
1

GRADO EN INGENIERÍA EN TECNOLOGÍAS

INDUSTRIALES

TRABAJO FIN DE GRADO

WIFI Mousr

Autor: Isabel Ugedo Perez

Director: Jing Jiang

Madrid

Junio de 2019

2

AUTORIZACIÓN PARA LA DIGITALIZACIÓN, DEPÓSITO Y DIVULGACIÓN EN RED DE PROYECTOS

FIN DE GRADO, FIN DE MÁSTER, TESINAS O MEMORIAS DE BACHILLERATO

1º. Declaración de la autoría y acreditación de la misma.

El autor D.____Isabel Ugedo Perez__

DECLARA ser el titular de los derechos de propiedad intelectual de la obra:

____________WIFI_Mousr__, que ésta es una obra o rig inal, y

que ostenta la condición de autor en el sentido que otorga la Ley de Propiedad Intelectual.

2º. Objeto y fines de la cesión.

Con el fin de dar la máxima difusión a la obra citada a través del Repositorio institucional de la Universidad, el

autor CEDE a la Universidad Pontificia Comillas, de forma gratuita y no exclusiva, por el máximo plazo legal y

con ámbito universal, los derechos de digitalización, de archivo, de reproducción, de distribución y de

comunicación pública, incluido el derecho de puesta a disposición electrónica, tal y como se describen en la Ley

de Propiedad Intelectual. El derecho de transformación se cede a los únicos efectos de lo dispuesto en la letra a)

del apartado siguiente.

3º. Condiciones de la cesión y acceso

Sin perjuicio de la titularidad de la obra, que sigue correspondiendo a su autor, la cesión de derechos

contemplada en esta licencia habilita para:

a) Transformarla con el fin de adaptarla a cualquier tecnología que permita incorporarla a internet y hacerla

accesible; incorporar metadatos para realizar el registro de la obra e incorporar “marcas de agua” o

cualquier otro sistema de seguridad o de protección.

b) Reproducirla en un soporte digital para su incorporación a una base de datos electrónica, incluyendo el

derecho de reproducir y almacenar la obra en servidores, a los efectos de garantizar su seguridad,

conservación y preservar el formato.

c) Comunicarla, por defecto, a través de un archivo institucional abierto, accesible de modo libre y gratuito a

través de internet.

d) Cualquier otra forma de acceso (restringido, embargado, cerrado) deberá solicitarse expresamente y

obedecer a causas justificadas.

e) Asignar por defecto a estos trabajos una licencia Creative Commons.

f) Asignar por defecto a estos trabajos un HANDLE (URL persistente).

4º. Derechos del autor.

El autor, en tanto que titular de una obra tiene derecho a:

a) Que la Universidad identifique claramente su nombre como autor de la misma

b) Comunicar y dar publicidad a la obra en la versión que ceda y en otras posteriores a través de cualquier

medio.

c) Solicitar la retirada de la obra del repositorio por causa justificada.

d) Recibir notificación fehaciente de cualquier reclamación que puedan formular terceras personas en relación

con la obra y, en particular, de reclamaciones relativas a los derechos de propiedad intelectual sobre ella.

5º. Deberes del autor.

El autor se compromete a:

a) Garantizar que el compromiso que adquiere mediante el presente escrito no infringe ningún derecho de

terceros, ya sean de propiedad industrial, intelectual o cualquier otro.

b) Garantizar que el contenido de las obras no atenta contra los derechos al honor, a la intimidad y a la

imagen de terceros.

c) Asumir toda reclamación o responsabilidad, incluyendo las indemnizaciones por daños, que pudieran

ejercitarse contra la Universidad por terceros que vieran infringidos sus derechos e intereses a causa de la

cesión.

d) Asumir la responsabilidad en el caso de que las instituciones fueran condenadas por infracción de derechos

derivada de las obras objeto de la cesión.

3

6º. Fines y funcionamiento del Repositorio Institucional.

La obra se pondrá a disposición de los usuarios para que hagan de ella un uso justo y respetuoso con los

derechos del autor, según lo permitido por la legislación aplicable, y con fines de estudio, investigación, o

cualquier otro fin lícito. Con dicha finalidad, la Universidad asume los siguientes deberes y se reserva las

siguientes facultades:

 La Universidad informará a los usuarios del archivo sobre los usos permitidos, y no garantiza ni asume

responsabilidad alguna por otras formas en que los usuarios hagan un uso posterior de las obras no

conforme con la legislación vigente. El uso posterior, más allá de la copia privada, requerirá que se cite la

fuente y se reconozca la autoría, que no se obtenga beneficio comercial, y que no se realicen obras

derivadas.

 La Universidad no revisará el contenido de las obras, que en todo caso permanecerá bajo la

responsabilidad exclusive del autor y no estará obligada a ejercitar acciones legales en nombre del autor en el

supuesto de infracciones a derechos de propiedad intelectual derivados del depósito y archivo de las obras. El

autor renuncia a cualquier reclamación frente a la Universidad por las formas no ajustadas a la legislación

vigente en que los usuarios hagan uso de las obras.

 La Universidad adoptará las medidas necesarias para la preservación de la obra en un futuro.

 La Universidad se reserva la facultad de retirar la obra, previa notificación al autor, en supuestos

suficientemente justificados, o en caso de reclamaciones de terceros.

Madrid, a 18 de Junio de 2019

ACEPTA

Fdo………………………

Motivos para solicitar el acceso restringido, cerrado o embargado del trabajo en el Repositorio Institucional:

4

 Declaro, bajo mi responsabilidad, que el Proyecto presentado con el título

…………………………………………WIFI Mousr…………………………………………………….……

 en la ETS de Ingeniería - ICAI de la Universidad Pontificia Comillas en el

curso académico ………4……. es de mi autoría, original e inédito y

no ha sido presentado con anterioridad a otros efectos. El Proyecto no es plagio de otro, ni total ni

parcialmente y la información que ha sido tomada

de otros documentos está debidamente referenciada.

Fdo.: Isabel Ugedo Perez Fecha: 06/06/2019

Autorizada la entrega del proyecto

EL DIRECTOR DEL PROYECTO

Fdo.: Jing Jiang Fecha: 14/06/2019

5

GRADO EN INGENIERÍA EN TECNOLOGÍAS

INDUSTRIALES

TRABAJO FIN DE GRADO

WIFI Mousr

Autor: Isabel Ugedo Perez

Director: Jing Jiang

Madrid

Junio de 2019

6

WIFI MOUSR
Autor: Ugedo Pérez, Isabel.

Director: Jiang, Jing.
Entidad Colaboradora: UIUC - Universidad de Illinois en Urbana-Champaign.

RESUMEN DEL PROYECTO

“WIFI Mousr” es una actualización del juguete automatizado para gatos “Mousr”, creado por la start-up

Petronics. Este producto consiste en un ratón mecanizado, equipado con distintos sensores de medición de

presencia y distancia, dos motores y dos microcontroladores. Su objetivo es proporcionar un juego y servir

como distracción para mascotas, al ser capaz de desplazarse por una habitación sin ser atrapado por un gato,

así como evitar obstáculos.

Fig. 1 Mousr by Petronics

 Mousr ha ganado popularidad rápidamente, ya que cubre la necesidad de mantener a tu mascota

entretenida y activa, sin requerir esfuerzo por parte del usuario. Funciona a través de una aplicación móvil

que permite seleccionar sus desplazamientos en tiempo real, o bien activar el modo ‘Auto-Play’, en el que

Mousr se moverá automáticamente sin necesidad de introducir instrucciones.

La versión de Mousr que se encuentra actualmente en el mercado utiliza una conexión Bluetooth

para transmitir datos entre microcontrolador y smartphone, lo cual tiene un inconveniente importante: el

alcance de la señal está limitado a aproximadamente 10 metros. Esto supone que e n el modo de juego

dirigido el usuario tendrá que caminar detrás del dispositivo, lo que puede resultar molesto. En cuanto a la

funcionalidad “Auto-Play”, esto implica que no se podrá activar remotamente, por lo que el juguete nunca se

podrá utilizar cuando el animal esté solo en casa. La posibilidad de mejorar estos aspectos puede aumentar

significativamente las ventas de Petronics.

Un breve estudio de mercado revela que la mayoría de juguetes interactivos en venta están

diseñados para funcionar durante el día sin necesidad de activación manual. En general, esto se consigue a

través de temporizadores que apagan y encienden los dispositivos cada cierto tiempo. Es una solución simple

y eficaz, además de suponer un aumento insignificante del precio. Sin embargo, en el caso de Mousr hay

otras posibilidades, gracias a la aplicación móvil que incorpora.

7

 La solución que se propone a los inconvenientes mencionados tiene dos elementos. Por un lado, el

desarrollo de "WIFI Mousr", un juguete que mantiene la funcionalidad original sustituyendo la conexión

Bluetooth por un protocolo BluFi. Será necesario para ello emplear un nuevo microcontrolador que contenga

tanto radio Bluetooth como WIFI.

Por otro lado, como respuesta a la necesidad de activación remota de Mousr, se diseñará una nueva

funcionalidad: “Scheduled Play”. La idea es permitir al usuario programar horarios de juego a través de la

aplicación, de modo que Mousr se encienda o apague en el momento indicado.

El principal beneficio de la conexión BluFi frente al bluetooth es que garantiza al usuario poder

controlar el dispositivo desde cualquier parte de la casa, siempre que la señal del rúter sea suficientemente

fuerte.

Además de el mayor alcance de la señal, WIFI presenta otras ventajas sobre Bluetooth,

especialmente respecto a ancho de banda y velocidad de transmisión de datos. Esto conlleva que es posible

enviar archivos más complejos, así como mas cantidad de datos. Esta mejora se rá aprovechada por Petronics

en un futuro para incorporar capacidades de análisis de datos e inteligencia artificial en su producto.

En este proyecto se utilizará WIFI “802.11 g/n” y BT “v4.2”. Ambas señales funcionan en frecuencia

2.4 GHz, pero la velocidad de transferencia teórica de este tipo de WIFI es de hasta 300Mpbs, frente a los

25Mpbs que aporta el Bluetooth. Igual de significativa es la diferencia en el alcance de la señal, 70 metros

teóricos en el caso de WIFI y tan solo 10 en el del Bluetooth.

La principal desventaja de estas modificaciones será un aumento en el consumo energético. Esto se

debe principalmente a que una conexión WIFI requiere mucha más potencia que su equivalente en

Bluetooth. En concreto, y según las cifras del datasheet del micrprocesador, mantener la radio WIFI activa

consume 190 mA, frente a el consumo de 100 mA del Bluetooth. Esta diferencia del 50% tendrá un gran

efecto sobre el dispositivo. Además, al incorporar el “Scheduled Play” el microcontrolador nunca se podrá

apagar completamente, sino que debe quedar en Light Sleep/Deep Sleep mode. Este modo de operación

consume apenas 0.8 mA, por lo que resulta despreciable frente al consumo del WIFI.

A alto nivel, los principales objetivos del proyecto son realizar un estudio teórico del rendimiento y

confirmar la rentabilidad del WIFI Mousr, demostrar interacción con Mousr a través de conexión WIFI entre

microcontrolador y app, y desarrollar un prototipo funcional en PCB.

 El protocolo BlueFi implementado consiste en enviar desde la app al microcontrolador las

credenciales (SSID y password) del rúter del hogar, utilizando Bluetooth, para que a continuación tanto el

micro como el smartphone queden conectados al rúter y obtengan acceso a la red WIFI. Esta conexión

permite enviar archivos de diferentes tipos a través de una dirección IP local.

 Por otro lado, para obtener un prototipo funcional se diseñarán dos circuitos, de datos y potencia. El

circuito de datos se encarga de la transmisión de señales digitales entre los sensores de Mousr y el nuevo

microcontrolador, mientras que el circuito de potencia debe proporcionar a cada uno de ellos el voltaje

adecuando para su funcionamiento óptimo. Estos sensores son idénticos a los empleados por la versión

original de Mousr con una novedad: la incorporación de un display del estado de la batería a través del LED

RGB. Los elementos a incorporar en la PCB son IMU (Inertial Measurement Unit), TOF (Time of Flight), IR

Receiver (infrarrojo), IR LED, RGB LED y botón.

El IMU se emplea para detectar cuando Mousr esta boca abajo, o en posición vertical atrapado por el

gato. El TOF permite evitar obstáculos en el recorrido, y el transceptor IR sirve como detector de gradientes

térmicos generados durante la aproximación de un animal. Como se explica anteriormente, el LED RGB se

utilizará como display del estado de potencia (ON/OFF) del dispositivo, así como del nivel de betería. El botón

se usará para apagar y encender Mousr manualmente, así como para activar el BluFi y consultar el nivel de

batería. Este flujo de actividades se muestra en la Figura 2.

8

El cuerpo principal del dispositivo no entra en el alcance de este proyecto. El cuerpo consiste en un

segundo microcontrolador conectado a los motores de Mousr y a la batería, al que se podrán enviar

instrucciones a través de una conexión UART. Para ello se usará un micro conector de 12 puertos, que

transmite tanto corriente procedente de la batería como paquetes de datos. Sin embargo, este micro cuenta

con su propio protocolo de reset y es difícil de controlar.

Los sensores se implementarán a través de la PCB diseñada, que incorporará los circuitos de datos y

potencia. La alimentación provendrá de la batería situada en el cuerpo de Mousr. La placa incluirá

condensadores especificados por el fabricante de cada sensor para reducir el ruido de lectura. Contendrá

además las resistencias pull-up del protocolo I2C en el caso del TOF y el IMU. El software empleado en el

cadding es EAGLE y el fabricante que se usará para imprimir es PCBWay, que debe dar su visto bueno a la

impresión tras realizar una auditoría de las conexiones de la placa.

En este proyecto se utiliza el chip ESP32 para el prototipo WIFI Mousr, debido a su popularidad para

aplicaciones WIFI y amplia disponibilidad de documentación. El modelo escogido dentro de” ESP32 series” es

el “Wrover Kit”, debido a su ampliación del número de pins GPIO, y a la existencia de dos pines con acceso al

bus I2C. ESP32 admite diferentes lenguajes, entre ellos Arduino que es muy conveniente debido a que

incorpora comandos simplificados del protocolo I2C, que será necesario para la comunicación con los

sensores. Arduino además cuenta con funciones especifícas de WIFI y bluetooth, dentro de las librerías

diseñadas para integración con ESP32.

En algunas secciones del código se emplean comandos de la librería de FreeRtos para Arduino.

FreeRtos es un sistema operativo en tiempo real (RTOS), lo que significa que intercala tareas de forma

instantánea dando la impresión de que todas se estén procesando continua y simultáneamente, gracias a su

kernel multitarea. Este proceso se muestra en la Figura 3. Su uso es habitual en sistemas integrados, y es

compatible con Arduino ya que está implementado en lenguaje C.

Fig. 3 Comportamiento de RTOS

Wakeup
Battery
Status

Bufi
Pairing

Success

Failure

Power
off

Fig. 2 Flujo de actividad del botón

Short press Long press
Medium press

9

Finalmente, el código del microprocesador cumple funciones secundarias a la conexión WIFI, entre

ellas dirigir el bus I2C, medir el nivel de batería y controlar el display del led RGB. Esta funcionalidad se

implementará en un bucle while (true), que llamará a funciones declaradas externamente al mismo.

El protocolo de comunicación bidireccional I2C se basa en dos señales síncronas, SCL (serial clock

line) y SDA (serial data line) que se envían entre “master”(micro) y “slave” (sensor). Es una forma estándar de

modificar los ajustes y parámetros del sensor alterando determinados valores binarios que este almacena, y

de reclamar y transmitir datos. Para su correcto funcionamiento es importante que las vías de SCL y SDA en

la PCB tengan longitudes similares, debido a que I2C es muy sensible a retrasos o adelantos en los flancos.

 Por último, el ‘Scheduled Play’ se administra guardando las horas enviadas desde la aplicación en

lamemoria EEPROM de ESP32, o “electrically erasable programmable read-only memory”, con un formato

que se explicará en los siguientes documentos. El micrcontrolador las comparará cada cierto cierto y

contrastará con la hora real, que debe mantener actualizada indiferentemente de su estado de potencia

(ON/OFF). Se aprovechará la conexión a la red WIFI para obtener la hora real a través de un NTP o Network

Time Protocol, y será necesario adaptar el formato de la información recibida. En este prototipo no se tendrá

en cuenta la fecha, ya que añadirla a la funcionalidad existente es sencillo y no aporta conten ido al proyecto,

sino que recrea el mismo concepto que la hora. Se utilizará un contador interno para volver a encender

ESP32 a la hora establecida, siempre obteniendo el intervalo de tiempo que se debe asignar al contador

antes de entrar en light sleep mode.

10

WIFI MOUSR
Author: Ugedo Pérez, Isabel.
Director: Jiang, Jing.
Associated Entity: UIUC - University of Illinois at Urbana-Champaign.

PROJECT SUMMARY

 "WIFI Mousr" is an update of the automated toy for cats "Mousr", created by the start-up

Petronics. This product consists of a mechanized mouse, equipped with different sensors for presence

and distance measurement, two motors and two microcontrollers. Its goal is to serve as a pet

distraction by providing an engaging game, being able to move around a room without being caught

by a cat while as avoiding obstacles.

Fig. 1 Mousr by Petronics

Mousr has quickly become popular among cat owners in the US, since it covers the need to

keep your pet entertained and active, requiring little to no effort on part of the user. It works through
a mobile application that allows you to control the device´s movements remotely in real time, or to
activate the 'Auto-Play' mode, in which Mousr will move automatically guided by its sensors.

The version of Mousr that is currently on the market uses a Bluetooth connection to transmit

data between microcontroller and smartphone, which has one major drawback: the signal range is
limited to approximately 10 meters. This means that in the “live play” mode the user will have to
physically follow the device, which might prove annoying and disengage the consumer. As for the

"Auto-Play" functionality, this means that it cannot be activated remotely, so the toy can never be
used when the animal is alone at home. The possibility of improving these aspects can significantly

increase Petronics´ sales.

A brief market study reveals that most interactive toys for sale are designed to work during

the day without the need for manual activation. In general, this is achieved through timers that turn
the devices off and on every so often. It is a simple and effective solution, as well as inexpensive.

However, in the case of Mousr there are other possibilities, thanks to the mobile application that it
incorporates.

11

The solution proposed to the aforementioned drawbacks has two elements. On the one hand,
the development of "WIFI Mousr", a toy that maintains the original functionality by replacing the

Bluetooth connection with a BluFi protocol. It will be necessary to use a new microcontroller that
contains both Bluetooth radio and WIFI. On the other hand, in response to the need for remote
activation of Mousr, a new functionality will be designed: "Scheduled Play". The idea is to allow the

user to schedule play times through the application, so that Mousr turns on or off at the indicated
time.

The main benefit of the BluFi connection to Bluetooth is that it guarantees that the user will

be able to control the device from any part of the house, as long as the signal from the router is strong

enough. In addition to the greater range of the signal, WIFI presents other advantages over Bluetooth,
especially regarding bandwidth and data transmission speed. This means that it is possible to send

more complex files, as well as more data. This improvement will be exploited by Petronics in the
future to incorporate data analysis and artificial intelligence capabilities into its product.

In this project WIFI "802.11 g / n" and BT "v4.2" will be used. Both signals work in 2.4 GHz
frequency, but the theoretical transfer speed of this type of WIFI is up to 300Mpbs, compared to the

25Mpbs provided by Bluetooth. Equally significant is the difference in the scope of the signal, 70
theoretical meters in the case of WIFI and only 10 in the case of Bluetooth.

The main disadvantage of these modifications will be an increase in energy consumption.

This is mainly due to the fact that a WIFI connection requires much more power than its Bluetooth
equivalent. In particular, and according to the figures of the microprocessor's datasheet, keeping the
active WIFI radio consumes 190 mA, compared to the 100 mA consumption of the Bluetooth. This

difference of 50% will have a great effect on the device. In addition, by incorporating the "Scheduled
Play" the microcontroller can never be completely turned off, but must remain in the Light Sleep /

Deep Sleep mode. This mode of operation consumes only 0.8 mA, so it is negligible compared to the
consumption of WIFI.

At high level, the main objectives of the project are to perform a theoretical study of the

performance and confirm the profitability of WIFI Mousr, demonstrate interaction with Mousr
through WIFI connection between microcontroller and app, and develop a functional prototype in

PCB.

The BlueFi protocol implemented consists of sending the credentials (SSID and password) of

the home router, using Bluetooth, from the app to the microcontroller, so that both the micro and the
smartphone are connected to the router and get access to the WIFI network. This connection allows

you to send files of different types through a local IP address.

On the other hand, to obtain a functional prototype, two circuits of data and power will be

designed. The data circuit is responsible for the transmission of digital signals between the Mousr
sensors and the new microcontroller, while the power circuit must provide each of them with the

appropriate voltage for optimal operation. These sensors are identical to those used by the original
version of Mousr with a novelty: the incorporation of a display of the state of the battery through the
RGB LED. The elements to incorporate in the PCB are IMU (Inertial Measurement Unit), TOF

(Time of Flight), IR Receiver (infrared), IR LED, RGB LED and button.

The IMU is used to detect when Mousr is upside down, or in an upright position trapped by
the cat. The TOF allows to avoid obstacles in the route, and the IR transceiver serves like detector of
thermal gradients generated during the approach of an animal. As explained above, the RGB LED

will be used as a display of the power status (ON / OFF) of the device, as well as the level of battery.
The button will be used to turn the Mousr on and off manually, as well as to activate the BluFi and

check the battery level. This flow of activities is shown in Figure 2.

12

The main body of the device does not fall within the scope of this project. The body consists
of a second microcontroller connected to the Mousr motors and the battery, to which instructions can
be sent through a UART connection. For this, a 12-port micro connector will be used, which

transmits both current from the battery and data packets. However, this micro has its own reset
protocol and is difficult to control.

The sensors will be implemented through the designed PCB, which will incorporate the data

and power circuits. The power will come from the battery located in the body of Mousr. The plate

will include capacitors specified by the manufacturer of each sensor to reduce reading noise. It will
also contain the pull-up resistors of the I2C protocol in the case of the TOF and the IMU. The
software used in the cadding is EAGLE and the manufacturer that will be used to print is PCBWay,

which must give its approval to the print after performing an audit of the board connections.

In this project the ESP32 chip is used for the WIFI Mousr prototype, due to its popularity for
WIFI applications and wide availability of documentation. The model chosen within "ESP32 series"
is the "Wrover Kit", due to its extension of the number of GPIO pins, and the existence of two pins

with access to the I2C bus. ESP32 supports different languages, including Arduino, which is very
convenient because it incorporates simplified I2C protocol commands, which will be necessary for

communication with the sensors. Arduino also has specific functions of WIFI and Bluetooth, within
the libraries designed for integration with ESP32.

In some sections of the code, commands from the FreeRtos library for Arduino are used.
FreeRtos is a real-time operating system (RTOS), which means that it inserts tasks instantaneously

giving the impression that all are being processed continuously and simultaneously, thanks to its
multi-tasking kernel. This process is shown in Figure 3. Its use is common in integrated systems, and
it is compatible with Arduino since it is implemented in C language.

Fig.3 RTOS behavior

Wakeup
Battery
Status

Bufi
Pairing

Success

Failure

Power
off

Fig. 2 Flujo de actividad del botón

Short press Long press
Medium press

13

Finally, the microprocessor code fulfills secondary functions to the WIFI connection,
including directing the I2C bus, measuring the battery level and controlling the RGB LED display.

This functionality will be implemented in a while loop (true), which will call functions declared
externally to it.

The I2C bidirectional communication protocol is based on two synchronous signals, SCL
(serial clock line) and SDA (serial data line) that are sent between 'master' (micro) and 'slave'

(sensor). It is a standard way to modify the settings and parameters of the sensor by altering certain
binary values that it stores, and to claim and transmit data. For proper operation it is important that
the SCL and SDA paths in the PCB have similar lengths, because I2C is very sensitive to delays or

advances in the flanks.

Finally, the 'Scheduled Play' is managed by saving the hours sent from the application in the
EEPROM memory of ESP32, or “electrically erasable programmable read-only memory”, with a
format that will be explained in the following documents. The microcontroller will compare them

every certain time and will contrast with the real time, which must be updated regardless of its power
status (ON / OFF). The connection to the WIFI network will be used to obtain the real time through

an NTP or Network Time Protocol, and it will be necessary to adapt the format of the received
information. In this prototype the date will not be taken into account, since adding it to the existing
functionality is simple and does not contribute content to the project, but rather recreates the same

concept as the time. An internal counter will be used to restart ESP32 at the set time, always
obtaining the time interval that must be assigned to the counter before entering light sleep mode.

14

Table of Contents

Project developement .. 15

1.Introduction ... 15

2. Motivation .. 17

3. Project objectives .. 19

3.1 Push Button:.. 22
3.2 RGB LED.. 22
3.3 TOF .. 23
3.4 IMU ... 24
3.5 IR LED and IR Receiver ... 24

Annex ..¡Error! Marcador no definido.

1. App Inventor Code: .. ¡Error! Marcador no definido.

1.1 Main Screen ... ¡Error! Marcador no definido.
1.2 Live Play Screen.. ¡Error! Marcador no definido.
1.3 Play Schedule Screen ... ¡Error! Marcador no definido.
1.4 Add play time screen: ... ¡Error! Marcador no definido.

2. Arduino Code: .. ¡Error! Marcador no definido.

Budget.. 39

References ... 42

15

Project development

1.Introduction

“WIFI Mousr “is meant to be an upgrade of an existing product, “Mousr” [PETR] by Petronics. This

device is a mouse shaped robot invented to entertain cats, able to run around the room avoiding any

obstacles such as walls, furniture or the cat itself. Asides from entertaining cats, Mousr provides them with

an incentive for exercise, which is essential for the animal’s well being and social behavior. There is a

developing market for this type of pet toy, since it contributes to not only the animal’s but the owner´s well

being. At this point there are few automatized cat toys available to the public, and Petronics has managed to

continuously lead the market by differentiating their products, adding user interaction capabilities.

In Mousr, this user interaction is possible through the Auto-Play mode, which enables real-time

remote control of the engines through an Android app [PETR]. It is also possible to select an automatic play

configuration, available in different difficulty levels to fit each cat´s stamina and motivation.

Mechanically, Mousr is a combination of several movement and acceleration sensors, engines and a

moving tail. Its integration is accomplished through two microcontrollers which use UART [RINC] connections

to send and receive data. Additionally, the device relies on a Bluetooth connection to a smartphone, used to

send simple instructions from the app to the main microcontroller.

The aim of this project is to replace this Bluetooth bond with a WIFI connection, which should be

implemented via an IP address by the client’s specification. While this approach would result in a shorter

battery life, it has many advantages.

First and foremost, WIFI creates a longest signal range which means the user would not have to

worry about maintaining proximity to the moving device, which might prove inconvenient and even

challenging. The only requirement would be for the home router signal to be strong enough to reach both

the smartphone and the Mousr device. Another advantage would be an increased data transfer rate

between the microcontroller and the phone. This is important to Petronics since they plan on adding data

analytics to the toy in the future, which makes accessing sensor readings and data in real time essential.

Fig 1. Mousr by Petronics

16

 In order to develop the WIFI connection, Mousr functionality will be recre ated in a new chip, the

ESP32 [ESPR] suggested by Petronics, Figure 2. The reasoning behind this choice is that it is a very popular

controller for real time systems, and there is a lot of documentation and code available. It also contains both

Bluetooth and WIFI, which is necessary for the connection we aim for, for reasons that will be explained on

this document. Moreover, ESP32 can be programmed using Arduino IDE [ARDU], which offers advantages

such as simplified memory storage, WIFI and I2C [I2CI] protocol commands.

Fig. 2 ESP32 microcontroller

 In addition to recreating current functionality, this project will add a Scheduled-play function, as a

solution to the long-distance activation issue. It will allow the user to set a schedule through the app, which

will be stored in ESP32 and then treated as device power on/power off intervals.

To summarize, there are three elements to this project. Fist, a PCB will be designed to connect all

sensors to both microcontrollers, which must be soldered and debugged. Then, WIFI connection and

functionality must be coded in Arduino and loaded into the microcontroller. Finally, a new Android app will

be developed to incorporate all added capabilities.

17

2. Motivation

As stated in the introduction, the aim of this project is to add IoT (internet of things) capabilities to

an existing product. Although this is done by client´s request, and it is not a personal choice, it is important to

analyze the benefits and inconvenient of such a significant update. ESP32 has a dual WIFI and Bluetooth

radio, that supports BT v4.2 and WIFI 802.11 b/g/n and 802.11 n.

Bluetooth v4 is not able to support IoT devices due to its reduced speed and bandwidth which is a

good argument in favor of implementing Blufi, to make up for this issues. It has a speed of 1Mbps and a

bandwidth of 2.1 Mpbs, according to the “ESP32 series” datasheet. Moreover, it has a 10 meter range

indoors, and can only transfer as much data as can be stored in 20 bytes (originally 31, but 30% are used for

protocol and setup).

WIFI 802.11 b/g/n can support frequencies of 2.4 GHz (b/g) and 5GHz (n), and a bandwidth of up to

54Mpbs. Most routers work in the 2.4 GHz, which has a much broader range, but the newest models are

switching to the 5HGz frequency, which is faster as well as being less crammed by devices. Regarding the

b/g/n modalities, ‘b’ is obsolete due to having a very small bandwidth, ‘g’ is the most common, and has a

maximum transfer rate of 54Mbps and ‘n’ is the latest development and achieves a transfer rate of 300 Mpbs

[TURBO].

It must be noted that all this figures are theoretical and may significantly vary in real life, due to

many exposure factors. They are summarized in Tables 1 and 2:

Table 1. WIFI Specifications by Standard

 802.11 b 802.11 g 802.11 n

Frequency (GHz) 2.4 2.4 5
Transfer Rate (Mpbs) 11 54 300

Indoor range (m) 35 38 70

Table 2. BT Specifications

 BT v4.2

Frequency (GHz) 2.4
Transfer Rate (Mpbs) 25

Indoor range (m) 10

When comparing the two sets of specs, it becomes clear that WIFI provides a much greater range

and speed, while operating at the same frequency. It is a much better option when dealing with large

volumes of data, and given that Petronics intends to incorporate data analytics and AI to its products,

enabling WIFI will become essential.

However, there is a significant drawback: a shortened battery life. According to the datasheet, WIFI

(in data receiving mode) consumes 190 mA when active, while BT only consumes 100mA. This means the

battery will be depleted twice as fast while Mousr is active, which must be taken into consideration. The

company will probably need to consider power saving measures, such as buying more efficient sensors or

somehow fitting a bigger battery inside the device.

18

Additionally, the project will aim to improve the project by adding a scheduled play functionality. As

explained before, this would solve the issue of remote activation, which is the most significant inconvenient

of automitez cat toys. This will allow users to save battery by only activating the toy when the cat will be

around to play with it, and to reduduce the need to be aware of the toy´s state.

This is only possible due to the WIFI functionality, which allows ESP32 to download the real date and

time stamp from the WIFI network, through an NTP (Network Time Protocol) request.

19

3. Project objectives

As stated in the Introduction, there are three main components to this project: the PCB design, the

ESP32 code and integration and the android app. I will now describe in detail the requirements of each block,

as well as how they were accomplished, and to what degree of success.

The PCB has been design to contain two separate circuits: power and data. The power circuit , as to

ESP32. Two voltage regulators were needed to answer the different voltage requirements throughout the

circuit.

As seen in Figure 3, the battery supplies 4.1V, which are then converted to 3.3V and 1.4V, as

specified in the individual sensor datasheets.

On the other hand, the data circuit will be used to send digital highs and lows to the microcontroller,

and it requires several resistors and capacitors to clear noise. The main challenge within this second circuit

will be implementing I2C protocol, which is a serial communication protocol between a master and a slave. It

defines two essential digital signals, SDA or Serial Data and SCL or Serial Clock, shown in Figure 4. They must

follow very specific patterns, which are also very sensitive to timing. For I2C to Work properly, SDA and SCL

PCB vias lengths must be almost identical, to avoid delays. This method is very common in commercialized

sensors which process complex data or which have many different working condition settings.

Fig.4 I2C schematic

The sensors to be used are those currently on Mousr, with the addition of an RGB led to display the

state of the battery. They are: IR led and receptor, TOF (Time of Flight) and IMU (Inertial Measurement Unit),

pushbutton and RGB LED, as well as the three voltage regulators. All this elements are structured as shown in

Figure 5, the block diagram. Both IMU and TOF utilize I2C protocol.

Fig.3 Power Circuit Schematics

Voltage Regulator
TOF

Voltage Regulator
Regulator TOF

Voltage Regulator
TOF

3.3

V

TOF

1.8

V

TOF

1.4

V

TOF

ESP32
ToF
TOF

IMU

I/O

TOF

ToF
I/O

IMU IR
Receiver

IR led

Battery

20

In Petronics’ Mousr, these sensors are placed as seen in Figure 6. However, we will not modify or

evaluate this disposition in the scope of this project, since only a prototype will be developed.

Fig. 6 Mousr by Petronics, component placement

Regarding the sensor´s purpose, the IMU and TOF´s function is possibly the most obvious. The former

is meant to indicate whether Mousr is upside down or held in vertical position, in order to stop or invert the

engine´s movements and avoid hurting the cat. The TOF will simply detect any inert obstacles and alert the

micro of their approximate location. Similarly, the IR transceiver is used to generate a cat presence detector,

which can be used to avoid the animal as well as to shut down Mousr when there are no cats nearby. Lastly,

the pushbutton will allow the user to manually turn on and off the device and to trigger WIFI pairing, and the

RGB led will act as a display of the power and connection states.

Fig.5 Block Diagram

21

The resulting digital PCB is shown in Figures 7 and 8. In addition, Figure 7 shows board dimensions in

millimeters.

Fig. 7 PCB cad view

Fig.8 PCB schematic

We will now discuss how each of this sensors has been implemented in more depth.

22

3.1 Push Button:
To ensure the correct functionality of the pushbutton with the microcontroller, an interrupt is set to

detect the falling edge in the GPIO (General Purpose In Out pin). Additionally, it is essential to place a pull-up

resistor for the pushbutton, to avoid short cutting the microcontroller. The circuit implemented is shown in

Figure 9.

As we can see, each time we press the button, the corresponding input pin in ESP32 is set to low

voltage, thus activating the interrupt. If it is not pressed, the pin remains high and nothing changes in the

microcontroller.

3.2 RGB LED

Regarding the RGB LED, straightforward calculations were computed to obtain the required resistor

values for each color port. First, we obtained each diode ’s internal resistance by looking at the nominal

values provided in the corresponding datasheet [6]:

Rint =
Vnom

Itypical
 1.1

Since we knew the LED would be connected to a GPIO from the microcontroller, which provides us a signal of

3.3V, we wrote a simple voltage divider:

VLED =
Rint

Rint+ Rx
 1.2

Resulting values and corresponding parameters are displayed in Table 3:

Table 3. LED Resistances

LED COLOR Rint (Ω) VLED (v) Rx (Ω)

Red 140 2.1 140

Green 270 2.7 270

Blue 300 3 300

Fig.9 Pushbutton Circuit

23

3.3 TOF
When choosing the Time of Flight’s connections, we follow the schematic recommended in the

datasheet by the manufacturer, which is attached to this document, as Figure 10.

The resistors connected to IOVDD signal are I2C pull -up resistors [TEXA], which are meant as a

protection against shortcuts. Their required minimum and maximum values are given by the following

equations:

 Rmin =
Vcc− Vol

Iol
 2.1

 Rmax =
tr

0.8473∗ Cb
 2.2

Where: - Vcc is the sensors DC supply

 - Vol is the max voltage that can be interpreted as a digital low

 - Iol is the current which corresponds to this voltage.

 - tr is the maximum rise time

 - Cb the capacitive load for each bus line.

A lower resistor value would result in smaller power consumption, but also increased transfer rate

due to reduced RC delay. However, since there aren´t any specific power consumption or speed specs,

intermediate values will be adopted.

Fig.10 TOF Circuit

24

3.4 IMU
For the IMU, the

manufacturer provides

the values of the pull-up

resistances in the

datasheet for the I2C

protocol, as well as a

recommended

implementation

schematic. Both were

adopted in the PCB

design. The connections

are shown below on

Figure 11:

 3.5 IR LED and IR Receiver

The IR LED is used to provide a reference value for the IR Receiver, which is designed to detect

variations in heat intensity, rather than its presence or absence. The only PCB requirement is that the

emitter and the receiver have to be separated by a certain distance, of about 10 inches, and there cannot be

any object in the space between them. This was implemented as shown in Figure 12:

As previously mentioned, the IR circuit is used as a presence detector, using the manufacturer´s

article “Vishay’s TSSP-AGC P Sensor Series for Proximity Sensing” as a reference on the topic [VISH]. To

summarize, the IR led must generate the light pulse specified in Figure 12 at a 38 kHz frequency, for the

receiver to react as expected.

Fig.11 IMU Circuit

Fig.12 Signal Supply for IR LED and IR Receiver Response

25

This signal is generated through ESP32, by creating a PWM (Pulse-Width Modulation) wave and

switching between two duty cycles to generate the DC or pulse signal. Timing will be respected by adding

delays.

The PCB was created using EAGLE [AUTO] cad software. First, each sensor was introduced by hand,

specifying the pads and outline dimensions. This process, as shown in Figures 13, 14 and 15, involves

designing a “package”, a “symbol” and a “device” to join them. The “package” contains physical dimensions,

which will appear in the PCB as pads and silk screen markers. The “symbol” consists of component

schematic, specifying number of pins and the “device” assigns a schematic pin to each physical pin location.

It was then audited and printed through PCBWay [PCBW].

Fig.13 IMU symbol

Fig.14 IMU package

26

Fig.15 IMU device

In order to print a board, Gerber files [SEED] must be available to send to the manufacturing

company. They are images of each relevant layer of the board, which cannot be modified. In our case, this

layers are both copper layers (top and bottom), both silk layers (t-place and b-place) as well as the through

hole layer. In EAGLE, Gerber files are extracted using the “CAM processor”, which provides a way to pick the

information to display in the Gerber images. “CAM” is a reference to the image file specific to Casio’s [FILE]

digital cameras. The processor requires a “CAM” file to use as a reference, which can be made from scratch

or downloaded from a provider. For this PCB, Sparkfun Electronic´s free-download CAM file [SPAR] was used.

Soldering work was mostly done with a regular soldering iron, although some of the smaller

components required using soldering paste and an oven. Asides from soldering the sensors, each through

hole had to be filled with conducting material in order for the circuit to work. The resulting board is shown in

Figure 16.

Fig.16 Printed PCB

The second element of this project, as stated at the beginning of this section, is the ESP32 code

which is implemented in Arduino. To set up ESP32 in Arduino IDE, it is necessary to download the .json

(JavaScript Object Notation) package from the Espressif website, which includes libraries and board settings.

27

Several Espressif boards will then appear on the Arduino “board manager”. The “Wrover kit” must be

selected. This variant of the ESP32 series has been chosen for the project due to its greater number of GPIO

pins, and to the availability of two I2C bus ports.

The main issue that raised when compiling the code was the size of the program. When completed,

took over 100% of ESP32´s processing capacity, which isn’t viable. Modifying the partition sizes from regular

app to large app with reduced OTA (Over The Air updates), which is easy to do in Arduino, solved the

problem.

 The first functionality to be added was the interrupt for the pushbutton. The button can be used to

turn ESP32 (and therefore Mousr) on and off, as well as to manually activate Blufi [ESPR] pairing. The RGB led

was simultaneously configured to act as an indicator of the power and connection state. The implemented

logic is explained in Figure 17, where the background color of each state correspond to the assigned led

color.

E

ach

time the button is pressed, and depending on how long it remains pressed, the state machine will jump to

the corresponding state. Corresponding pseudo code will be included shortly. In order to be able to wake up

ESP32 with an interrupt, it can never be completely powered off. Therefore, light sleep mode will be used

which means, according to the ESP32 data sheet that: “The CPU is paused. The RTC memory and RTC

peripherals, as well as the ULP co-processor are running. Any wake-up events (MAC, host, RTC timer, or

external interrupts) will wake up the chip”. However, the fact that ESP32 will never be powered off or enter

deep sleep will lead to a shortened battery life. An estimation is included below, using the data gathered

from the “ESP32 series” datasheet and shown in Table 4.

Table 4. Esp32 Power Consumption

Power state WIFI | receiving (mA) BT (mA)

Active 190 100

Modem sleep 45
Light sleep 0.8

When WIFI is connected, the chip will alternate between active and modem sleep modes. We will

assume the worst case scenario in complexity terms, which means assuming that Mousr is not connected to

the WIFI network and needs to go through the Blufi steps. We will allow 5 minutes for the user to find and

input WIFI credentials, during which Bluetooth would be active. After this period, WIFI will remain connected

while Mousr is powered on. We will also assume that in a 24h period Mousr is active for 4 hours. Since the

datasheet currents are measured at 3.3 volts, we use this figure in our calculations.

Then:

Wakeup
Battery
Status

Bufi
Pairing

Success

Failure

Power
off

Fig.17 Pushbutton activity flowchart

Short press Long press

Medium press

28

 𝐼𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1

24ℎ
∗ [(20ℎ ∗ 0.8) + (

5𝑚𝑖𝑛

60𝑚𝑖𝑛
∗ 100) + (

235𝑚𝑖𝑛

60𝑚𝑖𝑛
∗ 190)] = 32 mA 3.1

 𝐸 = 𝑃 ∗ 𝑡 = 𝐼𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ∗ 𝑉 ∗ 𝑡 = 32mA*3.3V*24h*3600s/h = 9123.84 J 3.2

To put this value in context, we can compare it to the energy stored in an AA commercial battery cell,

which is approximately 12960 J. Our device can therefore be powered for almost 1.5 days with an AA cell,

which is about the size of Mousr´s internal battery.

Afterwards, the battery power display was coded. This functionality is meant to inform the user of

the battery state through the led color. Three additional states were created, as shown in Figure 18, where

the colors correspond once more to the selected led light color.

This circuit was debugged by connecting the ESP32 GPIO pin to different points of a voltage resistor

circuit, which was set in a breadbox. The voltage intervals that define each state are shown in Table 5, which

is designed for a maximum battery supply of 4.1 volts.

Table 5. Battery states voltage range

State Lower Voltage (V) Higher Voltage (V)

Full 2.20 4.10
Medium 1.10 2.20

Low 0 1.10

Regarding sensor control, the microcontroller must implement I2C protocols for the TOF and IMU

and correctly receive and interpret the data. This is accomplished through drivers that set the sensor settings

and send the correct SDA and SCL configuration, as seen in Figure 19.

Full
battery

Medium
Battery

Low
battery

Fig.18 Led battery state display flowchart

29

Fig.19 IMU I2C pattern

Once ESP32 has access to the data, it is able to send coherent commands to the engines. Wifi

Mousr´s behavior, which is very simple as it is just meant to show proof of concept, is shown in the fol lowing

chart, Figure 20.

Fig.20 Functionality state machine

As explained in the chart, Mousr will move forward by default once it successfully connects to WIFI. If

the IMU detects that the device has been lifted or flipped it will stop the engine, to avoid harming the cat. If

instead the TOF detects an obstacle, Mousr will turn. The direction of the turn will alte rnate between left and

right. Additionally, the chip must generate a PWM signal for the IR circuit, which was already explained on

this document.

Finally, ESP32 must implement the Blufi protocol, as we explained in the introduction. The

implementation will be based on existing GitHub [GITH] repositories and Espressif's [ESPR] related

publications. All copyrights and intellectual property rights were checked before reusing any code. Blufi is a

method which allows users to connect the microcontroller to a router, removing the need for the WIFI

credentials (SSID and password) to be typed into the chip´s code. It uses both BLE (Bluetooth Low Energy)

[ESPR] and WIFI radios. Once the chip is successfully connected to the router it is assigned an IP, which may

be used to exchange data. The Arduino monitor is programmed to show updates throughout this process, as

seen in Figure 21:

Move
foward

Turn
Right

Left
Stop

If TOF=1

If IMU=1

If TOF=0

If IMU=0

Fig. 21 Arduino monitor during Blufi protocol

30

The protocol begins by activating BLE in ESP32, and “advertising” the device, which is basically

broadcasting its availability to nearby Bluetooth receivers. Then, the user must select the device, and

proceed to set the WIFI network and its respective password through an Android app, which will be

explained in more detail later on. The app will send this text strings to ESP32 via BLE, and the micro will then

proceed to connect to the WIFI network. Once this process is finalized, the IP can be retrieved with a simple

Arduino command and sent back to the app via Bluetooth. Communication is then established.

The most straightforward method to check whether ESP32 is bonded to the router is to use an app

like “Fing” [FING]. It shows a list of all the devices which are connected to the router, in real-time. In Figure

22 we can spot a Espressif device within this list, which proves the connection.

 Fig.22 Fing app connected devices list

At this point, any WIFI device (laptop, smartphone) that is connected to the same network can access

the URL with a web browser, which has the format http://IP/info, where IP is a set of numbers and Info is

text. As an alternative, https:// may be used for an encrypted and safe transfer. Regardless, ESP32 will detect

that a client connected to the IP and receive any text information they input. ESP32 will also be notified

when the client severs the connection, and it will proceed to free the server for its next use. The Arduino

monitor updates are shown in Figure 23.

Fig. 23 Arduino monitor during client connection to server

All these functionalities are implemented inside a while (true) loop, which is the main section of the

code and runs continuously. It relies on functions defined outside as well as the Arduino setup () function,

which runs once and sets all the server parameters. Pseudo code for this while (true) loop is included on the

next page.

http://ip/info

31

Therefore, a long button press will turn off the device at any time, while a short one will set Mousr in

battery status display and a medium one will activate pairing mode.

In this project, an Android app will be used to send all data. This data can be classified into two

structures: engine instructions and play times. Engine instructions, which are used to prompt Mousr’s real

time movements, are laid out in Table 6:

Table 6. Engine instructions variable structure

Trigger Action (as displayed in Arduino

monitor)

Text sent to ESP32

Push Left Button Left ON L1
Release Left Button Left OFF L0

Push Right Button Right ON R1
Release Right Button Right OFF R0

Push Forwards Button Forwards ON F1
Release Forwards Button Forwards OFF F0

Push Backwards Button Backwards ON B1

Release Backwards Button Backwards OFF B0

if ESP32 is connected to WIFI network:

 if a client connects to the IP:

 read and sort incoming data

 led set to red and no blink

else:

led set to red and blink

if (button is pressed): //GPIO 13 high to low

get current time

 wait until -> button is released

 get new time

if (new time-old time) is between 10 5̂ and 10 6̂:

read and display battery status mode

led set according to battery state, no blink

else if (new time-old time) is between 10 6̂ and 2.5*10 6̂:

pairing mode (BLUFI)

led set to blue and blink

else if (new time-old time) > 2.5 * 10 6̂:

enable light sleep wakeup by button

enter light sleep mode

32

Figure 24 contains an example of handling this data type:

Fig. 24 Receiving motor commands

 The remaining data class are times, which are used to set the scheduled-play. They just be received

and stored by ESP32, and used as indicators of when to enter and leave light sleep mode. EEPROM

(Electrically Erasable Programmable Read-Only Memory) memory will be used for storage, since it can be

erased and reprogrammed and it saves data even when ESP32 is powered off. We must differentiate begin-

play and end-play times, which is done by adding prefixes to the numbers as shown in Table 7.

Table 7. Play-time variable structure

Type App to ESP32 format ESP32 storage format

Begin-play bHHMM 9HHMM
End-play eHHMM 8HHMM

As seen in Table 7, times are in format HHMM or two-digit hour followed by two-digit minute; e.g.

1422 represents 2:22pm. Since times are sent to ESP32 as text strings, it is possible to simply add a lowercase

“b” or “e” to indicate begin or end. However, when storing the values in EEPROM [RAND] memory, only float

numbers may be used. The code must convert the string to text and add +9000 or +8000 to achieve the

format specified. Numbers 8 and 9 are chosen randomly. This also serves the function to maintain the

HHMM format, since a string containing the number “0809”, for example, would be modified to “809” when

converted to float. An example is attached in Figure 25.

33

Fig. 25 Monitor while sending time.

The Arduino code sorts the incoming data, through a switch loop. It looks for the letters R/L/F/B at

the beginning of the text to detect engine instructions, and for the lowercase letters e and b to detect times.

Storage is accessed through the Arduino commands EEPROM.get() [ARDU] and EEprom.put() [ARDU], with

addresses generated by a simple for loop. The address range depends on the byte size of the float numbers

inputted, and the maximum capacity is 512 bytes.

Finally, the engine instructions are sent to the engines through an UART connection, while the times

are stored in the permanent memory and constantly checked against the real time . An UART (Universal

Asynchronous Receiver-Transmitter) connection is a hardware device for serial data transfer through a wire,

commonly used in ports. All communications consist on packages of 8 bits which begin with a digital low and

end with a digital high. This pattern is shown in Figure 26. This ensures that the bits can be assembled into

bytes in the sequence they were meant to, and retain their meaning. Transmission speed and format may be

configured. The speed or transfer rate can be selected in the Arduino code in “baud”, which is a unit that

measures the number of signal changes (high/low) in one second. Some examples of standard rates are

9600, 57600 and 115200.

Fig. 26 UART protocol (solitontech.com)

34

The transmission is asynchronous, meaning there is no clock signal transferring between the two

UART ports. Instead, the receiving UART will set its internal clock according to the incoming bits pulse. Some

UARTs have a FIFO (first in first out), a buffer which can store a large number of bytes. This gives the system

more time to react to the incoming data, and ensure no bits are lost.

 In order to implement the UART communication with the engines, it was necessary to establish a

connection between both engines. This was achieved via a 12 port connector, which included the fol lowing

signals (Figure 27):

Fig. 27 Body microcontroller 12 port connector

Pins Tx and Rx are the primary and secondary UART signals, where Tx stands for transfer and Ty for

receive. Since we want to input binary data into this secondary microcontroller, we will use Rx, by

connecting it to the GPIO assigned the function of Tx in ESP32. GND is the electric ground and Vbattery the

4.1 voltage supply which may be used to power ESP32 and the sensors and other PCB components. The

remaining pins are used to boot the body microcontroller before using it, through a protocol designed by

Petronics that must remain confidential. The format used to send engine instructions is also confidential,

but it must specify which engine the command applies to (right/left/tail motor) as well as movement

direction and force.

 The main issue with the implementation was that the ESP32 code was continuously sending the

same instruction through the UART, therefore saturating the body microcontroller. This was fixed by

sending each movement command only once, when a change was required.

 Regarding the stored times, it is clear we must obtain real time in order to turn ESP32 on and off at

the appropriate times. This is done using the existing WIFI connections, through an NTP or Network Time

Protocol. The retrieved time and date comes in the format: “YYYY-MM-DDTHH:MM:SSZ” which stands for

“year-month-dayThour:minute:secondZ” (eg: “2018-09-23T07:23:15Z”). We must convert this format to our

time structure from Table 7: 9HHMM or 8HHMM, as well as from string to float.

GND Rx

GND Vbattery

Vbattery

Tx

35

First, we extract the time from the NTP string. The date won´t be used in this prototype, but would

be a simple addition to the concept. We then slice the string in such a way that only the hour and minute

digits remain, getting rid of the colon (“:”). An example of this is illustrated in Figure 28.

Figure 28: Time data structure modification example

Once this is handled, a loop will check the current time against all the times stored in EEPROM. If

there is a match, and it is with an “end-play” time, ESP32 will enter light sleep mode. Before shutting down,

however, an internal timer must be set for ESP32 to eventually turn back on. We must refer to the next

stored value in ESP32, which will necessarily be a “begin-play” time. We then calculate the difference

between current time and “begin-play” time in microseconds, and set a timer accordingly. This

accomplishes the scheduled-play functionality. For further clarity, pseudo code for this process is attached

in Figure 29:

Figure 29: Scheduled play pseudo code

String • 2019-06-10T10:23:34Z

String • 10:23:34

Float • 1023

While (true): ///main loop

Connect to wifi

NTP: get real time from network ->time 2

 time2-> format to HHMM structure

For (memory address in range (0, max)):

Retrieve time stored in address -> time1

if (time1==time2) and (time1 is an end play):

get time from address+1 -> StartTime

StartTime -> convert to microseconds

time2 -> convert to microseconds

inteval -> StartTime – time2

set timer to wake up in “interval”

enter light sleep mode

36

The last component of the project is the Android app, developed using the "App Inventor" [APPI]

software for android apks, by MIT [MIT_]. It is a block coding platform with many IOT (Internet of Things)

features. To download it to an Android Smartphone, App Inventor generates a QR code, which leads to a

download server when scanned. When opened, this app will initialize to a main screen, shown below in

Figure 30:

Fig. 30 App Main Screen

 From there the user must select the option, "Connect to Mousr", which will cause the app to display the

Espressif EspBlufi main screen. This is accomplished through an App Inventor functionality called "Activity

Starter" [APPI], which is able to download from the Play Store and open any apk. Input parameters were

“Activity Package”, which is used to find the app either on the phone or the Play Store, and “Activity Class”,

which is unique to each of the screens of the app. These two parameters combined allow the programmer

to select the app to download or open and the screen it opens to. They were retrieved from EspBlufi via an

“Apk inspector” [PLAY] app. The resulting text strings for the “EspBlufi” app are shown in Figures 31 and 32.

 Fig. 30 EspBlufi app “Activity Package” Fig. 31 EspBlufi app “Activity Class”

37

Once the user completes the Blufi connectivity screen flow, summarized in Figure 33, the two

remaining buttons in the main screen are enabled. The user may therefore choose between accessing the

auto play or scheduled play functionalities. If auto play is selected, the screen shown in Figure 34 will

display on screen. It fountains four buttons which send data to ESP32 when they're either pressed or

released, to begin or end play. Data will be sent via a HHTTP GET request, which is frequently used to make

a request from a server. The best option to post in a server would be a HTTP POST request, which is safer

due to the fact that the text is sent in a separate parameter, rather than appended in the URL like is the

case with GET requests. However, for simplicity we will settle for the GET method, especially since we are

sending very simple strings. In case WIFI Mousr ever needed to send large volumes of data, the app would

have to be adapted to operate with POST requests.

Fig. 34 App: Live Play Screen (controls)

In addition, the screen contains a text box with the local IP to which Mousr has been assigned, to

confirm App reception.

Fig. 33 EspBlufi app flow

38

Finally, the scheduled-play screen consists on a list of times, which are retrieved from the app's

memory whenever the screen is accessed. It can be seen in Figure 35. To input a new time, the user should

select the option "Add time", which will open the screen shown in Figure 36. Once the time is selected, it

will be sent to ESP32 in the format specified earlier on this section.

 Fig. 35 Scheduled Times screen Fig. 36 Add time screen

Isabel Ugedo, 12/06/2019

39

Budget

Table 8. Bill of Materials

Part Part Specification /Manufacturer Supplier Unit Cost

(prototype)

Unit Cost

(manufacturing)

ESP32Wrover
Kit V4.1

GC-ESP-WROVER-KIT/Espressif GridConnect $40.00 $5.00

IMU LSM6DSLTR/STMicroelectronics Mouser $3.98 $2.50

TOF VL53L0CXV0DH/1/STMicroelectronics Mouser $4.5 $2.83

RGB LED CLY6D-FKC CK1N1D1BB7D3D3m/Cree DigiKey $0.318 $0.29

IR Receiver TSSP77038TT/Vishay Semiconductors Mouser $1.79 $0.82

IR LED VSMB3940X01-GS08/Vishay
Semiconductors

DigiKey $0.73 $0.34

Pushbutton PTS810 SJG 250 SMTR LFS/C&K DigiKey $0.31 $0.24

FCC
Connector

687112183722/Wurth Electronics Mouser $1.83 $1.22

Voltage
regulator 3.3V

LM1117T-3.3/NOPB/Texas Instruments Mouser $1.54 $0.89

Voltage
regulator 1.8V

LM1117MPX-1.8/NOPB/Texas Instruments DigiKey $2.78 $0.68

Voltage
regulator 1.4V

NCP699SN14T1G/ON Semiconductors Mouser $0.47 $0.14

PCB - PCBWay $5.00 $0.50

Resistor Standard UIUC $0.50 $0.01

Capacitor Standard UIUC $0.70 $0.03

Female/Male
Wire

Standard UIUC $0.05

40

Table 9. Partial Cumulative A

PCB Parts Units Added Cost

(prototype)

Added Cost
(manufacturing)

Board 1 $5.00 $0.50

IMU 1 $3.98 $2.50

TOF 1 $4.5 $2.83

RGB LED 1 $0.318 $0.29

IR Receiver 1 $1.79 $0.82

IR LED 1 $0.73 $0.34

Pushbutton 1 $0.31 $0.24

FCC Connector 1 $1.83 $1.22

Voltage regulator
3.3V

1 $1.54 $0.89

Voltage regulator
1.8V

1 $2.78 $0.68

Voltage regulator
1.4V

1 $0.47 $0.14

Resistor 8 $4 $0.08

Capacitor 6 $4.2 $0.18

Soldering
materials (tin, flux,

oven paste)

- $26 $20

Total $57.45 $30.71

 Table 10. Partial Cumulative B

ESP32 Parts Units Added Cost

(prototype)

Added Cost
(manufacturing)

ESP32Wrover Kit V4.1 1 $40.00 $5.00

Female/Male Wires 27 $1.35 $1.35

USB to Mini-B cable 1 $1.00 $0.50

Total $42.35 $6.85

Table 11. General Budget

Element Units Added Cost

(prototype)

Added Cost

(manufacturing)

ESP32 1 $42.35 $6.85

PCB 1 $57.45 $30.71

Labor $3500

Shipping costs $42.97

Total $3642.77 $3580.53

41

We obtained an approximation of cost of labor using the following equation:

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 =
(𝐴𝑣𝑔 𝑆𝑎𝑙𝑎𝑟𝑦 𝑜𝑓 𝐵𝑆 𝑖𝑛 𝐸𝐸) + (𝐴𝑣𝑔 𝑆𝑎𝑙𝑎𝑟𝑡 𝑜𝑓 𝐵𝑆 𝑖𝑛 𝐶𝐸)

2
∗

1 𝑌𝑒𝑎𝑟

𝐿𝑎𝑏𝑜𝑟 𝑊𝑒𝑒𝑘𝑠 ∗ 45 𝐻𝑜𝑢𝑟𝑠
∗ (𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 [ℎ]) 4.1

The average salary data was obtained from the ECE website of UIUC. Total time was estimated to be

110 hours per worker. The resulting value of the equation 4.1 is shown below.

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 =
$67000+$84250

2
∗

1 𝑌𝑒𝑎𝑟

52∗45 𝐻𝑜𝑢𝑟𝑠
∗ (110)

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = $3555.02

42

References

 [TURBO] Turbofuture, “WIFI Questions: What does A/B/G/N Mean?”.

https://turbofuture.com/computers/Things-you-mustwant-to-know-about-WIFI. Last access: 17/06/2019 a

las 10:35.

[PETR] Petronics, “Mousr”. https://petronics.io/ . Last access: 09/06/2019 a las 17:20.

[PETR] Petronics/open source , “EspBlufi”.

https://play.google.com/store/apps/details?id=com.espressif.espblufi&hl=es. Last access: 03/06/2019 a las

18:50.

[RINC] Rincón Ingenieril, “Como funciona el Puerto serie y la UART”.

https://www.rinconingenieril.es/funciona-puerto-serie-la-uart/. Last access: 10/06/2019 a las 17:15.

[ESPR] Espressif , “Features and Specifications, The internet of things with ESP32.

https://www.espressif.com/en/products/hardware/esp32/overview. Last access: 04/06/2019 a las 12:25.

[ARDU] Arduino, “Arduino Software”. https://www.arduino.cc/en/Main/Software. Last access: 16/06/2019

a las 12:00.

[I2CI] I2C Info, “I2C Bus, Interface and Protocol”. https://i2c.info/. Last access: 11/05/2019 a las 10:40.

[TEXA] Texas Instruments , “I2C Bus Pullup Resistor Calculation”.

http://www.ti.com/lit/an/slva689/slva689.pdf. Last access: 11/05/2019 a las 11:45.

[VISH] Vishay Semiconductors , “Vishay’s TSSP-AGC P Sensor Series for Proximity Sensing”.

https://pdfs.semanticscholar.org/b33d/0a973e715ca6b67689cb69ef4e8b62826f7b.pdf. Last access:

21/05/2019 a las 16:15.

[AUTO] Autodesk , “EAGLE: PCB design made easy”, Autodesk.

https://www.autodesk.com/products/eagle/overview. Last access: 02/06/2019 a las 17:50.

0[PCBW] “PCBway”. https://www.pcbway.es/?gclid=EAIaIQobChMI-f-

dxKzV4gIViSnTCh12SQyVEAAYASAAEgJjbPD_BwE. Last access: 02/06/2019 a las 12:05.

[SEED] Seedstudio , “What are Gerber files?”.

http://support.seeedstudio.com/knowledgebase/articles/493833-what-is-gerber-file. Last access:

27/05/2019 a las 16:25.

[FILE] File Info, “CAMFile Extension”. https://fileinfo.com/extension/cam. Last access: 07/05/2019 a las

12:05.

[SPAR] Sparkfun Electronics , “Better PCBs in EAGLE”. https://www.sparkfun.com/tutorials/115. Last

access: 03/05/2019 a las 12:05.

[ESPR] Espressif , “Blufi”. https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/blufi.html. Last

access: 23/05/2019 a las 13:00.

[GITH] Github , “Repositories”. https://github.com/. Last access: 18/06/2019 a las 11:30.

[ESPR] Espressif , “Wi-Fi and Bluetooth chipsets and solutions”. https://www.espressif.com/. Last access:

16/05/2019 a las 14:15.

https://espressif.com/

43

[ESPR] Espressif , “ESP32 Bluetooth Networking”, Espressif.

https://www.espressif.com/sites/default/files/documentation/esp32_bluetooth_networking_user_guide_e

n.pdf. Last access: 15/05/2019 a las 10:00.

[FING] Fing , “Fing app”, Fing. https://www.fing.com/. Last access: 8/06/2019 a las 10:35.

[RAND] Random Nerd Tutorials , “ESP32 Flash Memory – Store Permanent Data (Write and Read)”.

https://randomnerdtutorials.com/esp32-flash-memory/. Last access: 4/06/2019 a las 11:00.

[ARDU] Arduino ̧ “EEPROM.get Tutorial”. https://www.arduino.cc/en/Tutorial/EEPROMGet. Last access:

4/06/2019 a las 12:30.

[ARDU] Arduino , “EEPROM.put Tutorial”. https://www.arduino.cc/en/Tutorial/EEPROMPut. Last access:

4/06/2019 a las 16:00.

[APPI] App Inventor ̧“Anyone Can Build Apps That Impact the World”.

https://appinventor.mit.edu/explore/. Last access: 25/05/2019 a las 16:30.

 [MIT_] MIT, http://www.mit.edu/. Last access: 27/05/2019 a las 11:05.

[APPI] App Inventor ̧ “Using the Activity Starter (App Inventor 2)”.

http://appinventor.mit.edu/explore/ai2/activity-starter.html. Last access: 11/06/2019 a las 10:25.

[PLAY] Play Store , “Apk Inspector”.

https://play.google.com/store/apps/details?id=net.jevinstudios.apkinspector&hl=es. Last access:

27/05/2019 a las 14:10.

http://www.mit.edu/

