases with dissimilar forecasts. It 

takes into account the “quality” of each model, seeking for a combination of 

models with the minimum error. 

 

4.3. Bayesian Model Averaging  

BMA is another forecast combination method. These methods represent the 

alternative methodology to factor modelling when forecasting with large 

datasets. They have a big impact on different fields like economy, ecology or 

energy. 

The Bayesian perspective assumes that there is a distribution of models where 

each model has a different uncertainty probability. It suggests a direct way of 

building model weights for forecast combination, based on the idea of different 

models contributing to the posterior odds of the chosen one (Kapetanios, 

Labhard, & Price, 2008). 

The output of a Bayesian analysis provides a probability distribution for the 

quantified focus of interest for the analysis of a given set of models. BMA 

focuses on the probability of a certain model being the optimal model, providing 

a better average predictive ability than predictions made using just one model. 

It disregards the assumption of some methods that apply weights to every 

considered model: BMA not necessarily uses all the available models. 

Bayesian Model Averaging was one of the approaches proposed by 

Nowotarski et al. (2014) in their comparison of methods in forecasts 

combination. Their study is applied to the energetic market, as their dataset 

comprises four price time series from three major power markets (European 

Energy Exchange, Nord Pool and the Pennsylvania-New Jersey-Maryland 

Interconnection). 

In a dataset with M models, 2M possible forecast combinations can be 

considered. In this evaluation of the energy prices, the resulting forecast 

combination is given by: 
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 �̂�𝑡
𝑐 = ∑ 𝑤𝑙𝑡𝔼(𝑃𝑡|𝑚𝑙, 𝜃𝑙)

2𝑀

𝑙=1

 (34) 

Where 𝑚𝑙 stands for a particular model combination from the 2M that are 

possible, 𝜃𝑙 represents the collection of parameters required for that 

combination and 𝑤𝑙𝑡 is given by the likelihood of a price (𝑃𝑡) in a certain 

combination (𝑚𝑙) and data (𝐷), according to the following formula: 

 𝑤𝑙𝑡 =
𝐿(𝑃𝑡|𝑚𝑙, 𝐷)𝜌(𝑚𝑙)

∑ 𝐿(𝑃𝑡|𝑚𝑗 , 𝐷)𝜌(𝑚𝑗)2𝑀

𝑗=1

 (35) 

After examining the Weighted Mean Absolute Error (WMAE) obtained through 

different combination schemes, results showed that, even though the BMA 

was not the least accurate method, it generally underperforms, giving greater 

errors than simple averaging. 

This conclusion reinforces the Forecast Combination Puzzle, proving the most 

elaborated averaging methods are not always a better option than simple 

average, that considers every model as equal when combining their properties. 
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5. Model evaluation 

The evaluation of the accuracy and performance of regression models is an 

essential step when these methods are used for forecasting and prediction.  

There are different statistic parameters to compare the performance of the 

different models. They are very valuable when contrasting two models 

between them or one model to a random walk. They can be used to determine 

if the adopted regression method provides a good approximation to the data, 

or if the information provided by the model is worse than the figures obtained 

arbitrarily. 

This project is going to focus on four evaluation and comparison parameters: 

Theil’s U (iU), Coverage Rate (CR), Efficiency Rate (ER) and Euclidean 

Distance (MDE). These set of parameters represent a wide analysis on a 

certain prediction, as they focus on different aspects of the model that is being 

evaluated. While Theil’s U and the Mean Distance Error measure the distance 

between the real interval values and the forecast, CR and ER judge the models 

depending on the percentage of interval covered by the prediction.  

 

5.1. Theil’s U 

Maia and De Carvalho (2011) proposed the utilization of the Theil’s U as a 

comparison tool, a statistic originally used in finance to measure accuracy and 

quality of forecasts. Its formula for IV data is given by: 

 𝑈𝐼 = √
∑ (𝑥𝑡

𝐿 − �̂�𝑡
𝐿)2𝑀

𝑡=2 + ∑ (𝑥𝑡
𝑈 − �̂�𝑡

𝑈)2𝑀
𝑡=2

∑ (𝑥𝑡
𝐿 − 𝑥𝑡−1

𝐿 )2𝑀
𝑡=2 + ∑ (𝑥𝑡

𝑈 − 𝑥𝑡−1
𝑈 )2𝑀

𝑡=2

 (36) 

Where 𝑥𝐿 and 𝑥𝑈 represent the lower and upper limits of the real interval, 

respectively, and �̂�𝐿 and �̂�𝑈 are the estimations of the interval limits in a certain 

model. 

The optimal values of the UI when evaluating a model are the ones lower than 

1: this means the model’s performance is better than the random walk (an 

approximation that considers the value of the last period as the predictor for 

the current one). A UI equal to 1 reveals a model with the same performance 

as random walk, while UI greater than 1 represents a model that performs 

worse than a random walk. 

When combining two models, this project is going to focus on two approaches: 

equal weights or optimal weights. 

In the case of only two models and equal weights combination, the combined 

predictor will be calculated as: 
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 �̂�𝐶 = 0.5 ∗ �̂�1 + 0.5 ∗ �̂�2 (37) 

On the other hand, the optimal combination of two different models can be 

determined by defining the optimal weight of each model. Being �̂�1 the 

estimator for model 1 and �̂�2 the estimator for model 2, the optimal combined 

estimator �̂�𝐶 would be: 

 �̂�𝐶 = 𝑤 ∗ �̂�1 + (1 − 𝑤) ∗ �̂�2 (38) 

Where 

 𝑤 =
(𝑈𝐼,2)2 − 𝐴𝐶𝐸𝑈𝐼,1𝑈𝐼,2

(𝑈𝐼,1)2 + (𝑈𝐼,2)2 − 2 ∗ 𝐴𝐶𝐸𝑈𝐼,1𝑈𝐼,2
 (39) 

 
𝐴𝐶𝐸𝑈𝐼,1𝑈𝐼,2 =

∑ [(𝑥𝑡
𝐿 − �̂�𝑡,𝑀1

𝐿 )(𝑥𝑡
𝐿 − �̂�𝑡,𝑀2

𝐿 )]𝑇
𝑡=1

2𝑇

+
∑ [(𝑥𝑡

𝑈 − �̂�𝑡,𝑀1
𝑈 )(𝑥𝑡

𝑈 − �̂�𝑡,𝑀2
𝑈 )]𝑇

𝑡=1

2𝑇
 

(40) 

Even though it may seem that a certain model has the lowest UI and therefore 

it is not worth it to combine it with worse-performer models, model averaging 

and forecast combination are best long-term option when looking for accuracy 

and reliable predictions. The Theil’s U value is calculated based on data from 

a limited amount of time, so it cannot assure the model is the best performer 

for existing every time period. Consequently, the other model can provide a 

better approach in future forecasts. 

 

5.2. Coverage Rate 

The coverage rate is another parameter for testing the goodness of fit. As 

explained in Maté (2015), the CR for a certain model is determined by 

calculating the average of all the CR for every estimation. The Coverage Rate 

for a single prediction is computed with the following formula: 

 𝐶𝑅𝑡 =
𝑈𝑉𝑡 − 𝐿𝑉𝑡

𝑥𝑡
𝑈 − x𝑡

𝐿  (41) 

Where LV stands for Lower Value and UV stands for Upper Value: 

 𝐿𝑉𝑡 = max (x𝑡
𝐿 , �̂�𝑡

𝐿) (42) 

 𝑈𝑉𝑡 = min (x𝑡
𝑈, �̂�𝑡

𝑈) (43) 

In a model with 𝑘 predictions, the CR for the model is calculated as: 
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 𝐶𝑅 =
∑ 𝐶𝑅𝑖

𝑘
𝑖=1

𝑘
 (44) 

A prediction is more accurate the closer its CR is to 1. A Coverage Rate of 1 

indicates that the forecasting interval covers the whole real interval (all the real 

values are contained in the model’s interval). However, the Coverage Rate has 

to go along with the Efficiency Rate: both parameters need to be close to 1 to 

name an estimation as great. 

 

5.3. Efficiency Rate 

Similar to the Coverage Rate, the Efficiency Rate for a prediction is calculated 

as follows: 

 𝐸𝑅𝑡 =
𝑈𝑉𝑡 − 𝐿𝑉𝑡

�̂�𝑡
𝑈 − �̂�𝑡

𝐿  (45) 

Being the average of all the ER the ER of a model: 

 𝐸𝑅 =
∑ 𝐸𝑅𝑖

𝑘
𝑖=1

𝑘
 (46) 

The optimal value regarding the ER is also 1, as this indicates that a forecast 

is completely included in the actual interval. If both CR and ER are equal to 1, 

the forecast is excellent, as the predicted interval perfectly matches the real 

interval. 

Figure 4 exemplifies the CR and the ER of a regression model. The regression 

method is the MinMax method and the IV data comprises forecasts of the 

S&P500 index during 2017. The values of the Coverage Rate and the 

Efficiency Rate are very similar, this meaning the rate of real interval not 

predicted by the forecast and the rate of the forecast that predicts a different 

thing are quite balanced. 
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Figure 6: Real interval (Y) and forecasted interval (Ŷ) with Coverage Rate and Efficiency Rate. Source: 

Prepared by the author. 

 

5.4. Mean Distance Error (MDE) 

Mean Distance Error (MDE) method computes the distance between the 

forecast and the real data for every prediction available. Subsequently, these 

calculated distances are averaged to obtain the model’s MDE value. This 

comprises another valuable way to evaluate the performance of a regression 

model.  

Different distances can be used to reckon the MDE, such as Haussdorff 

distance, Euclidean distance or Ichino-Yaguchi distance.  

This project calculates the MDE applying the Euclidean distance, following the 

definition in Arroyo, Espínola and Maté (2011): 

 𝑀𝐷𝐸2 =
1

2

∑ (𝑑𝐸([𝑥𝑡], [�̂�𝑡]))2𝑇
𝑡=1

𝑇
 (47) 

Where the Euclidean distance is defined as: 

 𝑑𝐸([𝑥𝑡], [�̂�𝑡]) = √(𝑥𝑡
𝐿 − �̂�𝑡

𝐿)2 + (𝑥𝑡
𝑈 − �̂�𝑡

𝑈)2 (48) 

The smaller the MDE and the Euclidean distance are, the better the forecast 

is, so the goal is minimizing the distance between records and predictions.  
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This estimator is affected by the magnitude of the data it is analyzing. For 

example, a value of 10 for the MDE is not the same for a model which is 

forecasting data ranging between 0.1 and 1, than for another model that deals 

with data between 100 and 1000. The higher the values of the data, the higher 

the admissible MDE is.  
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6. Analysis in financial markets 

This section analyzes and predict various financial datasets with IV data and 

different trends (lateral, upward, downward). Different regression models 

(linear and non-linear) are applied to each data, trying to obtain the best 

possible prediction by combining models using model averaging. 

 

6.1. Methodology 

Given datasets and several regression models, the first step is analyzing each 

model’s performance following the four criteria exposed in the previous 

section: Theil’s U, Coverage Rate, Efficiency Rate and Mean Distance Error.  

This is carried out using different MATLAB functions that are described 

hereunder. The code of the complete program is included in Appendix I. 

• UTheil_k. Calculates the Theil’s U for k models and gives back a single row 

array where each column is the UI of a model. The inputs for this function 

are the real intervals (included in matrix Y) and the predictions from each 

method (in matrix Yhat). This parameter is calculated according the formula 

presented in section 4.1. This function allows to differentiate those models 

which perform better than the random walk (UI<1) and those which are 

worse performers than the reference method (UI>1). 

 

 

Figure 7: UTheil_k.m Code. 
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• CER_k. Starting from matrix Y (the real intervals) and matrix Yhat (the 

forecasts from every model), this function returns the Coverage Rate and 

Efficiency Rate for every prediction, as well as the average CR and ER for 

each model. It also displays a graph contrasting the average real interval 

with the average interval of the forecasts, including the average values of 

the CR and the ER. This allows the comparison and visual evaluation of 

the predictions’ accuracy. 

 

 

Figure 8: CER_k.m Code 

 

• MDE_k. Calculates the Mean Distance Error for all the models, returning a 

single column array where each row is the MDE of a model. This output is 

the average of the MDE from every prediction from the different methods. 
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Figure 9: MDE_k.m Code 

 

Once the single models are evaluated, a global comparison is carried out. 

• REPRESENT_k. Displays a figure containing the average interval for each 

model, depicting the similarities between real data and the forecasts. It is a 

way to graphically compare the models, detecting similarities and outliers. 

The graph consists of k models along X axis and the stock values along Y 

axis. 

 

 

Figure 10: Example of Output from REPRESENT_k.m 
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Figure 11: REPRESENT_k.m Code. 

 

• DrawmultipleITSvdef. Plots the interval time series from two selected 

models, comparing them with the real ITS. This is the most visual outcome 

to contrast the different regression models and their performance over the 

course of time. 
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Figure 12: Example of Output from DrawmultipleITSvdef.m 

 

• OptimalW. This function is used to calculate the optimal weights in a two-

model combination. The output is a matrix w size kxk, being k the number 

of models. Element ij represents the weight of model i when combined with 

model j, while element ji represents the weight of model j in the same 

combination. 

 

 

Figure 13: OptimalW.m Code 
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• Combination_k. Returns the combined forecast averaging two different 

models, for both equal weights and optimal weights. The output is a matrix 

with two columns (lower and upper values) and as many rows as time 

periods are being forecasted. For optimal weights, it uses matrix w as the 

input for calculating the optimal combination. 

 

Finally, the four estimators (UI, CR, ER, MDE) are calculated for the combined 

model, displaying the results in a table. This last step allows the examination 

of model averaging, evaluating if this technique actually improves the 

properties of the forecasts and the way it does it. 

 

 

Figure 14: Example of Output from MATLAB’s code. 

 

There are two additional functions that define nonlinear regression methods. 

They are used in particular cases to obtain a better fit for certain datasets. 

• PolynomialFit. Using matrix Y as the input, the function creates a 

polynomial fit for the selected database. It returns a graph illustrating the 

polynomial curve versus the real ITS. It also calculates the values of the 

four evaluators and gives the possibility of combining the new model with 

another existing one. The final output is a table containing the values of the 

parameters for the single model and its combination via equal weights and 

optimal weights. 

• ExponentialFit. Using matrix Y as the input, the function creates an 

exponential fit for the IV data. The output is a graph representing the 

exponential curve versus the real ITS. The four evaluating parameters are 

calculated for the new model. It also allows the combination of the 

exponential model with another selected one. The final table includes the 

values of the parameters for the exponential model and its combination via 

equal weights and optimal weights. 
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Figure 15: PolynomialFit.m Code 

 

 

Figure 16: ExponentialFit.m Code 
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6.2. Case 1: S&P 500 index 

The first model averaging compares six different regression models with the 

random walk:  

1. MinMax Method (mM). 

2. Center Method (CM). 

3. Center and Range Method (CRM). 

4. Bivariate Symbolic Regression Method (BSRM). 

5. CIRM.  

6. Random Walk (RW). 

7. M Method (M). 

The dataset comprises intervals representing the maximum and minimum 

S&P500 index every month during 2017 (12 rows) and its forecast with the 

different models. The comparison of the 7 models results in 21 different pairs, 

and 21 possible optimal estimators. 

The index value in 2017 has an upward tendency. The S&P 500 index value 

in January is [2245.13; 2300.99], while in December it has augmented until 

[2605.52; 2694.97]. This is something that should be taken into account when 

drawing conclusions. 

Results obtained throw light to different aspects. 

In the first place, all 6 regression models used individually perform better than 

the Random Walk, as all their UI range from 0.6194 to 0.7715 (smaller than 1). 

Table 1 presents the Theil’s U obtained for each model. The best model 

according to this criterion is the M Method, a regression method specifically 

designed for IV data. 

 

Table 3: Case 1. Theil’s U. Source: Prepared by the author. 

mM CM CRM BSRM CIRM RW M 

0.7715 0.7655 0.7484 0.7639 0.7492 1.0000 0.6194 

 

Figure 5 illustrates the average interval for each model. These intervals are 

computed by calculating the average of the lower and the upper values for 

each model. It is a visual representation of the Coverage Rate and the 

Efficiency Rate. Y represents the average real interval, while Ŷ represents the 

average interval for a certain model. 

In this case, it stands out how all the seven models cover the low values of the 

real interval, however, any of the forecast models are able to predict the 

highest ones. The upward tendency of the model explains this: as regression 
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models are usually based on previous data, it is easy for them to predict values 

that have previously occurred. Notwithstanding, as the data keeps going up, 

the references used by the prediction models are no longer valuable.  

 

 

Figure 17: Case 1. Average interval from every model. Source: Prepared by the author. 

 

Regarding optimal weights when combining methods, they are approximately 

0.5 for all 21 combinations, as shown in Table 2. This means the best possible 

combination of two models is the one where both have the same importance. 

Given this, it can be stated that simple average beats weight averaging with 

Theil’s U, at least for data with a noticeable upward tendency and prediction 

models based on regression. 

This result is really pertinent if addressing the Forecast Combination Puzzle. 

For six different models that are good enough performers (better than the 

Random Walk), assigning more weight to one of them does not make a 

difference when combining forecasts in terms of improving the quality of the 

forecast. Notice that all the utilized models are regression-based models. 

These results could change when introducing methods based on tendency, 

such as the median or the average. 
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Table 4: Case 1. Optimal weights. Source: Prepared by the author 

ω M1 M2 M3 M4 M5 M6 M7 

M1 0.5000 0.5000 0.5000 0.5000 0.5000 0.4999 0.5001 

M2 0.5000 0.5000 0.5000 0.5000 0.5000 0.4999 0.5001 

M3 0.5000 0.5000 0.5000 0.5000 0.5000 0.4999 0.5001 

M4 0.5000 0.5000 0.5000 0.5000 0.5000 0.4999 0.5001 

M5 0.5000 0.5000 0.5000 0.5000 0.5000 0.4999 0.5001 

M6 0.5001 0.5001 0.5001 0.5001 0.5001 0.5000 0.5002 

M7 0.4999 0.4999 0.4999 0.4999 0.4999 0.4998 0.5000 

 

Random Walk (model 6), usually considered the benchmark for every other 

model, is not really accurate in this type of data, as its focus on the values from 

the last period hampers its ability to follow a rising tendency. This is why the 

chosen methods for a comparative analysis comprise the minMax method 

(model 1) and the M method (model 7). 

Table 3 comprises the final table displayed in MATLAB comparing two chosen 

models, both with equal weights and optimal weights. It provides information 

about the four model evaluators, comparing the performance of the single 

models and the combination. 

 

Table 5: Case 1. MinMax vs M Method. Source: Prepared by the author. 

METHOD IU CR ER MDE 

M1 0.7715 0.6693 0.6600 9255.2 

M7 0.6194 0.6143 0.8261 5688.7 

EW 0.6624 0.6537 0.7402 6471.6 

OW 0.6625 0.6537 0.7402 6471.9 

 

The difference between equal and optimal weights is negligible. This was the 

expected output due to the closeness of the optimal weights to equality. 
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There is a clear increase in overall performance when combining the two 

models. M method improves the Theil’s U, Efficiency Rate and Mean Distance 

Error of the minMax method alone, while the minMax model contributes 

increasing the Coverage Rate of the M model. 

A reason for such high MDE relies on the magnitude of the data values. The 

current stock values range between 2000 and 3000, so distances higher than 

1000 are relatively not that high. 

Figure 6 depicts the Interval Time Series for the data and its forecasts with 

models 1 and 7. The real intervals are plotted in red. The graph shows how, 

even though the models are capable of following the upward trend, the upper 

values of the last months are never reached by the forecasts. 

It can also be seen that the lower values of the S&P500 index are always 

higher than the lower values provided by the forecasts. When there is a strong 

data tendency (in any direction), it is usual to find this kind of bias among 

regression models based on prior data. 

  

 

Figure 18: Case 1. Multiple ITS: real, minMax, M. Source: Prepared by the author. 

 

Figure 7 offers a more detailed comparison of the models by representing the 

median and the average for each ITS. The third ITS (corresponding to M 

Method) is more similar to the data compared to the second one (minMax 
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Method). These similarities were detected through the data analysis and the 

calculation of the model evaluators. 

 

 

Figure 19: Case 1. Median and Average Intervals. Source: Prepared by the author. 

 

The analysis of this first case can be concluded by highlighting the competence 

of simple averaging in a model bank with similar properties among the models. 

Without complex weights computations, model averaging that assigns equal 

weights to every model provides new models with improved capabilities and 

estimations for financial data.  

This S&P500 case is an argument in favor of the Forecast Combination Puzzle: 

it is actually hard to beat the simple average approach when combining 

forecasts, even for optimal weights based on a reliable estimator such as the 

Theil’s U.  

Next cases will focus on non-linear models and their combination with linear 

models (or the Random Walk), and tendency-based models, such as the 

median or the average. 
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6.3. Case 2: General Electric 

The second case study takes data from the stock values of General Electric. 

General Electric Company, also known as GE, is an American multinational 

based in Connecticut, whose fields of operation include energy, capital 

finance, technology infrastructure and consumer and industrial.  

GE’s stock values are included in the S&P 500 index. The data selected for 

the study includes the lowest and highest stock value of a month for the first 

seven months of 2017 (from January 2017 to July 2017). 

The data presents a clear downward trend, starting with a value of [31.400; 

31.835] in January and ending with [27.060; 27.590] in July. This company’s 

declining tendency started in the middle of 2016 and keeps being the main 

direction of its value, even though it has settled in the last five months of 2019. 

This data was evaluated using ten different models, including the Random 

Walk (M1). As shown in Table 4, the forecast depending on the average is the 

worst performing model, with a Theil’s U much bigger than one (3.390). The 

rest of the models have a performance similar to Case 1: they all work better 

than the Random Walk without being excellent predictors. 

 

Table 6: Case 2. Theil's U. Source: Prepared by the author. 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

1.000 3.390 0.771 0.738 0.722 0.843 0.727 0.867 0.734 0.722 

 

Figure 8 shows how the second model is an obvious outlier compared to the 

rest. It has a zero coverage rate and a zero efficiency rate (the forecast does 

not match the interval at any point), and its UI indicates it is better to use the 

Random Walk rather than this model. These are the signs of a bad forecast: 

graphically apart from the interval, high values of Theil’s U and low values of 

CR and ER. 

The rest of the models are better predictors, with reasonable distances to the 

real interval (MDE illustrated in Table 5). The closer the forecast is to the real 

interval (like in Model 3), the lower its MDE is. Model 2 shows a striking MDE 

value in comparison to the rest of the models. 

 



54                           Helena Isabel Álvarez García 

Regression models averaging under interval-valued databases 

 

Figure 20: Case 2. Average interval from every model. Source: Prepared by the author. 

 

It is noticeable how the magnitude of the Mean Distance Errors has 

considerably shrunk compared to Case 1. This does not mean that all the 

forecasts are much better and have less errors, but, as the magnitude of the 

real interval is smaller, the absolute value of the error decreases even though 

its relative value might be even higher. 

 

Table 7: Case 2. MDE. Source: Prepared by the author. 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

4.77 100.35 3.65 4.41 3.97 5.90 4.08 3.90 3.79 3.94 

 

The model chosen to compare against the RW is model 3, as it has the lowest 

MDE. In this case, optimal weights differ from the equality, so results are 

diverse depending on the type of averaging used (equal or optimal weights). 

Table 6 shows the comparison between these two models. 
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Table 8: Case 2. Random Walk vs M3. Source: Prepared by the author. 

METHOD IU CR ER MDE 

RW 1.0000 0.1448 0.0929 4.7741 

M3 0.7707 0.1837 0.1838 3.6458 

EW 0.8674 0.2227 0.1827 3.9008 

OW 0.7344 0.0816 0.1114 3.7802 

 

Theil’s U is notably improved by the combination: the optimal combination 

attains a value of 0.7344, much lower than the UI from both of the models. 

Regarding MDE, it is also improved through the averaging. However, CR and 

ER values are too low to consider any of these models a good approximation 

to this General Electric Data. Values that close to zero indicate that the 

forecasted interval barely overlaps the real one. 

In order to improve the forecast of the IV data from General Electric during 

2017, a non-linear regression model was introduced. Non-linear models are 

useful when the relationship between the dependent and independent 

variables is not a linear relationship. In this case, non-linear regression is 

required because the downward tendency does not follow a straight 

decreasing line: the stock value in March increases from [29.560; 29.810] to 

[29.820; 30.350], but goes down again in April to [29.745; 30.000]. 

Using the function PolynomialFit, a fourth-grade polynomial was created, with 

a much better fit than the rest of the models. Figure 9 shows the ITS of the 

data in red and the polynomial approach in blue. 
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Figure 21: Case 2. Polynomial fit. Source: Prepared by the author. 

 

This non-linear regression method is able to accurately follow the decreasing 

trend of the data, achieving a much better forecast than previous models. In 

order to make it suitable for IV data, the function PolynomialFit calculates the 

polynomial fit for both the upper and lower values of the intervals, similar to the 

minMax method in linear regression. Another possible approach (that could 

lead to new testing paths) consists in creating the polynomial from the interval 

centers and adjusting the radii with a linear regression. 

According to Figure 10, that represents the average GE interval and the 

average interval from the polynomial regression model, the Coverage Rate 

and the Efficiency Rate are both higher than eighty percent, the greatest value 

achieved so far. Unlike the previously analyzed models, the polynomial 

approach successfully matches the real data from this case. 
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Figure 22: Case 2. Average interval: polynomial forecast. Source: Prepared by the author. 

 

The following table shows the values of the estimators for the polynomial 

forecast, as well as its comparison with the Random Walk. Even though the 

polynomial approach was exceptional, these results prove that model 

averaging is able to upgrade even the greatest models. 

 

Table 9: Case 2. Random Walk vs Polynomial Model. Source: Prepared by the author. 

METHOD IU CR ER MDE 

RW 1.0000 0.1448 0.0929 4.7741 

Polynomial 0.0942 0.8397 0.8150 0.0386 

EW 0.5212 0.3029 0.2760 1.3579 

OW 0.0890 0.8507 0.8193 0.0340 

 

 

It is noteworthy how, when calculating optimal weights for this case, the 

function returns a weight of approximately 1 for the polynomial model and 

approximately 0 for the random walk.  
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By combining the models with this optimal weight, Theil’s U is reduced 

(obtaining a value extremely close to the optimum) while CR and ER are 

increased, covering a higher percentage of the real interval. MDE is almost 

insignificant: the distance error between the data and the forecast can be 

considered zero. 

This analysis proves that, for a forecast model that clearly outstands the rest, 

equal weights are not the best option. It is true that simple averaging implies a 

relative enhancement from the Random Walk, but it is far from being the 

optimal solution when looking for the most accurate forecast. 

Optimal weights, on the other side, improve the properties of the good forecast, 

achieving the desired close-to-perfection combined model. Different factors 

have probably influenced in beating the simple average.  

In the first place, the performance gap between the polynomial model and the 

rest was significant. Models with similar properties are not compared anymore, 

so these differences among models can easily be omitted if simple averaging 

is used. 

Secondly, this case presents a linear-nonlinear combination. The approach 

provided by each model addresses the forecast problem in a different way. 

Non-linear methods are more flexible and a good approach when data follows 

a non-linear tendency. This is a compelling reason to not equalizing both 

models but trying to find the optimal weight combination. 
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6.4. Case 3: Zardoya 

The third dataset comprises the stock values of Zardoya Otis SA from February 

2018 to April 2019 (15 months). This company was founded in New York in 

1853 and constitutes the main elevator and escalator manufacturer in the 

world.  

In the chosen period, the dataset has no clear trend: small rises are followed 

by short decreases and vice versa. The stock values of the company are 

therefore considered to have a lateral behavior. For this reason, it might be an 

interesting approach trying to predict this data with forecast models based on 

tendency. 

The six models applied to the data are: 

1. Random Walk (RW). 

2. Aumann’s Mean. 

3. Haussdorff’s Median. 

4. Center-Radii Median. 

5. Third Quartile. 

6. First Quartile. 

In general, th tendency-based models (Table) are not good performers when 

forecasting data without a tendency. The Random Walk (M1) behaves as the 

benchmark, with a Theil’s U value equal to 1. All the tendency methods present 

a greater UI value.  

 

Table 10: Case 3. Theil's U. Source: Prepared by the author. 

M1 M2 M3 M4 M5 M6 

1.0000 1.7275 1.8791 1.8686 2.3760 1.6086 

 

This is sustained by Figure 11, which illustrates the average interval for every 

model. Random Walk (Ŷ1) is the closest forecast for Zardoya’s stock values, 

as the rest of the models tend to overestimate the real values, leading to really 

low CR and ER values. The worst performer is Model 6 (first quartile) because 

not only it has the highest UI value, but it is also located the furthest apart from 

the real interval (increasing the distance error). 
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Figure 23: Case 3. Average interval from every model. Source: Prepared by the author. 

 

Analyzing optimal weights among the models, results are not favorable for the 

simple average (Table 9). Weights assigned to each model vary from 0 to 1 for 

all the fifteen possible combinations between models.  

 

Table 11: Case 3. Optimal weights. Source: Prepared by the author. 

ω M1 M2 M3 M4 M5 M6 

M1 0.5000 0.7688 0.7975 0.7955 0.8678 0.7362 

M2 0.2312 0.5000 0.5571 0.5534 0.7035 0.4526 

M3 0.2025 0.4429 0.5000 0.4962 0.6540 0.3985 

M4 0.2045 0.4466 0.5038 0.5000 0.6576 0.4021 

M5 0.1322 0.2965 0.3460 0.3425 0.5000 0.2690 

M6 0.2638 0.5474 0.6015 0.5979 0.7310 0.5000 

 

There is a notable tendency to assigning more weight to the best performer 

model. In this case, Random Walk always gets weights higher than 0.5 when 

combined with the rest of the models (that have higher Theil’s U value). This 
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is represented in the first row of Table 9, that shows the weight of the Random 

Walk when combined with the Aumann’s Mean, the Haussdorff’s Median, and 

so on. 

Contrastingly, the model which has, on average, less weight assigned in the 

combination is model 5 (third quartile), the one with the least quality 

performance and worst predictive results.  

In the light of these results, it would be interesting to compare the combination 

of the Random Walk with the mean (Model 2) and with the median (Model 3) 

separately, along with the combination of the three models using equal 

weights.  

First of all, models 1 and 2 are combined through equal weights and optimal 

weights. The values for the model estimators are presented in Table 10. The 

differences between the equal and the optimal combination are remarkable: 

optimal weights combination achieves a model that performs better than the 

RW (UI < 1), covers a greater percentage of the interval and has a lower error 

distance.  

In this case, simple average has been clearly outperformed by the optimal 

weights combination. It is probably due to the fact that the models being 

compared (Random Walk and Aumann’s Mean) are very dissimilar. While 

Random Walk only considers the interval value from the last period, the Mean 

is a tendency method that considers the data from the previous two years to 

make a forecast. 

 

Table 12: Case 3. Random Walk vs M2. Source: Prepared by the author. 

METHOD IU CR ER MDE 

RW 1.0000 0.6435 0.6184 2.0371 

M2 1.7275 0.4646 0.3649 6.6566 

EW 1.1267 0.6475 0.5628 2.3476 

OW 0.9721 0.6850 0.6371 1.6857 

 

Results from combining the Random Walk with the Haussdorff’s Median, 

included in Table 11, are almost identical: the combined model is only 

improved when using optimal weights. 
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Table 13: Case 3. Random Walk vs M3. Source: Prepared by the author. 

METHOD IU CR ER MDE 

RW 1.0000 0.6435 0.6184 2.0371 

M3 1.8791 0.4026 0.3632 7.7958 

EW 1.1795 0.5903 0.5459 2.6328 

OW 0.9735 0.6654 0.6387 1.7193 

 

Figure 12 illustrates the different behaviors of the two models: while the 

Random Walk follows the data tendency (a time period behind), Aumann’s 

Mean stagnates around the same values. This implies the tendency-based 

method is not capable of adapting to the data fluctuations in the absence of a 

clear trend, so it keeps forecasting in the same limited range. 

 

 

Figure 24: Case 3. Multiple ITS: real, Random Walk, Aumann’s Mean. Source: Prepared by the author. 

 

The behavior of the ITS forecasted by the Haussdorff’s Median follows the 

same patterns. Represented in Figure 13, the third model analyzed for 

Zardoya’s case (plotted in blue) is not able to properly forecast the interval time 

series established by the stock values.  
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While the average value of the real ITS ranges in the interval [7.058; 7.725], 

the average interval of the forecast stays at [7.662; 8.260]. Notice that the 

lower value of the forecast is practically the same as the upper value of the 

real interval. However, by combining the Median model with the Random Walk, 

an average interval of [7.240; 7.914] is obtained for the forecast. This is a clear 

example of how model averaging can help improving a forecast without 

completely giving up a model that initially looked like a bad performer. 

 

 

Figure 25. Case 3. Multiple ITS: real, Random Walk, Haussdorff’s Median. Source: Prepared by the 

author. 

 

The last test made for this data is a combination of the three models together: 

Random Walk, the Aumann’s Mean and the Haussdorff’s Median. This 

combination was implemented assigning equal weights to every method and 

the model evaluators were calculated for the new combination (Theil’s U, 

Coverage Rate, Efficiency Rate, Mean Distance Error). Obtained results are 

presented in the following table. 
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Table 14: Case 3. Combination of three models: Random Walk, Aumann’s Mean, Haussdorff’s Median. 

Source: Prepared by the author. 

IU CR ER MDE 

1.3376 0.5417 0.4666 3.6631 

 

The outcomes of combining three methods instead of two using equal weights 

are not satisfactory. The performance of the combined model, according to the 

Theil’s U criterion, is worse than the simple random walk, so it is pointless 

utilizing this new model to forecast interval data when looking for accuracy and 

legitimacy in the predictions. Coverage and efficiency rates are also reduced 

from the original RW forecast: the average predicted interval is now less similar 

to the real one. In addition, error distance is higher, so the four criteria agree 

in the bad quality of the new combination. This relationship between Zardoya’s 

average interval and the combined model’s average interval is plotted in Figure 

14. 

 

Figure 26: Case 3. Average interval: combination of RW, Mean and Median. Source: Prepared by the 

author. 

 

This case proves that, even though tendency models are hardly useful with 

data without a trend, model averaging is a helpful tool to improve the forecasts 

and their properties. Optimal weights combination has demonstrated to be the 
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best averaging option, making a noticeable improvement in results and beating 

simple averaging.  

In an scenario where simple average has been beaten, it has been verified 

that it does not matter how many models are being combined. Developing a 

formula to assign optimal weights to more than two models could be a new 

MATLAB function worthy of being developed. 

 

  



66                           Helena Isabel Álvarez García 

Regression models averaging under interval-valued databases 

6.5. Case 4: Visa 

The fourth case study focuses on data with a steep upward tendency. The 

dataset comprises Visa’s stock values along 15 months, from December 2016 

to February 2018.  

Visa International Service Association is a joint venture of 21000 financial 

institutions offering Visa products. Founded in 1958 and based in San 

Francisco, is one of the leader payment brands in the world. Although it 

plunged during the last four months of 2018, Visa Inc has maintained its 

crescent trend since 2014 until today. 

The dataset was forecasted using the same tendency models as in case 3: 

Aumman’s Mean, Haussdorff’s Median, Center-Radii Median, and third and 

first quartiles. Visa’s stock values present a defined trend, so it is interesting to 

analyze to what extent this makes a difference regarding the forecast 

performance of the model. 

Figure 15 represents the average interval of the predictions versus the average 

interval of the real data. Along with the information on Table 13 about the 

Theil’s U of the models, it can be stated that the selected models do not work 

at all with the selected dataset.  

 

 

Figure 27: Case 4. Average interval from every model. Source: Prepared by the author. 

 

Average forecasting intervals are about twenty percent lower than the average 

real interval, with zero coverage and efficiency (the real values are not 
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contained in the predictions, neither are the predictions in the real interval). As 

the tendency models make predictions given the previous events, they are not 

suitable for predicting a company with a severe growing trend, as the stock 

values grow too fast for the models to adapt. 

 

Table 15: Case 4. Theil' U. Source: Prepared by the author. 

M1 M2 M3 M4 M5 M6 

1.0000 5.3323 5.9138 5.9192 4.0233 6.8728 

 

The UI values of the models indicate that the random walk is a better 

approximation to the data than any of the previously exposed methods. 

Therefore, it is necessary to find a different approach to forecast this increasing 

dataset. 

Similarly to case 2, the chosen solution implies addressing a non-linear 

method. Pursuing the best fit for the increasing data, an exponential model 

was created with the function ExponentialFit. 

This MATLAB function creates a regression model based on an exponential 

curve from the initial Visa data. As in the polynomial approach, the exponential 

curve is constructed simultaneously for the lower and upper values of the 

interval. Again, another option would be creating a fit for the interval centers 

and subsequently, adjusting the model for the interval radius. The function also 

returns the values of the four model evaluators calculated for this new 

exponential model. 

The performance of the forecast is clearly improved compared to the 

previously analyzed tendency models, specially the Coverage Rate and 

Efficiency Rate. Figure 16 illustrates the data ITS in blue and the exponential 

curve in red. The exponential fit has, as expected, a much more quality 

performance ability, being capable of forecasting the upward tendency of the 

data. 
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Figure 28: Case 4. Exponential fit. Source: Prepared by the author. 

 

This is another case where non-linear regression methods are the solution to 

a problem with a more complex relationship between the variables that 

handicaps the forecast. Figure 17 depicts the average interval from the data 

and the average forecasted interval with the exponential method.  

The matching is incredibly accurate: the prediction covers over eighty-three 

percent of the real data (CR=0.8322) and more than eighty-two percent of the 

forecast is contained in the real interval (ER=0.8224). 
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Figure 29: Case 4. Average interval: Exponential Fit. Source: Prepared by the author. 

 

Following the model averaging tendency, this new model was combined with 

the random walk looking forward the potential improvement of the model 

forecast abilities. Table 14 shows the results of this combination for optimal 

and equal weights.  

 

Table 16: Case 4. Random Walk vs Exponential Fit. Source: Prepared by the author. 

METHOD IU CR ER MDE 

RW 1.0000 0.4902 0.5315 156.2200 

Exponential 0.4016 0.8322 0.8225 25.2780 

EW 0.6344 0.7018 0.7164 60.2200 

OW 0.6861 0.6739 0.6932 70.4870 

 

By combining the Random Walk and the exponential curve, the properties 

obtained through the non-linear method wane. Either by using equal weights 

or optimal weights, the combined model increases its UI and its MDE, and 

decreases it CR and ER compared to the exponential fit. 
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There is a discrepancy with the previous cases regarding the supremacy of 

optimal weights in model averaging: in this example, simple averaging 

provides better properties for the predictive model than the optimal weights 

combination. The difference is not extremely significative, as the weight 

assigned to the first model over the second one was not too far from the 

equilibrium (0.5763). Anyhow, it cannot be ignored that equal weights, even 

they also worsen the exponential model, are not as harmful as optimal weights 

in this combination. 

The optimal forecast for Visa’s stock values was achieved through the non-

linear exponential curve. A low UI value and high coverage and efficiency rates 

indicate that this is a better approach than the Random Walk. If the tendency 

of this company was continuing to be this way, the exponential model would 

be the safest bet for a good forecast.  
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7. Conclusions 

This project has focused on model averaging applied to financial interval 

valued data, evaluating diverse models according to different pre-determined 

criteria.  

Different results have been obtained and compared with the theoretical 

framework, shedding light on various aspects of the performance of linear and 

non-linear forecasting methods for IV data. 

In the first place, the Forecast Combination Puzzle was discussed over 

different cases, to demonstrate if simple averaging is really that hard to beat. 

Results showed that simple average is the most straightforward averaging 

method (the simplest and most effective) as long as the models that are being 

combined present similar characteristics. The case of S&P500 index is very 

illustrative: for a set of linear regression methods with comparable 

performance, calculating optimal weights does not improve the model 

combination compared to assigning equal weights to each model. 

Nevertheless, in a situation where a model outstands the rest (for example, 

the polynomial approach in the General Electric case), simple averaging stops 

being the most reliable method for model averaging. Models with a noticeable 

improvement in the forecast demand more weight in the combination in order 

to enhance their properties in the final combined model. In these cases, the 

calculation of optimal weights based on the Theil’s U is a good approach, as it 

prioritizes the model with a lower UI value, this being the model with the better 

performance according to this criterion.  

Regarding possible future studies, it would be interesting to include new ways 

of defining optimal weights in a model combination. This study was limited by 

the Theil’s U as the only approach to optimal weights estimation, while finding 

different formulas and methods to assign weights to models depending on their 

characteristics could expand the project and the state of the art of model 

averaging.  

These potential formulas could be based on model evaluators, such as the 

coverage rate or the efficiency rate included in this project, or in model 

properties like the variance or the standard deviation. Comparing different 

ways of assigning weights could also call into question the accuracy of the 

current method and whether simple averaging is actually better than optimal 

weights or only better than this particular calculation of optimal weights. 

Tendency-based forecasting methods and their utility in predicting certain 

kinds of data are another remarkable conclusion in this project. Predictive 

models based on tendency parameters, such as the average, the median or 

the quartiles, have proven to be less effective and accurate than other methods 

for datasets with lateral behaviors or steep upward trends. 
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Applying this kind of methods to data without a trend (for example, Zardoya 

values during 2018) has resulted in models unable to improve the Random 

Walk prediction. The absence of a tendency in the data hinders the model’s 

ability to exactly predict future movements of the stock values. 

On the other hand, datasets with rising values, such as Visa during 2017, entail 

a broad challenge for tendency-based methods due to their tendency to drift 

apart from previous values. The faster the values grow, the harder it is for the 

model to adapt to the new values and make accurate predictions. 

A possible approach that could be made on further research would be studying 

the effect of methods based on tendency on data that present declining trends. 

The difference with the cases that have been studied relies on the direction of 

the data values: on a downward trend, predictions could be less likely to 

stagnate around certain values, as the reference figures that reach the highest 

values have already occurred. 

Focusing on methods based on tendency, the research implemented in this 

project can conclude that the Aumman’s mean and the Haussdorff’s median 

are similar enough on performance and characteristics to be considered 

equivalent methods. The analysis carried out with Zardoya’s dataset resulted 

in differences smaller than five percent in the values of the model evaluators 

(Theil’s U, CR, ER). The similarities on the forecasting ability of both methods 

could be a starting point for further exploration on how similar models could be 

substituted by each other on a combination of models depending on the 

available data and the desired parameters of the model. 

Looking for more accurate forecasts and the increase of the coverage 

percentage of the interval, it was noticed that non-linear regression methods 

present higher coverage and efficiency rates. Studies like the one from Lima 

Neto and de Carvalho (2017) emphasize the importance of these methods 

when working with IV data. This project attempted to apply and evaluate 

models with non-linear relationships between the variables, such as 

polynomial or exponential fits. They have proven to be more accurate and to 

have better forecast abilities than linear methods on datasets with strong 

upward and downward tendencies. 

Polynomial-based forecasting model demonstrated to be particularly accurate 

adjusting to data with a descending tendency and some fluctuations over time. 

Getting rid of the linear bindings when defining the model’s equations allowed 

a better fitting to the data behavior, achieving a predictive model with an 

extraordinary performance. 

Regarding exponential fit, it was a useful tool for interval-valued data with a 

tendency to increase. Compared to linear tendency-based regression 

methods, the predictive value was strongly improved.  
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Both polynomial and exponential fits have been applied to IV data using the 

upper and lower values of the intervals as the references for the regression 

model. However, substituting these parameters by the interval centers or the 

interval range may lead to new approaches that provide even better fits and 

are more suitable to create regression methods. 

As a recommendation for future studies, non-linear methods seem to be the 

key to accurate and reliable forecasting in financial markets. The development 

of a tool for model averaging among several non-linear models might be the 

optimal solution to achieve the best possible predictions for interval-valued 

data. 

Finally, all the MATLAB functions programmed to develop this project are the 

starting point to create an app using MATLAB’s App Designer. This could turn 

the outcome into a visual and user-friendly interface, allowing to choose 

among various models and averaging options to forecast the desired data. It 

could also facilitate the comparison between models and averaging methods, 

displaying the pertinent graphs and figures.  
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Appendix I: MATLAB code 

 

clc; clear all; close all; 

  
[data, dates] = xlsread('SP500_2017forecasts.xlsx'); %data 

extraction 

  
k=7; %number of models 
c=nchoosek(k,2); %number of combinations 

  
dates = dates(:,1); 

  
Y = [data(:,1) data(:,2)]; 

  
Yhat1 = [data(:,3) data(:,4)]; 
Yhat2 = [data(:,5) data(:,6)]; 
Yhat3 = [data(:,7) data(:,8)]; 
Yhat4 = [data(:,9) data(:,10)]; 
Yhat5 = [data(:,11) data(:,12)]; 
Yhat6 = [data(:,13) data(:,14)]; 
Yhat7 = [data(:,15) data(:,16)]; 
%Yhat8 = [data(:,17) data(:,18)]; 
%Yhat9 = [data(:,19) data(:,20)]; 
%Yhat10 = [data(:,21) data(:,22)]; 

  
Yhat=[Yhat1 Yhat2 Yhat3 Yhat4 Yhat5 Yhat6 Yhat7]; 

  
disp(Y) 
%disp(Yhat) 
[r,~]=size(Y); 

  
Yavg=mean(Y); 

  

  
sum=zeros(k,4); %initialize 

  
%% general 

  
for j = 1:k 

    
    for i=2:r 
        sum(j,1)=sum(j,1)+(Y(i,1)-Yhat(i,(2*j-1)))^2; 
        sum(j,2)=sum(j,2)+(Y(i,2)-Yhat(i,(2*j)))^2; 
        sum(j,3)=sum(j,3)+(Y(i,1)-Y(i-1,1))^2; 
        sum(j,4)=sum(j,4)+(Y(i,2)-Y(i-1,2))^2; 
    end 

     
   U(j)=sqrt((sum(j,1)+sum(j,2))/(sum(j,3)+sum(j,4))); 

     
end 

  
display(U) 

  

  
[CR,ER,CRavg,ERavg]=CER_k(Y,Yhat); 
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      %Y is a rx2 matrix, Yhat is a rx14 matrix, CR and ER are kxr 

matrix 

    
MDEmatrix=MDE_k(Y,Yhat); 
    % MDE is a kx1 matrix, each row is the MDE for a model 

  
REPRESENT_k(Y,Yhat) 

  

  

     
%% equal weights 

     
%choose the models that are about to be compared 
a=1; % first model 
b=3; % second model 

  
eqYc=Combination_k(Yhat(:,(2*a-1):(2*a)),Yhat(:,(2*b-

1):(2*b)),0.5,0.5) 

  
Ueq=IUTHEIL(Y,eqYc) 
[eqCR,eqER,eqCRavg,eqERavg]=CER(Y,eqYc) 
MDEeq=MDE(Y,eqYc) 

  

  
DrawmultipleITSvdef('Zardoya_2018forecasts.xlsx',1,[2 2+2*a 

2+2*b],[3 3+2*a 3+2*b],1) 

       

  
%% optimal weights 

  
suma1=zeros(k,k); 
suma2=zeros(k,k); 

  
for m=1:k 
   for n=1:k 

  
    w(m,n)=OptimalW(Y,Yhat(:,(2*m-1):(2*m)),Yhat(:,(2*n-

1):(2*n)),U(m),U(n)); 

      
   end 

     
end 

  
display(w) 

  

  
optYc=Combination_k(Yhat(:,(2*a-1):(2*a)),Yhat(:,(2*b-

1):(2*b)),w(a,b),w(b,a)) 

  
Uopt=IUTHEIL(Y,optYc) 
[optCR,optER,optCRavg,optERavg]=CER(Y,optYc) 
MDEopt=MDE(Y,optYc) 

  
%% display in table 

  
varU=[U(a); U(b); Ueq; Uopt]; 
varCR=[CRavg(a); CRavg(b); eqCRavg; optCRavg]; 
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varER=[ERavg(a); ERavg(b); eqERavg; optERavg]; 
varMDE=[MDEmatrix(a); MDEmatrix(b); MDEeq; MDEopt]; 

  
T=table(varU,varCR,varER,varMDE,'VariableNames',{'U','CR','ER','MDE'

},'RowNames',{'Method 1';'Method 2';'Equal weights';'Optimal 

Weights'});; 

  
display(T) 

 


