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Among a wide variety of topics that are covered by Dynamic Security Assess-
ment (DSA), maintaining synchronous operation and acceptable voltage profiles
stand out. These two stability categories are mostly jeopardized in the seconds after
a large contingency occurs. Therefore, this thesis tackles the two aspects of large
disturbance stability of power systems in the short-term time scale.

The classical DSA methods deal with the short-term loss of synchronism by
analyzing one operating point and one contingency at a time. However, a small
change in operating point may turn a stable system unstable. The first part of
the thesis overcomes this gap by proposing the idea of parametrizing the stability
boundary. The newly introduced method constructs the parametrized security
boundaries in polynomial forms based on a reduced amount of Time Domain
Simulation (TDS) data. Such a method retains the positive traits of TDS while
being able to estimate a measure of stability even for those points that do not belong
to the “training" set. The polynomial coefficients are further improved via SIME
parametrization that has a physical meaning. Finally, when being subject to a
constraint by the means of Quadratic Programming (QP), SIME parametrization
also becomes competitive with direct methods in the sense of conservativeness.

Nevertheless, if TDS fails, any TDS-based DSA approach is useless. Most
often, the dynamics of the non-linear power system is described by the set of
Differential Algebraic Equations (DAE). TDS can face problems when the DAE
model experiences singularity due to the loss of voltage causality. This thesis
introduces Voltage Impasse Region (V IR) as the state-space area where the voltage
causality is lost due to the non-linear modeling of static loads. The entrance of a
dynamic trajectory to a V IR was shown to be accompanied by non-convergence
issues in TDS and significant drops of voltages. Appropriate Voltage Collapse
Indicators (VCIs) are also derived for each load model of interest. The thesis
concluded that V IR is a structural problem of the DAE model that should always
be accounted for when the short-term stability is assessed.
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Sammanfattning (Summary in Swedish)

Författare: Marina Oluić
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Titel: Uppskattning av Dynamisk Säkerhetsregion
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Nyckelord: parametrisering, spänningsimpassregion (V IR), spänningsinstabilitet,
säkerhetsgräns, transient stabilitet i kraftsystem

Bland många olika ämnen som omfattas av dynamisk säkerhetsbedömning
(DSA) utmärker sig säkerställandet av synkron drift och acceptabla spänningspro-
filer. Dessa två stabilitetskategorier äventyras typiskt i storleksordningen sekunder
efter en stor händelse. Därför behandlar den här avhandlingen dessa två aspekter av
korttidsstabilitet vid stora störningar i kraftsystemet.

De klassiska DSA-metoderna hanterar transient stabilitetsanalys genom att
analysera en driftspunkt och en störning åt gången. Ändras driftpunkten något
kan emellertid slutsatsen om stabilitet ändras. Den första delen av avhandlingen
överkommer detta genom att introducera iden om att parametrisera stabilitets-
gränsen. Den nyligen introducerade metoden konstruerar de parametriserade säk-
erhetsgränserna i form av polynom baserat på en reducerad mängd data från tids-
domänsimuleringar (TDS). Sådana metoder behåller de positiva egenskaperna hos
TDS samtidigt som man kan uppskatta ett stabilitetsmått även för de punkter som
inte hör till “tränings" -setet. Polynomkoefficienterna förbättras ytterligare via SIME
parametrisering som har en fysisk betydelse. Slutligen, när SIME-parametriseringen
utsätts för en kvadratisk optimering (QP) med begränsningar, så blir resultatet också
konkurrenskraftigt med direkta metoder i bemärkelsen att resultatet är konservativt.

Ändå, om TDS misslyckas, så är det TDS-baserade DSA-tillvägagångssätt
värdelöst. Oftast beskrivs dynamiken hos det icke-linjära kraftsystemet av en
uppsättning av differentialalgebraiska ekvationer (DAE). TDS får problem när DAE-
modellen blir singulär på grund av förlusten av spännings-orsakssamband. Denna
avhandling introducerar spänningsimpassregionen (V IR) som tillståndsområdet där
spännings-orsakssamband försvinner på grund av den icke-linjära modelleringen
av statiska belastningarna. En trajektoria som träffar en V IR visades vara åtföljd
av icke-konvergensproblem i TDS och signifikanta spänningsfall. Lämpliga spän-
ningskollapsindikatorerna (VCIs) har också härletts för varje belastningsmodell av
intresse. Avhandlingen konstaterade att V IR är ett strukturellt problem som följer
av DAE-modellen som bör alltid redovisas när den transienta stabiliteten bedöms.
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5.6 The areas where Ūl solutions do not exist . . . . . . . . . . . . . . . 98
5.7 A stable operating point from the static analysis point of view . . . . . 98
5.8 The loss of voltage causality due to dynamics . . . . . . . . . . . . . 99
5.9 Power system model for the study of load modeling effects on V IR . 101

6.1 The nature of the solution for the magnitude of load voltage ŪL . . . . 109
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Chapter 1

Introduction

1.1 Background

The progress of the civilization during the previous 140 years has been heavily
associated with the electrification and power availability [1–4]. A reliable power
system is not only a basin for the continuous technological development, but rather
a pre-requisite for the quality of everyday life that the humanity is accustomed to.
Hence, to operate a power system in a secure manner is a high priority task. The
responsibility of the engineering community is therefore great — the society should
not suffer from the side-effects of occurrences in the power system. Additionally, a
continuously evolving power system poses a major challenge to power engineers
and researchers. Growth in power consumption, new components/apparatus and
cost-effective operation are strongly coupled with dynamic stability that needs
to be frequently reassessed. This thesis will attempt to add value to the broad
field of dynamic security assessment by making a modest advance towards the
fundamental understanding of some important dynamical phenomena that occur in
power systems.

Power system security and supply reliability are primary tasks for Transmission
System Operators (TSOs). The major challenge of security analysis is the nature of
the power system itself — its inability to store large amounts of electrical power
requires a set of actions that maintain uninterrupted and reliable supply. The scenario
of cascading outages followed by uncontrollable islanding and voltage collapse
that result in catastrophic blackouts [5] are unacceptable in modern "electrified"
society. The reasons for these incidents vary from typical large disturbances such as
generator outage [6], loss of transmission lines [7] and overloading [8] to the ones

1



2 CHAPTER 1. INTRODUCTION

that are not expected to induce such disasterous outcomes (for instance, a faulty
relay [9]). Some external unfortunate plots of events were even more improbable
to predict — storms [10], lightnings [11], celestial events (the sun’s coronal mass
ejection) [12] or even a cruise ship passing [13] are on the list. Regardless of the
reason, the aftermath of blackouts is similar. The extent of havoc in which large
portions of countries have been left in darkness was reaching up to 32 GW of power
generation shortage [14] and 620 million customers affected [15, 16].

On the other hand, power systems are subject to interminable upgrade in order
to be able to cope with the surge in population and consequently, consumption. The
most important evolutionary milestones in power systems have involved: intercon-
nections [17], open electricity markets [18], growth in share of renewable energy
sources [19] and development of power electronic based controllable technologies
in transmission [20]. The TSOs need to take all of these factors into consideration
when carrying out security assessment. The security margin of operation modes
have also vastly decreased as the regulation power of TSO weakened due to higher
percentage of variable energy sources [21]. To achieve high security and mitigate
the aforementioned hazardous situations, TSOs design various remedial actions
that are compliant with deterministic or probabilistic security criteria. One of the
most well-known deterministic approaches, (N-1) criterion [22], requires that the
power system security is always guaranteed after an unplanned loss of an important
component. Although the (N-1) rule and other deterministic criteria served well in
the past, they presume the same likelihood of occurrence for all contingencies. The
second, probabilistic security approach [23], is more realistic since it accounts for
the risk of security-limiting events. However, there is a trade-off — the risk-based
criterion comes with large computational time.

No matter which of the security principles is enforced, the TSOs have to make
sure that a power system accommodates to a new operational state without security
violations. This decision practically involves two types of security analyses [24]:

• Static security assessment (SSA) which considers the capability of the
power system to operate in a stable state with respect to the security constrains
after a contingency. SSA primarily investigates bus voltages and transmission
line flow violations [25].

• Dynamic security assessment (DSA) which works with the dynamic re-
sponse of a power system to disturbances. The aim of DSA is to determine
if the system will manage to handle a contingency by recovering to a secure
state. When analyzing the dynamics associated to a contingency, DSA needs
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to check different aspects of power system transient behaviour, e.g. Rotor
Angle Stability (RAS), transient voltages and frequency stability [26].

Fig. 1.1 demonstrates how SSA and DSA cooperate while analyzing the con-
sequences of a probable disturbance. SSA checks the afore mentioned security
limitations for the expected set of pre- and post-disturbance operating conditions.
DSA further investigates if the secure transition between the states is possible with
respect to the list of critical contingencies. The output of this combined analysis
shapes TSO actions during various regimes in system operation.

pre-disturbance operating state

post-disturbance operating state

DSA

SSA

SSA

…. …. …. ….…. …. ….…. ……….……….……….……….
disturbance

Figure 1.1: The distribution of tasks between SSA and DSA

The accepted standard is that power system operation may be decomposed into
four regimes with corresponding remedial actions (controls): (i) normal, (ii) alert,
(iii) emergency and (iv) restorative state [27–29]. Normal state [30] refers to the de-
sirable state where a power system operates within its security constraints. Another
operating state, alert regime [31], appears when security margin is dangerously
small (for instance, after a disturbance). The alert state is considered insecure since
a likely contingency could lead to a violation of some security constraint and induce
so-called emergency state. The alert state involves preventive actions that tend to
dislocate the operating state (o.s.) into a normal regime. The incidence of the two
remaining operating regimes is highly undesirable. An emergency state [32] denotes
a critical regime in power system operation which usually occurs after some signif-
icant contingency. In these cases power system may exhibit loss of synchronism,
excessive voltage drops, violation of thermal security limits for system components
or significant decrease in frequency. Emergency controls aim to rapidly stop further
degradation in power system operation such that a new stable state may be attained.
A possible aftermath of an emergency state is a quasi-stationary state known as
restorative regime [33]. The restorative regime denotes a phase in system operation
where a service to some customers is lost. Consequently, the restorative controls
gradually shift the operating condition from partial to complete load supply. Some
authors also consider “in extremis" operation as a separate, disintegrated regime that



4 CHAPTER 1. INTRODUCTION

links the emergency and restorative states [29]. Fig. 1.2 shows the afore mentioned
regimes, their corresponding controls and relationships that exist among them.
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Figure 1.2: The states in power system operation

SSA and DSA jointly strive towards having an alert state as the worst case
outcome of a probable disturbance. A time line of such a disturbance [34, 35] is
depicted in Fig. 1.3 from the viewpoint of the two (normal and alert) regimes. Once
the system is in the alert regime, TSO typically has 15-30 minutes [36] to assess the
situation and perform preventive actions in order to regain a normal operating state.

A sequence of regimes during power system operation

Normal 

(secure)

Disturbance

Time~10-2 to ~101  [s]

Alert

 (insecure)

up to 15-30 [min]

Normal 

(secure)

Figure 1.3: Timeline of a disturbance in the framework of security assessment
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The worst outcome of a disturbance is an emergency operation that progresses to
a complete blackout, as illustrated in Fig. 1.4. When a fault has already occurred it
is usually too late to design new TSOs remedial actions/automatic controls (they are
mostly of fast-operating, emergency type with predefined settings). DSA has to be
carried out in advance in order to minimize consequences once a contingency starts
posing serious stability risks that could lead to power system failure. This is the
point where appropriate DSA can make a difference between a usual day for people
and a day under a blackout. Hence, faster and more efficient DSA methods are
always needed — this is a timely issue, and the number of the strategies introduced
so far corresponds to DSA relevance [37].
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Figure 1.4: General scenario of a blackout in power systems

The DSA strategies have gradually transformed in order to follow up with
evolving circumstances in power system operation. In this sense, DSA has made a
long way from a purely off-line analysis [38] to the one that comprises various off-
line and on-line tools [39]. Nowadays, the three main classes of DSA methods stand
out [40]: simulation-based approaches [41], pattern-recognition techniques [42]
and expert system methods [43]. The simulation programs either rely on numerical
integration or they utilize the analytical concepts that are derived for the purpose
of DSA (e.g. Transient Energy Function (TEF) [44], SIngle Machine Equivalent
(SIME) [45] and alternatively, trajectory sensitivities [46]). The second, machine
learning class of methods [47, 48] is of more recent date and it combines the
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decision trees [49] with the quantities established by Supervisory Control And Data
Acquisition (SCADA) [50] or Phasor Measurement Units (PMUs) [51]. The last
class listed (expert system methods) is partially heuristic as it is based on particular
TSOs’ experience/knowledge [52] and a set of inference rules. The DSA means
vary greatly, yet, the final aim of all DSA methodologies is the same. The duty of
DSA is to estimate the dynamic security region as the collection of the modes of
operations where the risk of power system instability is regarded as acceptable.

Although the dynamic stability aspects are diverse and plentiful, the DSA
programs are mostly interested into the electromechanical dynamics which are
inherent to large disturbances [53]. Large disturbances are capable to jeopardize the
basic principle of power system operation, i.e. its ability to maintain the synchronism
of Alternating Current (AC) generators [54]. In the standardized classification of
power system stability [55] that is depicted in Fig. 1.5, the transient stability of
rotor angles and short-term voltage stability are the ones that reflect the events in
the electromechanical timescale (hundredths of seconds to tens of seconds).
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Figure 1.5: Thesis focus in the standard classification of power system stability

Transient stability (also known as short-term Rotor Angle Stability (RAS)) is
the governing short-term instability mechanism [56] that gives rise to other stability
issues, including over/under voltage transients. If the lack of synchronizing power is
present, out-of-step relays may trip the lines due to depressed voltage which results
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in the partitioning of a power system. Furthermore, short-term frequency stability
is normally challenged due to the formation of islands with power imbalance. A
deficit of power may lead to a rapid decay of frequency and then the consequential
blackout of the island is a matter of seconds [57]. Henceforward, this thesis will
principally address two types of stability from Fig. 1.5:

• Large-disturbance RAS (transient stability) which refers to the ability of
the power system to remain in synchronism after being subjected to some
severe disturbance. After a disturbance, the insufficient synchronizing torque
may result in increasing angular swings of some AC generators. This phe-
nomenon which typically occurs in the first 3-5 [s] after a disturbance is often
referred to as first-swing instability. It could as well happen that a large group
of generators in one area oscillates against another large group of generators
from a different area. The resulting oscillations, known as interarea swing
mode of oscillations, are slower and they may interact with local plant mode
oscillations by prolonging the RAS time-scale to as much as 20 [s] for very
large systems [58].

• Large-disturbance short-term voltage stability is of interest in the several
seconds successive to a large disturbance (it is "voltage analogous" to transient
stability analysis). In general, large-disturbance voltage stability analysis has
the aim to determine if a power system is capable to maintain stable voltage
profiles at system buses after a contingency occurs. The standard large-
disturbance short-term voltage instability assessment involves the dynamics
of components that respond fast to contingencies (e.g. HVDC (High Voltage
Direct Current) converters, induction motors, electronically controlled loads
[55, 167] etc.). When it comes to short-term voltage instability, the most
serious event is voltage collapse. Voltage collapse denotes the progressive,
substantial drop of voltages that is voltage-instability-provoked. The voltage
dropping to abnormal levels may alternatively lead the power system into a
blackout [60, 61].

The usual practice is that the two types of stability are assessed separately. In the
continuation, the analysis will lay stress on large-disturbance RAS and relatively
unknown voltage collapse that may occur as the rotors oscillate. The voltage collapse
of interest has a driving force that is different than the aforementioned dynamics of
fast acting load components. In that sense, the thesis will focus on both the separate
and common treatment of the important short-term stability mechanisms.
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1.2 Challenges and research motivation

The main concern of DSA in the power utilities of modern interconnected systems
is fault propagation. It is important to understand the system response to faults
in order to determine the list of critical contingencies and corresponding stability
margins. The Critical Clearing Time (CCT) is one of the ways to measure how
critical a contingency is. Before carrying out any further security assessment, DSA
needs to evaluate RAS in seconds after large disturbances (i.e. transient stability).
The safe operation of a power system is unattainable without the stable/damped
electromechanical dynamics that is triggered by large disturbances [54]. By leaving
the expert system methods aside (due to their heuristic nature), the RAS approaches
proposed so far may be divided into the following two areas:

• Simulation programs that are implemented in most of the commercial soft-
wares. These programs are usually based on some analytical concept out of
which the most important ones will be briefly reviewed in the sequel.

– Time Domain Simulation (TDS), the classical RAS tool, performs the
numerical integration of the set of Differential Algebraic Equations
(DAE) that describe the dynamics of the system in the fault-on and the
post-fault period. The procedure is then repeated for the most dangerous
contingencies. The results obtained by TDS are very accurate due to
the possibility to use detailed models (dynamics of generators, loads,
control devices and influence of protection systems may be included).
TDS also provides information about the state variables in the transient
period.
Although the classical TDS is convenient for the off-line analysis in the
system planning phase, for large power systems thousands of differential
and algebraic equations should be solved which is time consuming.
Therefore, TDS is not suitable as a tool for on-line RAS assessment.
Researchers have attempted to develop methods that are based on large-
step-size numerical integration [62], however, the improvement with
the existing utilities is not significant. Another disadvantage is that
TDS is incapable to give information about stability margins [63]. The
knowledge about stability margins would enable the TSOs to create
preventive actions for a specific contingency and operating point.

– Direct methods (also known as Transient Energy Function (TEF) meth-
ods) have been introduced in the late 40’s [64] to support on-line RAS
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assessment by relieving the computational burden of TDS. The further
development of direct methods [65–67] originated from the idea to
replace the integration of DAE in the post-fault period with a stability
criterion. The “measure" of stability—stability index is then calculated
based on energy-like Lyapunov functions. The relation between the
actual stability index and the critical value of the index (i.e. critical
energy) represents the quantitative measure of RAS (stability margin).
Direct methods do not provide TSOs with knowledge about state vari-
ables for the post-fault period. Nevertheless, the main limitation of direct
methods is the construction of proper energy functions [68] for general
power system models with transfer conductances. In these cases, there
is no analytical energy function and approximations are to be made [69].
Another challenge rises from the concepts that are employed in order to
calculate the critical energy. These issues are numerical in nature and
they are mostly related with the choice/identification of the Unstable
Equilibrium Point (UEP) of interest [70–72]. The improvements in the
construction of energy-functions are continuously made, and some of
them are of recent date [73–75]. However, the unified solution has not
yet been reached and the challenges in TEF construction persist.

– SIngle Machine Equivalent (SIME) method is a hybrid direct-temporal
method that combines TDS and TEF to assess transient stability [76,77].
The SIME method unifies the multi-machine system trajectories into a
single trajectory. As the first step, the TDS program is used to identify
the mode of separation of the machines in order to create the two-
machine equivalent of a power system. It is enough to carry out a single
TDS that results in instability to determine the mode of machines sepa-
ration. Further on, the two-machine equivalent is replaced by a SIME
with time-varying parameters. Once having the SIME, the Equal Area
Criterion (EAC) [54] can be directly applied to assess transient stability
of the power system (and determine CCT, for instance). As such, the
SIME method combines the advantages of TDS and TEF—it has high
accuracy, it is fast and it provides the information that is important for
the TSOs (e.g. the stability margin data, the information about the mode
of machine separation and corresponding critical machines etc.).

– Trajectory Sensitivities (TS) approach estimates the sensitivity of a state
variable to a small perturbation of a system parameter, via analytical [46]
or numerical formulation [78]. The idea of trajectory sensitivity analysis
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was to linearize the system around the trajectory with respect to some
important system parameter. Although the stability margin is available
and there are no modeling constraints in this case, the sensitivity analysis
is computationally more intensive than the previously reviewed methods.

The drawback of all these approaches that are commonly used in simula-
tion programs is that they investigate a specific operating state (o.s.) and
associated phenomenon. When a change in the operating conditions occurs,
a completely different stability criterion may hold. Although the trajec-
tory sensitivity analysis may resemble the solution of this problem, this
linearization-based method is only reliable when the change in parameters is
incremental.

• Pattern Recognition Methods (PRM) made a step further towards on-line
RAS assessment by establishing the functional relationship between the o.s.
and corresponding stability margin [79, 80]. PRM consist of two stages. The
first stage reduces the dimensionality of the problem by an off-line construc-
tion of the training set that extracts the power system feature of importance.
In the second stage, the classifier function is determined with the help of the
training set. It is usually proposed to train Artificial Neural Network (ANN)
as the classifier function [81, 82]. The ready-trained estimators are capable to
make stability predictions for the operating states that were not included in
the training set.

The problems with the estimation accuracy of ANN (and of other classifier
function techniques) often happen when network conditions vary [83]. How-
ever, the main shortcoming of the pattern/data recognition methods is that
they provide functional, and not analytical relations.

Hence, the challenges in nowadays RAS assessment are various. Short-term voltage
stability assessment has not been mentioned here in the context of methodology
since DSA simulation programs do not model the explicit automatic actions that are
related to over/under voltages. Voltage stability assessment rely on the monitoring
of the voltage transients while RAS is analyzed. So far, short-term voltage stability
has been treated as the issue that arises from fast-reacting component dynamics. For
instance, stalling of the induction motor loads is considered to be one of the main fac-
tors contributing to short-term voltage instability (and slow post-disturbance voltage
recovery [84]). Nonetheless, the voltage-related problems in DSA simulations may
happen even when “ordinary" static load models (other than the constant impedance
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model) are employed. Very few works in this field ascribed these incidents to the
existence of “impasse surfaces" [85] or “singularity surfaces" [86] where “voltage
causality" is lost. Yet, the structured research that analytically describes the loss
of voltage causality, its connection to RAS region and load modeling has not been
carried out so far.

As the summation of the two previous subsections, the following research
motivation and the corresponding challenges may be outlined:

1. Motive (1.M): Due to the global importance of RAS assessment in power
system security, there is a need for an efficient on-line DSA tool in order to
meet the (N-1) criterion at all times.

• Challenge (1.1C): The existing DSA methodologies are either slow (TDS),
computationally demanding (TDS, TS), imprecise/unreliable (TEF, PRM) or
they require modeling simplifications (TEF).

• Challenge (1.2C): The DSA simulation programs either focus on one contin-
gency and one operating point at a time (TDS, TEF) or they may support a
very small change in system parameters (TS). With every larger change of
the parameters (operating condition), new RAS assessment should take place.

• Challenge (1.3C): PRM do not provide analytical relationship between the
operating conditions and RAS (e.g. estimated CCT). This means that even if
PRM would always estimate with high accuracy (which is not the case), CCT
can be found based on the operating conditions but not vice versa.

2. Motive (2.M): In RAS assessment, rotor oscillations may induce voltage
instability issues that are not linked to dynamic modeling of loads. In order
to prevent unexpected voltage collapse on a power swing, this phenomenon
needs a precise analytical description.

• Challenge (2.1C): The majority of the large-disturbance voltage stability
methods deal with the short-term effects of fast-responsive dynamical loads.

• Challenge (2.2C): The works on impasse surfaces linked the non-existence of
DAE solution in state-space with the loss of voltage causality due to the non-
linear modeling of static loads. However, this connection between short-term
voltage collapse and transient stability has not been established in analytical
form until now.

The description on how this thesis approached the identified challenges follow.
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1.3 Scope and main objectives

The work of this thesis is comprised of both short-term RAS and voltage collapse
phenomena that are associated to large disturbances. The most appropriate is to
place the thesis into the framework of on-line DSA, since the main concerns of DSA
are RAS and voltage transients. The aim of the work was to make improvements
with respect to the Motives (1.M-2.M) and Challenges (1.1C-2.2C) that are counted
in the previous subsection. Following the list, the main objectives of the thesis are:

1. Objective (1.O): To construct an improved RAS methodology that out-
performs the existing approaches. In order to be considered as an improve-
ment, the newly proposed RAS methodology must satisfy the following re-
quirements:

• (1.1O): The method needs to be comparatively fast, precise and it should not
impose modeling constraints. It should also be possible to assess stability
margin information.

• (1.2O): It is expected that the method is capable to carry out the short-term
RAS assessment under large perturbations of the o.s. without facing the
problems with the accuracy of estimates.

• (1.3O): The methodology should define the short-term RAS index as an
analytical function of the o.s. (e.g. CCT=f (o.s.)). The aim is also to be able
to inverse this function (o.s.=f−1(CCT)) if a certain set of o.s. is required to
be estimated instead of CCT.

2. Objective (2.O): To investigate the coupling between RAS and voltage col-
lapse that occurs in seconds after large disturbances. In that sense, the two
groups of questions to be answered are:

• (2.1O): Do the non-linear static models of load affect the loss of voltage
causality along a post-fault trajectory? What are the practical implications of
these events when it comes to DSA simulation?

• (2.2O): If the connection between aforementioned load modeling and impasse
surfaces exists, what are the reasons for that (analytically speaking)? Are
there some means to predict short-term voltage collapse in these cases?

It is considered that this thesis has fulfilled its aim once the given Objectives
(1.O-2.O) are adequately addressed.
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1.4 Scientific contributions

On its way to tackle the Objectives (1.O-2.O), this thesis first provides an insight
into the short-term stability issues of interest. This means that the existing models,
analytical and numerical tools are to be clearly presented. The thesis contributions
are hereby listed in the form of solutions to the corresponding objectives:

1. Solution (1.S): The new methodology for short-term RAS assessment is
proposed. The base for the approach is that the perturbation of the operating
point is described by the parametrization of RAS stability boundary, i.e. the
interesting parts of the stability boundary are mapped into the points of the
security boundary by means of polynomial regression [J1,C1,C2].

• (1.1S): The data for the boundary construction is collected by TDS, how-
ever, very small number of points is needed due to the proper choice of the
parametrization technique. Several data collection approaches and parametriza-
tions (axis of the multidimensional parameter-space) are proposed and com-
pared. The final choice is the newly introduced parametrization that has a
physical meaning and represents the directional sensitivity of the SIME equiv-
alent to the changes in operating conditions. The result is a method that is
accurate enough and can be applied without limitations in terms of modeling.
Once the boundaries are constructed, they may be assessed on-line while
providing the stability margin information (the difference between actual
clearing times and CCT).

• (1.2S): The parameter-space boundary is constructed by means of non-linear
analysis and is therefore suitable for RAS assessment even when the o.s.
drastically change.

• (1.3S): The polynomial regression model of the security boundary is intro-
duced in order to: (i) provide the analytical dependency between CCT and
parameters and (ii) enable the manipulation with the polynomial coefficients
such that Quadratic Programming (QP) can be applied for the purposes of
conservative CCT estimation.

2. Solution (2.S): The coupling between the short-term RAS and voltage sta-
bility has been established by introducing and defining the concept of Voltage
Impasse Regions (VIR). The VIR may appear inside RAS region and interfere
with stability assessment [J2,C3].
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• (2.1S): The mathematical model for the voltage collapse study has been
derived and the voltage magnitudes have been defined as the functions of
relative rotor angles. The obtained expressions for voltage magnitudes led
to the conclusion that for some points along the post-fault trajectory, DAE
system faces singularity and TDS exhibits problems with convergency.

• (2.2S): The thesis determined that if the non-linear static loads are employed,
the solutions for voltage magnitudes become impossible at certain state-space
areas that are denoted as VIR. Extensive analysis has been carried out to
precisely define VIR and determine the mechanisms leading to its appearance.
Additionally, several Voltage Collapse Indicators (VCIs) are proposed as the
metrics of proximity to VIR with respect to different load models.
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1.5 Thesis outline

The thesis has been organized in chapters with the following outline:

Chapter 2 provides the mathematical models of the power system and its components
that are used in this thesis. The chapter also contains a brief review of the RAS
region characteristics and the description of the stability analysis methods
that are of interest.

Chapter 3 presents the theory and the results of the newly developed methodology for
short-term RAS assessment in parameter-space.

Chapter 4 introduces the concepts of SIME-based parametrization and imposes the
constraints on the parametrized security boundaries by the means of QP.

Chapter 5 first reviews the static/dynamic aspects of voltage stability assessment and
then introduces VIR as a state-space region.

Chapter 6 gives the analytical formulation of VIR and discusses how the non-impedance
static load type and size influence VIR.

Chapter 7 draws the final conclusions of the thesis and reflects the potential ideas/aims
to be addressed in future.

The locations of the thesis contributions from the Solution list (previous subsection)
are marked in Table 1.1 that is given below.

Table 1.1: The distribution of the Solutions (1.1S-2.2S) in the thesis outline

Solution Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6
(1.1S) X X X
(1.2S) X X
(1.3S) X X
(2.1S) X X
(2.2S) X





Chapter 2

Power System Modeling and RAS
Assessment

This chapter presents an overview on the modeling, numerical and analytical
concepts that are employed in short-term RAS analysis. The overview provides the
particular mathematical models of multi-machine power system and its components,
as well as the foundation of the TDS/direct methods that will be used in the thesis.

2.1 Foreword

The transient stability (or short-term RAS) analysis deals with the electromechanical
oscillations of rotor angles that occur in the first seconds following a large distur-
bance. The typical large disturbances are, for instance, short-circuits, tripping of a
long transmission line, generator outage and the loss of large portions of load [54].
These events may or may not have to be correlated, and their sequence depends on
the protective system reaction and the initial operating point. If a large disturbance
results in unbounded increasing rotor angles of one or more AC generators, the syn-
chronism is lost. When dealing with large disturbances, it is necessary to take into
account the non-linear nature of the power system and its components. Depending
on the assumptions regarding the system modeling, this is done by employing either
a set of Ordinary Differential Equations (ODE) or a set of Differential Algebraic
Equations (DAE). Both equation sets describe the system dynamical behaviour.
The evaluation of the power system ability to remain in synchronism then usually
comes down to (i) some sort of quantification of transient stability (such as Critical
Clearing Times (CCT) or critical energy) and (ii) identification of (in)stability/

17
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margins for contingencies of importance. For the purpose of better understanding
of the aforementioned concepts, the general non-linear power system model, the
modeling of the specific components and a brief explanation of the methods of
interest follow in the sequel.

2.2 General power system model and its components

While a power system operates in a steady-state, the operating condition can be
determined from the power flow calculations. The power flow equations are based
on the Kirchoff’s current law [87] which states that the sum of currents (or powers)
flowing into a junction of a circuit (i.e. bus) is equal to the sum of currents (powers)
leaving the same bus. The power flow solution would be completely sufficient if
there is such thing as a perfect steady-state. Nevertheless, the operating conditions
continuously fluctuate in power systems, where a majority of changes are small
enough to be well-described by the means of linearization. In the sense of RAS (and
based on the classification from Fig. 1.5), this is the task for Small Signal Stability
Analysis (SSSA) [88]. The SSSA linearizes the non-linear model of a power system
around the operating point to examine the stability characteristics, most often via
eigenvalue analysis [89].

However, the power system “moves" far away from the operating point once
a large disturbance takes place. This is when the linearized models are not a valid
representation of power system behaviour. For the analysis of large disturbance
dynamics, it is necessary to consider a full, general model of a power system that is
given by a set of Differential Algebraic Equations (DAE):

ẋ = f(x,y);
0 = g(x,y), where:

(2.1)

• f(x,y) is the vector-valued function that denotes the differential part of (2.1);

• g(x,y) represents the set of the algebraic (power flow) equations;

• x and y are the vectors that contain the state and algebraic variables, respectively.

The structure of the vector of state variables x depends on the chosen modeling
of the dynamical components (in particular, generating units). The vector of the
algebraic variables y usually consists of the voltage magnitudes and the voltage
angles of the system buses. If the number of the state and algebraic variables are
denoted by nx and ny, respectively, the vector x has dimension nx × 1 and the
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vector y is of ny × 1 size. In the steady-state, when the dynamics are not present,
the initial pre-fault conditions at t = t0 may be solved from:

0 = f(x0,y0) and 0 = g(x0,y0), (2.2)

where the initial operating point is given by x0 = x(t0) and y0 = y(t0). Practically,
y0 is usually found first by running the power flow. The initial vector of state-
variables (x0) is then calculated based on the previously obtained y0.

The structure of realistic power systems is complex. The electrical power is
first produced in generating units. The principle of operation of the generating units
depends on the type of the energy source (hydro, solar, nuclear, wind or thermal
energy [90], for example) that needs to be converted into electrical power. After
passing through the step up transformers, this power is then carried by the high
voltage transmission lines to the step down transformers that are connection points
for the demand centers. To analyze the static and dynamic conditions in power
systems, simplifications need to be made in order to have compact models. A
general, simplified representation of a power system that has n generators (Gk,
k = 1, ..., n) and a total of N load buses is depicted in Fig. 2.1.
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Figure 2.1: The general model of a power system

Out of the N load buses, the first n buses are known as generator terminal
buses. At each of the N buses, a load (represented by its complex power S̄lk ,
k = 1, ..., N ) may be connected. The transmission network represents the meshed
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grid that consists of lines that transmit the required power from the generation to
the loads.

In order to apply the DAE form (2.1) to the model from Fig. 2.1, the modeling
of the specific components first needs to be defined. Depending on the proposed
study, different power system components (and corresponding models) may be
included. The aim of this thesis is to further develop the analytical concepts that
are related to RAS and to provide an insight into the state-space characteristics. In
order to be able to distinguish between the important mechanisms and the ones that
do not influence the investigated phenomenon, the following modeling is employed.

2.2.1 Synchronous generator

The total number of state variables in the power system is mostly affected by the
choice of the dynamic modeling of the generators (Gk). The phenomenon of interest
determines how detailed the generator model should be. Since short-term RAS deals
with the loss of synchronism (rotor angle dynamics), this type of stability studies
may consider the classical model of the generator [54]. In this model, the generator
is given by a voltage source (with a constant magnitude) behind d-axis transient
reactance, as shown in Fig. 2.2.

k kU k kE 

dkjX 

gkI

Figure 2.2: The equivalent circuit of the classical model of a synchronous generator

The classical model is a dynamical system of the second order — it describes
the dynamics of the rotor angles and the angle speeds. In the electrical circuit of the
kth generator (k = 1, ..., n) from Fig. 2.2:

• Ē′k = E′k∠δk- is the phasor of the internal transient voltage of the kth generator,
with the constant magnitude E′k = const. and the rotor angle δk;

• X ′dk - denotes the kth machine d-axis transient reactance which here also includes
the reactance of the associated kth transformer;

• Ūk = Uk∠θk - outlines the phasor of the voltage at the terminal bus of the kth

generator, with the magnitude Uk and the voltage angle θk and
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• Īgk - stands for the current of the kth generator.

In the case of classical model, the dynamics of the kth synchronous generator
(k = 1, ..., n) from the Fig. 2.2 are fully defined by the swing equation in per unit
[p.u.] as [91]:

δ̇k = ωk;

ω̇k = 1
Mk

(Pmk − Pek −Dkωk),
(2.3)

where the two state variables are (i) δk (rotor angle measured from synchronously
rotating reference) and (ii) ωk (the deviation of the rotor angle speed from syn-
chronous speed ωs). The active electrical power input of the generator is denoted as
Pek and it can be derived from the complex electrical power that the kth generator
injects into its terminal bus as:

Pek = Re(ŪkĪ∗gk) = E′kUk sin(δk − θk)
X ′dk

. (2.4)

For the kth generator with rated three-phase apparent power Sngk
, the remaining

parameters from the model (2.3) are given as follows:

• Mk = 2HkSngk
/ωsS

3φ
base - is the constant that reflects the inertia Hk of the kth

generator, where S3φ
base is arbitrarily chosen three-phase base power;

• Pmk - denotes the mechanical power of the generator that is assumed to be
constant in the case of the classical model (i.e. Pmk = const.) and

• Dk - is a small, positive damping constant that represents the inherent damping
of the generator.

2.2.2 Load models

This thesis will employ the static load models that expresses the load power via
voltage dependency. This means that standard static load models, ZIP model and
exponential model [92], omit the dynamics of loads. The argument for using this
type of load model is that load dynamics are not the driving mechanism for the short-
term rotor angle instability. The dynamic load models are of particular importance
for short-term and long-term voltage stability studies. However, this thesis aims
to investigate the short-term voltage stability issues that are not related to load
dynamics. This is the main reason why the dynamic load models are not considered.
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When the static load model is employed, the load at any terminal or purely load
bus k (k = 1, ..., N ) from Fig. 2.2, may be represented by its complex power:

S̄lk = Plk + jQlk . (2.5)

Complex power S̄lk may relate to a specific static load model or it can be given in a
more general form. Both variations contain only algebraic equations that enable the
dynamic incorporation of a load connection to some bus k, as shown in Fig. 2.3.

k k kl l lS P jQ 

k kU 

Figure 2.3: The representation of the static load connection

The simplest load representation is known as exponential static load model. In
the exponential model, the active and reactive components of the complex load
power at bus k are given as the functions the voltage magnitude at the same bus:

Plk = Plk0

(
Uk
Uk0

)mp
;

Qlk = Qlk0

(
Uk
Uk0

)mq
, where

(2.6)

• mp,mq - are the voltage exponents that correspond to the active and reactive load
power, respectively;

• Uk0 - is the initial value of the voltage magnitude at bus k and

• Plk0 , Qlk0 - are the values of the active and reactive load power at voltage Uk0 .

The values mp = mq = 0 represent constant power load, mp = mq = 1 are used
for constant current characteristic and mp = mq = 2 represent constant impedance
load model. Different combinations of the parameters mp and mq are applicable,
and then the load model is of composite type.

The more general approach involves the employment of the ZIP load model
where the load power consists of three components—constant impedance (Z),
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constant current (I) and constant power (P) component. In the ZIP model, the active
and reactive components of the complex load power S̄lk are expressed as:

Plk = Plk0

[
kPz(

Uk
Uk0

)2 + kPi(
Uk
Uk0

) + kPp
]

and

Qlk = Qlk0

[
kQz(

Uk
Uk0

)2 + kQi(
Uk
Uk0

) + kQp
]
.

(2.7)

The parameters kP and kQ define how large is the fraction of each load component
(constant impedance (Z), constant current (I) and constant power (P) component).
The equality kPz + kPi + kPp = kQz + kQi + kQp = 1 also needs to hold.

2.2.3 Line model

Once the choice is made for the generators and loads, the model for the lines of the
transmission network from Fig. 2.1 should also be defined. The standard model
of long, transmission lines that is usually used for the purposes of power system
analysis is known as the Π model [93]. The Π model represents a line between some
buses k and p as a series impedance (Z̄kp = Rkp + jXkp) and a shunt admittance
(Ȳsh−kp) that is connected to ground. The shunt is divided into two equal parts
(ȳsh−kp = jbsh−kp) that are connected at the two ends of the line. Every line that
connects some bus k with another bus p will in this thesis be represented by a
slightly simplified Π model with a purely reactive series impedance (Rkp = 0),
as in Fig. 2.4. This assumption has a physical meaning since Xkp � Rkp for
transmission lines.

p pU 
kpjX

k kU 

kpS

sh kpjb  sh kpjb 

Figure 2.4: Π-model of a transmission line

The reactive series impedance between the buses k and p may also be written in
the admittance form:

ȳkp = 1
jXkp

= jbkp, where bkp = − 1
Xkp

. (2.8)
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Now the active and reactive parts of the complex power (S̄kp = Pkp + jQkp) that is
transmitted through the line are seen at the end k as:

Pkp=−UkUpbkp sin(θk − θp)
Qkp=(−bsh−kp − bkp)U2

k + UkUpbkp cos(θk − θp), ∀k, p=1, ..., N ∧ k 6=p.
(2.9)

For the case of the general power system with N buses, the whole transmission
network will be represented by the (N ×N) admittance matrix YBUS:

YBUS = GBUS + jBBUS =


Ȳ11 Ȳ12 . . . Ȳ1N
Ȳ21 Ȳ22 . . . Ȳ2N

...
...

. . .
...

ȲN1 ȲN2 . . . ȲNN

 . (2.10)

The matrix YBUS may always be uniqely determined by inspection for a given
transmission network. Since the network is assumed to be lossless (GBUS = 0), the
admittance matrix YBUS only has the reactive component jBBUS. Considering the
line model from Fig. 2.4, the non-diagonal and diagonal entrances of the admittance
matrix may be defined as follows:

Ȳkp= jBkp = −jbkp for k, p = 1, ..., N ∧ k 6=p, (2.11)

Ȳkk= jBkk =
N∑
p=1
p 6=k

j(bkp + bsh−kp) for k = 1, ..., N, (2.12)

respectively.

2.3 Dynamic modeling of multi-machine power systems

Now that all the power system elements of interest for the thesis have been presented,
the general multi-machine models can be formulated.

2.3.1 DAE model of multi-machine power systems

As mentioned before, the dynamical model of a multi-machine power system
consists of differential and algebraic parts. Based on the modeling from the previous
section, the set of the differential equations for the n-machine model is given as:

δ̇k = ωk;

ω̇k = 1
Mk

(Pmk − Pek −Dkωk), for k = 1, ..., n.
(2.13)
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The algebraic set of equations represents the active and reactive power mismatch
equations for all N system buses:

0 = Pk + Plk ;
0 = Qk +Qlk , for k = 1, ..., N,

(2.14)

where Pk and Qk are the real and reactive powers that are injected into bus k,
respectively. The definition of the active and reactive powers differ depending on
the bus type. For generators terminal buses (k = 1, ..., n), these injected powers
may be defined as:

Pk =
N∑
p=1

BkpUkUp sin(θk − θp)−
E′kUk sin(δk − θk)

X ′dk
;

Qk = −
N∑
p=1

BkpUkUp cos(θk − θp)−
E′kUk cos(δk − θk)− U2

k

X ′dk
,

(2.15)

and for the other buses (k = n+ 1, ..., N ), the injected active and reactive powers
are:

Pk =
N∑
p=1

BkpUkUp sin(θk − θp);

Qk = −
N∑
p=1

BkpUkUp cos(θk − θp).
(2.16)

When written in the form of Eqs. (2.13) and (2.14), the multi-machine power system
is now fully defined as the general DAE model:

ẋ = f(x,y);
0 = g(x,y),

(2.17)

where the vectors of the state and algebraic variables are:

x =
[
δ1 δ2 . . . δn ω1 ω2 . . . ωn

]T
y =

[
U1 U2 . . . UN θ1 θ2 . . . θN

]T
.

(2.18)

The vector of state variables x contains generator rotor angles and angle speeds
and the vector of the algebraic variables y represents the magnitudes and angles of
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buses voltages. The given power system model is known as the Structure Preserving
Model (SPM) [94]. In SPM, all the system buses are retained. The main advantages
of this detailed model are that (i) it preserves the original network topology and (ii)
it provides freedom in terms of modeling. Another option is to simplify the SPM
of a power system by suppressing the load buses. To make this reduction, all the
loads need to be of a certain type. This model is known as Reduced Network Model
(RNM), and its characteristics are given in the following subsection.

2.3.2 RNM model of multi-machine power systems

Multi-machine power system can also be given in the form of Reduced Network
Model (RNM) [95] where only generators buses are preserved. The aim of RNM
is to simplify dynamical analysis by replacing a DAE system with a system of
Ordinary Differential Equations (ODE). To do the reduction from SPM to RNM,
the augmented power system from Fig. 2.5 is used.
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1gI

1l
y

n nU n nE 
dnjX 

gnI

nl
y

1nl
y



Nl
y

1 1n nU  

N NU 

Transmission

 network

Figure 2.5: The power system model for reduction of DAE to ODE

Considering the modeling of components that is given in this thesis, the only
additional assumption for the model in Fig. 2.5 is that all the loads (k = 1, ..., N )
are modeled as constant admittances/impedances (ȳlk/Z̄lk ), i.e.:

ȳlk = 1
Z̄lk

, where Z̄lk = Rlk + jXlk = U2
k

Plk − jQlk
. (2.19)
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Now let matrix YLOAD to be defined as an N ×N diagonal matrix where (k, k)th
entrances (k = 1, ..., N ) are the load admittances ȳlk . The new admittance matrix is
constructed then as Y′BUS = YBUS + YLOAD, in which the (k, p)th element of
Y′BUS is given by Ȳ ′kp = Ḡ′kp + jB̄′kp. To derive the mathematical model of RNM,
all the algebraic variables in the differential part of the model (2.17) need to be
expressed as functions of state variables. This is always possible to do when all the
loads are of constant impedance type. For the model from Fig. 2.5, the following
matrix equation holds:[

IG
0

]
=
[

YA YB
YC YD

] [
E′

U

]
where (2.20)

• IG =
[
Īg1 Īg2 . . . Īgn

]T
- stands for the vector of the generators currents

and 0 denotes (N × 1)-dimensional zero vector;

• E′ =
[
Ē′1 Ē′2 . . . Ē′n

]T
- is the vector of the generators internal voltages;

• U =
[
Ū1 Ū2 . . . ŪN

]T
- is the vector of voltages at both generators terminal

buses and pure load buses;

• YA - represents the (n× n)-diagonal matrix where diagonal (k, k)th entrances
(k = 1, ..., N ) are defined as ȲAkk

= 1/jX ′dk;

• YB - is a matrix of (n × N ) dimensions in which the only non-zero elements
ȲBkk

= −1/jX ′dk are at (k, k)th positions (k = 1, ..., N );

• YC = YT
B and;

• YD - is an (N ×N ) matrix that essentially represents Y′BUS whose elements are
expanded for the corresponding entrances of YA.

Starting from the compact form of Eq. (2.20), by substitution it can be shown that:

IG = (YA −YBYD
−1YC)E′

IG = YRNME
′,

(2.21)

where YRNM is the RNM admittance matrix of (n×n) dimensions. In the following
notation, the non-diagonal (k, p)th entrance of YRNM is ȲRNMkp

= Gkp + jBkp
and the diagonal elements are ȲRNMkk

= Gkk + jBkk. The current of the kth
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generator in the rotor reference frame (Īgk = (Iqk + jIdk)ejδk ) can then easily be
expressed from Eq. (2.21) in the following form:

Īgk = (Gkk + jBkk)E′kejδk +
n∑
p=1
p6=k

(Gkp + jBkp)E′pejδp (2.22)

from which Iqk and Idk components of Īgk can be solved as:

Iqk = GkkE
′
k +

n∑
p=1
p 6=k

E′p

(
Gkp cos(δk − δp) +Bkp sin(δk − δp)

)
and

Idk = BkkE
′
k +

n∑
p=1
p 6=k

E′p

(
Bkp cos(δk − δp)−Gkp sin(δk − δp)

)
.

(2.23)

By the virtue of Eqs. (2.3), (2.4), (2.22) and (2.23), the dynamical equations for
RNM with n generators (k = 1, ..., n) can now be defined:

δ̇k = ωk;

ω̇k = 1
Mk

(Pmk − Pek −Dkωk), where

Pek = E′kIqk = GkkE
′2
k +

n∑
p=1
p 6=k

E′kE
′
p

(
Gkp cos(δkp) +Bkp sin(δkp)

) (2.24)

and δkp = δk − δp. The above given equations completely describe the dynamic
behaviour of a power system in ODE form:

ẋ = f(x). (2.25)

By describing the system with the first order differential equations, it is sufficient to
follow up the behaviour of the state variables when carrying out short-term RAS.
The vector of state variables is the same as in the case of DAE model from Eq.
(2.17), i.e. state variables are rotor angles and generators angle speeds:

x =
[
δ1 δ2 . . . δn ω1 ω2 . . . ωn

]T
. (2.26)

In this manner, only internal generator buses are retained and there is no need to
solve the algebraic set of equations. After having SPM and RNM of power system
defined, the subsequent text will briefly review some of the existing methodologies
for transient stability assessment.
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2.4 TDS in RAS analysis

Time Domain Simulation (TDS) is the most accurate method that is used for the
purpose of dynamic stability analysis. It offers wide modeling opportunities that,
on the other hand, introduce corresponding computational burden. In dynamics
of small disturbances, TDS can be successfully replaced by analytical techniques
that can be applied if the DAE system from (2.1) is linearized around a stable
equilibrium (x0,y0). Linearized power system models provide reliable information
about stability only locally, i. e. close to an equilibrium. For larger excursions of
state/algebraic variables, some non-linear analysis tool (e.g. TDS) should be em-
ployed instead. After a large disturbance occurs, the automatic actions of protective
system may also lead to configurational changes. As a consequence of a fault (large
disturbance), the power system goes through the following stages: (i) the pre-fault
stage that corresponds to the steady state, (ii) fault-on stage and (iii) the post-fault
period in which the fault has been cleared. If the time when a disturbance occurs
is denoted by tf and the time of fault clearing is tcl, the SPM of a power system
that is described by a set of Differential Algebraic Equations (DAE) (2.1) may be
divided into three stages (pre-fault (pre), fault-on (f ) and post-fault (post)):

ẋ = fpre(x,y); 0 = gpre(x,y); 0 ≤ t < tf , (2.27)

ẋ = ff (x,y); 0 = gf (x,y); tf ≤ t < tcl, (2.28)

ẋ = fpost(x,y); 0 = gpost(x,y); tcl ≤ t <∞. (2.29)

The principle of TDS is to examine the system behaviour by solving Eq. (2.27),
(2.28) and (2.29), for a certain number (nst) of time steps ∆t. The result of TDS is
a discrete array of solutions at each time step r (r = 1, ..., nst), both for the states
(xr) and the algebraic (yr) variables. The state and network solutions are typically
obtained by using one of the two common approaches, namely:

• Partitioned solution method [96] where the differential and algebraic equa-
tions are solved separately (there is a delay between solutions). The solution of
the algebraic equations yr at time step r is used to initiate the solution (xr+1)
in the subsequent time step (r + 1). The vector of state variables (xr+1)
is further found by any explicit integration technique, e.g. Euler method,
modified Euler (predictor-corrector) method and the family of Runge-Kutta
(RK) methods (e.g. of second, fourth order and modified methods) [54, 97].

• Simultaneous solution strategy [98] refers to the solution algorithm where
both the state (xr) and algebraic (yr) variables are solved simultaneously in
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rth time step. General practice is to obtain the solution (xr,yr) by the means
of Newton’s method [99] from a set of non-linear equations. A formula for
implicit integration has to be used to transform the differential equations into
algebraic ones. This solution technique is applied for stiff problems, i.e. for
wide ranges of time scales of differential equations.

Both approaches share the same criterion for short-term RAS. One TDS is carried
out for each clearing time (tcl). The clearing time is increased in discrete steps until
the TDS in which rotor angles swing out of step. The clearing time of the simulation
preceding the unstable one is then proclaimed as the Critical Clearing Time (CCT)
tcc. Since the framework of this thesis is short-term stability, the timescale is the
same for both voltage and RAS issues. In this case, a partitioned solution approach
will suffice for the explicit integration of differential equations in both SPM (2.17)
or RNM (2.25). The examples of the effective explicit solvers that belong to RK
and Euler classes of methods follow.

2.4.1 Explicit RK methods

In the family of explicit RK methods, the idea was to employ approximated Taylor
series to solve xr+1 at tr+1 = tr + ∆t (which corresponds to (r + 1)th time step).
The simplification compared to Taylor series is that the effect of the derivatives of
higher order are taken into account by evaluating the first derivative several times.
Depending on the number of these evaluations, various RK methods have been
introduced. Starting from the solution xr at time tr in rth time step and for a certain
number of stages q, the general idea is to solve xr+1 by formula:

xr+1 = xr + ∆xr = xr + ∆t
∑q
s=1 bsks (2.30)

where the coefficients ks (s = 1, ..., q) are defined as:

k1 = f(tr, xr)
k2 = f(tr + c2∆t, xr + a21k1∆t)
k3 = f(tr + c3∆t, xr + (a31k1 + a32k2)∆t)
k4 = f(tr + c4∆t, xr + (a41k1 + a42k2 + a43k3)∆t)

...

kq = f(tr + cq∆t, xr + (aq1k1 + aq2k2 + · · ·+ aq(q−1)kq−1)∆t).

(2.31)

The product of weights (bs) and estimated slopes (ks∆t) are summed up for s =
1, ..., q in order to obtain the incremental change ∆xr. To have a good xr+1 solution,
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it also needs to hold that
∑s−1
j=1 asj = cs, for s = 2, ..., q. Researchers have

developed different RK methods [100] with specified orders (nord), and in those
cases certain requirements regarding local truncation error [101] are to be fulfilled.
These requirements affect the total number of stages (q) with respect to coefficients
cs, asj (when s = 2, ..., q, j = 1, ..., s − 1) and bs (for s = 1, ..., q ). The usual
practice is to arrange the coefficient data in so-called Butcher tableau [102]:

0
c2 a21

c3 a31 a32
...

...
. . .

cq aq1 aq2 . . . aq(q−1)

b1 b2 . . . bq−1 bq

.

(2.32)

This thesis will carry out the integration of differential equations by the means
of Dormand-Prince [103] method that is often used in short-term RAS analysis.
Dormand-Prince method is one of the embedded RK methods that can adapt its step
size in order to control local truncation error. This is implemented by combining
the method of order nord and the method of order (nord − 1) in each time step
r (r = 1, ..., nst). The method of the order (nord − 1) shares all the coefficients
with the higher order one, except for the bs (s = 1, ..., q), i.e. the solution of the
additional method at the (r + 1)th time step is:

xr+1
∗ = xr + ∆xr∗ = xr + ∆t

∑q
s=1 b

∗
sks. (2.33)

By deducting the lower order estimate from the higher order one, the local truncation
error Er+1

rr =xr+1−xr+1
∗ is controlled to adjust the step size. The Butcher tableau

for embedded RK solvers is then extended for the coefficients b∗s (s = 1, ..., q) as:

0
c2 a21

c3 a31 a32
...

...
. . .

cq aq1 aq2 . . . aq(q−1)

b1 b2 . . . bq−1 bq

b∗1 b∗2 . . . b∗q−1 b∗q

.

(2.34)
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For the specific case of Dormand-Prince method, there are seven stages (q = 7),
where stage q in step r corresponds to stage 1 of step r + 1 (six evaluations of
functions are made). In this case, the coefficients from Butcher tableau have the
following values:

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45 −56

15
32
9

8
9

19372
6561 −25360

2187
64448
6561 −212

729

1 9017
3168 −355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 −2187

6784
11
84

35
384 0 500

1113
125
192 −2187

6784
11
84 0

5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

,

(2.35)

where the last row provides the coefficients for the 4th order solution, and the
previous row corresponds to the estimate with the 5th order of accuracy. The
coefficients are chosen such that the error of the 5th order solution is minimized.
The Dormand-Prince method will be used for TDS integration in the studies that
concern RAS. This method will be paired with the trust-region Dogleg algorithm that
will solve the algebraic part of DAE model from (2.27)-(2.29). The Dogleg [104]
algorithm is a combination of Steepest Descent [105] and Newton-Raphson [106]
solvers for systems of non-linear algebraic equations.

2.4.2 Modified Euler Method

Modified Euler [54] is another commonly employed method of explicit integration in
non-stiff dynamical systems. It belongs to the class of predictor-corrector methods
[107] since it involves the two corresponding steps:
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• Predictor step which is identical to the standard Euler method that estimates the
solution at (r+ 1)th time step by using the first derivative (slope) at the beginning
of the step to account for the ∆xr:

xr+1
p = xr + ∆xr = xr + dx

dt

∣∣∣∣
x=xr

·∆t = xr + f(xr)∆t. (2.36)

The difference compared to the standard Euler method is that this step is used
only to predict the value at the end of the step (i.e. this is not considered as the
final solution in the given step).

• Corrector step adjusts the incremental change by taking the average of the
derivatives at the beginning and at the end of the step (r + 1). The derivative at
the end of the step is found based on the predicted value xr+1

p . The corrected
solution can then be given by:

xr+1
c = xr + ∆xrc = xr +

dx
dt

∣∣∣∣
x=xr

+ dx

dt

∣∣∣∣
x=xr+1

p

 ∆t
2

= xr + (f(xr) + f(xr+1
p ))∆t

2 .

(2.37)

In this thesis, predictor-corrector Euler will be implemented for solving differential
equations in the studies that relate to voltage collapse and Voltage Impasse Region
(V IR). The idea is to continue the integration by the means of TDS even the load
flow solution fails to converge.

2.5 Short-term RAS as a stability region problem

Although TDS is the most reliable tool when it comes to the analysis of large
disturbances, it is time consuming. In the process of CCT identification, many TDS
have to be carried out and a large portion of computational time is consumed by
the post-fault dynamics. A popular alternative to TDS is the class of approaches
that are known as Direct Methods. They are also referred to as Transient Energy
Function (TEF) methods. The idea to replace the numerical integration of a post-
fault dynamical system with a unique stability criterion started to develop in the
40’s [64] and was conceptually pursued until the 60’s [65–67]. These findings have
further served as the basin of Direct Methods.
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2.5.1 Characterization of the stability region

In Direct Methods, the short-term RAS is observed as a stability region problem of
a Stable Equilibrium Point (SEP). For a general, non-linear system of differential
equations:

ẋ = f(x), (2.38)

equilibrium points xi are found by setting the time derivative on the left-hand side to
zero (i.e. 0 = f(x)). Direct methods deal with hyperbolic equilibrium points, which
means that the Jacobian of f(x) at the given equilibrium point xi has no eigenvalues
with zero real parts. Those equilibria that have one eigenvalue with positive real
part are known as type-1 Unstable Equilibrium Points (UEPs), and those with any
higher number (z) of eigenvalues in the right half plane are referred to as type-z
equilibrium points. The theory that concerns direct methods is mostly interested
in type-1 UEPs. The Stable Equilibrium Point (SEP) xs has all its eigenvalues
in the left half plane. Both SEP and UEPs may change if configurational change
occur in relation to a fault, as described in the model (2.27)-(2.29). Therefore, in the
further notation, xposts will denote the SEP of a post-fault system and type-1 UEP
of the same system will be given as xui. The post-fault stability region A(xposts )
of SEP xposts can now be defined as an open, invariant and connected subset of the
state-space from which all the trajectories will converge to SEP xposts [108]:

A(xposts ) =
{
x|x(t)
t→∞

= xposts

}
. (2.39)

Equation (2.39) is identical to the definition of the stable manifold of xposts . Hence,
in a similar fashion, stable (W s) and unstable (W u) manifolds of a type-1 UEP xui
may be defined as invariant sets:

W s(xui) =
{
x|x(t)→ xui as t→∞

}
;

W u(xui) =
{
x|x(t)→ xui as t→ −∞

}
.

(2.40)

The following assumptions regarding vector fields need to hold to define the bound-
ary of the stability region in the terms of the previously defined concepts [95, 109]:

1. The UEPs of (2.38) that are located on the stability boundary ∂A(xposts ) are
hyperbolic.

2. The transversality condition of stable and unstable manifolds of UEPs is valid
for all the equilibrium points on the boundary ∂A(xposts ).
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3. Every trajectory x(t) on the stability boundary ∂A(xposts ) will converge to
one of the UEPs that are located at the boundary as t → ∞. This is not a
generic property of all non-linear dynamical systems, however, it can be guar-
anteed if the existence of an energy-like function V (x) can be demonstrated
for the post-fault system. If the number of state variables is here temporarily
denoted by n, the suitable Rn → R function V (x) exists if it is continuously
differentiable (C1) and:

C1. V̇ (x) ≤ 0 is valid for all the points in state-space that are not equilibria.

C2. The set in state space described by V̇ (x) = 0 has zero measure if x is
not an equilibrium point.

C3. If V (x) is bounded =⇒ x(t) is bounded.

The boundary of the stability region of a post-fault SEP xposts then equals to the
union of closure of the stable manifolds of type-1 UEPs that are placed on the
stability boundary ∂A(xposts ) [68]:

∂A(xposts ) =
⋃
i

W s(xui). (2.41)

The region of attraction and its features are illustrated in Fig. 2.6 for an autonomous
dynamical system that has two state variables (x1 and x2 ).
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1xuClosestx

uControllingx

exitx

Figure 2.6: Two-dimensional state-space representation of a stability region
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2.5.2 Direct methods

From the viewpoint of the stability region A(xposts ) from (2.39), a system will be
considered transiently stable if at the time when a fault is cleared (tcl), the point
on the trajectory x(tcl) is inside the region of attraction. Direct methods [110]
assess the state-space location by the means of stability index V (x) that is actually
an energy-like Lyapunov function. In physical systems, Lyapunov functions are
scalar functions that are usually generalized from the idea of energy of a dynamical
system. The same follows for power systems. The measure of energy V (xposts ) is
zero, and its derivative is negative semidefinite inside the stability region A(xposts ).
The advantages of direct methods are that (i) they replace the demanding post-fault
integration of TDS by a stability criterion and that (ii) they give stability margins.
The aim of this and remaining subsections of this chapter is to provide a general
discussion on direct methods.

To show a simple example of an energy function, let us consider the RNM model
(2.24) with n generators and an additional (n+ 1)th reference bus that has a very
large inertia (δn+1 = 0, ω̇n+1 = 0). If transfer conductances of RNM admittance
matrix are neglected, the model (2.24)/(2.25) may be written as:

δ̇k = ωk;

ω̇k = 1
Mk

(
P eqk −

n+1∑
p=1
p 6=k

E′kE
′
pBkp sin(δk − δp)−Dkωk

)
, for k = 1, ..., n,(2.42)

where P eqk = Pmk − GkkE′2k . Clearly, some portion of the active load is lost by
neglecting the transfer conductances for a system with purely reactive transmission
network. By looking back to Eq. (2.21), it may be noticed that the effect of load
is distributed between diagonal and non-diagonal elements of YRNM. Hence,
disregarded transfer conductances would probably decrease the accuracy of RAS
assessment. However, the assumption to neglect Gkp in RNM enables an exact and
simple construction of energy function. This is sufficiently good in the context of a
thesis which briefly revises direct methods for the purpose of conceptual discussion.
More sophisticated energy functions may be found in [68, 111].

The SEP of the system (2.42) is xposts = (δposts ,0), where 0 = ωposts denotes
(n× 1)-dimensional zero vector of angle speeds relative to infinite bus reference
and the vector of rotor angles is:

δposts =
[
δpost1s δpost2s . . . δpostns

]T
. (2.43)
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Then, for the system from Eq. (2.42), a well-defined Lyapunov function [95]:

V (δ,ω) = 1
2

n∑
k=1

Mkω
2
k −

n∑
k=1

P eqk (δk − δpostks )

−
n∑
k=1

n+1∑
p=k+1

E′kE
′
pBkp

(
cos(δk − δp)− cos(δpostks − δ

post
ps )

)
= VK(ω) + Vp(δ)

(2.44)

exists if all Dk = 0. The function (2.44) can be interpreted as the summation of
the kinetic energy of rotating masses (VK(ω)) and the remaining, angle dependent
part—accumulated potential energy (Vp(δ)). Let the functions:

uk =
n∑
p=1
p 6=k

E′kE
′
pBkp sin(δk − δp), for k = 1, ..., n, (2.45)

be the entrances of the vector/function u. In the cases when some Dk 6= 0, it is
assumed that the Jacobian matrix du/dδ is non-singular at the equilibrium points.
By finding the derivative of V (δ(t),ω(t)) along the trajectory (δ(t),ω(t)):

V̇ (δ(t),ω(t)) =
n∑
k=1

(
dV

dδk
δ̇k + dV

dωk
ω̇k

)
= −

n∑
k=1

Dkω
2
k, (2.46)

it becomes clear that V̇ (δ(t),ω(t)) = 0 holds only for ω = 0 which corresponds to
equilibrium points. Due to Dk > 0, in all other cases the derivative V̇ (δ(t),ω(t))
is strictly negative. Hence, the conditions C1-C2 from the previous subsection are
fulfilled for C1 function (2.44). From the known proof about the boundedness of the
trajectory (δ(t),ω(t)) from [110] (which relates to the same model of the generator
and the same energy function), it may be concluded that V (δ,ω) from (2.44) also
satisfies the condition C3.

In the framework of direct methods, the RAS criterion is that the energy at
the time of fault clearing is less than some critical energy (V (tcl) < Vcr). If this
condition is satisfied, it is expected that the system will not leave the stability region
A(xposts ) which is equal to the system being transiently (first-swing) stable. Finding
critical energy Vcr is essential step to apply the energy function theory instead of
classical TDS. In the past, various approaches have been developed in order to
calculate critical energy as accurately as possible. A short description of the the
most utilized approaches for Vcr calculation is given in the sequel.
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2.5.3 UEP-oriented assessment

From the theoretical concepts presented in Subsection 2.5.1, various UEP-oriented
methods have been developed in order to approximate the stability boundary
∂A(xposts ). The idea of UEP-oriented methods is to use constant energy surface
Vcr = Vui passing through a relevant (ith) type-1 UEP that lies on the stability
boundary. The energy of a relevant UEP is further used as a critical energy instead
of the energy of trajectory’s exit point. The exit point is difficult to detect, however,
a trajectory exits the boundary at one of the stable manifolds W s(xui) of type-1
UEPs. All the trajectories that start on one of manifolds W s(xui) would converge
to xui as t→∞. Therefrom originated the idea of using the energy of type-1 UEPs
since they are easier to detect than exit points. The two approaches stand out [68]:

• Closest UEP method [68] approximates the stability boundary by the equipo-
tential curve Vcr=VuClosest (shown by red colour in Fig. 2.6). The method
consists of the following steps:

1. It is first necessary to find all type-1 UEPs and determine which of them
are located on the stability boundary. This step practically checks if the
unstable manifolds of type-1 UEPs converge to SEP by integration in
ε-neighborhood of type-1 UEPs.

2. The selected UEPs are ordered according to the energy value. The type-1
UEP with the lowest energy is Closest UEP (xuClosest) and its energy is
proclaimed as the critical one (V (xuClosest)=VuClosest=Vcr).

3. Stability check is further carried out by comparing the values of energy at
fault clearing V (x(tcl)) with the critical energy VuClosest.

The Closest UEP method is simple, however, it has an obvious drawback. The
method is conservative, i.e. the point where a trajectory crosses the stability
boundary (xexit) may not belong to the unstable manifold of the Closest UEP
(as illustrated in Fig. 2.6). The consequence for short-term RAS is an energy
margin estimate that is much smaller than the one obtained from TDS.

• Controlling UEP method takes into account the direction of a post-fault
trajectory to avoid drawbacks in Closest UEP approach. The Controlling
UEP (xuControlling) is the type-1 UEP on the stability boundary ∂A(xposts )
whose stable manifold W s(xuControlling) contains exit point (xexit). In Fig.
2.6, the critical energy V (xuControlling)=VuControlling=Vcr corresponds
to the green equipotential curve. The general algorithm of this method is
comparatively more complicated than the Closest UEP approach:
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1. All the stable manifolds of type-1 UEPs on the boundary need to be
derived.

2. The Controlling UEP (xuControlling) is identified as the type-1 UEP
whose closure of stable manifold W s(xuControlling) is crossed first by a
post-fault trajectory.

To implement the given steps is not trivial. Some proposed methods employ
tangent hyperplanes [112], however, the theoretically most robust is so-called
Boundary of stability region Controlling Unstable equilibrium (BCU) method
[70]. Although BCU is fast, divergence issues and problems regarding exit
point detection can occur.

A common drawback of UEP-oriented method comes from the fact that UEPs are
not static entities. Varying operating conditions do not cause only changes in the
stability region. It has been shown that UEPs also change their positions on the
boundary, and that they may collide and disappear [72].

2.5.4 PEBS

Potential Energy Boundary Surface (PEBS) method [113] has been introduced in
order to avoid challenging identification of UEP of interest. PEBS observes the
stability region problem in the subspace of rotor angles where it provides an estimate
of an exit point. From the definition Vp(δ) in Eq. (2.44), the model (2.42) can be
reformulated as:

δ̇k = ωk;

ω̇k = 1
Mk

(
− ∂Vp(δ)

∂δk
−Dkωk

)
, for k = 1, ..., n,

(2.47)

where the model (2.47) retains the same energy function that is provided by Eq.
(2.44). The motivation for this approach comes from the fact that both the SEP
xposts = (δposts ,0) and all UEPs xpostui = (δpostui ,0) are located in the subspace
of rotor angles (0 = ωposts = ωpostu ). Hence, it is enough to study the associated
gradient system [113]:

δ̇k = −∂Vp(δ)
∂δk

, for k = 1, ..., n, (2.48)

and determine its stability boundary which equals to PEBS. Assuming that the
fault-on trajectories are orthogonal to PEBS [114], the potential energy at the point
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of PEBS crossing (δPEBS) may with good accuracy be taken as the critical one
(Vp(δPEBS)=VPEBS =Vcr). In order to find CCT, it is sufficient to carry out two
simple numerical steps (as depicted in Fig. 2.7):

1. The first maximum of Vp(δ(t∗) should be identified along a fault-on trajectory
at some time t∗. This maximum is considered as the critical energy, i.e.:

Vp(δ(t∗) = Vp(δPEBS) = VPEBS = Vcr. (2.49)

2. The critical clearing time tcc is then found along the trajectory of the original
system (2.42) where: VK(ω(tcc))+Vp(δ(tcc)) = Vcr. This means that, at the
time of fault clearing, V (δ,ω)≤Vp(δPEBS) needs to hold to achieve RAS.

t

( )cr pV V
PEBS
δ

cct t

( )pV δ

( , )V δ ω
Step 1            Step 2

0 0,V t

V

Figure 2.7: Graphical description of PEBS method

PEBS is a very convenient method since it takes into account a direction of a
trajectory without having to calculate UEPs. Nevertheless, PEBS method only
works with the projection of the stability boundary in angle space that does not
account for the kinetic energy of an exit point. If the location of an exit point along
the stable manifold of type-1 UEP is relativly close to UEP itself (ωPEBS ≈ 0),
PEBS method performs well. However, it can also happen that an exit point is
far enough from UEP to have sufficiently high kinetic energy, which consequently
affects the method’s accuracy.

Now that the theoretical basis is provided, the following chapters will propose
certain solutions/explanations that are of importance for short-term stability analysis.



Chapter 3

Assessment of RAS in Parameter
Space

The following chapter presents the conceptual idea and analytical foundation of
a new methodology for short-term RAS assessment. The proposed methodology
observes RAS as a security region problem in the space of parameters that are of
importance for RAS analysis. The approach constructs parameter-space security
boundaries in analytical (polynomial) form.

The DSA assessment of short-term RAS consists of large number of tests
that investigate how a power system handles critical contingencies. Each of these
tests corresponds to a certain pre-fault and post-fault operating state. Since the
electromechanical transients occur rather fast [35], the extensive RAS analysis has
to be carried out in advance. The previously explained approaches (TDS and direct
methods) can be used as tools to determine the severity of a disturbance. The off-line
analysis of transient stability usually involves identification of some sort of stability
index/margin (CCT, energy or transmitted power, for instance) for each contingency
and operating point. However, if a current operating condition for some reason does
not belong to a set of pre-checked operating points, the stability margin and the risk
of dynamic instability are unknown to TSO. Hence, there is a necessity to develop
faster and sufficiently accurate methods for short-term RAS in parameter-space.
PRM have attempted to solve this issue by the means of machine learning [79–82].
Among other drawbacks, ANN are trained to provide one-directional information
which means that the functional relationship between an input and an output does
not have an analytical form. To find a function that relates parameters and the
measure of stability is another task of the proposed methodology.

41
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The sections of this chapter will first illustrate the effect that changes of an
operating point have on RAS region and the measure of stability. Then a data
acquisition method is chosen and a method algorithm is proposed. This chapter deals
with Stage 1 of the proposed algorithm, i.e. it explains (i) the idea of parametrization
of the stability boundary, (ii) the tools of the parametrization and (iii) the polynomial
model for the construction of security boundaries.

3.1 Illustrative example

Before proposing a new methodology, this section will outline the importance of
understanding how a change in operating conditions may affect short-term RAS
and stability region characteristics. The aim is to illustrate a perturbation of an
equilibrium point from both TDS and direct methods point of view and also to
compare the performance of the two approaches.

3.1.1 Test system

The simple two-machine infinite-bus system from Fig. 3.1 is employed in the study.
The generators are represented by the classical model [54] and the lines are given
in Π form [93] where shunt admittances are not depicted for simplicity. Series
resistances are neglected. Additionally, loads are set to zero such that all power
generation is being absorbed by the infinite bus with constant voltage Ū3 = 1∠0. In
the terms of RNM model from (2.42), this means that beside transfer conductances
being zero, it also holds that G11 = G22 = 0.

G2 G1

Infinite bus

2

1mP

1

3

2mP

12jX

23jX 13jX

Figure 3.1: Two-machine infinite-bus test system

Having an infinite bus in the system, it is a logical choice to take this 3rd bus
as the reference. The pre-fault Stable Equilibrium Point (SEP) of the full order
system is then given as xpres = (δpost1s , δpost2s , 0, 0). In this study, a pre-fault SEP
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equals to a post-fault SEP (xposts ) since there will be no changes in configuration.
The motivation for this modeling comes from the possibility to employ RNM of a
power system (2.42):

δ̇1 = ω1;
δ̇2 = ω2;

ω̇1 = 1
M1

(
Pm1 − E′1E′2B12 sin(δ1 − δ2)− E′1B13 sin(δ1)

)
;

ω̇2 = 1
M2

(
Pm2 − E′1E′2B12 sin(δ2 − δ1)− E′2B23 sin(δ2)

)
,

(3.1)

and its exact energy function that has the form:

V (δ,ω) =Vk(ω) + Vp(δ) + C0 where

Vk(ω) =M1ω
2
1

2 + M2ω
2
2

2 ;

Vp(δ) =− Pm1δ1 − Pm2δ2 − E′1E′2B12 cos(δ1 − δ2)
− E′1B13 cos(δ1)− E′2B23 cos(δ2);

C0 =− Vp(δpost1s , δpost2s ),

(3.2)

where C0 is the value of the potential energy at SEP, with an opposite sign. The
constant C0 is extracted from the general expression for Vp(δ) in order to present
the energy function (2.44) concisely. This representation also intuitively outlines
that the value of the energy function (3.2) is zero at post-fault SEP (V (xposts ) = 0).
One may also notice that system (3.1) belongs to the class of conservative systems
(D1 = D2 = 0) which do not support asymptotic stability of SEP. However, due
to the existence of the exact energy function, it is possible to get a good picture on
how stability margins/region are affected by changes in operating conditions.

3.1.2 Stability region characteristics

In order to analyze the system behavior, three-phase short circuits at the terminal
buses of generator 1 (Fault 1) and generator 2 (Fault 2) are simulated for different
operating points. Since the role of loads is taken over by the infinite bus, the
mechanical power inputs of the generators (Pm1, Pm2) are chosen as the parameters
that will be subject to change (they are varied in the range (0.8-2.5 [p.u.])). The
embedded Dormand-Prince method was used as the solver in TDS. Critical clearing
times (from now on denoted as tcc) have been identified for each fault and operating
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condition. To identify tcc for a certain set-up of parameters, fault clearing time (tcl)
has been gradually increased until one or both of the rotor angles swing out of step.
Data obtained by TDS for the two critical faults are shown in Figs. 3.2 and 3.3.
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Figure 3.2: TDS results for Fault 1
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Figure 3.3: TDS results for Fault 2
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As expected, tcc decreases as more mechanical power is being injected. From
Figs. 3.2-3.3 it is clear that tcc suffer from non-linear changes as the mechanical
inputs of the generators are varied. To understand what happens with the stability
region of xposts , this example will focus on the following critical cases of Operating
Points (OP ):

• OP1: Pm1 = 0.8, Pm2 = 0.8 [p.u.];

• OP2: Pm1 = 2.5, Pm2 = 0.8 [p.u.];

• OP3: Pm1 = 0.8, Pm2 = 2.5 [p.u.] and

• OP4: Pm1 = 2.5, Pm2 = 2.5 [p.u.].

For each of these four OP , the potential energy surface will be plotted. Despite
the fact that the potential energy provides incomplete information (the total energy
contains also the portion of kinetic energy), the knowledge about Vp still gives
an insight into dynamical behavior of a power system. The boundary of stability
region that is defined just in angle space (PEBS) is very close to the original stability
boundary in the proximity of type-1 UEPs. PEBS is the union of points where the
first local maximum of Vp(δ) is attained along all the radial directions emerging
from a post-fault SEP. Practically, this maximum is detected by zero-crossing
detection of the directional derivative of the potential energy. For the specific case
of the simple system from (3.1), the characterization of PEBS can be given as:

PEBS =
[
−∂Vp
−∂δ1

−∂Vp
−∂δ2

]
·


δ1 − δpost1s

δ2 − δpost2s

 = 0. (3.3)

Two unstable, full-order system trajectories were projected on the reduced-order
angle-space, as shown in Figs. 3.4-3.6. These projected trajectories for Fault 1 and
Fault 2 move along the potential energy surface. In order to additionally associate
the directions of the trajectories with the mode of separation of the machines,
calculation of type-1 UEPs on the stability boundary is needed. This example
avoids complicated and unreliable calculation of UEPs by approximating them.
The approximations of interesting UEPs for this test-system are derived from the
conclusions for Single Machine Infinite Bus (SMIB) system [115] as:

(π − δpost1s , δpost2s ), (δpost1s , π − δpost2s ), (−π − δpost1s , δpost2s ),
(δpost1s ,−π − δpost2s ), (π − δpost1s , π − δpost2s ), (−π − δpost1s ,−π − δpost2s ).

(3.4)



46 CHAPTER 3. ASSESSMENT OF RAS IN PARAMETER SPACE

 

 

PEBS 

OP1 

OP2 

Figure 3.4: Stability region characteristics under operating point perturbation

Each of the approximated equilibria in (3.4) is associated to a certain mode
of machine separation. The point where a trajectory exits the stability region is
a good indicator about the mode of machine separation. If, for instance, the exit
point lies on the stable manifold of the first approximated type-1 UEP from (3.4),
G1 would separate from the rest of the system (3.1). Then, for each of the four
OP , approximations of UEPs were plotted (UEPs Approximations in Fig. 3.4) as
yellow markers, in order to follow-up the changes in mode of separation of the
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machines. In Fig. 3.4, the Potential Energy Boundary Surface (PEBS), that borders
the potential “well", was sketched by a dashed blue line. The bottom of the “well"
is the SEP of the post-fault system (xposts ).

 

Figure 3.5: Potential energy surface and fault trajectories for OP3

 

Figure 3.6: Potential energy surface and fault trajectories for OP4
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Several changes may be noticed as the operating point is varied: (i) SEP and
type-1 UEP approximations on the boundary move, (ii) Vp(δ) “well" inclines and
(iii) fault trajectories are altered. The change of UEPs location in state-space is
caused by the variations in SEP xposts (which represents the stable load flow solution).
This is in line with the research findings that showed how UEPs may move and even
disappear as a system becomes more stressed [72]. The potential energy surface
apparently tilts towards those UEPs that are “approaching" SEP as the mechanical
power inputs increase. Intuitively speaking, this inclination of the energy well makes
it easier for the trajectories to escape the stability region in stressed conditions. The
increase in mechanical input is reflecting the dynamical behaviour under load
increase (with the note that in this case study, the energy function for RNM model is
exact). Another related consequence is that the trajectories leave the stability region
in different manners. The proximity of a trajectory to an UEP approximation is an
indicator of the mode of machine separation, e.g. the machines separate in different
ways for OP1 and OP2.

This simple illustration demonstrates that the characteristics of a dynamic stabil-
ity region are significantly influenced by the current operating conditions. Therefore,
there is a need to describe these changes analytically, such that a reliable informa-
tion about the stability margin is always accessible regardless of the variations in
operating conditions.

3.1.3 TDS versus direct methods

The same simple system from (3.1) is employed to evaluate the performance of
three methods for RAS assessment, namely:

• Time Domain Simulation with Dormand-Prince integration (TDS);

• Closest Unstable Equilibrium Point Approximation (CUEPApp) and;

• Potential Energy Boundary Surface (PEBS) method.

The first approach has already been explained in details and the results have been
presented in Figs. 3.2-3.3. The performance test will compare the error made
by CUEPApp and PEBS when they estimate tcc. The two approaches belong to
the class of direct methods, which means that they do not perform the integration
along post-fault trajectory. Instead, tcc is estimated as the point along the unstable,
full-order trajectory where the total energy V (δ,ω) equals to the critical energy.
PEBS and CUEPApp differ in the definition of the critical energy as follows:
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• CUEPApp method approximates the closest UEP as the one with the low-
est potential energy among the equilibria from (3.4). The energy of the
approximated closest type-1 UEP is proclaimed the critical one, i.e.:

Vcr=min


Vp(π − δpost1s , δpost2s )
Vp(−π − δpost1s , δpost2s )
Vp(π − δpost1s , π − δpost2s ),

Vp(δpost1s , π − δpost2s ),
Vp(δpost1s ,−π − δpost2s ),

Vp(−π − δpost1s ,−π − δpost2s ).

(3.5)

Hence, to determine tcc, CUEPApp needs to know xposts (from the load flow)
and to carry out one unstable simulation for the given fault and OP. The
critical clearing time (tcc) is the time instant where V (δ,ω) = Vcr on the
unstable trajectory.

• Since CUEPApp method is expected to often give conservative estimations
of tcc, PEBS method is applied. PEBS does not require the calculation of
controlling UEP and on the other hand, it takes into account the direction of a
fault-on trajectory. PEBS definition of critical energy is rather straightforward:

Vcr = VPEBS . (3.6)

The energy VPEBS is the potential energy of the trajectory at PEBS cross-
ing, which can be found based on the explanation from Subsection 2.5.4. This
procedure begins with one unstable fault simulation such that the first maxi-
mum of Vp is identified along a trajectory. A subsequent simulation identifies
tcc by following the same “energy criterion" as in CUEPApp (V (tcc) = Vcr).

The relative error of tcc that were estimated by direct methods is plotted in Figs.
3.7-3.8. From the figures, it may be concluded that both CUEPApp and PEBS
vary from the TDS reference. The character of fault-on trajectories may be blamed
for the inaccuracy of estimates in certain regions of the parameter-space. Fig. 3.7
indicates that PEBS does not provide very good estimates for the parameter-space
areas close to OP3 when fault is at bus 1. This may be associated with the direction
of Fault 1 trajectory in Fig. 3.5, which differs from the one in cases of OP1, OP2
and OP4. For OP3, the fault-on trajectory exits the stability region “far" from the
type-1 UEP (π − δpost1s , 0). If a trajectory exits the projection of the stability region
by crossing the stable manifold of this type-1 UEP, the energy of an exit point
contains significant portion of kinetic energy, which further causes lower accuracy
of the critical energy estimate (since Vcr = VPEBS). When CUEPApp provides
poor estimates (like in the case of fault 2 from Fig. 3.8), the reason is probably
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that the controlling equilibrium is not the closest type-1 UEP. Also, it is good to
recall that CUEPApp only approximates the Closest UEP. The general observation
from Figs. 3.7-3.8 is that CUEPApp approach has always provided conservative
estimations, as expected. PEBS provided both over- and under-estimated tcc.
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Figure 3.7: The error of direct methods in tcc estimation for Fault 1
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The numerical comparison of the average result for the two faults is presented in
Table 3.1. The results are given in the form of Relative Error Mean Value (REMV)
and its Standard Deviation (SD). The error is measured in [ms] with respect to the
TDS reference for each operating condition (and then the average error is calculated
for each of the direct methods). Overall observation was that PEBS estimations of
tcc are closer to the TDS reference. i.e. CUEPApp estimates were less accurate.

Table 3.1: The average performance of direct methods with respect to TDS reference

TDS CUEPApp PEBS
REMV/SD [ms] REMV/SD [ms] REMV/SD [ms]

0/0 7.1/7.5 4.9/6.7

Although direct methods may seem attractive due to avoidance of integration of
post-fault dynamical equations, they also introduce many difficulties. The primary
one is the construction of Lyapunov function for more complicated models, and
some other drawbacks relate to UEP identification and accuracy issues. In this
sense, the classical TDS is more reliable tool for DSA. The challenge for TDS is to
include some of the advantages that exist in direct methods. This is the topic of the
subsequent sections.

3.2 Method idea and algorithm

As shown in the previous example, the characteristics of the stability region change
along with operating conditions. It is, therefore, important to have knowledge
about the stability index for different operating points in order to assess short-term
RAS. The DSA tends to identify stability margins before a critical fault occurs. To
simulate faults for a large number of possible operating points requires an extensive
amount of computational time. The idea of new methodology is to describe the
perturbation of an operating point by parameterizing the stability boundary [116].
This means that the important parts of the stability boundary are mapped into
security boundary points in parameter-space. Each of these parameter-space points
represents the corresponding operating conditions. If it would be possible to make
proper expansions over a certain number of parameter-space points, the time for
DSA could be reduced drastically.

The proposed methodology is developed in two stages. This chapter mostly
deals with parametrizations P1 and P2 in Stage 1 of the algorithm that is depicted in
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Fig. 3.9. The focus of this chapter is marked by red color in the figure.
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Figure 3.9: The algorithm of short-term RAS methodology construction

Based on the existing knowledge about direct methods and the conclusions that
were drawn from the previously presented study, it is reasonable to favor TDS as
the data acquisition method. TDS will be carried out for different variations of
parameters/operating points and selected critical contingencies. The data acquisition
phase have similarities with the standard DSA procedure. However, further on from
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this point, the idea is to make polynomial expansions over comparatively smaller
data sets by using appropriate functions of selected parameters. It is important to
determine how small a sample set can be such that estimations do not deteriorate
in accuracy. The mechanical inputs have been chosen as parameters of importance
based on the two main arguments:

1. Any change in system parameters has to reflect on generators mechanical
inputs via load flow and

2. The amount of additional mechanical power that is required from a generator
is strongly connected to the generator ability to remain in synchronism with
the rest of the system.

The methodology will determine the analytical relationship between tcc and the
functions of parameters of interest (mechanical power inputs of the generators) from
the reduced amount of data. The three different proposed functions of parameters
will be denoted as parametrizations P1, P2 and P3. All three parametrizations
result in security boundaries in polynomial form. This chapter presents the first two
parametrizations (P1 and P2) that are actually coming from ordinary polynomial
regression over data sets. The third, SIME-based parametrization, will be used
in Stage 2 to create corrected polynomial boundaries by the means of Quadratic
Programming (QP). P3 (SIME-based) parametrization has a physical meaning and
it will be described in details in the following chapter.

3.3 The construction of RAS boundaries

The next step in the method algorithm is to analytically construct boundaries for
short-term RAS. This study employs critical clearing times (tcc) as the stability
indices. The polynomial of kth order fkp is chosen to determine the connection
between tcc and parameters of interest. Assuming that the parameters of interest
are some power inputs in general form (i.e. (Pinp1 , Pinp2 , ..., Pinpq )), the aim of the
study is to determine the dependency:

tcc = fkp (Pinp1 , Pinp2 , ..., Pinpq ). (3.7)

The q input powers in Eq. (3.7) depend on the focus of a stability assessment. For
instance, TSO may want to use power over weak corridors or the power of some
loads instead of mechanical inputs of generators.
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3.3.1 Polynomial model

For determination of the polynomial fkp , it is neccessary to gather certain number of
data samples. The samples will be collected as (q + 1)-tuples. Each ith touple has
(q + 1) entries (tcci , Pinp1i , Pinp2i , ..., Pinpqi) that correspond to a certain OP . The
polynomial regression model of ith data sample can be given by:

tcci = a00...00 + a10...00h1(Pinp1i) + a01...00h2(Pinp2i) + ...

+ a00...10h(q−1)(Pinp(q−1)i
) + a00...01hq(Pinpqi)+

+ a20...00h
2
1(Pinp1i) + a11...00h1(Pinp1i)h2(Pinp2i) + ...

+ a10...01h1(Pinp1i)hq(Pinpqi) + a02...00h
2
2(Pinp2i) + ...

+ ak0...00h
k
1(Pinp1i) + a(k−1)1...00h

k−1
1 (Pinp1i)h2(Pinp2i) + ...

+ a00...1(k−1)h(q−1)(Pinp(q−1)i
)hk−1
q (Pinpqi) + a00...0kh

k
q (Pinpqi) + εi,

(3.8)

where εi denotes the unobserved random error of the ith sample. The expressions
h1, h2, ..., hq are the explicit functions of input powers Pinp1 , Pinp2 etc. For p
number of (q + 1)-tuples that are assumed to be available, the polynomial model
from Eq. (3.8) may be expressed in matrix notation as:

tcc = Ha+ ε, where (3.9)

• tcc =


tcc1

tcc2
...
tccp

, a =



a00...00

a10...00
...

a00...1(k−1)

a00...0k


, ε =


ε1

ε2
...
εp

, and

• H =


1 h1(Pinp11) . . . hq−1(Pinp(q−1)1)hk−1

q (Pinpq1) hkq (Pinpq1)
1 h1(Pinp12) . . . hq−1(Pinp(q−1)2)hk−1

q (Pinpq2) hkq (Pinpq2)
...

...
. . .

...
...

1 h1(Pinp1p) . . . hq−1(Pinp(q−1)p
)hk−1
q (Pinpqp) hkq (Pinpqp)

.

stand for the vectors of critical clearing times (tcc), polynomial coefficients (a),
unobserved random error (ε) and the matrix of parametrization (H), respectively.
The matrix H has known value for a given k. The number of columns in H equals
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to the size of vector a and depends on the polynomial degree k. To be precise,
this dimension (the length of a) is equal to the sum of number of partitions (p) of
integers (w) into q parts for all the integers up to the chosen degree k:

dim(a) =
k∑

w=0
p(w). (3.10)

The further procedure for the estimation of the optimal polynomial coefficients and
the order of fkp follows in the sequel.

3.3.2 Coefficients estimation

The matrix equation (3.9) represents a linear problem from the optimization point
of view. The coefficients (a) of the polynomial function fkp should be optimal in the
sense that unobserved random error (ε) needs to be minimized. A straightforward
solution to estimate the optimal coefficient vector â is to employ Ordinary Least
Squares (OLS) [117]. This is done by creating a function known as Sum of Squared
Residuals (SSR) in which the coefficients a serve as the independent variables:

SSR(a) =
p∑
i=1

ε2
i =

p∑
i=1

(tcci −Hia)2 = (tcc −Ha)T (tcc −Ha). (3.11)

Vector Hi is actually the ith row of the parametrization matrix H (the row that
corresponds to ith data sample). It may easily be demonstrated that the unique
minimum of (3.11) (min

a
SSR(a)) is attained at â [118] that satisfies:

â =

1
p

p∑
i=1
HiH

T
i

−1
1
p

p∑
i=1
Hitcc = (HTH)−1HTtcc, (3.12)

due to SSR(a) being a quadratic function with a positive definite Hessian. Once
having the optimal coefficient vector â, tcc may be estimated for any other set of
parameters that was not included in data sampling as:

testcc = Hâ. (3.13)

The order of fkp is identified through a combined iterative procedure that is based
both on conventional model validation [119] and error estimation as:

1. The polynomial order s is gradually increased from 1 to ∞ with the step of
length 1.
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2. The training set consists of 70% of the available data (r) and the remaining 30%
of data (p− r) has a role of a test set. Relative Error Mean Value of sth iteration
(REMVs) is calculated for the test set (i.e. the absolute value of the relative error
of estimates is summed up and divided by the number of estimates).

3. At the iteration step where REMVs ≥REMV(s−1) holds, the optimal polynomial
degree is identified as k = s− 1.

The security boundary is now fully described by Eq. (3.13). An example of a 3rd
degree boundary in 2-dimensional parameter space is:

testcci
=â00 + â10h1(Pinp1i) + â01h2(Pinp2i)+

+ â20h
2
1(Pinp1i) + â11h1(Pinp1i)h2(Pinp2i) + â02h

2
2(Pinp2i)+

+ â30h
3
1(Pinp1i) + â21h

2
1(Pinp1i)h2(Pinp2i)+

+ â12h1(Pinp1i)h2
2(Pinp2i) + â03h

3
2(Pinp2i).

(3.14)

Another advantage of the security boundary (3.13) is that it provides the information
about stability margin for a certain OP , fault and fault clearing time (tcl). The
measure of stability (i.e. stability margin) is directly available as ∆tcc = tcl − tcc.
The margin is negative for stable cases (tcl < tcc) and larger than zero if a clearing
time is “above" the constructed security boundary for a given operating point.

3.4 Parametrizations over data sets

In this methodology, it is convenient to interpret different parametrizations as various
choices for the parameter-space basin. For start, this section will propose two simple
parametrizations that are ordinary polynomial fits over data sets [120]:

P1:hj(Pinpj ) = Pinpj ,

P2:hj(Pinpj ) =
√

1
Pinpj

, for j = 1, ...q.
(3.15)

The parametrization P2 may seem unusal, however, there is a reasoning behind this
choice. The parametrization P2 is motivated by Equal Area Criterion (EAC) for
Single Machine Infinite Bus (SMIB) [121]. In the expression for the critical clearing
time that comes from EAC, tcc and the square root of mechanical power input of
the generator are inversely proportional [56]:

tcc =
√

2M(δcc − δpres )
Pm − P fe

, where (3.16)
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• Pm, M - represents the mechanical power input of the generator and the constant
that reflects the inertia of the generator, respectively;

• δcc, δpres - are the critical clearing rotor angle and the generator rotor angle at
pre-fault SEP, respectively;

• P fe - is the electrical power of the generator during a fault.

P2 is clearly closer to the theoretical expression for tcc than P1 is. The reason is that
the generators will have to adjust their mechanical inputs in order to compensate for
the change of any other power in the system. From Eq. (3.15), the corresponding H
matrices for P1 (HP1) and P2 (HP2) are:

HP1 =


1 Pinp11 . . . Pinp(q−1)1P

k−1
inpq1

P kinpq1

1 Pinp12 . . . Pinp(q−1)2P
k−1
inpq2

P kinpq2
...

...
. . .

...
...

1 Pinp1p . . . Pinp(q−1)p
P k−1
inpqp

P kinpqp

 , and

HP2 =



1
√

1
Pinp11

. . .

√
1

Pinp(q−1)1

√ 1
Pinpq1

k−1 √ 1
Pinpq1

k

1
√

1
Pinp12

. . .

√
1

Pinp(q−1)2

√ 1
Pinpq2

k−1 √ 1
Pinpq2

k
...

...
. . .

...
...

1
√

1
Pinp1p

. . .

√
1

Pinp(q−1)p

√ 1
Pinpqp

k−1 √ 1
Pinpqp

k



,

(3.17)

respectively. After the vectors of optimal coefficients (âP1, âP2) are found based
on p observed samples from Eq. (3.12), any fitted testcci

value is simply found as:

P1:testcci
= HP1i(Pinp1i , Pinp2i , ..., Pinpqi)âP1

P2:testcci
= HP2i(Pinp1i , Pinp2i , ..., Pinpqi)âP2,

(3.18)

where HP1i and HP2i are actually obtained when any row (e.g. ith row) of the
corresponding H matrix is applied to the current operating point/set of parameters
(Pinp1i , Pinp2i , ..., Pinpqi). Equation (3.18) is the characterization of the stabiliy
boundary. When this characterization is available for the critical faults, OP may
be frequently updated during operation (on-line) to check if the new, current state
carries the risk of transient instability.
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3.5 Results

The developed methodology is aiming at using the smallest number of sample
data (p) possible. The goal is to retain accuracy even when large amount of data
is unavailable and by doing this, to save some part of computational time that is
needed for classical DSA with TDS as a tool. This section will reduce the initial
data that has been obtained by different data acquisition methods and compare the
results of proposed parametrizations P1 and P2.

The case study is carried out by using the same, simple test system from Fig.
3.1. Once again, the symmetrical, three-phase short circuits at buses 1 (Fault 1)
and 2 (Fault 2) are of interest. The data that previously has been collected by
TDS (Figs. 3.2-3.3), CUEPApp and PEBS (3.7-3.8) is used as an input to P1.
P1 is then employed to construct the boundaries and compare the performance
of data acquisition methods. A unique polynomial degree (k = 3) is chosen for
this comparison. The amount of retained data has been reduced gradually from
100% to 10%. The data is retained in the form of an equidistant grid of parameter
points. This means that, in the case when 50% of data is reduced, every 2nd 3-touple
from Figs. 3.2-3.3 is kept. The same applies to the case of 75% of reduced data
where every 4th sample is retained. The average results for the two critical faults
are presented in Table 3.2. The primary purpose of Table 3.2 was not to compare

Table 3.2: Performance of data acquisition methods in parametrization P1

Data TDS CUEPApp PEBS
reduction [%] REMV/SD [ms] REMV/SD [ms] REMV/SD [ms]

0 2.76/2.21 7.29/7.59 5.36/6.91
50 2.83/2.24 7.27/7.49 5.43/7.00
75 2.88/2.25 7.30/7.48 5.34/6.97
90 2.96/2.67 7.22/7.35 5.69/7.04

the performance of data acquisition methods. This has been done in Section 3.1.
It is parametrization P1 itself that is of interest here. From the given results, the
polynomial approximation seems to work effectively in the terms of accuracy. Even
in the case when 90% of initial data is removed, the accuracy was not much affected.
And again, Table 3.2 confirms that the two direct methods (PEBS and CUEPApp)
vary significantly from the TDS reference.

The methodology further continues with only TDS. Security boundaries will
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be constructed for Faults 1 and 2 when Pinp1 = Pm1 and Pinp2 = Pm2. The same
data range is used as in Figs. 3.2-3.3. Once (âP1, âP2) have been estimated, the
3rd order boundary equation becomes available. Graphical representation of the
boundaries for Fault 1 (red surface) and Fault 2 (green boundary) are shown in Figs.
3.10-3.11. Figure 3.10 depicts the expansions created by parametrization P1 when
initial data is reduced with 90%. Table 3.3 quantifies the results of these estimations.
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Figure 3.10: Boundaries based on P1 when 10% of data is retained

Table 3.3: The average error of estimates obtained by P1 and P2

Data P1 P2
reduction [%] REMV/SD [ms] REMV/SD [ms]

0 2.76/2.21 2.61/2.28
50 2.83/2.24 2.57/2.39
75 2.88/2.25 2.62/2.43
90 2.96/2.67 2.69/3.34

Results from Table 3.3 show that polynomial expansions suffice as models
for short-term RAS boundary. It also may be noticed that the amount of reduced
data has a minor effect on the accuracy of estimates. The boundaries for different
parametrizations and same faults look alike. However, boundaries created by P2
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appear to be more non-linear in nature. The averaged performance of P2 is also
slightly better. This small improvement in P2 implies that those expressions that
have physical meaning are likely to give more precise results. The reason is that the
axis of parameter-space are more adequate in the case of P2— the sample points are
actually functions of powers of interest. This is easy to comprehense by observing
Figs. 3.10-3.11. In Fig. 3.10, lines that connect points in parameter-space form a
meshed grid of squares. This does not apply to parametrization P2 since the points
that correspond to the same powers from P1 now occupy new positions.
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Figure 3.11: Boundaries based on P2 when 10% of data is retained

Finally, several useful conclusions can be drawn from the study of this chapter:

• TDS is more reliable and accurate compared to direct methods (PEBS and
CUEPApp). The assessment made by direct methods depends on the nature
of faults even in the case of simple system with exact energy function;

• Parametrization with better basin/choice of axis provided more accurate results;

• The polynomial form of constructed boundaries is suitable for on-line assessment
of stability margins.

This study has served as the foundation of newly introduced parametrization concept
that will be further developed in the following chapter.



Chapter 4

SIME-based Parametrization and
Constrained RAS Boundary in
Parameter-Space

The coming chapter is devoted to further development of the concept of “parame-
terized boundaries". The aim is to find a more suitable parametrization that has a
physical meaning for RAS assessment. The expected outcome of such parametriza-
tion are the security boundaries that provide more accurate estimates. Another task
of this chapter is to force the security boundaries to be slightly conservative.

It is well-known (and also demonstrated in Chapter 3) that RAS margin is prone
to non-linear changes when operating conditions are altered. The parametrization of
the stability boundary with the functions of powers as the parameters worked well
when security boundaries are constructed as polynomials. This chapter will investi-
gate how to improve these power functions in order to obtain even more accurate
estimates. Since the polynomials have demonstrated the capability of supporting the
construction of non-linear security boundaries, the new parametrization will keep
the polynomial analytical form. Slightly better performance of P2 compared to P1
indicates that a new, better parametrizations should be inspired by the analytical rela-
tionships that are relevant for finding tcc. The exact expression for tcc has only been
developed for the case of Single Machine Infinite Bus (SMIB) system [122]. This
system, associated RAS criterion and the SIngle Machine Equivalent (SIME) [45]
of a power system constitute the theoretical foundation that is needed for the devel-
opment of a new parametrization P3. The conservativeness of P3 will add the value
to the methodology by making it competitive with UEP-oriented direct methods.

61
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CHAPTER 4. SIME-BASED PARAMETRIZATION AND CONSTRAINED RAS

BOUNDARY IN PARAMETER-SPACE

Parametrization P3 (also known here as SIME-based parametrization) will be in-
troduced as a “more accurate" and physically meaningful alternative to parametriza-
tions P1 and P2 that were presented in the previous chapter. In order to propose the
new, SIME-based parametrization (P3), some important theoretical concepts from
power system dynamic analysis need to be explained first.

4.1 SIME method

A SIngle Machine Equivalent (SIME) is a dynamic replacement for a multi-machine
power system. SIME is created by transforming the trajectories of a multi-machine
system into simplified model that resembles the dynamics of a single machine as:

δ̇SIME = ωSIME ;
ω̇SIME = M−1(PmSIME − PeSIME ).

(4.1)

The parameters of (4.1) are determined based on the following procedure:

1. In the first step of the SIME method, a two-machine equivalent replaces
the original power system model. Each of these two machines represents
one of the two groups, namely critical (subscript C) and non-critical group
(subscript NC) of generators. The critical group is the one that swings out to
instability, i.e. the critical group is responsible for the loss of synchronism.
The generators are divided into two groups based on their mode of separation
for a certain fault and operating state. This means that one TDS first needs to
be carried out in order to identify in which way the machines separate. The
equivalent groups will have the corresponding angles (δC , δNC) and angle
speeds (ωC , ωNC) defined as:

δC = M−1
C

∑
i∈C

Miδi, δNC = M−1
NC

∑
j∈NC

Mjδj , (4.2)

ωC = M−1
C

∑
i∈C

Miωi, ωNC = M−1
NC

∑
j∈NC

Mjωj , where (4.3)

MC =
∑
i∈C

Mi and MNC =
∑
j∈NC

Mj . (4.4)

2. The critical (C) and non-critical (NC) equivalent groups are further substituted
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by a SIME (4.1) whose parameters are given by:

δSIME = δC − δNC ;
ωSIME = ωC − ωNC ;

PmSIME = M−1
T

MC

∑
i∈C

Pmi −MNC

∑
j∈NC

Pmj

 ;

PeSIME = M−1
T

MC

∑
i∈C

Pei −MNC

∑
j∈NC

Pej

 ;

M = MCMNC

MT
and MT = MC +MNC .

(4.5)

These parameters will change their values in each integration step as TDS
progresses. The time series δSIME , ωSIME may then be interpreted as a
dynamical trajectory of one machine.

Clearly, SIME parameters rely on the categorization of machines (i.e. on the way
that the generators are grouped). However, by establishing SIME for different faults,
various possibilities arise. The degree of the dynamical model for transient stability
analysis is reduced. Furthermore, SIME provides the information about the mode of
machine separation. The most interesting characteristics of SIME is the possibility
to apply some theoretical concepts that are specifically developed for the case of
Single Machine Infinite Bus (SMIB) system.

4.2 Equal Area Criterion for SMIB system

This subsection presents some results of interest for transient stability that are
obtained by employing a simple SMIB test system from Fig. 4.1.

G

gI

1trjx
1LjX

2LjX

2trjx
Infinite 

bus

  T 1 2 N

Figure 4.1: Test SMIB system for short-term RAS studies

The equivalent circuit of the system from Fig. 4.1 is shown in Fig. 4.2. The
assumptions are that (i) the synchronous generator is represented by the classical
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model that was given in Subsection 2.2.1, (ii) the transmission lines are modeled
by series reactances XL1 and XL2 (lossless system), (iii) the mechanical power
Pm is constant and (iv) both the module and the angle of the infinite bus voltage
ŪN = UN∠θN are fixed.

N NU E 
djX 

gI

totjX

Infinite busSynchronous generator

T TU 

Figure 4.2: The equivalent circuit of SMIB test system

Now, in order to find the criterion for short-term RAS for this test system, both
sides of the associated swing equation (for damping D = 0):

ω̇ = 1
M

(Pm − Pe(δ)) (4.6)

will be multiplied by the angle speed ω = dδ/dt in order to obtain:

ω
dω

dt
= 1
M

(Pm − Pe(δ))
dδ

dt
. (4.7)

For a dynamic trajectory which originates from SEP (δpres , 0), the necessary transient
stability condition is that at some point (and time tω=0), the equality ω(tω=0) =
dδ/dt(tω=0) = 0 holds. The equivalent statement would be that there needs to exist
a moment tω=0 along a trajectory where the rotor angle reaches some maximum
value δmax and then swings back. By integrating (4.7) it is straightforward to obtain:∫ ω(tω=0)

0
ωdω = 1

M

∫ δmax

δpre
s

(Pm − Pe(δ))dδ ⇒

ω(tω=0) =
√

2
M

∫ δmax

δpre
s

(Pm − Pe(δ))dδ.
(4.8)

By applying the condition for short-term RAS (ω(tω=0) = 0), the equation for
finding the maximum rotor angle is set up as:

0 =
∫ δmax

δpre
s

(Pm − Pe(δ))dδ. (4.9)
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To find a finite δmax, the equation (4.9) is partitioned with respect to the angle δcl
which corresponds to the time of fault clearing tcl:

0 =
∫ δcl

δpre
s

(Pm − P fe (δ))dδ +
∫ δmax

δcl

(Pm − P poste (δ))dδ ⇒∫ δcl

δpre
s

(Pm − P fe (δ))dδ =
∫ δmax

δcl

(P poste (δ)− Pm)dδ ⇒

Aa = Ad,

(4.10)

where Aa and Ad denote acceleration and deceleration areas under curves that
are “inside" the integrals. This equality is widely known as Equal Area Criterion
(EAC) [111] that is used for transient stability assessment. The illustration from Fig.
4.3 will help to clarify the relationships between the electric power characteristics,
areas Aa/Ad and rotor angles of importance.

0 [deg.]

(
)
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
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eP 

( )post

eP 

180

mP
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u
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s

0f

eP 

dA

aA

cl max

Figure 4.3: Graphical represantation of the Equal Area Criterion

In Fig. 4.3, the pre-fault SEP (δpres , 0) and the post-fault SEP (δpres , 0) are not
the same (i.e. P pree (δ) and P poste (δ) differ from each other). The electric power
during the fault is assumed to be zero (P fe = 0). This set-up corresponds to an
example where a fault has happened on one of the lines from Fig. 4.1 very close
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to the infinite bus and where the faulted line was tripped to clear the fault. The
acceleration and deceleration areas can now also be interpreted via their physical
meaning. From the integration of Eq. (4.7) during a fault (from δ = 0 to δcl),
accelerating area Aa can also be given in the following form:∫ ωcl

0
ωdω = 1

M

∫ δcl

δpre
s

(Pm − P fe (δ))dδ ⇒

1
2Mω2

cl = Pm(δcl − δpres ) = Aa ⇒

Aa = 1
2Mω2

cl.

(4.11)

This result indicates that the accelerating area Aa actually represents the kinetic
energy that is injected into the system due to the motion of the rotor during a fault.
The kinetic energy enlarges along with the angle of fault clearing δcl. By performing
the integration of Eq. (4.7) for the post-fault period in the similar fashion, the
following relationships may be obtained:∫ 0

ωcl

ωdω = 1
M

∫ δmax

δcl

(Pm − P poste (δ))dδ ⇒

−1
2Mω2

cl = Pm(δmax − δcl)− P postemax

(
cos(δmax)− cos(δcl)

)
= Ad ⇒

Ad = Pm(δmax − δcl)− P postemax

(
cos(δmax)− cos(δcl)

)
,

(4.12)

where the decelerating area Ad is equivalent to the potential energy of a power
system. Potential energy reflects the ability of a power system to absorb the energy
that was injected during the fault-on period.

The case from Fig. 4.4 corresponds to the maximum fault clearing angle δcl
that does not lead to instability. This angle is known as critical clearing angle δcc.
The deceleration area in this case reaches its maximum value, i.e. Ad = Amaxd .
If a fault is cleared for an angle that is larger than δcc, the rotor would swing out
beyond unstable UEP of the post-fault system (δpostu = 180◦ − δposts , 0), which is
the “point of no return" in the sense of transient stability. If this would be the case,
the kinetic energy of the generator would be large enough to “push" the machine
out of synchronism. This happens due to the fact that the potential energy (which
acts as a synchronizing force) has reached its maximum. There is no margin to
further increase potential energy and neutralize the effect of the remaining part of
the kinetic energy which then separates the generator from the infinite bus. It is
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therefore crucial to know the value of δcc and its corresponding critical clearing
time tcc.

0 [deg.]
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cc

Figure 4.4: Equal Area Criterion for the case of critical clearing angle δcc

Let it be noted that P pree (δ) = P preemax sin(δ) and P poste (δ) = P postemax sin(δ). For
the system from Fig. 4.2, EAC can then be used for this critical case (δc = δcc,
δmax = δpostu ) to calculate the critical clearing angle δcc and the critical clearing
time tcc analytically from the following transformations:

Aa = Amaxd ⇒∫ δcc

δpre
s

(Pm − P fe )dδ =
∫ δmax

δcc

(P poste (δ)− Pm)dδ ⇒

Pm(δcc − δpres ) = −P postemax

(
cos(δmax)− cos(δcc)

)
− Pm(δmax − δcc),

(4.13)

that provide the exact result for the critical clearing angle as:

δcc = arccos
(

cos(δmax) + Pm

P postemax

(δmax − δpres )
)
. (4.14)

By having δcc, the two integrations of the swing equation during a fault:

d2δ

dt
= 1
M

(Pm − P fe ), (4.15)
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result in the equation from which critical clearing time tcc can be easily found as:∫ δcc

δpre
s

dδ =
∫ tcc

t=0

Pm − P fe
M

tdt⇒ δcc − δpres = Pm − P fe
2M t2cc ⇒

tcc =
√

2M(δcc − δpres )
Pm − P fe

.

(4.16)

The given expression for SMIB system will further be employed in the construction
of an improved methodology for short-term RAS assessment.

4.3 SIME-based parametrization

The novelty of a new approach lies in the choice of a more adequate parametrization
that has a physical meaning and also introduces several other advantages. Chapter
3 has determined that the accuracy of estimates is likely to be affected by the
relationship between the parameter-space axis and the parameters of interest.

4.3.1 Polynomial model for SIME parametrization

The idea of the third, SIME-based, parametrization P3 is to incorporate SIME into
the expresssion for the critical clearing time of SMIB as:

tcc =

√√√√2M(δccSIME − δpresSIME
)

PmSIME − P
f
eSIME

(4.17)

in order to find a more appropriate basin for the parameter-space. The difference
compared to Eq. (4.16) is that the parameters and variables M , δccSIME , δpresSIME

,
PmSIME and P feSIME

are now related to the SIME of a multi-machine power system,
as explained in Section 4.1. If, additionally, the most critical case is considered
(P feSIME

= 0), the resulting expression for tcc becomes:

tcc =
√

2M(δccSIME − δpresSIME
)

PmSIME

. (4.18)

To be able to employ SIME quantities in the expression (4.18), the mode of sep-
aration needs to be established. Establishing tcc via TDS always involves one
simulation where synchronism is lost. The unstable simulation is all what is needed
to determine how the machines separate from each other due to transient instability.
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TDS has also been chosen as the data acquisition method in the methodological
approach that was proposed in Chapter 3. Hence, the unstable simulation is a
step that has been already included in constructing the security boundaries by
parametrizations P1 and P2.

Now, let the new quantity — “SIME-distance" be defined as:

δDISTSIME = 2M(δccSIME − δ
pre
sSIME

) (4.19)

where δccSIME and δpresSIME
are the critical clearing angle and pre-fault SEP of SIME,

respectively. Clearly, these two angles relate to a specific fault and operating point.
The axis of the new parametrization P3 will be defined by hj functions as:

P3:hj(Pmj , δDISTSIME) =
√

2M(δccSIME − δpresSIME
)

Pmj

=
√
δDISTSIME

Pmj
for j = 1, ...n.

(4.20)

where n is the number of generators. Each of hj(Pmj , δDISTSIME) functions defines
one of the axis by the ratio between newly introduced “global" index δDISTSIME and
individual mechanical power of one generator (Pmj). Hence, the basin of the
parameter-space will be constituted by n axis of the form hj(Pmj , δDISTSIME). In
a sense, this parametrization describes the sensitivity of SIME distance δDISTSIME

along different parameter-space directions. This sensitivity should capture any
change of active power in the system, since at least some of the mechanical powers
(Pm1, Pm2...Pmn) will have to compensate for the network/load variation in active
power. The angle of SIME pre-fault SEP can be easily found from the knowledge
about machine separation and power flow solution as:

δpresSIME
= δpresC

− δpresNC
, (4.21)

where the subscripts of the angle equivalents are used to denote the critical (C) and
non-critical (NC) groups of generators. Finding the critical clearing angle of SIME
(δccSIME ) by TDS is equivalent to finding critical clearing time tcc, i.e. δccSIME

is available in data samples obtained from simulation. However, δccSIME (and
consequently, δDISTSIME) is not available for the operating points where a simulation
has not been carried out/where tcc should be estimated. P3 will therefore involve
one additional step where δDISTSIME is found as a polynomial function of power inputs:

δDISTSIME(Pinp1 , Pinp2 , ..., Pinpq ) = fkp (Pinp1 , Pinp2 , ..., Pinpq ). (4.22)
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The input powers can be any active powers of importance. The estimates for the
points where TDS data has not been collected are easily obtained in the same way
as tcc was identified in P1:

δDISTestSIME = HP1(Pinp1i , Pinp2i , ..., Pinpqi)âP1 ⇔
δDISTest
SIME1

δDISTest
SIME2

...
δDISTest
SIMEp

 =


1 Pinp11 . . . Pinp(q−1)1P

k−1
inpq1

P kinpq1

1 Pinp12 . . . Pinp(q−1)2P
k−1
inpq2

P kinpq2
...

...
. . .

...
1 Pinp1p . . . Pinp(q−1)p

P k−1
inpqp

P kinpqp





â00...00

â10...00
...

â00...1(k−1)

â00...0k


.
(4.23)

The steps for finding the polynomial degree and optimal coefficients are identical
to those described in Chapter 3. By importing the function (4.22) into the axis of
parametrization P3 from Eq. (4.20), the parameter-space basin may be given as:

P3:hj(Pmj , δDISTSIME(Pinp1 , Pinp2 , ..., Pinpq )) =
√
δDISTSIME

Pmj
for j = 1, ...n. (4.24)

The second step of SIME-based parametrization sets up the polynomial regression
model for the estimation of the optimal coefficient vector â. This model will involve
a new matrix HSIME that corresponds to parametrization P3:

tcc = HSIMEa+ ε, where (4.25)

• tcc, a and ε are the vectors that have the same structure as in Eq. (3.9) and

• HSIME =


1 . . . hkn(Pmn1 , δ

DIST
SIME1

(Pinp1 , Pinp2 ..., Pinpq ))
1 . . . hkn(Pmn2 , δ

DIST
SIME2

(Pinp1 , Pinp2 ..., Pinpq ))
...

. . .
...

1 . . . hkn(Pmnp , δ
DIST
SIMEp

(Pinp1 , Pinp2 ..., Pinpq ))

.

The optimal coefficient vector for parametrization P3, âP3, is once again found by
the OLS procedure that was explained in Subsection 3.3.2 of Chapter 3. To sum up,
the resulting two-step procedure for the estimation of some ith sample of critical
clearing time testcci

by SIME parametrization is:

Step 1: δDISTest
SIMEi

= HP1i(Pinp1i , Pinp2i , ..., Pinpqi)âP1 (4.26)

Step 2: testcci
= HSIMEi(Pm1i , Pm2i , ..., Pmni , δ

DISTest
SIMEi

)âP3. (4.27)
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The values of vectors HP1i and HSIMEi are found by applying the ith rows of
the corresponding matrices (HP1 and HSIME) on the operating point of interest.
In order to better understand the procedure, matrix HSIME from Eq. (4.25) can
also be given in a more specific form. Assuming that a certain number p of TDS
data samples is available, HSIME has the following structure:

HSIME =



1
√
δDISTSIME1

Pm11
. . .

√√√√ δDISTSIME1

Pm(n−1)1

√δDISTSIME1

Pmn1

k−1 √δDISTSIME1

Pmn1

k

1
√
δDISTSIME2

Pm12
. . .

√√√√ δDISTSIME2

Pm(n−1)2

√δDISTSIME2

Pmn2

k−1 √δDISTSIME2

Pmn2

k
...

...
. . .

...
...

1

√√√√δDISTSIMEp

Pm1p

. . .

√√√√ δDISTSIMEp

Pm(n−1)p


√√√√δDISTSIMEp

Pmnp


k−1 

√√√√δDISTSIMEp

Pmnp


k



.

From HSIME matrix it may be observed that the basin of the parameter-space in
SIME parametrization has n dimensions, i.e. the number of dimensions equals to
the number of generators. If the optimal coefficient vector has the form:

âP3 =
[
â00...00 â10...00 . . . â00...1(k−1) â00...0k

]T

then some ith estimation of testcci
is found by a kth-order approximation as:

testcci
= â00...00+â10...00

√√√√δDISTest
SIMEi

Pm1i

+â01...00

√√√√δDISTest
SIMEi

Pm2i

+ ...+â00...01

√√√√δDISTest
SIMEi

Pmni

+â20...00
δDISTest
SIMEi

Pm1i

+â11...00
δDISTest
SIMEi√
Pm1iPm2i

+ ...+â10...01
δDISTest
SIMEi√
Pm1iPmni

+...

+âk0...00


√√√√δDISTest

SIMEi

Pm1i


k

+â(k−1)1...00


√√√√δDISTest

SIMEi

Pm1i


k−1√√√√δDISTest

SIMEi

Pm2i

+...

+â00...1(k−1)

√√√√ δDISTest
SIMEi

Pm(n−1)i


√√√√δDISTest

SIMEi

Pmni


k−1

+â00...0k


√√√√δDISTest

SIMEi

Pmni


k

.

(4.28)
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The definition of parametrization P3 completes Stage 1 (as indicated by red color in
the algorithm from Fig. 4.5) of the methodology construction.
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Figure 4.5: Current focus in the construction of the methodology

The expression (4.28) demonstrates that the polynomial coefficients will reflect
on how sensitive the SIME distance δDISTSIME is to changes in parameters. The
value of certain polynomial coefficients would be larger if a power system is more
sensitive to the changes in mechanical power of some specific generator (individual
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terms in (4.28)) or certain groups of generators (cross terms in (4.28)). If some
of the generators do not change their mechanical inputs with respect to changes
in operating conditions, these generators will be excluded from the basin of the
parameter-space. In these cases, the number of parameter-space dimensions in
SIME-based parametrization P3 is lower than the total number of machines (n).

Special attention should be paid to the name of the newly proposed parametriza-
tion. The attribute “SIME-based" could be slightly misleading—the parametrization
will use SIME as a tool, however, the methodology is based on the idea of parametriz-
ing the stability boundary in polynomial form. Hence, it should be emphasized here
that the denomination “SIME-based" is merely used to distinguish between P3 and
the “ordinary" parametrizations over data sets (P1 and P2).

4.3.2 Performance comparison for proposed parametrizations

The performance of SIME will be demonstrated by returning once again to the
simple two-machine infinite-bus system from Fig. 4.6.

G2 G1

Infinite bus

2

1mP

1

3

2mP

12jX

23jX 13jX

Figure 4.6: Two-machine infinite-bus test system

The same critical faults as before (three phase short circuits at generator buses)
are simulated in order to construct the security boundaries by different parametriza-
tions. For the newly introduced parametrization P3, the two steps in the boundary
construction procedure are illustrated in Fig. 4.7 for the fault at bus 2. The first step
(the uppermost picture of Fig. 4.7) estimates δDISTSIME based on the varied parameters
of importance. Since there are no loads in the test system, the mechanical power
inputs of the two generators are chosen as the important parameters. The estimated
δDISTSIME are then used to construct the parameter-space basin that represents the
sensitivity of SIME distance to the changes in the operating point (that are reflected
by the variations in Pm1 and Pm2). The downmost picture shows the relative error
of estimates (∆tcc = testcc − tTDScc ) when 100% of TDS data is retained.
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Figure 4.7: The two-step procedure of SIME parametrization P3
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It is clear that two polynomial approximations are involved in the procedure.
The first approximation predicts δDISTest

SIME based on P1 and the important parameters
that are subject to change. The second one (depicted in the middle picture of Fig.
4.7) identifies testcc by employing P3. It should be outlined that δpresSIME

has been
replaced by δpostsSIME

in the figure since there have not been any changes in the
configuration. Some of the data samples (black circles) are not visible due to being
located under the estimated surfaces. It is interesting to note how the parameter-
space locations of the same sample points differ between P1 and P3. In P1, TDS
samples form an equidistant network of points, i.e. the placement of samples is
not affected by occurrences in the system. However, the distribution of samples
is highly non-linear in P3. Sample points become more densely distributed as the
system operates in more stressed conditions. The amount of stress is indicated not
only by the inverse function of mechanical inputs (as in P2), but also by the critical
distance of a SIME equivalent from the origin. Another important observation is that
a mode of machine separation is known for the simulated points. This information
is beneficial since it provides a good insight into how the machines fall out of
synchronism for the operating points where testcc is estimated. Table 4.1 shows how
P3 performs in comparison to P1 and P2 when the same amount of data is retained.
The polynomials are of the 3rd order (k = 3) for all three parametrizations.

Table 4.1: Comparison of the performance of the parametrizations

Data P1 P2 P3
reduction [%] REMV/SD [ms] REMV/SD [ms] REMV/SD [ms]

0 2.76/2.21 2.61/2.28 0.18/0.18
50 2.83/2.24 2.57/2.39 0.95/1.52
75 2.88/2.25 2.62/2.43 1.33/1.73
90 2.96/2.67 2.69/3.34 2.13/2.74

The comparison from Table 4.1 is based on the recorded error of estimates for
the same operating points and both faults in all the cases of data reduction. The
numbers in the table represent the absolute value of the average error (Relative Error
Mean Value-REMV) and its Standard Deviation (SD). Apparently, P3 outperforms
parametrizations P1 and P2, even when the amount of sample data is heavily reduced.
Due to its theoretical foundation, SIME-based parametrization P3 distributes the
data samples in more optimal manner than the other two parametrizations that do
not have a physical meaning.
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4.4 Constrained SIME parametrization

Previously, Ordinary Least Squares (OLS) technique has been employed to estimate
the optimal coefficients â in three parametrizations that this thesis proposed. The
objective of OLS is the smallest Relative Error Mean Value (REMV) of tcc estimates.
Stage 2 of the methodology construction (outlined in red color in Fig. 4.8) will
further improve the selected, SIME-based parametrization P3.
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Figure 4.8: Constrained parametrization in methodology algorithm
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The aim of Stage 2 is to enable SIME-based parametrization to provide con-
servative tcc estimates while keeping the accuracy of the estimation as high as
possible. In other words, the requirement is that the estimated critical clearing time
(testcc = HSIMEâcorr) has to be smaller than the critical clearing time obtained
from TDS (tTDScc ). This will be achieved by developing so-called “constrained
SIME-based parametrization" which forces the unobserved random error to be posi-
tive in most of the cases. The constrained parametrization will make the correction
of the coefficient vector âcorr by setting up a Constrained Least Squares (CLS)
problem that should minimize the unobserved random error ε as:

min
acorr

1
2‖ε(acorr)‖

2
2 such that ε(acorr) ≥ 0 or

min
acorr

1
2‖HSIMEacorr − tcc‖22 such that HSIMEacorr ≤ tcc.

(4.29)

The minimization problem from Eq. (4.29) can change its form by performing the
following transformations:

1
2‖HSIMEacorr − tcc‖22 =

= 1
2(HSIMEacorr − tcc)T (HSIMEacorr − tcc) =

= 1
2(aTcorrH

T
SIMEHSIMEacorr − 2tTccHSIMEacorr + tTcctcc),

(4.30)

where the product tTcctcc = const. is a constant matrix. Adding a constant to
an objective function does not affect the result of a minimization procedure. By
applying this to the problem from (4.30), it is implied that tTcctcc can be neglected.
The purpose of this action is to transform CLS problem (4.29) into a standard
Quadratic Programming (QP) form [123]:

minimize
x

1
2xTQx + cTx subject to Ax ≤ B, where:

x = acorr, and A = HSIME ,

Q = HT
SIMEHSIME , B = tcc.

c = −HT
SIMEtcc.

(4.31)

The QP problem from (4.31) will be solved in Matlab by the means of the active-set
algorithm [124]. The result of the minimization procedure is a corrected coefficient
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vector âcorr. By importing âcorr into both steps of P3 parametrization from
(4.26)-(4.27), some ith estimate of tcc is found by:

Step 1: δDISTest
SIMEi

= HP1i(Pinp1i , Pinp2i , ..., Pinpqi)âP1corr (4.32)

Step 2: testcci
= HSIMEi(Pm1i , Pm2i , ..., Pmni , δ

DISTest
SIMEi

)âP3corr . (4.33)

The main motivation for imposing a constraint to unobserved random error was to
make SIME parametrization competitive with UEP-oriented direct methods. As
explained before, the energy of UEP is the lowest among the energy of points that
are located on the manifold that is associated to the given type-1 UEP. Therefore, a
certain level of conservativeness is expected in these methods, which is desirable in
the assessment of short-term RAS. Constrained SIME-based parametrization will
also possess this advantageous, conservative characteristic.

4.5 Constrained versus unconstrained SIME
parametrization-results and comparison

This section will test the developed concept of constrained parametrization on both
RNM ans SPM of a power system. It will also discuss the obtained results and draw
the main conclusions related to the short-term RAS assessment study of this thesis.

4.5.1 Two-machine infinite-bus test system

The constrained SIME-based parametrization is now applied to the previously
collected TDS data for Fault 1 and Fault 2 that occur at the generator buses of the
test system from Fig. 4.6. The error of estimation is shown for both faults in Fig.
4.9 which keeps all 100% of data samples. The error is given in the relative form
as ∆tcc = testcc − tTDScc in [ms], which means that a negative error is a desirable
one. The case from Fig. 4.9 depicts the effectiveness of the polynomial form in
combination with the imposed constraint. The uppermost picture and the picture
in the middle of Fig. 4.9 present the errors of estimation in Fault 1 and Fault 2,
respectively. These first two pictures of Fig. 4.9 show the projection of error ∆tcc
along Pm1-axis, while the bottom graph of Fig. 4.9 retains all three dimensions
(Pm1,Pm2, and ∆tcc). The error is less or equal to zero in all the estimated cases,
i.e. QP solved the minimization problem adequately.

It is also important to investigate the effect of data reduction. The obtained
results are summed up in Table 4.2 and Fig. 4.10 that compare the constrained and
“ordinary" SIME-based parametrizations for different percentages of reduced data.
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Figure 4.9: The error of constrained P3 when 100% of data is retained

Table 4.2: The comparison of performances of SIME-based parametrizations

Data unconstrained P3 constrained P3
reduction [%] REMV/(∆tcc ≥ 0) [%] REMV/(∆tcc ≥ 0) [%]

0 0.15/39.51 0.40/0.00
50 0.84/42.90 1.45/1.08
75 1.12/43.52 1.97/10.80
90 1.85/47.38 2.61/20.06

The numerical results from Table 4.2 represent the average of the two critical
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faults when 100%, 50%, 25% and 10% of data are retained, respectively.
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On the other hand, the graphical representation from Fig. 4.10 separates the re-
sults for Fault 1 and Fault 2. The yellow bars relate to constrained SIME parametriza-
tion while the green bars correspond to “ordinary" P3 that was based on OLS. From
both Fig. 4.10 and Table 4.2 it is clear that the accuracy of P3 did not significantly
deteriorate by imposing the constraint. It may also be observed that QP is highly
efficient in achieving the conservativeness of estimates. Even for the case when 90%
of TDS samples are eliminated from data set, constrained P3 parametrization places
approximately 80% of estimates inside the security region (that is significantly
more than 52.62% which is the result of unconstrained P3). The second index of
performance, average error of estimation, raised from 1.85% to 2.61% after the
constraint was applied. Hence, the accuracy decreased with less than 1%.

The trade-off between the number of over-estimates and the loss of accuracy
implies that constrained SIME-based parametrization may become a valuable tool
in short-term RAS assessment.

4.5.2 Three-machine system

The second case study tests the performance of SIME-based parametrization when
Structure Preserving Model (SPM) of power system from (2.17) is employed. The
study will be carried out by using the three-machine system from Fig. 4.11 that
is based on IEEE 9-bus test system. The transformers between the internal and
terminal buses of the generators are not shown in the figure. 
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Figure 4.11: Three-machine test system
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There are three loads in the system (connected at buses 4, 5 and 6) that will be
given by the exponential model from Eq. (2.6) as:

Plk = Plk0

(
Uk
Uk0

)mp
and Qlk = Qlk0

(
Uk
Uk0

)mq
. (4.34)

The load models can be varied by altering the exponents mp and mq.
The three phase short circuits very close to the generator terminal buses (buses

1, 2 and 3) are chosen as the critical faults in the case study. The faults are cleared
without changes in configuration. Constrained SIME-based parametrization will
construct one security boundary for each of the contingencies. Since loads exist
in the system, the active powers of loads are now chosen as the parameters of
importance to be used in Step 1 of the constrained SIME-based parametrization.
The active powers of loads at buses 5 (Pinp1 = Pl50) and 6 (Pinp2 = Pl60) are varied
in order to perturb the operating point. Clearly, to be able to use constrained SIME
parametrization, a certain dispatching plan needs to be known. Here, each of the
generators will compensate for one third of the additional active load power. After
estimating δDISTest

SIME , Step 2 provides the final dependency of tcc from SIME-distance
and the mechanical power inputs of three generators (Pm1, Pm2 and Pm3). Hence,
Step 1 and Step 2 are here carried out in two and three-dimensional parameter-
spaces, respectively:

Step 1: δDISTest
SIMEi

= HP1i(Pl50 , Pl60)âP1corr (4.35)

Step 2: testcci
= HSIMEi(Pm1, Pm2, Pm3, δ

DISTest
SIMEi

)âP3corr . (4.36)

The numerical results are provided in Table 4.3 in the form of average REMV and
its SD for the three critical faults.

Table 4.3: The performance of constrained P3 for various load models

Load Data reduction [%]
model 0 50 75 90

Constant current
0.20/0 0.43/0.82 0.52/1.44 0.54/3.40

REMV/(∆tcc ≥ 0) [%]
Composite

0.05/0 0.17/0.10 0.21/0.51 0.19/4.32
REMV/(∆tcc ≥ 0) [%]

Constant impedance
0.06/0 0.16/0.10 0.21/0.51 0.20/3.50

REMV/(∆tcc ≥ 0) [%]
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In this case study, the three types of loads have been applied: (i) constant current
load (mp = mq = 1), (ii) composite load (mp = 2, mq = 1) and (iii) constant
impedance load model (mp = mq = 2). The boundaries were constructed as the
second order (k = 2) polynomials. The main observation is that the approach
resulted in a high accuracy of estimates (largest REMV was 0.54%) and a small
number of over-estimates (maximum 4.32% in the case of composite load). Neither
the amount of reduced data or the type of the load seem to have significant negative
effect on the results obtained by the constrained SIME-based parametrization.

4.5.3 Discussions and remarks

Before concluding this chapter, several general remarks will be extrapolated regard-
ing the obtained results:

• TDS is chosen as the data acquisition tool due to its accuracy and unlimited
applicability with respect to system modeling. Direct methods face various
challenges when more complex power system models are employed. These
challenges may be divided into three main classess that concern: (i) the possibility
to construct an energy function, (ii) issues with convergence to a correct type-1
UEP in UEP-oriented approaches and (iii) inaccuracy of UEP-oriented approaches
due to exit point being approximated by a type-1 UEP of importance.

• Polynomial models are capable to describe non-linear changes in the stability
margin when a power system “moves around" in a parameter-space. These non-
linear modifications of the stability margin have a certain, expected tendency—a
fault needs to be cleared faster as a system becomes more stressed. Polynomials
can work even when a mode of machine separations change. Also, if the amount
of data is insufficient to construct a boundary of a certain order, model validation
procedure detects this and adjusts the order of the polynomial.

• SIME-based parametrization P3 is more accurate in comparison with the simple
polynomial approximations over data sets (P1 and P2). The parameter-space basin
has a physical meaning in P3.

• Quadratic Programming (QP) is highly efficient in placing the majority of esti-
mates inside the short-term RAS security region.

• More parameter-space dimensions increased the accuracy of the estimation. This
encourages the application of the methodology to larger systems. A large number
of generators (parameter-space dimensions) in more complex systems may raise
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concerns about over-fitting. However, not all n generators react to the changes
in load or transmitted active power. A distribution of additional injected power
among generators (power dispatching) is usually known to TSOs for critical faults
that occur in certain areas of power system. The sensitivity of SIME-distance is
of interest only with respect to the mechanical powers of those generators that
participate in the power compensation. The proposed approach here offers another
functionality—it may help identify which generators should compensate for the
power change such that the system operates with the largest possible transient
stability margin.

Chapters 3 and 4 are based on the work from [116,120]. The two chapters presented
the following solutions that are listed in Section 1.4 of Chapter 1:

1. (1.1S): The proposed constrained SIME-based parametrization is robust—it
can be applied whenever it is possible to carry out TDS. The approach will,
hence, retain the accuracy of TDS. The methodology, however, is based on a
reduced number of data samples in comparison to conventional DSA. Since
the boundaries are provided in analytical (polynomial) form, stability margin is
also directly known for (other) operating points that were not included in the
simulation set.

2. (1.2S): The security boundaries are non-linear, polynomial surfaces that enable
short-term RAS assessment during large disturbances.

3. (1.3S): The dependency between tcc and parameters is an invertible function.
This is important since TSOs are usually interested in e.g. how much power
can be transmitted via some weak corridor or delivered to a certain critical load
area (for a known reaction time of a protective system tcl). Inverted boundary
equation provides the set of parameters that corresponds to tcl.

Once the boundaries are constructed, stability margins can be directly determined
during system operation (on-line) without the necessity to simulate faults. Based on
the known operating state, TSOs have then the possibility to evaluate the risk of rotor
angle instability, update the contingency list accordingly and change the operating
point if e.g. (N-1) stability criterion is not met. All these characteristics indicate that
the proposed method has a potential to become a useful tool for short-term RAS
assessment in multi-machine power systems.



Chapter 5

Voltage Impasse Regions (V IR)
in Power System Dynamics

Even the most sophisticated DSA tool for the analysis of transient stability counts on
unlimited validity of the set of DAE. In the continuation, this thesis will investigate
short-term dynamics in the presence of state-space areas where the set of DAE faces
singularity due to load modeling. These “singularity areas" of state-space will be
introduced as “Voltage Impasse Regions" (V IR) at which voltage causality is lost.

Dynamic Security Assessment (DSA) observes voltage stability as an ability
of a power system to maintain voltages at all the buses within acceptable bounds
after some (small or large) disturbance occurs. Disturbances that often cause
voltage instability issues are trippings of transmission lines or losses of generation
equipment [125]. In a worst-case scenario, a combination of a disturbance and the
absence of sufficient voltage support may lead to a voltage collapse. Voltage collapse
denotes a catastrophic sequence of events that (i) results in sudden and drastic decline
of voltage profiles in significant portion of a power system or alternatively, (ii) leads
to a blackout [55]. Voltage instability can also appear in the form of over-voltages
[126] that may occur when, for instance: a network behaves in a capacitive manner;
too large capacitive loads activate self-excitation of the synchronous generators or
when the excess of the reactive power cannot be absorbed due to underexcitation
limiters.

In voltage stability studies, the most common form of instability that occurs
after a disturbance is a progressive fall of bus voltages that is typically driven by the
dynamics of load restoration [127]. This restoration leads to an imbalance between
the power of consumption on one side and the capacity of available transmission

85
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and generating resources on the other side. In weak AC systems, voltage instability
can also occur at HVDC terminals due to the reactive power load characteristic of
the converters [128, 129]. The well-known self-restoration mechanisms along with
other voltage-instability contributors may lead to a voltage collapse in both:

• short-term time scale (several seconds after a disturbance), as for the case of
induction motors [130, 131] and HVDC converters and

• long-term voltage instability, which mostly concerns the dynamics of Load
Tap Changers (LTCs) [132–135], OverExcitation Limiters (OELs) [136] and
thermostatic loads [137]). The analysis of long-term dynamics may be of interest
up to many minutes after a contingency has occurred.

All of the fore mentioned issues are the topics of voltage instability analysis that is
typically decoupled from Rotor Angle Stability (RAS) assessment. Nevertheless, a
voltage collapse is essentially connected to rotor angle instability. It is well-known
that the loss of synchronism between two groups of machines leads to substantial
voltage drop close to the electrical center of the network [54]. By resolving a RAS
problem, voltages are restored with respect to a post-fault SEP.

However, by employing certain types of static load models while assessing
RAS, a problem of different nature may arise. It could happen that not only
voltages decline to unacceptably low levels—moreover, the voltage solutions could
completely cease to exist if rotor angles reach certain points of state-space during
transients. These points belong to the manifolds that are most often denoted in
the literature as “impasse/singularity surfaces" [85, 86]. In that sense, this issue
unifies RAS with voltage stability under a more general problem that deals with the
global existence of solutions of DAE model [138]. In practice, “impasse surfaces"
were used to explain the difficulties in TDS for the systems with non-impedance
static load models [111]. However, an analytical formulation of the relationship
between the two has not been identified so far. It appears that the effect of “impasse
surfaces" has been overlooked by research community due to impasse surfaces not
intersecting with power system equilibria [139]. The upcoming two chapters will
show that this standpoint should be taken with precaution by performing a thorough
analysis that introduces Voltage Impasse Regions (V IR). The task of the following
study is to precisely define V IR as the state-space areas where voltage causality is
lost (i.e. where voltage solutions cannot be found based on the DAE model) when
some of the loads are given by constant-power and constant-current characteristics.
Before defining V IR, some basic state-space concepts first need to be revised from
both static and dynamic point of view.
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5.1 Static approach to voltage collapse

The subject of this study is the existence of a plausible voltage solutions. This
task is equivalent to the identification of voltage collapse in the static stability
analysis. Since voltage instability has been mostly associated to the loss of long-
term equilibrium [125], static approaches heavily rely on the existence of a small
signal stable, post-fault operating point and the size of static stability margin [140].
Voltage collapse is, in a fact, a loadability problem from the static point of view.
Various sets of system parameters (different operating points) correspond to different
sizes of load that can be supplied. If a system is more stressed due to increased load
or change in some other parameter, static distance to a voltage collapse (static voltage
stability margin) typically decreases. In the framework of previously presented
RAS region, parametric changes alter the location of a post-fault SEP (xposts ), which
affects both the shape of the stability region and short-term RAS margin (as sketched
in Fig. 5.1). If changes in parameters would “push" a power system to its loadability
limit, xposts would no longer exist and short-term RAS region would become an
empty set.
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Figure 5.1: Changes in stability margin due to parametric changes

Hence, the existence of a stable post-fault equilibrium is prerequisite for any
other type of stability analysis. Consequently, an extensive amount of work has
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been carried out in the past to address this issue. The common trait of these methods
is that they re-assess the operating state with respect to some smooth deviations of
control parameters (p, that are typically load powers and generator schedulings)
and stress level λ. By increasing the stress level along some direction d, a set of
actual parameters is given by:

p = p0 + λd, (5.1)

where p0 is an initial parameter set. In order to identify the largest λ that does not
lead to voltage collapse, most of the methods in static approach have focused on
one of the two perspectives of the same concept:

1. post-contingency power flow solvability [141], which is a convenient charac-
teristics to investigate due to power flow programs being widely available. Power
flow utilizes the fact that the equations for finding a long-term equilibrium may
be approximated by the set of network equationsG where both short-term and
long-term state-space variables have been eliminated:

0 = G(y, λ). (5.2)

By increasing λ, loadability limit is determined as the point where power flow
diverges. This is usually carried out by the Newton method and its modified ver-
sions [142–144] that have been specifically developed for this purpose. Another
option is to employ optimization methods and calculate loadability by the means
of optimal power flow [145].

2. occurrence of Saddle-Node Bifurcation (SNB) [146, 147] that basically relies
on a small-signal stability analysis which employs the complete DAE model:

ẋ = f(x,y, λ);
0 = g(x,y, λ),

(5.3)

where scaling factor λ has been taken into account. The dynamics of long-term
variables are not included here, however, it is easy to expand the model and
carry out the analysis in the similar fashion. The aim of the small-signal stability
analysis in the given framework is to determine how far can a system move from
a stable operating point by changing λ (and consequently, p) and still remain in
a stable state. For this purpose, DAE model (5.3) is linearized as:∆ẋ

0

 = J

∆x
∆y

 , where J =

 fx fy
gx gy

 (5.4)
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is the Jacobian matrix with sub-matrices fx, fy, gx and gy that consist of partial
derivatives. This means that, for instance, fx are the derivatives of the differential
equations f with respect to state variables x, fy is the Jacobian matrix of f with
respect to y, etc. By assuming that gy is non-singular, the linearized system
from Eq. (5.4) can be reformulated into a more compact form as:

∆ẋ = Fx∆x, Fx = fx − fyg−1
y gx. (5.5)

Since it is the loss of equilibrium that is of interest, the aim of this class of
methods is to identify at which loading levels a stable equilibrium undergoes
an SNB and disappears. This observation is equivalent to finding where in the
parameter-space Fx becomes singular (has a zero eigenvalue), which further
implies the singularity of the “original" Jacobian matrix J . Various approaches
have emerged from the bifurcation concept during the previous decades in
order to detect singularity conditions, monitor the distance to a voltage collapse
and also construct the strategies that “move a system away" from a voltage
instability [148–155]. Different mathematical tools have been used to detect
singularity of Fx in these methods. Some examples of the tool-indices that have
been employed are the eigenvalue closest to the origin, the minimum singular
value and the determinant of matrix Fx.

Nowadays, the voltage collapse is a well-investigated topic from the static point of
view. The two established aspects regarding the existence of a stable equilibrium
solution resulted in various classes of methods such are, for instance, the analysis of
VQ curves [156], continuation [157–161] and optimization methods [162–165].

5.2 Stability of DAE model from dynamic point of view

The existing static methods are mostly based on power-flow and small-signal sta-
bility analysis. These approaches are not applicable if a power-system happens
to be “pushed-away" further from an equilibrium point, which is the case after
large disturbances. The reason is that static methods ignore the non-linearity of the
differential part of DAE model. It has been already stated that it is not of interest to
make static stability study more complicated (without necessity) by incorporating
differential non-linearities. The static approach is therefore suitable when voltage
solutions are assessed in long-term sense (at the times when large excursions of
state and algebraic variables have damped out) after a contingency. However, this
approach is no longer reliable in the case of short-term stability studies of large
disturbances where non-linear dynamics play a significant role.
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A large majority of research on voltage collapse are static studies [166]. The
analysis of voltage stability in short-term scale needs to include fast-acting load
components and HVDC converters [55]. Dynamic modeling of loads (induction
motors and electronically controlled loads) [92, 167] and short circuits near load
centers have been shown to be of particular importance. Recent short-term voltage
stability studies have been mainly focused on cascade stalling of the induction
motors and delayed voltage recovery after an occurrence of a large disturbance [168,
169]. The proposals for the problem solution often involve temporary disconnection
of motor loads [170] or an implementation of a properly placed dynamic VAR
support in the system [171–173].

Nevertheless, the “standard" topics regarding short-term voltage stability do not
look into the possibility of loosing a voltage solution along a dynamic trajectory.
The existing methods focus on the values of the voltages, instead (i.e., voltages drop
to unacceptable low values based on solution obtained from DAE model). Now, the
following questions are raised by this thesis: Is it true that voltage solutions can
indeed always be identified along a dynamic trajectory based on the DAE model? In
other words, could it happen that voltage solutions cease to exist along a trajectory
in the similar manner as it happened in the case of static stability analysis (due to
reaching loadability limits)? If this is a possibility, it is important to understand
the underlaying mechanisms that induce the singularity of DAE along a transient
trajectory since these types of events would affect any type of short-term stability
assessment. If the global existence of coupled DAE solutions is not ensured, it means
that voltage may collapse on a power swing in a phenomenon that is not triggered
by any of the typical (previously mentioned) voltage instability contributors.

For the case of self-restoring loads, a usual standpoint is that voltage stability
after large disturbance may be easily judged by the existence of a small-signal
stable post-fault equilibrium (assuming that short-term RAS is satisfied). This is
based on the fact that, in short-term time scale, the majority of self-restoring loads
behave as static loads (constant impedance or constant current loads) which are
considered as unable to induce voltage instability [174]. The induction motors react
to large disturbances by restoring to almost (static) constant power characteristics
in the time frame of a second [167]. Nevertheless, very few works have actually
inspected the stability of DAE model in the state-space that surrounds a stable
post-fault equilibrium xposts . In these works researchers made efforts to connect
a voltage collapse with the singularity of the algebraic part of DAE model [175].
The loss of DAE solution is possible if a dynamic trajectory faces a manifold that
has been referred to as “impasse surface" [85] or “singularity surface" [86]. An
impasse surface can be defined as a subset of state-space in which voltage causality
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is lost. The knowledge about impasse surfaces have been used to justify well-
known problems with the convergence of TDS in the presence of static, non-linear
loads [111]. However, a structured study that explores the relationships between a
voltage collapse, impasse surfaces and non-impedance loads has not been carried
out so far [176].

The thesis will analyze the mechanisms that lead to a voltage collapse in seconds
after some large disturbance due to the nonlinearity of loads. The aim is to derive
an exact analytical description of an impasse surface with respect to different
load models. A general idea is to observe an impasse surface as a set of points
where some sort of bifurcation happens with rotor angles as bifurcation parameters.
The term bifurcation will be avoided further on when describing this state-space
phenomenon (in order to be in line with the standard terminology and not to make
a confusion with the parameter-space bifurcation from the static analysis). When
some large disturbance excites dynamics of state-variables, algebraic variables
change accordingly along a trajectory. Assuming that (i) a hyperbolic post-fault
equilibrium is small-signal stable, (ii) a fault is cleared on time (tcl < tcc) and (iii) a
trajectory does not intersect with an impasse surface, a power system will eventually
settle at a post-fault stable equilibrium xposts . An alternative scenario corresponds to
a stable post-fault equilibrium that has an impasse surface in its neighborhood, as
shown in Fig. 5.2.
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If a fault is cleared at such time that a post-fault trajectory encounters an
impasse surface, voltage causality will be lost (state and algebraic variables will
not behave according to the DAE model). The “destiny" of such system cannot
be predicted which means that the only option is to avoid “risky" operating points
that are surrounded by impasse surfaces. This is why it is important to understand
the fundamental nature of impasse surfaces and to precisely define under which
circumstances an impasse surface will appear in the proximity of a stable xposts .

5.3 Impasse surface for DAE model

Once a large disturbance is cleared, the system of DAE equations will behave
according to the initial state at the time of fault clearing tcl and the configuration of
the post-fault system. The existence of an impasse surface will hence be examined
with respect to parameters p of a post-fault system, i.e. the post fault-dynamics are
of interest:

ẋ = fpost(x,y,p); 0 = gpost(x,y,p); tcl ≤ t <∞, (5.6)

Here it is assumed that a post-fault equilibrium xposts is small-signal stable which
means that it is possible to find a non-zero tcl that guarantees short-term RAS. For
such case, it is always possible to identify a critical clearing time tcc if an impasse
surface is not located inside a short-term RAS region. To ensure that a singularity is
not going to be encountered along a post-fault trajectory, a location of an impasse
surface should be analytically defined as a function of state-space variables. This
concept is further clarified with the help of the Implicit Function Theorem that is
applied to the general DAE model of a power system.

5.3.1 Implicit Function Theorem

The Implicit Function Theorem has been used in the concept of power systems to
derive sufficient conditions for a local transformation of the DAE model (5.6) into
the system of Ordinary Differential Equations (ODE) [140]:

ẋ = Fpost(x,p), tcl ≤ t <∞. (5.7)

Algebraic equations and variables are eliminated from the set of ODE. This is exactly
what was done when the Structure Preserving Model (SPM) was transformed into the
Reduced Network Model (RNM) of a power system in Subsection 2.3.2 of Chapter
2. This example has demonstrated that the reduction of the SPM to an ODE set is



5.3. IMPASSE SURFACE FOR DAE MODEL 93

always possible when all the loads are of the static, constant impedance type. Based
on the Implicit Function Theorem, a locally unique and smooth function Fpost can
be identified for all the cases when the algebraic Jacobian gposty = ∂gpost/∂y
is non-singular. A possible singularity of gposty at some state-space locations x̂
implies that the algebraic (voltage) solutions do not exist based on the DAE model.
At these points, voltage causality is lost and DAE model cannot be used to describe
system dynamics [177, 178]. From the simulation point of view, this situation is
expected to be manifested in the form of numerical instability (non-convergence). It
is risky to operate in the states where the dynamic behavior after a contingency is
unpredictable. It is important to understand the basic mechanisms that introduce
impasse surfaces in order to minimize the risk of a singularity-induced voltage
collapse along a post-fault trajectory.

5.3.2 Impasse surface as a state-space area- "Voltage Impasse
Region (V IR)"

The following study attempts to take a step forward by deriving the mathematical
characterization for the set of points where the voltage causality is lost due to the
presence of non-linear loads. This subset of state-space (illustrated in Fig. 5.3) will
be as now on denoted as Voltage Impasse Region(s) (V IR) for the DAE model.
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The investigation will focus on finding the conditions that need to hold such
that V IR appears as an area of the state-space that can interfere with short-term
stability assessment. The idea is to be able to “map" a short-term RAS region of any
operating point by distinguishing between “safe" areas and V IR. The simplified
flowchart of the study is depicted in Fig. 5.4.
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Figure 5.4: Flowchart of the study/derivation process

The conceptual description of the steps for finding V IR is given in the sequel:

1. Initially, a small signal stable post-fault operating state xposts is calculated based
on known, corresponding parameters p;

2. Mathematical transformations are then carried out in order to determine the
solutions for voltages as the explicit functions of state-variables (and other
constant parameters);

3. The type of static load will be varied between constant power, constant current
and constant impedance characteristics. The nature of voltage solutions is
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carefully analyzed for each load model to investigate if Fpost is always possible
to construct without limitations;

4. If the previous points conclude that the existence of voltage solution is con-
strained (state-space singularity areas of gposty are non-zero sets), appropriate
Voltage Collapse Indicators (VCIs) will be defined based on the fundamental
requirement for the magnitude of a phasor;

5. By the virtue of VCIs, V IR is introduced as the union of points in state-space at
which voltage causality is lost.

The proposed algorithm would provide an easy access to V IR size and location
by using only the information about steady-state of the post-fault system. In other
words, one does not need to carry out a dynamic simulation to determine whether
V IR exists in the state-space neighborhood of xposts . The on-line knowledge about
the proximity to V IR could be a powerful tool against short-term voltage collapse.
To get familiar with the concept of V IR, the thesis first provides a simple example
for which it is straightforward to derive and present the conditions for the existence
of voltage solution in an intuitive manner.

5.4 Analytical example for an SMIB system with
constant power load

Let the SMIB system have the set up that is shown in Fig. 5.5. The purpose of the
example is to find the relationship between the state-space location and the existence
of a solution for load voltage Ūl = Ul∠θl when the load is of static, non-linear type.
An example of such load is the constant power load that will be employed in this
analytical study.

1 0 1E   
1j 1j

Infinite 

bus

Synchronous 

generator

l l lU U  

l l lS P jQ 

Figure 5.5: A version of SMIB system for the analysis of load voltage solution
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The unity parameters (Z̄L = jXL = j1 [p.u.]) are used for the two identical,
purely reactive line impedances where shunt admittances are neglected. The load
is of static, constant power type, i.e. the power S̄l remains constant regardless of
the changes in the load voltage Ūl. For simplicity purposes, the internal bus of the
machine is connected directly to the network. The machine is represented by the
classical model. It is assumed that the solution of the power flow results in the
magnitude of the generator voltage being equal to 1 [p.u.]. When the phasor of the
generator voltage Ē′ = 1∠δ is shown, the rotor angle of the generator is purposely
denoted as a variable δ due to the fact that its value would change once dynamics
are triggered. On the other hand, the magnitude of the internal generator voltage
remains constant for the case of classical model. The angle of the infinite bus with
fixed voltage ŪN = 1∠0◦ is used as the reference for δ.

From the Kirchhoff’s current law [179] for the load bus it follows that:

1− Ūl
j

+ 1∠δ − Ūl
j

=
(
S̄l

Ūl

)∗
⇒ 2jŪl − j(1 + 1∠δ) = S̄∗l

Ū∗l
. (5.8)

The multiplication of both sides of Eq. (5.8) by Ū∗l /j (for Ūl 6= 0) results in the
phasor of the load voltage being expressed as:

2U2
l − Ū∗l (1 + 1∠δ) = −jS̄∗l ⇒ Ū∗l = 2U2

l + jS̄∗l
1 + 1∠δ ∧ Ūl = 2U2

l − jS̄l
1 + 1∠− δ . (5.9)

A simple way to solve Eq. (5.9) for the magnitude of the voltage is to multiply the
load voltage with its conjugate:

U2
l = ŪlŪ

∗
l = (2U2

l + jS̄∗l )(2U2
l − jS̄l)

(1 + 1∠δ)(1 + 1∠− δ)

= 4U4
l + S2

l + j2U2
l (S̄∗l − S̄l)

2 + 1∠δ + 1∠− δ

= 4U4
l + S2

l + 4U2
l Ql

2 + 2 cos δ , since S̄∗l − S̄l = −2jQl.

(5.10)

By reorganizing Eq. (5.10), a resulting biquadratic equation with respect to the
voltage magnitude is obtained as:

U4
l +

(
Ql −

1
2 −

cos δ
2

)
U2
l + S2

l

4 = 0. (5.11)

In the context of V IR, it is of interest to analyze the voltage magnitude solution
when δ is changed. The basic requirement for the magnitude of any phasor is that
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it has a positive, real value. Biquadratic equation (5.11) is at the same time the
quadratic equation where U2

l is the independent variable. Hence, the sufficient
condition for having at least one feasible solution for the magnitude is that the
discriminant D of Eq. (5.11) is larger or equal to zero. The opposite case (in which
the discriminant D is less than zero) yields the pair of complex-conjugated solutions
for U2

l . The set of angles δ that corresponds to the case of negative discriminant D
is actually the V IR. The condition for the non-existence of the voltage solution is
then written in the following form:

D = (Ql − φ)2 − S2
l < 0⇒

⇒ Q2
l − 2φQl + φ2 − P 2

l −Q2
l < 0, where φ = 1 + cos δ

2 .
(5.12)

In order to simplify the condition for the non-existence of load voltage solution,
Eq. (5.12) is divided by φ. The variable φ is always positive except for the case
δ = π [rad.] when φ = 0. At the point when rotor angle reaches 180◦ or π [rad.]
synchronism has already been lost. Hence, it is safe to divide Eq. (5.12) by φ such
that the condition for the voltage solution non-existence is written as:

−2φQl + φ2 − P 2
l < 0⇒ −2Ql + φ− P 2

l

φ
< 0⇒ Ql >

φ

2 −
P 2
l

2φ . (5.13)

The condition from Eq. (5.13) can also be rewritten in the terms of rotor angle δ:

Ql >
1 + cos δ

4 − P 2
l

1 + cos δ . (5.14)

Figure 5.6 illustrates the condition (5.13) for the voltage solution existence by
marking the areas without voltage causality in gray color. The figure obviously
relates to some general Pl, Ql and φ = (1 + cos δ)/2. The area of quadrant I that
has been coloured in blue is important due to the presumed direction of load power
(i.e. load typically consumes active and reactive power which means Pl, Ql > 0).
The blue parabola Ql = φ/2 − P 2

l /2φ in Fig. 5.6 is the boundary for voltage
solution existence that is shown in a general form for some set of system parameters.
It is clear that the operation inside the gray area beyond blue parabola (impasse
surface) is not possible since it does not correspond to any static, physical state of
the system. Any steady-state operating point that lies on the blue parabola yields
that the two feasible voltage solutions of Eq. (5.11) merge as:

Ul1,2 =

√√√√−(Ql − φ)±
√

(Ql − φ)2 − S2
l

2
(Ql−φ)2−S2

l =0
−−−−−−−−−→U liml =

√
φ−Ql

2 .(5.15)



98
CHAPTER 5. VOLTAGE IMPASSE REGIONS (V IR) IN POWER SYSTEM

DYNAMICS

Such an operating state that corresponds to U liml in a fact represent a static loadabil-
ity limit. Once the limit is crossed (after a load increase, for instance), the upper
and the lower voltage solutions cease to exist due to becoming complex numbers.

0
lP

lQ

/ 2



Voltage 

causality lost

Voltage 

causality lost

( , 0)l lP Q 






V

Figure 5.6: The areas where Ūl solutions do not exist

Now, let an operating point OP (given by S̄OPl = POPl + jQOPl , δOP ) belong
to the safe, white area under the parabola, as shown in Fig. 5.7.

0
lP

OPOP

OP

lQ

OP

lP

lQ / 2OP

Figure 5.7: A stable operating point from the static analysis point of view

Angle δOP is assumed to be identified as an output of the power flow where
S̄OPl is specified. For stable steady-states, the rotor angle is usually very close to
zero, i.e. δOP ∼ 0◦. The specific value of φ that corresponds to δOP is given by
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φOP = (1 + cos δOP )/2 which further determines the intersections of the blue
parabola with Pl andQl axis in Fig. 5.7. By looking into Table 5.1 that maps several
values of δ into φ, it may be observed that by changing δ in the range (−π, π) [rad.]
⇔ (−180◦, 180◦) φ decreases as δ moves away from 0◦ (and δOP ∼ 0◦).

Table 5.1: The mapping of values between δ and φ

δ −180◦ −90◦ −60◦ 0◦ 60◦ 90◦ 180◦

φ 0 1
2

3
4 1 3

4
1
2 0

The changes of δ may as well be interpreted as the oscillations of the rotor angle
that occur along a dynamic trajectory. So, what are the physical implications of this
example in the terms of dynamics? Inspection of the curves from Fig. 5.8 helps in
answering this question. When the rotor angle δ starts oscillating due to some large
disturbance, the blue curve will move correspondingly. Let the “movable" φ that
comes from the post-fault dynamics of δ be denoted as φdyn.
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Figure 5.8: The loss of voltage causality due to dynamics

Assuming that a large disturbance has been cleared without changes in con-
figuration, an appropriate fault clearing time would lead to the settling at the
stable OP (if the dynamical system is damped). This statement would hold if
the loss of synchronism was the only active instability mechanism here. If the
rotor angle moves far enough from the initial state, it may as well happen that
parabola (Ql − φdyn)2 − S2

l = 0 (blue, dashed curve in Fig. 5.8) “meets" the point
(POPl , QOPl ). This means that two distinct voltage load solutions have merged as
the dynamical state evolved. Further increase in δ results in the loss of voltage
causality due to entering an area that has been introduced in this thesis as a Voltage
Impasse Region (V IR).
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It is undefined what happens next once a system reaches a V IR. Nevertheless,
this simple example yielded several interesting observations:

• V IR is a “dynamic equivalent" to static loadability. Both phenomena orig-
inate from the loss of possibility to express load voltage Ūl as a function
of rotor angle δ. In both cases, the magnitude of the upper voltage solution
decreases until the point U liml where it merges with the lower voltage solution.
The difference is that the static loadability occurs due to some variation in
system parameters (e.g. load powers) while a V IR is encountered during
dynamics as rotor angle δ changes;

• For the constant power load model, a loss of voltage causality along a trajec-
tory is related to the power characteristic that cannot “adjust" to the changes
of parabola (Ql − φdyn)2 − S2

l = 0 during dynamics. It is also important to
outline that even before the voltage solution is completely lost, the drop in
voltage profiles could be significant;

• Short-term RAS assessment should consider V IR as a threat to the existence
of voltage solutions along a dynamical trajectory.

The intention of this example was to provide an insight into basic mechanisms
that lead to the load-modeling-related loss of voltage causality during dynamics.
The constant power load is one type of non-linear static load. A similar analytical
example based on SMIB system could have been established for the constant current
load. However, this will be done in a more general way. The concept of V IR will
now be expanded to a multi-machine power system model such that the effect of
different types of static load can be investigated.

5.5 System model for the study of V IR

The idea of V IR will now be generalized by using an n-machine (i = 1, ..., n)
power system model that is similar to the one from Section 2.2. The generators
are given by the classical model. Out of total N number of loads (k = 1, ..., N ),
(N − 1) loads are considered as constant impedances Z̄lm (m = 1, ..., N ∧m 6= L).
One load that is connected at some bus L will be represented by different static
load models (namely, constant power, constant current or constant impedance load
models). Such a system is sketched in Fig. 5.9. The intention here is to understand
the mechanism of V IR appearance by outlining the influence of one load that has
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non-impedance characteristic. It is important to carry out this step before any further
analysis about cumulative effect of multiple non-linear loads.
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Figure 5.9: Power system model for the study of load modeling effects on V IR

The set of DAE that describes the dynamic behavior of this system has been
previously defined in Chapter 2 by Eqs. (2.13) and (2.14). Following the Implicit
Function Theorem, the transformation of DAE into the form of reduced ODE system
(2.25) is possible if voltage causality is maintained in the whole state-space:

DAE


δ̇=fpostδ(ω);
ω̇=fpostω(δ,ω,U,θ);
0=gpost(δ,U,θ);

U(δ)−−−→
θ(δ)

δ̇ = Fpostδ(ω);
ω̇ = Fpostω(δ,ω).

ODE (5.16)

i.e. if the functions U(δ) and θ(δ) are well defined for each δ since the algebraic
equations do not depend on ω (directly). If the exponents that correspond to the
active and reactive powers from Eq. (2.6) are set to be equal (mp = mq = ms), the
complex power of the load at bus L can be written as:

S̄lL = PlL + jQlL = PlL0

(
UL
UL0

)mp
+ jQlL0

(
UL
UL0

)mq

= (PlL0 + jQlL0)
(
UL
UL0

)ms
= S̄lL0

(
UL
UL0

)ms
,

(5.17)
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where ms = 0, ms = 1 and ms = 2 represent the constant power, constant current
and constant impedance load characteristics, respectively. Equation (5.17) describes
how the load complex power S̄lL changes from its initial value S̄lL0 as the load
voltage magnitude UL evolves from UL0 , as it happens in the case of dynamics. The
transformation from Eq. (5.16) says that it is necessary to determine the closed form
expressions for voltages of the generator terminal and load buses as the functions of
generator rotor angles.

Now, let a slightly modified admittance matrix Y′ represent the original admit-
tance matrix of the network YBUS whose diagonal entries are expanded for the
load admittances and the associated admittances of the generators as:

Y′=YBUS+



1
jX ′d1

+ 1
Z̄l1

0 . . . 0 . . . 0 0

0 1
jX ′d2

+ 1
Z̄l2

. . . 0 . . . 0 0
...

...
. . .

...
. . .

...
...

0 0 . . .
1

Z̄l(n+1)

. . . 0 0
...

...
. . .

...
. . .

...
...

0 0 . . . 0 . . .
1

Z̄l(N−1)

0

0 0 . . . 0 . . . 0 1
Z̄lN



.(5.18)

It can equally be said that in the matrix (5.18), (i, i)th and (m,m)th entries of YBUS
are expanded for the admittances 1/jX ′di and 1/Z̄lm that are directly connected
to those buses. For instance, the first element along Y′ diagonal is Y′(1, 1) =
YBUS(1, 1) + 1/jX ′d1 + 1/Z̄l1 and another element of the new admittance matrix
that corresponds to a purely load bus N is Y′(N,N) = YBUS(N,N) + 1/Z̄lN .
The transformation of the admittance matrix is carried out in order to establish a
direct connection between the internal generator voltages, voltages at the terminals
of the generators and the load bus voltages in a compact form. The inverse of the
new admittance matrix Y′ is introduced as the impedance matrix Z:

Z = Y′−1
, (5.19)

where the element at the (u, v)th position of matrix Z will be denoted as Z̄uv.
In the similar fashion as in the analytical example from Section 5.4, the system

voltages can be expressed by simply following the Kirchhoff’s current law. The idea
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is to “keep" the load at bus L outside of the matrix Y′ by modeling its influence
via current (S̄lL/ŪL)∗ that is drawn by the load. After a few simple algebraic
manipulations, it can easily be shown that the following matrix equation holds:

Ē′1/(jX ′d1)

Ē′2/(jX ′d2)
...

Ē′n/(jX ′dn)

0
...

−(S̄lL/ŪL)∗

...

0



= Y′



Ū1

Ū2

...

Ūn

Ūn+1

...

ŪL

...

ŪN



⇒



Ū1

Ū2

...

Ūn

Ūn+1

...

ŪL

...

ŪN



= Z



Ē′1/(jX ′d1)

Ē′2/(jX ′d2)
...

Ē′n/(jX ′dn)

0
...

−(S̄lL/ŪL)∗

...

0



. (5.20)

Equation (5.20) relates the voltages at load buses and generator terminals with the
internal voltages of the generators and the voltage of the “extracted" load at bus L.
Any kth row of the resulting Eq. (5.20) represents the equation for the voltage at
kth bus:

Ūk=−Z̄kL

(
S̄lL
ŪL

)∗
+

n∑
i=1

Z̄ki
Ē′i
jX ′di

=−Z̄kL

(
S̄lL
ŪL

)∗
+ε̄k, for k=1, ..., N.(5.21)

In ε̄k =
∑n
i=1 Z̄kiĒ

′
i/jX

′
di everything stays constant during dynamics except for

the rotor angles (i.e. ε̄k = f(δ)). This means that each of N system voltages is a
function of the constant post-fault parameters, variable rotor angles and variable load
voltage ŪL. It is, therefore, apparent that the existence of closed form expressions
U(δ) and θ(δ) depends on whether or not the load voltage ŪL:

ŪL=−Z̄LL

(
S̄lL
ŪL

)∗
+

n∑
i=1

Z̄Li
Ē′i
jX ′di

=−Z̄LL

(
S̄lL
ŪL

)∗
+ε̄L(δ) (5.22)

can always be solved with respect to δ. The task of the following chapter is to answer
this question by investigating potential limitations for voltage solution existence
when different types of static load models are employed.





Chapter 6

V IR and Their Role in RAS
Region Assessment

The previous chapter has introduced a Voltage Impasse Region (V IR) as a state-
space area at which voltage causality is lost. The following pages further extend the
analysis by providing the mathematical description of these “forbidden" areas. The
aim of Chapter 6 is to carry out a comprehensive study that explains the relationship
between V IR and the the non-linear static loads in power system dynamics.

The final part of this thesis will focus on the analytical description of the state-
space areas at which DAE model of a power system fails. V IR area has first been
explained on a conceptual level with the help of “impasse surface" terminology.
Then the analytical example from Section 5.4 determined the relationship between
voltage solution existence and the value of one state-space variable (δ) for the single
machine case. The static, voltage independent constant power load model was to
blame for the loss of voltage solution. This observation is particularly interesting
knowing that the fast restoration of the pre-fault active consumption (as in the
case of induction motors) is one of the driving mechanisms for short-term voltage
instability in dynamics of large disturbances [55, 167]. The simple example also
concluded that V IR is a dynamical “twin" of the static loadability.

However, what would happen when more machines are involved or when the
load is of e.g. constant current type? The last section of Chapter 5 expands the study
from Section 5.4 by simply applying Kirchhoff’s current law to a multi-machine
power system. The transformation of DAE to ODE is shown to be always possible
when there are no contraints imposed on the existence of U(δ) and θ(δ). As a
final result, Chapter 5 sets up the voltage load solution in a convenient form such
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that more detailed analysis can be carried out:

ŪL=−Z̄LL

(
S̄lL
ŪL

)∗
+

n∑
i=1

Z̄Li
Ē′i
jX ′di

=−Z̄LL

(
S̄lL
ŪL

)∗
+ε̄L(δ). (6.1)

The unlimited existence of load voltage solution implies that it is possible to obtain
the closed form expressionsU(δ) and θ(δ). In other words, wherever in the state-
space the load voltage solution can be found based on DAE model, voltage
causality is locally maintained and ODE formulation holds.

Instead of finding where the reduction from DAE to ODE is possible, the target
here is to find out for which cases this transformation cannot be carried out. Chapter
6 will, generally speaking, have the three main tasks that correspond to the Steps
3-5 of the algorithm from Fig. 5.4:

1. The voltage solution ŪL should be analyzed with respect to the three types
of the static load models, namely: (i) constant power, (ii) constant current
and (iii) constant impedance load models. By using the same approach, the
problem will also be formulated for a more general, ZIP load model.

2. Voltage Collapse Indicators (VCIs) are developed to associate a certain value
to each state-space point that surrounds a post-fault equilibrium.

3. With the help of VCIs being subject to a singularity condition, V IR will be
defined via trigonometric functions in the relative rotor-angle space.

The expression (6.1) is the starting point for this chapter. By employing different
static load models, Eq. (6.1) is carefully analyzed in order to define V IR for a
specific set of post-fault parameters that correspond to a small-signal stable xposts .
The constant impedance load can be used to verify the approach since this type of
load should never introduce V IR (as it was shown in Subsection 2.3.2 where the
SPM was transformed into the RNM). Several Voltage Collapse Indicators (VCIs)
will also be developed to quantify state-space locations and derive V IR for the
constant power and constant current load models.

The theoretical prediction about V IR will be tested by using a 3-machine
system where a dynamical trajectory is calculated based on the partitioned solution
approach. The case study explores the observable consequences of entering V IR
when the type and the size of the load are varied. The aim is to possibly make a
link between the loss of voltage causality and non-convergence issues in TDS. The
matching between V IR and a failure of a simulation program to converge would
indicate that the numerical issues are only “symptoms" of a larger, underlaying
problem that concerns the consistency of the DAE model.
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6.1 V IR as a result of constant power load modeling

The first interesting case is dealing with the constant power model of the load at bus
L for which the exponent ms = 0:

S̄lL = PlL + jQlL = (PlL0 + jQlL0)
(
UL
UL0

)ms
= S̄lL0 . (6.2)

When the constant power S̄lL0 is replaced into Eq. (6.1), the expression for the
voltage of the load at bus L becomes:

ŪL = −Z̄LL

(
S̄lL0

ŪL

)∗
+

n∑
i=1

Z̄Li
Ē′i
jX ′di

= ā

Ū∗L
+ ε̄L, where ā = −Z̄LLS̄∗lL0 . (6.3)

The value of ā is a constant that reflects the parameters of the post-fault system. Let
this constant be given in the form ā = aR + jaX = const. By looking into Eq. (6.3)
it is clear that as the dynamic states evolve, ε̄L = f(δ) varies which further causes
that both the magnitude and the rotor angle of ŪL = UL(δ)ejθL(δ) change. The
focus of the study is the existence of a feasible load magnitude solution (as in the
example from Section 5.4). The dependency θL(δ) can always be obtained (there
are no rigorous mathematical constraints that are imposed on the voltage angle).
However, this is not the case for the magnitude UL. To find an explicit expression
for UL, Eq. (6.3) is first multiplied by Ū∗L 6= 0 and then transformed as:

U2
L = ā+ Ū∗Lε̄L ⇒ Ū∗L = U2

L − ā
ε̄L

∧ ŪL =
(
U2
L − ā
ε̄L

)∗
⇒

⇒ U2
L = Ū∗LŪL =

(
U2
L − ā
ε̄L

)(
U2
L − ā
ε̄L

)∗
= U4

L − (ā+ ā∗)U2
L + a2

ε2
L

.

(6.4)

The multiplication of the resulting expression from Eq. (6.4) by ε2
L 6= 0 results in a

biquadratic equation with respect to UL as:

0 = U4
L + (−ε2

L − 2aR)U2
L + a2, (6.5)

where the four solutions for the magnitude of the voltage at bus L are given by:

UL1,2,3,4 = ±

√√√√(ε2
L + 2aR)±

√
(ε2
L + 2aR)2 − 4a2

2 . (6.6)

Two of the solutions of Eq. (6.6), namely UL3 and UL4 , are obviously not the
feasible ones since they correspond to the minus sign in front of the first square root.
The more detailed discussion about the other two solutions (UL1 and UL2) follows.
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6.1.1 Voltage solutions discussion

The mathematical requirement for the magnitude of a phasor is that it needs to have
a real (R), positive value. The inspection of Eq. (6.6) eliminated the two negative
solutions UL3 and UL4 . The following proposition states the conditions for the
existence of the remaining two (UL1 and UL1) voltage magnitude solutions.

Proposition 1. Let the discriminant of Eq. (6.6) be denoted as the Voltage Collapse
Indicator for the Constant Power load model (V CICP ), i.e.:

V CICP = (ε2
L + 2aR)2 − 4a2 = ε4

L + 4ε2
LaR − 4a2

X
. (6.7)

In order to have at least one feasible solution for the load voltage magnitude:

UL1,2 = +

√√√√(ε2
L + 2aR)±

√
(ε2
L + 2aR)2 − 4a2

2 , (6.8)

the indicator V CICP needs to satisfy the necessary and sufficient Condition (C.I):

C.I : V CICP = (ε2
L + 2aR)2 − 4a2 ≥ 0. (6.9)

Proof. The acceptable solution for magnitude UL will exist if the expression under
the square root of Eq. (6.8) is positive and real:(

(ε2
L + 2aR)±

√
(ε2
L + 2aR)2 − 4a2

)
/2 > 0, (6.10)

The fulfillment of Condition (C.I) (non-negativity of V CICP ) implies that:

ε2
L + 2aR +

√
(ε2
L + 2aR)2 − 4a2 > 0 and

ε2
L + 2aR −

√
(ε2
L + 2aR)2 − 4a2 > ε2

L + 2aR −
√

(ε2
L + 2aR)2 = 0.

It may be noted that, if C.I is satisfied, there are always two real and positive (R)
voltage magnitude solutions:

UL1,2 =
√(

(ε2
L + 2aR)±

√
(ε2
L + 2aR)2 − 4a2

)
/2 > 0, (6.11)

i.e. a high and a low voltage solution. In Fig. 6.1, Condition (C.I) represents the
union of the white area (V CICP >0) and parabola V CICP =(ε2

L+2aR)2−4a2 =0.
The two solutions cease to exist after the merging point V CICP = 0, at which:

UL1 = UL2 = U limL =

√
(ε2
L + 2aR)

2 . (6.12)
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Figure 6.1: The nature of the solution for the magnitude of load voltage ŪL

After this point, for V CICP < 0, the two solutions will have non-zero imaginary
component. Simply put, UL1,2 will become complex numbers (C) in the gray area
of Fig. 6.1, which is not a feasible solution for the magnitude of a phasor.

The condition V CICP = (ε2
L + 2aR)2 − 4a2 < 0 is equivalent to the loss of

voltage causality. Since the boundary of the gray area from Fig. 6.1 depends on
εL = f(δ), the idea is to use V CICP and introduce Voltage Impasse Region (V IR)
as the subset of state-space that fails to fulfill Condition (C.I).

6.1.2 V IR definition

The next step is to define Voltage Impasse Region (V IR) based on the criterion that
is opposite to the condition for the existence of load voltage solution (6.9). That is
to say, the location of the gray area from Fig. 6.1 (at which V CICP < 0) needs
to be defined for a stable xposts . If a qth machine is taken as the reference, V IR is
introduced as an area in the space of relative rotor angles that satisfies:

V IR = {(δ1q, δ2q, ..., δnq) : (ε2
L(δ) + 2aR)2 − 4a2 < 0}. (6.13)

Since ā and its active component aR are constant parameters that are coming from
a post-fault configuration of the power system, the single entity that varies in Eq.
(6.13) due to dynamics is ε2

L. Now, let ε2
L be written as:

ε2
L(δ) = ε̄Lε̄

∗
L =

n∑
i=1

n∑
`=1

Z̄LiZ̄
∗
L`Ē

′
iĒ
′∗
`

X ′diX
′
d`

=
n∑
i=1

n∑
`=1

K̄i`E
′
iE
′
`e
jδi` , where (6.14)

• K̄i` = Z̄LiZ̄
∗
L`

X ′diX
′
d`

= αi` + jβi` = const. is a constant parameter and

• δi` = δiq − δ`q is the difference of rotor angles that are given in the relative form
(δiq, δ`q) with respect to the rotor angle of the qth generator.
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Since it may also be shown that for different values of indices i and `:

i = `
yields⇒ K̄ii = αii =

(
ZLi
X ′di

)2

, δii = 0 and for (6.15)

i 6= `
yields⇒ K̄i` = αi` + jβi` = K̄∗`i, ejδi` = (ejδ`i)∗, (6.16)

the summation of (i, `)th and (`, i)th terms from Eq. (6.14) results in:

K̄i`E
′
iE
′
`e
jδi` + K̄`iE

′
`E
′
ie
jδ`i = 2 Re(K̄i`E

′
iE
′
`e
jδi`)

= 2 Re
(
(αi` + jβi`)E′iE′`ejδi`

)
= 2E′iE′`(αi` cos(δi`)− βi` sin(δi`)).

(6.17)

By the virtue of Eqs. (6.13)-(6.17), V IR can now be fully defined as the set:

V IR = {(δ1q, δ2q, ..., δnq) : (ε2
L(δ) + 2aR)2 − 4a2 < 0}, where

ε2
L(δ) =

n∑
i=1

αiiE′2i + 2
n∑

`=i+1
E′iE

′
`(αi` cos(δi`)− βi` sin(δi`))

 . (6.18)

V IR, in a fact, represents the union of all those combinations of (n− 1) relative
rotor angles that do not fulfill Condition (C.I). The boundary of V IR is apparently
a trigonometric function that is defined in the relative rotor angle space with respect
to the parameters of a post-fault system. It is not necessary to perform TDS to know
the location of a V IR. The existence of V IR can be simply assessed by applying
the expression from Eq. (6.18). In the sequel, the same approach will investigate if
V IR may also appear due to the constant current load model.

6.2 V IR as a result of constant current load modeling

It is known that the fast recovering loads that operate close to the constant power
characteristics may lead to significant drops of voltages in the seconds following a
large disturbance [167]. However, the existing studies did not discuss the constant
current load characteristic in the same context, i.e. this type of load model has
typically been considered as a “safe" one when it comes to short-term voltage
instability. This is why it is important to investigate if V IR can be introduced when
the load power follows the constant current characteristics (ms = 1):

S̄lL = PlL + jQlL = (PlL0 + jQlL0)
(
UL
UL0

)ms
= S̄lL0

(
UL
UL0

)
. (6.19)
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Once again, by replacing the power from Eq. (6.19) into Eq. (6.1), it follows that:

ŪL=−Z̄LL

 S̄∗lL0
UL

UL0Ū
∗
L

+
n∑
i=1

Z̄Li
Ē′i
jX ′di

= b̄UL

Ū∗L
+ε̄L,where b̄=

−Z̄LLS̄∗lL0

UL0
(6.20)

is a constant that can be written in a general form as b̄ = bR + jbX = const. Since
the solution for the magnitude UL needs to be analyzed, Eq. (6.20) is multiplied by
Ū∗L 6= 0 to eliminate the angle of the load voltage as:

UL
2 = ŪLŪ

∗
L = b̄UL + ε̄LŪ

∗
L ⇒ Ū∗L = UL(UL − b̄)

ε̄L
∧ ŪL = (Ū∗L)∗ ⇒

⇒ UL
2 = ŪLŪ

∗
L = UL

2(UL − b̄)(UL − b̄∗)
ε2
L

= UL
2(U2

L − 2bRUL + b2)
ε2
L

.

(6.21)

For ε2
L 6= 0, the voltage magnitude appears to be the only variable in the equation:

U2
L − 2bRUL + (b2 − ε2

L) = 0, (6.22)

that is quadratic in nature and has two possible roots for magnitude UL:

UL1,2 = bR ±
√
b2

R
− (b2 − ε2

L) = bR ±
√
ε2
L − b2

X
. (6.23)

More discussion is needed to determine the conditions for the existence of feasible
roots (i.e. solutions) of Eq. (6.22).

6.2.1 Voltage solutions discussion and V IR

The case of constant current load model is more complicated when it comes to
the number of solutions for UL. It has already been stated that feasible roots (i.e.
solutions) need to be real and positive. This time, the solution also depends on the
constant bR that reflects the parameters of the system. There are several options
when it comes to the value of roots in Eq. (6.23). Beside “impossible", complex
roots (C) that appear by following the same mechanism as in the case of constant
power load model, it can also occurr that the the roots are physically “infeasible", i.e.
that they have real (R) and negative values. Let all the possible combinations of the
roots be marked as (++), (+−), (−−) and (C) such thay they denote the cases of (i)
two real and positive roots (++); (ii) two real roots out of which one has a positive
and the other one has a negative value (+−); (iii) two real and negative roots (−−)
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and (iv) two complex roots (C). Then, depending on the system characteristics (bR),
the types of UL1 and UL2 roots and the number of solutions are given as follows:

if bR ≤ 0⇒


no solutions (C),
no solutions (- -),
1 solution (+ -),

for

ε2
L <b

2
X

b2
X
≤ ε2

L < b2

ε2
L ≥b2

 or

if bR > 0⇒


no solutions (C),
2 solutions (+ +),
1 solution (+ -),

for

ε2
L < b2

X

b2
X
≤ ε2

L < b2

ε2
L ≥ b2

 .
Apparently, there exists a possibility for the constant current load to introduce V IR.
The given classification may also be visually represented as in Fig. 6.2.

Figure 6.2: The nature of the solution for the magnitude of load voltage ŪL

To simplify the analysis, two Voltage Collapse Indicators for the Constant
Current load model (V CIsCC = {V CICC1, V CICC2}) are next proposed in order
to judge about the number and existence of voltage solutions. These indicators will
also be used to define V IR.

Proposition 2. Let the Voltage Collapse Indicators for the Constant Current
(V CIsCC) load model be distinguished with respect to system characteristics
(bR) as:

if bR ≤ 0 ⇒ I: V CICC1 = ε2
L − b2 or (6.24)

if bR > 0 ⇒ II: V CICC1 = ε2
L − b2 ∧ III:V CICC2 = ε2

L − b2
X
. (6.25)
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Then, necessary and sufficient conditions that need to be fulfilled such that there
exists minimum one solution for the load voltage magnitude from Eq. (6.23) are:

if bR ≤ 0 C.I : V CICC1 = ε2
L − b2 > 0 (6.26)

if bR > 0 C.II : V CICC2 = b2
R
− (b2 − ε2

L) = ε2
L − b2

X
≥ 0. (6.27)

Proof. In the first case (bR ≤ 0), the fulfillment of Condition (C.I) results in one
voltage magnitude solution:

UL1 = bR +
√
b2

R
− (b2 − ε2

L) > bR +
√
b2

R
= 0. (6.28)

At V CICC1 = 0, the value of this root would become zero (which is not allowed
due to assumption Ū∗L 6= 0). The other root UL2 is also real for V CICC1 > 0,
however, it has a negative value. For bR > 0, Condition (C.II) always ensures the
existence of at least one solution:

UL1 = bR +
√
b2

R
− (b2 − ε2

L) = bR +
√
ε2
L − b2

X
> 0. (6.29)

If additionally, V CICC1 = ε2
L − b2 < 0, another UL solution occurs as:

UL2 = bR −
√
b2

R
− (b2 − ε2

L) > bR −
√
b2

R
= 0. (6.30)

Thus, in this case, two positive voltage magnitude solutions exist. The borderline of
the solution existence is reached at V CICC2 = 0, where the two solutions merge.
On the other hand, at V CICC1 = 0 the low solution (UL2) would become zero.

The Conditions (C.I) and (C.II) and associated Voltage Collapse Indicators
(V CIsCC) will be employed in V IR definition for the constant current load model.
The regions with different number of solutions are sketched in Fig. 6.3.

2

L0

2b
2

Xb

Rb 1 solutionno solutions

VIR

VIR
2 solutions

01 CCVCI02 CCVCI

(+ +) (+ −)

(− −) (+ −)

(ℂ)

(ℂ)

Figure 6.3: The relationship between UL solutions, V CIsCC and V IR
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In this figure, the system characteristic bR is a parameter and ε2
L is the function

of δ (ε2
L(δ) is identical to the one from Eq. (6.18) that has been derived for the

constant power load model). As explained in Proposition 2, the voltage magnitude
solution can be lost due to either (i) the upper voltage solution becoming negative
after V CICC1 = 0 (for bR ≤ 0) or (ii) due to the roots of Eq. (6.23) turning
complex after merging at V CICC2 = 0 (for bR > 0). The red zone where there
is no feasible voltage solution is actually the V IR. At the point V CICC1 = 0
(bR > 0), Eq. (6.23) yields zero for the lower voltage solution (which is not in line
with the assumption Ū∗L 6= 0). This point represents the transit between the two
"stable" regions where the loss of voltage causality is not expected to happen due
to DAE model following the desirable, upper voltage solution. Finally, by taking
into account the Conditions (C.I) and (C.II), V IR is defined in the space of relative
rotor angles as:

V IR =

(δ1q, δ2q, ..., δnq) : ε2
L(δ)− b2 ≤ 0

(δ1q, δ2q, ..., δnq) : ε2
L(δ)− b2

X
< 0

for
bR ≤ 0
bR > 0

 , where

ε2
L(δ) =

n∑
i=1

αiiE′2i + 2
n∑

`=i+1
E′iE

′
`(αi` cos(δi`)− βi` sin(δi`))

 .
(6.31)

Hence, the Conditions I-II may be used as valid V CIsCC to indicate a voltage
collapse and define V IR for the constant current load model.

The general theoretical conclusion is that both non-linear static load models
may introduce V IR areas at which voltages cannot be identified based on the DAE
model of a power system. For a known post-fault configuration, the exact analytical
description of V IR is given by Eqs. (6.18) and (6.31).

6.3 V IR in the case of constant impedance load model
and ZIP load model

It is well-known that the constant impedance load model enables the transformation
of DAE into an ODE form. Subsection 2.3.2 has demonstrated this for the n-machine
power system model where all the loads were given by constant impedances and
the generators were presented by classical models. It is convenient to confirm this
feature from another perspective, i.e. by applying the same approach from the
previous sections. This means that the constant impedance load at bus L is still
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“kept outside" of the admittance matrix Y′ in order to discuss the solution for voltage
magnitude UL.

6.3.1 Voltage solution for constant impedance load

Proposition 3. Assuming that the load at bus L in the model from Fig. (5.9) is of
constant impedance type, a solution for the voltage at bus L (and consequently, the
solutions for the other voltages) is always obtainable regardless of the state-space
location. In other words, constant impedance loads do not introduce V IR.

Proof. The power of the static, constant impedance load at bus L is given by
replacing ms = 2 into Eq. (5.17):

S̄lL = PlL + jQlL = (PlL0 + jQlL0)
(
UL
UL0

)ms
= S̄lL0

(
UL
UL0

)2

. (6.32)

By using this power, the voltage of the load at bus L can be rewritten as:

ŪL = −Z̄LL

 S̄∗lL0
U2
L

U2
L0
Ū∗L

+
n∑
i=1

Z̄Li
Ē′i
jX ′di

= c̄U2
L

Ū∗L
+ ε̄L where

c̄ = −
Z̄LLS̄

∗
lL0

U2
L0

= − Z̄LL
Z̄lL

= cR + jcX = const.

(6.33)

As before, the angle of the voltage can be eliminated from the problem for Ū∗L 6= 0:

UL
2 =ŪLŪ∗L = c̄U2

L + ε̄LŪ
∗
L ⇒ Ū∗L = U2

L(1− c̄)
ε̄L

, ∧ ŪL = U2
L(1− c̄∗)
ε̄∗L

⇒

⇒ŪLŪ∗L = U2
L = UL

4(1− c̄)(1− c̄∗)
ε2
L

= UL
4 | 1− c̄ |2

ε2
L

.

(6.34)

The division of Eq. (6.34) by UL2 results in a quadratic equation that always has
one positive voltage magnitude solution:

U2
L | 1− c̄ |2 −ε2

L = 0 UL>0=⇒ UL = εL
| 1− c̄ | , (6.35)

except for the special case c̄ = 1, which corresponds to some sort of resonance
Z̄LL = −Z̄lL . However, this case does not correspond to any small-signal stable
post-fault operating point since c̄ = 1 would imply that UL → ∞ at steady-state.
Hence, the voltage causality is always maintained when all the loads are of constant
impedance type, which further confirms that the constant impedance load cannot
introduce V IR.
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6.3.2 Problem formulation for ZIP load model

Now all the three basic types of static load models have been analyzed with respect
to the existence of voltage solution. It has been shown that voltage causality can be
lost due to both constant power and constant current loads, which does not apply to
the constant impedance load model.

Nevertheless, it is more common that the aforementioned static load components
constitute ZIP load model that can provide a more realistic insight into a dynamic
response of a power system. In that sense, the ZIP model can, for instance, cover
the effect of motors when they are represented by constant impedances or it can
take into account power electronic based devices in both P (constant power) and I
(constant current) control modes etc. So, what happens if all the three types of static
loads are combined into a more general ZIP load at bus L? The active and reactive
powers of such load can be expressed as in Eq. (2.7):

PlL = PlL0

[
kPz(

UL
UL0

)2 + kPi(
UL
UL0

) + kPp
]

and

QlL = QlL0

[
kQz(

UL
UL0

)2 + kQi(
UL
UL0

) + kQp
]
.

(6.36)

The aim of this subsection is to formulate the problem p(UL) = 0 such that the
voltage solution existence can be examined for the ZIP load model (6.36). If, for
simplification purposes, it is assumed that kPz = kQz = kz, kPi = kQi = ki and
kPp = kQp = kp, then the load complex power is expressed as:

S̄lL = S̄lL0

[
kz(

UL
UL0

)2 + ki(
UL
UL0

) + kp
]
. (6.37)

When the power S̄lL of the ZIP load at bus L is replaced into (6.1), the multiplication
of (6.1) by Ū∗L 6= 0 provides:

U2
L= ŪLŪ

∗
L =−Z̄LLS̄∗lL +Ū∗Lε̄L ⇒ Ū∗L= (1+c̄ZIP )U2

L+b̄ZIPUL+āZIP

ε̄L
, (6.38)

where c̄ZIP = kz
Z̄LLS̄

∗
lL0

U2
L0

, b̄ZIP = ki
Z̄LLS̄

∗
lL0

UL0
and āZIP = kpZ̄LLS̄

∗
lL0

are the

constants that originate from the corresponding ZIP components and ε̄L is the
function of δ. Following the same procedure as in (6.4), (6.21) and (6.34), the
resulting equation from (6.38) is further multiplied with its conjugate to obtain the
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expression of the form p(UL) = 0 as:

pZIP 4U
4
L + pZIP 3U

3
L + pZIP 2U

2
L + pZIP 1UL + pZIP 0 = 0,

pZIP 4 =| 1 + c̄ZIP |
2;

pZIP 3 = 2 Re
[
(1 + c̄ZIP )b̄∗

ZIP

]
;

pZIP 2 = 2 Re
[
(1 + c̄ZIP )ā∗

ZIP

]
+ b2

ZIP
− ε2

L(δ);

pZIP 1 = 2 Re(āZIP b̄
∗
ZIP

);
pZIP 0 = a2

ZIP
,

(6.39)

which is a quartic equation with respect to UL. The equation (6.39) has four roots
and it is a function of rotor angles via its coefficient pZIP 2 . Hence, the roots are
affected when rotor angles start to move. It would be of importance for dynamic
studies to describe this relation further. Some of the options for finding the regions
without voltage causality (V IR) are (i) to analyze the discriminant of Eq. (6.39); (ii)
to carry out a numerical procedure [99] for finding UL solution or (iii) to explicitly
solve quartic Eq. (6.39) by employing the Ferrari’s algebraic approach [180]. A
more detailed analysis of the ZIP load model is planned as a part of the future work.

6.4 Test system

In order to verify the theoretical characterization of the V IR from Eqs. (6.18) and
(6.31), the small test system from Fig. 6.4 will be considered. The reason behind
using this type of system is that the two-dimensional relative rotor angle space
enables the visualization of V IR concept. The angle of the third generator (q = 3)
will be used as the reference.

12jX1 2 3

3L

23jX

23jX
G1

G2

G3

Figure 6.4: Three-machine one-load test system

The three generators are represented by the classical models, the line impedances
are purely reactive (X12 = 0.02 [p.u.],X23 = 0.15 [p.u.]) and the shunt admittances
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are neglected. The load is connected directly to the terminal bus of the third
generator (i.e. L = 3). Figure 6.5 represents the equivalent of the model from
Fig. 6.4. In Fig. 6.5, the generators are represented by their internal voltages (Ē

′
i ,

i = 1, 2, 3) behind the transient reactances X
′
di = 0.45 [p.u.] that here also include

the transformers reactances. The ratings of the generators are Sn1 = 100 [MVA],
Sn2 = 100 [MVA] and Sn3 = 800 [MVA]. The generators also have the same
inertias (Hi = 3 [s]) and the damping constants (Di = 2 [p.u.]).

12jX1 2 3

3l
S

3UUL 

MVA  100bS

1E

23jX

23jX

2E

3E
1dXj 

2dXj 

3dXj 

Figure 6.5: The equivalent model of the test system for the study of V IR

The primary idea of the study is to verify the theoretical expressions that describe
V IR for the constant power and constant current load models. It is also interesting to
establish the relationship between the type/size of the static load and the appearance
of V IR. For that purpose, the static value of the load S̄l30 = Pl30 + j2.6 [p.u.] will
be varied by changing the active consumption Pl30 . Beside predicting V IR location,
the case study should also investigate how a dynamical simulation is affected by
V IR. The three-phase short-circuit that occurs very close to bus 2 (on one of the
two lines between the buses 2 and 3) will be used in Time Domain Simulation (TDS).
The fault will be cleared by tripping the faulted line. The post-fault operating point
is chosen such that it is small-signal stable. As the active power of the load at bus 3
is varied, the pre-fault (xpres ) and the post-fault (xposts ) operating points will change
accordingly. The simulation employs the partitioned solution approach where the
integration of the differential part of the DAE model is carried out by the means
of Modified Euler Method [181] that has been explained in Subsection 2.4.2. This
predictor-corrector based method is set up in a way that it continues attempting to
solve the set of DAE even for those time steps where the numerical procedure does
not converge. The case study results are structured as follows:

• The constant power load is investigated first. V IR is predicted for a certain post-
fault operating point. TDS should provide the answers to the following questions:
What happens with the simulation when a dynamical trajectory encounters a V IR?
Are there some consequences when it comes to short-term RAS assessment?
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• The constant current load characteristic will be changed such that the both cases
of system parameters (bR ≤ 0 and bR > 0) are covered.

• The three static load models are compared and discussed.

6.5 Results

The upcoming results are based on the test system from Fig. 6.5. The angles of a
stable, post-fault operating state (δpost13s , δ

post
23s ) are altered by the active power of the

load Pl30 . It is beneficial to have a picture about RAS region when V IR is to be
assessed. As mentioned in Subsection 3.1.2, the approximated type-1 UEPs:

(π − δpost13s , δ
post
23s ), (δpost13s , π − δ

post
23s ), (−π − δpost13s , δ

post
23s ),

(δpost13s ,−π − δ
post
23s ), (π − δpost13s , π − δ

post
23s ), (−π − δpost13s ,−π − δ

post
23s ).

(6.40)

may provide an insight into the boundary of RAS region and the modes of machine
separation. These approximated UEPs will be recalculated for each operating point.

6.5.1 Constant power load

Case 1: A case of lightly loaded system is to be considered first. The load active
power Pl30 = 4 [p.u.] will be compensated mostly by the largest generator Pg3 =
3.2 [p.u.] while the rest of the power is distributed equally among the other two
generators (Pg1 = Pg2 = 0.4 [p.u.]). Figure 6.6 depicts the indicator V CICP in the
space of relative rotor angles. When the post-fault parameters of such an operating
point are replaced into the expression for Voltage Collapse Indicator V CICP from
Eq. (6.7), the result was positive for any combination of relative rotor angles. Based
on Eq. (6.13), always positive V CICP implies that V IR is an empty set, i.e. V IR
does not exist at this loading level. The approximations of six type-1 unstable
equilibria from Eq. (6.40) are shown as yellow circles while the stable post-fault
operating point (δpost13s , δ

post
23s ) is marked in magenta. The black, dashed curve is a

sketch of the short-term RAS region.
There are two trajectories that have been plotted along V CICP surface. The

yellow trajectory corresponds to a critically stable case where tcl = 0.34 [s]. A
further increase of clearing time led to rotor angle instability for tcl = 0.35 [s].
This means that the clearing time along the yellow trajectory is at the same time
the critical clearing time in the terms of loss of synchronism (i.e. tcc = 0.34 [s]).
The unstable trajectory is given by blue line. It may be observed that the yellow
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trajectory settles at (δpost13s , δ
post
23s ) while the stability is lost along the blue trajectory

due to the separation of generators 1 and 2 from the 3rd generator. And indeed, the
trajectory passes exactly through the type-1 UEP approximation (π−δpost13s , π−δ

post
23s )

that corresponds to the actual mode of machine separation.

Figure 6.6: V CICP and post-fault trajectories for the case of lightly loaded system

Case 2: However, what happens if the system is more loaded? Does V CICP
still remain always positive? Consider the case where the active power of the load
is doubled (Pl30 = 8 [p.u.]) and where each of the generators doubles its active
injection (compared to the initial, lightly loaded case) to compensate for the load
increase. Also, the same fault and protective action from Case 1 are investigated.

The application of the new post-fault parameters resulted in Voltage Collapse
Indicator V CICP from Eq. (6.7) becoming negative for certain combinations of
relative rotor angles. The theoretically predicted V CICP surface, the post-fault SEP
(δpost13s , δ

post
23s ) and the approximations of type-1 UEPS from Eq. (6.40) are all plotted

in Fig. 6.7. The areas where V CICP < 0 holds are given in red color. Based on the
definition from Eq. (6.18), these areas correspond to V IR. The sketch of the RAS
region is presented by dashed curve. The yellow and light blue trajectories once
again relate to the critically stable and unstable case, respectively. The surfaces for
the upper and the lower voltage solutions will also be plotted in Figs. 6.8 (stable
case) and 6.9 (unstable case) based on the resulting expression for the magnitude
UL from Eq. (6.8). The red plane in Figs. 6.8-6.9 corresponds to the point where
the two voltage solutions merge as U3 = U lim3 . The locations of the red areas (as
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seen from above) correspond to V IR where V CICP < 0 .

Figure 6.7: V CICP surface and post-fault trajectories in Case 2
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Figure 6.8: Voltage solutions and the post-fault trajectory for the case tcl = 0.18 [s]
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The critical clearing time of the fault tcc = tcl = 0.18 [s] is significantly lower
compared to Case 1, which is an expected result. The slight increase of clearing
time to tcl = 0.19 led to another, unstable trajectory along which TDS reported
non-convergence issues. The problems with convergence started occurring exactly
when the unstable trajectory intersected with V CICP < 0 area, i.e. when the blue
trajectory entered V IR.

So, what does this mean in the terms of voltage solution U3? Figure 6.8 shows
the critically stable case (tcl = 0.18 [s]) where the yellow trajectory (obtained by
TDS) moves along the surface that corresponds to the upper voltage solution U3. In
this stable case, the fault was cleared fast enough to avoid contact with V IR. The
system eventually settled at the post-fault stable operating point. On the other hand,
Fig. 6.9 shows what happens in the case of the unstable trajectory (tcl = 0.19 [s]).

Figure 6.9: Voltage solutions and the post-fault trajectory for the case tcl = 0.19 [s]
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The clearing time tcl = 0.19 [s] was too large to avoid entering the V IR for the
given fault and set of system parameters. The TDS result shows that the magnitude
of load voltage U3 is moving along the upper voltage solution as the rotor angles
swing out. After voltage U3 drops down to the value U lim3 (the point where the
upper and the lower voltage solutions merge), TDS program starts complaining
on non-convergence and any further result is unreliable. As can be seen in Fig.
6.9, once the limit U lim3 is crossed, both voltage solutions get non-zero imaginary
component, which is not feasible when it comes to the magnitude of a phasor. The
partitioned solution approach artificially continues to integrate the differential part
of DAE model after U lim3 is reached. This was done solely to confirm that once the
dynamic trajectory exits the V IR, TDS will no longer face numerical problems.
There is another way to confirm that V IR is to blame for the convergence issues in
TDS. The singularity of the algebraic Jacobian gy can be checked directly along
an unstable, dynamic trajectory by, for instance, performing the Singular Value
Decomposition [182]. Figure 6.10 plots the minimum singular value min(SVD) of
the algebraic Jacobian, both as a general surface and the specific unstable post-fault
trajectory (that corresponds to tcl = 0.19 [s]).
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min(SVD)(δpost13s , δ
post
23s )

Figure 6.10: min(SVD) of the algebraic Jacobian along a post-fault trajectory

Figure 6.10 confirms that the the non-convergence issues correspond to the point
(marked in red) where min(SVD)=0 along the post-fault trajectory. This is also the
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point where the trajectory enters V IR.
It has been determined that it is impossible to obtain a U3 solution for the values

of relative rotor angles that belong to a V IR. Equation (5.21) then implies that the
remaining voltages cannot be obtained either (since every voltage in the system
depends on U3). Figure 6.11 represents the TDS case where the fault has been
cleared too late (tcl = 0.19 [s]) to avoid one of the V IR.
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Figure 6.11: Voltages obtained by TDS (non-convergence case for Pl30 = 8 [p.u.])

It may be noticed that non-convergence issues emerged during simulation. When
plotted in relative rotor angle space, the test system voltages behave as in Fig. 6.12.
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Figure 6.12: TDS-obtained voltages in relative rotor angle space (Pl30 = 8 [p.u.])
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The unstable trajectory goes “downhill" the V CICP surface and then “meets"
the V IR. Once the trajectory enters the V IR, TDS fails to solve the algebraic
part of DAE. This is why all V IR need to be removed from the “safe area" (in
the terms of the existence of a DAE solution), as indicated in Fig. 6.12. The
V IR of interest apparently surrounds the location (π − δpost13s , π − δ

post
23s ). For sure,

an equilibrium of the DAE system cannot belong to a V IR due to DAE being
unsolvable at these singular areas. Nevertheless, this indicates that a V IR may
also provide an information about the mode of machine separation. Due to the
strong coupling between RAS region and V IR, it becomes more complicated to
understand what is exactly the mechanism that triggers instability.

Case 3: Let the system be further loaded. The active power of the load is succes-
sively increased for 25% and 50% compared to Case 2. Each of the three generators
have increased their active power injections proportionally. The approximations of
type-1 UEPs from (6.40) (yellow circles) and V IR have been plotted in relative
rotor angle space for each set of the post-fault parameters, as shown in Fig. 6.13.
The post-fault SEP is given in magenta. It is sufficient to observe one of the V IR to
get an idea about what happens when the system is stressed. This is why Fig. 6.13
shows only the first quadrant of the relative rotor angle space.
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Figure 6.13: The effect of the load size on V IR

The V IR apparently expands as the system becomes more loaded. In that way,
V IR “approaches" the post-fault SEP by reducing the size of the “safe area". The
reduction of the “safe area" also increases the risk that the voltage causality will be
lost along a dynamic trajectory. Large V IR corresponds to the situation where the
operating point OP from Fig. 5.8 (Section 5.4) is located in the proximity of the
blue parabola. The loading level at which a post-fault SEP would encounter a V IR
border actually represents the point of static loadability.
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6.5.2 Constant current load

Another type of static load will be considered in this subsection. Typically, the
constant current load has not been related with short-term voltage instability. The
analytical study from Section 6.2 has demonstrated that, theoretically speaking, the
constant current load model has the power to induce V IR. The study will consider
the two interesting cases of system parameters (bR ≤ 0 and bR > 0). The sign of
bR depends on the characteristic of load at bus 3. The same system model and fault
as before are used. However, for the constant current load model, the V IR appears
at significantly higher loading levels.

Case 4: The inductive characteristic of load (bR ≤ 0) is considered first. In
order for V IR to appear, it was necessary to set up an unrealistic scenario. The
complex power of the load was increased to S̄l30 = 50 + j2.6 [p.u.], where the two
“small" generators were forced to compensate with 2 [p.u.] each (Pg1 = Pg2 = 2
[p.u.]. The third generator covers for the rest of the required power. For the inductive
load, the existence of voltage solution depends on the value of the collapse indicator
V CICC1 along state-space, as proven in Proposition 2. The voltages obtained by
TDS for an unstable case are shown in Fig. 6.14 along with V CICC1.
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Figure 6.14: V CICC1 and voltage magnitudes as obtained from TDS (bR ≤ 0)

The non-convergence of TDS was reported at those time instances for which
voltage collapse indicator V CICC1 had negative value. This result is in line with the
theoretical definition of V IR from Eq. (6.31) that is based on the value of V CICC1.
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In order to confirm this analytical result, the TDS result for voltage magnitude U3 is
plotted along the relative rotor angle space in Fig. 6.15.
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Figure 6.15: TDS-obtained voltage U3 in relative rotor angle space (bR ≤ 0)

The simulation program failed to converge once the relative rotor angle positions
matched the theoretically predicted V IR.

Case 5: Changing the sign of the reactive power to Ql30 = −2.6 [p.u.] resulted
in the capacitive characteristic of the load at bus 3 (bR > 0). Once again, the TDS
was unable to converge when the trajectory intersected with the prediction of V IR
from Eq. (6.31), as shown in Fig. 6.16.
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Figure 6.16: TDS-obtained voltage U3 in relative rotor angle space (bR > 0)

Based on the definition from Eq. (6.31), the loss of voltage solution occurs for
different reasons in Cases 4 and 5. The discussion from Subsection 6.2.1 concluded
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that different numbers of feasible solutions are possible depending on the values
of indices V CICC1 and V CICC2 for bR > 0. Figure 6.17 shows the mechanism
of losing the voltage solution when the load at bus 3 has the capacitive, constant
current characteristic. The Voltage Collapse Indicators for the Constant Current
load model (V CIsCC) are plotted along the dynamic trajectory from Fig. 6.16. The
portion of the time axis where V CIsCC cross zero is enlarged. Three areas can be
distinguished with respect to the number of feasible voltage solutions in Fig. 6.17.
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Figure 6.17: The value of V CICCs along the post-fault trajectory for bR > 0

Indicator V CICC1 crosses zero first. Two solutions (an upper and a lower
solution) exist during the short time between V CICC1 = 0 and V CICC2 = 0. The
two solutions merge at V CICC2 = 0, i.e. on the boundary of the V IR. There is
no real and positive solution for U3 after V CICC2 becomes negative. From the
practical point of view, the existence of the low solution is not important considering
that the trajectory will always “move along" an upper voltage solution.

It is also important to note that once the TDS fails to converge for the first
time, there is no point to continue the simulation. If TDS is not stopped, it will
continue to integrate at each time step based on the values of the algebraic variables
that were obtained in the last performed iteration. The ordinal number of this last
iteration usually corresponds to the maximum allowed number of iterations per time
step. In the case study, the TDS has been continued even after failing to converge
in order to test the theoretical characterization of V IR. Surely, the differential
equations are solved based on unreliable information once a V IR is encountered.
One of the consequences of such approach can be seen in Figs. 6.15-6.16. In these
figures it appears that the post-fault trajectory manages to “escape" from V IR. This
optimistic behavior is not to be counted on due to the fact that the existing DAE
model cannot predict any dynamical behavior after a V IR is reached.
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6.5.3 Constant impedance load model and its comparison with the
non-linear loads

Before concluding Chapter 6, the voltage expression (6.35) for the case of constant
impedance load is to be verified. This expression also proves that, when all the
loads are represented by constant impedances, voltage solutions are always possible
to obtain regardless of the location in state-space. This is a well-known result in
the theory of power system stability. Yet, the thesis approached the problem from a
different perspective.

Case 6: Let the same fault as before be repeated when the load at bus 3 in Fig.
6.5 is given as the constant impedance/admittance. Regardless of the size of the
load, TDS did not exhibit any non-convergence issues. In any case, it is interesting
to check if the theoretical expression from Eq. (6.35) matches the actual value of
the voltage magnitude U3 that has been calculated by TDS. The moderately loaded
system (please see Case 2) is considered. Figure 6.18 shows the unstable post-fault
trajectory (given by the blue line) for a clearing time (tcl = 0.3 [s]) that is slightly
higher than the critical clearing one (tcc = 0.29 [s]).
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Figure 6.18: The voltage solution for the case of constant impedance load model

As it can bee seen from Fig. 6.18, the trajectory moves along the theoretically
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predicted U3 that is shown as a “green surface". The time plot of the minimum
singular value of the algebraic Jacobian (min(SVD)) is also depicted for the given
trajectory in Fig. 6.19. Beside this (blue-colored) trajectory, the black and red lines
describe the changes of min(SVD) along unstable trajectories for the other two
static, non-linear models. The three cases consider the same operating conditions.
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Figure 6.19: The minimum singular value along post-fault trajectories

As expected, the constant power load model led to the smallest critical clear-
ing time. The constant power load is also the first to experience the minimum of
min(SVD) along the trajectory. Additionally, the short-term instability was accom-
panied by the lack of convergence in TDS for the constant power load. The value
of the minimum singular value dropped to zero at the border of V IR, at the same
time when non-convergence issues emerged. When the load power was switched to
the constant current or constant impedance characteristics, the instability occurred
due to the loss of synchronism. For these two load models, min(SVD) became very
small as the rotor angles were swinging out, however, it remained positive.

In total, the constant power load appears to result in the most undesirable short-
term dynamical behavior (out of the three basic static load types). Both transient
instability and the loss of voltage solution along the trajectory are more likely to
happen when the constant power load is employed. The constant current load carries
smaller risk for both instability mechanisms and the constant impedance load cannot
induce V IR at all. More general conclusions regarding V IR follow in the sequel.
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6.5.4 Discussions and remarks

In order to distinguish between important and irrelevant factors that can cause the
loss of voltage causality, an n-machine power system model was set up as in Section
5.5. Simple mathematical manipulations led to the voltage formulation (5.21) based
on which the effect of one specific load was possible to examine. The 3-machine test
system made it possible to additionally visualize the theoretically derived concepts.
There are several main observations that stand out in the presented case study:

• The theoretical predictions of V IR from Eqs. (6.18)-(6.31) match with the lack
of convergence of TDS along a post-fault trajectory. This indicates that the
numerical issues are solely a visible consequence of the lack of voltage causality.

• V IR can be induced by both constant power and constant current load models.
More load resulted in larger V IR. However, in order for V IR to appear for the
constant current load model, the system needs to be significantly more stressed
than in the constant power case. Constant impedance loads never cause V IR.

• The developed collapse indicators-V CICP and V CIsCC performed well. The
indicators are capable both to (i) detect the intersection of a trajectory with V IR
and also (ii) to assess the number of voltage solutions.

Coming back to the list from Section 1.4, it may be concluded that Chapters 5 and 6
made the following contributions (that have been reported and published in [176]):

1. (2.1S): The system voltages have been expressed in a convenient form. Wherever
these voltages can not be defined as the closed form expressions of state-variables,
the loss of voltage causality can be expected.

2. (2.2S): The analysis of the load voltage solution resulted in the theoretical
definition of Voltage Impasse Regions (VIR) for the constant power and constant
current loads. VIR are identified as the regions of the state-space that satisfy
specific trigonometric criteria. Voltage Collapse Indicators (VCIs) have also
been developed to simplify the analysis and provide some kind of measure of
distance to a “voltage collapse" along a dynamic trajectory.

The basic mechanism of V IR appearance in relation to static load models is now
understood. V IR represent a structural problem of DAE model and the further
generalization of V IR concept in the terms of modeling is relevant. To incorporate
the concept of V IR into short-term stability analysis is an important step to be
taken on the way towards more advanced DSA tools.





Chapter 7

Conclusions and Future Work

The final chapter of the thesis will draw the main conclusions based on the presented
work by placing the thesis contributions in the framework of DSA. The advantages
and possibilities for the improvement of developed approaches are discussed, as
well. As the closure of the thesis, the plan for the future work is proposed.

The scientific topic of Dynamic Security Assessment (DSA) is wide and grasps
multiple issues. This thesis has addressed some of the basic requirements that are
imposed on DSA—the maintenance of the machine synchronism and the existence
of voltage solution along a transient trajectory. In that sense, the presented work is
a combination of transient stability and short-term voltage stability assessment. The
work is mostly academically oriented, i.e. it provides a theoretical insight into the
characteristics and topology of the short-term stability region that is associated to
large disturbances.

Nevertheless, the application of the developed concepts on large-scale multi-
machine systems is not to be excluded. The idea of security boundaries in parameter-
space has a potential to provide an instant, on-line answer about the degree of
system security. Additionally, it has been shown that it is necessary to account for
the instability mechanism that originates from the structural properties of the set
of DAE. There is no commercial software that can correctly carry out short-term
stability assessment for the non-linear models that are mathematically “unsolvable".

The two main segments are distinguished in the thesis. Chapters 3 and 4
proposed the idea of the parametrization of RAS region, while Chapters 5 and 6
introduced Voltage Impasse Region (V IR) as a topological structure that is inherent
to power systems that employ non-linear static load models. The corresponding
conclusions and the possibilities for the further development of the ideas follow.
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7.1 Conclusions

The existing DSA methods (TDS, direct methods) evaluate short-term RAS at each
operating point with respect to the list of critical contingencies. The extensive
process requires time and therefore, it is usually carried out in the system planning
phase. The idea to parametrize RAS boundary originated from the need to enable a
direct assessment of transient stability when an operating state is perturbed. The
goal of the proposed approach was to speed up RAS assessment by providing a
sufficiently accurate security boundaries in analytical form. The short summary of
the contributions and conclusions from Chapters 3 and 4 is provided in the sequel.

• Chapter 3 proposed the algorithm and the procedure to construct the parametrized
security boundaries as polynomial functions of powers of interest. The poly-
nomials had satisfactory performance—it was shown that the number of data
points does not have to be large such that the high level of estimation accuracy is
maintained. This property made it convenient to use TDS as the data acquisition
tool due to its superiority in the terms of accuracy and modeling possibilities
(compared to e.g. direct methods).

• The same chapter (Chapter 3) established that the estimation accuracy of the
proposed method increased with the introduction of a more appropriate parameter-
space basin. “More appropriate" basin here refers to the choice of parameter-space
axis that has some physical meaning. Since the outputs of the method are the
estimates of the critical clearing time (tcc), the expression for finding tcc was
a logical choice. The improved parametrization from Chapter 4 had to involve
an additional step since the analytical expression for finding tcc is available for
SMIB system. This step included the identification of SIME-equivalent of the
power system. The new, SIME-based parametrization, selects the data points in a
pattern that better reflects the physical properties of a machine separation after a
disturbance. Such approach resulted in an increased accuracy of the estimation.

• In Chapter 4, the SIME-parametrization was also subject to “conservativeness
constraint" in order to acquire this advantageous characteristic of direct methods.
The impact of the imposed constraint on the accuracy of estimation was not large,
while the number of overestimates decreased significantly.

The accuracy of the proposed constrained SIME-parametrization increased with
the number of parameter-space dimensions (which corresponds to the number of
generators whose powers are included in the definition of parameter-space basin).
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Alongside the fact that any type of component modeling is allowed in the proposed
method, the outcomes of SIME-based parametrization are encouraging.

The developed parametrization methodology assumed that there are no limita-
tions when it comes to solving DAE by TDS program. Chapters 5 and 6 have proven
that this is not necessarily the case. The two chapters have addressed the loss of volt-
age causality that is load-modeling-related. This problem was not recognized by the
scientific community as one of the widely known short-term voltage instability phe-
nomena that are considered to be mainly driven by load dynamics. And indeed, the
voltage stability is not investigated here from the point of acceptable/unacceptable
values of voltage profiles. The focus is short-term phenomenon for which voltage
solutions do not exist at all based on DAE model. A comprehensive analysis is
carried out in Chapters 5 and 6 in order to extend the concept of “impasse/singularity
surfaces" and understand the relationship between the non-linear static load models
and the loss of voltage solution. The efforts were not in vain. There are indeed
state-space areas, introduced here as Voltage Impasse Regions (V IR), where volt-
age solutions are lost due to the inflexible, non-linear static load characteristic.
Moreover, with static load models being widely used in simulation programs (and
some TSOs certainly employ these models), the short-term stability assessment can
become unreliable or even worse, impossible. There are several conclusions that
stand out in relation to the work presented in Chapters 5 and 6:

• The idea of V IR was first presented in Chapter 5 where also an illustrative
example of SMIB system explained the mechanism of V IR appearance when
a load was of constant power type. An interesting conclusion was that V IR
in a way corresponds to the problem of static loadability. However, V IR is
located in the neighborhood of a post-fault SEP that belongs to a “safe zone"
in the terms of loadability. In such case, V IR can only be encountered along
a transient trajectory as the rotor angles move in state-space. Chapter 5 also
formulates the problem in a more general way such that V IR can be defined for
the multi-machine case.

• The careful analysis of the voltage solutions from Chapter 5 showed that voltage
causality can be lost at certain state-space positions due to (i) voltage magnitude
solutions merging and becoming complex numbers (for the constant power and
capacitive constant current load) or (ii) due to both voltage magnitudes becoming
negative (the case of inductive constant current load). The voltage stability is
certainly challenged once the voltage levels drop drastically shortly before the
voltage solution is completely lost. V IR is the set of all those combinations of
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relative rotor angles for which it does not exist any feasible (positive and real)
solution for the load voltage magnitude. In a sense, V IR is a “black hole" for the
DAE model—it is an area of the state-space where the set of algebraic equations
is unsolvable.

• V IR appear on the border of the stability region and grow with respect to the
amount of load. Hence, larger disturbances and non-linear loads increase the
risk of encountering a V IR. As a consequence of the intersection of a post-fault
trajectory with a V IR, every TDS program would fail.

Currently, there is no mathematical or numerical tool that can describe the dynamics
of a power system inside a V IR. Since there is no guarantee that a dynamic
trajectory will not “end up" in a vicinity of a V IR, the only recommendation is to
completely avoid operating points that have V IR in their neighborhood. Due to its
strong interaction with both loss of synchronism and voltage instability, the concept
of V IR should be developed further.

7.2 Future work

This thesis raised many interesting questions related to short-term dynamics of large
disturbances. The novel SIME-parametrization and the theoretical foundation of
V IR were presented. The initial development of ideas usually involves simple
models that enable clear understanding of the underlaying mechanisms that lead to
phenomena of interest. Hence, there is large space for improvement, in particular
in the sense of application of proposed concepts to larger systems. Regarding
the short-term RAS study and SIME-parametrization, there are several research
directions to be addressed in future:

• The boundaries that are constructed based on the constrained SIME-parametrization
from Chapter 4 should in future be used in the “opposite" direction. TSOs are usu-
ally interested in the maximum amount of power that can be transmitted via some
weak link or they want to know about the critical amount of load that is possible
to supply in one area. By reversing the polynomial function, a certain, expected
range of the times at which the protective system reacts may be mapped into
corresponding areas of the parameter-space. By doing that, parameter-space can
be partitioned into e.g. safe, critical and loss of synchronism modes of operation
with respect to the list of critical faults.



7.2. FUTURE WORK 137

• Such “reversed" boundaries could be tested by using larger power system models
with more sophisticated representation of components. There are no modeling
limitations in SIME-parametrization as long as a TDS can be carried out.

So what happens when a TDS cannot be carried out? If some of the loads are of the
static, non-linear type, it should be checked if a V IR is to blame for the failure of
the TDS. The following research lines can improve the understanding of V IR and
lead to the application of the V IR concept to more realistic power system models:

• The cumulative effect of several non-linear static loads is the first to be inves-
tigated. This study will aim to understand the effect of the non-linear load
(especially the ZIP load) interaction on V IR. ZIP model is interesting since
it contains all three static load components. Also, when it comes to loads, the
classical short-term voltage stability studies have always included load dynam-
ics. It would be beneficial to test how the different voltage-connected instability
mechanisms overlap and which of the two mechanisms is more critical.

• More detailed generator modeling should be taken into account. It is more chal-
lenging to obtain closed form expressions when additional state-space variables
are in the game. However, rotor angles experience larger changes compared to
some other state-space variables (e.g. E′i in one-axis model). V IR is, therefore, a
phenomenon that is considered to be mainly rotor-angle-driven.

• There are three voltage collapse indicators (VCIs) that have been developed to
detect the singularity of the algebraic Jacobian along a trajectory. An option
to construct similar indicators should definitely be considered for the case of
multiple non-linear loads. VCIs are convenient tool when it comes to “measuring
the distance" from a voltage instability such that a voltage collapse can potentially
be avoided. Also, the calculation of these indicators is computationally less
demanding than, for instance, a matrix factorization which results in min(SVD).

In the broad scope of Dynamic Security Assessment (DSA), this thesis attempted
to contribute by evaluating some fundamental properties of the non-linear power
system. To transform an academic work into an applicable tool is a process that
consists of many intermediate steps. The initial steps were taken in this thesis
in order to fuse two different (however, strongly coupled) short-term instability
mechanisms. This strong coupling originates from the generic problem that lies in
the very structure of DAE model. Such phenomena that can jeopardize the standard
power system model to the extent of structural inconsistency are certainly worth of
further inspection such that appropriate countermeasures can be taken.
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