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Resumen — La popularización de los modelos de la Red Neural Profunda 

en los últimos años ha dado lugar a un aumento del número de técnicas para 

aumentar la precisión de esos modelos. Sin embargo, es difícil elegir cuál de 

estos métodos son óptimos para un problema específico, así como lograr valores 

óptimos de sus hiperparámetros correspondientes para lograr un modelo de 

calidad. Este proyecto tiene por objeto proporcionar una comparación de éstos 

aplicándolos en un problema de predicción de series temporales.  

Se han llevado a cabo una serie de test en los que se han combinado 

arquitecturas tipo RNN, GRU, LSTM y BiLSTM con métodos de optimización 

entre los que se han destacado el Grid Search, Random Search, Optimización 

Bayesiana y Algoritmos Genéticos.  

Los resultados muestran que, se debe optar por una configuración tipo Grid 

Search + Red tipo GRU, la cual alcanza un valor de MSE de 167,60, frente al 

240,44 del modelo benchmark o configuración tipo Random Search + RNN si 

se busca rapidez de ejecución, sacrificando precisión. 

Abstract -- The popularization of Deep Neural Network models in recent 

years has led to an increase in the number of techniques to increase the accuracy 

of these models. However, it is difficult to choose which of these methods are 

optimal for a specific problem, as well as to achieve optimal values of their 

corresponding hyperparameters to achieve a quality model. This project aims to 

provide a comparison of these by applying them to a time series prediction 

problem.  

A series of tests have been carried out in which RNN, GRU, LSTM and 

BiLSTM type architectures have been combined with hyperparameter 

optimization methods among which Grid Search, Random Search, Bayesian 

Optimization and Genetic Algorithms have been highlighted.  

The results show that, one should opt for a Grid Search + GRU type 

configuration, which reaches an MSE value of 167.60, compared to 240.44 in 

the benchmark model or Random Search + RNN type configuration if one seeks 

speed of execution, sacrificing precision. 

I.  INTRODUCTION 

uture trends or behaviors of stock markets, product sales, 

electricity demand, wind speed and sun-irradiation for 

power generation, health- related issues and Natural 

Language Processing (NLP), among many more, have, for many 

decades (late 20th Century), been at the forefront of 
development of machine learning algorithms and ever evolving 

complex mathematical models [1]. 

 

Most of these prediction models’ approach is to use machine 

learning algorithms to learn from the past in order to provide a 

future time-window forecast, although this is easier said than 

done. Due to the dynamic, chaotic, stochastic, and complex 

 
 

environments of the problem itself and uncertainty of real-world 

data (e.g. stock markets) this becomes an inherently challenging 

and non-trivial process. This gets worse when dealing with time-
dependent characteristics or long-term multi-variate information 

chains, where it is of utmost importance to identify correlations 

between distinct temporal data [2] or to define which past values 

(both in time and variables) will be considered within the 

prediction process [3], respectively. 

This work focuses exclusively on the study of Deep Neural 

Networks (DNNs) architectures, emerged as a means of 

mimicking the biological, complex behavior of the human brain. 

A single neuron (Perceptron) does not perform well enough, but 

further development lead to the wiring of multiple artificial 

neurons (synapses), so that the output of one became the input 
of the next one, creating multiple layers that would manage to 

provide much more accurate results, and acquire a much higher 

resemblance to the human brain behavior. Over the course of 

time this process has been renewed, optimized, and further 

developed to try to boost the prediction accuracy, leading to a 

vast portfolio of prediction model architectures.  

This portfolio includes examples such as the Multi-Layer 

Perceptron (MLP), Deep Learning NNs, Recurrent NNs, Long-

Short Term Memory NNs (LSTM), Convolutional NNs, 

Recursive NNs, etc. whose application depends mainly on the 

data provided and expected output, although variations of their 

usage can be found in the available literature.  
When facing a new time series forecasting problem, one of 

the greatest challenges is how to choose the most convenient 

architecture and tuning technique to obtain the best possible 

results. This choice is nontrivial, and its complexity depends in 

part on the resources available, including time. It may be that 

time is a key factor in the application and that the models, 

therefore, must be able to be executed under strict time 

requirements. Or you may simply want to start an initial search 

process for the most suitable hyperparameters with a fast and 

simple model and that allows you to fine tune them by means of 

more complex models afterwards, without getting lost in the 
complex initial search.  

In addition to choosing the right architecture, comes the need 

to adjust the number of hidden layers, number of units, 

activation functions, choosing the correct optimizer, epochs, 

dropout, batch size, learning rate, number of iterations, and 
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many more hyperparameters whose tuning is not trivial nor 

immediate or dependent on the expected output [4].  

In order to try to answer this question, a selection of deep 

learning models will be tested under the same uncertainty 

conditions to assess which on would produce the best option 

based on those requirements the prediction application might 

withstand.  

II.  STATE OF THE ART 

 

A.   Input variable selection 

Variable or feature selection (FS) is based on different 

algorithms that seek to automatically select attributes from the 

available data that are most useful for the predictive problem we 

might be dealing with. This is one of the most critical steps for 

achieving a high degree of accuracy.  

In recent years, resources such as Genetic Algorithms, 

Harmony Search, Temporal Memory search, attention modules, 

Paragraph Vector, etc. have emerged to improve feature 

selection to assess the use of relevant not correlated input data 

that bring value to model operation, and help with vanishing 

gradient problem when in need to handle long-terms 

dependencies. 
Filter based FS algorithms use statistical metrics or 

techniques to filter features giving each data column a feature 

score and ranks them by their predictive importance.  

As these methods depends highly on the relationship between 

variables (input-output), the metric should be chosen based on 

the type of variables with which the prediction model will work 

with later on. The following figure allows a better understanding 

of the most suitable statistics for each case. 

 
Figure 1. Filter based FS methods. Source:[5] 

The main problem related to filter-based methods is that they 

are mostly univariate techniques, which means that each 

predictor is only evaluated regarding the output variable, 

discarding any possible interactions with other input variables. 
This, in turn, may lead to the training of the model with 

redundant, yet relevant, information, causing collinearity 

problems to appear.  

A solution to test the interaction of several variables at the 

same time, Wrapper-based FS algorithms are used to measure 

the fitness of certain features based on how good or bad does the 

model perform after being trained with them and the level of 

generalization it can achieve, rather than obtaining intrinsic 

information from each variable in order to classify their 

relevance with respect to the output variable. 

These methods are based in an iterative process in which 

different combinations of variables are prepared, evaluated and 
modified to come up with the optimal feature combination that 

best fits the prediction problem. 

Some of the most widely used Wrapper based FS algorithms 

are Genetic Algorithms - The optimization process is done by 

allowing a population of individuals to evolve by randomly 

subjecting them to actions similar to those that act in biological 

evolution (genetic mutations and recombinations) [6]- , 

Harmony search – Inspired by the way in which musicians 

improvise a harmony by trying different combinations of pitches 

they know from experience (memory) and adjust the pitch of 

each instrument until they obtain the harmony they were looking 

for [7]- , Temporal Memory Search - Tries to identify the mount 
of temporary memory needed to solve the issue, being the 

memory the past time values (lags) of the time series [3]- ,. 

Recursive Feature Elimination (RFE) - in which an initial set of 

variables is trimmed gradually until only the most relevant 

variables are left, based on a coefficient or feature importance 

attribute, or until the desired number of relevant features is 

achieved -, or Sequential Feature Selection - an initial empty 

feature set is competed after each iteration with a number of 

variables until there is no improve in accuracy for the trained 

model-.  

 In addition to these, Embedded FS algorithms use algorithms 
to penalize features which coefficients are too high in order to 

reduce complexity and avoid over-fitting or variance of a model 

by adding extra bias. In order to achieve this, regularized 

methods, such as L1 regularization (Lasso), L2 regularization 

(Ridge Regression) or decision tress, are used to control the size 

of features’ weights[8]. 

 

B.  Hybrid Models 

 Neural Networks´ (NNs) different architectures aim to 

provide a wide range of options in order to target issues of 

multiple natures, such as image/video classification, forecasting, 

speech recognition, natural Language Processing (NLP), among 

others.  

As interest in NNs’ grew, so did the number of possible 

algorithms to choose from in search of improving performance 

accuracy. Most recent developments propose Hybrid 

architectures, that is models that combine multiple neural 

architectures such as LSTM + attention modules, Convolutional 

NNs’ + RNNs’, Deep Belief Networks, etc. Some of the most 

interesting hybrid models are: 

• Deep and Wide Neural Networks (DWNN) [2] are a 

newly developed NN architecture in which a Convolutional 

layer is added to the hidden state of a Recurrent Neural Network. 

This way, the model not only accounts for the depth provided by 

RNNs’ (time dimension, in the form of number of time lags), 

but also the width associated to CNNs’ (variable number of data 

sets). This CNN layer is formed by convolution layers, a pooling 

layer and a full connection one in order to adapt the output into 

the required shape of a hidden state. 
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Figure 2. Simple RNN mode VS DWNN model. Source:[2] 

This type of architectures have proven to achieve a good 

reduction in MSE obtained values of approximately 30% when 

compared to general RNN models [2]. 

• TreNets are hybrid Neural Networks architectures for 

the trend prediction of time series. This hybrid architecture 

combines long short-term memory (LSTM), a convolutional 

neural network (CNN), and a feature fusion layer. In this case, 

the LSTM network contains and passes on the historical trends 

that contain the long-term contextual information of the time 

series. This historic information is relevant as it may naturally 

affect the trend evolution. Alternatively, raw local data serves as 

an input for the CNN, which will extract useful information 

about the local behavior of the time series in order to determine 

the dependency of the current trend and pattern transition point. 

This kind of information can be of great relevance when 

predicting abruptly changing trends. 

 
Figure 3. Local and historic trend data. Source:[9] 

TreNets have shown to outperform simple LSTM-CNN 

models, reducing by 30% the achieved error (RMSE) at the 

maximum [10]. 

• Bi-Directional LSTM + CNN layer models [11] seek 

to achieve a higher degree of accuracy while reducing the 

probability of overfitting. Bi-directional LSTM networks are 

very useful when dealing with long spanning time-series data as 

they are able to identify key behaviors from both backwards and 

forward time dependencies. This provides the network a better 

understanding of the context which, in turn, accelerates the 

learning process. In order to reduce variance when encoding 

properties of input into the network, CNNs can be used prior to 

the execution of bi-directional LSTMs in order to facilitate 

feature extraction. The pooling layer present in CNNs also helps 

in achieving a more accurate relevant feature extraction by 

limiting variance due to small local distortions and reducing the 

feature space dimensionality.  

This model claims to have increased accuracy by 9% with 

regards to a single pipeline CNN- Bi LSTM model [11].  

• Low-High CNNs are a novel architecture that 

combines multi CNNs with multistep Attention modules [12]. In 

this case, various sets of CNNs are used for extracting (1) Low 

Level features and (2) High level features. Low level features 

are made up of local behaviors in different time steps (curves, 

onwards or downwards slopes, etc.) whereas High level features 

are built on top of these and extract larger shapes in temporal 

data. 

 
Figure 4. Low-High Level features in an image. Source: [13] 

The attention module matches both outputs by identifying 

relevant context, just as it would be used in NLP for sentence 

translation. This enables to get better understanding of the 

problem context and helps in assessing how different data points 

related to each other without losing the temporal component. 

 

C.  Hyperparameter tuning  

Once a neural architecture has been chosen to be trained, a 

variable number of hyperparameters must be tuned in order to 

achieve the best possible model with that architecture. These 

hyperparameters define how the network functions and are key 

to their validity and accuracy. Their values depend ultimately on 

the problem that is being addressed, type of available data and 

expected output. Moreover, they and are correlated among them, 

which means that any modification of a single hyperparameter 

might force to modify the rest.  

Some of the most common or important hyperparameters to 

adjust within a NN are [14]: 

• Number of hidden layers: Increasing the number of 

hidden layers is usually believed to increase model accuracy.  

• Cell units (neurons) per layer: Same as with the 

number of hidden layers, a greater number of neurons per layer 

might help to optimally identify relevant behavior in data, as 

more interactions between variables can be taken into account. 

Having a large number of neurons might lead to an increase in 

computational weigh and even overfitting.  

• Parameter initialization: It is necessary to initialize 

the weights in the first pass. These values can be set to zero or 

obtained with a random function. This can lead to vanishing or 

exploding gradients, which reinforces the need to find a way of 

easily initializing them without compromising its training.  

• Learning rate: It represents the amount weights are 

increased during training. It usually has a positive value from 0 
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to 1. This value is one of the most relevant ones, as it can lead 

to heavy and long training process after which the process could 

get stuck (low values) or too fast and cause the training process 

to become unstable and achieve sub-optimal sets of weights 

(large values)[15] 

• Loss function: it is the function designed to calculate 

the distance between the predicted output and the expected 

output. After computing the loss score, a learning algorithm 

(usually Gradient Descent) is then used to update the weights in 

a way that might achieve a better loss score in the next iteration.  

• Epochs, iterations and batch size: These three 

hyperparameters define the way in which data is fed to the 

model. As explained in [16]: 

o An epoch is a forward pass and a backward pass 
of all the data samples in the training dataset.  

o The batch size is the number of data samples in 

each forward or backward pass. This value is set 

when the number of variables is too large to be 

run in one single epoch, or when the complexity 

of the model makes it necessary.  

o The number of iterations is the number of 

backward and forward passes using the 

information contained in each batch.  

• Dropout regularization: Defines the number of 

neurons not trained in each epoch in order to avoid overfitting 

of the model during training.  

• Optimizer algorithm and momentum: The neural 

network optimizer is in charge of running gradient descend in 

order to actualize the weights of each variable. The way to do so 

varies from one optimizer to another which can impact the 

model performance. 

Although there is no straight-forward way to fine tune them, 

there are some methods that can facilitate this task and make it 

less complex, among which four stand out [14], [17], [18]: 

• Hand tuning is the simplest and most straightforward 

of them all. This method can be used whenever knowledge and 

previous experience supports it, but it is not a scientific method 

and does not account for under optimized hyperparameters 

• Grid Search is based in an iterative process that tries 

multiple values for each hyperparameter. These values can be 

either predefined or sorted out from an interval with a fixed step 
size and the model will train the model for each possible value 

and return its associated loss score. This method provides a 

means of mapping the problem space and more optimization 

capability. 

• Random Search Random Search methods are strictly 

linked to Grid Search methods but only try randomized values 

of hyperparameters [17]. These values are gathered from the 

entire problem space, rather than form just promising areas that 

could hide a local optimum.  

One of the main issues with this method is that it can sometimes 

leave some space points uncovered and it evaluates points that 
are too close to each other to really make a significant 

improvement. In order to avoid this, quasi-random sequences 

(also known low-discrepancy sequences) help to spread more 

evenly the data points. Some of these quasi-random sequences 

are the Sobol, Harmmersley, Halton, Kronecker and 

Niederrelter sequences [18], [19] 

 
Figure 5. Comparison of some quasi-random search methods. Source:[19] 

• Sequential model-based optimization methods 

represent a substantial improvement compared to Grid and 

Random search methods as they base their operation in trying to 

improve past evaluations through a probabilistic model, making 

assumptions about unobserved values through an Acquisition 

Function. The Acquisition Function is a surrogate of the original 

loss function of the model, making evaluations much simpler 

and faster. It can be built using either Gaussian Process, Random 

Forest or Tree Parzen Estimators (TPE). 

 These 4 methods retrieve most of the attention, but there 

are also alternative resources that may be used for 

hyperparameter optimization. Gradient-based optimization, 

Evolutionary Algorithms and Population-Based Algorithms are 

some of these alternative methods. 

• Gradient-based optimization methods apply reverse 

stochastic descend methods with momentum to evaluate 

gradient descend related to each hyperparameter. Then, just as it 

is done with the weight’s modifications, values for each 

hyperparameter are upgraded in order to obtain a better loss 

score for the model.  

• Evolutionary Algorithms for hyperparameter tuning 

work just as described for Genetic Algorithms in section 1.3. 

These methods are widely used specifically for neural networks 

optimizations as they are easy to compute and perform well with 

various architectures [20]  

• Population-Based Algorithms are a combination of 

both parallel search methods (Grid and Random Search) with 

Sequential Search methods (Hand and Bayesian optimization). 

It jointly learns both hyperparameters and networks weights, 

conducting a wholesome optimization of the prediction model 

[21]. 

III.  CASE STUDY 

Whereas Section II has served as an introduction to different 

prediction models and techniques that could be used to forecast 

time series values, it still remains unclear which would be most 

ideal to work with.  

In order to face this, some of the described techniques will be 

tested under the same circumstances and for the same prediction 

objective to assess their overall performance and try to obtain 

valuable insights that could help when facing a new prediction 

problem 
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Certain assumptions have been made under which the 

development of this work is encompassed. The first one is that 

this work does not pretend to achieve a network configuration 

as optimal as possible, but to test how the network prediction 

responds to changes in the observed hyperparameters. It is 

expected that this will allow to derive conclusions about how the 

modification of each hyperparameter affects the response of the 

models with the aim of extracting relevant conclusions that can 

be applied to similar prediction problems, as well as identifying 

the most interesting algorithms according to the needs of the 

problem.  

The other hypothesis of this work is that it is assumed that 

most of the results extracted can be reproduced in similar 

prediction problems. While it is understood that the answer 

cannot be 100% reproducible, it is expected that a high degree 

of similarity in the answer will be achieved to support the use of 

the conclusions derived from this work. 

A.  Software settings 

All models have been developed in Python using Google 

Collab as the development environment. The choice of using 

Google Colab was made based on the computing requirements 

to run these models and usage simplicity, as no local install is 

required.  

Google Colab allows to develop code on Jupyter notebooks 

and run it on Google's cloud servers using VPCs. It also provides 

access to additional computing resources dedicated to hardware 

acceleration, such as GPUs, including Nvidia K80s, T4s, P4s 

and P100s. 

All models have been implemented using Tensorflow and 

Keras, the two most widely used frameworks nowadays for 

Machine Learning oriented applications. 

 

B.  Data set  

The dataset used for testing the different techniques was 

obtained from a national wind mill park. It consists of 122 

different variables and 35136 total hourly records that can be 

divided into 4 main separate type of inputs: 

• T – Temperature in Celsius Degrees.  

• GSR – Ground Solar Radiation  

• WS – Wind Speed in m/s 

• WD – Wind direction, in degrees to north 

In order to train and validate the models, a 70:30 split ratio 

has been defined. 

 
Figure 6. Temperature (ºC) variables. Min. = -18,7 ºC, Max. = 37,5 ºC 

 
Figure 7. Ground solar radiation 

 
Figure 8.Wind speed (m/s) 

 
Figure 9.Wind direction (º) 

The 5th variable, Wind Power Generation (WG), is the objective 

output of the model. The model should forecast its value in the 

next hour. 

 
Figure 10.Output variable detail 

C.  Model assumptions 

This workstream has been focused on assessing the impact of 
4 of them (algorithm, numbers of layers, number of neurons per 

layer, and leaning rate) and fixing the values of some additional 

ones based on their overall acceptance according to the 

consulted bibliography or execution simplicity, given the 

computing resources used for the development of the models.  

• Models: ['lstm', 'gru', 'rnn', 'bilstm'] 

• activation : ['elu']  

• layers : (1,6,1), min_layers, max_layers (not included), 

step_size 

• neurons_per_layer :(1, 45, 5), min_neurons, 

max_neurons (not included), step_size 
• learning_rate: (0.0005, 0.005,5), min_lr, max_lr 

(included), number_of_elements 

• optimizer: ['adam'] 

• batch_size: [20] 

• epochs: [20] 

The rank of values to be tested in the variable 

hyperparameters have been randomly chosen and do not 

correspond to any previous conducted tests.  
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D.  Benchmark Model 

In this work, the benchmark model has been defined under the 

assumption that WG at 𝑡 + 1 will be equal to the previous 

recorded value (WG value at time step 𝑡).  

𝑦𝑝𝑟𝑒𝑑(𝑡) = 𝑦 (𝑡 − 1) (1) 

Validation MSE will be, in this case, the metric used to 

identify those models that beat the benchmark model 

assumption for the same prediction problem.  

The Validation MSE for the benchmark model stands at 

240.44. Any model achieving a lower validation MSE will be 

classified as valid for our forecasting problem, at least accuracy 

wise.  

 
Figure 11. WG -Real output vs Benchmark model 

IV.  RESULTS 

TABLE I 

Cross comparison for the best performing simulations 

 

 Tuning 

technique 
Layers 

Neurons 

per 

layer 

Learning 

rate 

Validation 

MSE 

Total 

execution 

time 

(min) 

LSTM Grid 2 26 0,00158114 175,390069 260,21 

LSTM Random 3 31 0,00298181 184,265402 45,5 

LSTM Bayesian 3 15 0,00100075 182,650941 118,01 

LSTM 
Genetic 

Algorithm 
3 30 0,00146076 187,247948 100,37 

GRU Grid 3 16 0,0005 167,600379 217,3 

GRU Random 4 26 0,00096535 169,507542 48,6 

GRU Bayesian 2 30 0,00063344 170,248371 100,14 

GRU 
Genetic 

Algorithm 
5 39 0,00072304 175,601382 56 

RNN Grid 3 6 0,0005 179,856083 107,1 

RNN Random 1 21 0,00195347 191,678969 24,7 

RNN Bayesian 6 15 0,00073817 185,762487 70,17 

RNN 
Genetic 

Algorithm 
4 86 0,00156522 176,363621 42 

BILSTM Grid 2 11 0,005 187,233101 511,6 

BILSTM Random 1 41 0,00414321 192,240764 97,3 

BILSTM Bayesian 1 45 0,00259197 190,741036 164,23 

BILSTM 
Genetic 

Algorithm 
2 69 0,00229161 216,845031 144,07 

 

TABLE II 

Number of adjusted candidates per tuning technique 

 
Tuning technique  Number of adjusted candidates  

Grid Search  150 

Random Search  50 

Bayesian optimization 100 

Genetic Algorithm 80 

 

It can be seen how the best models are concentrated as a result 

of using GRU type network architectures as opposed to LSTM, 

as would have been expected based on the conclusions derived 

from the literature consulted, and how RNNs are positioned as 

the best architectures in terms of execution time, both results 

already presented in the previous sections.  

LSTM architectures achieve acceptable results, although far 

from the best obtained with GRUs and without substantial 

improvements in terms of total execution time that could justify 
their choice when faced with a prediction problem similar to the 

one discussed. BILSTM architectures would be initially 

discarded for not being able to prove whether their low 

performance could be improved by means of other 

hyperparameters whose optimization is not contemplated in this 

work.  

Regardless of the type of network architecture employed, it is 

clear how Grid Search techniques are the most interesting to use 

in a first approach to the problem. Not only are these techniques 

the ones that achieve, in a general way, the best results, but they 

also allow exploring the whole map of hyperparameters defined 
without being influenced by local minimums 

As far as the speed of execution is concerned, - and in the 

same way for any network architecture - Random Search is the 

one that allows to obtain reasonable results in the shortest time 

possible, but, as it has been explained before, it is necessary to 

evaluate the need of greater resources to evaluate more complex 

configurations or to increase the number of iterations, which 

entails a great limitation to have in consideration for its 

implementation.  

Bayesian optimization is an alternative solution if you are 

looking for an intermediate point between accuracy and 
execution time. Unlike genetic algorithms, which do not stand 

out in the field of accuracy or runtime improvement, the tests 

performed by Bayesian optimization are usually closer to the 

optimal that can be achieved through grid search, without the 

complexity of random and more feasible than tests performed by 

genetic algorithms that, after each new mutation, risk ending up 

selecting sub-optimal configurations. 

V.  CONCLUSIONS 

Although it cannot be presumed that all prediction problems 

have the same behavior, nor that the models tested will respond 

in the same way to what has been seen in this work in other 

situations, it can be expected, and this has been assumed in this 

work, that it is possible to generalize some of the results obtained 

here, as long as one is aware of this fact and the limitations it 

may entail.  

Another important aspect to take into account, and which has 

partly defined the results obtained, is that this work has only 

contemplated the optimization of the 4 hyperparameters that are 

most sought after in a general way when undertaking any work 
in this area, allowing a certain degree of freedom in the 

initialization of other more complex hyperparameters, whose 

theoretical basis does not allow direct conclusions to be 

extrapolated from the values obtained due to their complexity. 

Assumptions have also been made regarding the values of some 

hyperparameters that may be far from optimal, but which have 

greatly facilitated the development of this work. 
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In order to improve the results obtained in this work, it would 

be of great interest to carry out tests along the same lines of this 

work, testing other ranges of values for the hyperparameters 

tested here, with the aim of observing whether the behavior 

remains in accordance with what has been observed in this work, 

or whether conclusions can be drawn that could complement 

those presented here. 

As for the results, the following points can be concluded: 

• Regardless of the optimization technique employed, 

GRU architectures far exceed the expectations placed on 

LSTMs that were initially positioned as those from which to 

expect the best results, while biLSTMs are relegated to last 

position by failing to achieve good results in any of the fields 

tested. 

• As far as possible, start the search for 

hyperparameters in limited environments and opt for 

intermediate values, avoiding any extreme values. As can be 

seen from the final table of results (Table 15), most of the results 

oscillate around 2-3 layers, a number of neurons per layer not 

exceeding 30 (with some exceptions) and with downward values 

as far as learning rate is concerned. 

• The number of layers and neurons per layer should be 

adapted to each application, being aware that for more complex 

applications a greater number of layers and neurons would be 

required to model the output behavior. It is recommended to 

perform a more comprehensive initial search, and limit 

subsequent trials in a limited rank around those values within the 

optimal configuration appears to be located.  

In order to choose the best hyperparameter optimization 

method, the following approach can be followed: 

• Is time a decisive factor? 

Opt for Bayesian optimization or random search, if you have 

sufficient computational resources to achieve a sufficient 

number of iterations, along GRU or RNN-type network 

structures, depending on whether you want better accuracy or 

just speed of execution, respectively. As for the number of 

iterations, it is necessary to at least execute a number of them 

that allows the algorithm to converge in a hyperparamenter 

subspace, ensuring a small variance from one iteration to the 

next one. 

• Is the best possible accuracy being sought? 

If, above all, the aim is to minimize the model's error, opt for 

Grid search optimization methods together with GRU-type 

network architectures. 

• The objective is to achieve a time-performance ratio? 

Opt for a Bayesian optimization method using GRU or RNN-

type network architectures 
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