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Abstract: One of the ways to make cost-competitive electricity, from concentrated solar thermal
energy, is increasing the thermoelectric conversion efficiency. To achieve this objective, the most
promising scheme is a molten salt central receiver, coupled to a supercritical carbon dioxide cycle. A
key element to be developed in this scheme is the molten salt-to-CO2 heat exchanger. This paper
presents a heat exchanger design that avoids the molten salt plugging and the mechanical stress due
to the high pressure of the CO2, while improving the heat transfer of the supercritical phase, due to its
compactness with a high heat transfer area. This design is based on a honeycomb-like configuration,
in which a thermal unit consists of a circular channel for the molten salt surrounded by six smaller
trapezoidal ducts for the CO2. Further, an optimization based on the exergy destruction minimization
has been accomplished, obtained the best working conditions of this heat exchanger: a temperature
approach of 50 ◦C between both streams and a CO2 pressure drop of 2.7 bar.

Keywords: Solar Thermal Power Plants; supercritical CO2 cycles; MS-to-CO2 heat exchanger;
thermo-economic optimization; exergy destruction minimization

1. Introduction

The main advantages of the energy supplied through Solar Thermal Power Plants (STPPs) are its
capacity, reliability and stability to the grid, which in turn allows the renewable electricity percentage
to be also higher. However, when compared to the costs of solar photovoltaic electricity, the reduction
in cost must still be very large for solar thermal electricity, to be competitive. One of the ways to
achieve this is by increasing global conversion efficiency by coupling the solar field to a supercritical
cycle. In this scheme, a reliable design of the heat exchanger between the solar field and the Brayton
cycle is essential for the technical viability of these STPPs.

Within the SunShot program [1], the U.S. Department of Energy (DOE) has identified three
potential schemes for the next generation of STPPs, based on the Heat Transfer Fluid (HTF) in the
receiver: molten salts, falling particles or gas phase. In all the schemes, the solar field is coupled to a
supercritical carbon dioxide (sCO2) cycle, achieving high thermo-electric conversion efficiency.

The scheme based on a molten salt central receiver coupled to a sCO2 Brayton cycle is the most
conventional one, as the molten salt systems are a state-of-art technology. Besides that, the Thermal
Energy Storage (TES) associated, provides this scheme of a high capacity factor and a dispatchable
electricity production [2]. This scheme is showed in Figure 1.
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Figure 1. Scheme of the complete STPP (Solar Thermal Power Plants) with the CHHE (Compact 
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technological difficulties of these type of HXs: the mechanical stress due to the high pressure of the 
supercritical phase; the need of improving the heat transfer of the supercritical fluid; and overall, the 
molten salt plugging in the microchannels of a Compact Heat Exchanger (CHX), as it will be 
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Supercritical CO2 Brayton cycles have a very high efficiency, above 50%, even with dry-cooling 
[3], so their integration in a STPP can yield to an overall performance increase. Wang et al. [4] 
identified six possible supercritical cycles that can be integrated in a molten salt central receiver 
system with thermal storage: simple recovery cycle; recompression cycle; precompression cycle; 
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according to different parameters, being the most important ones: the cycle efficiency; the complexity 
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and the CO2 temperature increment in the source heat exchanger, as this value determines the molten 
salt volume in the solar field. 

The intercooling cycle is the one with higher thermal efficiency when the thermal source 
temperature ranges from 600 °C to 800 °C, followed by the recompression cycle, that is also the 
simplest. Regarding the temperature difference in the source heat exchanger, the partial cooling 
layout is the one with the largest increment. In summary, three cycles can be identified to be the most 
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partial-cooling cycle [4,5] 

The central receiver is usually a external-type with a surrounding heliostat field [1], although 
the cavity-type is recommended in recent investigations when the working temperature is high [2], 
because the radiation heat loss is lower compared to external receivers working at the same 
temperature. At last, the molten salt thermal storage consists of two tanks of molten salts, which have 
been sized to provide the nominal thermal power to the supercritical cycle for 6 h, with a charging 
time of 6 h. 
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so a literature review on this heat exchanger is presented below. 
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Nevertheless, several challenges arise in this technology, like an efficient central receiver working
at a temperature higher than 700 ◦C; a supercritical cycle that maximizes performance and minimizes
cost, taking into account the peculiarities of the solar field to which it is coupled; and, between these
two subsystems, a key element is the heat exchanger (HX) to transfer energy from the molten salt in
the solar field to the CO2 in the Brayton cycle, the Source Heat Exchanger (SHX). This paper deals
in depth with this last equipment, proposing a design that can overcome some of the technological
difficulties of these type of HXs: the mechanical stress due to the high pressure of the supercritical
phase; the need of improving the heat transfer of the supercritical fluid; and overall, the molten salt
plugging in the microchannels of a Compact Heat Exchanger (CHX), as it will be explained below.

Supercritical CO2 Brayton cycles have a very high efficiency, above 50%, even with dry-cooling [3],
so their integration in a STPP can yield to an overall performance increase. Wang et al. [4] identified
six possible supercritical cycles that can be integrated in a molten salt central receiver system with
thermal storage: simple recovery cycle; recompression cycle; precompression cycle; intercooling
cycle; partial-cooling cycle; and split expansion cycle. These cycles can be assessed according to
different parameters, being the most important ones: the cycle efficiency; the complexity of the cycle
compared to the most conventional one, the recompression cycle (represented in Figure 1); and the
CO2 temperature increment in the source heat exchanger, as this value determines the molten salt
volume in the solar field.

The intercooling cycle is the one with higher thermal efficiency when the thermal source
temperature ranges from 600 ◦C to 800 ◦C, followed by the recompression cycle, that is also the
simplest. Regarding the temperature difference in the source heat exchanger, the partial cooling
layout is the one with the largest increment. In summary, three cycles can be identified to be the most
suitable for coupling to a molten salt central receiver: recompression cycle, intercooling cycle and
partial-cooling cycle [4,5]

The central receiver is usually a external-type with a surrounding heliostat field [1], although the
cavity-type is recommended in recent investigations when the working temperature is high [2], because
the radiation heat loss is lower compared to external receivers working at the same temperature. At
last, the molten salt thermal storage consists of two tanks of molten salts, which have been sized to
provide the nominal thermal power to the supercritical cycle for 6 h, with a charging time of 6 h.

This paper is focused in the heat exchanger between the solar field and the supercritical cycle, so a
literature review on this heat exchanger is presented below.

There are several designs proposed in the literature for MS-to-CO2 heat exchangers, for both
nuclear and solar applications, since both technologies use the scheme of a thermal source coupled to a
supercritical CO2 cycle, as an alternative to increase performance.
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The simplest design for this heat exchanger is a Shell and Tube Heat Exchanger (STHX), in which
the CO2 at supercritical pressure circulates inside the tubes, and the molten salt trough the shell. This
HX is well suited in supercritical cycles in which the source thermal energy is supplied through the
low pressure side of the layout (85 bar approximately), as the one presented in [6]. Nevertheless, if a
conventional supercritical cycle is used, the turbine inlet pressure should be limited to 200 bar, which
constrains the cycle efficiency. There are several reasons that make the STHX not the most appropriate
in conventional supercritical cycles: the great tube thickness due to the high pressure of the CO2 yields
to a limited heat transfer and performance [7]; and, although the molten salt plugging does not occur
in the shell, this fluid can be kept retained in the baffles and interstices of the HX, also yielding to a
reduction in the heat transfer [8,9].

A more advanced design is the Printed Circuit Heat Exchanger (PCHE), which consists of plate
sheets joined by diffusion-bonding, alternating hot-cold rows of semi-circular channels [10,11]. These
microchannels withstand the high pressure of the CO2 (180–300 bar, approximately), and they also
improve the heat transfer of this fluid, as the convection coefficient and the hydraulic diameter are
inversely related. Nevertheless, PCHEs have the drawback of the viscous molten salt plugging in the
microchannels. This issue has been studied in several reports of both nuclear [12] and solar [13] power
plants, but very few designs address this problem. The most recent designs of MS-to-CO2 based on
PCHE are focused on the heat transfer improvement by using airfoil fins in the microchannels [14–16].

Only one design has been found in the bibliography that tries to solve the problem of the molten
salt plugging in microchannels [17]; the basic principle of this design is to face two plate sheets intended
for molten salt, so that a circular channel is formed for this fluid, whereas the CO2 still circulates
through semi-circular channels. Although this design does not optimize the heat transfer, the plugging
and corrosion problems of the MS are reduced; nevertheless, the channel dimension for the molten salt
is still small.

To overcome the problems detailed in the two HX configurations described above, this work
proposes and studies a new MS-to-CO2 HX design. From the analysis of the state of the art, it is clear
that it would be desirable to increase the ratio of heat transfer area compared to the volume of the HX,
that is, the most suitable design is a Compact Heat Exchanger (CHX); the lower convection coefficient
of the supercritical phase is compensated by the larger area to transfer the thermal energy. But, at the
same time, the MS channel must be larger enough to avoid plugging. To meet both conditions, a small
compact shell and tube design [18] has been modified for the thermal duty and working pressure
required by the supercritical cycle. The cross section of this design is a compact shell consisting of
many thermal units like the one shown in Figure 2. The MS goes through a circular duct that is
surrounded by 6 trapezoidal ducts, through which the CO2 circulates. Repetition of this unit gives the
cross section of the shell a honeycomb-like appearance. Because of that, this HX will be referred as
Compact Honeycomb Heat Exchanger (CHHE).

The thermo-mechanic model of this CHHE is explained in Section 2; an optimization of this
design is accomplished in Section 3, by means of an exergy destruction minimization. As a result, the
optimum working conditions of this design are set in Section 4.



Entropy 2020, 22, 883 4 of 17
Entropy 2020, 22, x FOR PEER REVIEW 4 of 17 

 

 
Figure 2. Cross section of the Compact Honeycomb Heat Exchanger and thermal unit. 

The thermo-mechanic model of this CHHE is explained in Section 2; an optimization of this 
design is accomplished in Section 3, by means of an exergy destruction minimization. As a result, the 
optimum working conditions of this design are set in Section 4. 

2. Thermal Model and Boundary Conditions of the Compact Honeycomb Heat Exchanger 

2.1. Thermal Inputs and Boundary Conditions from the Supercritical Cycle and the Solar Field 

The CHHE is located between the supercritical cycle and the solar field as shown in Figure 1. 
The supercritical cycle is a conventional recompression cycle that is one of the three layouts (with the 
partial cooling and the intercooling) that show better characteristics to be coupled to a molten salt 
solar tower plant [4,5]. The cycle power output is 50 MWe, for which, the thermal energy in the CHHE 
is 100.99 MWth. Table 1 shows the thermodynamic properties of the state points following the 
numbering marked in Figure 1. 

Table 1. Thermodynamic properties of the state points of the recompression sCO2 cycle. 

 
Recompression Cycle 

P (bar) T (°C) h (kJ/kg) 
1 200 688 701.3 
2 86.2 574.1 566.5 
3 85.8 224.2 158.4 
4 85.4 122.9 39.09 
5 85 50 −80.9 
6 201.2 118.3 −41.57 
7 200.8 219.6 117.4 
8 200.8 212 107.2 
9 200.8 217.7 114.9 

10 200.4 545.6 522.9 
Cycle power (MWe) 50.00 

Source thermal power (MWth) 100.99 
Cycle efficiency (%) 49.57 

Figure 3 shows the temperature-entropy diagram of this supercritical cycle. As it can be seen, 
this cycle is characterized by two compressors (processes 5, 6 and 4–8) and two recuperators, for low 
and high temperature (LTR and HTR, respectively). The source heat exchanger is characterized by 
process 10–1. 
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2. Thermal Model and Boundary Conditions of the Compact Honeycomb Heat Exchanger

2.1. Thermal Inputs and Boundary Conditions from the Supercritical Cycle and the Solar Field

The CHHE is located between the supercritical cycle and the solar field as shown in Figure 1.
The supercritical cycle is a conventional recompression cycle that is one of the three layouts (with
the partial cooling and the intercooling) that show better characteristics to be coupled to a molten
salt solar tower plant [4,5]. The cycle power output is 50 MWe, for which, the thermal energy in the
CHHE is 100.99 MWth. Table 1 shows the thermodynamic properties of the state points following the
numbering marked in Figure 1.

Table 1. Thermodynamic properties of the state points of the recompression sCO2 cycle.

Recompression Cycle

P (bar) T (◦C) h (kJ/kg)

1 200 688 701.3
2 86.2 574.1 566.5
3 85.8 224.2 158.4
4 85.4 122.9 39.09
5 85 50 −80.9
6 201.2 118.3 −41.57
7 200.8 219.6 117.4
8 200.8 212 107.2
9 200.8 217.7 114.9

10 200.4 545.6 522.9
Cycle power (MWe) 50.00

Source thermal power (MWth) 100.99
Cycle efficiency (%) 49.57

Figure 3 shows the temperature-entropy diagram of this supercritical cycle. As it can be seen,
this cycle is characterized by two compressors (processes 5, 6 and 4–8) and two recuperators, for low
and high temperature (LTR and HTR, respectively). The source heat exchanger is characterized by
process 10–1.
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2.2. Heat Transfer Fluids and Mechanical Design of the CHHE

As the CHHE is located between the supercritical Brayton cycle and the solar field, the thermal
fluids of this heat exchanger are the CO2 (cold side) and the molten salt (hot side). The CO2

thermodynamic properties have been obtained from NIST database [19]. On the other hand, the molten
salt selected as HTF in the solar field and, thus, in the CHHE is a ternary chloride salt MgCl2/NaCl/KCl.
This salt has a low melting point (385 ◦C) and a high thermal decomposition temperature (>800 ◦C),
yielding to a large working temperature range; it has the cheapest estimated cost; and its volumetric
heat capacity is higher, so its volume for a given thermal storage size is lower. Table 2 summarizes the
main thermal properties of the ternary chloride molten salt selected [2].

Table 2. Thermal properties of the ternary chloride salt MgCl2/NaCl/KCl. (Source: [2]).

Thermal Property Correlation

Specific heat (J/kg/◦C) cp = 1180
Density (kg/m3) ρ = 1899.3− 0.43·T(◦C)

Thermal conductivity (W/m/◦C) k = 0.5423− 0.0002·T(◦C)

Dynamic viscosity (Pa·s) µ = 8.25·10−6
· exp

(
11874.71735

(1350.84595+T(◦C))

)

The alloy selected for the CHHE is Haynes 242 (65%Ni-8%Cr-25%Mo, % weight). This alloy shows
a good corrosion resistance in MS at temperatures higher than 700 ◦C, due to the higher percentage
of molybdenum [20]. Besides that, the maximum allowable stress at the design temperature is very
high, so it can withstand the high pressure difference at the working conditions [21]. The minimum
thickness between the CO2 and the MS is calculated applying ASME codes [22].

The thermal power required in the source heat exchanger is 100.99 MWth, as pointed above. The
CHHE has been divided in three modules of 33.66 MWth. The inlet temperatures of both the MS
and the CO2 are also fixed by the solar field and the supercritical cycle, respectively. The CHHE is
considered to be a balanced counter-flow heat exchanger.

There are two thermal inputs that will be parametrized for the optimization procedure in next
section: the temperature approach (TAMS-CO2) between both streams, considering a balanced HX, and
the pressure drop of the supercritical phase (dPCO2), which is the main pressure drop; once the CO2

pressure drop is fixed, the heat exchanger length is also fixed, and thus the MS pressure drop.
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For a particular value of each of the previous two parameters (TAMS-CO2 and dPCO2), the outlet
temperatures and the velocities of both streams are fixed. In this way, all the thermophysical properties
that define the heat exchanger are established.

Figure 4 represents a thermal unit of the CHHE accounting for the dimensions. Regarding the
geometric parameters of the heat transfer unit, the MS channel diameter (d1 in Figure 4) has been set to
0.5 inch (12.7 mm), whereas the CO2 trapezoidal channel width (h2 in Figure 4) has been set to 5.7 mm.
The trapezoidal shape of the duct cross section has been chosen because of geometric reasons, since in
this way it is easy to form a thermal unit with a hexagonal shape whose repetition allows creating
a honeycomb-like structure. The MS channel diameter is the minimum value reported in [23], that
ensures the salt flow without clogging; and the CO2 channel dimensions have been selected to avoid a
great pressure drop without penalizing the heat transfer due to a lower CO2 velocity. The pressure
drop in the source heat exchanger of a STPP ranges from 2 to 3 bar, depending on the daily operation
hours; this a greater value than that of baseload plants [24], that can operate continuously.
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2.3. Thermo-Fluid Dynamic Model of the CHHE

Once geometric and thermal parameters are defined, the CHHE is calculated by a two dimensional
thermo-fluid dynamic model. The heat exchanger is divided in N heat exchanger elements (HXEs),

along the longitudinal direction, of the same thermal duty:
.

QHXE =
.

Q
N . In every element, the

thermophysical properties of both fluids are assumed constant and equal to the average between the
inlet and the outlet.

The overall heat transfer coefficient of the counterflow elementary CHHE, UHXE
(

W
m2·◦C

)
, is

calculated by Equation (1).

UHXE =
1

1
hconv1

+ 1
Uw

+ 1
hconv2

(1)

UW
(

W
m2·◦C

)
is the thermal transfer coefficient for the wall between channels, that accounts for an

equivalent constant thickness [25]; and hconv (W/m2/◦C) is the convection heat transfer coefficient.
In this particular case, the flow, for both MS and CO2, is fully-developed turbulent (Re > 2300), so

Gnielinski correlation is recommended [18], given by Equation (2).

NuDh =
( fc/8)·(ReDh−1000)·Pr

1+12.7·
(√

fc
8

)
·(Pr2/3−1)

·

(
Pr

Prsi

)0.11

where :

fc = [1.82·log(ReDh) − 1.64]−2

(2)
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This correlation is valid for Reynolds numbers ranging from 2300 to 5 × 105 and Prandtl numbers
from 0.5 to 2000. In the above equation fc is the friction factor, calculated as needed from the Filonenko
correlation [26]; ReDh is the Reynolds number based on the inner hydraulic diameter; Pr is Prandtl
number at the bulk fluid temperature; Prsi is the Prandtl number at the inner duct temperature, tsi.

In case of laminar flow (only for molten salt under particular conditions), the Nusselt number is
constant, as seen in Equation (3).

Nu = 4.3636 f or ReDh < 2300 (3)

Once the value of the global heat transfer coefficient is known, length of every HXE is calculated
by means of the basic equation of heat transfer, Equation (4).

.
QHXE = UHXE·AHXE·∆Tm (4)

.
QHXE(W) is the thermal duty of every HXE; AHXE

(
m2

)
is the heat transfer area of every HXE;

∆Tm (◦C) is the mean temperature, that is constant, as the CHHE is balanced and the CO2 is considered
as an ideal gas. The length of every HXE, LHXE (m), is calculated from the heat transfer area, AHXE

(
m2

)
.

Finally, friction pressure destruction is calculated by means of the Darcy-Weisbach equation [18],
for both fluids:

∆Pi =
1
2
· fD,i·

(
LHXE

Dh,i

)
·ρave,i·u2

ave,i (5)

where Dh (m) is the hydraulic diameter of the duct; ρ (kg/m3) is the average fluid density; u (m/s)
is the average fluid velocity; and fD is the Darcy friction factor, that is calculated by the Techo et al.
correlation [18], for turbulent flow (104

≤ ReDh ≤ 107); or the Hägen-Poiseulle correlation [18], in case
of laminar flow (ReDh ≤ 2300); finally, the subindex i refers to the each fluid: molten salt or CO2.

Figure 5 shows the temperature evolution of the MS and the CO2 for a CHHE with a temperature
approach TAMS-CO2 = 52 ◦C and a pressure drop dPCO2 = 2.75 bar. As it will be explained in next
section, these values minimize the exergy destruction for the CHHE proposed.
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From Figure 5, it is concluded that temperature evolution is almost lineal for both streams, which
means that specific heat is nearly constant. This is clear for the molten salt, which is an incompressible
fluid approximately, but also for the supercritical CO2, as this fluid is at very high temperature and
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far away from the critical point. Figure 6 shows that specific heat ranges from 1.236 kJ/kg/◦C to 1.258
kJ/kg/◦C in the working temperature values (from 520 ◦C to 650 ◦C).Entropy 2020, 22, x FOR PEER REVIEW 8 of 17 
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The main thermal and geometric parameters of this optimal CHHE are shown in Table 3. As seen
in this table, this CHHE is divided into 6 smaller modules: 3 modules in parallel, in order not to have a
shell diameter greater than 1 m; and 2 modules in series, for not exceeding 15 m long. As this HX is a
new and not built design, it is difficult to set manufacturing restrictions, so these maximum values
have been set according to the STHX limitation, in which the ratio shell diameter to length must be
greater than 1/15.

Table 3. Main thermal and geometric characteristics of the optimal CHHE simulated.

CO2-MS COMPACT HONEYCOMB HEAT EXCHANGER

Sizing and geometric characteristics

Number of modules in parallel 3
Number of modules in series 2

Shell diameter of each module(m) 0.96
Length of each module(m) 12.09

Heat transfer area of each module (m2) 424.66
Number of channels of each module (MS) 440
Number of channels of each module (CO2) 2640

MS circular channel diameter (m) 0.0127
CO2 trapezoidal channel width (m) 0.0056

Material Haynes-242

Thermal characteristics

Thermal power (MWth) 33.664
Average global heat transfer coefficient (W/m2/◦C) 1564.32

Temperature Approach (◦C) 50.89
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Table 3. Cont.

CO2-MS COMPACT HONEYCOMB HEAT EXCHANGER

Primary (Chloride molten salt)

Maximum velocity (m/s) 2.49
Primary inlet temperature (◦C) 700

Primary inlet pressure (bar) 25
Primary mass flow rate (kg/s) 221.82

Primary outlet temperature (◦C) 571.39
Primary outlet pressure (bar) 22.44
Primary pressure drop (bar) 2.56

Average convection heat transfer coefficient
(W/m2/◦C) 4360.55

Secondary (CO2)

Maximum velocity (m/s) 10.27
Secondary inlet temperature (◦C) 520.51

Secondary inlet pressure (bar) 202.68
Secondary mass flow rate (kg/s) 209.64

Secondary outlet temperature (◦C) 649.11
Secondary outlet pressure (bar) 200
Secondary pressure drop (bar) 2.68

Average convection heat transfer coefficient
(W/m2/◦C) 2959

The thermal model presented in this section has not been validated with empirical results, as it is a
new design of heat exchanger. Nevertheless, the correlations used in this model, for both the CO2 and
the ternary chloride molten salt have been validated in other HX designs for the same performance, by
means of a numerical model in CFD, as the one presented in [17].

3. Optimization Procedure of the Heat Exchanger Based on the Exergy Destruction Minimization

The optimization of the CHHE proposed is based on the minimization of the exergy destruction,
or entropy generation, in the heat exchanger. Assigning monetary values to these irreversibilities, this
method allows to assess the cost of exergy destruction on each stream of the heat exchanger against its
capital cost. Thus, the new objective function to be minimized is the Annual Total Cost (ATC), which
takes into account the investment cost and the operation cost, including the irreversibilities in this
last one.

ATC = CRF·CC + CELF·CE·Y·∆
.
Exdestroyed (6)

In Equation (6), CRF is the capital-recovery factor and CELF is the constant-escalation levelization
factor, both defined below; CE is the cost per unit of exergy ($/Wh), which has been taken as 0.00005$/Wh,
according to several references [27,28]; Y is the yearly operation time, calculated for a solar multiple
equal to 2: Y = 365*12 h; CC is the investment cost of the CHHE; finally, ∆

.
Exdestroyed is the total exergy

destruction due to the most important irreversibilities in the heat exchanger.
The capital-recovery factor (CRF) and the constant-escalation levelization factor (CELF) are

calculated by means of Equations (7) and (8).

CRF =
ie f f ·

(
1 + ie f f

)n(
1 + ie f f

)n
− 1

(7)
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CELF = CRF· k·(1−kn)
(1−k)

where

k = 1+rn
1+ie f f

(8)

In the above equations, ieff (%) is the weighted average capital cost, and n (years) is the economic
life o span period of the power plant; rn is the nominal escalation rate, which represents the annual
change in cost and includes the effects of both the real escalation rate rr and the inflation ri. The values
of the parameters defined above are summarized in Table 4.

Table 4. Parameters for the thermo-economic analysis and optimization.

Economic Parameters

Weighted average capital cost ieff (%) 7
Capital recovery factor CRF (%) 8.58

Nominal escalation rate (%) 5
k (%) 98.13

Constant escalation levelization factor (CELF) 19.74
Economic life (years) 25

The next two subsections are devoted to the calculation of the Exergy Destruction (∆
.
Exdestroyed)

and the Capital Cost (CC) of the Compact Honeycomb Heat Exchanger.

3.1. Accounting for the Exergy Destruction in the CHHE

Many researchers [29,30] have used the minimization of entropy generation, or exergy destruction,
method to optimize the design of heat exchangers.

The causes of exergy destruction in a heat exchanger are: the finite temperature difference between
hot and cold fluids, pressure drops on both fluids, and exergy losses associated to the non-adiabatic
condition of a real heat exchanger, with a heat leakage with the environment; taking the limit of the
system in the outer wall of the heat exchanger, these exergy losses constitute external irreversibilities
to the heat exchanger.

In general, the total (internal and external) exergy destruction measured, normalized by the
thermal power of the heat exchanger, is given by Equation (9).

∆
.
Exd,total
.

Qth,HX

=
∆

.
Exd

.
Qth,HX


∆T

+
∆

.
Exd

.
Qth,HX


∆P,h

+
∆

.
Exd

.
Qth,HX


∆P,c

+
∆

.
Exd

.
Qth,HX


loss

(9)

These irreversibilities are calculated taking into account Gouy-Stodola Theorem [31], obtaining
the equations summarized in Table 5, valid for ideal gas or incompressible liquid. For this exergy
analysis, CO2 and MS can be assimilated to ideal gas and incompressible liquid, respectively. Dead
state temperature (T0) has been taken as 298 K.

Table 5. Equations to calculate normalized exergy destruction in a heat exchanger (Source: [32]).

Finite temperature difference
∆

.
Exd.

Qth,HX

]
∆T

= T0·
(

1
Tc,lm
−

1
Th,lm

)
where T j,lm =

T j,i−T j,o

ln
( Tj,i

Tj,o

) , j = c or h

Pressure drops on hot and cold fluid sides ∆
.
Exd.

Qth,HX

]
∆P, j

= T0
T j,in
·

1
.

Qth,HX
·

( .
m·∆P
ρin

)
j
, j = c or h

Heat loss (to environment) ∆
.
Exd.

Qth,HX

]
loss

=

.
Qth,loss
.

Qth,HX
·

(
1− T0

Th

)
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For the heat exchanger under study, the two main sources of exergy destruction are the finite
temperature difference and the friction pressure drop on both sides, so these are the two irreversibilities
that are going to be considered in the optimization procedure.

∆
.
Exd,total = ∆

.
Exd∆T + ∆

.
Exd∆P (10)

3.2. Capital Cost Estimation of the CHHE

The capital cost of the CHHE is estimated by means of a base cost, CB, affected by three correction
factors: pressure factor, FP, material factor, FM, and tube length correction factor, FL [32].

CCHX = FP·FM·FL·CB (11)

The base cost, CB ($), is calculated by Equation (12):

CB = exp{11.0545− 0.9228·ln(AHX) + 0.09861·[ln(AHX)]
2
} (12)

In Equation (12), AHX
(

f t2
)

is the heat transfer area of the CHHE.
The pressure factor, FP, the material of construction factor, FM, and the tube length correction

factor, FL, are given by Equations (13) and (14) and Table 6, respectively:

FP = 0.9803 + 0.018·
( P

100

)
+ 0.017·

( P
100

)2
(13)

FM = a +
(AHX

100

)b
(14)

Table 6. Parameters for the thermo-economic analysis and optimization.

Tube Length (ft) FL

8 1.25
12 1.12
16 1.05
20 1.00

In Equation (13), P (psia) is the working pressure; in Equation (14), AHX
(

f t2
)

is the heat transfer
area of the CHHE, the constant a is equal to 9.6, and the constant b is equal to 0.06.

4. Results from the Optimization of the Compact Honeycomb Heat Exchanger

As said in Section 2, the optimization procedure to minimize the objective function Annual
Total Cost (Mio.$) is done on the following parametrized thermal inputs: the temperature approach
(TAMS-CO2) between both streams, and the pressure drop of the supercritical phase (dPCO2). TAMS-CO2

ranges from 30 ◦C to 60 ◦C, whereas dPCO2 ranges from 1.5 bar to 3.25 bar. These two parameters
(pressure drop and temperature approach) have been considered in several optimization studies of
heat exchangers, as they affect both the investment and the operation costs [33,34].

The greater the temperature approach, the higher the exergy destruction (Figure 7) and the
operation cost (Figure 8), but the lower the capital cost because the heat exchange area is also lower
(Figure 9).
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In the same way, the exergy destruction increases as the pressure drop increases, following
expression in Table 5 and Figure 7. Instead, the greater the pressure drop, the lower the heat exchange
area and the investment cost (Figure 9).

It is important to note that the exergy destruction increases with a greater pressure drop, since the
entropy generation by friction also increases; and with the temperature difference between the two
streams in the HX, as shown in the Figure 7.
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The exergy destruction influences both the operation and maintenance cost and the investment
cost. As can be seen in Figure 8, the operation and maintenance cost is proportional to the exergy
destruction and follows the same variation: it increases with increasing exergy destruction. However,
the investment cost in CHHE decreases as exergy destruction increases, as shown in Figure 9; in this
case, a cheaper CHEE (due to smaller dimensions) also exhibits a more limited performance.

This different trend in O&M costs versus investment costs, yields to the minimum in the annual
total cost observed in Figure 10.
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Figure 10 plots the results of the optimization, showing that there is a minimum value for the
ATC equal to 0.547 Mio.$, for 2.7 bar and 51 ◦C, approximately. These working conditions are very
different of those reported in other type of HXs [24], in which pressure drop is 0.5 bar, whereas the
temperature difference is 10 ◦C, approximately. It must be taken into account that this source heat
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exchanger only works 12 h a day, as it is located in a STPP, so cost derived of the irreversibilities in the
operation are less penalized than if the power plant works continuously.

5. Conclusions

This work presents a new design for the source heat exchanger between the molten salt in the solar
field and the supercritical CO2 in a Brayton cycle. This heat exchanger is compact, so the heat transfer
of the supercritical phase in enhanced; and, at the same time, the molten salt duct is large enough to
avoid plugging problems. This last characteristic is the main advantage of this design compared to
other designs presented in the bibliography, since it allows the technological viability of this type of
STPP based on a MS solar field and a sCO2 cycle.

The structure best suited to the above requirements is the honeycomb: the thermal unit of this
compact heat exchanger consists of a circular channel for the molten salt, surrounded by 6 trapezoidal
channels for the CO2. The thermal model of this new Compact Honeycomb Heat Exchanger (CHHE)
is implemented and explained.

It is important note that the objective of this design is not to attain the highest heat transfer
performance, but the technical feasibility of the heat transfer between a supercritical fluid, at high
pressure, and a viscous liquid, that can cause plugging in the small channels of a CHX.

An economic optimization of the CHHE is also accomplished. Previous to this optimization
procedure the main sources of exergy destruction have been identified: the temperature approach
between both streams and the pressure drop on both fluids. If an exergy cost is defined and assigned
to these irreversibilities, they can be included as an operation cost, that can be compared to the initial
investment cost. In this way, the objective function Annual Total Cost is minimized as a function of the
two thermal inputs: TAMS-CO2 and dPCO2. Results show that there is a minimum for 2.7 bar and 51 ◦C,
approximately. These values are higher than others reported in bibliography, probably because the
operational cost are lower, as the operation period of this STTP is lower than that of a conventional
power plant.

Other future works include a numerical CFD model to validate the analytical model described in
this paper, and to show possible thermo-mechanical problems. A later objective would be to build a
laboratory scale model to obtain empirical results.
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Nomenclature

Acronyms
ATC Annual Total Cost
CELF Constant-escalation levelization factor
CFD Computational Fluid Dynamics
CHHE Compact Honeycomb Heat Exchanger
CHX Compact Heat Exchanger
CRF Capital-recovery factor
DOE U.S Department of Energy
HX Heat Exchanger
MS Molten salt
PCHE Printed Circuit Heat Exchanger
SHX Source Heat Exchanger
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STHX Shell and Tube Heat Exchanger
STPP Solar Thermal Power Plant
TES Thermal Energy Storage
Latin letters
A Area (m2)
c Specific heat (J/kg/C)
C Cost ($)
CC Capital Cost ($)
CE Cost per unit of exergy ($/Wh)
CB Base cost ($)
Dh Hydraulic diameter (m)
d Diameter (m)
dP Pressure Drop (Pa)
.
Ex Exergy (W)
f Darcy pressure friction loss factor
FP Pressure factor
FM Material of construction factor
FL Tube length correction factor,
hconv Convection heat transfer coefficient (W/m2/C)
ieff Weighted average capital cost
k Thermal conductivity (W/m/C)
L Length (m)
.

m Mass flow rate (kg/s)
N Number of heat exchanger elements
n Number of years
Nu Nusselt number
p Pressure (Pa)
Pr Prandtl number
.

Q Thermal power (W)
rn Nominal escalation rate
Re Reynolds number
T Temperature ( C)
TA Temperature Approach ( C)
U Overall heat transfer coefficient (W/m2/C)
u Velocity (m/s)
V Volume (m3)
Y Yearly operation time
Greek Letters
ρ Density (kg/m3)
µ Dynamic viscosity (Pa·s)
Subscripts
ave Average
net Net
p Pressure
th Thermal
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