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Abstract

We present a full quantum error correcting procedure with the semion code: an off-shell extension of
the double-semion model. We construct open-string operators that recover the quantum memory
from arbitrary errors and closed-string operators that implement the basic logical operations for
information processing. Physically, the new open-string operators provide a detailed microscopic
description of the creation of semions at their end-points. Remarkably, topological properties of the
string operators are determined using fundamental properties of the Hamiltonian, namely, the fact
that it is composed of commuting local terms squaring to the identity. In all, the semion code is a
topological code that, unlike previously studied topological codes, it is of non-CSS type and fits into
the stabilizer formalism. This is in sharp contrast with previous attempts yielding non-commutative
codes.

1. Introduction

Topological properties of quantum systems have become a resource of paramount importance to construct
quantum memories that are more robust to external noise and decoherence [ 1-7] than standard quantum error
correcting codes [8—15]. The latter are based on a special class of codes—concatenated codes—which enable us
to perform longer quantum computations reliably, as we increase the block size.

The Kitaev code is the simplest topological code yielding a quantum memory [1]. It can be thought of as a
simple two-dimensional lattice gauge theory with gauge group G = Z,.In D = 2 spatial dimensions, there is
another lattice gauge theory with the same gauge group but different topological properties: the double semion
(DS) model [16-18, 22-25]. Although the Kitaev and the DS models are lattice gauge theories sharing the same
gauge group, G = Z,, the braiding properties of their quasiparticle excitations are radically different. For
example, whereas braiding two elementary quasiparticle excitations (either an electric or a magnetic charge)
gives a +1 phase in the Kitaev code, doing so in the DS model yields i phase factors.

The DS model was introduced in the context of the search of new topological orders in strongly correlated
systems, gapped, non-chiral and based on string-net mechanisms in D = 2 dimensions [16, 17]. Generalizations
of the DS model to D = 3 and to higher dimensions have appeared recently [18]. While the properties of the
Kitaev code has been extensively studied in quantum computation and condensed matter, barely nothing is
known about the quantum error correcting properties of the DS model despite recent efforts towards realizing
such models [19-21]. In this work we remedy this situation by introducing a new formulation of the DS model
that is suitable for a complete treatment as a quantum memory with topological properties.

The first obstacle to tackle the DS model as a quantum memory is the original formulation as a string-net
model [16]. In this formulation, the Hamiltonian is only Hermitian and exactly solvable in a particular subspace,
where plaquette operators are Hermitian and commute. Only linear combinations of closed-string
configurations, implying the absence of vertex excitations, are allowed in this subspace [16, 26, 27]. The
microscopic formulation of the original DS model starts with a hexagonal lattice A with qubits placed at links e.
Vertex operators Q, are attached to the three links meeting ata vertexv € A. Plaquette operators B, are attached
to hexagons p € A with the novel feature that their outer links carry additional phase factors that are missing in
the corresponding Kitaev model. Explicitly
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Figure 1. The support of the vertex operator Q, = o{ o505 and plaquette operator B,,. The qubits are placed on the edges.

Q = oioiol, ()

with 7,7, k, being the three qubits belonging to vertex v (see figure 1(a)) and

By=|T1 of| IT it @

icop jeo(p)

where Op are the six links of the hexagon and o(p) is the set of six edges outgoing from each plaquette p, as it is
shown in figure 1(b). Unlike the Kitaev code, these plaquette operators Ep are Hermitian and commute among
themselves only in a subspace of the whole Hilbert space, defined by the so-called zero-flux rule [16, 26, 27]. This
is given by a vertex-free condition on states

Hy = {ly): Q) = +¢), Vv € A} 3

The set of vertex and plaquette operators defines a Hamiltonian

Hps= - Q,+ > B, O

Due to the involved structure of phases that plaquette operators in equation (2) have, it was aforementioned that
these operators do not commute out of the vertex-free subspace. This implies that the model is only well-defined
when there are no vertex excitations.

Therefore, in order to treat the DS model as a quantum error correcting code [11, 28-31], it is necessary to
have a formulation of the model that is valid in the whole Hilbert space and not just for the vertex-free subspace
(3), since generic noise processes will make the system leave the mentioned subspace. To this end, we introduce
an off-shell DS model that we call the semion code. This new model is achieved by making a deformation of the
original plaquette operators (2) such that they become commuting and Hermitian operators without imposing
the vertex-free condition [27]. In addition, we are able to develop the complete program of quantum error
correction with the semion code.

1.1. Summary of main results
In order to summarize the main contributions that we present in this paper, we hereby advance a list of some of
our most relevant results.

(i) We perform a thorough analysis of a formulation of the plaquette operators which commute in the whole
Hilbert space [27]. This construction consists in adding extra phases to the plaquette operators, which
depend on the configuration of the three edges at each vertex. When the vertex-free condition is imposed,
we recover the standard definition of the DS model.

(if) We give an explicit construction for string operators along arbitrary paths. They are complete in the sense
that any operator acting on the system can be decomposed as a linear superposition of such operators.
Additionally, the string operators can be constructed efficiently despite the complex structure of the
plaquette operators. Remarkably, a microscopic formulation to create semions was not proven until now.

(iii) We analytically show that the excitations of the system behave as semions, via the detailed study of the
constructed string operators, which allows us to explicitly calculate the topological S-matrix. Interestingly

2



10P Publishing

NewJ. Phys. 21 (2019) 053035 G Dauphinais et al

enough, most of the string operator properties rely on very generic arguments about the structure of the
local operators making up the Hamiltonian, namely that they commute and square to the identity.

(iv) Closed-string operators are constructed, which allow us to perform logical operations on the quantum
memory built from the semion code. Logical operators are closed-string operators whose paths are
homologically non-trivial and act non-trivially on the degenerate ground space.

(v) Given the above properties, we define a topological quantum error correcting code based on a non-trivial
extension of the DS model. We build a code, which is characterized by the following key properties: is
topological, satisfies the stabilizer formalism, is non-CSS, non-Pauli and additive.

The topological nature of the code becomes apparent through the fact that global degrees of freedom are used to
encode information and only local interactions are considered [ 1, 4]. Another remarkable feature of the semion
code is that is of non-CSS type since in the plaquette operators both Pauli X and Z operators enter in the
definition [9, 28]. Consequently, errors in an uncorrelated error model such as independent bit-flip and phase-
flip errors cannot be treated separately. However, they can be decomposed as a linear superpositions of
fundamental anyonic errors (string operators creating pairs of anyons) with a known effect on the Hilbert space.
Moreover, the semion code is not a subgroup of the Pauli group since the complex phases entering its definition
(see equation (2)) makes impossible to express its generators in terms of tensor products of Pauli matrices

[32, 33]. Nevertheless, the semion code is still an additive code: the sum of quantum codewords is also a
codeword [34]. This last fact is intimitely related to the abelian nature of the semionic excitations [35, 36].

1.2. Outline

The article is organized as follows. In section 2 we introduce the off-shell DS model, which is suitable for
quantum error correction. In section 3 we build string operators creating vertex excitations at their endpoints.
Section 4 is devoted to logical operators and quantum error correction. We conclude in section 5. Appendices
deserve special attention since they contain the detailed explanations of all the constructions used throughout
the text. Specifically, appendix A presents an explicit example of a string operator, appendix B gives the detailed
proof of theorem 1, which presents a systematic way to construct string operators, as well as several key
properties of the string operators and finally appendix C is devoted to the proof of theorem 2, which gives the
commutation relations among string operators.

2. Off-shell DS: microscopic model

We begin by considering a microscopic description of the DS model on the entire Hilbert space of states, since it
is much better suited for quantum error correction. We call this an off-shell DS code by borrowing the
terminology from quantum field theory and other instances in physics where a shell condition amounts to a
constraint on the phase space of a system. For instance, the equation of motion is a shell condition for quantum
particles but the phase space is more general. In our case, the shell condition is the vertex-free subspace or zero-
flux rule introduced in equation (3).

2.1. DS model in the vertex-free subspace

Let us start by introducing the DS model in a new presentation that is more suitable for building an off-shell
formulation of it. We consider the same hexagonal lattice A with qubits attached to the edges e € A. The vertex
operators Q, will remain the same as in equation (1), but the plaquette operators in the zero-flux subspace can be
rewritten in an equivalent form to that shown in equation (2), i.e.

6 6
By =TI o3 |[TT - |, 5)
j=1 j=1
inwhich n* := %(1 + o7)isthe projector on the state |0) (n™) or |[1) (n™) of qubit i, qubits are labeled as shown

in figure 1 and we use the convention that 7 refers to qubit ‘6’ for simplicity. Remarkably, this expression
avoids any reference to the outgoing links of hexagonal plaquettes p. One readily sees that the vertex operators
fulfill the following relations:

QVZ = 17 [Qva Qv'] = 0> [Qw Ep] = 0; (6)
Vv, v/, p € A. Asforthe plaquette operators B, they also satisfy
~2 ~ - -~

By =1, B) =B, [By Byl =0 @)
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Bq @ ' ‘ir B - -‘-‘
Figure 2. Applying plaquette operator B, adds a closed loop around plaquette g and multiply the wave function by a —1 phase. Each

qubit in a given configuration is represented by a filled link of the lattice if it is in state |1), whereas links in |0) are left empty (dashed
line).

Vp, p' € A,butonlyin the vertex-free subspace (3). Furthermore, the product of all the vertex and plaquette
operators is the identity. A simple counting argument reveals that the ground space is 4° degenerate', which g
being the genus of the orientable compact surface onto which the lattice is placed.

An explicit unnormalized wavefunction belonging to the ground space is obtained in the following way: we
start from the vacuum, i.e. [0)®N, which has +1 eigenvalue for all vertex operators. Then, plaquette operators are
used to build projectors and apply them onto the vacuum

L= 5 gpen, ®)

1) = ]

peA

Itis straightforward to check that this state fulfills the lowest energy condition for the Hamiltonian (4) within the
vertex-free subspace. Expanding the product in equation (8), one can see that the ground state is a superposition
of closed loops configurations. Due to the condition B, = — 1 for the ground state, the coefficients of this
superposition of closed loops alternate sign. Thus, we can write the ground state in a different way:

)= 3 (=N, ©)

-
i €{C-S conf.}

where i isa bitstring representing a qubit configuration and { C-S conf.} is the set of all possible closed-string
configurations. Each configuration in this set has a certain number of closed loops, N (i), whose parity
determines the sign of the coefficient in the ground state superposition.

Of course the above construction only gives rise to one of the ground states. To find the other ones, the
starting configuration can simply be replaced by a configuration containing an homologically non-trivial closed
loop (which necessarily belongs to the vertex-free subspace), and proceed with the same construction. Every
different homological class for the closed loop corresponds to a different ground state.

Applying the B, operator on a specific loop configuration flips the string occupancy of the interior edges of
plaquette p while acquiring a phase that depends on the specific configuration under consideration. Applying Ep
on the vacuum simply adds a closed loop around plaquette p, while applying B, next to a closed loop either
enlarges (or shrinks) the existing loop to include (exclude) plaquette p, while multiplying the wave function by
—1 factor (see figure 2).

Due to the lack of commutativity of the plaquette operators and the fact that they are not Hermitian, the
original DS model is only well-defined when there are no vertex excitations. Moreover, the strings creating
vertex excitations are not properly defined either. A naive attempt to construct these strings as a chain of 0*
operators, following the similarities with the Kitaev code, resoundingly fails. As a consequence of the phases on
the external legs of plaquette operators, o™ operators create vertex excitations but also plaquette excitations. In
order to get a string that creates only two vertex excitations at the endpoints but commutes with all the plaquette
operators along the path P, itis necessary to add some extra phases to the chain of o * on the outer legs. An
approach to this problem is described in [27] but it is not successfully solved since the strings are only well-
defined in the vertex-free subspace.

The DS model gives rise to quasiparticle excitations behaving like anyons. They are called semions, due to the
fact that their topological charge is ‘half of that of a fermion, i.e. £i. There exist two types of semions in the
model, one corresponding to a vertex excitation, while the other corresponds to both vertex and adjacent
plaquettes excitations. From now on, we name these two different possibilities as chiralities, positive chirality for
the former kind, and negative chirality for the latter one. We warn the reader that this choice has been made
arbitrarily, and does not necessarily reflect the topological charge of a given specie.

This is strictly true only if the total number of plaquettes of the system is even. If it is odd, then the ground state must contain a single flux
excitation, which can be placed in any of the plaquettes. In that latter case the ground space degeneracy is an extensive quantity. However,
any given flux configuration is 4%-degenerate. For simplicity, we assume in this work that the system contains an even number of plaquettes.
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Figure 3. A graphical representation of the various non-trivial phase factors of the form (; ; ). A trivial phase of +1 is applied for any
configuration not shown on this picture. The labeling of the edges have been omitted for simplicity, and corresponds to the same as the
one on figure 1.

Taking into account all these caveats, we present in the following a formulation of the DS model which gives
amicroscopic approach to this interesting topological order, fulfilling all the necessary properties in the whole
Hilbert space.

2.2. Exactly solvable model in the whole Hilbert space
If we want to consider encoding quantum information in the degenerate ground-state manifold of the standard
(on-shell) DS model in equation (4), we immediately run into major problems: X Pauli errors make the state of
the system leave the vertex-free subspace. The non-commutativity of the B, operators poses difficulties when
interpreting the DS model as a stabilizer code.

To avoid such difficulties, we consider a modified version of the plaquette operators in equation (2), which
we call the off-shell DS model or semion code

Hps=—)»_.Q,+ Y B, (10)
v )

where the generalized plaquette operator By, is a modification of B, obtained by multiplying it by a phase factor
that depends on the configuration on which it is applied. More specifically, we have

B, =B, x B (11)
with

By =3 by (7, (12)

where the sum runs over all possible configurations of edges 1 through 12 shown in figure 1. Ep () is the phase
factor corresponding to the string configuration i.1 representsastate in the computational basis. A qubit in the
state |0) is interpreted as the absence of a string on its corresponding edge, while the state |1) reflects the presence
ofastring. The phase operator 3, can be decomposed as

By = Be12) By Bess) Beas Busio Beeiy (13)

where (3 ; 1 is a function of the string configuration of edges i, jand k connected to vertex v(i, j, k). The specific
values for each factor 3; j x) are shown graphically in figure 3. Note that their specific form differ depending on
their position on the plaquette.

For future reference, notice that the generalized plaquette operator B, can be written as

By= 1] ol [T =0 |I] B (14)

i€op jeop vep

where we use the notation j € Op to indicate the qubit associated to edge j in plaquette p. v € p identify the vertices
belonging to plaquette p. Notice that this last expression clearly shows that the phase factor appearing in B, is a
product of phases, 3,, depending on the string configuration of the three edges connected to each vertex of
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plaquette p. The complete algebraic expression of the product of all 3, in a plaquette pis [27]
[T B, = imatnns = ninedjny (aind = miny)
vep
x 1 (nynd = ning)ing (nyng — ning)

 jrio(ning — nng)jnii(nsng — ning). (15)

We can easily check that in the zero-flux rule the factors in equation (15) reduce to 1, recovering expression (5)
for the plaquette operators.

The crucial point now is that the new generalized plaquette operators, By, satisfy the desired properties
needed by the stabilizer formalism of quantum error correction. Namely,

By =1, Bj =By, [By, Byl =0, [Q,, B,] = 0; (16)

Vp, p’, v € A, regardless of the vertex-free condition (3). The study of Hps is rendered much simpler than that
of Hpg on the whole Hilbert space of the qubits by the fact that the new plaquette operators commute.

3. String operators

We seek open-string operators creating excitations at their endpoints without affecting the rest of vertex and
plaquette operators, as well as closed-string operators that commute with vertex and plaquette operators. In our
case, excited states correspond to states in a —1 eigenstate for a vertex operator or a +1 eigenstate of a plaquette
operator. We say that an excitation is present at vertex v (plaquette p) if the state of the systemisina —1 (41)
eigenstate of Q, (B,). Since we have that [], ., Q, = Hp <A By = 1, excitations are always created in pairs.

In order to find such string operators, it is convenient to reexpress the generalized plaquette operators as

By =[] of 32 bp(DIi) (i, (17)
icp i
where p denotes the interior edges of a plaquette (edges 1 through 6 in figure 1) and the string configurations in
the sum are taken on edges 1 through 12. b, (1) denotes the complex phase picked up when applying operator B,
to the configuration 7 . Note that by i) (?l differs from the product of the 3,’s in the — 1 factors appearing
in equation (14). >>7 b, (?) |:> <7| includes the —1 factors as well as the product of 3,.

Given two string configurations i and @ on a set of edges, it is useful to define the string configuration i & &
to be the configuration i’ where the edges occupied in configuration & has been flipped. It is equivalent to sum
(mod 2) the two bitstrings. Additionally, we define the configuration & of plaquette p as the string configuration
which is empty everywhere except for the six edges in the interior of plaquette p, corresponding to edges 1
through 6 in figure 1. Likewise, @”, will be the configuration which is only occupied for edges of path P.

Given a path P, we construct string operators Sj creating vertex excitations at its endpoints and commuting
with every other operators in Hamiltonian (10). Negative chirality strings are defined as S5 = Sj Sp;,.» where
Sp, ., isaproduct of o* operators forming a path P/iua in the dual lattice which is contained in the support of S7.
If Pisopen, Sp,  creates excitations at plaquettes containing the vertices at the endpoints of P and opposite to
the firstand last edges of P (p, and py in figure 4), while if P is closed, S,  formsaclosed path in the same
homological class as PP. Note that for a given path P, various paths P/, are possible, and each one gives rise to a
different string operator Sp.

3.1. An algorithm to generate string operators
In order to find these string operators, we consider the following ansatz:

=11 o > FpMIi) il (18)

icP i€Conn(P)

where Fp(i)isa phase factor acquired when S is applied on configuration i. Fp(i) only depends on qubits
belonging to Conn(P), defined as:

Conn(P) := {links of P and its external legs}. (19)
Itis also useful to define the set of plaquettes
Bp = {p: dp N Conn(P) = &}, (20)

which is the set of plaquettes that have at least one of their interior edges contained in Conn (73) Equlvalently,
one can define Bp to be the set of plaquettes such that for at least one string configuration i i, b (1 @ ap) =

b, (1). The structure of S# isillustrated in figure 4. Note that depending on the context, a configuration i iis
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Conn(P) ~

Figure 4. The structure of S5, where the path P is indicated by the full black edges where the o operators are applied. The phase
factors F depend on the configuration of all the edges identified with a dot, which are collectively denoted by Conn (7). The effect of
S on the ground state of the system is to create a pair of vertex excitations at the vertices located at the endpoints of the path P, which
are identified by big red dots. Plaquettes p; to py constitute the set Bp.

either understood to be on the full system, or is the configuration restricted to Conn(P). The specific case
considered is explicitly stated in each case.
Ansatz (18) should satisfy the following properties.

(i) Anticommutes with vertex operators at the endpoints of P if it is open, while it commutes with every other
vertex and plaquette operators.

(ii) Acts trivially on edges outside Conn (P).
Operators satistying (i) and (ii) are called string operators. Additionally, we may be interested in the properties:

Squares to the identity.

Hermitian.

If these are satisfied, they will be called canonical string operators.
Properties (iii) and (iv) are satisfied (see lemmas 5 and 6 in appendix B) if

Fp(i @ &P) = [Fp()I*. 1)

Since we want S to commute with all plaquettes in By (for the rest of plaquettes, it commutes by
construction), we impose that the commutator vanishes, [S/5, B,] = 0, which yields the equation

AP
Fp(i @ @) = MFP(?). (22)
bp(l)

Itis useful to define the function (97;(?, p)=b, (? @ ah) /bp(?), which relates Fp(t_" @ aP)to Fp (?). We can
generalize equation (22) and function 6p i, p) for an arbitrary number of plaquettes, namely

Fp(i @ &M @ ...@&%) = 0p(i, py> ..., b, ) Fp (i), (23)

where 05 (i , Pys --+> P,,) can be expressed as

Op(i,s Py B) = ] (24)

n by (7 @ aP@-1an)
i=1 bpy(?@’];lla%)
Note that while we use the same symbol for the configurations 7 in Op and in Fp, the one in fp is over the whole
system in order for equation (24) to be well-defined. The specific way that the configuration i is extended over
the whole system (i.e. which configuration on the rest of the system is appended to it) does not matter, since as a
consequence of the structure of the plaquette operators, it does not affect the value of . As a consequence of the
fact that plaquette operators commute, the order of the plaquettes py, ..., p,,, in 6p a, Pys -++5 P,,) does not matter
(seelemma 1). The function 0p (?, Pys ---» P,,) relates the value of Fp for configuration i to that of configuration
i @ @h @ ... ® ah. These two configurations differ by a sum of plaquettes and may be considered part of the
same configuration class C'p(?), defined as
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Cp()=4j:7 =1 @ arg (25)
pEsubset(Bp)

where the configurations are restricted to Conn (). These configurations can be regarded as the set of
configurations related to i by adding loops associated with plaquettes in Bp, only in the region where S acts
non-trivially. Taking all this into account, one can obtain an algorithm to compute the phases F5 of the ansatz in
equation (18). This is given by algorithm 1.

Algorithm 1. Determination of the Fp functions for apath P. /(! ) are initial phases that can take any value.

for every configuration class Cpdo
Pick a class representative ieCp
Set Fp(i) = eio®
for every subset (p;, ..., p,) € Bpdo
Fp(( @I, G7) = 0p(i, ppr -.or ) Fp(i)
end for
end for

Algorithm 1 begins by picking up a configuration 7 , which we call its class representative, and by settingts

value to an arbitrary phase eid (i), Any phase picked up by the algorithm yields a valid string operator. Once the
value for the class representative i is fixed, the algorithm assigns values to the rest of the configurations in the
same configuration class by making use of equation (23). Afterwards, a configuration, belonging to a different
configuration class, where the values have not yet been fixed, is chosen and the same procedure is repeated until
Fp has been fixed for all possible configurations. An explicit example of this can be seen in appendix A.

Asitis shown in appendix B, it is always possible to determine Fp using algorithm 1 such that the resulting
S# isa string operator. Furthermore, it is also possible to enforce the constraint given in equation (21) such that
we obtain canonical string operators. Those important results are summarized in the following theorem:

Theorem 1. Let P be a path. Any function Fp defined by algorithm 1 is such that S3 is a string operator.
Furthermore, it is possible to choose the phases €' such that the string operator is canonical.

Note that the open-string operators generated by algorithm 1, S, have positive chirality, because they
anticommute with vertex operators at the endpoints of P and commute with every other vertex and plaquette
operators, satisfying property (i). However, the same does not apply to closed-string operators, since closed
strings do not have endpoints. Algorithm 1 produces, in general, closed-string operators without a definite
chirality.

3.1.1. Concatenation of open-string operators

Itis very useful to build strings as a concatenation of smaller strings. This is specially relevant for constructing
non-trivial closed strings, since, as it was mentioned before, algorithm 1 yields, in general, closed strings which
have no definite chirality. By building these closed strings out of a multiplication of open strings, which have
definite chirality, we obtain positive- and negative-chirality closed strings. Observe that given two paths, P, and
5, meeting at one endpoint or forming a closed path, the multiplication of both S5, 4 p, = SAS5 isastring
operator satisfying properties (i) and (ii). In this way we can build long string operators by concatenating

short ones.

3.2. Crossing string operators
In order to understand the algebra of the string operators of the semion code that we build in section 4.1, it is
essential to know the commutation relations between them acting on different paths.

The notion of crossing paths need to be precisely defined since the region on which the string operators act
non-trivially, Conn(P), has a finite thickness. Heuristically, in order to consider that two paths are crossing, the
commun edges to both paths must not contain the first nor last vertex of neither of the paths. Note that two paths
can cross more than once.

We further need to define the notions of self-crossing and self-overlapping paths. Essentially, a path is self-
crossing if an observer moving on the path passes more than once on any given edge. A path is said to be self-
overlapping if some regions of the support of the string operator but not the path itself overlap and connect some
distant parts of the paths. Figure 5 illustrates the previous concepts. We refer the reader to appendix C for
rigorous definitions, as well as the proof of theorem 2. This theorem summarizes the commutation relations
among the string operators.
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(a)

Figure 5. Examples of (a) a self-crossing path P and of (b) a self-overlapping path Q. The dashed blue edges indicate the links where
the string Q self-overlaps, since some distant parts of the path are connected.

Theorem 2. Let P and Q be two paths crossing n times, composed of non self-overlapping nor self-crossing individual
open paths, i.e. P = Pi#..# P and Q = Q1#...# Qv for some integers m and m'. We have that

[Sp, Sg1= 0ifn is even,
{S#, 8§} = 0ifn is odd. (26)

Given the definition of negative chirality string operators, and using the above results, we find that [Sp, Sg] = 0
ifnis even, while {Sp, Sg} = 0ifnis odd. Wealso find [S%, Sg] = Oforanyn.

Interpreting a vertex (in the case of S73) or the combination of a vertex and plaquette excitations (in the case
of Sp) as the presence of a quasiparticle labeled by s* and s~ respectively, the topological S matrix [35], written in
thebasis (1, sT, s7, sTs™) where 1 denotes the vacuum, i.e. the absence of excitation, and s*s™ the composite
object excitation, is found to be

11 1 1

1 -1 1 —1

5_211—1—1'
1 -1 —1 1

(27)

We can thus interpret the string operators S, and S as creating pairs of semions of different chirality at their
endpoints.

3.2.1. The need for path concatenation

Notice that theorem 2 does not state anything about closed paths (homologically trivial or not) which are
composed of a single path. One can check that when such a path crosses another one, in general they do not
commute nor anti-commute. Such paths thus cannot be considered as ‘fundamental’ string operators in the
sense that they do not possess a definite chirality.

Algorithm 1 enforces that the )7 Fp @) |?> <;| operator does not contain any open S7Z’éua1 operator for an
open path, since by construction, Algortihm 1 builds a string operator which commutes with every plaquette
operator. For a closed path however, one canadd S5, to }>; Fp @) |?> <;| — CiFp (i) |?> (z_"|)5éélual , which is
also avalid output of algorithm 1. In fact, such a S5, operator can be added selectively to only a subset of
configuration classes, causing a ‘mixing’ of the chiralities. This is explained in detail in appendix C.3.

By producing closed paths starting from smaller open paths as their basic constituents, one can enforce the
production of strings of a definite chirality. This is caused by the fact that the individual components cannot
carry flux excitations by construction, and so neither can their concatenation. The physical intuition is that each
small open string operator creates a pair of semions of positive chirality at their endpoints. Since the created
semions are their own anti-particles, they subsequently all fuse to the vacuum, returning the system to the
ground space.

3.3. Completeness of the string operators
In this section, we seek to decompose a string of o * operators into the strings operators defined in our model, S*

and S*
We first note that any matrix p of size 2" x 2" can be written as a linear combination of Pauli operators, i.e.
p=73c(Bs R)RP, (28)
PP
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where P, (P,) are Pauli operators acting on n qubits and formed of products of identities and o™ (o ) operators
only and where ¢ (P,, P,) are non-zero complex numbers. Given the matrix p, one can recover the coefficients
o(P,, P,) using the formula

(B P) = %Tr(PxPzp). 29)

In our case, a chain of o operators on path P, denoted by Xp, can be written as

Xp = S} x Z[Fp(?)]*ﬁ) (7). (30)

Given the form of Z;[Fp(?)]* | ?) <7|, we can write

Xp=Six Y c(®)P, (31)
P,eConn(P)

where P, are Pauli operators containing only identities and o* and where we write P, € Conn(P) in an abuse of
notation to signify that P, acts non-trivially only on the qubits in Conn(P). The coefficients c (P,) are given by

1

c(B) = 5l Conn(P)|

> (TIRIE) [Fp (DT, (32)
i

where |Conn(P)|is the number of edges in Conn(P). Chains of 0 * operators form valid string operators S%,

which create flux excitations at their endpoints. This clearly shows that any Pauli operator acting on the system

can be written in terms of string operators. Since any operator acting on the system can be decomposed as a

linear combination of Pauli operators, we find that the string operators are complete in the sense that any

operator can be expressed in terms of them.

4. The semion code

The tools we have developed in previous sections can be used to build a quantum error correction code using as
code space the ground space of the off-shell DS model, given by Hamiltonian (4). The information encoded is
topologically protected since we are using global degrees of freedom that cannot be affected by local errors.
Additionally, we perform quantum error correction using the DS model as a stabilizer code, where plaquette and
vertex operators are our stabilizers.

4.1. Logical operators

Recalling that a surface of genus g can be seen as the connected sum of g tori [37], we can define two pairs of anti-
commutating logical operators for every torus in the connected sum [38]. One pair consists of string operators
it and S, with V(H) any homologically non-trivial path along the vertical (horizontal) direction,while the
other pair consists of Sy, and Sy, Both pairs are made up of open non self-crossing nor self-overlapping
individual paths, as prescribed by theorem 2. Figure 6 illustrates two such pairs for a genus 1 torus.

4.2. Quantum error correction

The stabilizer operators, vertices and plaquette defined in equations (1) and (11), can be periodically measured to
detect any errors occurring in the system. Once the syndrome pattern is obtained, assuming a given noise model,
itis fed into a decoder. It outputs a recovery operation using the string operators developed in this work in order
to bring the system back to the encoded subspace, where the probability of applying a non-trivial logical
operation is minimized. While we leave the development of decoders specifically designed for the semion code
for future work, one could imagine adapting some of the various existing decoders developed for topological
codes [2,39-61].

Table 1 shows the probabilities of measuring a given flux configurations after applying a single 0™ on the
ground state for the three possible edge orientations shown in figure 7. Note that as equations (30) and (31)
suggest, the probabilities in table 1 do not depend of the phases used to initialize the F{,, function in algorithm 1.
More details giving a deeper understanding on the structure of the string operators S7; can be found in
appendix B.3.

A distinctive feature of the probability distributions in table 1 is that there is a directionality in the error
pattern. A o " error affecting a vertical edge (orientation (b)) is much more likely to leave flux excitations behind
than for the other two orientations. This is clearly due to the specific structure of the plaquette operators, and
could be used advantageously when dealing with asymmetric noise [62, 63]. Another major difference with the
toric code is the fact that chains of o ™ errors are likely to leave flux excitations along their path. This additional
information could be used by the decoder and may lead to a higher threshold value.

10
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Figure 6. A cartoon example of 2 sets of logical operators ona 1-torus. {S;/, S;/} = {Sy, Sg} = 0,while [S}, Sg] = [Sy, Si] = 0.
Arrows indicate identified boundaries.
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Figure 7. The three possible edge orientations on which the o* operator can be applied. Qubit 3 is affected in all cases, and may leave
flux excitations on the four surrounding plaquettes labeled by p, g, r ands. The probabilities of measuring a given flux pattern are
givenintable 1.

Table 1. The various probabilities of getting a given flux excitation
configuration after the application of the operator o* on a qubit, for the three
possible orientations. The plaquettes label correspond to the ones in figure 7.

Probability
(bys by by, b)) Orientation (a) Orientation (b) Orientation (c)
(0, 0, 0, 0) 9/16 1/16 9/16
(1,1, 0, 0) 1/16 1/16 1/16
(1,0,1, 0) 1/16 1/16 1/16
©, 1,1, 0) 1/16 9/16 1/16
(1,0,0, 1) 1/16 1/16 1/16
©,1,0,1) 1/16 1/16 1/16
0,0,1,1) 1/16 1/16 1/16
1L1,1,1) 1/16 1/16 1/16

5. Conclusions and outlook

One of the key features of the off-shell DS model developed here for error correction is that it is a non-CSS code
[64, 65]. This is not novel in the theory of quantum error correcting codes. In fact, the answer to the important
question of what is the minimal complete error correction code that is able to encode one logical qubit and
correct for an arbitrary error was precisely a non-CSS code of five qubits [64, 65]. This is consistent with the
quantum Hamming bound [32], and is in sharp contrast with the classical case where the solution is the
repetition code of three bits. However, what is peculiar of the off-shell DS code is that, to our knowledge, this is

11



10P Publishing

NewJ. Phys. 21 (2019) 053035 G Dauphinais et al

the first non-CSS topological quantum memory that being a stabilizer code, it is also a topological code
throughout the whole Hilbert space. In a sense, this was a missing link in the theory of topological quantum error
correction codes and we have filled this gap with the tools introduced in our work.

We notice that a previous study [33] attempted to construct a quantum error correction code using the DS
model as the starting point. The main difference with our work is that they construct a non-commuting
quantum correcting code, whereas we have succeeded in constructing an extension that belongs to the stabilizer
formalism. As a consequence of this, the whole error correction procedure of the off-shell DS code is topological.
On the contrary, the topological nature of the non-commuting code in [33] is unproven. Both constructions
share the feature of using non-Pauli operators to construct the basic string operators of the model.

The outcome of our work is a complete characterization of the error correction procedure for a quantum
memory based on a topological non-CSS stabilizer code. This is a major step for the reason explained above.
However, a fully-fledged quantum computer will demand more, namely, a universal gate set and a fault-tolerant
procedure to battle errors dynamically [66]. With the tools deployed here, it is conceivable that this goal will be
achieved elsewhere.

A new way of constructing quantum codes opens up with this work. The tools introduced here for models
like the DS based on Abelian lattice gauge theories can be generalized to other Levin—-Wen models [16, 67, 68],
like doubled Fibonacci models, or twisted versions of fracton models [69]. This is the subject of further study.
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Appendix A. Example of an open-string operator

Itis instructive to illustrate the workings of algorithm 1 to find string operators S in order to gain a more
intuitive understanding. Consider the very simple path P = {e}, consisting only of edge e shown in figure A1.
Any given configuration on the five edges included in Conn({e}) is represented by a bit string of length 5, for
which a 0 indicates the absence of a string, while a 1 indicates that it is occupied. One can also interpret the bit
string as a state in the computational basis, a 0 indicating a 41 eigenstate of the corresponding o %, while a 1
indicates a —1 eigenstate of o*. We compute the function Fj, so that S}, is a canonical string operator, i.e. it also
tulfills equation (21). Following algorithm 1, the configuration (0, 0, 0, 0, 0) is first chosen and we set

F{t}(O, 0, 0, 0, 0) = 1. Noting that B, contains the 4 plaquettes identified as p, g, rand s in figure A1, we find

the following values for F},:

0(0,0,0,0,0) =1, F(l,1,0,0,0) = —i,
a(1,0,1,1,0) = —i, F(0,0,0,1,1) = —i,
0(0,0,1,0,0) =1, Fg(l, 1,1,0,0) =i,
0(1,0,0,1,0) =i, F(0,0,1,1,1) =i,
00, 1,1,0,1) = —i, F(l,1,1,1,1) = —1,
0(0,1,1,1,0) = —i, F¢(1,0,0,0,1) =i,
0(0,1,0,0,1) =i, Fg(l,1,0,1,1) = —1,
0(0,1,0,1,0) =i, Fy(1,0,1,0,1) = —i.

Jies Res Rile>Riie s Rle> Rile > fiies Rle- |

Here we are not only computing the values for configuration class Cy,, (0), but also for configuration class Cy (&),
since these two are related by equation (21)and therefore algorithm 1 makes the assignment Fi.y (i, i, i3 @ 1, iy, i5) =
[Fie) (i1, 1, 135 iy 15)]%.

Choosing next the configuration (0, 0, 0, 0, 1) and setting F, (0, 0, 0, 0, 1) = 1, we can fix the following
values of Fi,, :

12
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Figure A1. The layout we consider to find a possible string operator S;" creating a pair of vertex excitations at v1 53 and v; 4 5. The red
edges correspond to the qubits in Conn(e), the ones on which S, acts non-trivially, with edge e corresponding to qubit 3. S, anti
commutes with both vertex operators Q,, ,, = 0{0303 and Q,; ,; = 03073 07%, while commuting with every other vertex operators as
well as every generalized plaquette operators.

Fiy(0,0,0,0,1) =1, F(0,0,0,1,0) =1,
Fe(1,1,0,0,1) = —i, Fg(,1,0,1,0) = —i,
F(0,0,1,0,1) =1, F(0,0,1,1,0) =1,
Fo(1,1,1,0,1) =i, Fg(,1,1,1,0) =1,
Fo(1,0, 1,1, 1) = =1, F(0, 1, 1,1, 1) = —1,
Fiy(0,1,1,0,0) =i, Fg(1,0,1,0,0) =i,
Fey(1,0,0,1,1) = —1, Fg(0,1,0, 1, 1) = —1,
Fiy(0,1,0,0,0) = —i, Fg(1,0,0,0,0) = —i.

Again, two class of configurations are fixed due to the fact that the string is canonical. We keep doing this till all

configuration classes have been fixed. Asa result, we obtain S;%,, which commutes with the four neighboring plaquette
operators By, B, B.and B, shown in figure A1, as well as all the other plaquette operators which are farther away.

Appendix B. Proofs regarding string operators produced by algorithm 1
In order to prove theorem 1, we begin by stating several technical results in the following section.
B.1. Useful technical lemmas

Lemma 1. Let {p|, p,, ..., p,} an ordered set of plaquettes and let {q,, q,, ..., q,,} be a permutation of it. For any
configuration z_", we have that 973(7, P Dy s D) = (97;(1_", dp Dy > G,)-

Proof. According to equation (24), we have that

<?@;’;1aa @ aP|By, .. B, li © 5/’)
(7,718, .. By |7 )
(T@,a% @ aP1Byg,) - Byl & &%)

= N N = 97’(%: PR qm): (Bl)
<1 DiL1a%By(p,) - Baipy i >

0p(i,s Py s D) =

where q(p;) denotes the permutation of plaquettes that exchange {p,, ..., p,} to {q, ..., q,,}, and where we used
the fact that the plaquette operators all commute. O

Lemma?2. Let {p|, p,, ..., p,,} and {q;, q,, ..., q;.} betwo different set of plaquettes in Bp such that
@, ar = @F_, 4% on thestring configuration of Conn(P). Then, for any configuration 7, we find that

13
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Op(7, Pyy Py vor D) = Op (s Gy Gy - G- (B2)

Proof. First notice that given the structure of the plaquette operators, /", &% = @%_, @% on Conn(P)
implies that [T, B b Hl;: 1 qu IT,_, By, = 1,where {n, ..., r,} areall the plaquettes outside of 5. We also have

that i, ar = (@1]?: 10%) @ (Dj-,a"), where the configurations are taken over the whole system. Using
those facts, we find

<?@;’;1an @ aP|B,, ..B, [[, By, HL B, II;_, Bili & 5/’>
<?@;":1ap,v|3pm...3pl T, B, IT, B, 1T, Br,|?>
<Z’@;’;1apf|1‘[f:1 B, 1L, B,,|§'>
(f@ran o &L, B(S)10) G1) T, BalF &)
(f@ranilT_, B.(S;D G IT, Bf7)
(1@ e @1 & T, B @) o )
(@ a0 o @ani[], B.li @ an)
<?@§:16ﬂj ® aﬂH’;:l qu_h‘-’ o a7>>
(F@f ., Byf7)
(Tsan & @ian X [T, B Xpli %)
(T@®fa1 @ @an[],_, Bli @,a0)
= 97’(?’ Qp -+ s (B3)

0p(i, ppy - D) =

X

973(?, Qp -5 Qi)

where we used the fact that Xp commutes with the plaquette operators B,, since the plaquettesin {n, ..., 1} are
notin Conn(P). Xp is the string of g, corresponding to the string operator defined on P. O

Lemma 3. The functions Fp constructed by algorithm 1 are well-defined.

Proof. First note that lemma 1 states that the order in which the plaquettes {p,, ..., p,} appear in a specific subset
of Bp and the order into which the subsets are chosen do not affect its value.

Next, we show that if there are two different sets of plaquettes {p,, ..., p,} C Bpand{q, ..., q,} C Bpsuch
thata?” @ ... & ab = a4 @ ... & a%, whereitis understood that the configurations are equal on Conn(P) (as
opposed to the whole lattice), then algorithm 1 ensures that Fp (z_" Gaha..pak)="Fp (; @ ah P ... B adm),

for any configurations 7 (and for configuration i @ &7 as well). This is a simple consequence of lemma B2, which
tellsusthat p (i, p;> ..., p,) = 0p(i, gy ..., q),and of the way that the Fp functions are built;
Fp(i @ &P @© ... @ &) =0p(i, py, ..., p,) Fp(i)
= GP(?> qp LR qk)F'P(?)
=Fp(i ® &% @ ... D a%).

O

Lemma 4. Let Fp be a function determined by algorithm 1. Then Fp simultaneously satisfies all the constraints (22).

Proof. Consider an arbitrary configuration i for which the value of Fp (i) has been determined using algorithm 1.
Two possible cases need to be analyzed:

1.If 7 is one of the configuration picked to set an unknown value of Fp (i), then we find that for any
plaquette p,

14
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o aP
Fp(i & ar) — @m?), (B4)
p 1

by definition of Op.
2.1f i is not one of the configurations picked, then there is another configuration i’ which was picked as a

class representative and a set of plaquettes {p,, ..., p,,} C Bp such thati = i' & @M & ... ® k. Forany
plaquette p, according to algorithm 1, we find that

F’p(? D 541’) _ G’P(?/’ pp (] Pm’ P)

= = (B5)
Fp(i) ZICAN N
By using definition (24), we find
Op("s py s B D) by’ ® @M @ @ al @ GT) by D aP)
O’ py oo py) by @AM © L @dt) ()
We thus have that in both cases, all the constraints (22) are satisfied. O

Lemma 5. (Canonical strings) Fp(i & &F) = [Fp (i )* for any string configuration i if and only ifISEP = L

Proof. Explicit calculation of [S3 ? gives

[s;]zz(H DY Fp(?)|?><?|]

i€P String conf.7

X(H oy, FP(?/)|?/><?/|)

i'eP String conf.i’

= Y B@li ®ah) (i @a”

String conf.i
x Y Fp(nlin) (i
String conf.i’
= > Fp(i @ @P)Fp()Ii)(il.
String conf.i

Clearly, Fp G ®aP) = [Fp (I implies that [S]*> = 1, since Fp (i)isa complex number lying on the unit
circle. On the other hand, [S71? = 1implies that Fp(i )Fp(i & &7) = 1, which means that
Fp (; ® af) = [Fp (z_")]*, once again because Fp (;) is a complex number lying on the unit circle. O

Lemma 6. (Canonical strings) [S417 = Sj ifand onlyif Fp(i & &%) = [Fp(i)]* for any configuration i .

Proof. Explicit calculation of [S}] gives
[S51' = > [FpMPFIN (] oF
String conf.i i€P
2
S FOF|IT o 1D I o
String conf.7 jeP icP

=1l o7 > [FpOIFli ® ") (i ®a”|,

icP String conf.i

Suppose that [S5] = S7. In that case, itis clear that [Fp (i )]* = Fp(i & @”).
Itis also clear that [Fp (i )] = Fp(i @ &”)implies that [SF]" = S7. O

Lemma 7. (Canonical strings) Suppose that for any set of plaquettes { p,, p,, ..., p,} C Bp and for astring configuration
i, wehavethat Fp(i ® G2 @© ... ® &) = 0p(i, pyy .. p,)Fp()and Fp(i @ @GP @ @0 & ... @ ah) =
Op(i @ @7, ppy .. p,)Fp(i ® &P). I Fp(i @ @P) = [Fp(i)T, then for any set of plaquettes {qy, ..., q,} C Bp,
WehavethatFp(? oaP@are .. ¢ak = [Fp(l_" Dah d ..o an*.
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Proof. By hypothesis, we have that
Fp(i @ a%) = 0p(i, q)Fp(i), (B6)
aswell as
Fp(i @ aP @ a%) = [0p(7, )1 'Fp(i & @"), (B7)

where we took advantage of the fact that 973(? @ a’, q) = [0p (1_", g)1', as s clear from equation (21).
Using the fact that Fp (7 ® aPf) = [Fp(?)]* in equation (B6), we find

[Fp( ® aP)* =[0p(i, g)] 'Fp(i ® ah)
_ Fp(i @ aP @ an)

— Fp(i @ am). (BS)
Fp(i ® ")
Since Fp lies on the unit circle, we find that
Fp(i ® @7 @ anFp(i © am) = 1, (B9)
which in turn implies that
Fp(i @ &% & an) = [Fp(i & an)J*. (B10)
The same reasoning can be recursively employed to show that
FrG®aP ®and..da%k) = [Fp(i ® at & ... ® a%)]. (B11)
(]

Lemma 8. (Canonical strings) Let Fp be a function determined by algorithm 1. If the phases e'¢ are assigned to the
class representatives i in such a way that Fp (i) = [Fp(i ® &P)I*, then Fp simultaneously satisfies all the
constraints in equation (21).

Proof. As it was done before, two possible cases are considered.
1.1f 7 is one of the configuration picked as a class representative to set the value of Fp (i), then we trivially
have that Fp(i & &%) = [Fp(i)I*.

2.1f 7 is not one of the configurations picked, then once again we find that i=1 O ah P ... D abk, as
mentioned above. We find

Fp(i @ @P) = Fp(i' @ &% @ &P & ...0ak). (B12)

Using algorithm 1, we find that
m
Ep(i'@a%) = 0p(i"', pps s 0,) Fp (i),

j=1

Fp(i' ® aP@aP) = 0p(i' ® &%, py, ..., p,) FA(" © @P).
j=1

Since all the conditions of lemma 7 are satisfied, we have that

Fp(i' ®aP ® @l @ ... ® ak) = [Fp(i' @ a2 @ ... ® aP)]* = [Fp(i)*. (B13)

B.2. Proof of theorem 1
Given all the previous technical results, it is straightforward to give the proof of theorem 1, which we restate here
for ease of reading:

Theorem 1. Let P be a path. Any function Fp defined by algorithm 1 is such that S5 is a string operator.
Furthermore, it is possible to choose the phases €' ") such that the string operator is canonical.
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Proof. First note that according to lemma 3, Fp is well-defined. By construction, Fp has non-trivial support only
in Conn(P),thus any operator S built from it satisfies condition (ii). Furthermore,lemma 4 states that S5
satisfies conditions (22). We thus have that condition (i) is satisfied as well,proving that S3 is a string operator.

In order to show that it is always possible to choose the phases ¢i¢(i )’s so that S3 is canonical,we must
consider two cases,depending on whether P is open or close.
Suppose first that the path P is open. In that case,we have that configurations i and i @ &7 areintwo

— — .
distinct configuration classes. Given the class representative i for which weset Fp(i ) = e'?,we simply pick

class representative i ¢ @ asrepresentative for its corresponding class, and set Fp(? D Em) =e 7,

If P is close, then we find that iandi @ a” belong to the same class of configurations, since there exists a
set of plaquettes {p,, ..., p,} € Bpsuch thaton Conn(P), i@al=1i®dnh® ..o dk Setting
Fp(i) = [0p(i, py, ..., p,)] 2, wefind that Fp(i & @P) = [Fpl*.

In both cases, we can use lemma 8 to find that all constraints of equation (21) are fulfilled and therefore,
conditions (iii) and (iv) are also satisfied. O

B.3. Consistency of the probability of measuring an excitation configuration

The decomposition of Xp in terms of string operators given by equation (31) is not unique given that in
algorithm 1, we are free to choose different initial phases for the various class representatives. However, we show
here that the probabilities associated with finding a given excitation pattern after the application Xp are
insensitive to those initial phases. For simplicity, we assume that P is a single non-overlapping and non-crossing
open path. The arguments below generalize in a straightforward manner to the case where we need to consider
P = Pi#...#P,, for some m > 1.First note that

NG =] %(1 +(— 1)), (B14)

1

wherei = (au, ..., a,,). We can thus write Fp @) |;) (?l =>pcp ()P, where P, are all the possible Pauli
operators acting on the qubits in Conn(P) and composed of o “ and identities only, and where cp, (i) are complex
coefficients given by equation (B14) multiplied by Fp (7). Given Fp differing of Fp by the choice of phases
associated with the different class representatives, we have that Fp (?) i) <7| =3 pcp (?) ei*’(T)}’z, where ;
is the representative of the configuration class into which i belongs, and go(f) is the phase difference used
between Fp and Fp to initialize algorithm 1.

We define the orthonormal basis {|L, C)} where Clabels the vertex and flux excitations configuration while
Lisalabel for the 4% degenerate states corresponding to a given configuration. The probability of the transition
IL, C) — |L/, C’) caused by the application of Xp is given by

—- L7
P(L, C) — L, O =L, CISp > >0 Y ep(ide ¥UDRIL, C)F
7 ecH(i B
— - . = -,
=> > D (e (i el e, (B15)
77, TECP(T) Ps.t.|(L',C'|SHR|L,C) |=1

/e +p/ _
Freep(7y PotIISCISHPILE) =1

Clearly, P,and P, share the same endpoints and belong to the same homological class, i.e. P, P, form a trivial
closed loop. Given the decomposition in equation (B14), we find that for j = j’

cp(i)ep/ (i) = 0. (B16)
Bs.t|(L,C'ISpRIL,C) =1
Pls.t.|{L’,C'|SFPJ|L,C) |=1

To see this, we rewrite equation (B16) as

S ch@)enq, (i, (B17)

Pt (L,CISPRIL,C) =1 Q.C{Q,)

where {Q, } denotes the set of all subsets of products of charge operators associated with the vertices in path P.
Noting that since i and i’ belongs to different configuration classes, there exists a vertex v’ such that cp (i/) =
—cp.q, (i"). Using this last fact, we get

3 S lepDepa. () + i epa., N (B18)

Bst|{L,C'ISERILC) =1 Q: S {Qu}\ Qv

which clearly equals 0.
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The probability transition is thus given by

P(L, C) =L, C)H=>" > > 3" ey (D) (L, CIR.PL, C), (B19)
i ii'eCp(j) st {LLCRILC)|=1
Pls.t.|(L',C'|P}|L,C)|=1

which is independent of the phases ei* (),

Appendix C. Topological properties of strings operators
Before presenting various technical results, we begin by precisely defining what we mean by crossing paths.

Definition 1. Letapath P = {e}, e, ..., e,} be asequence of edges such that edge e; connects vertices v;_; to v;.
If vo = v, we say that the path P is closed; otherwise itis open. If thereexists 0 < i < nand j = 1,0 <j < n
such that v; = v; in the sequence of vertices it contains, vp = {vy, vy, ..., 1.}, then P is said to be self-crossing. If
there exists a plaquette containing two or more vertices of vp that cannot form a single consecutive sequence,
then path P is said to be self-overlapping. Note that the notions of self-overlapping and self-crossing do not
imply each other (see figure 5).

Definition 2. Consider two paths P = {¢/, ..., e }and Q = {e2, ..., enQ/} connecting vertices (v » ..., v }
and {v2, ..., v} respectively. Consider a sequence of edges in common of both paths 7 and Q, and consider
the largest (possibly empty) such sequence (supposing for now that it is unique),

Epo={ef = ejQ, ey = e?} (with both se-quences ordered in increasing order of simplicity, i.e. i/ > iand
j' > j) connecting the common vertices in P and Q, denoted by Ap o = {1, = vj% b Vi = VJQ}. Consider
the following properties:

(i) (inthe case where both paths open) none of the vertices vgj JvP

no

v&and v arein Ap o,
(ii) (inthe case where one path is open (P), the other is closed (Q) ) none of the vertices VOP and Vf arein Ap o,

(iii) both pairs of edges (ez » e]-% »and (eﬁr » ejg ", 1) have the same relative orientation, i.e. clockwise or counter-
clockwise.

If condition (i) is satisfied, we say that paths 7P and Q cross over the edges Ep, o. Note that for the case of two
closed paths, we always say that they cross. If condition (ii) is not satisfied (including the case where Ep ¢ is the
empty set), we say that P and Q cross 0 times, otherwise we say that paths P and Q cross once. Finally, if there is
more than one pair of sequences Ej, o and A, o where i runs from 1 through 7 which all satisfy conditions (i),
we say that paths P and Q cross. For all the regions E;;’Q, e E;DQ and A;‘)’Q, . A;g”,’g for which (ii) is satisfied,
with m’ < m, we say that paths PP and Q cross over the relevant region, and we additionally say that paths P
and Q cross m’ times. See figure C1 for explicit examples.

Note that in the previous definition, paths P and Q can be formed of smaller paths, i.e. P = Py#...#F, and
Q = Q#...#Q,,. Notice that when P and Q cross, we may define a reference frame such that one of the paths
plays the role of the horizontal and the other the vertical. In the following, we consider that path P is the
horizontal and Q the vertical. ;

Itis useful to define B%left ={ plleﬁ, . p’fﬁ}, the set of plaquettes in B such that G @ ..oak
when restricted to Conn(P) and containing the left-most plaquette of Bp. In a complementary way, we define
B %right = Bp\B %IEﬁ. In a similar way, Bg’up and BS’ down a1 be defined for a suitable path Q. The
nomenclature of left versus right is an arbitrary choice (just as is the case for up versus down).

Note that we implicitly used the fact that paths P and Q cross, are open, and that they are not self-
overlapping nor self-crossing in the above definition. If it were not the case, then it would not be possible to find

aset of plaquettes such that the associated configuration corresponds to the configuration of the other path on its
connected region.

Furthermore, for a general path P = P,#...#F), with every path {P;} open, not self-crossing nor self-
overlapping, but for which it is not necessarily true for the whole path P, and for a path Q such that P and Q are
crossing, it is always possible to similarly define B %le& wigh) for i € {1, ..., m}.

Consider two crossing paths P = Pi#...#F,, and Q = Q#...# Q, such that every individual path P; and
Q;is open, is not self-crossing nor self-overlapping, and we are interested in computing the commutation
relations between Sz, ,p and Sg ;4 ¢ . Explicit calculations give
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(d)

Figure C1. Example of two open paths P and Q which, according to criteria (i) of definition 2 are crossing over the edge

Epo={ef = 2}(a), as well as paths P and Q' which are not crossing (b), since path Q contains vertex L. The two open paths P
and Q cross 0 times in (c), according to criteria (ii), while they cross once in (d). The arrows indicate the relative orientation among the
strings.

m i—1 n i'—1
St amSop.na, = 11 of IT oF >0 11 FP{I' @ af @apf'] I1 FQi'[i @ a< |li)(il, (C1)
=1

i€eP j€Q string conf.i i=1 i'=1 j'=1

where the product over the small strings are taken in the reverse order, and where the string configurations are
considered over the whole system.
Similarly computing the product of the string operators in the reverse order, we get

m i—1 n i'—1
Sou.40Spp.am =11 o [T o7 >0 11 FP,-[i @&Pf‘] I1 FQi/[i ® a” @&Qf’]liﬂil- (€2)

ieP j€Q string conf.i i=1 i'=1 j'=1

Considering equations (C1) and (C2), we define the quantity
m - = i1 oD n i i'—1 50,

1", Fr(i @ a2@iaR) [T, Fo(i B)—ia®)
m ? ANi—1 =P n P = i1 50

[T, Fr(f @=a7) T, Fo.( & a” @jia%)

which gives the commutation relations between Sz, ,p and S, 4 o .The quantity defined in equation (C3)

Rp Pttt 0,(0) = (C3)

is independent on the specific string configuration 7 , which is shown in lemmas 9 and 10, and that it does not
depend on the specific way that the paths 7 and Q are partitioned in the smaller paths {P;} and { Q;}, aslongas
those are not self-crossing nor self-overlapping. It can also be shown that if paths P and Q are transformed to
paths P’ and Q' using a series of elongations, reductions and valid deformations such that none of the
elementary step makes a path crossing an endpoint of the other path, then we find Rp o = Ry, o. Thisis done
inlemmas 11 through 15 as well as in corollary 1. If paths P and Q cross an odd number of times, one can then
proceed to transforms paths P and Q to minimal configurations P, and Qi such that Rp g = Ry, 0,
(see figure C4). Explicitly computing this last quantity for a given string configuration yields Rp o = —1.1f, on
the other hand, P and Q cross an even number of times, one can consider the deformed paths 7y and Q, such
that Rp g = Rp, o, and such that P, and Q supports are disjoint, showing that Rp o = + 1. Remarkably, all
those previous results are essentially due to the fact that the plaquette operators commute and square to the
identity.

C.1. Useful technical lemmas
Lemmas mentioned before are introduced here. They are necessary to show theorem 2.
Lemma9.Let{pli, ...,p;l,-} = B%“" and {qu, ooy qr{j} = Bg;bj with a; = left or a; = right and b; = up or

bj = down, asitisshown in figure C2. Then, Rop,s .47, 04 .4 Qn(f) can be written as:

o <?eB§:1aR€B$;1aPi|H?:1 Byl7 @),a"
R apwap 0, =1 57— 1 P -
=1 <1 @};laPJ @?:1541)411]»:1 Bp]f|l @};1527)’
. (T@Ra @i, 5l @ia)
% H - i i i ' d i '
S (T@a @i, B @)

Proof. We begin by considering the quantity

~——

0 T~

(C4H
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P,up
BQ

Do : Bg ,right

Figure C2. An example of the structure of string operators S7 and S& on crossing paths P and Q, shown in dark blue and red,
respectively. The various sets of plaquettes 3 %leﬁ right) and Bg’ up (down)
both paths P and Q are overlapping is circled by a dashed line.

are presented in various matching colors. The edge over which

Fp(l ©® OéQ @17115(7))

, (C5)
F”Pi(l @; 115[73)
which appears in equation (C3). Using the definition of B Q_’“" ,we find
Fn(? ® a< @j;lldpf) Fp(i @] ah @ 11627’) €8

Fr (7 @-1a7) Fr (7 ©i-167)
Using the structure of the Fp, as defined by algorithm 1, we find that there exists a configuration i’andaset

of plaquettes {p/, ..., p/ } (possibly empty) such that i @ LGP = @;’il &% when restricted to Conn(P).
We can thus write

F’P(l 52 ag@lfla ) _ 977{(?/’p1l" 2y f’pl”"’p. )
Fpi(i @3 115[7)) Q'P,-(l > pl) -~->pm/)

where we made use of equation (24). Note that using lemma 2, we are free to choose the values for a; = left/right
and b; = up/down, as we please. This will turn out to be very useful later on.
Using equation (24), we find

F;l(? @ aQ @i.;llaﬂ) <?€Bi':1apj @Zilapill_[";l Bp]f|?@3':1&7)]>
+(7 -1 3P - .
FPI(’ Bi-id ) < EBJ lo‘P@k 10‘pk|H p|’@11 1% >

=0p(i, pls s P} ) (C7)

(C8)
A similar reasoning holding for the quantity
-1
Fg, ( @ LA )
(C9)
FQ G eaP EB 139
this completes the proof. O

The precedent lemma stipulates that Rp o(i ) can be written in terms of the phases acquired by the product
of the plaquette operators of the plaquettes contained in 3% and Bg’b, on the appropriate string configurations.

Lemma 10. The quantity Rp4 47,04 .4 Q”(f) is independent of the string configuration i.

Proof. Consider an arbitrary edge e and its associated canonical string operator S *, which we can always find
according to theorem 1. Further let {pli, . p;j,v} = B%”" and {qu, o q) 1} = "% with a; = left or a; = right
and b; = up or b; = down, and which we are always free to choose accordmg to lemma 2. Usinglemma 9 and

the fact that S, is canonical and therefore squares to one, the quantity Rps 47,0 # ---#Qm(?) is given by
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2N =P R N (] 1T AN
o | (7@ i arits! TIT, 8,517 @)e,”

R ammo40,) =[] —— —
—1 =P 'S opliot o7 1=
< 187 DI 8|S, H;’:1 BySeli D) 1apj>
Yo

i=1

, < o @i TT), B, ST @ik >
% H + N i TS W +17 D
=1 <l @;ZIO&QJ @Z:laqklse Hj:l Bq]f'se |l @; >
@B @ afln’il B @16 o )
@J 1Olp @k 1apk@a|1_[ i=1 PII 6911 115;7’1@ e>

i=1

i

X
~:3

Il
—

<?e9§;‘1a9f Ot & ], B Bha® e ae>
<_'EB] a9 EBk 8% @ ”‘ZIH B, |z i @_,a% @ ae>

E@G @_,a" @k 8k @ a )F(z @-.a")
EG @ La@PE@G @ ah @k lOZpk @ a°)
EG @ 189 @k loﬂk @ a)EG 69 1a9)

X
Az§

Il
—

< I1 (C10)
i1 | EG @jzlagf)ﬁ}(z @jzlagi @kzloﬂk &) of)
Carefully looking at the right-hand side of the equality, we find that
Rpt ot Pttt 0, (1) = Rpgtmuoit 0 (i ® @)
{1 EG @ ,a" @ ,an @ af)F(?eB; &P)
X
i=1 5(7@; @M EG @ZlaP @l at @ a)
n i@_ia% a% @ ae EG @'_}a%
<11 E@ Di_, a VEG ) C1D)

Il
—

EG @; 1GOEG @ ,a9 ®r 1Oéqk ®a |

Note that it is always possible to choose the a;’s and the b;’s so that, in case of need, we can add some
additional plaquettes in B% Q’“*' and Bg’ b respectively without affecting Rp, 475, 0,4 .. # Qn(f), in order to have

thaton Conn({e}), wefind G& @ ... ® &P, = a2 foranyi,and a4 & ... @ a4 = a” for anyj. Using this, we
find

ﬁ EG @j_,a" @l 6% © a9)EG @ ,67)
S\ BC@ZIaMEG @Ziah @l an @ a9

EG @ Z1a% @k % @ a)E({ @Zla)
< 1
=1 | B(@ GBJ @) E( @i, @ 10ﬂk & a)
_E(@d’ealearkied) E( @ &P @ a9E@) _, C12)
EMDEG @ a @ a) “RGoadRGodod o)
wherewe used that E(i’ & a°) = [E(i /)]~ for any string configuration i’,since S;}is canonical. O

Lemma1l. Let P = Pi#...#Pi#H P F .. #Pnand Q = Q1#..# Q,, be two crossing paths. For any
ie{l,....,m — 1}, wedenote P, = {elp', e el%l}’ we define ’P?’ = {elp’, . elgl’ elp‘“},

P = {e|77§'; e e’ .., e|77§’;| },and similarly for P; and ~P,, this time removing the first or last edge, depending on
the case. If the paths P and *P, . | are not self-overlapping nor self-crossing, we have that
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Rpitt Pt Pt AP Qo # Qn = RP AP Pyt P Qi Qs
= Rt PT#Prast o A P Qi Qs (C13)

Proof. Consider the edge elpx“ and the corresponding canonical string operator, written as S,”. We then have that

m <i @)1 DL arIS P [T, ByIS Pl @gzlapj>
R _ ‘
P AP e Tt 1 E TN 2P M 2 1o m' o1 1T N1 =P
- Dmdh D= anlls ]x”Hszl Bp}-’[se Pen]i @@jz,a”
H i-lg by o’ 7 i—1=20.
. (T@Rae @A, B @iia%)
X _ .
H T a2@ anl" TN =0,
- ! @j:la f®k:1a lej:I Bq]_ﬂ|l @jzla i

(C14)

We thus get

Rt PPt APy Qi Oy = TP AP H Py APy Qi O,
EG @L,a"EG @iaP @y an @ a°)

x+1

= S P (T P, o, Sen
EG @i, aMEG @iah @i, ak @ a)

(C15)

As in the reasoning of the proof of lemma 10, we used our freedom to add some plaquettes to B %“" and
B %’f’;*‘, so that we have 3 %f” cB %“x and B %’{fll cB %’_jﬁ*‘. Additionally, when can choose them such that

x+1 x+1

when restricted to Conn({e}), we have that @km; ak = @, ak = Q.Wethusfind that

RPitt e Pt Pt P Qi e O = Pt PEf Py 4 e Pos Qi F O (Cl16)

A similar reasoning shows that

RPitt e Pt Prs st Prs Qi ot O = P Pt Pey ot Po Qi # O (C17)

Corollary 1. Let P = Pi#..#F,and Q = OQ1#..# Q,, betwo crossing paths. Foranyi € {1, ...,n — 1}, we
have that

RPst AP Qi ot Qi Qi # QO = RP B Qi e O Qi # . H D
= Rpitt . # P Qutt Qi #7 Qir#t o # Qe (C18)

Proof. To see that equation (C18) holds, it suffices to use the same reasoning than in lemma 11, this time for the
appropriate path Q,. O

Given the fact that the quantity Rp 4 475, 0,4..# 0, is insensitive to the specific decomposition of the paths
P and Q as long as they are composed of simple paths which are not self-crossing nor self-overlapping, from
now on we will simply write Rp, .

Lemma 12. Consider the paths P, P' = Py#tP#Pur1, Qand Q' = Qo# Q# Q.. 1, such that P and Q are
crossing, and such that Py, B+ do not contain edges in Conn(Q"), aswell as Qq, Q,,1 do not contain edges in
Conn(P'). Then, we have that

Rpo=Rp,g- (C19)

Proof. We begin by considering R p, 4, g, given by
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p|’@1 a”

Rpuro H
o (T@iban @i,

p|l

)
,hp>

. (TORa L, B, @lad)

x]1

. —— . (C20)
i=1 <?@§:lagj@z’:1aq;|n’;l Bq]f|7@’j:1agf>

Inserting [Sf;:) 1? at various appropriate locations, with S;SO a canonical string operator, and rearranging the terms,
we find

i® a%@ 1o Dy 104pk|H
ioah@ah GBZ”L@PZIHT; Byli © @ @g;llaﬂ’f>
i l 19 @k 104qk|3730H’? aQ>
D a9 DI 10ﬂk|57>0H B 57?“@1 IO‘QJ>
Po@k 104pk|57301_[ By S7)0|1 & "7’0>

- 0 .0 m -
<z@ﬁﬂwnﬁlmw>

Byl © a" @)

B i S’Pnll

(C21)

Using the structure of Sf;; ,we find that

-

o (7o @@,

Bp;ﬁ @ &P @i, a"
Regre=]] P
= a» @,

i a%@;ll p|l ® apo@’ 1—»7>]>
Q.

X

n < @ aP @izia% @i 1oﬂk|H B, |z @ ah@iia ;>
i=1 < @a%@ a9 @k 1Oﬂk|H quflf@ap“@§:1ag">

FPO( DL @ AP‘))FPO(?) .
X . Fp,(i ® a™)Fp,

— — — (C22)
Fp,(i @ a2 @]_,a% @ a™)Fp,(i © a<)

id mo 0
P @ar|.
k=1

Since we have that Py N Conn(Q) = & and since paths P and Q are crossing, we find that for any string
configuration i/, Fp,(i’ & a9) = Fp,(i’). We thus conclude that

0
abk|=1.

1

(C23)

B (7 L1 ® &%) () ]
FPo(i S2) aPO)FPU

Fpo(? @ ae @ ,aq @ a?’o)Fpo(T @ a9) k

D=

1

Furthermore, using lemma 10, we see that

Byli @ apo@jzlaﬂ>
Byli @ a™ @i “7’>

B, |z @ aPh @iZa%

<? @ aP @i_,aP GB?;laPQHiI
1 < @ aP @iz} P ey 10‘p‘|H
o ah@-lad @g‘zlaqﬂﬂ
i ®ah@,a% @ ail],

—

1

= Rpo. (C24)

i=1

xﬁé

qui|i @ ah @}:1a9f>
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1
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Figure C3. This illustration shows a specific example on path deformation. Three distinct paths (Pg,, P3,, P3,},indarkred)are
created by applying a plaquette p (in dark blue) to the original path PP(dark red). Py, Pip,» Pip; are individual paths which give the
parts of path P that overlaps with plaquette p. P}, " P£b5 , P;b(’ are the individual paths which complete plaquette p and are contained
in the newly formed paths.

A similar reasoning allows one to add the remaining paths 7, ., Q¢ and 9,1, to finally find that
Rp,o = Rp,o. (C25)

O

Lemma 13. Let P = Pi#..# B, and Q = Q1#...# Q,, betwo crossing paths. Assume further that path P is not
self-crossing. Consider a set of distinct paths {Pf;} differing from path P by a plaquettep, i.e. &7 = @y a¥h @ ar,
with the plaquette p not containing the vertices at the endpoint of path Q and such that every Pg is composed of non
self-overlapping nor self-crossing individual open paths. Then we havethat Rp,g = [1; Rps 0.

Proof. First notice that since paths P and Q cross, we have that paths Pg and Q also cross, since the set of paths
{Pf;} and P differs only by a plaquette, which cannot change its endpoints, and since the plaquette p does not
contain the endpoints of path Q.

We can decompose the path P, of the plaquette in a series of small paths Py, #...# Py, with k < 6 which are
not self-overlapping nor self-crossing. Furthermore, using lemma 11, we can assume without loss of generality
that the parts of path P that overlap with plaquette p are given by individuals paths P;,, ..., P;,, while the rest of
the plaquette is given by individual paths 73/h,+ PR ng (see figure C3). Note that the various individual paths
Piyp o> Py, (as well as 79,/-14[“, s P;hk )need not be adjacent to each other. We note that in order for {Pg} to
contain more than one path, the path P must have at least two different sequences of individual paths in
{Pi, ---» Pi,} such that they are separated by some paths in {Pﬁml, o ’P,/-bk }. Given the structure of a plaquette
and of the connected region of a path, and using the fact that P is not self-crossing, we find that the resulting set
of paths { P} is such that any path in it does not contain any edge which is in the connected regions of the
other ones.

For convenience, we denote the newly formed paths P = Ps 1#...#Pj, 15, and the corresponding paths
PLH peen Pik thatarein Pg as {Ps,i g e Ps,i _31,}, appearing in order. Note that I’ < k — [, and its dependance
on Jhasbeen omitted for the sake of clarity.

We begin by considering R 7§ which is given by

NG =P P mt FIT AN =P
m <’ @_,a" @kmzlams;[i]nj:l 1'31,]*'[5;5[1']]I |i @3‘:10ﬁ>
Rro=]1 -
i1 (Tay-laP ey abls L St T a-lan
i Djoia" D, ak| P[i—l]szl pj’[ il i @87
2 N—1 20 N =g n' > Ni—1 20
" <z @;:110491 @Z:I‘)‘qk|Bp(Hj:1 quin)ll @’]-:110491>
< [1

. - i 0. i, i n' - i 0.
=1 <1 D18 Di-a%iBy([[,_, BBy @}:1a91>

> (C26)
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where we have defined

1 for i< ip,
+ + . . . .
Siu = S'pibl ...Spibj for 1, <i<ip,,j<I (C27)
Sh .S for i> iy,

i T iy

and where B,, is the plaquette operator associated to plaquette p. We thus get

<;@1 j=1 a ]@k lapkln pll j=1 5}7)1'>

by oo i) J¢lipp - g}
Rro= ]I
i=1 -
. . i—1 'P 1 =P,
i {ip), ooy iy} 1 @1 j=1 @k laPk|H p |l j=1 o
by oo i) ¢ lipp - g}

1

1 1—’Qj®k laqk@aP|H B Bp|l® 1OZQ>

104@1 @k 10ﬂk & ap|H Bq_"Bpﬁ@;:lan

xﬁg

! R j

i=1

b,(i ® a”
;"(l ea) (C28)
by(i ®a” ® a9

where we have implicitly used our freedom in choosing the sets of plaquettes B %”"’ , Bg;_b’ and of adding
plaquettes if necessary without affecting the value of Rp, g in order to have that on Conn(7P;, ), we have that

@kmle ab = a2 for anyi € {1, ...,m}andforany j € {1, ..., I}, and where we also have modified the set of
. P b,
plaquettes Bg’ihf so that on Conn(P,), @j_, &% = a” forany j € {1, ..., n} and such that Ungf’bd” =
P,b;
BEY U (p).
We next introduce the various individual paths 73;7 y oo P;b and rearrange the terms in an appropriate
1+1 k

order so as to explicitly make appear the various PP%’s. Note that in order to do so, we used the fact that the
various paths do not have support on the other path’s connected regions. We get

m’ <?@§:1apg’j@ Can |37>P[11H -1 B Syl 1 D 8[Pg’j>
R’P,Q:H H 1P 1

g =1 <l @3_15673 ]Gak lapk ISpP[ 1]1_[ B ! 73"[1 1]] Il Ga11716[7) >
<7€Bi-‘a9f@zi‘laqi"”ln Bli @) aQ>

< @] 1agj@k 1aqk |H d’|l 104Q]>

8

n
<1 |11
153 i=1

P i nd N
|11 Fp(f@ @ @a°@1a™)) 4G e ah) (C29)
1 Fp (T @a”@l(at)  |b( ed” e a9’
7
where we have defined
1 fori < ig,
+ + . . . .
S;‘Slil =35p,i, ...S%idj forig <i<ig, ,j<l (C30)
S;ﬁidl S;xi’iﬁz fOri 2 iﬁl”
B,i > ‘>‘ ). — ,PA'.i’b(,i
and where we have {pf”} = B%flf L {gP) = By
Under close inspection, it thus becomes clear that
e Fp, (T @d” 0 al@ia™)| G ea”
“( : ) p( ) (C31)

R’P,Q = H prg X H
B

1 B, (feaP@lla™) b @a” o ad)
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We first notice that since all the paths Pg and P cross with path Q, we can define B% ={ Pop -+ Pg,a}’ a

set of plaquettes in Bp, such that on Conn(Py), we have that @?_, dfoi = G<. Using the same reasoningas in
lemma 9, we find that

(G eah) (i@ a” @ ami[]_, By li @ 7)
b ®d"©ad) (iedfeah@Lanl] Byl @a” e adh)

(C32)

On the other hand, we find that
K (i@ aP @ are @L,a [}, By, |i & a” @L,a )
El Fp, (T @ aP@{am) o (7 @ a” @Lare @@ [, By, i @ 6”@l a™)
(i@ aP o ah @ aril]]]_ By, li @ a7 @ a7)
Fom@ranill, mfod)

(C33)

Putting equations (C31)—(C33) together, we conclude that
Rpo = H Rpe. (C34)
ﬂ

To finally conclude the proof, we remark that according to lemma 11 we are free to modify the composition in
terms of individual paths of the various { P}}’s aslong as the their individual paths remain non self-overlapping
nor self-crossing. O

Lemma 14. Let P and Q be two crossing paths such that each of them is made of simple non self-overlapping nor self-
crossing open paths, and such that ‘P is not self-crossing. If they cross an even number of times, then Rp g = 1.

Proof. The idea of the proof is to deform the path P using the results of lemma 13, as well as path Q by some
elongation and reductions using lemma 12, in order to get a set of paths {P3} and path Q' such that
Rp,o = I3 Rp,qandsuch that all of them are outside of Conn(Q'), thus implying that Rp, o = 1.

We first note that if P and Q do not have any edges in common, then they trivially commute, since by
supposition they are crossing each other. This implies that Rp o = 1.

Consider the case where P and Q have some edges in common. Suppose first that P and Q have a single
contiguous set of common edges, £. In that case, the path P can be sequentially deformed along the set of
contiguous plaquettes in Conn(Q) containing the edges in £ as well as the two edges in P\ £ sharing vertices
with the edges in £ in order to give a new sets of paths {Ps}. Note that since P and Q cross 0 times, we can
assume that none of the paths in {P3} contains edges in Conn( Q). Ifitis not the case, then we can use lemma 12
to first find a shorter path @' such that Rp o = Rp, o and for which it is true. By suitably choosing a
decomposition of those plaquettes such that they are non self-overlapping nor self-crossing, we can use
lemma 13, to find that Rp o = [[3 Rp,0 = 1.

Suppose next that P and Q have two or more different contiguous sets of common edges { £;}. In that case,
we can deform P by a subset of plaquettes in By so as to form a single contiguous set of common edges £ such
that £ U 6€ D |Ji€:, where §€ denotes the first and last edges in Q which are also in £, and such that all newly
formed paths {P3} cross Q, where we have again chosen a suitable decomposition of the paths along the
plaquettes. Again using lemma 13 and considering a shortened path Q' using lemma 12 if necessary, we find that
Rp,o = I3 Rp,o»whereone of the P5’s have a single set of edges (£) in common with @', and where the other
paths cross 0 times with Q'. Since modifying the path P by a set of plaquettes cannot change the parity of the
number of crossing, we have that the former path crosses 0 times with Q' as well. By the previous reasoning, we
thus find that Rp o = 1. O

Lemma 15. Let P and Q be two crossing paths such that each of them is made of simple non self-overlapping nor self-
crossing open paths, and such that ‘P is not self-crossing. If they cross an odd number of times, then Rp g = — 1.

Proof. The idea of the proof closely follows that of lemma 14. We begin by sequentially deforming the path P
into a set of paths { P3} such that all of them are crossing with path Q, and such that there is a single set of
contiguous edges between one of the path 7, € {P;} and Q, and such that Rp ¢ = [I3 Rp, o, where Q' may
be ashortened path of Q, as described in the proof of lemma 14. Since any path P3 = T, crosses path Q’ 0 times,
wehavethat Rp, g = 1for 8 = 0. Wethushavethat Rp g = Rp, o

In order to calculate Rp, o', we note that we can first sequentially deform path 7, as described previously so
that there is a single common edge between the two paths, and we can use lemma 12 to bring the endpoints of the
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Figure C4. The quantity Rp, ¢ for 2 paths P and Q crossing an odd number of times is equal to Rp, ;. 0,.;in> for the minimal paths
Panin and Qpnin shown above.

two paths as close as possible in order to minimize the length of the paths. We thus find that computing Rp o
reduces to computing this quantity for a single minimal path configurations By, and Qy, illustrated in

figure C4. Explicit calculations using equation (C3) for a single underlying string configuration (lemma 10
ensures that its value is independent of the configuration), givesthat R, o . = —1. O
C.2. Proof of theorem 2

Having introduced all previous technical lemmas, we are in a position to complete the demonstration of
theorem 2.

Theorem 2. Let P and Q be two paths crossing n times, composed of non self-overlapping nor self-crossing individual
open paths. We have that

[S7, 55] =0 if n is even,

{S$, S5} =0 if n is odd. (C35)

Proof. Consider first the case where path P is not self-crossing. Given the definition in equation (C3) of Rp, o,
lemma 14 shows that [S7, Sé’ ] = 0ifniseven, whilelemma 15 shows that {S7, Sé’ } = Oisnisodd.

Consider next the case where P is self-crossing. Using lemma 11, we can always find paths P, ..., B, for
which P = Pi#...47F,, such that none of those are self-crossing, with Rp 47,0 = Rp, . Suppose that all
those paths cross with Q. Since S, woap, = 573: e S7}Ll , it suffices to know the commutation relations between

every of the operators S;} s e S;;; ~and S5 . Since none of the corresponding paths are self-overlapping, the
reasoning of the above paragraph can be used to find the same result.

It may be impossible to decompose path P = P#...# B, such that all of its components cross with Q. This
happens only in the case where some edges in path P appear at more than one position. In that case, suppose for
simplicity that path P = Pi#.. # P #HPiH#Pri# - # P 1 #PoFH Py 1. 7P, can be decomposed such that
pahts P; = T, are the only ones with edges in common (possibly in reversed order). The following reasoning
works in the same way if there are more than a single pair of such paths. Consider the quantity

<T@§:la?j DL arS; Hj; Bpjsg[i1|?@3‘:15ff>
= (Tean @ anisy uITL, BySalf @a?)
(f@an @i, anlT, byl @07

5 (feraner oIl sy @ilan)

U (@B @l @ )
- . . it it o >
i=l Fp,(i @, 0”@, ak @ ah

s

(C306)
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Figure C5. A closed string, S, and a positive-chirality open string, S, where paths O and C cross once. G can be written in this
particular exampleas G¢ = G#1 @ ... © abs, restricted to Conn (C) . The multiplication of plaquettes inside C, i.e. B - Bp,isa
negative-chirality string in Conn (C).

where
+ . < .
Spi = {SPI e (C37)
1 otherwise.
Usinglemma 11, forany i € {I, ..., o} itis always possible to find a path decomposition and sets of plaquettes

B%“" such that on Conn(P)), @Z’: 1 &P = &2. Thiscan simply be achieved by taking individual paths of
lenght 1 in the decomposition of path P. We thus find that

ol Fp (i @, o @ ak @ a

— — =1, (C38)
i=l Fp(i @0 @i, ah @ ah)
which, given equation (C4), leads us to the conclusion that
Rpitt Pl #PHPLAH AP EPHP i # o AP Q = Rt Pl H#PLr# AP #Posr# AP O (C39)

To complete the proof, it suffices to notice that we can now apply the reasoning of the first two paragraphs of this
proof. O

C.3. The need for path concatenation
Each time algorithm 1 picks a configuration representative i, an initial phase must be chosen. All of these
choices yield valid string operators. One may wonder what is the physical difference between different choices.
To answer this question, note that two string operators S5 and S, obtained by a different choice of phases in
algorithm 1 are related through
Sp =543 ep, (C40)
ceCp

where Cp denotes the set of all configuration classes of path P, P. = 3= c|z_"> (| is the projector on the states of
configuration class ¢, and e is an independent arbitrary complex phase for every class configuration.

Equivalently, given a string operator S5, we can obtain another string operator S multiplying S; byan
operator SZ, ,where Cqy,1is a closed loop in the dual lattice affecting only qubits in Conn (P). Since 7, isa
loop, it may be expressed as a multiplication of vertex operators (unless it is a non-trivial loop, which may
happen for closed strings). Therefore S~; still commutes with all plaquette and vertex operators and it is

contained in Conn (P), satisfying properties (i) and (ii). It is also possible to obtain another string operator
multiplying S7 by alinear combination of S* operators on closed loops, i.e.

Sp = SEWT + c(@NSE + c(@SE, + .., (C4D)

where ¢ () are coefficients associated with the closed-string operator SZ and Cy, ..., C,, are closed paths in the
dual lattice contained in Conn (P). For any two strings generated by algorithm 1 differing only in the choice of
initial phases, we can always find a relation of the form given by equation (C41).
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C.3.1. Closed-string operators.  If we consider now a closed path, C, and we use algorithm 1 to find a closed-
string operator, we will not find in general a positive-chirality nor a negative-chirality string, but some mixing of
both. Physically, this is caused by the fact that for a closed string there is no difference in the pattern of plaquette
violations between positive- and negative-chirality strings, since there are no endpoints. From equation (C41)
we can see that starting from a positive-chirality string, S7, it is possible to add S* operators forming a loop
which cannot be expressed as the product of vertex operators (which we call a non trivial loop in the remainder
of the section) to the linear superposition. Once this is done, the resulting operator, Sc, does not have a well-
defined chirality. Remember, that for an open string, we may obtain the negative-chirality string by multiplying
itby an open string S, violating the plaquettes at the endpoints. For closed strings we may proceed analogously
to obtain the opposite chirality by multiplying by a non-trivial closed string S5 Since we are multiplying S7” by a
linear combination of trivial and non-trivial loops of S, the chirality of S is no longer positive nor negative.
Thus, we drop the ‘+” superscript in Se.

The mixing of chiralities becomes apparent when computing the commutator between a closed string, S¢,
and a positive-chirality open string, S;5, where paths C and O cross once (see figure C5):

Fo(i @ @9)F(i)
Fo()F.(i ® a@°)

where here [-,-]is the commutator in the group sense, i.e. [g, h] = g~'h~!gh. In this case, notice that on

Roc = (i 1184, Sclli) = (C42)

Conn(C), the configurations iand7 @ &° donot belong to the same class. Using equation (C40), it is thus clear
that R ¢o,¢ can be modified by selecting different phases to initialize F, in algorithm 1.
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