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ABSTRACT  

A methodology based on spatial clustering has been developed to identify different re-

gions within country energy systems. Those identified regions are used in an energy 

system model to consider spatial fluctuations within a country´s energy system and better 

predict future transition pathways of decarbonization. 

Keywords: Spatial clustering, energy system modeling, geographic information systems 

 

1. Introduction 
 

Meeting the Paris agreement [1], limiting the increase of average temperature to less 

than 2°C, preferably 1.5°C, requires decarbonization of different sectors, mainly electric-

ity, mobility, heat, industry, buildings, and agriculture [2]. For example, in the electricity 

sector renewable energy technologies, like wind, solar, hydro, and biomass have to be 

installed and the generation by conventional power plant technologies using coal or lig-

nite which are the technologies with the highest emissions must be reduced. Therefore, 

one characteristic of future energy systems is their high share of renewable energy and 

the volatile generation that they entail. Because of this, the transformation of current 

energy systems towards the future is under investigation.  

Costs are an important factor in those transitions. Energy system modeling, especially 

optimization models, is used to calculate the cost-optimal pathway towards a decarbon-

ized future energy system, i.e. which capacities of given technologies are installed or 

shut down and when.  

In energy system modeling one important factor that has to be considered is the spatial 

resolution of the model [3]. Modeling each consumer and generator as one point 



 

interconnected by the grid is not feasible. Another approach is to model the energy sys-

tem of a country as one point. However, this might lead to the neglect of important factors 

regarding the spatial differences of load, generation, and especially transmission and 

distribution of energy. Because of that, an in-between-approach of the two first men-

tioned approaches is to model the energy system based on regions by modeling their 

respective energy systems and the interactions between them [4]. Considering this ap-

proach, the question emerges on how to define those regions. Intuitively, one might con-

sider the different states of a country as regions. However, their regional distribution can 

be very inhomogeneous regarding renewable potentials, load, or other factors that are 

important for energy system models. Therefore, the need for a so-called regionalization 

method rises. In this context, regionalization can be defined as the identification of a 

small number of groups of internally homogeneous and spatially contiguous regions out 

of a large set of spatial objects [5]. This way the validity of energy system modeling might 

be further improved in comparison to single-region models. Furthermore, the significance 

of the results improves in comparison to the modeling of administrative levels due to the 

consideration of regional occurrences. 

 

2. State of the art 

In order to classify different regions within a country depending on spatial and aggre-

gated attributes Clustering is one mainly used option. Regarding clustering there are 

many different approaches and algorithms available. Since the suitability of a clustering 

algorithm strongly depends on the problem there is no optimal clustering technique. 

Therefore, all have to be taken into account and a profound evaluation has to be done 

to make a justified choice. The most common are listed and shorty described below: 

• K-means: Initially it sets K centroids of clusters within the dataset and iteratively 

assigns the different data objects to the centroids. Even though the method is 

fast, the disadvantages make it less suitable for the use of this project. It is very 

dependent on the choice of initial cluster centroids and, therefore, the algorithm 

has to be executed several times in order to find a local optimum. Another prob-

lem is the tendency of K-means to find spherical clusters of same size which in 

this project is not desired. Furthermore, the spatial contiguity that shall be 

achieved by the developed method can hardly be implemented into K-means, 



because using the distances between regions as attribute of the sample results 

in the reduction of importance of its actual attributes and makes the spatial con-

tiguity the most important factor. 

• Max-p Regions: In this method the clustering is written as a mixed-integer pro-

gram where the number of clusters is minimized while a constraint has to be met, 

e.g. the number of solar generation capacity hast to be higher than a predefined 

threshold. Since in this project no such constraint exists as the algorithm has to 

decide on different attributes this method is not suited for the problem. As well 

the algorithm is not able to process a high number of samples, which is also a 

requirement that has to be met in this project. It should be mentioned that the 

constraint could also be chosen to limit the inner variance inside a cluster below 

a predefined value, but since defining such a highest variance is rather subjective 

this method is also not applicable to the problem of this project. 

• Density-based & grid-based methods: Generally, these algorithms receive as an 

input a number of neighbors that a data sample has to have within a predefined 

distance in order to become a core object. If two core objects are within the dis-

tance defined before, they form a conjoint cluster. Every sample that is not within 

the distance form a core object is treated as noise. This would mean in this project 

to treat some regions that are highly different from all other data samples as out-

liers and, therefore, treat those as single clusters. Even though the last is not 

necessarily a disadvantage but could also be desired, the number of neighbors 

and the distance are rather subjective and make the method not suitable for the 

project. Furthermore, the algorithm is not suitable for high amounts of attributes 

of the samples. In case time series of wind, solar, load, etc. are used as attribute 

density-based methods are not suitable. Grid-based methods can handle high 

numbers of attributes better but have the other disadvantages of  density-based 

methods and, therefore, are not suited either.  

• Hierarchical Clustering: Output of hierarchical clustering is a hierarchy of how to 

combine the different data objects. The agglomerative clustering starts with each 

sample as an own cluster and combines them depending of a distance criterion, 

called linkage, until all samples are within one cluster. Afterwards, the optimal 

number of clusters has to be determined. This method is sensitive to outliers 

which is wanted for the project and a connectivity condition cannot only be easily 

implemented but also reduces the computing complexity of initially O(n²). The 



 

drawbacks of this method are that once two data sample have been assigned to 

one cluster there is reassignment of the data objects to other clusters. Neverthe-

less, there are some methods that can be used to overcome this disadvantage. 

Because of those advantages and disadvantages the hierarchical clustering is chosen 

for this project since it appears to be the most suited for the given problem.   

 

3. Definition of the project 
 

The goal of this work is to develop a methodology to automatically identify a suitable 

number of regions inside a country´s energy system which can be used for region-based 

energy system modeling. On the one hand, the loss of data inside those regions should 

be as low as possible. On the other hand, the number of regions should be in a reason-

able range and reflect the complexity of the country. Another important factor is the elec-

trical grid. Since the regions themselves are modeled as single-region models, they 

should have a considerable grid to justify this assumption. The methodology shall im-

prove the significance of the results of an already existing energy system model, capable 

of identifying the cost-optimal decarbonization path by considering the regional differ-

ences. However, computational time and complexity should be kept low.  

 

4. Description of the methodology 
 

The developed methodology requires the following spatially resolved input data: 

1) The smallest administrative regions of a country (municipal level) 

2) Load data divided into private households and commerce, trade, service, and 

industry 

3) Generation capacities based on different technologies 

4) Wind and photovoltaic generation profiles 

5) Grid data derived from OpenStreetMap data 

Using the smallest administrative regions of a country it is assured that one city does not 

end up being divided, i.e. in two clusters, since this might lead to political issues. How-

ever, some smallest regions are not spatially contiguous. Since spatial contiguity of the 



final regions is required to model energy flows between them, those regions that consist 

of multiple not spatially contiguous regions are split. This also leads to the appearance 

of islands in the data set. Those are naturally not connected to other regions and, there-

fore, not spatial contiguous to other regions. Since those islands should not all be seen 

as an own cluster, the algorithm identifies spatially contiguous landmasses within the 

region set and considers only those with an area greater than a specified threshold. All 

other islands are connected to the closest regions if the distance is less than 50km. This 

assumes that islands might be connected to the mainland if they are not too far away 

which would make this unreasonable. The load, generation, and profiles are then aggre-

gated at their corresponding smallest regions. Since bigger regions tend to accumulate 

more data points, the load and generation data are also normalized by the area of the 

corresponding region. 

To compare the different regions in a clustering the data have to be normalized. How-

ever, since there are more data corresponding to the wind and photovoltaic profiles, the 

data cannot be normalized to the range of zero to one. Doing so would lead the algorithm 

to consider each time step in the time series as important as the total load for one year. 

Therefore, the normalized values are also divided by their corresponding number of ele-

ments, i.e. 8760 for yearly time series.  

Using a spatial hierarchical clustering the smallest base regions are grouped together. 

Using the elbow method [6] the optimal number of clusters is found. However, the hier-

archical clustering alone tends to create a few very big clusters and some single region 

clusters. To improve the results a post-processing algorithm is applied [7]. Considering 

shifting each region into another spatially contiguous cluster the algorithm identifies 

changes that improve the result of the elbow curve. This process, however, has the 

drawback that only one region is shifted at a time. Therefore, this work proposes a 

method to shift multiple regions into spatially contiguous clusters if a path in one cluster 

can be identified that connects regions that are not spatially connected to more than one 

other region in the cluster. In doing so, the results of the clustering are further improved.  

Using the identified regions and the OpenStreetMap grid data the electrical grid of the 

country is synthesized. Due to the occurrences of inconsistency of those data, a pre-

processing is done applying standard rules. For example, lines with frequencies different 

than 50 or 60 Hertz are dropped from the data set, or the number of electrical circuits 

that one line carries is calculated to be a multiple of three since some user might also 



 

count the earthing cable. The transmission capacities between the different regions are 

then calculated using standard values depending on the voltage levels [8], [9]. 

Using the identified regions and their corresponding transmission capacities the energy 

system modeling is done using an already existing optimizer [10]. The complete workflow 

is depicted in the figure 1.  

 
Figure 1: Workflow of the developed methodology 

 

5. Results  
 

Applying the developed methodology to the use case of South Africa twelve clusters are 

identified and presented in figure 2. 

 

Figure 2: Result of the spatial clustering of South Africa 

 



As can be seen, some clusters are single-regions around big cities of South Africa that 

are described by high load densities (clusters 1, 2, 3, and 6). Furthermore, different 

coastal areas are identified which entail high potentials for wind generation (clusters 5, 

7, 9, and 10) but different load values. Cluster 12, on the other hand, is described by low 

load density but high photovoltaic generation capacities and potential.  

Considering the electrical grid, results of the methodology are presented in figure 3. 

Where on the left the different lines are depicted and, on the right, the resulting trans-

mission capacities between the regions.  

 

 

Figure 3: Results of the electrical grid synthesized by OpenStreetMap data. On the left the different 
voltage levels of the grid. On the right the resulting transmission capacities 

 

As can be seen, the transmission capacities are located mainly from the North-East of 

the country – where high capacities of coal power plants are located – towards the South-

West and South-East of the country. Due to different load centers being in the South-

West (mainly Cape Town) this seems logical.  

When modeling the energy system build on the identified regions and transmission ca-

pacities, the cost-optimal transformation pathway is calculated. The following figure com-

pares the generation mix in 2015 and 2050, assuming a decarbonization of 80%. 

 



 

 

Figure 4: Generation capacities of South Africa in 2015 and 2050 

 

As shown, the generation mix of primarily coal-based generation switches to a mix of 

mostly wind and photovoltaic based generation. In addition, a considerable amount of 

gas power plants is installed.  

Comparing these results to a single-region model the following figure shows that a single-

region model might evaluate poorly the potentials of renewables which leads to higher 

installed capacities. Figure 5 presents the comparison. On the other hand, comparing 

the total costs of the transformation pathways the single region model does not account 

for 16 billion € that are related to the electrical grid. The percentages on the right of the 

columns indicate the ratio of the costs of the respective technology to the total costs.  

 

0

50

100

150

200

250

2015 2050

In
st

a
ll

e
d

 c
a

p
a

ci
ty

 [
G

W
]

Year

Wind onshore

Waste

Thermal Storage

Photovoltaic

Oil

Nuclear

Hydro

Gas

Coal

Battery Li-Ion



 

Figure 5: Comparison of the installed capacities in 2050 using either a single-region model or the 12 
identified clusters. The percentages on the right indicate the ratio of the costs of each generation tech-

nology to the total costs 

 
 

6. Conclusions 
 

In this work, a methodology has been developed that identifies a suitable number of 

regions inside a country´s energy system model. The corresponding electrical grid is 

synthesized using OpenStreetMap data and the corresponding transmission capacities 

are calculated using standard values depending on the voltage level of the respective 

line. Optimizing the decarbonization pathway towards a specified goal, the region-based 

modeling improves the insight that can be obtained and the significance of the calculated 

results. It also indicates which regions are of special importance to the energy system 

and where to install additional generation capacities in which amount. However, the num-

ber of regions might be arbitrary due to a set limit that has been implemented to keep 

the computational complexity and running time low. The developed methodology also 

might not apply to a high number of regions (multiple thousands) due to the high compu-

tation time of the clustering post-processing. Possible further developments are  

1) The specifications of high voltage cables and high voltage direct current cables 

which are currently considered to be standard overhead lines 

2) Considering the available space inside a region which might be limited 

0.98% 0.32%
10.46% 9.97%

24.37% 23.52%

0.49% 0.47%

18.44%
13.79%

2.45%

2.67%

1.83%

1.17%

39.86%

32.15%

0

50

100

150

200

250

Single-region 12 Clusters

In
st

a
ll

e
d

 c
a

p
a

ci
ti

e
s 

[G
W

]Wind onshore

Waste

Thermal Storage

Photovoltaic

Hydro

Gas

Coal

Battery Li-Ion



 

3) Connections to other countries and the possibility of exchange of electrical en-

ergy 

4) Offshore wind generation, either including it in the clustering process or after-

wards 
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RESUMEN DEL PROYECTO 

Se ha desarrollado una metodología basada en el clustering territorial para identificar 

diferentes regiones dentro del sistema energético de un país. Estas regiones se utilizan 

en un modelo de sistema energético para considerar las fluctuaciones regionales y me-

jorar la predicción de futuras vías de transición de la descarbonización.  

Palabras clave: Clustering territorial, modelización de sistemas energéticos, sistema de 
información geográfica (SIG) 

 

1. Introducción 
 

Para cumplir el acuerdo de París [1], limitando el aumento de la temperatura a menos 

de 2°C, preferiblemente 1,5°C, se requiere la descarbonización de sectores diferentes, 

principalmente los de la electricidad, la movilidad, el calor, la industria, los edificios y la 

agricultura [2]. Por ejemplo, en el sector de electricidad habría que instalar tecnologías 

de energía renovable como la eólica, la solar, la hidroeléctrica y la biomasa. También 

habría que reducir la generación convencional como el carbón y el lignito. Por lo tanto, 

una característica de los sistemas energéticos del futuro es su alta proporción de ener-

gía renovable y la generación volátil que éstas acarrean. Por ello, se está investigando 

la transformación de los sistemas energéticos actuales hacia el futuro.  

Los costes son un factor muy importante en esa transición. La modelización de sistemas 

energéticos, especialmente los modelos de optimización, se utilizan para calcular la vía 

más barata hacia un sistema energético descarbonizado. Eso implica calcular qué tec-

nologías se instalan o se apagan y cuándo.  

En la modelización de sistemas energéticos un factor importante que debe considerarse 

es la resolución espacial del modelo [3]. No es factible modelar cada consumidor y 



 

generador conectado a la red eléctrica. Otro enfoque es modelar el sistema energético 

como un punto. Sin embargo, esto puede conducir a la negligencia de factores impor-

tantes con respecto a las diferencias espaciales de demanda, generación y especial-

mente transmisión y distribución de energía. Por ello, un enfoque intermedio consiste en 

modelar el sistema energético basándose en regiones mediante la modelización de sus 

respectivos sistemas energéticos y las interacciones entre ellos [4]. Con respecto a este 

enfoque surge la pregunta de cómo definir dichas regiones. Intuitivamente se pueden 

considerar las provincias de un país como regiones. No obstante, su distribución regio-

nal puede ser poco homogénea en lo que respecta a potenciales para renovables, de-

manda u otros factores importantes para los modelos de sistemas energéticos. Por lo 

tanto, surge la necesidad de un método de regionalización de un país y su sistema ener-

gético. En este contexto, la regionalización se puede definir como la identificación de un 

número pequeño de grupos internamente homogéneos y adyacentes a partir de un gran 

conjunto de objetos espaciales [5]. De esa forma se puede mejorar la validez de la mo-

delización con respecto al modelo de un solo punto.  

 

2. Estado del arte 

Para clasificar regiones distintas dentro de un sistema energético se puede usar el clus-

tering territorial. Existen diferentes tipos de clustering. La adecuación de un clustering 

depende del problema. Por ello, no hay una técnica de clustering que sea superior a 

todas las demás. Por lo tanto, todos los enfoques han de ser considerados y evaluados 

con respecto al problema de este proyecto. Los más comunes son: 

• K-means: Inicialmente se establecen K centroides en el conjunto de datos. Des-

pués se asignan iterativamente los diferentes objetos a los centroides. Aunque 

este método es rápido, las desventajas que presenta lo hacen poco adecuado 

para su aplicación en este proyecto. El resultado depende de la selección de los 

centroides iniciales y por ello se debe ejecutar el algoritmo varias veces para 

identificar un óptimo local del problema. Otro problema es la tendencia del algo-

ritmo K-means a identificar grupos esféricos, lo que no se desea en este pro-

yecto. Sin embargo, la desventaja más problemática es la inclusión de la conti-

güidad espacial de los clústeres, dado que ésta no puede ser forzada en  K-

means. Por ello, se utilizan las coordinados como atributos en el clustering con 



un peso muy alto. No obstante, esto resulta en la reducción de la importancia de 

otros atributos que se quiere usar. 

• Max-p Regions: En este enfoque el clustering está programado como programa 

mixed-integer donde el número óptimo de los clústeres se calcula sujeto a una 

restricción. Esa restricción puede ser, por ejemplo, que la capacidad de genera-

ción solar sea más alta que un valor especificado. No obstante, no existe una 

restricción adecuada para el problema de este proyecto. Se podría usar la va-

rianza de los clústeres, pero definir un valor adecuado puede resultar subjetivo. 

Además, el algoritmo no es apto para un número muy elevado de regiones, ne-

cesarias en este proyecto. 

• Metodologías basadas en la densidad y las mallas: Generalmente, la metodolo-

gía basada en la densidad recibe dos valores: el número de vecinos que debe 

tener un objeto y la distancia máxima a la cual este número mínimo de vecinos 

tiene que estar. Si un objeto tiene suficientes vecinos se trata como un objeto 

central. Si la distancia entre dos objetos centrales es menor que la distancia es-

pecificada, ambos forman un único clúster. Un objeto que se encuentra dema-

siado lejos de un objeto central se trata como ruido y por ello se convierte en un 

clúster individual. Aunque esto no es necesariamente una desventaja el número 

de vecinos y la distancia son valores subjetivos y hacen que el método no sea 

adecuado para el proyecto. Además, algoritmo no es adecuado para grandes 

cantidades de atributos. Por ejemplo, en el caso de las series temporales eólicas 

la metodología basada en densidad no es aplicable. Metodologías basadas en 

las mallas puede utilizar un mayor número de atributos, pero tienen las mismas 

desventajas que la metodología basada en la densidad y por tanto no son ade-

cuadas.  

• Clustering jerárquico: El resultado de este enfoque es una jerarquía indicando 

cómo combinar los diferentes objetos. Se empieza con un clúster para cada ob-

jeto y en cada etapa se une dos clústeres basándose en la similitud de los clús-

teres y de un criterio de conexión. Eso se hace hasta que todos los objetos estén 

en un único clúster. El número óptimo de clústeres se debe identificar en otro 

proceso. Este método es sensible a objetos atípicos, lo que se desea en este 

proyecto y permite incluir una restricción de relativa a la conexión espacial de los 

clústeres. Usando dicha restricción se consigue reducir el tiempo de cálculo de 

este método. La desventaja de este enfoque es que una vez que forman un 



 

clúster, los objetos no pueden cambiar de clúster en otro momento. Es decir, no 

hay una reasignación de los objetos. No obstante, existen formas de vencer esa 

desventaja.  

Debido a las características de los distintos enfoques el clustering jerárquico es selec-

cionado porque aparece como el más adecuado con respecto al problema de este pro-

yecto.  

 

3. Definición del proyecto 
 

El objetivo de este Proyecto es el desarrollo de una metodología para identificar auto-

máticamente el número adecuado de regiones dentro del sistema energético de un país. 

Estas regiones deben ser adecuadas para una modelización de un sistema energético. 

La pérdida de datos debe ser reducida al mínimo. Otro factor importante es la red eléc-

trica. Debido a la modelización de regiones como un punto, dentro de las regiones de-

bería existir una red eléctrica considerable para justificar esa suposición. La metodología 

debe resaltar la importancia de los resultados de la modelización. Para ello se usa un 

modelo existente, capaz de calcular la vía más económica para la transición al sistema 

energético del futuro.   

 

4. Descripción de la metodología  
 

La metodología desarrollada requiere los siguientes datos espaciales: 

1) Las regiones administrativas más pequeñas de un país (nivel municipal)  

2) Los datos de demanda divididos en hogares privados y comercios, servicios y 

industria  

3) Capacidades de generación basadas en las distintas tecnologías  

4) Perfiles de generación eólica y fotovoltaica 

5) Datos de la red de transmisión derivados de OpenStreetMap  

Usando las regiones administrativas más pequeñas de un país se asegura que una ciu-

dad no termine en dos clústeres diferentes, lo que podría causar en cuestiones políticas. 

No obstante, algunas de las regiones más pequeñas no son espacialmente contiguas. 



Debido a la necesidad de clústeres espacialmente conectados para modelar el flujo de 

energía entre ellos, las regiones que consisten en múltiples regiones no contiguas es-

pacialmente se separan. Esto también resulta en la aparición de islas. Éstas no están 

naturalmente conectadas a otras regiones. Cada isla no debería considerarse como un 

clúster único. Por ello, el algoritmo identifica las masas terrestres espacialmente conti-

guas dentro del conjunto de regiones y sólo considera las que tienen una superficie 

superior a un umbral especificado. Todas las demás islas se conectan a las regiones 

más cercanas si la distancia es inferior a 50km. Esto asume que las islas pueden estar 

conectadas al continente si no están demasiados lejos. Los datos de demanda, genera-

ción y los perfiles se agregan a las áreas correspondientes. Sin embargo, regiones más 

grandes tienden a acumular más datos. Por ello, los valores de demanda y generación 

se normalizan al área su región.  

Para comparar las regiones en el proceso de clustering se deben normalizar los datos. 

Sin embargo, debido a la cantidad muy alta de valores que pertenecen a las perfiles 

eólicos y fotovoltaicos los datos no pueden ser normalizados únicamente al rango de 

cero a uno. Por ello, los valores normalizados se dividen por su correspondiente número 

de elementos. Por ejemplo, la serie temporal anual del perfil eólico se divide por 8760.  

La agrupación de las regiones administrativas más pequeñas se realiza por el clustering 

jerárquico. Usando el método del codo [6] se identifica el número óptimo de clústeres. 

No obstante, el clustering jerárquico por sí sola tiene tiende a identificar pocos clústeres 

grandes – uno o dos – y muchos pequeños que consisten en una sola región. Por ello, 

se aplica algoritmo de post-procesamiento [7]. Se considera desplazar de cada región a 

otro clúster espacialmente contiguo. Así se identifican los cambios de regiones a otros 

clústeres que mejoran el resultado de la curva del codo. Este proceso tiene la desventaja 

de sólo considerar el cambio de una sola región a la vez. Por lo tanto, en este proyecto 

se ha desarrollado otro proceso para cambiar múltiples regiones a la vez, mejorando así 

el resultado del clustering.   

Con las regiones identificadas y datos de la red eléctrica de OpenStreetMap, se sintetiza 

la red eléctrica del país. Debido a la inconsistencia de los datos, estos últimos deben 

ser procesados antes de su utilización. Para ello se aplican normas estándar. Por ejem-

plo, cada línea que tiene una frecuencia distinta de 50 o 60 Hz se elimina de conjunto 

de datos. Las capacidades de transmisión se calculan utilizando valores estándar de-

pendiendo de los nivel de tensión [8], [9]. 



 

Utilizando las regiones identificadas y sus correspondientes capacidades de transmi-

sión, se realiza la modelización del sistema energético [10]. La figura 1 presenta el pro-

ceso completo. 

 
Figura 1: Proceso completo del método desarrollado 

 

6) Resultados 
 

Aplicando la metodología desarrollada al caso de Sudáfrica, se identifican doce clúste-

res presentados en la figura 2.  

 

Figura 2: Resultados del clustering territorial de Sudáfrica 

 

Como puede observarse, algunos clústeres consisten en una sola región en torno a las 

grandes ciudades de Sudáfrica. Se caracterizan por una alta densidad de demanda 



(clústeres 1, 2, 3 y 6). Además, se han identificado algunas áreas costeras con poten-

ciales altos para la generación eólica pero diferentes densidades de demanda (clústeres 

5, 7, 9 y 10). El clúster 12 tiene una densidad de demanda muy baja y una capacidad y 

un potencial de generación fotovoltaica altos.  

La figura 3 presenta los resultados de la red eléctrica con la metodología desarrollada. 

A la izquierda se representa la red en función de los diferentes niveles de tensión y a la 

derecha las correspondientes capacidades de transmisión.  

 

 

Figura 3: Resultados de la sintetización de la red eléctrica usando datos de OpenStreetMap. A la iz-
quierda se representan las líneas de transmisión en función de los niveles de tensión. A la derecha se 

presentan las capacidades de transmisión. 

 

Como se puede ver las líneas de transmisión van principalmente del noreste hacia el 

sur y suroeste del país. Esto parece razonable, dado que las centrales de carbón se 

encuentran al noreste del país y las demandas al suroeste (principalmente en Ciudad 

del Cabo).  

Al modelar el sistema energético, a partir de las regiones identificadas y las capacidades 

entre estas, se calcula la vía de transmisión óptima desde un punto de vista económico 

hacia el futuro. La figura 4 presenta la mezcla de generación en 2015 y 2050 asumiendo 

una descarbonización de 80%.   

 



 

 

Figure 4: Capacidades de generación de Sudáfrica en 2015 y 2050 

 

Como se muestra, la mezcla de generación en 2015 está principalmente basada en 

carbón. En 2050 se cambia a una mezcla de generación eólica, fotovoltaica y gas.  

La figura 5 presenta la comparación de los resultados del modelo basado en regiones y 

los resultados de un modelo de un punto. Esta comparación indica que el modelo de un 

punto no considera los potenciales de generación renovable correctamente. Al comparar 

el coste de la transición del sistema, se ve que el modelo de un punto no considera 

costes de 16 billones € relacionados a la red eléctrica. Los porcentajes que figuran a la 

derecha de las columnas indican la relación entre los costos de la tecnología respectiva 

y los costos totales.  
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Figura 5: Comparación de la mezcla de generación en 2050 en el modelo de un punto y el modelo 
basado en regiones. Los porcentajes indican la ratio a los costes totales.  

 
 
7) Conclusiones 

 

En este proyecto se ha desarrollado una metodología que identifica un número ade-

cuado de regiones dentro de un sistema energético. La red eléctrica correspondiente 

está sintetizada usando datos de OpenStreetMap y las correspondientes capacidades 

de transmisión de energía se calculan utilizando valores estándar en función del nivel 

de tensión. La optimización de la transición hacia la descarbonización del sistema ha 

mejorado usando las regiones identificadas. Esta metodología también regiones que 

son de especial importancia para el sistema energético del futuro y dónde deberían ins-

talarse qué capacidades de las diferentes tecnologías. No obstante, el número de regio-

nes puede ser arbitrario debido a un límite que se ha implementado para reducir el 

tiempo de cálculo. La metodología desarrollada tampoco se aplica a grandes números 

de regiones (varios miles) debido al elevado tiempo de cálculo del postprocesamiento. 

Posibles desarrollos adicionales en el futuro incluyen: 

1) La especificación de cables de alto voltaje y corriente directa que todavía es-

tán simuladas como líneas de corriente alterna 

2) Consideración del área disponible para generación renovable 

3) Conexiones a otros países con la posibilidad de transferir energía 
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4) La generación eólica offshore, incluyéndola en el proceso de clustering o 

después  
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Introduction 1 

1 Introduction 

Meeting the Paris agreement [1], limiting the increase of average temperature to less 

than 2°C, preferably 1.5°C, requires drastic changes in different sectors. One of the main 

drivers for climate change is carbon dioxide (CO2) emissions. Therefore, decreasing 

emissions is one of the main objectives which the participating countries have. This re-

quires a change of infrastructure in different sectors, mainly electricity, mobility, heat, 

industry, buildings, and agriculture [2]. Each of those must reduce its emissions. For 

example, in the electricity sector investments in renewable energy technologies, like 

wind, solar, hydro, and biomass are necessary. On the other hand, the generation by 

conventional power plant technologies using coal or lignite which are the technologies 

with the highest emissions must be reduced. Therefore, one characteristic of future en-

ergy systems is their high share of renewable energy and the volatile generation that 

they entail. Because of this, the transformation of current energy systems towards the 

future is under investigation.  

Besides the investigation of the stability and sustainability of the system, costs are an-

other important factor. Energy system modeling, especially optimization models, are 

used to calculate the cost-optimal pathway towards a decarbonized future energy sys-

tem. In such decarbonization pathways the model calculates which capacities of given 

technologies are installed or shut down under the constraint of being able to meet the 

specified demand of the energy system and e.g. limits of CO2 emissions.  

 

1.1 Motivation 

In energy system modeling one important factor that has to be considered is the spatial 

resolution of the model [3]. Optimally each consumer and generator would be repre-

sented by one point in space, with the electrical grid connecting them. This approach 

might be applied to very small cities or countries. However, for most energy systems this 

results in a number of variables which is too high for an optimality solver to handle. An-

other approach is to model the energy system of a country as one point, without consid-

ering the electrical grid and interactions inside the country. However, this might lead to 

the neglect of important factors regarding the spatial differences of load, generation and 

especially transmission and distribution of energy. Because of that an in-between-
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approach of the two first mentioned approaches is to model the energy system based on 

regions by modeling their respective energy systems and the interactions between them 

[4]. Considering this approach, the question emerges on how to define those regions. 

Intuitively, one might consider the different states of a country as regions. However, this 

may not be reasonable, since state borders are mostly defined by historical and political 

reasons. Their regional distribution can be very inhomogeneous regarding renewable 

potentials, load, or other factors that are important for energy system models. Therefore, 

the need for a so-called regionalization method rises. In this context, regionalization can 

be defined as the identification of a small number of groups of internally homogeneous 

and spatially contiguous regions out of a large set of spatial objects [5]. Using such ho-

mogenous regions, an optimality solver can model energy systems taking into consider-

ation the electrical grid between them. This way the validity of energy system modeling 

might be further improved in comparison to single-region models. Furthermore, the sig-

nificance of the results improves in comparison to the modeling of administrative levels 

due to the consideration of regional occurrences. 

 

1.2 Goals and Structure of the Thesis 

The goal of this work is to develop a methodology to automatically identify a suitable 

number of regions inside a country´s energy system which can be used for region-based 

energy system modeling. On the one hand, the loss of data inside those regions should 

be as low as possible. On the other hand, the number of regions should be in a reason-

able range and reflect the complexity of the country. Another important factor is the elec-

trical grid. Since the regions themselves are modeled as single-region models, they 

should have a considerable grid to justify this assumption. The methodology shall im-

prove the significance of the results of an already existing energy system model, capable 

of identifying the cost-optimal decarbonization path by considering the regional differ-

ences. On the other hand, computational time and complexity should be kept low.  

This thesis is structured as follows. Chapter 2 describes the theoretical basics used in 

the developed methodology, starting with the energy system model approach used. For 

the representation of the interconnection between the regions, the basic theory of Net 

Transport Capacity models is described. Afterwards, different clustering approaches that 

can be suitable for the regionalization problem and different metrics to evaluate their 
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results are explained. Chapter 3 presents the developed methodology. Starting with an 

overview of the whole framework, it describes the individual steps in detail. In chapter 4 

two use cases show the results which the developed methodology achieves, including a 

sensitivity analysis of the input data. After the presentation of the cases, a discussion 

addresses whether the obtained results suit the purpose of this work. Chapter 5 con-

cludes and provides an outlook on possible future developments.   
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2 Theoretical Basics 

This chapter presents and explains the theoretical basics needed for the developed 

methodology. Firstly, the general aspects of energy system modeling are described. The 

second section describes Net Transfer Capacity (NTC) models later used for the repre-

sentation of the electrical grid. Thirdly, different clustering approaches that might be 

suited for the regionalization problem of this work are explained. The last subsection 

describes different metrics, called Clustering Validity Indicators (CVI), used to evaluate 

the clustering results. 

 

2.1 Energy system modeling 

This section covers the theoretical basics that are used in energy system modeling. 

When analyzing supply and demand of energy, energy system models are considerable 

options. They can provide deep insight and currently receive increased relevance in cli-

mate policy, economic development concerns and energy security [4]. Furthermore, they 

can forecast future energy systems and support a government in its decision-making 

process [3]. Generally, energy system modeling is divided into two approaches “bottom-

up” and “top-down” [11]. The bottom-up approach focuses on the technologies whereas 

top-down approaches represent a macroeconomic approach. Besides other existing 

models, this work focuses on a sub-group of the bottom-up approach called optimization 

models, since they are often used for country-level modeling. 

 

2.1.1 Optimization models 

Optimization models are a subclass of the bottom-up approach used in energy system 

modeling. The focus on technological detail is the main characteristic of bottom-up en-

ergy system modeling. However, this technological detail can make them incompatible 

with very long periods of observation. If the corresponding technologies have short re-

investments cycles - less than 20 years due to developments, cost reductions or other 

improvements of the considered technologies - it might lead to wrong conclusions [11]. 

Important inputs for those models include:  
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• Available commodities (physical and electrical) 

• Import, export and conversion processes of those commodities 

• Different sectors (energy, heat, mobility) 

• Currently installed capacities of different generation technologies 

• Technology conversion and storage efficiencies 

• Resulting emissions 

• Load patterns 

• Renewable profiles and potentials 

• Operational expenditure, capital expenditure and lifetime of the equipment 

Optimization models calculate the cost-optimal mix of generation technologies in the fu-

ture, minimizing the total costs of the energy system´s operational and investment costs 

towards a specified goal, e.g. decarbonization of 100%. These approaches can be based 

on Linear Programs (LP), Mixed-Integer Linear Programs (MILP) or even Non-Linear 

Programs (NLP) [3]. Further details, such as the maximum installed capacities or the 

maximum yearly emissions, can be implemented as constraints to the optimization prob-

lem. Fixed input parameters of the optimization methods usually include the prices, effi-

ciencies, etc. of the technologies and the total energy demand of the modeled energy 

system [11].  

Optimization models are therefore suitable to calculate the total costs of an energy sys-

tem. They can also identify the cheapest mix of technologies considering investment 

decisions, e.g. for the transformation of the energy system from a primarily conventional 

technology-based to a sustainable system. Furthermore, bottom-up models can reflect 

technologies that work between sectors like combined heat and power [3].  

 

2.1.2 Regional modeling 

Important factors of modeling an energy system are the spatial and temporal resolution. 

Increasing either of those resolutions leads to an increase of complexity and, therefore, 

computation time [3]. Nevertheless, this is also a crucial factor depending on the re-

search question, i.e. questions regarding the stability should have a higher temporal res-

olution than questions regarding future investments. This work, however, focuses pri-

marily on spatial resolution. 
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Modeling the energy system using a spatial resolution is important for considering the 

spatial distribution and temporal fluctuations inside those regions regarding renewables, 

load, and generation. Considering the energy system of a country, neglecting different 

regional properties, might lead to an overestimation of the spatial availability of renewa-

ble power generation within one or more regions [4]. This is especially crucial regarding 

decarbonized future energy systems with a high share of renewables. Spatial models, 

on the other hand, require infrastructure to model interactions between the regions. This 

infrastructure, in the case of energy system modeling, can be the electrical grid. 

The important trade-off that has to be considered is spatial and temporal resolution 

against computation time and complexity. While the highest spatial resolution would be 

to consider each consumer and each producer in space as one point, doing so would 

lead to an unfeasible problem or unreasonably long computation times [3]. Therefore, 

the need for a methodology that aggregates the spatial points into bigger regions 

emerges. This increases the spatial resolution compared to country-level modeling while 

ensuring to solve the problem in a reasonable amount of time. Using the electrical grid 

as interconnection the transport of electricity can be modeled. Considering this, it be-

comes clear which way the power flows have to go and, therefore, between which re-

gions additional transmission capacities need to be installed considering the future en-

ergy system. The next section presents how the electrical grid can be included. Different 

approaches of how to identify regions within a country are explained in 2.3.  

 

2.2 Net transfer capacity models 

An important question that has to be answered regarding the regional modeling of an 

energy system is how those regions can interact with each other. This can be done by 

considering the electrical grid as an interconnection between the regions [12]. Often-

used examples for this are NTC models between countries [13]. In those cases, different 

countries are modeled, and their interconnecting lines are seen as the corresponding 

connections between the different countries. Regarding NTC models, following distinc-

tions between capacities have been agreed on by the European Transmission System 

Operators (TSO) [13]: 
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• Net Transfer Capacity 

• Available Transfer Capacity (ATC) 

• Transmission Reliability Margin (TRM) 

• Notified Transmission Flow (NTF) 

• Total Transfer Capacity (TTC) 

The TTC is the maximum transferable capacity between two systems, which does not 

violate any system security constraint. Those constraints can either be thermal limits of 

the transmission lines, voltage limits or stability limits [13]. The maximum transferable 

capacity however depends on the state of the two systems, i.e. the generation and load 

situation in the specific moment.  

(2.1) and (2.2) describe the relations between NTC, TTC and TRM and ATC, NTC, and 

NTF, respectively 𝑁𝑇𝐶 = 𝑇𝑇𝐶 − 𝑇𝑅𝑀 (2.1) 𝐴𝑇𝐶 = 𝑁𝑇𝐶 − 𝑁𝑇𝐹 (2.2) 

Because the TTC depends on the load and generation situation the TSOs use the TRM 

to cover uncertainties of power flows that result from imperfect information and unex-

pected real-time events. This value can be evaluated by past experiences or statistical 

methods [13]. One way is to set the NTC to a suitable fraction of the theoretically possible 

capacity [14]. Therefore, if in an N-0 case, i.e. all equipment is available, one line utilizes 

70% of its maximum capacity, it is expected to be overloaded in the N-1 case. This 

means the line will fail if another equipment fails and is not available anymore. Therefore, 

the NTC can be seen as the expected maximum power flow that can go from one system 

into another, which does not violate any system security constraint. However, it has to 

be kept in mind that the NTC from region A to region B is not necessarily equal to the 

NTC from B to A, since it depends on the current system load and generation situation 

[13].  

The NTF, therefore, describes the part of the NTC that, in a particular moment, is already 

assigned to one or more market participants by transfer contracts. The ATC, on the other 

hand, is the part of the NTC that is still available for market participants.  
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2.3 Spatial clustering 

Spatial Clustering is investigated as an unsupervised method of machine learning used 

for classification [15] and in the fields of spatial data mining [16]. Many different ap-

proaches exist in the literature. Nevertheless, none has been found optimal for all kinds 

of clustering problems [17]. Therefore, there is no generally optimal clustering algorithm 

available and choosing the clustering algorithm highly depends on the specific problem 

[15]. In general, clustering a data set of n data points should result in a number of k 

Clusters, k<<n, grouping this data set. The objectives are to minimize the sum of the 

intra-cluster distances, i.e. the dissimilarity of the data points inside a cluster, and to 

maximize the sum of the inter-cluster distance, i.e. the similarity between two clusters. 

The intra-cluster distance can be formulated as  

∑ √∑(𝑥𝑖 −  𝑥̅𝑐,𝑖)2𝑖 ∈ 𝐼𝑥 ∈ 𝑐  
(2.3) 

Where c is one of the K clusters, x is a data point and member of cluster c, I are the 

attributes of member x and 𝑥𝑐̅̅̅ is the centroid of cluster c, which attributes are the mean 

values of the corresponding attributes of all members of c. Therefore, one objective is to 

minimize the sum of the intra-cluster distance over all clusters. The inter-cluster distance, 

on the other hand, is the distance between two cluster centroids. A clustering algorithm 

should maximize this distance since similar clusters are not desirable.  As shown in (2.3), 

the Euclidean distance is used. Nevertheless, any other form of distance measure can 

be applied as well. 

Choosing an appropriate clustering algorithm strongly depends on the problem that it is 

applied to and on the results that are desired. Hence, only because one approach is 

suited for a specific problem it does not necessarily perform well on another kind of prob-

lem. Apart from traditional clustering [18], different subgroups can be categorized. Ex-

amples are the clustering of time series data [19], spatial clustering [15] [17], and spatio-

time clustering [20]. Since the regionalization problem requires spatial contiguity of the 

identified clusters, spatial clustering has to be applied. The basic principles, however, 

are the same.  

Spatial clustering can be categorized into different approaches. Some of the most widely 

used are partitioning methods, hierarchical clustering, density-based methods, grid-
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based methods, and the max-p regions algorithm. Different spatial clustering approaches 

have been used in different thematic fields, e.g. image processing, genetics, social sci-

ence, earth science, public policy and natural resources management [21], [22], [23]. 

Even though the previously mentioned approaches assign each data point to one and 

only one cluster other approaches have been made [24]. Since in energy system mod-

eling, however, each data point should belong to only one cluster, those approaches are 

not further considered. In the following, the different approaches are explained and their 

suitability for the regionalization problem is discussed. 

 

2.3.1 Partitioning methods 

Partitioning methods are widely used in the literature. This is mainly due to its simplicity 

and fast performance. Examples of partitioning methods are K-means, Expectation-Max-

imization, and K-medoids. K-means is one of the most used clustering algorithms in dif-

ferent applications since it is very fast. Its time complexity is O(nkl) [25], n being the 

number of data points, k the number of clusters and l the number of iterations. In the 

following, K-means is explained to show the basic principles of partitioning methods. 

The K-means algorithm tries to minimize a linear objective function which usually is the 

sum of the intra-cluster distance (2.3) over all clusters, but can also differ. As input, the 

algorithm expects the number of clusters, K, the user wants to obtain by clustering. 

Hence, the algorithm does not identify the optimal number of clusters. This number has 

to be obtained by other means, for example by considering clustering validity indicators, 

which are discussed in section 2.4. With the information on the number of clusters that 

is to be obtained the algorithm sets K so-called centroids in the data space, which each 

represent one cluster. Then it performs iterations of the following steps. First, each data 

point is assigned to the closest centroid. After that, the cluster centroids are recalculated 

as the mean of all data points belonging to the cluster. The last step is calculating the 

value of the objective function.  

The algorithm terminates when either the change in the objective function is below a 

given threshold or a maximum number of iterations is reached. The algorithm is pre-

sented in Figure 2.1.   
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Figure 2.1: K-means algorithm 

 

A general advantage of the K-means algorithm is its simplicity. Furthermore, it is very 

fast and likely to find very dense clusters. Nevertheless, its results are highly dependent 

on the initialized cluster centroids. There are methods to improve the setting of initial 

cluster centroid, such as K-means++ [26], but the results stay dependent on random 

inputs. This mostly leads to the solution that the K-means algorithm is executed various 

times and the result with the lowest sum of intra-cluster-distance is chosen as the opti-

mum. This indicates that the algorithm finds local optima, but it is not assured to find the 

global optimum. Another problem with the K-means algorithm is its tendency to identify 

spherical clusters of the same size [19]. In the case of the regionalization problem, this 

is not necessarily intended since there might be regions with similar attributes but result-

ing in different sizes and forms, e.g. coast or deserts. Furthermore, K-means is not com-

patible with a spatial contiguity constraint. Therefore, often the spatial coordinates are 
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used as attributes with a higher weight than the other attributes so that only spatial con-

tingent regions are grouped. This might lead to a distortion in the cluster results since 

the other attributes are weighted less.  

Tobler´s first rule of geospatial analysis says that points close to each other tend to be 

alike [27]. Although this is certainly true in cases of wind and solar potential, considering 

load distribution in urban areas, one region may be very distinct from its spatial neigh-

bors. 

Some examples where K-means performed spatial clustering are to perform denoising 

in image processing [22], and as a first step process in the regionalization for Europe 

considering different input data [28]. 

 

2.3.2 Hierarchical clustering 

Hierarchical clustering is another approach that comes from standard clustering. It can 

be divided into two approaches agglomerative and divisive. In the agglomerative ap-

proach, the algorithm starts by assigning each of the n data points to an own cluster i.e. 

it starts with n clusters. Afterwards, the two most similar clusters are merged. This pro-

cedure is done until only one cluster is left, i.e. after step m, there are n-m clusters left. 

This way the output of the hierarchical clustering approach is a hierarchy indicating which 

regions should be grouped to obtain a certain number of clusters. This hierarchical struc-

ture can be depicted in so-called dendrograms. An example is presented in Figure 2.2. 

In this figure, the vertical axis represents the distance between two clusters, whereas on 

the horizontal axis the clusters are represented. In this example the clusters 6 and 7 are 

very similar, hence the distance between them is small. Due to this similarity, those two 

are merged into one new cluster. Afterwards, the clusters are merged until all regions 

are in one cluster. Like K-means, the algorithm does not calculate an optimal number of 

clusters. The optimal number of clusters can be found by using CVIs, which are de-

scribed in 2.4. 

The divisive approach works the opposite way. Starting with one cluster containing all 

data points the cluster is divided into sub-clusters until there is one cluster for each data 

point or a given number of clusters has been obtained. This can be done for example by 

optimum cuts of a minimum spanning tree [15]. Even though divisive clustering can ob-

tain better results than the agglomerative approach, in the following it is not considered, 



12 Theoretical Basics 

because it usually only takes into account the distances between two adjacent regions 

but not the other regions within the same cluster. 

 

 

Figure 2.2: Example of agglomerative hierarchical clustering dendrogram 

 

Two important factors have to be considered when using the agglomerative hierarchical 

clustering: the linkage criterion and the affinity. The latter describes which distance metric 

is used to calculate the distance between two data points. Euclidean and Manhattan or 

Cityblock distance are examples [18]. The linkage criterion, on the other hand, describes 

the distance between two clusters A and B that contain certain numbers of data points 

nA and nB, respectively. The most common approaches for the linkage criterion are [10]: 

• Single-linkage: In the single-linkage, the distance between two clusters is the 

minimum distance of two data points belonging to the two different clusters. Math-

ematically it can be expressed as: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴, 𝐵) = min(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦)) ∀ 𝑥 ∈ 𝐴, ∀ 𝑦 ∈ 𝐵 (2.4) 

• Complete-linkage: In the complete-linkage, the distance between two clusters is 

the maximum distance of two data points belonging to the two different clusters. 

The equation can be expressed as: 
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• Average-linkage: The average-linkage defines the distance between two clusters 

as the average distance between all data points belonging to those two clusters. 

It is calculated as: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴, 𝐵) =  ∑ ∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦)𝑦∈𝐵𝑥∈𝐴 𝑛𝐴 ∗  𝑛𝐵  
(2.6) 

• Centroid-linkage: The centroid linkage does not compare the data points as they 

are but the centroids of the clusters, which are calculated as the mean of all the 

data points in all attributes in a cluster: 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴, 𝐵) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥̅, 𝑦̅) (2.7) 

• Ward´s method: Instead of defining a distance between two clusters, in each 

merge step, it is considered which merge results in the lowest increase in intra-

cluster distance. When finding this minimal merge combination, it is applied to 

the clusters. This linkage criterion, however, is only defined for the Euclidean 

distance. 

If spatial contiguity is considered within the hierarchical clustering it can be achieved via 

a contiguity constraint, i.e. only two clusters that are spatial contiguous are considered 

for the next merge. This reduces the computational complexity and computation time of 

the hierarchical clustering without the contiguity constraint of O(n²) since fewer combina-

tions of merges exist. There are typically two ways to handle the spatial contiguity, first-

order or full-order constraints [29]. In the first approach, the distance between two clus-

ters is defined using only the regions that are spatially contiguous between those two 

clusters. On the other hand, the full-order constraint considers all regions belonging to 

the clusters when calculating the distance. Not including the Ward´s method, the full-

order constraint most of the time achieves better results [29].  

One disadvantage of this approach is that after two clusters are merged, there is no 

reassignment of the different data points to other clusters like e.g. in the K-means algo-

rithm. This might lead to non-optimal results and therefore shows the hierarchical clus-

tering is a heuristic approach. Nevertheless, a greedy optimization algorithm, called fine-
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tuning, can reassign regions into other clusters [7]. In the algorithm it is considered to 

shift a region belonging to one cluster in another cluster that is spatially contiguous to 

that region. Afterwards, it is observed whether the result improves the starting solution 

of the hierarchical clustering. This way possible sets of changes are identified which are 

applied, if improving the result. For a detailed description of the metrics indicating 

whether a clustering result improved see 2.4. Figure 2.3 presents the algorithm. 

As an input, the fine-tuning algorithm receives an already clustered set of regions, and a 

criterion to evaluate the clustering results. It also creates a new attribute of the regions 

called “moved”, which indicates whether the region has been moved already trying to 

improve the given criterion. This attribute is set to “False” for each region at the beginning 

of the algorithm. 

Firstly, it is checked which regions can be moved without violating the spatial contiguity 

of the clusters. This means a region cannot be moved if by its removal the former cluster 

has to be split into two clusters, because it would not be spatially contiguous anymore 

without the moving region. With those candidates, it is checked which change of all pos-

sible changes to another spatially contiguous cluster improves the criterion the most or 

– in case of no improvement – worsens it the least. This best change is applied, and the 

moved attribute of that region is set “True”. If all potentially movable regions have been 

changed already the algorithm is terminated.  

Afterwards, the best sequence of changes is applied to the clustering result. If the value 

of the criterion stays the same or deteriorates, the algorithm is terminated. Otherwise, 

the moved attribute of the regions is reset and the next cycle of fine-tuning with the re-

cently identified clusters is started. The problem with the proposed method is its com-

plexity of O(n²rd) with n being the number of regions r being the number of iterations of 

the fine-tuning and d the number of attributes. Therefore, this method might not be suited 

for big data sets. 

Another drawback of the hierarchical clustering is its sensitivity to outliers. In the region-

alization problem, this can lead to the formation of small regions that are kept as single 

clusters while other clusters expand very fast. The second behavior is also called “rich 

getting richer” and is of especial importance when considering a contiguity constraint and 

most common when using single-linkage [30]. 
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Figure 2.3: Fine-tuning for hierarchical clustering 

 

Regarding spatial clustering, hierarchical clustering has been used e.g. as a second step 

clustering to identify ecological regions [31] and to define seven climate zones in turkey 

using the Ward´s method, comparing it to other linkage criteria [32]. It has been used for 

the regionalization of forest patterns in the United States, also comparing it to the k-

means algorithm without spatial contiguity constraint [33]. However, no strict contiguity 

constraint was implemented, which lead to scattered clusters. 

 

2.3.3 Density-based methods 

As described before, partitioning methods use the distance between data points to iden-

tify clusters. The density-based methods instead use the density of data points to identify 

clusters of high-density occurrence and outliers as noise. One common density-based 
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method used is DBSCAN [34]. As input arguments, it needs ε, a distance threshold by 

which it is determined whether two data points can be in the same cluster, and a thresh-

old of a minimum number of points MinPts which must be within the ε-distance to be not 

seen as noise. The algorithm identifies the clusters by identifying so-called core objects. 

Those are data points in which, within their ε-distance, at least MinPts other data points 

can be found. The algorithm follows four basic rules [15]: 

1. A data point can only belong to one cluster and only one which has a core object 

within the ε range of the data point. 

2. Two core objects which distance is at most ε form a conjoint cluster. 

3. If a non-core object is within the ε distance of two core objects which do not be-

long to the same cluster the data point must belong to only one cluster. 

4. A data point that is further away than ε to any core object is considered noise. 

An example of how the DBSCAN algorithm performs is shown in Figure 2.4 with MinPts 

equals three and a given ε distance threshold. 

 

Figure 2.4: Example of the DBSCAN algorithms performance 

 

The blue objects represent core objects while the red represents noise. Cluster C1 con-

sists of two core objects that have 3 neighbors within their ε distance. 

A general drawback of the DBSCAN algorithm is its input parameters. Depending on 

which values for ε and MinPts are chosen the results can change drastically. Therefore, 
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the user´s choice of those input data is crucial for the algorithm. On top of that, the actual 

data points influence the choice of the two threshold values as well, which does not suit 

a generalized methodology. However, some of those inconveniences have been inves-

tigated and improved in different works [35]. 

Another disadvantage is the problem that DBSCAN does not perform well with high di-

mensional data [15], which could be of importance if time series data are considered as 

attributes. 

 

2.3.4 Grid-based methods 

As mentioned before, density-based methods are not suited for high dimensional data 

sets. Grid-based methods offer a better approach regarding those kinds of data sets [15]. 

Commonly used approaches of the grid-based methods are STING (STatistical INfor-

mation Grid) [36] and CLIQUE [37]. Grid-based methods divide the space in a finite num-

ber of cells forming a grid structure used for the clustering and applying the following 

steps [25]: 

1. Definition of a set of grid-cells to divide the data space. 

2. The assignment of the data points to the corresponding grid-cells and calculation 

of the grid-cells´ density. 

3. Neglection of those grid-cells that have a density lower than a user-specified 

threshold value t (CLIQUE) or a hypothesis test with a user-specified confidence 

interval is not met (STING).  

4. Clustering of contiguous grid-cells. 

A general advantage of this method is that it is easy to parallelize and therefore efficient 

[25]. But as in the density-based methods, the grid-based methods rely on user-defined 

threshold values which makes the algorithm susceptible to inaccurate user inputs [15]. 

Another input is the definition of grid-cells. In STING it is done by a hierarchical structure 

in which the resolution is increasing in each layer [15]. But this raises the question of 

when the correct resolution is reached. 
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2.3.5 Max-p regions 

The max-p regions algorithm is a clustering approach using a MILP [38]. The objective 

function consists of two terms, one is the intra-cluster distance which is minimized and 

the other defining the optimal number of clusters. A threshold constraint specifies a con-

dition that has to be met for each cluster of regions, e.g. the solar peak capacity installed 

has to be greater than 1 MW or the conventional generation has to be lower than 3 GW. 

This constraint can be anything alike and is used to determine whether a cluster can 

exist as it is or if regions have to be added to or removed from the cluster to fulfill the 

constraint. This way the algorithm returns an optimal number of K clusters of the former 

regions.  

A drawback of this approach is its high computational complexity of O(n³). Therefore, a 

high number of regions lead to high computing time or even termination of the algorithm 

because of non-feasibility. Nevertheless, different approaches exist trying to decrease 

its complexity [39]. One example of how to do achieve this is to first solve a relaxed 

version of the problem and then add constraints iteratively to ensure the spatial contigu-

ity. 

Another problem is the constraint that has to be set. Setting such a constraint can be 

rather subjective. One possibility is to use the variance in the clusters as such a con-

straint [28], e.g. Setting an upper limit for the variance inside one cluster. Nevertheless, 

setting this threshold also is subjective and may result in problems considering the global 

applicability of the methodology. 

 

2.4 Clustering validity indicators 

CVIs are used to evaluate the performance of the clustering algorithm [40]. They can be 

categorized into two types. The first evaluates the results knowing the true clusters. The 

second one does not need any true labels for the data points, which is the case for the 

regionalization process since it is not known what the optimal clusters are. For those 

algorithms which do not result in an optimal number of clusters, those CVI are often used 

to identify this number. Nevertheless, the optimal number of clusters can also be driven 

by a specific problem. For example, the number of clusters might need to be below a 

given threshold. The general concept of finding the optimal number of clusters usually is 
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to plot the CVI to the number of clusters. Either by visual inspection or other methods, 

the optimal number of clusters can be identified using the resulting curve.  

However, finding the optimal point depends on the chosen CVI, since some indicate good 

results by high scores, whereas others may use a low score to express a well-performed 

clustering. Other methods of how to determine the optimal number of clusters are e.g. a 

comparison of the slope of the CVI of the real problem to other randomly computed clus-

tering approaches. This way the statistical significance of the result can be considered 

[41]. In the next sections, some frequently used CVIs are explained, namely the silhou-

ette coefficient, the Calinski-Harabasz index, the Davies-Bouldin index, and the elbow 

criterion. Nevertheless a variety of other CVIs exist [18] [42] [40]. 

 

2.4.1 Silhouette coefficient 

The silhouette coefficient [43] is a frequently used CVI [44] [45]. The formula to calculate 

the silhouette coefficient s for a single data point is the following: 

𝑠 =  𝑏 − 𝑎max (𝑎, 𝑏) 
(2.8) 

Where a is the mean distance between the data point and all other data points in the 

same cluster and b is the mean distance between this data point and all other data points 

in the nearest cluster. The overall silhouette coefficient is the mean of all silhouette co-

efficients of all data points in the set. The distance can be defined as any kind of distance 

between two data points for example Euclidean distance. 

The advantages of the silhouette coefficient are its boundaries of minus one and one for 

incorrect clustering and optimal clustering, respectively. Scores around zero, on the other 

hand, indicate the existence of similar clusters in the results [30]. This means the desired 

outcome of highly dense and well-separated clusters is indicated by a high score. A 

drawback of this CVI is that it depends on the clustering approach used, i.e. density-

based methods generally result in lower scores than other approaches [30]. In this ap-

proach the optimal number of clusters is the one achieving the highest score. 
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2.4.2 Calinski-Harabasz Index 

The Calinski-Harabasz Index [46], also called Variance Ratio Criterion, is another CVI 

that indicates well-defined clusters with a high score. It is calculated by the ratio between 

the sums of the squared inter- and intra-cluster distances over all clusters [30]: 

𝑠 = 𝑡𝑟(𝐵𝑘)𝑡𝑟(𝑊𝑘) × 𝑛𝐸 − 𝑘𝑘 − 1  
(2.9) 

Where tr(Bk) is the trace of the inter-cluster distance 

𝑊𝑘 = ∑ ∑ (𝑥 − 𝑐𝑞) × (𝑥 − 𝑐𝑞)𝑇𝑥∈𝐶𝑞
𝑘

𝑞=1  
(2.10) 

and tr(Wk) is the trace of the intra-cluster distance 

𝐵𝑘 = ∑ 𝑛𝑞 × (𝑐𝑞 − 𝑐𝐸) × (𝑐𝑞 − 𝑐𝐸)𝑇𝑘
𝑞=1  

(2.11) 

With E being the entire data set of size nE divided into k Clusters, Cq the set of points in 

cluster q, cq the center of cluster q, cE the center of E, and nq the number of points in 

cluster q. Its advantages are its fast computing time and presenting well separated and 

dense clusters with a high value, which is intuitive. The silhouette coefficient depends on 

the clustering approach used, i.e. density-based methods generally result in lower scores 

than other approaches [30]. The optimal number of clusters, therefore, is the one that 

achieves the highest Calinski-Harabasz Index. 

 

2.4.3 Davies-Bouldin Index 

The Davies-Bouldin Index [47] compares the similarity between clusters to evaluate 

whether a clustering performed well. The mathematical formulation of this CVI is: 

𝐷𝐵 = 1𝑘 ∑ max𝑖≠𝑗 𝑅𝑖𝑗𝑘
𝑖=1  

(2.12) 

where  
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𝑅𝑖𝑗 = 𝑠𝑖 + 𝑠𝑗𝑑𝑖𝑗  
(2.13) 

and si and sj are the inter-cluster distances of cluster i and j, respectively, and dij is the 

distance of the cluster centroids of the clusters i and j. This can be seen as a trade-off 

between inter- and intra-cluster distance. But instead of considering all results only the 

maximum values, i.e. close cluster with low inter-cluster distance are used for the final 

score. Furthermore, this implies that, in contrast to the first-mentioned CVIs, the Davies-

Bouldin Index does not relate a high but a low value to a well-performed clustering, with 

zero being the best score possible. This has to be kept in mind when evaluating the 

optimal number of clusters. Although having the same drawback as the first two men-

tioned CVIs, the Davies-Bouldin index is simple to compute [30]. The optimal number of 

clusters is the one achieving the lowest score in the Davies-Bouldin Index. 

 

2.4.4 Elbow method 

The Elbow method [6] is mostly used in K-means but is also applicable to other clustering 

approaches, e.g. hierarchical clustering [7]. The score is the sum of the intra-cluster dis-

tances (2.3) of all clusters. If those scores are plotted against the number of clusters, it 

results in a graphic similar to Figure 2.5.  

Since a lower value represents a better clustering result the optimal point would be the 

number of clusters equal to the number of data points since its intra-cluster distance is 

zero. Therefore, it is not reasonable to choose the lowest value of the score. The curve 

in Figure 2.5 looks similar to a human elbow. In the point where the elbow is, the optimal 

number of clusters is expected. This means the optimal number of clusters corresponds 

to the point where an increase of the number of clusters does not result in a decrease of 

intra-cluster distance that is considered sufficient, i.e. very low compared to the reduction 

of the previous steps. For a smooth curve this corresponds to the point where the second 

derivative is zero. 

However, looking at curves of real clustering results they are not as smooth and might 

contain no point or even multiple points meeting the condition. Identifying this elbow vis-

ually can, therefore, be ambiguous. To automatically identify this point there are different 

methods [48] 
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1. Select the optimal point as the point where the largest decrease occurs. 

2. The point is selected where the largest ratio difference between two points oc-

curs. 

3. The second derivative is calculated and the first point where its value is higher 

than a given threshold is selected as optimal. 

4. The optimal number of clusters is the point with the largest second derivative. 

5. A line between the smallest and largest number of clusters is drawn and the point 

on the curve that is furthest away from this line is considered optimal. 

 

 

Figure 2.5: Elbow criterion 

 

In some cases, the sums of the intra-cluster distance are also divided by the correspond-

ing number of clusters. This leads to a visually “flatter” curve that looks very similar to 

the example in Figure 2.5. However, this often leads to an optimal number of clusters in 

a very restricted interval of small numbers of clusters, since the drop of the sum is de-

creasing much faster. This is not suited for countries that have a high number of distinct 

regions and should be represented with a higher number of clusters. 

Unlike the first three CVI described, the elbow criterion does not consider the inter-cluster 

distance. By applying a clustering approach, one might receive a number of clusters as 

optimal which contains dense clusters but also one or more which are very similar to 

another cluster.  
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3 Methodology and Implementation 

This section describes the developed methodology. Firstly, the framework in which the 

methodology is implemented is described. Secondly, the data that are taken into consid-

eration for clustering are presented. Afterwards, the methodology and the different steps 

are described in detail. The last chapter compares the developed methodology to other 

existing approaches.  

 

3.1 Framework 

The methodology is implemented as a pre-process for energy system modeling. In this 

work the latter is done using the Energy System Development Plan (ESDP), an existing 

energy system optimization model [10]. The whole framework is depicted in Figure 3.1, 

where the blue frame indicates the existing framework and the green the new methodol-

ogy.  

 

 

Figure 3.1: Complete Framework 

 

The workflow is as follows: the PostgreSQL database stores the data of load, generation, 

renewable profiles, etc. with a spatial resolution on a global basis. The data correspond-

ing to one or multiple countries or other defined regions, including their shapes, are im-

ported into a Python environment. This is where the regionalization algorithm, described 

below, is applied to the data. After the regionalization, the identified regions, their 
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corresponding data, and the grid connections between them are saved into the Post-

greSQL database of the ESDP standard framework. ESDP itself imports those data and 

uses them for the regional energy system modeling and the calculation of the cost-opti-

mal decarbonization pathway.  

 

3.2 Data used for the clustering process 

Since clustering is a data-driven process, the input data are of major concern. This work 

tries to improve the results of energy system modeling. Therefore, the data that are of 

special importance for the modeling should be considered in the regionalization. Further-

more, clustering can only perform as well as the input data are. Giving the algorithm 

incomplete data can result in distorted clusters of regions that are not suitable for energy 

system modeling. Therefore, an important question is, which data to consider for the 

regionalization problem of this work. This work uses the following data 

• Annual consumption values of the private household (PHH) sector 

• Annual consumption values of the commerce, trade, service, and industry 

(CTSI) sector 

• Installed capacities of different available technologies 

• Wind and Photovoltaic (PV) profile data for a complete year in an hourly resolu-

tion 

Other data that are important but due to the lack of data could not be included are 

• Spatially dissolved load profile data 

• Potential space for the installation of renewables, i.e. available rooftop area for 

PV and land for wind turbines, respectively 

The applied data are stored with Geographic Information System (GIS) data. GIS data 

are used for the spatial resolution of the global database. They can be either points, 

lines, polygons or grouped versions of those, i.e. multi-points, -lines, and -polygons, re-

spectively. The geographical information regarding their position, i.e. longitude and lati-

tude, is assigned to the data. Since those might not take into account spatial bends, 

projections are used. Hence, those data are projected into different spatial reference 
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systems with so-called Spatial Reference IDs (SRID) [49]. Due to the global applicability 

of the methodology, the SRID used is the ESPG 4326, which can be used worldwide and 

considers longitude and latitude. Connecting those spatial data to other types of data, 

e.g. load, generation, wind or solar profiles, GIS data are a powerful tool for spatial anal-

ysis in different fields.  

 

Region shape data 

One type of data that are stored in the global database are the shape data of different 

countries. Considering the regionalization of a country´s energy system there are two 

approaches. Either small predefined regions or point data can be used as input for the 

spatial clustering. The approach used in this work is to start at a basic level with the so-

called smallest regions [50], which are the smallest administrative regions of a country 

available. Those correspond mostly to cities or other forms of districts. This approach is 

chosen since, from a political point of view, considering one part of a city to be in cluster 

A and the other part belonging to cluster B is not desirable. Therefore, the data described 

below are aggregated to these smallest regions. The details are described in 3.3.1.   

 

Load and generation data 

The load data used in this work consist of polygons of 50 m x 50 m assigned with the 

corresponding values of electrical energy consumption of one year in MWh. As described 

those data are grouped into PHH [51] [52] and GHDI [52] [53]. Since this work considers 

starting with predefined regions, those data have to be aggregated to those regions. 

However, the smallest regions can be arbitrarily shaped. Therefore, the polygons of the 

load values can be located in more than one shape. Because of that, only the centroids 

of those polygons are considered when assigning the data to the region its center is 

located in. The generation data, on the other hand, are stored as point data which is why 

those data can be assigned to the one region, they are located in. Furthermore, their 

respective generation capacity in MW and the technology it is based on are known [54].  

 

Renewable profile data 

Stored as grid cells of 2500 km² over the whole world, wind and PV profiles derived from 

climate observations [55] can be assigned to the different smallest regions that are to be 
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considered within the regionalization process. Figure 3.2 depicts the grid cells for the 

case of Belgium.  

Those data are stored as time series ranging in each time step between zero and one, 

indicating the relative output of the capacity which a wind turbine or PV system, respec-

tively, can generate at the corresponding moment in time. Since those values also de-

pend on the model of wind turbine and the orientation of the solar panels, respectively, 

the following is considered within this work. For the wind profiles, this work considers the 

relative output that a wind turbine of the model Siemens SWT-3.6-107 with a hub height 

of 100 m can achieve according to the given data. This model is chosen, because of its 

average height and, therefore, not overestimating the potential power generation of wind 

turbines. The PV profiles, on the other hand, are available in commonly used steps of 

the orientation of 22.5° and roof slopes between 0° and 40° in 10° steps. The corre-

sponding value for the considered time series is calculated as the average value of the 

different orientations and slopes. This is done to better take into account different instal-

lation conditions that are likely to occur considering rooftop PV installations. 

 

 

Figure 3.2: Grid cells for wind and PV time series data for the case of Belgium 
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3.3 Methodology 

This section describes the developed methodology in detail. The outcome of any meth-

odology is driven by the requirements that it should be able to fulfill. Therefore, defining 

the requirements highly influences how the methodology can be developed. The require-

ments for the regionalization methodology that this work tries to develop are the follow-

ing: 

• The loss of data should be minimized 

• The number of regions should be selected regarding the complexity of the in-

vestigated county 

• The electrical grid should be considered 

• Globally applicable 

• Adequate run time 

The next subsections present the different steps of the developed methodology and con-

sidering whether the requirements can be met. Figure 3.3 presents an overview of the 

complete method.  

 

 

Figure 3.3: Steps of the developed methodology 
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As shown, first the data and shapes of one or more specified countries are imported into 

the python environment. Those data are aggregated to the corresponding shape they 

are located in. Afterwards, the algorithm normalizes the data so that different kinds of 

input data can be compared, e.g. energy and generation capacities. The third step is the 

clustering of the normalized input data. This way different regions inside the country are 

identified. In the fourth step, Open Street Map (OSM) data of transmission lines are im-

ported, and the algorithm identifies those lines that represent interconnections between 

the previously discovered regions. The last step is to export those regions with their cor-

responding inter-regional transmission capacities into the ESDP database. This data-

base is used for the setup of the energy system model and calculating the cost-optimal 

decarbonization pathway. 

Since the clustering is the core of the developed methodology and different clustering 

approaches might require different preprocessing of the data, the clustering approach 

must be chosen first. In 2.3 different approaches of how to apply clustering for regional-

ization have been discussed. As shown the disadvantage of k-means, being the imple-

mentation of the contiguity constraint [28] and the inability to find arbitrarily shaped clus-

ters [15], is considered unsuited for the regionalization problem, despite its fast perfor-

mance. 

Density- and grid-based methods both entail the same drawback: subjective input pa-

rameters [15], which might result in phases of trial and error. Those input parameters 

might also depend on the considered country and therefore do not imply global applica-

bility. The sorting out of outliers is another disadvantage that is not desirable for the 

regionalization problem this work is facing due to the high numbers of clusters it can 

result in. Therefore, those two approaches are not considered further either.  

The only two approaches that seem suitable for the problem are the hierarchical cluster-

ing and the max-p algorithm. Both come with contiguity forcing constrains. On the one 

hand, hierarchical clustering is fast due to the contiguity constrain but does not do any 

reassignment of regions on its own. However, fine-tuning can solve this issue but, on the 

other hand, does not apply to high numbers of regions. Furthermore, hierarchical clus-

tering is sensible to outliers and has the rich getting richer characteristic. On top of that, 

the algorithm does not give an optimal number of clusters as an output which leads to 

the necessity of CVI to find the optimal number of clusters in a second process.  
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On the other hand, the max-p algorithm does give as output the optimal number of clus-

ters but needs as input parameter a user-defined threshold value of a condition that has 

to be met in each of the output clusters. Furthermore, it does not apply to big sizes of 

data sets. The first inconvenience can be seen for example as a given threshold of vari-

ance inside the clusters that have to be less than a user set value [28]. However, defining 

this value is a rather subjective question. Its time and computational complexity and 

therefore long running time are another crucial concern.  

Since the considered data in the smallest region approach can contain thousands of 

regions and variables, the max-p region on its own is not suited for the regionalization 

problem. Therefore, the hierarchical clustering in combination with the fine-tuning algo-

rithm is chosen to perform a regionalization in this work. The Ward´s method is chosen 

as a linkage criterion due to its superior performance using contiguity constrain [30]. 

Since the Ward´s method is only defined using the Euclidean distance, this distance 

metric is applied. 

Regarding the disadvantage of not automatically finding the optimal number of clusters, 

a CVI is used to find this optimal number. Like choosing a clustering approach, selecting 

the correct CVI is also a question of what the problem is. One requirement for the iden-

tified regions is that there should be a low loss of data, i.e. the regions clustered together 

should be similar. Nevertheless, considering spatial contiguity, there may be two regions 

that are very similar to each other, but far apart, for example divided by a desert. If the 

inter-cluster distance is considered, e.g. by using 2.4.1, 2.4.2 or 2.4.3, the CVI can indi-

cate a very small number of clusters where the two very similar clusters are combined. 

However, to do so, the algorithm would have to first add another cluster, which might be 

very distinct from the two similar clusters, to obtain the spatial contiguity for the two sim-

ilar regions. This implies, the unsuitability for the regionalization problem of the first three 

CVI which is why in this work the elbow criterion is used to identify the optimal number 

of clusters even though it can be ambiguous in identifying the optimal number of clusters. 

To identify the optimal number of clusters in an automated way, the different possibilities 

described in 2.4.4 are considered. However, the first two approaches – maximum de-

crease and maximum decrease ratio – are likely to identify very low numbers of clusters 

since the curve decreases especially fast for low number of clusters. The third method – 

surpassing a threshold of the second derivative – rises the problem of how to determine 

the threshold value, which might be subjective. The fourth and fifth method – largest 
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second derivative and furthest from a connecting line – seem to be better applicable to 

the elbow method, even though the fourth might also suffer the same problem as the first 

two methods. Therefore, the fifth method is chosen, i.e. a line is drawn between the 

considered values of the elbow curve and the point located furthest from this line is con-

sidered optimal. 

 

3.3.1 Data preprocessing 

Since different occurrences in the data can be existent which might lead to distorted 

clusters, some preprocesses have to be applied. Since one requirement of this work is 

to be globally applicable those cases have to be considered at the beginning of the data 

preparation. The following rules explain the handling of exceptions implemented in the 

methodology. 

 

Split up of multi-polygon shapes 

One problem that has to be faced is the occurrence of “bridge-regions”. This work defines 

those regions as multi-polygons stored as single-region that are not spatially contiguous 

and connecting different parts of the entirety of regions. Therefore, those regions can 

build bridges connecting regions that are not spatially contiguous. Figure 3.4 presents 

two of those bridge regions for the example of Belgium.  

The light and dark blue regions are multi-polygons which are not spatially contiguous. 

When the regions are checked for spatial contiguity it would result in distorted spatial 

connectivity, since those bridge-regions connect regions that are not spatially contiguous 

themselves. When using those regions in the clustering it might result in something sim-

ilar to Figure 3.5.  

Since the clusters should be spatially contiguous, it shows the necessity of handling 

those bridge-regions. Therefore, when importing the region shapes the algorithm checks 

whether a region is a multi-polygon and splits those into the corresponding number of 

single polygons. This has two effects. Firstly, cities that are not spatially contiguous might 

happen to be in different clusters. Secondly, islands that belong to a district or city are 

separated and, therefore, have to be handled in the later run since they naturally do not 
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have any spatially contiguous region. Nevertheless, bridge-regions can lead to non-spa-

tially contiguous clusters and therefore have to be avoided.  

 

 

Figure 3.4: Bridge-regions for the example of Belgium 

 

 

Figure 3.5: Illustrative cluster example of Belgium if bridge-regions exist 
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Data aggregation 

Since the different data considered for the clustering have to be aggregated to the small-

est regions, depending on the different attributes, the following steps are executed: 

• Load data: Since load data, PHH and CTSI, are likely to be high in big sized 

regions, those data are aggregated to the smallest region, and the corresponding 

sums of load are normalized by the area of the regions, i.e. resulting in the load-

density of MWh/km².  

• Generation data: Generation can be seen as a negative load. To be consistent 

also the sum of the power generation data for each technology is normalized by 

the region´s area resulting in MW/km².  

• Wind and PV profiles: Since wind and PV profiles are stored as grid cells one 

region might intersect multiple grid cells. Therefore, the corresponding profile is 

calculated as 𝑝𝑟,𝑡 =  ∑ 𝐴𝑟,𝑔𝐴𝑟𝑔 𝑖𝑛 𝐺 ∗ 𝑝𝑔,𝑡 (3.1) 

where pr,t is the value of the profile of region r in time step t, g is one of the inter-

secting grid cells G, Ar,g is the area that r intersects with grid cell g, Ar the total 

area of r, and pg,t is the profile value of g in t. Therefore, the profile of a region is 

the weighted profile of the intersecting grid cells depending on the intersecting 

area. 

 

Detection of mainland, islands, and outliers 

One problem that different clustering algorithms are susceptible to is the existence of 

noise [15]. Since hierarchical clustering is sensitive to outliers and noise, it has to be 

filtered in a pre-process. Small regions without any load or generation can be considered 

noise. Those regions might be identified as single clusters. However, due to their low 

importance regarding the energy system model this is not desirable. Those regions can 

exist, because they are split from bridge-regions. Also uninhabited islands can be such 

regions. Therefore, for each multi-polygon that is splits it is checked, which is the biggest 

of the newly constructed regions and islands. After the aggregation of the data to the 

corresponding regions, it is checked whether a smaller split region has any load or 
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generation data. If this is not the case this region is not considered for the clustering. If it 

is also not connected to any other region it leads to the removal of this region from the 

data set. Since islands that do not have any generation nor load are of neglectable im-

portance for the energy system model, this step is implemented to denoise the region 

data. In a second step, the algorithm identifies all connected groups of landmasses and 

removes all those from the region set which do not have any load or generation data. 

This is done, due to the existence of islands consisting of more than one region but not 

containing any load nor generation capacities.  

Another important factor regarding islands is the problem of identifying the mainland or 

main islands. This is of special importance for countries that consist of various islands, 

e.g. the Philippines, Japan, or New Zealand. Considering New Zealand as an illustrative 

example, the methodology has to cluster the different regions on its two main islands, 

while each cluster can only contain regions from one of the islands. Figure 3.6 depicts 

the country of New Zealand. 

 

 

Figure 3.6: Country of New Zealand 

 

What is intended to do in this work, is to identify the two main islands and then cluster 

them in the same process. Since clustering the two islands separately does not take into 

account a comparison of either aggregating more regions in one or the other, the 
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clustering must be done in the same process. Because of that, all connected landmasses 

in the region set are identified. The approach considered in this work is to set a threshold 

value of what percentage of area one islands must have to be considered as a main 

island and, therefore, be considered as a set of regions in the clustering process. The 

investigated country highly influences the threshold value that can be considered opti-

mal. Therefore, finding a threshold value for any given country is not trivial. Considering 

the examples of New Zealand, Japan and the Philippines a threshold of four percent 

seems to be suited. However, this threshold is left as an input parameter for the user to 

be able to change which islands are considered as main islands. 

Still, there might be islands in the data containing load or generation data. However, 

islands cannot be used within the clustering process since they would always be a cluster 

of their own since they naturally do not have any connection to the mainland. Therefore, 

the algorithm calculates the distance between each of the remaining islands to every 

region within the mainland or main islands. For each island, the closest region on the 

mainland is identified and it is checked whether the corresponding distance is less than 

50 km. If the distance is higher the island is removed from the region set, since an island 

that is more than 50km away is assumed to be unconnected to the electrical grid of the 

mainland. If the distance is lower the load and generation data of the region are added 

to those of the closest region in the mainland. Since the true connection point is unknown, 

this is assumed to facilitate the procedure of the algorithm. This leaves the data set with 

the number of mainlands and main islands as groups of internally connected regions. 

 

3.3.2 Normalization of clustering input data 

Since the clustering compares different attributes like wind profiles and load data, the 

data must be normalized [56]. However, only normalizing all the data to zero and one 

can lead to an undesired outcome: the values of the profile for each time step would be 

as important as e.g. the PHH value for a whole year. Since this is not intended, the 

normalization has to be done differently. 

Firstly, different attributes are defined which can have multiple sub-data this work refers 

to as entries. The attributes that are considered are load, generation separated in con-

ventional and renewable, and profiles. The load data consist of one value for PHH and 
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one for CTSI consumption, and the generation data consist of the installed capacities of 

the different generation technologies. The profiles include the wind and solar time series.  

The approach used in this work is referred to as unweighted normalization in the latter 

and is calculated as 

𝑣𝑎𝑙𝑢𝑒𝑛𝑜𝑟𝑚,𝑢𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑,𝑎,𝑟 = 𝑣𝑎𝑙𝑢𝑒𝑎,𝑟 − min(𝑣𝑎𝑙𝑢𝑒𝑎,𝑅)max(𝑣𝑎𝑙𝑢𝑒𝑎,𝑅) − min (𝑣𝑎𝑙𝑢𝑒𝑎,𝑅)𝑛𝐴  

(3.2) 

For each region r of the region set R, each of the corresponding entries a of the attribute 

A is normalized to zero and one and divided by the number of entries within the attribute. 

For the generation capacities this value is different for renewables and conventional gen-

eration technologies. In this case the value is two multiplied by the corresponding number 

of technologies. This differentiation is done to reflect the special importance of renewable 

energy generation in future energy systems. 

The unweighted normalization considers the similarity of the regions without giving any 

emphasis on e.g. a specific generation technology. The tables below present a simple 

example of one country for the normalization approach. Table 3.1 presents the sums of 

the different entries of the attributes load and generation. Table 3.2 indicates the resulting 

range of entries within the corresponding column for the unweighted normalization. 

 

Yearly consumption [MWh] Installed capacities [MW] 

Conventional Renewable 

PHH GHDI Coal Nuclear Gas Wind Solar 

50,000 100,000 10 15 5 20 5 

Table 3.1: Illustrative example of the sum of yearly energy consumption and installed generation 
capacities for all regions in the region set 
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Yearly consumption [MWh] Installed capacities [MW] 

Conventional Renewable 

PHH GHDI Coal Nuclear Gas Wind Solar 

[0;0.5] [0;0.5] [0;
12∗3] [0; 12∗3] [0; 12∗3] [0; 12∗2] [0; 12∗2] 

Table 3.2: Illustrative example of the range of values for unweighted normalization 

 

3.3.3 Clustering 

When receiving the normalized data, clustering is performed as described in 2.3.2 using 

the open-source code of scikit-learn [30] providing the hierarchy of cluster merges. In 

this hierarchical clustering, the Ward´s method is chosen due to its superior performance 

on contiguity constrained clustering.  

 

Selecting the optimal number of clusters 

Since the hierarchical clustering does not provide an optimal number of clusters this 

number is identified by using the elbow criterion. Since the number of clusters should not 

be too high, keeping the computation time of ESDP low, only the values of the elbow 

criterion within a certain interval are computed using the computed the hierarchy. The 

upper limit of clusters that is considered suitable is 30 clusters. Using this number of 

regions, the ESDP framework can still compute the decarbonization pathway. Using a 

higher number of regions often results in problems regarding computational complexity. 

Nevertheless, setting the upper limit of the interval of the elbow criterion to 30 would lead 

the algorithm to never identify this number of clusters since those points would be on the 

line of connecting line and therefore the distance would be zero. Therefore, the upper 

limit of this interval must be higher. Because of those reasons, this work considers the 

following interval for the elbow criterion: 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = [max(2, 𝑛𝑚𝑎𝑖𝑛𝑙𝑎𝑛𝑑𝑠) ; 50] (3.3) 

Where nmainland is the number of mainlands and main islands of the country. The lower 

threshold has to be set because the algorithm cannot cluster to a lower number of clus-

ters than the nmainland since the islands cannot be connected due to missing connectivity. 
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On the other hand, receiving only one cluster would represent a single-region model that 

does not need any kind of preprocessing like cluster analysis. The maximum value is set 

to 50 because the automatized method of finding the optimal number of clusters depends 

on the interval that is considered, i.e. considering an interval of [2;50] might lead to an-

other “optimal” number of clusters than a considered interval of [2;100].  

However, in some cases, the optimal number of clusters still results to be very high, e.g. 

49 clusters in the case of Algeria. As described before, such high numbers of clusters 

are not desirable. Therefore, the steps presented in Figure 3.7 are performed. 

As the figure shows, firstly the optimal number of clusters is identified by considering the 

interval between x and 50, x being the maximum of nmainland and two. If this optimal num-

ber of clusters is lower than or equal to 30 and is not equal to x the algorithm is terminated 

providing the optimal number. If this is not the case the upper limit is iteratively reduced 

by one in each cycle and the optimal number of clusters is recalculated. When the opti-

mal number of clusters meets the specified conditions, this number is selected in the 

following.  

 

 

Figure 3.7: Algorithm to identify the optimal number of clusters 
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Fine-tuning 

To improve the result of the clustering, the optimal number of clusters is used as a start-

ing solution for the fine-tuning post-process. Since the fine-tuning scales with the power 

of two to the number of regions, it might take very long to terminate. Therefore, the fine-

tuning is not applied to every number of clusters.  

Since the Ward´s method is only defined using Euclidean distance, the range of the val-

ues for the time series, however, is small compared to the range of the other attributes. 

Hence, the magnitude of the difference in the profile attributes is small compared to the 

other attributes, especially when considering the squared difference, the Euclidean dis-

tance calculates in the first place. Therefore, using the Euclidean distance metric the 

time series influence the result of the clustering process very little. Because of this unin-

tended behavior another distance metric is needed and applied in the fine-tuning process 

to better consider the time-series. In this work the considered distance metric is the fol-

lowing. For each attribute, i.e. load, generation and profiles, the Manhattan distance is 

calculated. With these three corresponding sums of distances, the Euclidean distance is 

calculated. The following formulas represent the metric: 

𝑠𝑢𝑚𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 =  √∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴2𝐴  
(3.4) 

  

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴 =  ∑ ∑ ∑ ||𝑥𝑎 −𝑎∈𝐴𝑥∈𝑐𝑐∈𝐾  𝑥̅𝑐,𝑎|| (3.5) 

In these equations a is one of the entries of attributes A, and c is one of the K clusters 

with x being a member of this cluster. Using this method, the drawback of the Euclidean 

distance in combination with the normalization methods is expected to be overcome, 

since the Manhattan distance is preferable on high dimensional data [57]. On the other 

hand, the Euclidean distance in (3.4) is used to better reflect possible outliers since it is 

more prone to those than the Manhattan distance [58]. 

In contrast to the standard fine-tuning process, this work implements two additions. 

Firstly, a time limit is implemented to be able to terminate the algorithm after a specified 

amount of time and use the identified improvements. Secondly, the standard fine-tuning 

often results in clusters that are formed like lines. Those lines often have one almost 
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isolated region at the end which was only connected to one other region. In the standard 

fine-tuning algorithm, this can lead to the following problem. If both regions turn out to be 

initially in the same cluster including other regions, the region with only one neighbor 

cannot be assigned to any other cluster than the one its only neighbor belongs to. On 

the other hand, its neighbor cannot be assigned to any other cluster, because it would 

break the spatial contiguity of the cluster. Therefore, those two regions cannot be reas-

signed to any other cluster. Figure 3.8 presents this problem for the case of South Africa, 

where the red region is the almost isolated one and the green region is its only neighbor.  

 

 

Figure 3.8: Almost isolated regions for the case of South Africa 

 

Figure 3.9 presents an example of a possible cluster outcome during the fine-tuning. The 

green cluster consists of a line with some coastal regions at each end. The fine-tuning 

algorithm cannot handle those occurrences since it can only move one region at once. 

This is where another algorithm is applied. The idea is to shift multiple regions at once 

into another cluster. However, the combinatorial complexity should be kept low since the 
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fine-tuning can result in high computation times already. Therefore, the following proce-

dure is applied. After each of the cycles in the original fine-tuning the optimal shift of 

regions is applied, and the new algorithm presented in Figure 3.10 is executed.  

Firstly, all regions that are connected to only one other region in its respective clusters 

are identified. With those regions as starting points, the algorithm creates a list of regions 

which later identifies a path inside the clusters. For each of the starting regions, the al-

gorithm identifies the region it is connected to and adds it to the list. If this region is only 

connected to two other regions, including the starting region, the algorithm continues 

following this path until it reaches one region that has either one or more than two neigh-

bors.  

 

 

Figure 3.9: Illustrative example of a line-like cluster 

 

If the last region is only connected to one other region it indicates the cluster only consists 

of one line of clusters, i.e. the last found region is another starting region. To prevent the 

algorithm from shifting a whole cluster into another one the last identified region is 

dropped from the list. Because of this behavior, the algorithm cannot lower the number 

of clusters. If, however, the region has more than two neighbors it must be checked if, 
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removing this region, the spatial contiguity of the cluster is still valid. If not, this region is 

also not considered for changing the cluster.  

In the next step, all other clusters the regions in the list could be shifted to are identified. 

Afterwards, the algorithm calculates the result of the CVI for each possible subpart of the 

list always starting from the starting node. For example, if the list contains three regions, 

region 1 being the starting region, the algorithm calculates the changes of the CVI for 

the combinations of shifting the regions {1}, {1, 2}, and {1, 2, 3} in any other connected 

cluster. The change that achieves the best result of the CVI is identified. If this change 

improves the result it is applied to the former clusters. When no change, which leads to 

an improvement, can be identified the algorithm terminates. The results of this method-

ology in contrast to the original fine-tuning are presented in 4.1.2.  

 

 

Figure 3.10: Sub algorithm for the fine-tuning 
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After the sub-algorithm terminates the original fine-tuning continues its procedure. There-

fore, after each of the cycles of the fine-tuning, the sub-algorithm is applied, which is 

expected to achieve better results than just applying it once after the fine-tuning. This 

way the methodology developed in this work might overcome the incapability of the orig-

inal fine-tuning to shift multiple regions, while keeping the additional computational cost 

low.  

 

3.3.4 Grid modeling 

Since the identified regions inside the energy system, shall be able to interact with each 

other, the next step is to define this capability. For this purpose, an NTC model as de-

scribed in 2.2 is built. Since detailed grid data from the TSOs are not available for each 

country this work investigates the potential use of OSM data.  

 

OSM data 

OSM data are publicly available data of different kinds of spatial attributes [59]. Those 

data include categorizations of land use, building types, line classification like highway, 

railway and more. The fact that OSM data are not perfect, is an important factor that has 

to be taken into account. Since there is no globally valid rule on how the contributors 

must upload the data, they have to be denoised. This indicates that the results of the grid 

model have to be validated. The data of interest in the regionalization problem in the 

context of grid modeling are transmission lines. The data corresponding to the electricity 

sector are specified by an entry in the so-called “power” tag. Apart from other entries, 

the data this work takes into consideration include those with the power tag of “line” and 

“cable”. Those data are said to correspond to the high voltage levels. In contrast, the tag 

“minor_line” and “minor_cable” mostly refer to the distribution grid. Since including the 

distribution grid would lead to a high additional computational effort and do not perform 

the task of transportation of energy, those tags are not considered. Furthermore, those 

line data can include other tags. The ones important to this work are the tags voltage, 

frequency, cables, and name. These tags indicate the voltage level of one or more trans-

mission lines, its frequencies, the number of cables the transmission line carries and the 

name of the installation, respectively. However, due to the incompleteness of the data, 

lines exist that, for example, do not have a voltage tag, i.e. the voltage level is unknown. 
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The corresponding lines of the investigated country are imported into the Python envi-

ronment and the following steps are executed.  

 

Creation of the NTC model 

Firstly, all lines that interconnect different regions and provide necessary information 

must be identified. Therefore, all lines that do not have any entry in all of voltage, fre-

quency, and cables are dropped from the data because those entries do not contain any 

information apart from the spatial position of the transmission line. Afterwards, the algo-

rithm identifies the corresponding regions of the start and endpoint of the lines. The al-

gorithm keeps those lines connecting two different regions, i.e. the region of the start 

point is not the same as the region of the endpoint of the line. The rest of the lines are 

removed as they do not provide transfer capacities between regions. 

Secondly, for each line in the data set it is checked if the tag of frequency is 50 Hz or 

60 Hz, which are the most used frequency levels in the electricity sector in the world [60]. 

However, if the frequency is zero the line could potentially be a High Voltage Direct Cur-

rent (HVDC) line. Since there is no tag for this kind of line, the name is the only tag 

possibly providing this information. If it contains the word ‘HVDC’ this line is considered 

as such. Unfortunately, those names can be the corresponding translation of HVDC, e.g. 

“HGÜ” in German. Since it would be unreasonable to look up every possible translation 

of this technology HVDC lines without an English indication in its name are considered 

Alternate Current (AC) lines. In this case, their frequency is set to the most frequent value 

found in the data set. However, other frequencies can occur. The Deutsche Bahn AG, 

for example, has its own electrical grid with a frequency of 16.67 Hz which can also be 

in the OSM data. Since those lines are not subject to the general electricity sector, any 

line with a non-zero frequency value of neither 50 Hz nor 60 Hz is removed from the line 

data set.  

Occurrences of transmission lines carrying different voltage levels or possibly different 

frequency levels is another aspect that has to be considered building the NTC model. 

For example, one line-object of the OSM data can contain two values of frequencies, 

three values of voltages and four values of cables. This example leads to the question 

of which of the voltage levels has how many cables and is of which frequency. Since 

without a detailed consideration no answer can be given, the following rules are applied 

to generalize the data filtering: 
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1. If there is only one voltage level, the number of elements in cables is compared 

to the number of elements in frequency. If it is the same number a new line-object 

is created for each element and the corresponding value of frequency and cables 

is assigned. If, however, only one value is given in cables, while the number of 

values in frequency is greater than one, for each frequency a new line-object is 

created. Afterwards, the number of cables is calculated as: 𝑛𝑐𝑎𝑏𝑙𝑒𝑠 = 𝑛𝑐𝑎𝑏𝑙𝑒𝑠,𝑡𝑜𝑡𝑎𝑙 − 𝑛𝑐𝑎𝑏𝑙𝑒𝑠,𝑡𝑜𝑡𝑎𝑙 𝑚𝑜𝑑 (3 ∗ 𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠)𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠  
 

Where ncables is the number of cables for each frequency, ncables, total is the total 

number of cables, and nfrequencies is the number of frequencies of the original line-

object. The division by three times nfrequencies ensures the number of cables to be 

a multiple of three which is needed because three-phase systems are consid-

ered.  

2. If the voltage level is different from one the numbers of elements in each of the 

three tags are compared. If all numbers of elements correspond, each is set as 

own line-object. However, if they do not correspond it is checked whether the tag 

cables only has one element and either the number of frequencies is equal to the 

number of voltages or the number of frequencies is one. In this case, the number 

of cables for each new line object is calculated as: 𝑛𝑐𝑎𝑏𝑙𝑒𝑠 = 𝑛𝑐𝑎𝑏𝑙𝑒𝑠,𝑡𝑜𝑡𝑎𝑙 −  𝑛𝑐𝑎𝑏𝑙𝑒𝑠,𝑡𝑜𝑡𝑎𝑙 𝑚𝑜𝑑 (3 ∗ 𝑛𝑣𝑜𝑙𝑡𝑎𝑔𝑒𝑠)𝑛𝑣𝑜𝑙𝑡𝑎𝑔𝑒𝑠  
 

3. If any combination occurs that does not lead to a classification as described 

above the line-object is removed from the line data set 

4. If an element of cables is one, set the number of cables to three 

5. If an element of cables is two, set the number of cables to six 

6. If an element of cables is greater than three, set the number of cables to  𝑛𝑐𝑎𝑏𝑙𝑒𝑠 =  𝑛𝑐𝑎𝑏𝑙𝑒𝑠,𝑡𝑜𝑡𝑎𝑙 − 𝑛𝑐𝑎𝑏𝑙𝑒𝑠,𝑡𝑜𝑡𝑎𝑙  𝑚𝑜𝑑 3  

7. If the voltage is zero, set it to the most frequent value of the voltages 

8. Remove all lines with a voltage equal or lower than 100kV  
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Rules 1, 2, and 3 ensure that lines that cannot be interpreted easily are removed from 

the considered lines. Those occur mainly because of incomplete data upload to the OSM 

data. On the other hand, the rest of the rules ensure consistency within the line-objects.  

Rules 4, 5, and 6 are applied because those values probably resulted from poor 

knowledge of the person uploading the data in the database considering one line is prob-

ably meant to be one three-phase-system which corresponds to three cables in the AC 

system. Respectively two cables probably resemble two three-phase systems, i.e. six 

cables. Furthermore, a number of four cables, for example, could imply a three-phase 

system and an earthing cable, therefore three cables are considered.  

Rule 7 is a strong simplification. Nevertheless, the most frequent value corresponds to 

the voltage level that most transmission lines have in the respective country. Therefore, 

the probability of a line having this voltage level is high. The user uploading the data to 

the OSM database often does not know the voltage level and therefore leaves this tag 

empty. 

Rule 8 on the other hand, assures a lower computational complexity. Furthermore, lines 

with a voltage level below 100 kV do not transport high capacities between regions. 

Therefore, those lines are not considered in this work.  

Having identified the corresponding transmission lines between countries and their volt-

age levels, the transmission capacity between the regions has to be calculated. There-

fore, standard transmission capacities are assigned to the lines according to Table 3.3 

[8] [9].  

 

Voltage level [kV] 110 220 380 750 1150 

Transmission capacity [MW] 343 520 1790 5404 13750 

Table 3.3: Transmission capacities depending on the voltage level [8], [9] 

  

However, depending on the country other voltage levels might exist. Due to the lack of 

such standard data, voltage levels in between those defined above are interpolated. This 

way, for each pair of regions, the sum of the transmission capacity of all the lines con-

necting them is calculated. The transmission capacities are also multiplied by 0.7 as 

described in 2.2 to consider security constraints. Data for high voltage transmission 
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cables, on the other hand, are more difficult to find in a standardized format. Since the 

number of cables compared to overhead lines is low [61], assuming the same transmis-

sion capacities should result in a minor distortion of the actual transmission capacities. 

 

3.3.5 Energy system modeling 

The region-based energy system modeling this work tries to achieve should use the 

identified regions their aggregated data and the grid interconnection between them. 

Therefore, those data are exported into the ESDP database. Which the existing frame-

work can use to build the model and calculate the decarbonization pathway. Another 

input for ESDP is the length of the transmission lines which are needed to calculate 

transmission losses and costs of operation and maintenance of the lines. For each com-

bination of two regions, the length of the connecting transmission lines is automatically 

estimated by the distance between the two regions centroids. This helps not to overesti-

mate the transport capacity of power generation of those power plants that are located 

at the opposite side of the region, regarding the connecting transmission line. 

Using those data ESDP tries to minimize the costs of transforming the current energy 

system, based on the given regions, to a future energy system characterized by high 

renewable shares and low emission. Input parameters for ESDP are the time horizon to 

be considered, i.e. until 2050 and the goal of decarbonization, e.g. 100%. On the other 

hand, the different technologies that are considered for the current and future energy 

system including their investment, and operation costs, technical lifetime, etc. have to be 

declared. 

 

3.4 Previous work – state of the art 

Region-based energy system modeling has been investigated in different works. Re-

garding regionalization by clustering, however, the only other work that is known to the 

author of this work is [28]. A multi-step clustering approach is used. Instead of defining 

the smallest regions on the city or district level, the point data are used directly as input 

for the clustering. The developed algorithm first cuts the considered map into grid cells. 

Afterwards, a clustering of the point data of each grid cell is performed using K-means in 



Methodology and Implementation 47 

a first step. K-means is chosen due to its fast performance and the large data set which 

has to be handled. The received clusters are clustered in a second step using the max-

p algorithm due to its superior performance on smaller data set. Furthermore, the max-

p regions algorithm identifies the optimal number of clusters automatically using a thresh-

old value for a given condition. The variance inside the clusters is used as such. In the 

last two steps, the algorithm recombines the clustered grid cells and executes the max-p 

algorithm a second time to be able to combine clusters that were located in different grid 

cells before. However, using the K-means algorithm the primarily resulting clusters are 

almost all Voronoi-shaped, which implies the weakness of K-means not being able to 

consider a contiguity condition. Therefore, it receives the location as an attribute with a 

high weight. Even though spatially close points tend to have similar attributes, this is not 

necessarily the case for all kinds of data, e.g. load. Furthermore, the use of the specified 

threshold condition for max-p regions might be arbitrary and it was not described why 

the corresponding formula was chosen. On top of that, only the results of the clustering 

receiving one attribute at a time were shown, even though it can receive multiple attrib-

utes. This could make sense from a business perspective view, identifying, for example, 

good locations for wind energy. However, modeling the system as a total, the suitability 

of this approach has not been made clear.  



48 Analysis and Assessment Procedures 

4 Analysis and Assessment Procedures 

This section presents the results of the developed methodology, applying it to two use 

cases. The first use case is South Africa. This country is chosen due to its high conven-

tional power generation and simple overall structure. The second use case is Germany, 

which is a complex country to model because of its diverse generation mix and its high 

number of distributed load centers. For the case of South Africa, also a sensitivity anal-

ysis is presented to show the methodology´s behavior towards different input data. In the 

end a discussion addresses the suitability of the developed algorithm to the initial prob-

lem of the region-based modeling using regionalization.  

In the use cases the following procedure is applied. Firstly, the countries are described, 

and points of special importance are highlighted. Afterwards, the input data are pre-

sented to show the extent of the different attributes Next, the results of the developed 

methodology are inspected. For the case of South Africa also the achievements of the 

new fine-tuning method in comparison to the one in the literature are presented. In the 

next step, the results of the NTC model are compared to available presentations of the 

corresponding electrical grid. The results of ESDP, i.e. the decarbonization path, are 

evaluated for the first use case of South Africa. 

 

4.1 Use Case 1 – South Africa 

4.1.1 Data 

Since the input data for the clustering show a major impact on the results, those data 

have to be described. The data presented below are those that are identified after the 

pre-processing of the data and shapes of South Africa. The data consists of 236 smallest 

regions. Figure 4.1 presents the load-density distribution of South Africa for PHH and 

CTSI data, respectively. As shown in the figure, the centers of high load-density are the 

areas around Johannesburg (J), Cape Town (C), Pietermaritzburg (P) and Durban (D). 

Figure 4.2 presents the local distribution of the power generation of South Africa. In this 

picture the size of the circle indicates the installed capacity. As shown, the main part of 

the power generation relies on coal. Furthermore, those coal power plants are mostly 

located in the north-east of the country. On the other hand, in the west and center of the 
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country a high share of renewables can be observed. For a comparison of total installed 

capacity see Appendix A.  

 

 

Figure 4.1: PHH (left) and CTSI (right) load-density distribution in South Africa 

 

 

Figure 4.2: Power generation mix in South Africa 
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Since time series are difficult to present regarding their spatial resolution, Figure 4.3 pre-

sents the Full Load Hours (FLH) for the smallest regions to indicate their distribution in 

South Africa. As shown, the areas with the highest wind potential are along the coast of 

the country, whereas the solar generation potential increases towards the north of the 

country. 

 

Figure 4.3: Wind (left) and PV (right) FLH in South Africa 

 

4.1.2 Sensitivity analysis of cluster results 

This section presents the results of the developed methodology described in 3.3. Firstly, 

the output of the standard methodology as described in 3 is shown. Afterwards, the be-

havior of the algorithm towards different input data is presented. 

 

Standard data input 

Using the input data as described in 3.2, the optimal number of clusters is 28 clusters. 

The curve of the elbow criterion is depicted in Figure 4.4. However, since the complexity 

of the energy system modeling is meant to be kept low and this optimal number of clus-

ters is very high regarding the complexity of the energy system of South Africa. This 

optimal number has to suit the purpose of its application. Comparing this number of clus-

ters to another regional modeling of South Africa [62], considering nine regions, or the 

modeling of Europe [28], considering 28 regions, it does not seem suitable to model the 

energy system of South Africa including this many regions. Therefore, using the elbow 

curve, the number of clusters is determined by a considerable bend in the curve. Such a 
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bend can be observed for at twelve clusters. This number is chosen for sensitivity anal-

ysis.  

 

 

Figure 4.4: Elbow curve in the use case of South Africa 

 

Figure 4.5 presents the outcome of the methodology. As shown, four of the identified 

clusters are single-regions around Johannesburg (clusters 1, 2, and 3) and Pietermaritz-

burg (cluster 6). The number of regions belonging to each cluster is shown in Table 4.1. 

As shown, the number of regions in the other clusters is in the range of 21 to 64.  

In Appendix A the different mean values and standard deviations of the different attrib-

utes of the identified clusters are presented. As shown, the single-region clusters 1, 2, 3, 

and 6 are mainly characterized by their high load-density values of PHH and CTSI, re-

spectively. Furthermore, clusters 1, 3 and 6 do not contain any generation capacities. 

On the other hand, cluster 2 is very similar regarding the generation structure to its sur-

rounding cluster 11 but they have very distinct loads, which is considered by the algo-

rithm. Another special occurrence is the low wind FLH for cluster 6 compared to the 

surrounding cluster 4. The clustering also seems to give special importance to the time 
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series, especially to that of wind, which can be seen by the formation of the different 

coastal clusters 5, 7, 9, and 10. Especially clusters 5 and 9 have very similar FLH. Nev-

ertheless, cluster 9 occurs to have a higher mean load. Furthermore, the influence of the 

temporal component has to be considered, which can lead to considerable differences 

between the clusters. This factor is discussed during the sensitivity analysis.  

 

Figure 4.5: Results of the developed Methodology for South Africa using regional model of 12 
Clusters and unweighted normalization 

 

Cluster 1 2 3 4 5 6 7 8 9 10 11 12 

Number of regions 1 1 1 32 24 1 38 21 25 34 64 40 

Table 4.1: Number of regions in each cluster 

 

Regarding the standard deviation within the clusters it can be observed that a high stand-

ard deviation in the case of yearly electricity consumption is most present for low mean 

values of the cluster. This is mainly because some clusters contain regions with a very 

low load but also some that are higher. This effect is also influenced by the usage of 

load-density instead of the actual load values. For the generation data the opposite 
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occurs. Clusters that contain a considerable amount of installed capacities are likely to 

have a high standard deviation. This mainly results from some regions that contain high 

generation capacities belonging to the same cluster as other regions containing low or 

no capacities. The highest standard deviation, in this case, occurs for coal power plants 

due to their higher share in the generation technology mix of South Africa. The FLH, on 

the other hand, show that most variation results from the wind profiles, which normally 

have higher spatial variation than PV time series since the later usually follow a very 

similar daily and nightly profile. 

 
 
Comparison to the standard fine-tuning 

Comparing the adapted fine-tuning algorithm to the standard from the literature, Figure 

4.6 presents the achieved results of the intra-cluster distance. The resulting clusters are 

shown in Figure 4.7. As shown the newly developed methodology improves the intra-

cluster distance by another 3% compared to the standard fine-tuning. On the other hand, 

the computational time increases from 3.5 hours to 6.2 hours using the adapted fine-

tuning. Comparing the resulting clusters, the adapted version changes the two almost 

isolated regions of cluster 12 to other clusters, which the standard fine-tuning is not able 

to do. Furthermore cluster 7 in the case of standard fine-tuning stays a single cluster, 

almost not visible, in the south of South Africa.  

 

 

Figure 4.6: Comparison of intra-cluster distance depending on the fine-tuning used 
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Figure 4.7: Regional model of 12 clusters of South Africa using standard fine-tuning 

 

Considering the FLH instead of time series 

One important part of the clustering is the temporal resolution that is considered using 

the time series as input data. Therefore, another aspect that should be considered is the 

output of the methodology using only the FLH instead of the time series as an input for 

the clustering process. The result is depicted in Figure 4.8. As shown, the result changes, 

grouping some of the single clusters together and also identifying Cape Town as a single 

cluster. Furthermore, clusters 3, 9, and 11 seem to be very similar to some of the PV 

potential zones and cluster 2 resembles a very low wind potential area shown in Figure 

4.3. On top of that, clusters 4, and 5 are very similar to high wind potential zones. This 

indicates the high influence of renewable potentials in the clustering process when using 

either profiles or FLH.  
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Figure 4.8: Regional model of 12 clusters of South Africa using FLH instead of time series 

 

Only considering load- and generation-density  

Another sensitivity that must be considered is are the load- and generation-densities of 

the respective regions. When only including those in the clustering process, the result is 

shown in Figure 4.9. As presented, this influences the methodology to identify the big 

cluster 12 including most of the regions. On the other hand, the load and generation 

structure of South Africa is implied since most of the other clusters are single-regions 

with a high value of load-density, i.e. load centers. Cluster 11 is the only cluster showing 

an influence of the coal generation that is located inside those regions. However, other 

connected regions of cluster 12 with high coal generation capacities are not assigned to 

cluster 11. This shows the low importance of generation capacities compared to the load-

density.  
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Figure 4.9: Regional model of 12 clusters of South Africa only using load- and generation-densi-
ties 

 
Only time series or FLH as input data 

To better understand the influence of the time series and FLH this subsection focuses 

on those using them as the single input for the clustering. The results are presented in 

Figure 4.10. As can be seen, there are some similarities between the clusters, e.g. clus-

ters 9 and 2 of in this graphic seem very similar to clusters 4 and 5 of the standard 

clustering result shown in Figure 4.5, respectively. However, using only the time series, 

the figure does not resemble much the two maps of the FLH shown in Figure 4.3, which 

indicates the impact of the temporal component of the time series for the clustering input. 

Using only the FLH for wind and PV generation the methodology, the identified clusters 

resemble very much the important FLH centers shown in Figure 4.3. For example, cluster 

1 identifies the high wind FLH, and clusters 7, 8, and 11 are different PV potential zones. 

This shows again the high influence of the renewable potentials in the clustering.  
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Figure 4.10: Regional model of 12 clusters of South Africa only using time series (left) and only 
FLH (right) 

 

4.1.3 Results of the electrical grid 

Using the OSM data belonging to the country of South Africa and applying the steps as 

described in 3.3.4, the algorithm results in the grid structure shown in Figure 4.11. 

 

 

Figure 4.11: Electrical grid build from OSM data 
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Since no official data set is available, the validation of the developed methodology is 

done visually comparing it to another presentation of the electrical grid in South Africa 

shown in Appendix A. Even though some of the voltage levels of the lines are underes-

timated, e.g. the 765 kV from Bloemfontein to Cape Town or the transmission line in the 

southeast, the overall picture seems to fit the compared grid structure well.  

Figure 4.12 presents the total transmission capacities between regions that result from 

the constructed grid shown in Figure 4.11. Taking as an illustrative example the connec-

tion between the clusters 11 and 12, there are following transmission lines connecting 

them: three of 765 kV, two of 400 kV, one of 380 kV one of 275 kV, and five of 220 kV. 

Assuming the standard transmission capacities as presented in Table 3.3, the resulting 

transmission capacity is at least 23.6 GW, i.e. of each line there is only one three-phase 

system installed. This means, only one of the 765 kV lines has to carry two three-phase 

systems to meet the calculated transmission capacity. Therefore, the resulting transmis-

sion capacities seem. 

 

 

Figure 4.12: Transmission capacities between identified regions in GW 
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4.1.4 Results of the decarbonization path 

When using the clustered regions, installed capacities, renewable profiles, and load dis-

tributions, assuming a standard load pattern, as input for the energy system model, its 

decarbonization pathway to the year 2050 is calculated. In this simulation a decarboni-

zation of 80% is assumed. This can be adapted and is used in this work as an illustrative 

example of the regional modeling. Using different given technologies and commodities 

the solver calculates the cost-optimal mix of generation technologies [63]. Figure 4.13 

presents the total installed capacities for the years 2015 to 2050 in the complete country. 

 

 

Figure 4.13: Capacities installed in South Africa from 2015 to 2050 

 

As shown, the technology mix in 2050 differs significantly from the current state. The 

biggest differences are the reduction of coal as well as oil power plants and their substi-

tution with mainly wind, PV, as well as gas power plants. The presentations of the in-

stalled capacities depending on the regions in 2015 and 2050 are shown in Appendix A. 
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It is shown that the main region for new PV generation capacities is cluster 12 due to its 

high transmission capacities to other regions and its high PV potential. New wind capac-

ities are primarily installed in clusters 7, 8, 9, 10 and 12. Those clusters have been shown 

to have high wind potentials. However, also cluster 5 has high potentials of wind gener-

ation but low yearly demands and rather low transmission capacities to other regions 

which is probably why no further capacities were installed in that region. As shown in the 

figure, gas power plants are installed in almost every region. Especially in clusters 1, 2, 

and 11 which are characterized by high demands but rather low renewable potentials.   

Figure 4.14 and Figure 4.15 present the net sum of the annual exchanged electrical 

energy between the identified clusters of South Africa in 2015 and 2050, respectively. 

As shown, the transported energies in 2015 are mainly distributed from cluster 11, where 

the coal power plants are located, to the other regions, especially to the west. On the 

other hand, the transferred energies in 2050 in most cases change their direction indi-

cating the change in energy generation distribution. As shown, in 2050 high amounts of 

energy are produced on the south coast and in the center of the country.  

 

Figure 4.14: Transported energies between the regions of South Africa in 2015 
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Figure 4.15: Transported energies between the regions of South Africa in 2050 

 

New transmission capacities are only installed in the south of the country indicating the 

growing transmission capacities needed to transfer the wind energy produced in those 

regions. Regarding the line utilization, most transmission lines do not get close to their 

respective limits. Only one transmission line in the north and one in the south show high 

utilizations. The energy transmitted via the line in the south is small compared to the rest 

of the transferred energies. The transmission line in the north is crucial and, therefore, 

should be further considered regarding stability. The corresponding figures are pre-

sented in Appendix A. 

As explained in 3.3.5 the costs of the different technologies and transmission capacities 

are the main target function for the optimization problem. Therefore, the total costs of the 

energy system transformation are one of the most important key performance indicators 

of the modeling. The discounted costs of the transformation of the energy system calcu-

lated by the optimization problem are 110.9 billion €.  
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4.1.5 Comparison to the country-level model 

Since the regional modeling of the country energy system is supposed to improve the 

significance of the results of the single-region model, the two results are compared in 

this section. Two compare the two models the same initially installed capacities and de-

mand as in the regional model is given as an input for the single-region model. The 

renewable profiles for the country are calculated using the procedure described in 3.3.1 

with the country shape being the only regions. The results of this modeling are presented 

in the following using the same input parameters for the modeling in ESDP. The total 

costs of the transformation of the single-region model are 105 billion €. This means that 

the costs of regional modeling are 5 billion € higher. This difference in costs results from 

the costs of the grid which are neglected in the single-region model. Figure 4.16 presents 

the difference between the total installed capacities in 2050.  

 

 

Figure 4.16: Comparison of installed capacities in the single-region model and the regional 
model of the 12 clusters. Percentages on the right side indicate the technology´s respective 

share of the total costs. 
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As shown, the amount of installed gas capacities is slightly higher in the regional model. 

On the contrary, the installed capacities of PV and wind are higher in the single-region 

model. Furthermore, in the single-region model three GW of batteries and five GW of 

thermal storage are installed, whereas in the regional modeling only one GW of Batteries 

but six GW of thermal storage are installed. This gap in installed capacities results from 

the underestimation of renewable potentials in the single-region model. Since in the sin-

gle-region model the corresponding renewable profiles are calculated as the weighted 

average of the grid cells, in some hours a higher total capacity of renewables is needed. 

On the contrary, in the regional model the power plants are installed in those regions that 

have higher relative outputs what leads to the same energy output with less installed 

capacities. 

Figure 4.17 presents the shares of generated electricity of the different technologies in 

2050 and compares the results of the single-region model and the regional model. As 

shown, the generated energies by the different technologies are very similar. However, 

in the single-region model the amount of energy produced by solar is higher than in the 

regional model, whereas for the energy generated by wind the opposite applies.  

 

 

Figure 4.17: Electrical energy generated by the different technologies in South Africa in 2050 in 
the single-region model (left) and regional model (right) 
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4.1.6 Conclusion 

Evaluating the results that have been achieved applying the developed methodology, it 

can be stated that the spatial resolution gives a deeper insight into the general energy 

system of the country. Different regions have been identified depending on different at-

tributes. Those regions have significant differences between each other, and high stand-

ard deviations can be observed.  

The generation of the grid structure using OSM data fits the real grid structure well. Even 

though the voltage level of some transmission lines is underestimated and therefore, 

also their transmission capacities, those capacities are still well dimensioned since the 

maximum utilization level is in a reasonable range. However, if underestimated the en-

ergy system modeling is still able to identify additional needs of transmission capacity. 

Nevertheless, this has to be validated cautiously since it could also occur that some 

transmission lines are overestimated. For example, a line of 10 kV that does not have a 

corresponding voltage label in the OSM data might receive the most frequent voltage 

level and, therefore, would be overestimated. 

Furthermore, it has been shown that the spatial distribution does achieve different results 

regarding the decarbonization path. The amount of wind and PV generation need is over-

estimated by more than 30 GW. Furthermore, the electrical energy generated by wind 

turbines is significantly lower in the single-region model. The curtailed energy of the sin-

gle-region model is 6.5 TWh of PV and 9.6 TWh of wind, respectively. In comparison, in 

the regional model 2.4 TWh of PV and 18 TWh of wind generation are curtailed. This 

implies the underestimation of wind potential in the single-region model since in the re-

gional model less capacity is installed but even more energy is generated and curtailed.  

The difference in the systems transformation cost is 5 billion € over the time period of 35 

years. This difference mainly results from the additional costs of the grid operation in the 

regional model which account for about 15% of the total costs, i.e. 16 billion €. One as-

pect of the results, which has to be further investigated, is the installation of gas power 

plants within the clusters 1, 2, and 3 which are dense-populated cities. However, the 

transmission capacities between those clusters and its surrounding cluster still have un-

used potential. This means that the gas power plants could also be installed in cluster 

11 instead and those capacities are used to a higher extent.  
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Comparing the results to another regional modeling of the decarbonization pathway to-

wards 2050 in South Africa [62], the results of this work see a lower increase of PV and 

wind generation. This, however, also results from the use of a different decarbonization 

objective since this work used an 80% goal, whereas in the aforementioned article 100% 

decarbonization is considered. To compare those results the ration of wind and PV ca-

pacities is considered. This work indicates that the wind generation capacities are 40% 

higher than those of PV whereas in the other study the share of wind generation is only 

20% of the installed PV capacities. This difference might result from the fact that this 

work considered a regionalization approach. On the contrary, the compared results were 

calculated considering the nine provinces of South Africa. This might have led to an un-

derestimation of the wind potential. However, also other technologies have been consid-

ered. Especially automatically aligning PV capacities might make a difference to the av-

erage profiles that are considered in this work.  

4.2 Use Case 2 – Germany 

4.2.1 Data 

The input data for the use case of Germany consists of 4869 regions. Figure 4.18 pre-

sents the PHH and CTSI load-density distributions. As shown the PHH load-density cen-

ters of Germany are mainly metropolitan areas such as Berlin, Hamburg, Munich, the 

area of Rhine and Ruhr, Stuttgart, and the area of Rhine-Main. Apart from that many 

different middle-load centers exist within the country of Germany. This implies the com-

plexity of modeling Germany with only a few regions. Considering the CTSI demand, the 

cities having the highest load-density are very small and hard to identify visually, e.g. 

Bremerhaven.  

Figure 4.19 presents the power generation distribution in Germany. As shown the tech-

nology mix in Germany is very distinct in different regions. For example, coal centers can 

be identified in the west and east of Germany, whereas nuclear power generation is 

mainly located in the south. Furthermore, solar power generation is located more fre-

quently in the south and east of Germany. Unfortunately, the data considering wind gen-

eration are very few. This does not reflect the true German capacities. For a comparison 

of the total installed capacity see Appendix: B.  
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Figure 4.18: PHH (left) and CTSI (right) load-density distribution in Germany. Cities of high im-
portance are Berlin (B), Bremerhaven (BH), Hamburg (H), Munich (M), the areas of 

Rhine-Ruhr (RR) and Rhine-Main (RM), and Stuttgart 

 

 

 

Figure 4.19: Power generation distribution in Germany 
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Lastly, the renewable potentials are presented in Figure 4.20. As shown, the north of 

Germany is characterized by high wind potentials whereas the PV potentials increase to 

the south. However, those PV FLH are low compared to other countries since the maxi-

mum is around 1000 hours. Furthermore, the original grid cells of the database can be 

observed due to the comparably small regions of Germany. 

 

 

Figure 4.20: Wind (left) and PV (right) FLH in Germany 

 

4.2.2 Cluster Results 

When applying the developed methodology to the use case of Germany, the resulting 

curve of the elbow criterion is depicted in Figure 4.21, indicating an optimal number of 

clusters of five. Since the German case seems too complex to be reflected by only five 

regions another bending point on the elbow curve is searched. The optimal number of 

clusters considered in the further is 17. Another important factor that has to be consid-

ered in the case of Germany is the time limit of the fine-tuning since with this high number 

of regions the algorithm does not even terminate the first cycle in a week. Therefore, a 

threshold has to be set. In this work, the comparison is done setting this time limit to 

either three days or one week. To receive better results the fine-tuning can be applied 

for a longer time. However, due to time restrictions in this work, one week is set as the 

maximum time. Figure 4.22 presents the results of the methodology for three days and 

one week of fine-tuning.  
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Figure 4.21: Intra-cluster distance for the case of Germany 

 

 

Figure 4.22: 17 clusters identified for the case of Germany applying the fine-tuning for three 
days (left) and one week (right) 

 

As shown, the main difference that is achieved within the week is the increased size of 

cluster 2 around Bremerhaven. The rest of the clusters visually do not differ from the 

results of only three days of fine-tuning. Comparing the intra-cluster distance of the base 

case and the different time limits for fine-tuning, the decrease of intra-cluster distance 

within the first three days is around 3.3 %, whereas the last four days of fine-tuning only 

decrease the value by another 0.5%. This is due to the fine-tunings behavior of first 
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applying the best possible changes to the data set. A corresponding graphic is presented 

in Appendix B. 

In the following, the comparison of the different clusters is done regarding the results of 

the one week of fine-tuning due to its lower intra-cluster distance. The number of clusters 

belonging to each cluster is presented in Table 4.2. As shown, cluster 15 and 16 contain 

the highest number of regions, which are 64.5% and 30.7% of the total number of re-

gions, respectively.   

 

Cluster Number of regions 

1 1 

2 19 

3 5 

4 16 

5 12 

6 7 

7 60 

8 19 

9 14 

10 8 

11 28 

12 51 

13 133 

14 223 

15 3140 

16 1496 

17 44 

Table 4.2: Number of regions belonging to the clusters when fine-tuning is applied for one week 

 

The presentations of the means and standard deviations of the 17 clusters of Germany 

for load, generation, and renewable potentials can be observed in Appendix B. As 

shown, the load centers identified are mostly clusters 3, 4, 5, 6, 7, 10 and 17 which 

correspond to the areas around Frankfurt, Nuremberg, Berlin, Stuttgart, Hamburg, Mu-

nich, and the area of Rhine-Ruhr. The standard deviation again is higher as the mean 

value is higher. This is probably due to other regions belonging to the same cluster due 

to their similarity in one of the other attributes. The standard deviation in both PHH and 

GHDI is especially high in cluster 5 which is the area around Berlin. This is also 
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influenced by using the density-load which is more similar than the total load of the dif-

ferent regions belonging to the cluster.  

Regarding the installed capacities it is shown that the main part of the generation mix 

consists of coal, gas, and nuclear power generation. This, however, is due to the incom-

pleteness of the data since it is known that the German electricity generation mix already 

consists of around 33% renewable power generation [64]. Again, the standard deviations 

of the different clusters are very high, which is influenced by the centralized character of 

conventional power generation technologies.  

The FLH show that wind generation generally achieves more energy output. On the other 

hand, wind generation does vary more than the generation of PV units. The highest FLH 

of wind can be achieved in clusters 2, 5, 7, 12, and 17 which correspond to Bremerhaven, 

Berlin, Hamburg, and the area of Rhine-Ruhr, and its surrounding region. The big clus-

ters 15 and 16 are not characterized by high wind FLH because both regions are char-

acterized by comparably low wind generation which has been depicted in Figure 4.20.  

 

4.2.3 Results of the electrical grid 

The results of the electrical grid constructed by OSM data are presented in Figure 4.23. 

Since the transmission lines of 100 kV and higher are included, it complicates the vali-

dation of the grid structure of Germany since those data are difficult to obtain and the 

German grid is highly meshed. Therefore, only the transmission lines of 200 kV and 

higher are used to compare the constructed electrical grid structure to an official presen-

tation shown in Appendix B. 

Comparing those two grid structures, the lines and voltage levels seem to fit well. How-

ever, some of the transmission lines are underrated in terms of their voltage level, e.g. 

the transmission lines in the south of Baden-Württemberg, close to Konstanz, and the 

transmission lines in the state of Saarland.  
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Figure 4.23: Electrical grid of Germany built from OSM data 

 

 

4.2.4 Conclusion 

The case of Germany is very complex due to multiple reasons. The number of regions 

is very high and there are a lot of load centers and generation structures within the coun-

try. The developed methodology identified clusters of very distinct sizes which might be 

reasonable. Unfortunately, clusters like cluster 15 and 16 are very big and reach from 

the north of the country till the south. Furthermore, cluster 16 is also only connected by 

some small corridors which assure the spatial contiguity. This results in the problem that 

the flows between north and south would be completely ignored when modeling the en-

ergy system. Since the north of Germany has high potentials for wind generation those 
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flows will play a crucial role in the future energy system of Germany and, therefore, 

should not be neglected in the modeling. Applying the fine-tuning for more time might 

help overcome this issue. However, even one week did not make a high difference and 

it is unknown how long it would take the algorithm to terminate. If the first cycle has not 

been finished in one week it might take months to calculate. Whether the user can wait 

that long is questionable.  

The grid data, constructed from the OSM data, seems to fit well to the overall structure 

of the German transmission grid. Some of the line´s voltage levels are underrated. Nev-

ertheless, the energy system modeling still would be able to install additional transmis-

sion capacities if needed. However, since the number of cables is unknown it is not as-

sured that the calculated transmission capacities correspond to the actual values. Fur-

thermore, lines with a voltage level between 100 and 200 kV could not be validated due 

to the lack of official data. However, this voltage level usually is very meshed and there-

fore hard to validate visually which would have led to validation problems anyway. 

 

4.3 Discussion 

In this section the developed methodology and the results that can be achieved applying 

it to the two use cases are discussed. As shown in the previous sections, the methodol-

ogy identifies regions that can be used within a regional energy system model to better 

consider regional differences within a country´s energy system. The case of South Africa 

implied that a single-region model of a country might poorly evaluate different aspects, 

e.g. renewable potential, that exist in different regions of the country. The developed 

methodology identified well-separated clusters that can be used as input for regional 

energy system modeling. However, the case of Germany showed that the methodology 

might lead to unsuited results regarding decentralized energy systems. Even though 

some important regions, e.g. the area of Rhine-Ruhr, can be observed, two very big 

regions are identified as well. Those regions are not suitable for the energy system mod-

eling because they neglect important transmission paths, e.g. north to south. Since the 

fine-tuning algorithm only terminated by the time constraints, either this time limit has to 

be increased or a higher number of clusters must be chosen to improve the results of 

the developed methodology.  
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The importance of fine-tuning and renewable potentials can also be shown by the use 

case of Germany. Considering cluster 2 in the last four days of fine-tuning the algorithm 

assigns different other regions to the beforehand single-region cluster. Regarding the 

attributes of demand and generation the difference to other surrounding regions is seem-

ingly very high as shown in Figure 4.18 and Figure 4.19. The only attribute that it shares 

similarity with compared to the surrounding regions is the renewable profiles. This shows, 

that without the fine-tuning the renewable profiles have a low influence on the clustering 

results. However, this attribute is of high importance to future energy systems and, in the 

use case of Germany, it must be taken into account to identify the differences in the 

regions of the north and south.  

One of the most crucial parts of the methodology is the normalization since it highly in-

fluences the similarity of the clusters. Apart from the one explained in 3.3.2, different 

approaches have been considered during development. One more possibility that is de-

scribed in Appendix C is called weighted normalization. This method emphasizes those 

technologies or demands that are more present in the present energy system in the 

country. However, the objective of this work relates to the transformation path. Therefore, 

emphasizing on the technologies that are most present today, which are mostly conven-

tional power plants, is not reasonable.  

Another variation to the developed methodology that was also considered was to include 

the electrical grid already in the clustering process. This means defining two regions to 

be spatially contiguous if a connecting transmission line with substations in each region 

exists. However, since only high voltage levels are considered many smallest regions 

were not connected to any other region, i.e. not having any substation or transmission 

line. Therefore, the merging of all those regions without any substation to that region 

containing the closest substation was considered. Nevertheless, this approach restricts 

the clustering in a way that the number of clusters increased drastically due to uncon-

nected islands of grids which can result from incomplete data. Since the objective of the 

modeling is not to do a detailed power flow analysis but to investigate general insights 

like locations of future energy generation this approach has not been considered suita-

ble. 

Regarding the requirements of this work, the developed methodology identifies well-sep-

arated clusters and reduces the intra-cluster variance significantly in the fine-tuning pro-

cess. However, the optimal number of clusters might be arbitrary which is a common 



74 Analysis and Assessment Procedures 

problem using the elbow criterion. This is because that the bending point does not nec-

essarily relate to the complexity of the energy system but to those points where two 

clusters are merged that are very distinct from each other. Another approach that has 

been considered is setting a threshold of intra-cluster distance considering the number 

of smallest regions of a country to find the optimal number of clusters. However, such a 

characteristic value could not be observed. Since this work does not apply a detailed 

power flow analysis but tries to identify general insights in future energy systems, the 

neglect of the electrical grid in the clustering process, and, therefore, the possible lack 

of transport capacities is within the regions, is considered reasonable. The developed 

methodology also fulfills the requirement of global applicability. However, regarding the 

results of countries with a high number of regions, as in the use case of Germany, it has 

to be further investigated whether or not the fine-tuning algorithm is capable of improving 

the initial results of the hierarchical clustering to an extent where the clusters are seen 

suitable for the energy system modeling. The examples of this methodology for New 

Zealand, Spain, and France can be observed in Appendix D. Those results show the 

methodology´s achievements regarding countries with considerable islands. 
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5 Conclusion and outlook 

In this work a methodology has been developed that identifies regions with significant 

differences within a country´s energy system. Applying a spatially constrained clustering, 

the smallest administrative regions of a country are merged depending on their respec-

tive demand, generation mix, and renewable potential. Since there is no globally optimal 

solution finding the optimal number of clusters and slightly different parameters can 

change this number drastically, the user has to asses between the level of detail and 

computation time of the energy system model. The developed methodology might iden-

tify a number of clusters as optimal that is unintuitive or unsuited to a country´s energy 

system. The electrical grid is constructed using OSM data and indicates the possible 

interaction between the identified clusters. As shown, the grid structure fits the reality 

well, despite the underestimation of few transmission capacities. When using those iden-

tified regions, including their respective attributes, in a regional energy system modeling, 

different factors can be considered that a single-region model would neglect.  

As shown in the use case of South Africa, the methodology is very sensitive to the inclu-

sion of renewable profiles or FLH, as the identified regions are very similar to the clusters 

when only including the profile time series. There is also a significant difference in the 

results when considering the temporal resolution of the renewable profiles compared to 

the FLH. Different load centers have been identified within the country. However, the 

existing generation capacities seem to have a lower influence on the clustering results. 

It has been shown that a single-region model might underestimate the potentials of re-

newable power generation in different regions of a country due to the aggregated profile 

time series. Therefore, higher more capacities have to be installed which are unneces-

sary in the regional modeling. Depending on the country and the renewable potentials, 

this could potentially be the opposite as well, i.e. the overestimation of renewable poten-

tials, which are limited by grid restrictions. Furthermore, the costs of operating the elec-

trical grid and additional installations of transmission lines are neglected in the single-

region model.  

On the other hand, the use case of Germany has shown some limitations of the devel-

oped methodology regarding the number of smallest regions. The identified regions, in 

this case, are not suited for a regional energy system modeling due to the neglect of 

important transmission capacities from the north to the south of Germany. The potentials 

of wind in the northern regions of Germany have been underestimated because these 
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regions have been merged with southern regions that are characterized by lower wind 

potentials. However, applying the fine-tuning algorithm for a longer time might help to 

improve the regions.  

Important considerations for the developed methodology that might be implemented in 

the future include the integration of offshore wind generation potentials. Since the FLH 

of offshore wind turbines are considerably higher than those of onshore turbines, the 

developed methodology might underestimate the importance of different coastal regions. 

The algorithm has to be extended so that coastal areas with offshore time series can be 

compared to regions which do not have any coastline. Furthermore, the methodology 

must detect which regions are coastal and which are along the border to other countries 

on the mainland to identify which regions have access to offshore wind generation.  

Apart from the recognition of coastal regions, the methodology could also be adapted to 

identify which regions are connected to the energy system of other countries by inter-

connecting transmission lines. This way, it could be identified which regions can import 

electricity from or export it to other regions and the respective capacity limits.  

Another factor regarding the construction of the electrical grid is the inclusion of trans-

mission capacity values for cables and HVDC transmission lines, respectively. Since 

those are currently seen as AC overhead lines with their respective transmission capac-

ities, some of the capacities might be inaccurate. 

The available space for power plants, especially renewables, is not considered yet in the 

methodology. Including this attribute, in the energy system modeling a constraint could 

be implemented to restrict the available space and, therefore, maximum capacity of re-

newable potentials which better reflects the reality.  
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List of abbreviations 

AC  Alternate Current 

ATC  Available Transfer Capacity 

CTSI  Commerce, Trade, Service, and Industry 

CVI  Clustering Validity Indicator 

ESDP  Energy System Development Plan 

FLH   Full Load Hours 

GIS  Geographic Information Systems 

HVDC  High Voltage Direct Current 

NTC  Net Transfer Capacity  

NTF  Notified transmission Flow 

OSM  Open Street Map 

PHH  Private Household 

PV   Photovoltaics 

SRID  Spatial Reference ID 

STD   STandard Deviation 

TRM  Transmission Reliability Margin 

TSO  Transmission System Operator 

TTC  Total Transfer Capacity 



Appendix: A – Use case South Africa 85 

Appendix: A – Use case South Africa 

 

Figure 5.1: Total generation capacities of South Africa in 2015 

 

 

Figure 5.2: Electrical grid structure of South Africa [65] 
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Figure 5.3: Mean demand of the 12 identified clusters in the use case of South Africa 

 

 

Figure 5.4: Standard deviation of the demand of the 12 identified clusters in the use case of 
South Africa 
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Figure 5.5: Mean installed capacities of the 12 identified clusters in the use case of South Africa 

 

 

Figure 5.6: Standard deviation of installed capacities of the 12 identified clusters in the use case 
of South Africa 
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Figure 5.7: Mean FLH of renewables of the 12 identified clusters in the use case of South Africa 

 

 

Figure 5.8: Standard deviation of the FLH of renewables of the 12 identified clusters in the use 
case of South Africa 
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Figure 5.9: Total installed capacities in the 12 clusters of the use case of South Africa in 2015 

 

 

Figure 5.10: Total installed capacities in the 12 clusters of the use case of South Africa in 2050 
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Figure 5.11: Additional installed capacities until 2050 in the use case of South Africa 

 

Figure 5.12: Maximum utilization of the transmission capacities between the 12 clusters of the 
use case of South Africa in 2050 
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Appendix: B – Use case Germany 

 

Figure 5.13: Total generation capacities of Germany in 2015 

 

 

Figure 5.14: Relative intra-cluster distance depending on the time of fine-tuning of the 17 clus-
ters in the use case of Germany 
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Figure 5.15: Mean yearly demand of the 17 clusters of the use case of Germany 

 

 

Figure 5.16: Standard deviations of yearly demand of the 17 clusters of the use case of Ger-
many 
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Figure 5.17: Mean installed capacities of the 17 clusters of the use case of Germany 

 

 

Figure 5.18: Standard deviations of installed capacities of the 17 clusters of the use case of 
Germany 
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Figure 5.19: Mean FLH of renewables of the 17 clusters of the use case of Germany 

 

 

Figure 5.20: Standard deviations of the FLH of renewables of the 17 clusters of the use case of 
Germany 
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Figure 5.21: Electrical grid of Germany build from OSM data with voltages of at least 200 kV 
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Figure 5.22: Electrical grid in Germany [66] 
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Appendix: C – weighted normalization 

To the other approach, this work refers to as weighted normalization, in which each value 

is calculated as 

𝑣𝑎𝑙𝑢𝑒𝑛𝑜𝑟𝑚,𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑,𝑎,𝑟 = 𝑣𝑎𝑙𝑢𝑒𝑎,𝑟 − min(𝑣𝑎𝑙𝑢𝑒𝑎,𝑅)max(𝑣𝑎𝑙𝑢𝑒𝑎,𝑅) − min (𝑣𝑎𝑙𝑢𝑒𝑎,𝑅) × ∑ 𝑣𝑎𝑙𝑢𝑒𝑎,𝑟𝑟∈𝑅∑ ∑ 𝑣𝑎𝑙𝑢𝑒𝑎,𝑟𝑟∈𝑅𝑎∈𝐴𝑛𝐴  

(5.1) 

For each region r of the region set R, each of the corresponding entries a of the attribute 

A is normalized to zero and one, multiplied by the fraction of this entry´s sum to the sum 

of all entries of the attribute, and divided by the number of entries in A. For example, the 

entry of PHH is normalized to zero and one, multiplied by the fraction of its sum and the 

sum of the entries of PHH and CTSI, and divided by two. The same procedure is applied 

to the attribute generation. However, the generation is also divided into conventional and 

renewable generation. For the profiles, however, this procedure would lead to a higher 

weighting of hours with high generation. Since this is not intended, the profile data are 

only divided by the number of time steps and the number of different time series consid-

ered. 

Yearly consumption [MWh] Installed capacities [MW] 

Conventional Renewable 

PHH GHDI Coal Nuclear Gas Wind Solar 

50,000 100,000 10 15 5 20 5 

Table 5.1: Sum over all regions of load and generation capacities 

 

Yearly consumption [MWh] Installed capacities [MW] 

Conventional Renewable 

PHH GHDI Coal Nuclear Gas Wind Solar 

[0;
50,000150,000∗2] [0;

100,000150,000∗2] [0;
1055∗2∗3] [0;

1555∗2∗3] [0;
555∗2∗3] [0;

2055∗2∗2] [0;
555∗2∗2] 

Table 5.2: Illustrative example of the weighted normalization 
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Appendix: D – Results of the developed methodology for 

other countries 

 

Figure 5.23: 15 clusters identified in Spain 

 

 

Figure 5.24: 19 clusters identified in France 
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Figure 5.25: 11 clusters identified in New Zealand 
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Appendix : E – Sustainable development goals 

 

There are two sustainable development goals that are addressed by this thesis. The first 

and main objective is number 7 – affordable and clean energy – while the second is 

number 13 – climate action. The sustainable development goal number 7 

[https://www.un.org/sustainabledevelopment/energy/] mainly consists of two sub-goal 

which are, on the one hand, ensuring the global access to affordable electrical energy 

and, on the other hand, an increase of energy generation by renewable energies like 

wind, solar, hydro or biomass. While the first sub-goal is not addressed by this thesis, 

using the developed methodology might save considerable amounts of money and im-

proves the transformation pathway towards decentralized energy systems characterized 

by high share of renewable power generation. In 2015 the share of renewable energy 

generation in the final energy consumption has reached 17.5 %. The targets of objective 

7 that are addressed are 7.2 – increase substantially the share of renewable energy in 

the global generation mix – and 7.B – expand infrastructure – which is considered by the 

developed methodology in the form of the electrical grid, i.e. it is calculated what invest-

ments in the electrical grid have to be made when and especially between which regions. 

Even though the targets of sustainable development goal 7 are defined for 2030, reach-

ing even more ambitious goal in 2050, as calculated in this work, can be seen as equiv-

alent.  

As described in this work the costs that could have been accounted for the electrical grid 

were 16 billion € (in the case of South Africa). Those costs are not considered in the 

single-region model and, therefore, imply an incomplete view of the total system. Fur-

thermore, the generation (investment and operation) costs of the single-region model 

and the region-based model were 105 billion € and 94 billion €, respectively. This means 

that the using the developed methodology costs of approximately 11 billion € could be 

saved. However, it has to be kept in mind that in the single-region model the wind and 

PV profiles that have been used where averages of the total are of South Africa. In the 

real-world new wind turbines, central PV generation units, or rooftop PV units are in-

stalled where good conditions, i.e. high full load hours, are. This means that actually the 

costs of the single-region model might be lower than calculated in this work. However, 

the neglect of the costs of the grid stays untouched.  
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The second of the sustainable development goal this work addresses is number 13 

[https://www.un.org/sustainabledevelopment/climate-change/]. Global warming is one of 

the biggest threats humankind is facing in our time. As 2019 was the warmest year ever 

recorded and the last decade (2010-2019) was the warmest decade, the increasing tem-

perature cannot be denied. This increasing temperature could result into catastrophic 

events regarding the seas, agriculture, and many more. Therefore, the Paris agreement 

was signed by a most countries in the world. The goal of the Paris agreement is to agree 

that the increase of global temperature should be kept considerably lower than 2°C or if 

possible even 1.5°C. The primarily reason for the global warming is greenhouse gas 

emissions, especially carbon dioxide (CO2). To lower the emissions, changes in the in-

frastructure and generation of energy are required. The main sectors that are involved in 

this transformation are electricity, heat, mobility, industry, buildings and agriculture. In 

each of those sectors the emissions have to be reduced by different measures (efficien-

cies, additional renewable power generation, etc.). The goal of this work was to develop 

a methodology to increase the significance of an optimization model to calculate the cost-

optimal pathway towards a decarbonized energy system. Therefore, this work addresses 

the sustainable development goal 13 regarding the electrical energy sector. The target 

goal that is addressed by this work is 13.B – Promote mechanisms for raising capacity for 

effective climate change-related planning – which relates to a cost-optimal planning of the 

transformation pathway of a country energy system. 

The quantification, however, is difficult since the maximum emission were fixed to be 

80% of the emission from today. Therefore, this value will be always given (if there is a 

feasible solution to the optimization problem). Nevertheless, this value could be adapted 

in other simulations to compare the effect of other decarbonization goal, e.g. 90% or 

100%, to the costs those transformation result in.  

 


