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INVOLUTIONS OF THE MODULI SPACES OF G-HIGGS BUNDLES

OVER ELLIPTIC CURVES

INDRANIL BISWAS, LUIS ANGEL CALVO, EMILIO FRANCO, AND OSCAR GARCÍA-PRADA

Abstract. We present a systematic study of involutions on the moduli space of G-Higgs
bundles over an elliptic curve X , where G is complex reductive affine algebraic group. The
fixed point loci in the moduli space of G-Higgs bundles on X , and in the moduli space
of representations of the fundamental group of X into G, are described. This leads to an
explicit description of the moduli spaces of pseudo-real G-Higgs bundles over X .
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1. Introduction

Given a complex reductive affine algebraic group G and a compact Riemann surface X,
a G-Higgs bundle over X is a pair (E, ϕ), where E is a holomorphic principal G-bundle
over X, and ϕ is a holomorphic section of E(g) ⊗K, the adjoint vector bundle E(g) of E
twisted by the canonical bundle K of X. These objects were introduced by Hitchin [27],
while Simpson [36, 37, 38], and Nitsure [33] constructed the moduli space M(G) of G-Higgs
bundles.

Let X be a complex elliptic curve. Let σ+ and α+ denote holomorphic involutions on G
and X, respectively. Consider the involution (see Section 2.2 for details)

I(α+, σ+,±) : M(G) −→ M(G) , (E, ϕ) 7−→ (α∗
+σ+(E), ±α∗

+σ+(ϕ)) .

Analogously, for anti-holomorphic involutions σ− and α−, on G and X, define

I(α−, σ−,±) : M(G) −→ M(G) , (E, ϕ) 7−→ (α∗
−σ−(E), ±α∗

−σ−(ϕ)) .

The first goal of this paper is to classify these involutions and describe their fixed points.

Let Z denote the center of G and Z
σ−

2 ⊂ Zσ− the group elements of order two of Z
fixed pointwise by σ−. Given any z ∈ Z

σ−

2 , we consider the pseudo-real (G,α−, σ−,±, z)-
Higgs bundles [6, 7] which are G-Higgs bundles equipped with a certain real structure (see
Section 2.3). The second goal of this paper is to obtain a description of the moduli space
M(G,α−, σ−,±, z) of pseudo-real G-Higgs bundles; this is achieved in Section 4.4.

A major result of the theory of Higgs bundles is the non-abelian Hodge correspondence,
proved by Hitchin [27] and Donaldson [15] for SL(2,C), and by Simpson [37, 38] and Corlette
[14] for an arbitrary group (see [8] also for the general case). It relates the moduli of G-Higgs
bundles with the moduli space of representations of the fundamental group

R(G) := Hom(π1(X, x0), G)//G (1.1)

as follows:

Theorem 1.1. There is a natural homeomorphism M(G) ∼= R(G) .

To treat simultaneously the holomorphic and anti-holomorphic cases, we will write σǫ and
αǫ (instead of σ+, σ− and α+, α−). Along with the study of the involutions I(αǫ, σǫ,±), we
also describe in this article their images J(αǫ, σǫ,±) under the homeomorphism of Theorem
1.1, which are involutions on R(G), making the following diagram commutative,

M(G)
homeo.

//

I(αǫ,σǫ,±)
��

R(G)

J(αǫ,σǫ,±)
��

M(G)
homeo.

// R(G).

The complex structure Γ1 on M(G) comes from X, while the complex structure Γ2 on
R(G) is given by that of the group. In view of Theorem 1.1 one can identify the spaces
M(G) and R(G). As we have seen, there are two different complex structures on it and,
in fact, on can endow the smooth locus M(G)sm with a hyper-Kähler structure (ω1, ω2, ω3),
where the complex structure Γ3 is Γ1Γ2. Note also that one can define three corresponding
(holomorphic) symplectic structures Ω1, Ω2 and Ω3.
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In the context of Mirror Symmetry, an A-brane is a Lagrangian submanifold together with
a flat bundle supported on it, while a B-brane is a complex submanifold with a holomorphic
bundle, although in this paper we will use the terms A-brane and B-brane to refer simply to
their support, i.e., the special Lagrangian or complex submanifold. In their ground-breaking
paper [30], Kapustin and Witten introduced the concept of (∗, ∗, ∗)-brane as a submanifold
which is either complex or special Lagrangian for each of the complex structures Γ1, Γ2 and
Γ3. This is a hyper-Kähler submanifold in the case of a (B,B,B)-brane, or a Ωi-complex
Lagrangian submanifold in the case of (B,A,A), (A,B,A) or (A,A,B)-branes.

In [3], Baraglia and Schaposnik identified the fixed points of I(α−, σ−,−) with an (A,B,A)-
brane (see also [6]). The involutions I(IdX , σ+,+) have been studied by Hitchin [27, 28] and
in [20, 21, 23]. It turns out that the fixed points of I(IdX , σ+,+) constitute a (B,B,B)-brane,
while the fixed points of I(IdX , σ+,−) give a (B,A,A)-brane. See [23] for a detailed study of
these involutions and their fixed points. For a general picture of anti-holomorphic involutions
on the smooth locus M(G)sm ⊂ M(G) we refer to [4, 6]. The involution I(α+, IdX ,+) is a
particular case of the more general situation studied in [24] (see also [26], which contains a
detailed study of the case of α+ being fix point free).

Over an elliptic curve one can achieve a greater level of explicitness regarding the des-
cription of the moduli spaces of Higgs bundles. In 1957 Atiyah [2] described the moduli
space of rank n vector bundles on an elliptic curve X as the symmetric product of the curve
M(GL(n,C)) ∼= Symn(X) and some 30 years later, Laszlo [32] and Friedman, Morgan and
Witten [18, 19], gave a description of the moduli space of principal G–bundles for a complex
reductive Lie group G, in terms of the finite quotient M(G) ∼= (X ⊗Z ΛT )/W , where T is a
Cartan subgroup of G, ΛT is the cocharacter lattice and W the associated Weyl group. In
[16] the third and fourth authors studied the case of G-Higgs bundles, showing

M(G) ∼= (T ∗X ⊗Z ΛT )/W.

One can find in [17] a detailed study of the involution I(IdX , σ+,−) on the moduli spaces
of Higgs bundles for real forms of G, and in [10], a description of the fixed points of this
involution I(α−, σ−,±) of the Atiyah’s moduli space M(GL(n,C)) and its relation with the
moduli spaces of (real) vector bundles over a real elliptic curve (see also [5] for the case of a
Klein bottle).

This article is organized as follows. After a quick review of involutions on complex Lie
groups in Section 2.1, we define in Section 2.2 the involutions I(αǫ, σǫ,±) which are the
objects of our study. In Section 2.3 we study these involution in the anti-holomorphic case
and their relation with pseudo-real G-Higgs bundles.

In Section 3 we recall the case of elliptic curves. We study holomorphic involutions on
elliptic curves in Section 3.1 and anti-holomorphic involutions in Section 3.2. We review the
description of the moduli space of G-Higgs bundles over elliptic curves in Section 3.3.

The new results of this article are contained in Section 4. We first describe the involutions
I(αǫ, σǫ,±) on the moduli space of Higgs line bundles in Section 4.1 and using that, we
obtain an explicit description of the involutions for the general case in Section 4.2. This
explicitness, allow us to describe their fixed point loci in Section 4.3, and in Section 4.4 we
apply this description to the moduli space of pseudo-real G-Higgs bundles.
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2. Higgs bundles and involutions

2.1. Involutions and conjugations of complex Lie groups. Take G to be a complex
reductive affine algebraic group. A conjugation σ− : G −→ G is an anti-holomorphic
automorphism of G of order two. The set of all inner automorphisms of G will be denoted
by Conj(G). A real form of a conjugation σ− is the fixed point subgroup Gσ− ⊂ G. There
is a σK ∈ Conj(G) such that the real form K = GσK is a maximal compact subgroup of G
whose complexification is G.

Let Aut(G) be the group of all holomorphic automorphisms of G; denote by Int(G) the
subgroup of Aut(G) consisting of inner automorphisms of G. This is a normal subgroup of
Aut(G) so one can consider the quotient group Aut(G)/Int(G) which we denote by Out(G).
This all fits in the short exact sequence

1 // Int(G) // Aut(G) // Out(G) // 1. (2.1)

Let Aut2(G) the set of elements of order two in Aut(G). Two elements f, f ′ of Aut2(G) will
be said to be equivalent if there is some α ∈ Int(G) such that

f ′ = αfα−1 .

Similarly, we define an equivalence relation ∼ on Conj(G); in other words, two anti-holomor-
phic automorphisms of G of order two are said to be equivalent if they differ by conjugation
by an inner automorphism.

Theorem 2.1 (Cartan). There is a bijection:

C : Conj(G)/∼ 1:1−→ Aut2(G)/∼ , σ− 7−→ σ+ := σ−σK ,

where σK is the above conjugation.

2.2. Involutions on M(G) and branes. In this section X will be a compact connected
Riemann surface. Let σ+ : G −→ G be a holomorphic involution of the complex Lie group
G, and let σ− : G −→ G be an anti-holomorphic involution.

Given a principal G-bundle E on X, let σ+(E) (respectively, σ−(E)) denote the principal
G-bundle on X obtained by extending the structure group of E using σ+ (respectively, σ−).
Note that the total spaces of both σ+(E) and σ−(E) have a natural holomorphic structure.
In fact, σ+(E) is a holomorphic principal G-bundle, while σ−(E) is a holomorphic principal
G-bundle, where G is the Lie group G equipped with the almost complex structure −JG
with JG being the almost complex structure on G.

For any holomorphic involution α+ : X −→ X, define

I(α+, σ+,+) : M(G) −→ M(G) , (E, ϕ) 7−→ (α∗
+σ+(E), +α

∗
+σ+(ϕ)) ,

I(α+, σ+,−) : M(G) −→ M(G) , (E, ϕ) 7−→ (α∗
+σ+(E), −α∗

+σ+(ϕ)) .

For an anti-holomorphic involution α− : X −→ X, define

I(α−, σ−,+) : M(G) −→ M(G) , (E, ϕ) 7−→ (α∗
−σ−(E), +α

∗
−σ−(ϕ)) ,

I(α−, σ−,−) : M(G) −→ M(G) , (E, ϕ) 7−→ (α∗
−σ−(E), −α∗

−σ−(ϕ)) .

Sometimes we write I(αǫ, σǫ,±) when we want to deal with these involutions simultaneously.
Note that ǫ indicates whether it is the holomorphic (ǫ = +) case or the anti-holomorphic
(ǫ = −) case.
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See [6, 23] for a proof of the following proposition.

Proposition 2.2. If σǫ ∼ σ′
ǫ, then I(αǫ, σǫ,±) = I(αǫ, σ

′
ǫ,±).

Let M(G)sm ⊂ M(G) be the smooth locus. This manifold M(G)sm is hyper-Kähler with
three complex structures Γ1,Γ3,Γ3 and three associated Kähler forms ω1, ω2, ω3. Also recall
that M(G)sm has three (holomorphic) symplectic structures: Ω1 = ω2 +

√
−1ω3, Ω2 =

ω3 +
√
−1ω1 and Ω3 = ω1 +

√
−1ω2. Now, we describe the geometric structure of the fixed

points of the involutions in M(G)sm defined above (see [6, 23] for instance):

• the fixed point locus of I(α+, σ+,+) is an hyper-Kähler submanifold,
• the fixed point locus of I(α+, σ+,−) is a Ω1-Lagrangian submanifold,
• the fixed point locus of I(α−, σ−,−) is a Ω2-Lagrangian submanifold,
• the fixed point locus of I(α−, σ−,+) is a Ω3-Lagrangian submanifold.

Remark 2.3. In the context of Mirror Symmetry:

• the fixed point locus of I(α+, σ+,+) is a (B,B,B)-brane,
• the fixed point locus of I(α+, σ+,−) is a (B,A,A)-brane,
• the fixed point locus of I(α−, σ−,−) is a (A,B,A)-brane,
• the fixed point locus of I(α−, σ−,+) is a (A,A,B)-brane.

The above involutions induce involutions of the moduli space of representations defined
in (1.1):

J(α+, σ+,+) : R(G) −→ R(G) , ρ 7−→ σ+ ◦ ρ ◦ (α+)∗ ,

J(α−, σ−,+) : R(G) −→ R(G) , ρ 7−→ σ− ◦ ρ ◦ (α−)∗ ,

J(α+, σ+,−) : R(G) −→ R(G) , ρ 7−→ σ− ◦ ρ ◦ (α+)∗ ,

J(α−, σ−,−) : R(G) −→ R(G) , ρ 7−→ σ+ ◦ ρ ◦ (α−)∗ .

Let Z = Z(G)0 be the connected component of the center Z(G) ⊂ G containing the
identity element. Define the homomorphism

µ : Z ×G −→ G , (y , z) 7−→ yz .

For any principal G-bundle E and any principal Z-bundle F , we have the principal G-bundle

F ⊗E := µ∗(F ×X E) ;

note that the fiber product F ×X E is a principal (Z × G)-bundle and hence µ∗(F ×X E)
is a principal G-bundle. It is straight-forward to check that F ⊗ E is semistable, stable or
polystable if and only if E is semistable, stable or polystable respectively. If F ′ is a principal
Z-bundle, then using the multiplication operation µ′ : Z × Z −→ Z we get a principal
Z-bundle

F ⊗ F ′ := µ′
∗(F ×X F ′) .

This operation makes the moduli space M(Z) of topologically trivial principal Z–bundles
on X a complex Lie group.

The Lie algebra of Z will be denoted by z. The adjoint bundle F (z) for the principal
Z-bundle F is the trivial vector bundle OX ⊗C z over X with fiber z. The Lie algebra of G
will be denoted by g. For the adjoint action of G on g, each point of z is fixed. Hence

H0(X, F (z)) = z ⊂ H0(X, E(g)) .
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The group M(Z) has the following holomorphic action on M(G):

M(Z)×M(G) −→ M(G) , ((F, φ), (E, ϕ)) 7−→ (F, φ)⊗(E, ϕ) = (F⊗E, φ+ϕ) . (2.2)

Analogously, given a homomorphism

χ : π1(X) −→ Z ,

one gets for any homomorphism ρ : π1(X) −→ G a homomorphism χ · ρ : π1(X) −→ G
given by the composition

π1(X)
χ×ρ−→ Z ×G

µ−→ G .

More precisely, R(Z) (defined as in (1.1)) is a complex Lie group that acts holomorphically
on R(G) as follows

R(Z)×R(G) −→ R(G) , (χ, ρ) 7−→ χ · ρ . (2.3)

Note that if we set G = Z in (1.1), then the GIT quotient becomes an ordinary quotient.

Since the anti-holomorphic involution σ− of G preserves Z ⊂ G, we can combine (2.2)
and (2.3) to obtain more involutions. For every F = (F, φ) ∈ M(Z), set

I(αǫ, σǫ,±,F) : M(G) −→ M(G) , (E, ϕ) 7−→ F ⊗ I(αǫ, σǫ,±)(E,ϕ) .

It is an involution whenever F = (F, φ) satisfies

F−1 = I(αǫ, σǫ,±)(F, φ) , (2.4)

where F−1 denotes (F−1, −φ). The inverse of F is denoted by F−1; note that F−1 coincides
with the principal Z–bundle obtained by extending the structure group of F using the
automorphism z 7−→ z−1 of Z.

Analogously, for every χ ∈ R(Z), define

J(αǫ, σǫ,±, χ) : R(G) −→ R(G) , ρ 7−→ χ · J(αǫ, σǫ,±)(ρ) .

The condition for Jσǫ,χ
αǫ

to be an involution is that

χ−1 = J(αǫ, σǫ,±)(χ) . (2.5)

Theorem 2.4. For all F ∈ M(Z) and χ ∈ R(Z) satisfying (2.4) and (2.5), the above
maps I(αǫ, σǫ,±,F) and J(αǫ, σǫ,±, χ) are involutions.

The fixed points of I(α+, σ+,+,F) restricted to M(G)sm are (B,B,B)-branes, while the
fixed points of I(α+, σ+,−,F) are (B,A,A)-branes. On the other hand, the fixed points of
I(α−, σ−,−,F) are (A,B,A)-branes when we restrict to M(G)sm and the fixed points of
I(α−, σ−,+,F) are (A,A,B)-branes.

If F = (F, φ) ∈ M(Z) is the Z-Higgs bundle associated to the representation χ ∈ R(Z),
then the diagram

M(G)
homeo.

//

I(αǫ,σǫ,±,F)
��

R(G)

J(αǫ,σǫ,±,χ)
��

M(G)
homeo.

// R(G)

(2.6)

is commutative.
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Proof. The statements for I(αǫ, σǫ,±) follow from the works [10], [6] and [23]. One can
prove that the diffeomorphism in Theorem 1.1 takes the map in (2.2) to the map in (2.3).
Then I(αǫ, σǫ,±,F) commutes or anticommutes with Γ1 and Γ2 whenever I(αǫ, σǫ,±) does
so. By the above references, the involutions I(αǫ, σǫ,±) preserve the hyper-Kähler metric on
M(G)sm. Note that the translation (2.2) preserves the hyper-Kähler metric as well, and so
does I(αǫ, σǫ,±,F). As a consequence, the statements proved for I(αǫ, σǫ,±) are also valid
for I(αǫ, σǫ,±,F). �

Remark 2.5. When σ+ = IdG, the involution I(α+, IdG,+) is just the pull-back by α+,
while J(α+, IdG,+) coincides with the composition of homomorphisms with (α+)∗. Denote
by Id−1

X and Id−1
G the inversion given by the group structures on X and G, respectively.

For any representation of the fundamental group, note that ρ ◦ (Id−1
X )∗ = ρ−1 = Id−1

G ◦ ρ.
As a consequence of the commutativity of (2.6), the pull-back by Id−1

X commutes with the
extension of structure group associated to Id−1

G .

2.3. Pseudo-real Higgs bundles. Let α− : X −→ X be an anti-holomorphic involution
of X and σ− : G −→ G an anti-holomorphic involution of G. Let z ∈ Z

σ−

2 ⊂ Zσ−

be an element of order 2 of the fixed point locus of Zσ− ⊂ Z under σ−. A pseudo-real
(G,α−, σ−,±, z)-Higgs bundle is a G-Higgs bundle (E, ϕ) over X equipped with a lift

E
α̃−

//

��

E

��

X
α−

// X ,

satisfying the following conditions:

• α̃− is anti-holomorphic;
• α̃−(eg) = α̃−(e)σ−(g), for all e ∈ E, g ∈ G;
• α̃2

−(e) = ez, for e ∈ E;
• α̃−(ϕ) = ±ϕ.

The last condition needs an explanation. The canonical line bundle K of X has an anti-
holomorphic involution induced by α−. The bundle E(g) has also an anti-holomorphic
involution given by dσ− and α−. Using this two involutions together, we can define

α̃− : E(g)⊗K −→ E(g)⊗K .

The (G,α−, σ−,±, z)-Higgs bundles are also called pseudo-real G-bundles; these are called
real G-Higgs bundles if further z = IdG. These are studied in [6] and [7]; the reader is referred
to [6], [7] for the introduction of the moduli space

M(G,α−, σ−,±, z)
of isomorphism classes of polystable (G,α−, σ−,±, z)-Higgs bundles.

Note that the holomorphic isomorphism α̃− : E −→ E and α− produce a holomorphic
isomorphism of G-Higgs bundles

θ : (E, ϕ)
∼=−→ (α∗

−σ−(E), ±α∗
−σ−(ϕ)) , (2.7)

such that
θ ◦ α∗

−σ−(θ) = z · IdE . (2.8)
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We will refer to the triples (E, ϕ, θ) too as (G,α−, σ−,±)-Higgs bundles. An isomorphism
of (G,α−, σ−,±, z)-Higgs bundles (E1, ϕ1, α̃1) and (E2, ϕ2, α̃2) is an isomorphism of Higgs
bundles

f : (E1, ϕ1)
∼=−→ (E2, ϕ2)

such that f−1 ◦ α̃2 = α̃1 ◦ f , or, equivalently,

θ2 = f ◦ θ1 ◦ α∗
−σ−(f)

−1 . (2.9)

We consider the forgetful map M(G,α−, σ−,±, z) −→ M(G). Let M̃(G,α−, σ−,±, z)
be the image of this forgetful map.

Theorem 2.6 ([6]). The set
⋃

z∈Zσ−
2

M̃(G,α−, σ−,±, z)

is contained in the fixed points of I(α−, σ−,±) in M(G).

Remark 2.7. In the case of holomorphic involutions on the curve, one could consider as
well (G,α+, σ+,±)-Higgs bundles and we should obtain a similar description of the fixed
point locus as in Theorem 2.6. For the trivial involution σ+ = IdX , these objects would be
equivalent to (Gσ+ ,±)-Higgs bundles as described in [23]. For the trivial involution σ+ = IdG,
(G,α+, IdG,+)-Higgs bundles have been studied in [24].

See [17] for a concrete description of the fixed point loci of the involutions I(IdX , σ+,−)
in the moduli space M(G) of G-Higgs bundles over elliptic curves.

Fix a point x ∈ X such that α−(x) 6= x. Let

p : X̃ −→ X

be the universal cover of X associated to x. The orbifold fundamental group Γ(X, x) of
(X,α−) is the set

{f : X̃ → X̃, p ◦ f = q(f) ◦ p} ,
where q(f) can be σ−. So, we have a short exact sequence

0 // π1(X, x)
i

// Γ(X, x)
q

// Z/2Z // 0 .

Let Ĝ be G× (Z/2Z) as a set, with the group operation:

(g1, e1)(g2, e2) = (ge11 g2c
e1e2, e1 + e2) .

A z-homomorphism of the orbifold fundamental group is a group homomorphism

ρ : Γ(X, x) −→ Ĝ

that fits in the following diagram:

0 // π1(X, x)
i

//

��

Γ(X, x)
q

//

ρ
��

Z/2Z //

=

��

0

0 // G
i

// Ĝ
q

// Z/2Z // 0

(2.10)
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Two c-homomorphism ρ, ρ′ are called equivalent if there is an element g ∈ G with
ρ′ = gρg−1. Consider the moduli space of equivalence classes of reductive representa-
tions R(G,α−, σ−,±, ) [6]. Let R(G)sm be the smooth locus corresponding to M(G)sm. Let

R̃(G,α−, σ−,±, z) be the image of the forgetful map R(G,α−, σ−,±, z) −→ R(G).

Theorem 2.8. The set ⋃

z∈Zσ−
2

R(G,α−, σ−,±, z)

is contained in the fixed points of J(α−, σ−,±) in R(G).

Proof. It is a consequence of Theorem 2.6 and [6, Theorems 4.5 and 4.8].

Remark 2.9. In [24], a similar description is worked out for the holomorphic case, defining
(G,α+, σ+,±, z)–Higgs bundles and their moduli spaces M(G,α+, σ+,±, z), as well as the
associated moduli spaces of representations R(G,α+, σ+,±, z).

3. Elliptic curves and Higgs bundles

3.1. Elliptic curves. Let X be a compact Riemann surface of genus 1, and let x0 be a
distinguished point on it; the pair (X, x0) defines an elliptic curve (a connected compact
complex Lie group of dimension one). However, by abuse of notation, we usually denote
the elliptic curve simply by X. Every elliptic curve is isomorphic to some Xγ = C/〈1, γ〉Z,
where 〈1, γ〉Z is the lattice generated by 1 and γ ∈ H, the subset of points of the complex
plane C with positive imaginary part. One has Xγ1

∼= Xγ2 if and only if γ1, γ2 ∈ H are
related by a Möbius transformation given by an element of SL(2,Z).

The Picard group Pic0(X) will be denoted by X̂. Let

px0 : X
∼=−→ X̂ (3.1)

be the holomorphic isomorphism that sends any x ∈ X to the holomorphic line bundle

OX(x−x0). Note that the group structure on X̂ produces a group structure on T ∗X̂. Recall

that T ∗X̂ ∼= X̂ ×H0(X, OX); the group structure on the second factor is simply given by
the linear structure. The subgroup of X defined by the points of order two will be denoted
by X [2].

The Abel-Jacobi morphism

aj1 : X −→ Pic1(X) , x 7−→ OX(x)

is an isomorphism. For every y ∈ X, let

ty : X −→ X , x 7−→ x+ y

be the translation automorphism.

To present a consistent notation with that of Section 3.2, we write α(+,1) for the identity
IdX and α(+,−1) for the inversion map x 7−→ −x of X. When they are simultaneously
referred, we shall write α(+,a). Composing α(+,a) with the translations ty one gets another
involution provided y = −α(+,a)(y). For an involution α of X, let Xα ⊂ X be the fixed
point locus and X/α the quotient by α. Table 1 describes the holomorphic involutions on
X.



10 I. BISWAS, L. A. CALVO, E. FRANCO, AND O. GARCÍA-PRADA

For γ ∈ H, consider the paths δ̃1, δ̃2 : [0, 1] −→ C, where

δ̃1(t) = t (3.2)

and
δ̃2(t) = γt . (3.3)

Let δ1, δ2 be the images of δ̃1, δ̃2 in Xγ = C/〈1, γ〉Z. The homotopy classes of δ1 and δ2
generate the fundamental group π1(Xγ, 0). The involutions α(+,a) induce an action on the
fundamental group; this action is described in in Table 2.

Remark 3.1. Every semistable principal G-bundle E −→ X of trivial topological type is
homogeneous, meaning

t∗yE
∼= E

for every y ∈ X [8, Theorem 4.1]. This implies that the pull-back by α(+,a) coincides with
the pull-back by ty ◦ α(+,a); therefore, both involutions define the same involution on the
moduli space of G–bundles of trivial topological type, meaning

I(ty ◦ α(+,a), σ+,±) = I(α(+,a), σ+,±).

Since the fundamental group of X is abelian, π1(X, x0) is identified with π1(X, y) (in general
they are identified uniquely up to an inner automorphism); with this identification, the
action of (ty)∗ on π1(X) is trivial. Therefore,

J(ty ◦ α(+,a), σ+,±) = J(α(+,a), σ+,±).

3.2. Real elliptic curves. A real elliptic curve is a triple of the form (X, α−, x0), where
(X, x0) is an elliptic curve, and α− is an anti-holomorphic involution of X. It should be
emphasized that the point x0 need not be fixed by α−. Now, again, by abuse of notation,
we will denote a real elliptic curve simply by (X, α−). A morphism of real elliptic curves is
a holomorphic group homomorphism X −→ Y that intertwines the involutions.

A Klein surface is a pair consisting on compact Riemann surface and an anti-holomorphic
involution. The topological classification of Klein surfaces was given by Klein [31]. In the
particular case of real elliptic curves, the topological type of a real elliptic curve is given by
a pair (n, b) where n is the number of connected components of the fix point locus α−, and
b ∈ Z/2Z is the index of orientability defined by

b =

{
0 if X/α− is oriented

1 if X/α− is not oriented.

A theorem of Harnack says that n ≤ genus(X) + 1 [25].

There are three different topological types of real elliptic curves: a Klein bottle, a Möbius
strip and a closed annulus; see Table 3.

Consider the elliptic curve Xγ = C/〈1, γ〉Z for some γ ∈ H, and let α− be an anti-
holomorphic involution on it. Fix a lift

α̃− : C −→ C , z 7−→ az + b

of α−, where a, b are complex numbers. Table 4 gives the possible values of γ up to Möbius
transformations.

Continuing with the notation of Section 3.1, an anti-holomorphic involution on X = Xγ

that fixes the identity element and lifts to the automorphism z 7−→ az of C, where a ∈
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C∗ = C \ {0}, will be denoted by α(−,a). The anti-holomorphic involution ty ◦ α(−,a) lifts
to z 7−→ az + b, where y ∈ X is the projection of b to Xγ . Consider the two involutions
α(ǫ1,a1) and α(ǫ2,a2); note that

α(ǫ1,a1) ◦ α(ǫ2,a2) = α(ǫ1ǫ2,a1a2)

if ǫ1 = +, and

α(ǫ1,a1) ◦ α(ǫ2,a2) = α(ǫ1ǫ2,a1a2)

when ǫ1 = −.

All possible anti-holomorphic involutions are contained in Table 5 (see [1, Section 9]).

Alling and Greenleef gave the following classification of real tori.

Proposition 3.2 ([1, Section 9]). In the cases in Table 5, for any possible y ∈ X, the
isomorphisms of real tori are as follows:

• In the region A, for any y ∈ Xα(−,−1) such that y 6= x0,
(
Xγ , ty ◦ α(−,1)

) ∼=
(
Xγ, t 1

2
◦ α(−,1)

)

and, for any y ∈ Xα(−,1) with y 6= x0,
(
Xγ , ty ◦ α(−,−1)

) ∼=
(
Xγ, t γ

2
◦ α(−,1)

)
.

• In the region B, (
Xγ, α(−,1)

) ∼=
(
Xγ, α(−,−1)

)
,

(
Xγ, α(−,i)

) ∼=
(
Xγ, α(−,−i)

)

and for every y ∈ Xα(−,∓1) such that y 6= x0,
(
Xγ , ty ◦ α(−,1)

) ∼=
(
Xγ, t 1

2
◦ α(−,1)

)
.

• In the regions C, D and E, for all y ∈ Xα(−,∓a),
(
Xγ, ty ◦ α(−,a)

) ∼=
(
Xγ, α(−,a)

)
.

• In the region D,
(
Xγ, α(−,±1)

) ∼=
(
Xγ, α(−,∓γ)

) ∼=
(
Xγ , α(−,±γ2)

)
.

Recall that δ1, δ2, defined in (3.2) and (3.3) respectively, are generators of the fundamental
group π1(X). Table 6 describes the action of α(ǫ,a) on π1(X).

Remark 3.3. As in Remark 3.1, the homogeneity of topologically trivial semistable principal
G-bundles on elliptic curves implies that the pullbacks by α(−,a) and ty ◦ α(−,a) of such a
bundle are isomorphic. We also have the identifications

I(ty ◦ α(−,a), σ−,±) = I(α(−,a), σ−,±)

and

J(ty ◦ α(−,a), σ−,±) = J(α(−,a), σ−,±)

in the anti-holomorphic case. The notation used here is guided by these identities.
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3.3. Higgs bundles over elliptic curves. As above, let G be a connected complex reduc-
tive affine algebraic group. Let T ⊂ G be a Cartan subgroup, and let ΛT := Hom(C∗, T )
be the corresponding cocharacter lattice. We denote by Z(G) the center of G, and by Z the
connected component of it containing the identity element. Fix, once and for all, a basis

{λ1, · · · , λℓ, λℓ+1, · · · , λs}
of ΛT such that {λ1, · · · , λℓ} ⊕ {λℓ+1, · · · , λs} is an orthogonal decomposition of it, with
{λ1, · · · , λℓ} being an orthogonal basis of ΛZ := Hom(C∗, Z). We consider the natural
isomorphism

η : C∗ ⊗Z ΛT

∼=−→ T ,
∑

zi ⊗Z λi 7−→ Πλi(zi) .

Let µ : T ×T −→ T be the multiplication map of the group T . For any two principal T -
bundles E and E ′ of trivial topological type, consider the principal (T ×T )-bundle E×X E

′,
and define

E ⊗ E ′ := µ∗(E ×X E ′) ,

which is again a principal T -bundle of trivial topological type. Note that E(t) ∼= t ⊗ OX ,
so Higgs fields on a principal T -bundle are elements of t. One can express the extension of
structure groups associated to η as follows

η∗ : T ∗X̂ ⊗Z ΛT

∼=−→ M(T ) ,
∑

(Li, ψi)⊗ λi 7−→
(⊗

(λi)∗Li ,
∑

(dλi)∗ψi

)
.

Consider also the extension of structure group associated to the injection T →֒ G, and
compose it with η∗, to obtain the following map:

ξ̇ : T ∗X̂ ⊗Z ΛT −→ M(G) .

Analogously, one can define

ζ̇ : Hom(π1(X),C∗)⊗Z ΛT −→ R(G) ,
∑

i

ρi ⊗ λi 7−→
∏

i

(λi ◦ ρi) .

The action of the Weyl group W associated to (T, G) on ΛT can be extended to A⊗Z ΛT ,
where A is any abelian group, as follows:

ω ·
(∑

ai ⊗ λi

)
=

∑
ai ⊗ ω(λi) , ω ∈ W , ai ∈ A .

If A is the multiplicative group C
∗ = C \ {0}, this action commutes with the natural action

of W on T ,

C∗ ⊗Z ΛT
η

//

ω·
��

T

ω·
��

C∗ ⊗Z ΛT
η

// T.

(3.4)

The commutativity of (3.4) implies that ξ̇ and ζ̇ factor through the quotient by the action
of W .

Theorem 3.4 ([16]). The morphism ξ̇ and ζ̇ induce isomorphisms

ξ : (T ∗X̂ ⊗Z ΛT )/W
∼=−→ M(G)

and
ζ : (Hom(π1(X),C∗)⊗Z ΛT )/W

∼=−→ R(G).



INVOLUTIONS OF THE MODULI OF HIGGS BUNDLES OVER ELLIPTIC CURVES 13

Furthermore, the diffeomorphism between T ∗X̂ and Hom(π1(X),C∗) induced by the Hodge
theory induces the top row map of the commuting diagram

T ∗X̂ ⊗Z ΛT
diffeo.

//

ξ̇
��

Hom(π1(X),C∗)⊗Z ΛT

ζ̇
��

M(G)
diffeo.

// R(G)

(3.5)

4. Description of the involutions of the moduli space

4.1. The rank 1 case. The identity map of the multiplicative group C∗ is associated to the
anti-holomorphic involution of the compact real form U(1)

σU(1) : C∗ −→ C
∗ , z 7−→ z−1 . (4.1)

For the group G = C
∗, set

i(α(+,a), ±) := I(α(+,a), IdC∗ , ±)

and
i(α(−,a), ±) := I(α(−,a), σU(1), ±).

Assume that F = (F, φ) satisfies the involution condition in (2.4). Then we can define the

following involutions on T ∗X̂

i(α(+,a),±,F) : T ∗X̂ −→ T ∗X̂ , (L, ψ) 7−→ (F ⊗ α∗
(+,a)L, φ± α∗

(+,a)ψ) ,

and
i(α(−,a),±,F) : T ∗X̂ −→ T ∗X̂ , (L, ψ) 7−→ (F ⊗ α∗

(−,a)L
∗
, φ∓ α∗

(−,a)ψ) .

Accordingly, set j(α(+,a),±) = J(α(+,a), IdC∗ ,±) and j(α(−,a),±) = J(α(−,a), σU(1),±).
Similarly, if χ satisfies (2.5), consider the involutions on Hom(π1(X), C∗)

j(α(ǫ,a),+, χ) : Hom(π1(X), C∗) −→ Hom(π1(X), C∗) , ρ 7−→ χ
(
·ρ ◦ (α(ǫ,a))∗

)

and

j(α(ǫ,a),−, χ) : Hom(π1(X), C∗) −→ Hom(π1(X), C∗) , ρ 7−→ χ · (ρ−1 ◦
(
α(ǫ,a))∗

)
.

Since T ∗X̂ ∼= X̂ ×H0(X, OX), the isomorphism px0 in (3.1) produces an isomorphism

px0 : X ×H0(X, OX)
∼=−→ T ∗X̂

(it is a slight abuse of notation to use px0 for this map). Given an anti-holomorphic involution
α : X −→ X, let

conj : H0(X, OX) −→ H0(X, OX) , X 7−→ α∗X

be the induced conjugate-linear homomorphism.

Lemma 4.1. Take F = (F, φ) satisfying (2.4), and let y ∈ X be such that F = px0(y).
Then,

i(α(+,a),±,F) = p ◦ (ty ◦ α(+,a), ±Id) ◦ p−1 ,

and
i(α(−,a),±,F) = p ◦ (ty ◦ α(−,−a), ∓conj) ◦ p−1 .
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Proof. The first statement is straight-forward. The lemma follows from the fact that for all
x ∈ Xγ ,

α∗
(−,a)σU(1) (OX(x− x0)) =α∗

(−,a)O(x− x0)
∗

=OX(−α(−,a)(x)− x0)

=OX(α(−,−a)(x)− x0) .

�

Recall the generators δ1, δ2 of π1(X) defined in (3.2) and (3.3). One has the isomorphism

q : Hom(π1(X), C∗) −→ C
∗ × C

∗ , ρ 7−→ (ρ(δ1), ρ(δ2)) .

Note that the involution j(α(−,a),±, χ) is not defined for every isomorphism class of elliptic
curves; rather it is defined only for certain values specified in Table 4. For each region R of
Table 4, or for the entire upper-half plane H when ǫ = 1, let

f±
(ǫ,a,R) := q ◦ j(α(ǫ,a),±) ◦ q−1

be the automorphism of C∗ × C
∗.

Remark 4.2. Given χ ∈ R(Z), set bi = χ(δi). Note that χ satisfies (2.5) if and only if

(b−1
1 , b−1

2 ) = f±
(ǫ,a,R)(b1, b2) .

If this holds, then

f
±,(b1,b2)
(ǫ,a,R) : C∗ × C

∗ −→ C
∗ × C

∗ , (z1, z2) 7−→ (b1, b2) · f±
(ǫ,a,R)(z1, z2)

are involutions, and

j(α(ǫ,a),±, χ) = q−1 ◦ f±,(b1,b2)
(ǫ,a,R) ◦ q .

For any involution α(ǫ,a) of the curve X, using Tables 2 and 6, we can describe f±
(ǫ,a,R), and

therefore we can describe f
±,(b1,b2)
(ǫ,a,R) ; see Table 7.

4.2. The general case. Let σ+ and σ− respectively be the Cartan (holomorphic) involution
and the associated real form (anti-holomorphic involution) of G. Recall from Theorem 2.1
that they are related through the composition by the compact real form involution σK
commuting with σ−,

σ+ = σ−σK . (4.2)

Given a Cartan subgroup T of G preserved by σ+, σ− and σK , we denote by the same
symbols the involutions in the cocharacter lattice ΛT = Hom(C∗, T ),

σ+ : ΛT −→ ΛT , λ 7−→ σ+ ◦ λ (4.3)

and
σ− : ΛT −→ ΛT , λ 7−→ σ− ◦ λ ◦ σU(1) . (4.4)

Define an action of σK on ΛT by σK(λ) = σK ◦ λ ◦ σU(1); note that the equality (4.2),
considered as an equality of involutions of ΛT , is recovered.

Since the Cartan subgroup T is preserved by σ+, σ− and σK , these involutions induce
involutions of the normalizer NG(T ), and therefore produce involutions of the Weyl group
W = NG(T )/ZG(T ); these involutions of the Weyl group are denoted by the same symbol.
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Remark 4.3. Let T0 := T σK be the compact torus fixed pointwise by σK . Since TC
0 =

T , it follows that Hom(C∗, T ) ∼= Hom(U(1), T0). The action of σK is trivial on ΛT
∼=

Hom(U(1), T0). Also, we recall that σK acts trivially on W , because it is a compact real
form. As a consequence, the actions of σ+ and σ− on ΛT coincide. The same statement
holds for the actions of σ+ and σ− on W .

Remark 4.4. The Vogan diagram is constructed with the root data of a maximally compact
Cartan subalgebra tR of a simple real Lie algebra gR and it consists on a triple V = (D, θ, S)
where D is the Dynkin diagram of g = (gR)

C, θ is an automorphism of the diagram given
by the Cartan involution σ+ and S is a subset (possibly empty) of the vertices of D fixed by
θ.

The Vogan diagram encodes the action of σǫ on ΛT when T is the complexification of a
maximal compact subgroup of GR, the real subgroup fixed by σ−.

Recall form Remark 4.3 that it suffices to describe the action of σ+ on ΛT . The automor-
phism θ is an involution on the set of simple roots, so we obtain a description on the entire
set of roots. Translate this involution to the coroot lattice ∆ by setting θ(α∨) = (θ(α))∨,
one gets an involution on t ∼= C ⊗Z ∆ which is precisely the Cartan involution σ+. The
restriction of σ+ to Λ ⊂ t coincides with (4.3).

As done in (4.3) and (4.4), define the holomorphic involution

σ̇+ : C∗ ⊗Z ΛT −→ C
∗ ⊗Z ΛT ,

∑
zi ⊗Z λi 7−→

∑
zi ⊗Z σ+(λi)

and the anti-holomorphic involution

σ̇− : C∗ ⊗Z ΛT −→ C
∗ ⊗Z ΛT ,

∑
zi ⊗Z λi 7−→

∑
σU(1)(zi)⊗Z σ−(λi) .

We use again σ̇ǫ to refer simultaneously σ̇+ and σ̇−. Now the following diagram is commu-
tative

C∗ ⊗Z ΛT

σ̇ǫ

��

η
// T

σǫ

��

C∗ ⊗Z ΛT
η

// T.

(4.5)

The action of W on ΛT is σǫ-equivariant, meaning for any ω ∈ W and any λ ∈ ΛT ,

σǫ(ω · λ) = σǫ(ω) · σǫ(λ) . (4.6)

Therefore, we have

σ̇ǫ ◦ ω = σǫ(ω) ◦ σ̇ǫ . (4.7)

Now define the involutions

İ(α(ǫ,a), σǫ,±) : T ∗X̂ ⊗Z ΛT −→ T ∗X̂ ⊗Z ΛT ,
∑

(Li, ψi)⊗ λi 7−→
∑

i(α(ǫ,a),±)(Li, ψi)⊗ σǫ(λi) ,

and

J̇(α(ǫ,a), σǫ,±) : Hom(π1(X),C∗)⊗Z ΛT −→ Hom(π1(X),C∗)⊗Z ΛT ,
∑

ρi ⊗ λi 7−→
∑

j(α(ǫ,a),±)(ρi)⊗ σǫ(λi) .
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Fix any F = (F, φ) ∈ M(Z); let

χ : π1(X) −→ Z

be the corresponding representation of the fundamental group. We recall that

M(Z) ∼= T ∗X̂ ⊗Z ΛZ , R(Z) ∼= Hom(π1(X),C∗)⊗Z ΛZ .

Let [F ] = ξ̇−1(F) and [χ] = ζ̇−1(χ) be the corresponding elements of the groups T ∗X̂⊗ZΛT

and Hom(π1(X),C∗) ⊗Z ΛT respectively. Following the definitions of I(α(ǫ,a), σǫ,±,F) and
J(α(ǫ,a), σǫ,±,F), define

İ(α(ǫ,a), σǫ,±,F) : T ∗X̂ ⊗Z ΛT −→ T ∗X̂ ⊗Z ΛT ,
∑

(Li, ψi)⊗ λi 7−→ [F ] + İ(α(ǫ,a), σǫ,±)
(∑

zi ⊗Z λi

)

and
J̇(α(ǫ,a), σǫ,±, χ) : Hom(π1(X),C∗)⊗Z ΛT −→ Hom(π1(X),C∗)⊗Z ΛT ,∑

ρi ⊗ λi 7−→ [χ] + J̇(α(ǫ,a), σǫ,±)
(∑

ρi ⊗ λi

)
.

Lemma 4.5. The diagrams

T ∗X̂ ⊗Z ΛT
ξ̇

//

İ(α(ǫ,a),σǫ,±,F)
��

M(G)

I(α(ǫ,a),σǫ,±,F)

��

T ∗X̂ ⊗Z ΛT
ξ̇

// M(G)

(4.8)

and

Hom(π1(X),C∗)⊗Z ΛT
ζ̇

//

J̇(α(ǫ,a),σǫ,±,F)
��

R(G)

J(α(ǫ,a),σǫ,±,F)

��

Hom(π1(X),C∗)⊗Z ΛT
ζ̇

// R(G)

(4.9)

commute.

Proof. In view of (4.7) it follows that İ(α(ǫ,a), σǫ,±,F) induces an involution on the quotient

T ∗X̂ ⊗Z ΛT/W . From (4.5) and the construction of ξ it is clear that this induced involution
coincides with I(α(ǫ,a), σǫ,±,F).

The proof of the commutativity of (4.9) is analogous. �

In Section 3.3 we chose a basis of ΛT with an orthogonal decomposition

{λ1, · · · , λℓ} ⊕ {λℓ+1, · · · , λs} ,
where {λ1, · · · , λℓ} is an orthogonal basis of ΛZ = Hom(C∗, Z). Take a Z-Higgs bundle
F = (F, φ), and set F ǫ

i = (F ǫ
i , φ

ǫ
i) to be the Higgs line bundles such that

[F ] =
∑

[F ǫ
i ]⊗ σǫ(λi) . (4.10)

Let us extend this by setting F ǫ
i := (OX , 0) for ℓ + 1 ≤ i ≤ s. Analogously, we take a

decomposition of the representation χ : π1(X) −→ Z

[χ] =
∑

[χǫ
i ]⊗ σǫ(λi) (4.11)
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where χǫ
i are homomorphisms from π1(X) to C∗. As before, set χǫ

i = Id for ℓ+ 1 ≤ i ≤ s.

Proposition 4.6. For F and χ as above, construct F ǫ
i and χǫ

i as in (4.10) and (4.11)
respectively. Then

İ(α(ǫ,a), σǫ,±,F)
(∑

(Li, ψi)⊗ λi

)
=

∑
i(α(ǫ,a),±,F ǫ

i )(Li, ψi)⊗ σǫ(λi)

and

J̇(α(ǫ,a), σǫ,±,F)
(∑

ρi ⊗ λi

)
=

∑
j(α(ǫ,a),±, χǫ

i)(ρi)⊗ σǫ(λi) .

Proof. Once we have the descriptions of İ(α(ǫ,a), σǫ,±) and J̇(α(ǫ,a), σǫ,±), it is immediate

to derive descriptions of İ(α(ǫ,a), σǫ,±,F) and J̇(α(ǫ,a), σǫ,±, χ). We have

İ(α(ǫ,a), σǫ,±,F)
(∑

(Li, ψi)⊗ λi

)
=

∑
[F ǫ

i ]⊗ σǫ(λi) +
∑

i(α(ǫ,a),±)(Li, ψi)⊗ σǫ(λi)

=
∑(

[F±
i ] + i(α(ǫ,a),±)(Li, ψi)

)
⊗ σǫ(λi)

=
∑

i(α(ǫ,a),±,F ǫ
i )(Li, ψi)⊗ σǫ(λi) .

The case of J̇(α(ǫ,a), σǫ,±, χ) is analogous. �

4.3. Description of the fixed point locus. Consider the cocharacter lattice ΛT of a
complex reductive Lie group G. Denote by σ− the anti-holomorphic involution of a certain
real form, and denote by σ+ the Cartan involution associated to it. Recall from (4.6) that
the Weyl group W acts σǫ-equivariantly on ΛT .

Let A be a complex abelian group; construct the tensor product

Ḃ := A⊗Z ΛT .

Consider also the action of W on Ḃ induced by the action of W on Λ and take its quotient

B := Ḃ/W .

Fix a basis {λ1, · · · , λs} of Λ and suppose that A is equipped with a set of analytic group
homomorphisms of order two {t1, · · · , ts}

ti : A −→ A

such that we can combine them with σǫ to obtain the analytic involution

τ̇ : Ḃ = A⊗Z Λ −→ Ḃ ,
∑

ai ⊗ λi 7−→
∑

ti(ai)⊗ σǫ(λi) .

Since the action of the Weyl group is σǫ-equivariant, it follows that τ̇ induces an involution
on the quotient

τ : B = (A⊗Z Λ)/W −→ B ,
[∑

ai ⊗ λi

]
W

7−→
[∑

ti(ai)⊗ σǫ(λi)
]
W
.

Evidently, the diagram

A⊗Z ΛT
p
//

τ̇

��

A⊗Z ΛT/W

τ

��

A⊗Z ΛT
p
// A⊗Z ΛT/W
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commutes, where p is the projection induced by the quotient map for the action of W . By
construction, we have a similar commuting diagram for every element ω ∈ W ,

A⊗Z ΛT
p
//

ωτ̇

��

A⊗Z ΛT/W

τ

��

A⊗Z ΛT
p
// A⊗Z ΛT/W

(4.12)

The aim of this section is to describe the fixed point set (A ⊗Z ΛT/W )τ . To do so, we
will make use of the commutativity of (4.12). Define, for any ω ∈ W , the subgroup of
A⊗Z ΛT/W

(A⊗Z ΛT/W )τω := p((A⊗Z ΛT )
ωτ̇ ) .

One has that

(A⊗Z ΛT/W )τ =
⋃

ω∈W
(A⊗Z ΛT/W )τω .

Remark 4.7. Note that each Ḃωτ̇ is a closed subset, because it is a fixed point locus of an
involution. The projection p is continuous, and therefore Bτ

ω = p(Ḃωτ̇ ) is closed as well.

Lemma 4.8. The equality

(A⊗Z ΛT/W )τω1
= (A⊗Z ΛT/W )τω2

holds if and only if there exists an element ω′ ∈ W such that

ω2 = ω′ω1σǫ(ω
′)−1 . (4.13)

Proof. We have that x′ ∈ (A ⊗Z ΛT )
ωτ̇ if and only if x′ = ωτ̇(x′). Now x = ω′x′ lies in

ω′ · (A⊗Z ΛT )
ωτ̇ if and only if

(ω′)−1x = ωτ̇((ω′)−1x) .

In that case,

x = ω′ωσǫ(ω
′)−1τ̇ (x) .

We see that for ω, ω′ ∈ W ,

ω′ · (A⊗Z ΛT )
ωτ̇ = (A⊗Z ΛT )

ω′ωσǫ(ω′)−1τ̇ ,

which implies the lemma. �

Following (4.13), define the σǫ-adjoint action

adσǫ
: W ×W −→ W , (ω′, ω) 7−→ ω′ωσǫ(ω

′)−1 .

From Lemma 4.8 it follows that the components are parametrized by

W/σǫ
W = W/adσǫ

(W ) .

Therefore, we write

(A⊗Z ΛT/W )τ =
⋃

ω∈W/σǫW

(A⊗Z ΛT/W )τω ,

where ω is a representative of the σǫ-conjugacy class ω ∈ W/σǫ
W .
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Proposition 4.9. Denote by T ωσǫ the subtorus fixed by ωσǫ. Then

(A⊗Z ΛT/W )τω
∼= ((A⊗Z ΛT )

ωτ̇ )/NW (T ωσǫ) . (4.14)

Furthermore,
dim(Bτ

ω) = (dim(A⊗Z ΛT ))/2 · ord(ωσǫ(ω)) . (4.15)

Proof. We claim that

NW (T ωσǫ) = {ω′ ∈ W | ω = ω′ωσǫ(ω
′)−1}. (4.16)

To prove this claim, first recall that

NW (T ωσǫ) = {ω′ ∈ W | ω′(T ωσǫ) = T ωσǫ} .
Now note that

ω′(T ωσǫ) = T ω′ω◦σǫ◦(ω′)−1

= T ω′ωσǫ(ω′)−1◦σǫ .

We have T ω′ωσǫ(ω′)−1◦σǫ = T ωσǫ if and only if ω′ωσǫ(ω
′)−1 = ω. This proved the claim.

The first statement in the proposition follows from the combination of Lemma 4.8 and the
above claim.

To prove the second statement, since τ̇ is an analytic homomorphism, so is ωτ̇ . We assume
that they are all nontrivial (so we exclude the case of τ̇ being an element of W ). Since p is
the quotient by a finite subgroup, one has

dim((A⊗Z ΛT/W )τω) = dim((A⊗Z ΛT )
ωτ̇ ) ,

and therefore
dim((A⊗Z ΛT/W )τω) = (dim(A⊗Z ΛT ))/ord(ωτ̇) .

Note that
ωτ̇ωτ̇ = ωσǫ(ω)τ̇

2 = ωσǫ(ω) , (4.17)

so ord(ωτ̇) = 2 · ord(ωσǫ(ω)). �

We now proceed to describe the fixed locus Ḃωσǫ . Using the basis {λ1, · · · , λs} of Λ one

gets an isomorphism between Ḃ and

s−times︷ ︸︸ ︷
A× · · · × A. Denote by M ∈ GL(s,Z) the matrix of

ωσǫ in this base. We denote by t = (t1, · · · , ts) the involution on As given by the ti. We
observe that ωτ̇ corresponds with M ◦ t. It is then clear that

(A⊗Z ΛT )
ωσǫ ∼=




s−times︷ ︸︸ ︷
A× · · · ×A




M◦t

. (4.18)

The following is a consequence of Propositions 4.6 and 4.9, Lemma 4.1 and Remarks 3.1,
3.3 and 4.2.

Corollary 4.10. Let ty ◦ α(ǫ,a) be a holomorphic (respectively, anti-holomorphic) involution
on X and σǫ a holomorphic (respectively, anti-holomorphic) involution of the complex re-
ductive Lie group G. The fixed locus for the involution I(ty ◦α(ǫ,a), σǫ,±,F) of M(G) is the
union

M(G)I(ty◦α(ǫ,a),σǫ,±,F) =
⋃

ω∈W/σǫW

(
T ∗X̂ ⊗Z ΛT

)ω(İ(α(ǫ,a),σǫ,±,F))
/NW (T ωσǫ) ,
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where ω is a representative of ω ∈ W/σǫ
W . Furthermore, if Mω ∈ GL(s,Z) is the automor-

phism ωσǫ(ω) expressed in a certain basis of ΛT , and if y1, · · · , ys ∈ T ∗X̂ are the coordinates

of F ∈ T ∗X̂ ⊗Z ΛT in this basis, then

(
T ∗X̂ ⊗Z ΛT

)ω(İ(α(ǫ,a),σǫ,±,F)) ∼=




s−times︷ ︸︸ ︷
T ∗X̂ × · · · × T ∗X̂




Mω◦t

,

where
t =

(
(νy1 ◦ α(+,a),±Id), · · · , (νys ◦ α(+,a),±Id)

)

if ǫ = +, and
t =

(
(νy1 ◦ α(−,−a),∓conj), · · · , (νys ◦ α(−,−a),∓conj)

)

if ǫ = −.

Analogously, the fixed locus for the involution J(ty ◦ α(ǫ,a), σǫ,±, χ) of R(G) is the union

R(G)I(ty◦α(ǫ,a),σǫ,±,χ) =
⋃

ω∈W/σǫW

(Hom(π1(X), C∗)⊗Z ΛT )
ω(J̇(α(ǫ,a),σǫ,±,χ)) /NW (T ωσ+) .

If the homomorphisms χi ∈ Hom(π1(X), C∗) are the coordinates of χ ∈ Hom(π1(X), C∗)⊗Z

ΛT in the basis, and if bi,1 := χi(δ1) and bi,2 := χi(δ2) are the images of the generators
δ1, δ2 of π1(X), then

(Hom(π1(X), C∗)⊗Z ΛT )
ω(J̇(α(ǫ,a),σǫ,±,χ)) ∼=

(
(C∗ × C

∗)× s· · · ×(C∗ × C
∗)
)Mω◦t

,

where
t =

(
f
±,(b1,1,b1,2)

(ǫ,a,R) , · · · , f±,(bs,1,bs,2)

(ǫ,a,R)

)

with R being the region of Ω where X lies.

It is straight-forward to check that the subset of W given by the elements of the form
ωσǫ(ω) is closed under the usual adjoint action of W . We define the quotient

Υσǫ
= {ωσǫ(ω) | ω ∈ W}/ad(W ) .

Define the map
δ : W/σǫ

W −→ Υσǫ
, [ω]adσǫ 7−→ [ωσǫ(ω)]ad .

In view of (4.15), the dimension of Bτ
ω is determined by δ([ω]adσǫ ).

Following (4.15), we say that a component Bτ
ω is maximal is the order of ωτ̇ is 2. It is

clear that the dimension of each maximal component is half the dimension of B. We see
that a component is maximal when

IdW = ωσǫ(ω) . (4.19)

We define Bτ,Id to be the union of all maximal components.

Consider the non-abelian group cohomology associated to the action of Z/2Z on W given
by σǫ. Note that the cocycle condition is precisely (4.19), that is, the condition for Bτ

ω to
be maximal. Also, the coboundary condition is precisely (4.13). These tell us that maximal
components are indexed by H1(σǫ, W ),

(A⊗Z ΛT/W )τ,Id =
⋃

ω∈H1(σǫ,W )

(A⊗Z ΛT/W )τω. (4.20)
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Analogously, for a fixed representative of each γ ∈ Υσǫ
one can define a γ-shifted cocycle

condition

γ = ωσǫ(ω) . (4.21)

We also consider the union of all the components with a fixed γ ∈ Υσǫ
,

(A⊗Z ΛT/W )τ,γ :=
⋃

δ([ω])=γ

(A⊗Z ΛT/W )τω ;

it is clear that

(A⊗Z ΛT/W )τ =
⋃

γ∈Υσǫ

(A⊗Z ΛT/W )τ,γ .

Taking the coboundary condition (4.13) as before, we can define the shifted non-abelian
group cohomology H1

γ(σǫ, W ). We see that

(A⊗Z ΛT/W )τ,γ =
⋃

ω∈H1
γ(σǫ,W )

(A⊗Z ΛT/W )τω . (4.22)

One can easily see that every point b ∈ Ḃ such that

b = ωτ̇(b)

actually satisfies the condition

b = ωτ̇ωτ̇(b) .

Recalling (4.17), we observe that b is fixed by ωσǫ(ω), and this implies that

Ḃωτ̇ ⊂ Ḃωσǫ(ω) . (4.23)

Remark 4.11. Note that if dim(A) ≥ 2, then the singular locus of B = Ḃ/W is

Sing(B) =
⋃

Id 6=ω∈W
p(Ḃω) .

An antiholomorphic involution on a complex manifold has a half dimensional fixed point
locus. In our case, non-maximal components Bτ

ω ∈ Bτ,γ have dimension less than 1
2
dim(B).

Although, (4.23) implies that any non-maximal component satisfies Bτ
ω ⊂ Bτ,γ, and there-

fore we have Bτ
ω ⊂ Sing(B).

4.4. Moduli spaces of pseudo-real Higgs bundles. Every element z ∈ Z2 of order 2
of the center defines an element of the Weyl group ωz in the following way (see for instance
[18, 16]). Take an alcove A ⊂ t containing the origin. We know (see for instance [13]) that
there is a vertex az of the alcove A such that z = exp(az). We see that A − az is another
alcove containing the origin. Hence there is a unique element ωz ∈ W such that

A− az = ωz(A) .

In the trivial case we obviously have ω0 = Id.

Remark 4.12. Note that the action of ωz on T coincides with the action of z on it.

Now we can provide a description of the moduli spaces of pseudo-real G-Higgs bundles.
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Theorem 4.13. Take the central element z ∈ Z
σ−

2 , the antiholomorphic involution

ty ◦ α(−,a) : X −→ X ,

and the pair of holomorphic and anti-holomorphic involutions σ+, σ− : G −→ G such that
σ+ = σ−σK . The image of the moduli space of (G,α(−,a), σ−,±, z)-Higgs bundles under the
forgetful morphism is

M̃(G, ty ◦ α(−,a), σ−,±, z) =
⋃

ω∈H1
ωz

(σ−,W )

(
T ∗X̂ ⊗Z ΛT

)ω(İ(α(−,a),σ−,±))
/NW (T ωσ−) .

Furthermore, the forgetful morphism

M(G, ty ◦ α(−,a), σ−,±, z) −→ M̃(G, ty ◦ α(−,a), σ−,±, z)

is bijective. Analogously, the image of the moduli space of representations is

R̃(G, ty◦α(−,a), σ−,±, z) =
⋃

ω∈H1
ωz

(σ−,W )

(Hom(π1(X), C∗)⊗Z ΛT )
ω(J̇(α(−,a),σ−,±)) /NW (T ωσ−) ,

and the forgetful morphism

R(G, ty ◦ α(−,a), σ−,±, z) −→ R̃(G, ty ◦ α(−,a), σ−,±, z)

is bijective as well.

Proof. In view of Remark 3.3, without any loss of generality, we can take α(ǫ,a) to be our

anti-holomorphic involution. From Theorem 2.6 we have that M̃(G,α(−,a), σ−,±, z) lies in
the fixed-point locus of I(α(−,a), σ−,±). In fact, recalling Remark 4.12 and the equivalent
definition of a pseudo-real (G,α(−,a), σ−,±, z)-Higgs bundles given in (2.7) and (2.8), we know

that the points lying in M̃(G,α(−,a), σ−,±, z) are those lying in the components (T ∗X̂ ⊗Z

ΛT/W )
İ(α(−,a),σ−,±)
ω where

ωσ−(ω) = ωc.

From this and (4.22), we see that M̃(G,α(−,a), σ−,±, z) is given by the union of the compo-
nents of H1

ωz
(σ−,W ), and the first statement follows from Corollary 4.10.

Recall the definition of an isomorphism of pseudo-real Higgs bundles given in 2.9 and
the description of the group NW (T ωσ−) given in (4.16). Then, every isomorphism be-

tween pseudo-real G-Higgs bundles parametrized by T ∗X̂ ⊗Z ΛT is given by the elements
of NW (T ωσ−). The second statement follows from this observation and the description of

M̃(G,α(−,a), σ−,±, z) given above.

Finally, the third an fourth statements follow from the previous description and [6, Theo-
rems 4.5 and 4.8]. �

Recall that for z = IdG, one has ωz = IdW , and therefore the moduli space of real
(G,α−, σ−,±)-Higgs bundles (corresponding to z = IdG) is the union of the components
classified by H1(σ−,W ).
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Tables

Involution Admissible translations Xα X/α
α(+,1) − Xγ Xγ

ty ◦ α(+,1) y ∈ X [2], y 6= x0 ∅ X(γ−ỹ)

α(+,−1) − X [2] P1

ty ◦ α(+,−1) y ∈ X 1
2
y +X [2] P1

Table 1. Holomorphic involutions of Xγ.

Involution
(
(ααǫ

)∗δ1, (α(ǫ,a))∗δ2
)

α(+,1) (δ1, δ2)
α(+,−1) (−δ1,−δ2)

Table 2. Action of α(+,a) on π1(Xγ).

Topological type Xα− X/α−
(0, 1) ∅ Klein bottle
(1, 1) S1 Möbius strip
(2, 0) S1 ⊔ S1 Closed annulus

Table 3. Topological type of real elliptic curves.
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Region of H Values of γ
A {ℑ(γ) > 1,ℜ(γ) = 0}
B {ℑ(γ) = 1,ℜ(γ) = 0}
C {0 < ℜ(γ) < 1

2
,ℑ(γ) =

√
1−ℜ(γ)}

D {ℑ(γ) =
√
3
2
,ℜ(γ) = 1

2
}

E {ℑ(γ) >
√
3
2
,ℜ(γ) = 1

2
}

Table 4. Xγ admitting an antiholomorphic involution.

Region of H Involution Admissible translations Topological type

A
α(−,±1) − (2,0)

ty ◦ α(−,±1) y 6= x0, y ∈ Xα(−,∓1) ∼= S1 ⊔ S1 (0,1)

B
α(−,±1) − (2,0)
α(−,±i) − (1,1)

ty ◦ α(−,±1) y 6= x0, y ∈ Xα(−,∓1) ∼= S1 ⊔ S1 (0,1)
C ty ◦ α(−,±γ) y ∈ Xα(−,∓γ) ∼= S1 (1,1)

D
ty ◦ α(−,±1) y ∈ Xα(−,∓1) ∼= S1 (1,1)
ty ◦ α(−,±γ) y ∈ Xα(−,∓γ) ∼= S1 (1,1)
ty ◦ α(−,±γ2) y ∈ Xα(−,∓γ2) ∼= S1 (1,1)

E ty ◦ α(−,±1) y ∈ Xα(−,∓1) ∼= S1 (1,1)
Table 5. Anti-holomorphic involutions on Xγ .

Region of H Involution (α(ǫ,a))∗(δ1, δ2)

A,B
α(−,1) (δ1,−δ2)
α(−,−1) (−δ1, δ2)

C,D

α(−,1) (δ1,−δ2)
α(−,−1) (−δ1, δ2)
α(−,γ) (δ2, δ1)
α(−,−γ) (−δ2,−δ1)

E
α(−,1) (δ1,−δ2 + δ1)
α(−,−1) (−δ1, δ2 − δ1)

Table 6. Action of α(−,a) on π1(X).
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Region of H Involution f+
(ǫ,a,R)(z1, z2) f−

(ǫ,a,R)(z1, z2)

H
α(+,1) (z1, z2) (z−1

1 , z−1
2 )

α(+,−1) (z−1
1 , z−1

2 ) (z1, z2)

A,B
α(−,1) (z1, z

−1
2 ) (z−1

1 , z2)
α(−,−1) (z−1

1 , z2) (z1, z
−1
2 )

C,D

α(−,1) (z1, z
−1
2 ) (z−1

1 , z2)
α(−,−1) (z−1

1 , z2) (z1, z
−1
2 )

α(−,γ) (z2, z1) (z−1
2 , z−1

1 )
α(−,−γ) (z−1

2 , z−1
1 ) (z2, z1)

E
α(−,1) (z1, z

−1
2 z1) (z−1

1 , z2z
−1
1 )

α(−,−1) (z−1
1 , z2z

−1
1 ) (z−1

1 , z−1
2 z1)

Table 7. Values of f±
(ǫ,a,R).
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