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Abstract This paper addresses the seismic analysis of a deeply embedded non-slender
structure hosting the pumping unit of a reservoir. The dynamic response in this type of
problems is usually studied under the assumption of a perfectly rigid structure using a
sub-structuring procedure (three-step solution) proposed specifically for this hypothesis.
Such an approach enables a relatively simple assessment of the importance of some key
factors influencing the structural response. In this work, the problem is also solved in a single
step using a direct approach in which the structure and surrounding soil are modelled as a
coupled system with its actual geometry and flexibility. Results indicate that, quite surpris-
ingly, there are significant differences among prediction using both methods. Furthermore,
neglecting the flexibility of the structure leads to a significant underestimation of the spectral
accelerations at certain points of the structure.

Keywords Soil-structure interaction · Direct method · Three-step solution ·
Buried structures · Boundary Element Method

1 Introduction

It is a well known fact that soil-structure interaction (SSI) should be considered in the
dynamics of deeply embedded non-slender structures under ground motion. When analysing
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the dynamic response of such an structure (for instance large diameter caissons or shaft foun-
dations, and pumping stations) the hypothesis of infinite stiffness is usually assumed. More
precisely, embedded structures are considered to be rigid when the relation between depth
of embedment and width is smaller than 2, 3 or 4 depending on the authors and application
(Mylonakis 2001; Varun et al. 2009), therefore many of these structures are seismically
designed following that assumption of rigidness.

The basic methods for the analysis of dynamic soil-structure interaction problems may
be classified in direct and sub-structuring methods. Direct methods allow soil and structure
to be modelled and analysed simultaneously in a single step. On the contrary, substructuring
methods study soil and structure separately and, if the assumption of a perfectly rigid structure
is adopted, the method leads to a three-step solution (Kausel and Roesset 1974; Kausel et al.
1978; Villaverde 2009) that allows parametric studies on the factors known to influence the
response. However, when the hypothesis of rigidity of the structure foundation does not apply,
the use of sub-structuring or direct methods requires soil and structure to be modelled with
their actual geometry using more powerful numerical methods, which would imply higher
computational effort in both cases. The literature is rich in examples of models addressing
soil-structure interaction problems (Kausel 2010) that use either the sub-structuring or the
direct approaches in combination with Finite Element Method (FEM) or Boundary Element
Method (BEM).

This paper addresses the seismic analysis of a real massive deeply embedded structure,
a structural typology traditionally analysed with the three-step approach, the objective being
the assessment of the motion at discrete points of the structure consistent with a given free field
ground motion. The structure is a part of a big industrial installation and hosts equipment that
could be seriously affected during an earthquake. The relation between the embedded length
and width of the structure is smaller than 2, approximately 1.7, thus it may be considered
as a non-slender structure. This study has been performed using sub-structuring and direct
methodologies in order to assess the validity of the rigid body assumption, which is the main
goal of this paper.

In the first part of the paper the problem at hand is presented. Then, the three-step and
direct methods are briefly reviewed. Finally, results obtained with both methods are presented,
compared and discussed. Attention will be paid not only to final results, but also to partial
ones. The boundary element method is used when applying both methodologies. In each
case complex valued relations between response at the points of interest and at free field are
calculated. Frequency domain results are later transformed to the time domain using Fourier
transform.

2 Problem description

Figure 1 shows a geometrical description of the structure under study, which is an 80 m high
almost cylindrical concrete structure, with its lower 50 m embedded in the soil. The exterior
diameter of the non-embedded part of the structure is 28 m. In the embedded length, the
thickness of the excavation walls must be added, resulting in a exterior diameter of 30 m.
The bottom 20 m of the structure are composed by a great number of slabs and stiffeners
that provide a large rigidity. Therefore, this bottom part, defined as domain 2 (domain 1
corresponds to the rest of the structure) has been considered solid, with the stiffness of the
concrete but an equivalent density. Table 1 shows the values of the different properties of
both domains of the structure, with μ being the shear modulus, ν the Poisson’s ratio, ρ the
density, ξ the internal damping coefficient and cs the S wave propagation velocity. The total
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Fig. 1 Geometrical description
of the structure

Table 1 Elastic properties of structure and soil layers

Domain 1 Domain 2 Soil layer 1 Soil layer 2 Soil layer 3

ν 0.2 0.2 0.3 0.3 0.3

ρ 2,685.85 kg/m3 2,253.42 kg/m3 2,000 kg/m3 2,100 kg/m3 2,200 kg/m3

ξ 0.05 0.05 0.05 0.05 0.05

μ 1.15×1010 N/m2 1.15×1010 N/m2 5 × 108 N/m2 1.029 × 109 N/m2 2.2 × 109 N/m2

cs 2,069.23 m/s 2,259.06 m/s 500 m/s 700 m/s 1,000 m/s

mass M of the structure is 61.3 × 106 kg, the inertia IG is 3.51 × 1010kg m2 and the distance
hg from the base to the center of gravity is 28.36 m. The structure hosts the pumping unit of
a large reservoir and other critical devices, such as a crane, that could be seriously affected
during an earthquake. For this reason, part of the seismic analyses will focus on the natural
frequencies of such devices, estimated to be around 3.89, 7.69 and 12.05 Hz.

The soil is composed of three layers. The top layer is a stiff clay formation and reaches
37 m depth. The second layer is formed by conglomerates and is 9 m depth. Finally, the
bottom layer is a half space of strongly consolidated detrital sedimentary rock. Only static
tests were carried out in the characterization of the different soil layers, so no measurements
of S and P wave velocities were available. For this reason, some correlations and empirical
rules, especially Ishihara (1996) and Seed and Idriss (1970), were used to estimate S wave
velocities and soil dynamic shear stiffness. A sensitivity analysis was carried out in order
to find out the most conservative soil profile among several ones, all compatible with the
field tests results. Having defined the design accelerograms (described below) at the free
field surface, the corresponding acceleration response spectra were computed at −50.0 m
(using SHAKE (Schabel et al. 1972) to obtain the accelerogram at such depth). The profile
in Fig. 2 was finally selected because it leads to higher (conservative) values for the range of
frequencies of interest in regard to the hosted equipment. All results shown in this paper will
be based upon it. Table 1 summarizes the properties finally used to characterize the different
soil layers.
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Fig. 2 Shear wave velocity
profile for the soil
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Fig. 3 a Design acceleration response espectrum, b Modulation scheme

As previously stated, the aim of the dynamic study is the assessment of the motion at
discrete points of the structure consistent with a given free field ground motion. The latter
has been defined in terms of the response spectrum shown in Fig. 3a, with a horizontal peak
ground acceleration equal to 0.17 g, and 10 s conventional duration, as defined by the client’s
specifications. In order to obtain some statistical significance, three different signals were
generated using SIMQKE (Gasparini 1976) and then modulated using the scheme represented
in Fig. 3b (Jennings et al. 1968). The resultant horizontal accelerograms are shown in Fig. 4,
while the corresponding acceleration response spectra are presented in Fig. 5 together with
the design acceleration response spectrum.
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Fig. 4 Horizontal accelerograms

Fig. 5 Free-field elastic
acceleration response spectra

3 Methodology

Once geometry, stratigraphy and seismic action have been defined, the seismic response of
the structure is going to be computed by using two methodologies: a three-step approach and
a direct approach (c.f. Fig. 6), as briefly described next. The objective is to simultaneously
obtain the motion at the surface and at discrete points of the structure, under vertically plane
harmonic incident S waves of fixed frequency. The complex valued relationships may be
used to transform a given free field motion into the motion at the reference point, in the time
domain.

Substructuring methods in the hypothesis of a perfectly rigid structure provide the response
following a three-step procedure (Kausel and Roesset 1974; Kausel et al. 1978): (i) compu-
tation of the kinematic interaction factors; (ii) computation of stiffness and damping coeffi-
cients; and finally (iii) estimation of inertial interaction (see Fig. 6).
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Fig. 6 Direct method versus three-step solution

The second alternative is the use of direct methods. They model all domains defining soil
and structure simultaneously. Therefore they allow taking into account the interactions among
the different elements in a more rigorous way. The more popular numerical techniques used in
this approach are FEM and BEM. In this work, the Boundary Element Method (Domínguez
1993) has been used for the direct approach because it is specially suitable to deal with the
dynamic analysis of unbounded domains such as the soil layers in this problem.

When applying the three-step method, simplified expressions available in the bibliog-
raphy are usually used to estimate kinematic interaction factors and impedance functions
(Mylonakis et al. 2006; Kausel et al. 1978). However, accurate enough expressions are not
available for the layered soil profile of the problem at hand. For this reason, again BEM is also
used to assess the kinematic interaction coefficients and the soil impedances corresponding
to the first and second steps of the sub-structuring methodology.

When using the BEM to solve the problem following a direct approach, or in order to
compute kinematic interaction factors and impedances for substructuring approach, all
domains defining the geometry of the problem (soil layers and concrete walls) are modelled
as linear homogeneous isotropic viscoelastic regions, and welded conditions are assumed
between the different domains. Figures 7 and 16 show two boundary element meshes used
for the sub-structuring problems (step 1 and 2) and direct approach respectively. It can be
appreciated that the boundary element code allows the use of quadratic triangular (6 nodes)
and quadrilateral (9 nodes) elements. This particular geometry also includes corner problems
where an interface cuts the embedded structure. Here, corner problems are solved by means
of a non-nodal collocation strategy, which also allows using non-conforming meshes, as can
be seen in the figures. The element size must be smaller than the half-wave length at the
corresponding region for the highest frequency of analysis, in this case 25 Hz, although in
general, all mesh parameters, such as free-surface extension and number of elements, are
defined by performing convergence analyses of the variables of interest for different meshes.
It is also worth noting that, even though the figure shows three quarters of the problem
geometry, only a quarter of the total geometry is really meshed, as the code is able to take
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Fig. 7 Boundary elements mesh
used for the kinematic interaction
and soil impedance problems

into account the symmetry properties of the problem. More details of the used boundary
element code can be found in Maeso et al. (2002, 2004, 2005).

Next section provides the kinematic interaction coefficients, while the soil impedances are
presented in Sect. 5. These results are later used in Sect. 6 to compute the dynamic response of
the whole system by solving the inertial interaction step of the sub-structuring method. They
are also interesting because they enable understanding the sensitivity of the final response
to different characteristics of the system. Finally, and following a direct approach, the real
problem is solved modelling all elements simultaneously in Sect. 7. Results are presented
compared to those obtained through the three-step method.

4 Kinematic interaction

In this section, the displacements and rotations of the massless and infinitely rigid structure are
obtained considering vertically incident S waves. The problem is well known (Roesset 1977),
as well as its approach through the boundary element method (Domínguez 1993; Álvarez
Rubio et al. 2005). Figure 7 shows the boundary element mesh used for this problem. The
free surface and the interfaces among strata are displayed with different colours. The rigid
interface among soil and structure is depicted in red.

Figure 8 presents absolute values of the translational Iu = u/uff and rotational
I� = θ R/uff kinematic interaction factors of the problem at hand, being u and θ the hori-
zontal displacements and rotations at the base of the structure, R the radius of the structure
and uff the free-field horizontal motion at the ground surface. The horizontal axis represents
the dimensionless frequency ao = ωR/cs , being ω the angular frequency of the excitation
and cs the velocity of the S waves in the top layer (500 m/s). The figure presents, together
with the results obtained using boundary elements, the transfer functions obtained through
the simple rules proposed by Elsabee et al. (1977) for homogeneous soils (see also Kausel
et al. (1978); Mylonakis et al. (2006)). The agreement between them is good at low and
high non-dimensional frequencies, while discrepancies appear between 0.4 and 2.0. These
differences would have a significant impact on the seismic assessment since the key com-
ponents hosted by the structure have their fundamental frequencies within this range. Thus,
only kinematic interaction factors obtained using BEM will be used in Sect. 6.
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Fig. 8 Kinematic interaction factors at the base of the structure for vertically incident S waves

5 Soil impedances. Equivalent springs and dashpots

The second step in the three-step method is the determination of the soil impedances
(c.f. Fig. 6). Impedance functions corresponding to a wide variety of cases can be found in
the literature (Wolf 1985; Mylonakis et al. 2006). However, no such functions are available
for this particular configuration. Therefore, in this work, horizontal and rocking stiffness and
damping coefficients have been obtained using the above mentioned boundary element code
by prescribing unitary harmonic rigid-body horizontal displacements or rotations at the soil-
structure interface. For each harmonic frequency the impedances are obtained by integration
of the relevant stresses in the interface. It is worth noting that rotations induce horizontal
stresses in the cylinder walls and, reciprocally, horizontal motions produce a momentum at
the base. Therefore, with reference to the central point at the base of the structure, horizontal
and rocking impedances are coupled. The coupling term becomes more important the deeper
the structure is embedded.

Impedance functions can then be arranged in a stiffness matrix K relating forces and
moments F applied at the center of the base to the resulting displacements and rotations u in
a relationship of the type F = Ku that condenses the dynamic properties of the soil profile
and that can be written as {

F
M

}
=

[
Kxx Kxθ

Kθx Kθθ

]{
u
θ

}
(1)

where each term Klm depends on the dimensionless frequency ao and represents the force
(or moment) at the base of the structure needed to obtain a harmonic unitary displacement
(or rotation). As forces and displacements are out of phase, terms Klm are complex valued,
in the form

Klm = klm + i ao clm (2)

where klm and clm are the stiffness and damping coefficients, respectively.
Figure 9 presents the stiffness and damping functions of the problem at hand, computed

with the mesh shown in Fig. 7, and normalized using the shear stiffness of the top soil
layer and the radius of the embedded structure. It is worth noticing that resonant frequencies
associated to the shear deformation of the top two soil strata do not become apparent in these
impedance functions. This is due to the fact that the related shear modes do not get excited
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Fig. 9 Horizontal and rocking stiffness and damping functions

because the structure goes all the way through the soil layers and does not produce significant
vertical S waves.

6 Inertial interaction. Dynamic response of the structure.

In previous steps, the impedance functions, that condense the dynamic properties of the soil
profile taking into account the embedded structure, and the seismic excitation including the
effects of kinematic interaction, have been assessed. In the third step, the dynamic response
of the system is assessed under the assumption of the structure being infinitely rigid. Thus,
the rigid body motion equations that govern the dynamic behavior of the structure can be
written in the frequency domain as

[
Kxx − ω2 M Kxθ + ω2 Mhg

Kxx hg + Kθx Kxθ hg + Kθθ − ω2 IG

] [
u
θ

]
=

[
Kxx Kxθ

Kxx hg + Kθx Kxθ hg + Kθθ

] [
uki

θki

]
(3)

where u and θ are the horizontal displacement and rotation at the base of the structure; and
uki and θki are the input horizontal displacement and rotation due to the seismic excitation,
which are obtained from the kinematic interaction factors. Equation 3 can be solved numeri-
cally for any given frequency to obtain the structural response of the rigid body in terms of its
displacements u and rotations θ . This means that, once impedance functions and kinematic
interactions factors have been computed, the cost of computing the system response is very
low. This allows to perform parametric analyses and study the influence of different aspects
on the final response at low cost, which is one key benefit of the three-step approach.

Figure 10 presents the dynamic response of the structure, computed making use of this
sub-structuring methodology, as a function of the dimensionless frequency ao. The transla-
tional kinematic interaction factors presented in Sect. 4 are also plotted in this figure in order
to allow assessing the relative importance of kinematic interaction and inertial interaction
on the final response of the system. In both cases, the transfer functions relate the hori-
zontal displacement u at the base of the structure to the free-field motion uff at the ground
surface. Under the rigid body motion assumption, horizontal displacements at any point of the
structure can be easily obtained, and results for six different depths are presented. The results
presented in Fig. 10 indicate that the presence of the structure filters out an important part
of the seismic signal, mainly for frequencies ao ≥ 2. In order to illustrate the effects of this
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Fig. 10 Frequency response functions for the normalized horizontal displacements from inertial interaction
analysis and translational kinematic interaction factors for vertically incident S waves

filtering, Fig. 11 shows acceleration records evaluated on the cylinder at depths 0 and −50 m
when the system is subjected to the first design accelerogram (c.f. Fig. 4). These responses
have been computed as the inverse Fourier transform of the product between the frequency
response function obtained for step 3 (inertial interaction) and the discrete Fourier transform
of accelerogram 1, using the Fast Fourier Transform algorithm. The free-field accelerogram
1 is also presented in Fig. 11 in order to provide a baseline. The input seismic signal is filtered
by the presence of the structure, as the peak acceleration is reduced from 0.173 to 0.087 g
(∼ −50 %) at −50.0 m depth, while the rotation induced by the incident wave-field increases
the acceleration to 0.114 g at 0.0 m. The latter acceleration value is still 35 % smaller than
the free field peak acceleration of the input seismic signal.

Elastic response spectra can also be obtained using these filtered signals at different
depths as the excitation of one degree-of-freedom systems. Figure 12 presents the pseudo-
acceleration response spectra corresponding to the inertial interaction (step 3) and only
kinematic interaction (step 1) for different depths. The design response spectra and the ones
corresponding to the input seismic signals at free-field surface (+0.0 m) are also presented
for reference in all plots. All results are shown in terms of envelopes for the three input
accelerograms presented in Fig. 4.

Figures 10 and 12 also show that results obtained from step 3 (inertial interaction) or
directly from step 1 (kinematic interaction) agree extremely well, which means that kinematic
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Fig. 11 Structural response at different depths according to the three-step solution for accelerogram 1

interaction dominates the dynamic response of this structure. In order to understand this effect,
Eq. 3 has been rewritten with u = uki + ū, being uki the vector of displacements and rotation
at the base of the rigid foundation in the kinematic interaction problem, and ū the vector
of relative displacements and rotations between soil and structure. This relative motions,
which are responsible for the differences between inertial and kinematic interaction, happen
to be relatively small in the frequency range of interest. They are also closely related to the
damping properties of the system, which can be studied in terms of the damping factors
ζ . These factors can be estimated both for the horizontal and rocking vibrations from the
corresponding impedance functions as

ζx = c̃xx

2
√

M kxx
; c̃xx = R

cs1
cxx (4)

ζθ = c̃θθ

2
√

(IG + M h2
g) kθθ

; c̃θθ = R

cs1
cθθ (5)

As shown in Fig. 13, where this damping factors are plotted as a function of the dimension-
less frequency, the horizontal vibration is overcritically damped while the rocking vibration is
undercritically damped for ao < 2. This may explain why the system response is dominated
by kinematic interaction, and also why the largest differences are observed for points near
the surface, where the effect of the structural rotation is larger.

The fact that inertial interaction is so close to the corresponding kinematic interaction
factors is an extremely appealing idea, as it could imply that, in certain cases, kinematic
interaction itself can be a reasonably good approximation of the structural response and,
therefore, the computation of impedance functions and inertial interaction could be avoided.
For this reason, the key factors that determine whether this simplification can be carried out
will be briefly investigated next.
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Fig. 12 Envelopes of pseudo-acceleration response spectra at different depths

Fig. 13 Damping factors for the
horizontal and rocking modes
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Fig. 14 Frequency response functions for different damping factors (left) and natural frequencies (right)

Fig. 15 Pseudo-acceleration response spectra for different damping factors (left) and natural frequencies
(right)

In order to be able to concentrate on a few key parameters, and taking into account that the
impedance functions (excepting the rocking one) are approximately frequency-independent,
a slightly simplified system with stiffness and damping coefficients being frequency indepen-
dent will be used. These constant values are chosen as those corresponding to ao = 0.74. This
is a central frequency in the range 0 < ao < 1.5 of interest, and also the natural frequency of
one of the sensitive devices hosted by the structure. For ao = 0.74, the constant stiffness and
damping coefficient values are: kxx/G R = 39.0, kθθ /G R3 = 104.2, kxθ /G R2 = −17.3,

cxx/G R = 43.8, cθθ /G R3 = 96.9 and cxθ /G R2 = −49.6. Figures 14 and 15 present
the frequency response function and the corresponding elastic response spectrum for such
constant impedances. It can be seen that, in the frequency range of interest, the system
response is very close to the one obtained with a more rigorous inertial interaction response
(i.e. with frequency dependent impedances).

In order to investigate if damping factors are responsible for the dynamic response of
the system being dominated by kinematic interaction factors a parametric study has been
performed. The left plot of Fig. 14 presents the frequency response functions corresponding
to systems where the damping coefficients have been artificially modified by factors 3 and 1/3.
The left plot of Fig. 15 presents the corresponding acceleration response spectra. As expected,
when damping factors are significantly smaller than one, the system response becomes
different from the one considering kinematic interaction factors alone. On the contrary, for
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Table 2 System natural
frequencies for different
configurations

ao1 [ f1(Hz)] ao2 [ f2(Hz)]
kxx , kθθ 1.3 [7.0] 3.2 [17.0]

kxx , 10 kθθ 2.0 [10.6] 7.0 [37.0]

10 kxx , kθθ 1.4 [7.3] 10.2 [53.9]

10 kxx , 10 kθθ 3.8 [20.4] 11.4 [60.6]

very large damping factors, both transfer function and response spectrum get very close to
it.

Aside from the damping factor, the other dynamic properties that have a strong influence
on the dynamic response of the system are its natural frequencies. Table 2 presents the
undamped natural frequencies of the coupled system for the stiffness matrix corresponding
to ao = 0.74. Also three more combinations are considered in which the horizontal and
rocking stiffnesses are alternatively or simultaneously multiplied by a factor of 10, in order
to artificially increase the natural frequencies of the system and take them out of the frequency
range that contains most of the energy of the design accelerograms (0 < ao < 1.5). It is worth
noting that, in the original configuration, but also when the horizontal stiffness is multiplied
by a factor of 10, the first natural frequency is inside this range. On the contrary, when the
rocking stiffness is increased, both natural frequencies are well above ao = 1.5. The effects of
these changes are reflected in the right plots of Figs. 14 and 15, that present the corresponding
frequency response functions and response spectra. In this plots, both damping factors ζx

and ζθ have been deliberately kept constant. It can be seen that when only the horizontal
stiffness is artificially increased, the system inertial response remains almost unchanged. On
the contrary, when the rocking stiffness is increased, the system response gets really close
to the kinematic interaction problem. This is due to the fact that, when only the horizontal
stiffness is changed, the first natural frequency is only slightly modified, and the rotation of
the structure (with a great influence on the motions at +0.0 m) is not significantly altered. It
can be concluded that it is the rotational behavior of the soil-structure system what drives the
final dynamic response.

7 Direct method

As said before, the three-step approach implies the assumption of a perfectly rigid structure.
On the contrary, the direct approach allows a more rigorous analysis that takes into account the
true flexibility of the structure in order to obtain the coupled response of the system subjected
to the seismic excitation. In this case, soil and structure are analysed simultaneously under
the action of vertically incident S waves using the boundary element code presented above
and the mesh shown in Fig. 16.

Figure 17 presents the frequency response functions for the normalized horizontal
displacements of different points of the structure. Results obtained from the direct approach
and taking into account the true flexibility of the structure are labeled as ‘Flexible model’,
results corresponding to the three-step approach (already presented before) are labeled as
‘Rigid model’, and results obtained from the kinematic interaction problem are labeled as
‘Kinematic interaction’. It can be seen that, in general, the assumption of a structure that
behaves as a rigid body produces unsatisfactory results for all the frequency range, though
acceptable results are obtained in some cases (mainly for high frequencies and at the base
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Fig. 16 Boundary elements mesh used for the direct approach. Flexible structure embedded in an stratified
soil

Fig. 17 Frequency response functions for the normalized horizontal displacements of different points of the
structure under vertically incident S waves. Three-step and direct approaches

of the structure). As expected, the effects of the flexibility of the structure become more
important with height. It is worth noting that the most important differences are found near
the ground surface and below ao = 1.5, while the frequency range of interest in terms
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Fig. 18 Pseudo-acceleration response spectra at different levels obtained from the direct methodology (flexible
model) and three-step solution (rigid model) methodologies

of the frequency content of the design accelerograms is also for 0 < ao < 1.5, thus affecting
almost the whole frequency content of the input ground motions.

The influence of these differences between rigid and flexible models on the seismic
response of the structure can be evaluated by means of elastic response spectra. To this end,
Fig. 18 presents the envelopes of the pseudo-acceleration response spectra corresponding
to the three design accelerograms in both rigid and flexible models. It can be seen that the
response spectra for the rigid and flexible hypothesis are almost coincident at the base of the
structure (−50.0 m), but remarkable differences can be appreciated for all other points. In
this sense, even at −33.5 m depth (a point belonging to the filled bottom part of the structure),
differences are important in the range of periods between 0.1 and 0.25 s. For example, the
response computed for T = 0.17 s is 0.18 g for the rigid model and 0.29 g for the flexible
model (approximately 60 % difference).

The response of the structure at ground surface level (+0.0 m) is particularly interesting.
At this level, and for periods higher than 0.2 s, the presence of the flexible structure does not
filter the input seismic signal, in contrast with the results obtained under the rigid structure
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Fig. 19 Validation of the
hypothesis of rigidity of the
structure. Maximum
accelerations with depth under
accelerogram 1. Vertically
incident S waves

Fig. 20 Validation of the
hypothesis of rigidity of the
structure. Maximum normal
stresses with depth under
accelerogram 1. Vertically
incident S waves

assumption. For instance, for T = 0.26 s (corresponding to f = 3.86 Hz, one of the
frequencies of interest) the spectral accelerations are 0.32 g for the rigid model and 0.46 g
for the flexible model, implying a 44 % difference.

The seismic response of the structure can be considered to result from the addition of
three components: two rigid body motions (rotations and horizontal displacements) present
in both methodologies; and a third one associated only with the flexural deformation of the
structure. Results presented in Fig. 18 imply that this last component cannot be neglected in
this particular problem, even if it is a large non-slender strongly embedded structure (Elsabee
et al. 1977; Saitoh and Watanabe 2004), and therefore, the rigid body assumption is not valid
in this case.

The same conclusions can be drawn from the analysis of the envelopes of maximum accel-
erations and normal stresses along the embedded part of the structure, comparing results from
both the rigid and flexible models. Maximum accelerations are shown in Fig. 19, normal-
ized with the peak ground acceleration (PGA), while peak normal stresses are represented in
Fig. 20, both under design accelerogram 1. In both cases, the stresses have been computed
with the boundary element method, using appropriate properties for each model. It is worth
noting that results obtained making use of the rigid assumption underestimate maximum
accelerations by up to 25 %. Considering normal stresses (c.f. Fig. 20), the flexibility of
the structure implies a significant relaxation of the normal stresses across the soil-structure
interface.
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8 Conclusions

The seismic analysis of sensitive equipment hosted by a non-slender and deeply embedded
structure has motivated the work presented in this paper. The demand at different points of
the structure has been obtained in terms of displacement frequency response functions and
acceleration elastic response spectra. The main objective was to characterize the demand at
different points of the structure in order to know if the assumption of infinite rigidity of the
structure allows to obtain reliable values of its response.

To this end, the seismic response of the structure has been analysed using the
sub-structuring (three-step solution) and direct methodologies. Both allow to take into
consideration soil-structure interaction, which is known to be important in problems like
the one considered here, but the three-step methodology assumes a perfectly rigid structure,
while the direct one is able to handle its real flexibility.

As expected, demand has been found to be reduced by the presence of the structure. How-
ever, quite surprisingly, predictions using both methods show significant discrepancies. The
assumption of a structure that behaves as a rigid body provides significant underestimations
of the spectral accelerations at different points, with differences of up to 60 %, implying that
the flexural deformation of the structure cannot be neglected in this particular problem and,
therefore, that the structure cannot be considered to be a rigid one.

Also, the sub-structuring analysis have been useful to understand the key role of damp-
ing factors and rocking stiffness on the seismic response of the structure. It has been
shown that, when damping factors are high, kinematic interaction is an extremely important
element in the estimation of the structural response, and could even be used as a very good
approximation to the inertial interaction step. This approximation will be even better if
the natural frequencies of the system do not lie within frequency content of the seismic
excitation.
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