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Resumen - En el presente documento se
analizan las capacidades de predicción de
los modelos de series temporales funcionales
cuando se aplican sobre las curvas obtenidas
de los mercados �nancieros. Estas curvas se
estudiarán utilizando técnicas de Análisis de
Datos Funcionales (FDA, del inglés Functional
Data Analysis), que han demostrado ser útiles
cuando se trabaja con datos de alta dimensión.
Las curvas originales se descompondrán en las
primeras componentes principales funcionales,
reduciendo de manera efectiva la dimensión de
los datos. Una vez que los datos se han ex-
presado en un espacio de baja dimensión, se
ajustarán diversos modelos predictivos (como
ARIMA, Función de Transferencia y Percep-
trón Multi-capa) para estimar curvas futuras .
Para el caso de estudio se utilizan las curvas de
rendimiento del EURIBOR, generadas a par-
tir de tipos de interés discretos con vencimien-
tos de una, dos, tres semanas y de uno a doce
meses, entre septiembre de 2016 y febrero de
2020. Se demostrará la utilidad de los mode-
los propuestos en un período de baja volatil-
idad de las curvas y en un período diferente,
en el que la volatilidad de las curvas es alta.
Se utilizarán variables exógenas para mejorar
los modelos de previsión, obteniendo estima-
ciones más robustas.

Abstract - This paper analyses the predic-
tive capabilities of functional time series mod-
els when applied to curves obtained from �-
nancial markets. These curves will be studied
using Functional Data Analysis (FDA) tech-

niques, which have been proven to be use-
ful when working with high-dimensional data.
The original curves will be decomposed into
their �rst functional principal components, ef-
fectively reducing the dimension of the data.
Once the data has been represented in a low-
dimensional space, several forecasting mod-
els (such as ARIMA, Transfer Function and
Multi-Layer Perceptron) will be �tted to the
data to estimate future curves. A case study
using EURIBOR yield curves, generated from
discrete interest data at maturities of one,
two, three weeks and one to twelve months,
between September 2016 and February 2020
is included, which illustrates the applicability
of the proposed models in a period of low-
volatility of the curves and a di�erent pe-
riod where the volatility of the curves is high.
Exogenous variables will be used to improve
the forecasting models, obtaining more robust
forecasts.

Key Words: Functional Data Analysis, EURIBOR,
Principal Functional Components, ARIMA, Transfer
Function, Multilayer Perceptron.

1 Introduction

Due to recent technological advances in science
and industry, the collection and analysis of high-
dimensional data has become an important topic in
the �eld of applied statistics. The Functional Data
Analysis (FDA) framework is a collection of statisti-
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cal tools that enable the study of such high dimen-
sional data, often recorded as a set of curves.

FDA techniques have gained importance in recent
years due to the increase in applications in di�erent
�elds, such as environmental sciences, mathematics,
public health and medicine, geography or economics,
among others [11].

These types of high dimensional data are present
in several �nancial applications and can be catego-
rized in two di�erent classes. The �rst type of prod-
uct are high volatility intraday indexes, as seen in
[15], where the S&P500, DAX30, CAC40 and USD-
Euro are analysed with one minute resolution. In
[12] and [? ] only the S&P500 is analysed with a
�ve minute resolution. A variation of the S&P500 is
the S&P100, analysed by [6] with a resolution of �ve
minutes, or for example [17], whose authors model
the volatility index VIX of the future PUT options
of the S&P500 o�ered by the CBOE Chicago Board
Options Exchange every �fteen seconds. Each of the
curves is modelled as a curve de�ned by the discrete
prices observed over the curse of one day, from open-
ing to closing. In Figure 1, it can be seen how the
time series of the S&P500 is divided into �ve func-
tional data observations.

Figure 1: Division into functional data of the S&P500
stock exchange index, with one minute resolution
during the month of November 2016. Source: [15]

The second type of �nancial product, commonly
used for FDA, are yield curves, as illustrated in [4],
which analyses month-end price curves (average sup-
ply and demand) for U.S. Treasury bonds with ma-
turities of three to one hundred months. In [2], the
author analyses EURIBOR curves sized for maturi-
ties of three months to �fteen years as a functional

data set. [16] compares US interest rates (maturity
period from three months to thirty years) and India
(maturity periods from three months to �fteen years).
And �nally, the curves determining the value of Eu-
rodollar futures contracts from three months to ten
years of maturity are analysed in [10]. These types
of curves are made up of interest rates or future val-
ues at di�erent maturity periods, each of which forms
the functional study data set. Figure 2 shows a typ-
ical data set for this type of �nancial product in 3D
format.

Figure 2: Yield curves for Eurodollar futures con-
tracts. X-axis: maturation periods in months. Y-
axis: date to which each of the curves belongs. z-axis:
value of the contract. Source: [10]

One of the main disadvantages of having a func-
tional data set is the di�culty of operating with a
large dimensional space. Therefore, in order to re-
duce the dimension of the working space to a M di-
mensional space, dimensionality reduction techniques
are usually applied. The most common technique
used is the decomposition into principal components,
where the dimension of the reduced workspace de-
pends on how many principal components are needed
to explain a great percentage of the variance of the
original data. Thus, in [15] the authors reduce the
space to four dimensions, in [5], [4] and [9] they set
M to three principal functional components, while
in [16] one principal component is su�cient. This
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methodology generates a reduced dimension func-
tional base where the original data set can be ex-
pressed as a linear combination. Another technique
widely used to reduce the size of the workspace, is
based on an exponential approximation (see [4] and
[2]), developed by Nelson and Siegel [13], which de-
composes the set of curves into a three-dimensional
space, characterizing the level, slope and curvature
of the functions, generating a base in which the orig-
inal curves are expressed as linear combinations. A
variant of this methodology, which is mainly used for
the analysis of yield curves, is the one developed by
Diebold and Li [4], which o�ers a much more dynamic
adjustment.

Once the dimension of the functional dataset has
been reduced, a predictive model is trained to es-
timate future coe�cients of the functional time se-
ries. The most commonly used models are those of
an auto-regressive nature; these models use the his-
torical data of the input variables to adjust the model
with great e�ciency, having a conditional mean na-
ture. Examples of such models are: the ARIMA
model [1], [2] and [7], been the most widely used
model which includes autoregressive terms (AR), in-
tegral terms (I) and moving average terms (MA).
A multivariate version of the AR model is the Vec-
tor Auto Regressive model VAR, used in [4] and [17].
But in [4] the authors argue that the VAR model has
poor results when analysing �nancial products, due
to the complexity and nature of the data. Combining
the two models mentioned above together generates
a new model called VARMA, presented in [16]. In
[11] the authors propose a functional version of the
AR model (the FAR model) that it is able to model
functional data directly, thus not require the use of
dimensionality reduction techniques. On the other
hand, there are two other time series models that, in-
stead of estimating the conditional mean of the data,
model the volatility (i.e. changes in the variance) of
the time series. These models are often referred to as
Conditional Variance models, such as the GARCH,
which, is used in several works like in [15] and [6],
where they also perform a functional analysis gener-
ating a FGARCH model o�ering optimistic results in
FDA. Finally, in [5] and [9] a non-linear model based

on Radial Basis Function Neural Network is used for
predicting future coe�cients of the time series.

2 EURIBOR yield curves

The functional dataset to be analysed in this project
consists of the EURIBOR (European Interbank Of-
fered Rate) yield curves. Each curve represents the
interest rate at which �nancial institutions in the Eu-
rozone lend money to each other. This interest rate
varies according to the maturity of the loan. The
European Central Bank is responsible for calculating
this rate on a daily basis, based on the estimated av-
erage number of operations that will be carried out
by the most powerful entities that handle the Euro.

Every day the interest rate is marked at one to
three weeks and one to twelve months, being the time
to maturity of one year the most used by �nancial
institutions. These indices will determine each of the
curves to be analysed. An example of the type of
curve to be studied is shown in the Figure 3.

Figure 3: Euribor curve [2010-01-04]. Value of the
interest y-axis. Time horizon in weeks x-axis.

Before starting the study and the training of the
model, a visual inspection of the dataset has been
carried out, with the intention of knowing a priori
how the data evolves over time and cleaning the raw
information.

For the �rst stage of this project, it was decided to
choose a period in which the series would exhibit low
variability, with the purpose of obtaining a simple
predictive model that is capable of capturing the dy-
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namic of the series. Figure 4 shows the data set that
has been selected for this �rst phase of the project.
As expected, a stable dataset with low dispersion over
time can be observed.

Once the study dataset has been �xed, it is divided
into two subsets. A �rst subset called the training
period TR will be used as the known historical data in
real application. Models will be identi�ed and �tted
using this data, characterizing the original functional
data as accurately as possible. The second subset,
called validation period V AL, is taken as a reference
to determine the e�ciency of the estimates generated
by the FDA predictive model. For this project, the
original set will be divided in a 70/30 proportion for
the training and validation subset respectively.

Figure 4: Low-dispersion curve section between 2016-
2019.

3 Functional Forecasting mod-

els

This section will introduce the predictive models that
have been developed for estimating future EURIBOR

curves. The forecasting strategy of the models can
be summarized as a three step process: Functional
Principal Component decomposition, modelling of
the principal component's scores and curve recon-
struction. Subsection 3.1 will introduce the Func-
tional Principal Component Analysis that will be
used. Subsection 3.2 is devoted at explaining the
forecasting models that will be used to estimate the
scores of the principal components. Finally, the pro-
cess of reconstruction of the estimated curves gener-
ated by the models will be explained in Subsection
3.1.1.

This Section will also include the development of
the processes carried out on the set of exogenous vari-
ables in Subsection 3.4 and the period of high volatil-
ity in the Subsection 3.5.

3.1 Functional Principal Component

Analysis

This FDA method consists in decomposing the set of
study functions Yt(x) into a number M of Principal
Functional Components [PFC] Φ(x) which are able
to explain the rest of functions when multiplied by
each of the coe�cients Ct,j associated to the original
functions, being T the size of the function time series.

Yt (x) ≈ µ̂(x) +
∑M

j=1 ĉt,jφj(x), for t = 1, ...., T

(1)

The function pca.fd (R language) can be used to
decompose the set of curves, selected to train the
model, into a number M of principal components.
Each one of the new FPC is able to explain the vari-
ance of the original curves in a determined percent-
age. Being the �rst component the most representa-
tive in the system, as shown in Figure 5. When accu-
mulating the information o�ered by each one of the
components, it can explain better the original curves.
From this concept, the number of M principal com-
ponents to be used is determined by analysing the
compromise between the precision and complexity of
the model.

The explanations shown in this document will
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Figure 5: Percentage of information explained by the
�rst 10 principal components.

be made with the �rst three principal components,
which explain the 99.64% of the information of the
original dataset. This way, the following principal
functions are shown in Figure 6 with which this model
will be trained.

Figure 6: First 3 FPC (1º Black, 2º Red, 3º Green)

At the same time that the FPC basis are obtained,
M coe�cients are associated to each of the original
curves. Generating M series of coe�cient with the
size of the number of curves of the dataset. These
are represented in Figure 7.

Therefore, the training period is expressed in the
base formed by the �rst three FPCs. In the same
way, if the coe�cients associated to the curves of the
validation period are estimated and the curves ex-
pressed in this same base (generated with the TR
set) are reconstructed, future EURIBOR curves can

Figure 7: Scores curves of the �rst 3 FPCs

be estimated.

3.1.1 Reconstruction error

When breaking down a large number of curves to
a few principal components, an intrinsic error ap-
pears, usually called Reconstruction Error. This
value marks a limit in the e�ciency of the models.
On the other hand, these errors can be a reference
to determining which will be the optimal value of
functional principal components to be included. To
calculate this error, the curves are decomposed into
their �rst Nc principal components, and then recon-
structed using the scores of the decomposition.

Finally, the error committed between the recon-
structed set and the original set is calculated, allow-
ing us to measure the Reconstruction Error, using
several error metrics. Looking at Figure 8 it is possi-
ble to visualize the results and determine what would
be the optimal number of principal components to use
in the project.

Di�erent error measures are determined to calcu-
late the e�ciency of the estimated results, which will
be used throughout the project. These error met-
rics have the capacity to analyse functional data, and
are: the Functional Mean Square Error (FRMSE)
2, the Functional Mean Absolute Error (FMAE) 3
and the Functional Mean Absolute Percentage Error

5



(FMAPE) 4.

FRMSE =

√
T−1

∑T
t=1

∫ (
Yt(u)− Ŷt(u)

)2
du

(2)

FMAE = T−1
∑T

t=1

∫ ∣∣∣Yt(u)− Ŷt(u)
∣∣∣ du (3)

FMAPE = T−1
∑T

t=1

∫ |Yt(u)−Ŷt(u)|du∫
|Yt(u)|du

(4)

Figure 8 compares the results of the Naive model
and the Reconstruction Error which determines the
prediction limit of the model. Both in the TR and
VAL periods, visually it could be determined that
for the selected low volatility data set, the optimal
number will be around six principal components.

The errors mentioned above represent di�erent pre-
cision metrics (or imprecision) of the functional data
calculated in the project with respect to the orig-
inal. As they are functional, they use integrals in
one way or another to determine the area along all
points of the curve. For the speci�c application of
the analysis models used on the EURIBOR curves, it
would also be appropriate to determine the precision
of each of the observations with which the curves are
constructed, since the ultimate objective is to deter-
mine what the interest rates will be in the di�erent
maturity periods for a given prediction horizon. And
to be able to contrast the e�ciency of the models
for each of the points used to construct the original
set of functional data. In this way, the error MAE
in basic points will be calculated, from the following
expression 5, in the Figure 9, the graph of the recon-
struction errors is shown under the mentioned metric
for the �rst eight principal components.

MAE(up) = 100
(
T−1

∑T
t=1

∣∣∣Yt(up)− Ŷt(up)
∣∣∣)
(5)

The result will generate a vector with dimension
P , being the number of original observations, where

Figure 8: Reconstruction error FRMSE, FMAE and
FMAPE of the period TR and VAL (Y axis) and the
�rst 8 principal components (x axis). Including the
errors made by the Naive model in the TR and VAL
period.

the average error for each of these points will be de-
termined. In addition, if we want to know the global
error along the whole curve, the MAEPB is calcu-
lated from the MEA in basic points as shown in the
following expression 6.

MAEPB = P−1
∑P

p=1MAE(up) (6)

As expected, the error produced by the model is
di�erent for each of the interest rates. In addition,
depending on the number of principal components se-
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Figure 9: MAE error in basic points, for the recon-
struction errors with the �rst eight principal compo-
nents.

lected, the error varies progressively, which was also
expected. Thanks to these graphs, it is visually de-
termined which of the basic points will be the optimal
one for �nancial applications, once the adjustment of
the predictive models is completed. That is to say,
the interest rates which are most reliable in this pe-
riod of time will be those with a maturity time of one,
two, four, ten and eleven months.

3.2 Forecasting models

In this project the following predictive models will be
used according to the needs of the analysed datasets,
so that the functional data sets can be modelled and
new EURIBOR curves can be predicted in the future,
as set out in the objectives of this document.

3.2.1 ARIMA model

The Auto Regressive Moving Average model, ARMA
is the most common model to analyse a stationary
time series yt. This model describes the time series
yz in terms of two polynomials: the �rst one accounts
for the autoregressive term of the series, and the sec-
ond one accounts for the moving average terms of the
series. The equation for the ARMA(p,q) model is 7.
Where ψi are the autoregressive coe�cients, θi are

the moving average coe�cients and εt are the inno-
vations of the process.

yt =
∑p

i=1 ψiyt−i +
∑q

i=1 θiεt−i + εt (7)

If the time series is not stationary in the mean, it is
necessary to apply a di�erentiation process for which
this mean is stabilised. A variant of the ARMAmodel
that contains this new methodology is the Auto Re-
gressive Integrated Moving Average (ARIMA). This
model consists of three variables to be controlled, d
determines the number of di�erentiations, p controls
the coe�cients of the AR e�ect and q the e�ects num-
ber of MA terms.

When �tting the ARIMA model, it is necessary to
identify the autoregressive and moving average orders
of the model. The Auto Correlation Function (ACF)
and the Partial Auto Correlation Function (PACF)
are used to identify these orders, as explained in the
document [3].

3.2.2 Transfer Function, TF

The Transfer Function model is a multiple dynamic
regression model with ARIMA noise. It works by re-
gression methodologies applied to the output yT and
to di�erent input variables xit,h. Once the regression
terms have been characterised, the regression resid-
uals are modelled with an ARIMA model [14]. This
model, unlike the ARIMA model which only analyses
the historical data of the time series, by complement-
ing the information of the series using multiple input
variables, generates more robust estimates.

3.2.3 Multilayer Perceptron, MLP

The neural network Multilayer Perceptron is a non-
linear model capable of modeling non-linear relations
between the data from a deep analysis of the input
data.

The main structure of the network consists of three
type of layers: input, output and hidden layers. The
input and output layers are used to manage the
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inputs and outputs respectively. In this case study
a single hidden layer will be used, which includes a
network of perceptrons. This perceptrons are pro-
cessing units or neurons, which analyse the non-linear
relationships between their inputs through an itera-
tive learning process.

3.2.4 Naive, NV

The following model is commonly called the dummy
model, due to its simplicity and because it is not very
intuitive. For the training of the model the hypothe-
sis is established in which the value of the prediction
in t + 1 is equal to the value in t, in other words
ŷt = yt−1 [8].

The results provided by this model serve as a refer-
ence for a �rst approximation of the training of other
models.

3.3 Reconstruction of the estimated

curves

Once the principal functional components are applied
to the original data set and the forecasting models
have estimated the time series of coe�cients. The
estimated EURIBOR yield curves are then recon-
structed so that the model can be validated by com-
paring them with the original curves. The error is
calculated in both the VAL and TR period to com-
pare the orders of magnitude.

The European Central Bank publishes the values
of interest rates at di�erent periods of time, adjust-
ing them to two decimal places. In other words, the
interval between two values of di�erent days and the
same maturity is at least 0.01. Thus, once the curves
expressed in the base of the FPC have been recon-
structed, a rounding stage is carried out, in which
the functional data which have just been calculated
are given the original format of the curves published
by the BCE. The following Figure 10 shows the set
of reconstructed functional data before and after the
rounding stage. It should be mentioned that this pro-
cess helps to improve the accuracy and robustness of
the forecasting model

Figure 10: Original data set (colour curves) and re-
constructed curves (red curves) before rounding (left)
and after rounding (right)

In the low volatility period the ARIMA model
is trained and the curves are reconstructed with
the estimates of the coe�cients. To determine
the e�ciency of the model, the error metrics men-
tioned in Section 3.1.1 are obtained. Being these
the Functional Mean Square Error (FRMSE) (2),
the Functional Mean Absolute Error (FMAE) (3)
and the Functional Mean Absolute Percentage Er-
ror (FMAPE) (4) of the period TR and VAL. Figure
11 shows how the mean error of the model decreases
as more principal components are incorporated into
the model.

Figure 11: FRMSE, FMAE and FMAPE error of the
ARIMA model in the TR and VAL period using a
di�erent number of principal functional components.

3.4 Exogenous variables

The information provided by the EURIBOR curves
are the reference interest rates for interbank loans,
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generated daily by the European Central Bank, as an
estimate of the number of transactions to be carried
out by the main �nancial institutions. That is why,
it could be interesting to include certain exogenous
variables, which characterise aspects of these main
�nancial institutions in the Eurozone and the socio-
economic environment.

The exogenous variables to be analysed in this
project, shown in Figure 12, are the values of the
shares of certain European �nancial institutions:
Santander (Spain), BNP (France), Intesa (Italy),
ING (Netherlands), BBVA (Spain), Credit Agricole
(France), Deutsche Bank (Germany), HSBC (United
Kingdom), BPCE Group (France), UBS (Switzer-
land), Barclays (United Kingdom), Société Générale
(France), Crédit Suisse (Switzerland), The Royal
Bank of Scotland (United Kingdom), Nordea Bank
(Finland), Commerzbank (Germany), Danske Bank
(Denmark), Unicredit (Italy), Allianze (France),
Zurich Secures (Switzerland), Danske Bank (Den-
mark) And the values of the stock exchange of indexes
of di�erent countries, being these: IBEX 35 (Spain),
DAX30 (Germany), FTSE100 (United Kingdom),
CAC40 (France), AEX25 (Netherlands), S&P500 and
S&P100 (United States) and SHSZ300 (China).

In this way, it is proposed to analyse in a �rst in-
stance the correlation that these variables have with
the time series of the coe�cients, associated with the
di�erent principal components used by the model.
This analysis aims at determining whether the in-
formation provided by these stock market indices is
linearly related to any aspect of the EURIBOR data
set, in order to include them in the analysis model
and improve its robustness. A correlation matrix is
obtained for this purpose, where the linear relation-
ship between each of the variables and the rest of
them is determined. Analysing the column or row
associated to the output of the system, being y the
temporal series of the FPC coe�cients, the percent-
age of the information of the exogenous variables is
related to the variable of interest y is obtained.

Figure 13 shows the correlation matrix of the set
of exogenous variables selected for the model and the
coe�cients associated with the �rst FPC. This ma-

Figure 12: Display of all the exogenous variables to be
analysed, calibrated in the same order of magnitude.

trix indicates that the variations of the selected stock
market indices are related to the level of the EU-
RIBOR curves, whether the average of each curve
rises or falls (since this is the information that char-
acterises the �rst principal component).

Figure 13: Correlation matrix between exogenous
variables and the time series of coe�cients associated
with the �rst principal components, denoted by y

The following principal components provide in-
depth information on the dynamics of the functional
data set, making it more unlikely that exogenous vari-
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ables have a strong correlation with them. This hy-
pothesis is tested by obtaining correlation matrices
in which all exogenous variables and the coe�cients
for the second and third principal component are in-
cluded. In Figure 14 shows the correlation matrix for
the second, third and fourth FPCs. As expected, the
correlation percentages are not very high, so the ex-
ogenous variables are not very representative in the
analysis models of the coe�cient series, with the ex-
ception of the second principal component in which
certain variables could explain part of the informa-
tion of this time series.

In this way, exogenous variables (those that have a
certain correlation with y) will be used in the analysis
models of the �rst two FPCs. The rest of the time
series of coe�cients will be modelled with ARIMA
autoregressive techniques, without including the ex-
ogenous variables.

Figure 14: Correlation matrix between exogenous
variables and the time series of coe�cients associated
with the second, third and fourth principal compo-
nents.

3.5 Period of high volatility

The period used for the previous analysis, from
November 2016 to February 2019, is very stable.
This �rst assumption was made to simplify the mod-

elling of the functional data. By applying the models
to high-volatility period, the real-life e�ectiveness of
the models can be measured. The new dataset falls
within the range of 15-05-2019 and 17-4-2020.

As expected, the Naive model has a higher er-
ror, this improvement is due to the fact that in this
new set there is a greater distance between the t and
t + 1 interest rates. In addition, the models used
work much more e�ciently by increasing the volatil-
ity of the analysis data set. Figures 15 and 16 show
the results of the error rates using as references the
FRMSE, FMAE and FMAPE, respectively in the TR
and VAL period. The graphs show the error value on
the y-axis and the number of selected principal com-
ponents on the x-axis. It is worth mentioning that in
these results only six functional principal components
have been used, as in Section 3.1.1 it is determined
that from the sixth component the Naive model is
exceeded therefore, it is checked that the models op-
erate according to the expected limits.

Figure 15: Comparison of the e�ciency of the
ARIMA and Naive models in the TR period, showing
the errors FRMSE, FMAE and FMAPE respectively,
in the period of high volatility.

In order to analyse in greater depth the develop-
ment of the ARIMA model when estimating the val-
ues of the di�erent interest rates for the necessary ma-
turity times, the MAE error in basic points is shown
in the following Figures 17 and 18.

For this period, the above-mentioned models TF
3.2.2 and MLP 3.2.3 have been trained, in which the
exogenous variables of the 3.4 are included, for the
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Figure 16: Comparison of the e�ciency of the
ARIMA and Naive models in the VAL period, show-
ing the errors FRMSE, FMAE and FMAPE respec-
tively, in the period of high volatility.

Figure 17: MAE error in basic points of the high
volatility period TR, of the estimated results of the
ARIMA model for the high volatility period, using
up to six principal components

adjustment and estimation of the data set. In this
way, the Figures 19 and 20 show the graphs of the
error rates selected in this project when training the
ARIMA, TF and MLP models. These graphs com-
pare the e�ciency of the models in the TR and VAL
validation and training period, where the improve-
ment of these multivariate models can be seen (de-
spite not having carried out an exhaustive study).

Because there is a greater margin between func-
tional data from one day to the next, the intrinsic
bene�t that can be obtained on the purchase and sale

Figure 18: MAE error in basic points of the high
volatility period VAL, of the estimated results of the
ARIMA model for the high volatility period, using
up to six principal components

Figure 19: Comparison of the e�ciency of the
ARIMA, TF and MLP models in the TR period,
showing the errors FRMSE, FMAE and FMAPE re-
spectively, in the period of high volatility.

operations in �nancial products referenced to the EU-
RIBOR is much greater, also providing a greater risk
in the investment due to the natural rules of the stock
market. However, as has been seen in this section, the
more complex models produce a lower forecasting er-
ror.
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Figure 20: Comparison of the e�ciency of the
ARIMA, TF and MLP models in the VAL period,
showing the errors FRMSE, FMAE and FMAPE re-
spectively, in the period of high volatility.

4 Applications to �nancial mar-

kets

Once the Forecasting models have been introduced,
it is necessary to illustrate the contribution of the
model to a real world application. One of the most
interesting areas that could bene�t from the results
obtained by the proposed models is to serve as a sup-
port for �nancial traders. Who work with deriva-
tives directly related to the EURIBOR curves or the
interest rate at a speci�c maturity period. In this
way, o�ering an estimate for the future can serve as
a powerful reference when carrying out purchase and
sale operations.

In this way, the e�ciency of the forecasts has been
studied in terms of the pro�t margin with which a
daily trader could work. To this end, the variation of
each of the interest rates is determined in the �rst in-
stance, for the di�erent periods of maturity observed
with the real data. This process generates a new set
of data, which represents the margins between con-
secutive curves. Figure 21 shows a visual example of
this new set.

Another set of data is then generated in a similar
way by calculating the di�erence between the original
curves in t and the curves estimated by the predictive
model in t+1. In this way, by comparing the two sets

Figure 21: A set of functional data, which explains
the margin between successive days. Weeks of in-
terest rate maturation (x-axis) and operating margin
(y-axis).

of data, it is possible to determine the e�ectiveness
of the models. It has been decided to use two met-
rics to characterize the e�ciency of the predictions
as a function of the operating margin. The �rst one,
re�ected in the graphs of the Figure 22, the average

hit rate
(∑T

t=1 100 ∗ |Pi(t+1)|
|Ri(t)|

)
∗ T−1 is determined

for each of the observed i maturity periods, where
P (t) is the set that characterizes the margin between
model estimates and actual data and R(t) is the set
calculated with actual data only. This information
is shown in color-coded graphs, with red being the
lowest percentage and yellow the highest percentage.

The second metric used to determine the e�ciency
of this application on trader operations, is through
the average absolute error in basic points, comparing
the set formed by the original data and the estimated
data. In the �gure 23 the graphs that relate the er-
ror MAE with the total margin for each one of the
observed points are shown.

The results shown in these graphs will be used to
determine which period of maturity is the most suit-
able to carry out a buy-sell trader operation, tak-
ing into account the compromise between the highest
pro�t margin (y-axis) and the e�ciency of the predic-
tive modeller (colour code of the legend), in the case
of the percentage of success the highest percentage
and in the error MAE the one with less error. It is
worth mentioning that as it can be seen in the graphs
the higher maturity times have a higher variability, so
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Figure 22: Graphs (upper TR period and lower VAL
period) showing: the average interval, the variation
of the interest rate from one day to another (y axis),
the observed maturity period (x axis) and the success
rate of the predictive model denoted by the colour
code shown in the legend.

they will o�er a bigger margin between one day and
another (being the objective of the trader operations)
but also due to this volatility it makes the estimations
less reliable, so the e�ciency metrics used decrease.
In any case the results shown are very favourable, due
to the high performance of the models, so it is con-
cluded that this project is very bene�cial as support
for trading operations.

5 Conclusions

The feasibility of using functional models on �nancial
data sets has been tested in this project and some
optimistic conclusions have been reached.

By applying the decomposition into functional

Figure 23: Graphs (upper TR period and lower VAL)
showing: the average interval of the variation of the
interest rate from one day to another (y-axis), the
observed maturity period (x-axis) and the MAE error
made by the predictive model when estimating the
variation interval (arranged on the y-axis) denoted
by the colour code shown in the legend.

principal components, the reduction of work space is
e�ectively generated, in order to work in a comfort-
able scenario. This methodology generates an error
called Reconstruction Error, which marks the limit of
the model's improvement. It also o�ers a reference to
determine the number of FPC to be included in the
optimal model.

In the bibliography, it is observed that one of the
most used methods once the decomposition in func-
tional principal components has been made is the
ARIMA model. In this way, we proceed to reproduce
this process by training this autoregressive model,
generating a starting point in the estimates of the
�nancial data set.

As an innovation for the project, stock market val-
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ues related to the EURIBOR curves have been used.
For this purpose, the correlation of �nancial products
with the series of coe�cients of the principal compo-
nents is analysed and the most correlated series are
selected. The methodologies applied with the set of
exogenous variables have been carried out with the
intention of studying the viability of this proposal, so
a deep study will be necessary in future works.

The models used to adjust the exogenous variables
and the di�erent series of coe�cient have been the
Transfer Function and Multi-Layer Perceptron mod-
els. The results of the errors obtained show that
these models generate more robust estimates. There-
fore, it is concluded that the FDA models on �nan-
cial products work more e�ciently by including ex-
ogenous variables and also perform better in a high
volatility period.

Finally, a possible application of this project in the
real world of �nance has been developed. Being a
support for the operations traders of purchase-sale.
Very optimistic results are shown in the predictions
of the EURIBOR curves.
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