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In a Nutshell 

 

Power systems are immersed in deep changes that will shape their future for the coming 

decades. The key to this transformation will be the shift from a fossil fuel system to a 

low-carbon economy, which will involve the extensive installation of renewable 

generation. Although, in general, traditional plants are placed at the planner’s discretion, 

the location of these renewable power plants depends on the abundance of the resource 

they use. In the case of wind and solar power, these high-potential areas are typically far 

from the highly populated regions where demand concentrates and are often poorly 

interconnected to the rest of the system. Therefore, the development of the transmission 

network will be necessary to accommodate this new generation. 

In addition, the long permitting process involved in transmission expansion means that, 

while new generation can be installed in one to three years for some technologies, a new 

transmission line typically takes ten years from planning to full deployment. This 

implies that transmission expansion decisions must anticipate new generation 

developments. The liberalization of generation markets introduces further 

complications, as companies take independent decisions and there is no binding 

generation expansion plan to guide transmission investments. Then, Transmission 

Expansion Planning (TEP) must incorporate the uncertainties inherent to generation 

expansion. Consequently, it is necessary to develop methods to propose robust, flexible 

plans that are able to adapt to the evolution of the system as the future unfolds. In 

addition, the integration of markets results in planning increasingly large areas where it 

is no longer possible to rely on the experience of a TSO (Transmission System Operator) 

to understand the structure of the network and provide functions such as the 

identification of potentially interesting candidate transmission lines. Objective, 

automatic techniques to perform these functions would be greatly beneficial. Finally, the 

long-term planning of large systems results in computationally complex problems for 

which the currently used optimization techniques can fall short. 

Identifying these challenges is the starting point and inspiration of this thesis, which we 

structure as an organized response in the form of a series of innovative techniques. These 

contributions are rigorous, academically sound but also have a special emphasis on 

being implementable for large-scale, real power systems. Academic and realistic case 

studies demonstrate the applicability of the developed techniques, but they are not the 

focus of this thesis. Case studies based on general TEP or the OWF problem have been 

used depending on where the technique was considered most beneficial. Case studies 

should only be valued as an illustration of the contributions rather than for their results 

themselves. 
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Finally, this thesis focuses on centralized TEP, where a TSO or group of TSOs take 

medium to long-term expansion decisions considering market operation for certain 

different futures for generation expansion, fuel prices or demand. We model these 

uncertainties as externally provided scenarios. The dynamics of generation expansion or 

the interactions between fuel and power prices are out of the scope of this thesis. 

Likewise, we model system operation in a centralized way. Similarly, although the 

ramifications of regulatory decisions are extremely interesting in planning decisions and 

other related issues such as transmission cost allocation; this thesis does not focus on the 

regulatory aspects of power transmission. 

This document is organized as follows. First, Chapter 1 presents our diagnosis of the 

challenges that make TEP such an interesting –and complex- problem in the current 

environment. These challenges are the main lines around which we articulate this thesis. 

Then, we review the vast amount of literature that deals with this subject in Chapter 2. 

The two optimization models that form the basis of this thesis are described in Chapter 

3. Chapter 4, Chapter 5, and Chapter 6 describe the main contributions of our work, 

which cover modeling, problem resolution and the interpretation of results. Finally, 

Chapter 7 extracts conclusions and outlines future lines of research. 

 

 



 

 

 

Chapter 1  
Motivation. The Current 

Challenges of Power Network 

Design 
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1.1. The Essential Role of Transmission in the Power Systems of 

the Future 

Electric power transmission is the long-distance transfer of electricity from generation 

plants to substations, from where the distribution network delivers it to individual 

consumers. The transmission grid is therefore the basic infrastructure that enables the 

large physical power flows that make the power system possible (Figure 1-1). 

 

Figure 1-1 – Transmission within power systems. 

The transmission grid imposes physical constraints to the power flows that traverse it 

(Kirchhoff’s Laws) and therefore to generation and demand. The main consequence of 

this is that not all dispatch solutions are feasible. Consequently, Transmission Expansion 

Planning (TEP), that is, “deciding which new lines will enable the system to satisfy 
forthcoming loads with the required degree of reliability” [1], is one of the key 

strategic decisions in power systems. Table 1-1 provides some context on the decisions 

that concern the transmission network, with TEP being the most important, highest-

impact problem. 

  Strategic Tactical  Operational 

Liberalized 
Network 
Activities 

Merchant line investment. 

Valuation of 

transmission rights and 

network contracts. 

Network contracting. 

Transmission rights 

trading. 

Centralized 
Network 
Activities  

Evaluation of transmission 

investments (particularly, 

interconnections). 

Evaluation of the impact of TEP 

on market agents. 

Transmission Expansion 
Planning. 

Network adequacy 

assessment. 

Network maintenance. 

Network cost allocation. 

Determination of 

payments for network 

use. 

Introduction of network 

constraints into the 

economic dispatch. 

Determination of nodal 

prices and losses. 

Network operation. 

Table 1-1 – Decisions that concern the transmission network. 
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Transmission investments are very capital intensive and have extremely long useful lives 

(of up to 40 years), so transmission investment decisions have a long-standing impact on 

the power system as a whole. For instance, ENTSO-e members have a joint budget over 

EUR 100 bn for their 2012- 2022 investments [2]. 

Country EUR bn Country EUR bn 
Austria 1.1 Ireland 3.9 

Belgium 1.9 Latvia 0.4 

Bosnia-Herzegovina 0.0 Lithuania 0.7 

Bulgaria 0.2 Luxemburg 0.3 

Croatia 0.2 Montenegro 0.4 

Czech Republic 1.7 Netherlands 3.3 

Cyprus 0.0 Norway 6.5 

Denmark 1.4 Poland 2.9 

Estonia 0.3 Portugal 1.5 

Finland 0.8 Romania 0.7 

France 8.8 Serbia 0.2 

FYROM 0.1 Slovakia 0.3 

Germany 30.1 Slovenia 0.3 

Greece 0.3 Spain 4.8 

Hungary 0.1 Sweden 2.0 

Iceland 0.0 Switzerland 1.7 

Italy 7.1 United Kingdom 19.0 

      

Total    104 

Table 1-2 – 2012-2022 Transmission investment budget for ENTSO-e members. 

This long-term impact on the power system is particularly relevant for the integration of 

new generation. In some cases, it is only necessary to connect a new power plant to the 

grid, which is relatively inexpensive compared to the long-distance connections and 

wide-range reinforcements that are required when generation is located in remote areas. 

This is increasingly the case given that renewable generation largely determines its 

location based on the availability of the resource, particularly wind and solar, which 

often abound in remote areas far away from the main demand centers. 

 

Figure 1-2 – Percentage of energy generated by renewable sources per country as of 2010 

[3]. 
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The European Union has set very aggressive emission reduction targets, establishing a 

20% reduction in greenhouse gases with respect to 1990 levels by 2020 and endorsing an 

objective of 80% reductions and 100% clean electricity by 2050 [4, 5]. Although 

considerable amounts of renewable power have been installed in the past couple of 

decades, most of the member countries are still far from these targets [3], as shown in 

Figure 1-2. Therefore, vast amounts of new generation are expected to be built in the 

medium term future. 

A substantial part of this new renewable generation will probably materialize in the 

form of coordinated, remarkably large projects. Some particularly interesting examples 

of this kind of projects are: 

� Desertec is an initiative proposed by a German-led consortium of companies that 

aims at installing a large amount of renewable generation (over 20 GW) in the 

Sahara desert and its surroundings, with the aim of exporting part of the generated 

energy to Europe (Figure 1-3) [6]. 

 

Figure 1-3 – Desertec vision [6]. 

� MedGrid, a French-based project, contemplates the exploitation of the renewable 

potential of the Mediterranean region in a coordinated way, installing over 20 GW 

of new capacity and supporting energy exchanges among the Mediterranean 

countries (Figure 1-4) [7]. MedRing proposes a similar concept [8]. 

 

Figure 1-4 – MedGrid vision [7]. 
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Offshore wind seems set to play a crucial role in Europe’s future energy landscape. 

At sea, winds are abundant and stable, and the shallow waters of the North and 

Irish Seas allow for the relatively inexpensive installation of the turbines [9]. In 

addition, Offshore Wind Farm (OWF) projects can avoid the public opposition and 

some of the environmental concerns raised by their onshore counterparts. The 

expanding pipeline of European projects has already installed 5.3 GW of offshore 

wind power [10], including the impressive London Array (Figure 1-5), (1 GW). 

Other colossal projects such as Dogger Bank (9 GW) [11] are attracting remarkable 

interest. 

 

Figure 1-5 –London Array Map [12]. 

These vast plants are not conceived as isolated projects. Projects such as the Offshore 

Grid Initiative focus on creating an offshore network that links neighboring 

countries and to which large wind farms can be connected [13], as shown in Figure 

1-6. 

 

Figure 1-6 – Vision map of the Offshore Grid Initiative [13]. 

All these ambitious projects depend critically on the transmission network. The 

necessary expansion can emerge in the form of isolated reinforcements, an extensive 

HVDC overlay to the existing network or an entirely new grid. The latter case, known as 
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greenfield expansion, applies to the particularly interesting case of offshore grid design, 

where no existing network can be used as the starting point for the developments. 

The design of these large-scale network expansions poses considerable challenges 
that make this problem extremely attractive from an academic perspective. This thesis 

aspires to address these challenges, developing new techniques for large-scale TEP, 

regarding the design of offshore networks and large OWFs as a highly relevant 

particular case. 

1.2. The New Challenges of Transmission Expansion Planning 

Having such a deep impact on the power system as a whole, it is not surprising that TEP 

has been studied in an academic context for decades. It has long been recognized that the 

uncertainties present in the problem, together with its combinatorial nature, constitute a 

considerable burden to its resolution [14]. However, relatively recent changes have 

substantially increased this complexity. This section presents our diagnosis of these 

challenges. 

Deregulation amplifies the uncertainties traditionally present in the problem. Generation 

Expansion Planning (GEP), which was once centrally performed, is now a decision taken 

privately by the companies participating in the generation market. This is especially 

important considering that, while building a power plant can take around one to three 

years for some technologies, transmission projects have a much longer lead-time. The 

permitting processes are increasingly difficult and, together with growing 

environmental concerns, can severely delay transmission projects, often for more than 

ten years. Therefore, TEP must anticipate generation investments, but there is no longer 

a binding, coordinated generation expansion plan that can guide transmission decisions. 

In addition, the establishment of regional markets and the increase of cross-border flows 

mean that planning must deal with much larger areas. For instance, the Ten-Year 

Network Development Plan (TYNDP) from ENTSO-e deals with the regions that 

compose Europe [15] (albeit from a bottom-up approach) and projects such as Desertec 

or MedGrid focus on the Mediterranean area as a whole. Working with such extensive 

regions implies larger, more difficult to solve problems. In addition, the TSO’s expert 

knowledge, which used to play a prominent role in national planning studies (notably, 

in proposing the candidate investments considered in the problem), is not available for 

regional planning as no single TSO has experience on the whole area. This brings 

additional difficulties to the planning process. 

The challenges brought by these relatively recent developments articulate along three 

distinct lines around which this thesis is built: 

� Efficient resolution, 

� Flexibility and robustness, 

� Structure identification. 
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1.2.1. Efficient Resolution 

The extensive areas involved in regional TEP, together with the vast uncertainties 

involved, mean that some optimization techniques can be impractical in this context. 

This thesis develops formulation and algorithmic enhancements to the state-of-the-art 

methods in order to make accessible the large problem sizes currently involved in TEP 

studies. 

This thesis structures problem resolution in a master-subproblem architecture based on 

Benders’ decomposition, which is especially suitable for TEP and offshore network 

design given the characteristics of the problems. 

We perform a comparative study of the different acceleration techniques available for 

Benders’ decomposition, evaluating their potential computational savings. In addition, 

we develop some new acceleration techniques. Semi-relaxed cuts deal with large 
numbers of discrete decision variables. A Progressive Contingency Incorporation 
Algorithm evaluates the effect of component failures on system reliability efficiently. 
We illustrate these contributions with case studies based on TEP and OWF design. The 

enhancements reduce computation times by one to two orders of magnitude in the case 

studies developed. 

1.2.2. Flexibility and Robustness 

Several sources of uncertainty have a deep impact on transmission expansion decisions: 

� Generation expansion, that is, new generation installed, 

� Demand, 

� Fuel prices, including coal, gas and carbon prices, 

� Renewable energy production, 

� Hydro inflows, 

� Contingencies. 

Some of these uncertainties are static risks, such as load levels, hydro inflows, or 

contingencies. A static probability distribution, if properly adjusted, can describe them. 

These are referred to as random uncertainties and can be represented by means of 

stochastic scenarios. The second group, known as nonrandom uncertainties, includes 

generation expansion or fuel and carbon prices. The factors that affect them evolve, so it 

is not possible to estimate them directly using past data. Dynamic snapshots, often based 

on expert opinion, are used to describe these possible future evolutions. 

We will define an expansion plan as a set of values for the relevant investment decisions. 

That is, a plan specifies which investments should be made at each stage of the planning 

horizon [1]. By contrast, an expansion strategy will represent a set of values for the 

decisions that is conditional on the previous uncertain outcomes. In the TEP problem, 

projects can be put on hold or abandoned depending on the development of events and 

the TSO can request permits for more transmission lines than the ones that are 

completed. Having this into account, TEP should propose path-dependent strategies 

rather than fixed plans [16]. 
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The uncertainties present in the problem, particularly generation expansion, have such a 

deep impact on transmission that it is essential to develop flexible strategies that adapt 

dynamically to the unveiling of events. In addition, scenario definition is often subjective 

and incomplete, so ideally investments should serve their purpose even if the scenarios 

are slightly different. That is, they should be robust with respect to the scenario 

definition. This thesis aims at developing explicit methods to obtain flexible strategies 

and robust expansion plans. 

The following example illustrates these concepts (Figure 1-7). There is one demand area, 

two regions where new generation might be installed (G1 and G2), and an intermediate 

area I. All regions are already interconnected and planning considers only 

reinforcements between areas. 

 

Figure 1-7 – Map of possible connections. 

The TSO studies several plans. The first one installs capacity to link region G1 to the 

demand center. The second one does the same with G2 and the third one with the 

intermediate region. Figure 1-8 and Table 1-3 describe the plans and their associated 

costs. 

G1 I G2

D

Plan 1

G1 I G2

D

Plan 2

G1 I G2

D

Plan 3

 

Figure 1-8 – Example plans. 

 

  GEP Cost Associated to Plans Regret Associated to Plans 

Scenario # G1 G2 Plan 1 Plan 2 Plan 3 Plan 1 Plan 2 Plan 3 

1 100 10 50 200 100 0 150 50

2 10 100 200 50 100 150 0 50

Table 1-3 – Costs and regrets associated to plans. 
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A robustness criterion selects Plan 3, given that it presents a maximum regret of 50 

compared to the 150 of the other options. Thus, the TSO would build the interconnection 

between the intermediate area and the demand center. This decision depends heavily on 

the definition of scenarios. It is desirable to find plans that serve their purpose even 

when there are slight modifications in the scenarios. 

We can now study the same problem from a dynamic perspective, introducing two time 

stages. We define some expansion strategies as opposed to static expansion plans. It 

should be noted that these strategies have been proposed just as examples and are in no 

way implied by the expansion plans defined in Figure 1-8. 

 

Figure 1-9 – Example expansion strategies. 

Strategy 1 does not take any action at Period 1. At Period 2, if one of the generators 

seems much more probable than the other it will start the relevant corridor. Strategy 2 

takes the view that G1 will be built. If, on the second period, it discovers that the bet is 

not correct, it will abandon the project and take a different direction, either building I-D 

or G2-D. 

We can evaluate regret in a path-dependent way. We propose the following path-

dependent scenarios or dynamic snapshots as an example. It should be noted that costs are 

provided as an example and are in no way implied by the definition of strategies. 

According to them, Strategy 1 is more flexible than Strategy 2, as it adapts better to the 

different possible scenarios: 

Scenario # Stage 1 Stage 2 Strategy 1 Strategy 2 

1 G1∼G2 G1∼G2 10 100

2 G1∼G2 G1>>G2 50 10

3 G1∼G2 G2>>G1 50 500

4 G1>>G2 G1>>G2 10 5

5 G1>>G2 G1∼G2 50 90

6 G2>>G1 G2>>G1 10 501

7 G2>>G1 G1∼G2 50 110

Table 1-4 – Costs associated to the strategies for different dynamic snapshots. 

Like the example above, many approaches limit themselves to the worst-case scenario 

and therefore minimize the maximum regret (such as Robust Optimization [17, 18]). By 

contrast, this thesis takes a perspective based on Stochastic Optimization, incorporating 

to the decision process all the information regarding the different scenarios and their 

probabilities. 
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We aim at developing flexible expansion strategies that are able to adapt to the future as 

it unfolds. In addition, we need expansion plans that are robust with respect to the 

definition of scenarios. 

This thesis develops methods to obtain flexible expansion strategies. In particular, we 

apply Real Options Valuation to the TEP problem. An option is the right (but not the 

obligation) to buy or sell a given asset at a pre-specified price at a future date. Real 

Options applies financial valuation techniques to project management decisions and 

assesses not only the value of investments but also their potential for adapting to 

different situations. The developed approach uses this framework to identify 

transmission lines with a high potential and for which permits should be requested, 

analyze their main value drivers and find the essential investments of an expansion plan. 

In addition, we propose a regularization approach for Stochastic Optimization which 

produces robust solutions that are able to perform relatively well despite modifications 

in the definition of scenarios. We achieve this through shrinkage, a widely used technique 

in statistical estimation that modifies an estimator to make it more similar to a known, 

robust solution. We extend this technique to the resolution of Stochastic Optimization 

problems with either an unmanageably large number of scenarios or an ambiguous 

scenario definition. The solution to partial descriptions of the problem is shrunk towards 

a robust benchmark to make it less dependent on the particular scenario tree. 

We illustrate these approaches with case studies based on the Spanish power system. 

1.2.3. Structure Identification 

The complexities of the problem and its combinatorial nature make it impossible to solve 

it directly having into account all possible transmission investments. Therefore, the 

candidate investment proposal formerly carried out by the TSO played the crucial role of 

reducing an unmanageably large search space. However, there is now no single TSO 

with experience of the whole system under planning. In addition, any manual, heuristic 

process would necessarily come with limitations that could result in a suboptimal final 

solution. 

1.2.3.1. Candidate Investment Proposal and Candidate Management 

As seen above, automatic techniques for the identification of promising candidate 

investments are necessary for TEP in large areas. These should be systematic and 

rigorous in order to reduce the feasible search region while preserving all potentially 

good solutions. In addition, in the cases where the list of interesting investments is too 

large, it would be beneficial to resort to similarly automatic procedures to handle the 

search space, focusing on the most promising areas. In particular, it is often the case that 

a just few candidate lines have the largest impact on the solution, constituting the core of 

the expansion plan and largely determining its overall goodness. Identifying this 

reduced group of decisive network investments can assist in the design of the plan as 

well as in establishing project priorities. 



32 Motivation. The Current Challenges of Power Network Design 

 

1.2.3.2. Identification of the Rationale for Investments and their Relationships 

The TSO used to propose investments based on a clear purpose. That is, if a high-

demand area needed a stronger connection to the rest of the network, he would propose 

several alternative corridors to do so. Similarly, the TSO could project some choices of 

transmission lines to integrate some forecasted new renewable generation. Therefore, 

each possible investment responded to a specific network need. However, when 

automatic mechanisms perform candidate proposal, this information about investment 

rationale is lost. 

In addition, the interactions among investments are particularly important in TEP. 

Transmission lines can be parts of longer transmission routes, so that their full 

functionality depends on installing all the constituents of the route. Conversely, several 

lines can serve a similar purpose with respect to power flows. Deciding to build more 

than one of these substitute lines could be suboptimal, as the benefit from the additional 

investment would be very limited. Discovering these complementary or substitute sets 

of investments simplifies the problem considerably and enhances the understanding of 

its structure. This information would support the definition of projects, that is, 

transmission lines that share a common purpose. 

 

Figure 1-10 – Complementary and substitute investments. 

This thesis proposes automatic mechanisms for candidate discovery and the 
management of large search spaces. The proposed approach uses sensitivities that can 

be calculated relatively easily from power flows and intermediate solutions of the TEP 

optimization problem. In addition, a candidate analysis method uses power flow data to 

disentangle the relationships between candidate transmission lines and identify 

complementary and alternative sets of investments, so that this information can support 

further decisions. We illustrate this with case studies based on the Spanish power 

system. 

Moreover, we combine Ordinal Optimization (OO), a metaheuristic that identifies 

relatively good solutions efficiently, with Mixed Integer Programming (MIP) and apply 

it to network design. We use OO to extract valuable information about the structure of 
the solution. Then, MIP finds the best expansion plan among the ones that share the 

structure identified as favorable. We apply this to the OWF design problem, which 

exhibits a high degree of structure. 
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1.3. Solving Realistic Problems 

This thesis originates from the challenges of current complex, large-scale transmission 

expansion problems. These real TEP applications are quite different in size from the 

academic test cases that usually appear in the literature. In order to be realistic, 

considered problem sizes should accommodate of the order of hundreds or thousands of 

nodes and lines. System operation should be modeled with the possibility of considering 

a DCLF and some sort of losses approximation. However other considerations such as 

short-circuit currents or voltage stability are not usually taken into account at the 

planning stage, as their complexity would generally be too burdensome for optimization 

purposes. The general approach seems to be to include them in subsequent analyses and 

use identified weaknesses in the design as additional constraints for a new resolution of 

the TEP problem. 

The academic and realistic case studies in this thesis have been developed only to 

demonstrate the applicability of the developed techniques. They should only be valued 

as an illuminating example rather than for their results themselves. 

Some of the contributions have been implemented in models with a clear practical 

orientation: 

� TEPES (Transmission Expansion Planning for an Electric System) applied in projects 

such as Desertec [6], Medgrid [7] or Beyond 2020 [19]. 

� OWL (Offshore Windfarm Layout optimizer), developed as part of this thesis. 

This work has also benefitted from experience in TEP-related projects: 

� e-Highway, a project supported by the European Union aimed at developing a 

methodology to support the long-term planning of the European transmission 

network [20]. 

� The Renewable Grid Initiative, which promotes the development of the European 

transmission network for the integration of 100% renewable electricity [21]. 

1.4. Areas of Knowledge Involved 

We have addressed the identified challenges using tools from very different 

backgrounds: 

� Stochastic optimization techniques, in particular, Benders’ decomposition, take 

advantage of the structure of the problem in order to solve it efficiently. 

� We apply project finance tools, in particular, Real Options Valuation, to generate 

flexible expansion strategies. We use mathematical finance to price the modeled 

financial instruments. 

� We extend statistical estimation techniques (shrinkage) to the stochastic 

optimization problem with the aim of generating robust solutions. 

� We apply non-classical optimization methods, namely OO, to extract problem 

structure and complement and accelerate classical methods. 

 



 

 

Chapter 2  
State of the Art. Models and 

Techniques. 
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2.1. A Long-Studied Problem 

Given the long-lived impact of transmission expansion decisions, it is not surprising that 

a vast amount of literature addresses this problem from different angles, with the first 

works appearing more than forty years ago [1]. This section is an effort to summarize 

decades of research, with the limitations this implies. First, we review the different 

modeling options in the problem. After that, we present the solution methodologies that 

have been used to tackle it. Then, we discuss some notes on the inclusion of additional 

criteria into the problem, which are particularly useful in practical planning studies. 

Precisely practical planning provides our perspective for the assessing these models and 

methods: we will assume that we perform large-scale TEP (hundreds or thousands of 

nodes) on a general-purpose computer. Finally, we describe the peculiarities of OWF 

network design, an especially relevant particular case. 

2.2. Modeling Transmission Expansion 

Transmission expansion is by nature a multi-stage problem where the planner takes 

decisions at several time horizons. In addition, investment decisions have an impact not 

only on the operation of the system but also on other factors such as its dynamic 

behavior or regulatory issues such as the possibility of market power exercise. The 

literature adopts different perspectives with respect to the inclusion of these effects, 

taking a wide spectrum of simplifying assumptions. This section reviews the most 

important modeling decisions in TEP. 

2.2.1. Treatment and Scope of Uncertainties 

Traditionally, the literature classifies uncertainties in two different groups [22]: 

� Random uncertainties are those which arise from repeated deviations of parameters 

that can be described by means of a probability distribution. This probability 

distribution can be estimated from past observations. This type of uncertainty is 

usually linked to the short-term and is known as risk. Hourly demand profiles or 

hydro inflows constitute random uncertainties. 

� Nonrandom uncertainty describes the non-repeatable evolution of parameters and, 

therefore, they cannot be modeled from past data. It is usually linked to the long-

term. Generation expansion is the single most important example of these 

uncertainties. Although a probability distribution does not exist in a strict sense, we 

can nonetheless build scenarios and assess their likelihood. 

In a random uncertainty context, expected cost represents the realized average profit & 

loss (P&L) after a sufficiently large number of repetitions of a decision, where the 

alternative scenarios compensate their positive and negative returns. However, 

nonrandom uncertainties only happen a single time, with no possibility for 

compensation. That is, generation expansion decisions for 2050 will only happen once, 
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as there will be just one future for 2050. Once transmission expansion decisions have 

been made and 2050 has arrived, the rest of alternative futures are irrelevant. Therefore, 

it can be argued that methods that base their results on expected cost are not necessarily 

appropriate in a nonrandom context. Concepts such as flexibility and robustness are key 

in this environment. 

The main tools applied for the treatment of uncertainties in transmission expansion are: 

� Stochastic optimization, which incorporates random uncertainties directly in the 

decision process to optimize expected objective value [23-26]. The recent reference 

[27] quantifies the cost of ignoring uncertainty instead of solving the stochastic 

problem. The recent paper [28] performs a stochastic optimization of transmission 

under market and regulatory uncertainties.  The paper [29] (under review) performs 

the joint optimization of generation and transmission and proposes to use Jensen’s 

inequality to calculate efficient bounds for problems with a large number of 

scenarios. In a similar spirit, probabilistic load flows take into account the whole 

load-time profile in a single load-flow calculation [30]. 

� Robust optimization and other related techniques focus on a worst-case scenario 

analysis and minimize maximum regret [22, 31, 32]. 

� Fuzzy decision analysis deals with the outcomes of different scenarios in an 

analogous way to the multiple attributes defined in a multi-criteria problem. It 

identifies non-dominated solutions and works with the decision maker to analyze 

the relative importance of the objectives [33, 34]. 

Many works have focused on deterministic forecasts, ignoring uncertainty. Among the 

most commonly incorporated risks, we can find demand, generation costs, hydro inputs 

and generation expansion. A particularly relevant example is the inclusion of reliability 

considerations, where an N-1 criterion (which considers the failures of single 

components) is often used [23, 35]. 

2.2.2. Decision Dynamics 

TEP is a multi-stage problem that implements long-term decisions in phases, with clear 

milestones where it re-evaluates decisions in the light of the revealed uncertainties. 

However, the complexity of this dynamic nature has lead most studies to focus on 

simplifications of the problem: 

� Static. A vast majority of research studies consider only a snapshot of the future 

system at a particular moment. This is known in the literature as the Static 

Transmission Expansion Planning problem (STEP) [36-38]. 

� Sequential static. Widely used, it consists in modeling several time horizons, taking 

into account that any investments made will be available from their deployment 

date to the end of the planning scope. Sequential static planning can be carried out 

forward (moving in time from the closest to the furthest time horizon) or backwards 

(starting with the final year and moving towards the present) [23, 30, 39, 40]. 

� Dynamic planning. It keeps the full dynamic complexity of the problem. Given the 

computational complexity associated with this option, most research has focused on 

very small case studies or used heuristic methods with no optimality guarantee [26, 
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41]. Very interestingly, some references have suggested that TEP can be a promising 

area for the use of real options theory. However, applications have been limited 

until this moment [42, 43]. 

2.2.3. Market Considerations 

As explained, market considerations or the regulatory implications of transmission are 

outside the scope of this thesis. However, we consider it interesting to review the main 

approaches taken. 

Most regulators acknowledge that only centralized planning results in building all 

necessary transmission investments: 

� The TSO proposes plans that the regulator later approves, possibly introducing 

competitive bidding to assign their construction. 

� The regulator awards transmission licenses to private companies and considers 

them a monopoly, usually with remuneration based on a price index scheme. 

In some cases, we can find examples of the following, which are not intended to 

substitute but rather to complement centralized planning: 

� Mixed planning developed with the collaboration of market agents and regulatory 

institutions. For instance, coalitions of users can propose reinforcements that the 

regulator later approves. The remuneration of the project can either be regulated or 

bear the risk of investment. 

� Market planning, where the expansion is performed at the discretion of market 

agents following price signals. Merchant lines, private investments that perceive a 

profit based on collected congestion rent, are the perfect example of this kind of 

regimes. 

Given that maximizing aggregate social welfare in a market context is equivalent to 

minimizing operation cost, most works carry out centralized TEP with centralized cost-

based operation, even in liberalized generation markets [36, 44]. Mostly in the cases 

where the focus is the medium-term expansion of the system, some references consider 

centralized TEP in a competitive generation market [33, 45]. Reference [46] presents a 

sophisticated approach where both competition and uncertainty are incorporated to the 

GEP problem. Finally, there has been some work done on decentralized expansion [47-

49] and the impact of coalitions [50]. 

Therefore, this thesis is consistent with most of the literature on TEP when it considers 

centralized TEP with centralized cost-based system operation. 

2.2.4. Mono vs. Multi-criteria Studies 

The most basic approaches regard cost as the only objective included in the optimization. 

The factors usually considered are: 

� Investment cost of the transmission assets added to the network. 

� In a centralized operation context: 
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� Operation cost, defined as the average generation cost across scenarios. 

� Adequacy penalties, introduced to avoid solutions where demand is not satisfied 

in normal operating conditions. For some of the simplest studies, the only 

objective considered is investment cost, but restrictions on adequacy are imposed 

to ensure acceptable service levels. 

� Expected Energy Not Supplied (EENS) and other reliability indices penalize 

plans with a poor behavior under system contingencies. 

� In a generation market context: 

� Aggregate social welfare is the main objective considered. It can incorporate 

elements for the objectives described above, such as EENS penalties. 

� Facilitating competition. 

In addition, other relevant objectives are social acceptance of new corridors, 

environmental impact, renewable generation integration, congestion cost reduction, 

impact on system stability, flattening of nodal prices, financial effort required for the 

project and geopolitical risk. 

Most of the reviewed works limit their focus to a single objective that integrates the 

attributes considered. Within a multi-criteria context, the most widely used tools are 

Fuzzy Decision Theory [26], Goal Programming [51] and Analytic Hierarchy Process 

[52]. 

2.2.5. Technical Grid Modeling Options 

The literature presents different levels of detail in the technical description of the grid. 

With respect to power flow resolution, relatively simple transportation models (which 

only take into account Kirchhoff’s First Law) reduce the computational requirements of 

the optimization [53]. Linearized DC power flows or hybrid models (where only existing 

lines abide Kirchhoff’s Second Law) are widely applied [54, 55]. More sophisticated grid 

modeling options usually evaluate a given transmission plan rather than performing 

optimal transmission expansion. Some applications incorporate the nonlinearities of the 

AC power flow [56]. Most studies ignore losses, although a few take them into account 

either in an approximate or exact way [57-59]. Finally, some analyses consider the use of 

HVDC technology [43, 60-62] or other devices such as FACTS [43].  

Table 2-1 summarizes the overall modeling options in TEP, highlighting the ones that 

this thesis considers. 

 
 

Table 2-1 – Modeling options in TEP. 

Uncertainty

Decision dynamics

Market

Model

Ignored Stochastic Op timization Robust Optimization

Fuzzy 

Decision 

Analysis

Static Sequential Static Dynamic

Centralized  TEP with cost-based  

generation

Centralized  TEP with 

generation market

Decentralized  TEP in 

generation market 
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This thesis models a DC power flow and incorporates stochasticity on demand, 

renewable generation, hydro inflows and component failures through scenario trees, 

although not all these options are present in all case studies. We base our approach on 

Stochastic Optimization and develop applications of real options and regularization to 

obtain flexible expansion strategies and robust plans. 

2.3. Solution Techniques Applied to TEP 

In the long history of this problem, the literature has applied a wide range of techniques 

to its resolution. Within an optimization framework, we can find an array of classical 

and non-classical approaches that have been applied to TEP. 

2.3.1. Classical Methods and Some Notes on Problem Formulation 

The first papers that formalize the TEP problem do so from a perspective of linear 

programming (LP), where efficient simplex-based algorithms could find optimal 

solutions in affordable times for the computers available at the time [53]. These 

approaches ignore the discrete nature of investment in order to avoid the computational 

burden of integer variables. Linear formulations can accommodate transportation 

power-flow models. In addition, most of these works consider only deterministic 

forecasts for the uncertainties involved and focus on finding optimal plans for those. 

These simplifications are still useful in a context where the problem is too large to use a 

discrete model. 

Quadratic Programming models approximate losses quadratically from a DC power 

flow, such as in the model used in reference [61], although it must be noted that this 

reference does not perform TEP. 

Mixed Integer Programming (MIP) acknowledges the discrete nature of investment (a 

transmission line can either be installed or not) [63, 64]. 

In a handful of cases, Non Linear Programming and Mixed-Integer Non Linear 

Programming are used to accommodate the nonlinearities of an AC power flow. The 

additional computational burden can only be solved in relatively small networks, and is 

only justified when some effects that cannot be accurately captured with the DCPF need 

to be taken into account (e.g. reactive power or losses) [51]. 

The explicit exploitation of problem structure in stochastic models has prompted the 

appearance of studies based on stochastic decomposition such as Benders’ 

decomposition [54, 65], column generation [66], or Lagrangean Relaxation [30]. 

Reference [53] compares alternative decomposition approaches. 
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2.3.2. Non-Classical Methods 

Transmission expansion studies have reflected the development of non-classical 

methods [67]. The complexity of the problem explains this popularity, as the guarantee 

of a global optimum is traded off for more affordable computation times. 

Metaheuristic algorithms improve a solution iteratively, usually including some form of 

random evolution. Genetic Algorithms replicate the principles of Darwinian evolution to 

solve optimization problems. They are currently a widely popular approach when 

solving combinatorial problems. This has been reflected in TEP applications [68]. 

Simulated Annealing draws a parallel between the thermodynamical evolution of a 

slowly cooling system and the optimization process [69]. Swarm intelligence mimics the 

collective dynamics of self-organized systems [40], with Ant Colony Optimization being 

a particular application of these principles [70]. Differential Evolution improves a 

solution pool by combining candidates among them [35]. Constructive Heuristic 

Algorithms refine solution proposals locally [71]. Artificial Immune systems focus on 

mutation rather than recombination processes [58]. Ordinal Optimization exploits the 

lower computational requirements of finding relatively good solutions as opposed to a 

single optimal one [72, 73]. General artificial intelligence techniques such as Artificial 

Neural Networks have been also been incorporated to TEP studies [41]. 

Other relatively little-known algorithms add diversity to the landscape of techniques 

that have been used in TEP. Examples of this are invasive weed optimization [74], 

random leap frog algorithms [75], path relinking [76], mosquitoes mating strategies [77] 

or hybrids of previously presented approaches [78]. 

2.3.3. Automatic Search for a Plan Based on the Application of Heuristic 

Rules 

In addition to optimization, TEP has been tackled using automatic searches. This 

approach relies on a set of pre-defined rules that are applied to generate a suitable 

expansion plan. There is no a-priori guarantee of the goodness of the final solution or the 

soundness of the rules applied. However, the relatively simple layout of these tools 

compared to optimization allows including a high level of modeling detail. 

Some works apply general local search methods that are not specific to the TEP problem. 

Some of the most interesting examples are GRASP (Greedy Randomized Adaptive 

Search Procedure) [55] and Tabu Search (which avoids already visited directions by 

adding them to a restricted or tabu list) [79]. 

The application of rules to guide the expansion is also widespread. Particularly, greedy 

local searches directed by sensitivity analyses are rather popular [80, 81]. Expert Systems 

can extract expansion rules by generalizing information from a set of sample systems 

[82]. These techniques can easily result in solutions that are far from optimal, as they 

reflect the necessary limited expertise of the planner. Expert Systems generalize the 

behavior of smaller systems and, therefore, can miss effects and structures that arise only 

in larger systems. Notably, although this method might detect suitable reinforcements, it 
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might miss large supergrid investments, resulting in suboptimal solutions. This risk 

increases as the size of the area under study grows. 

Table 2-2 summarizes these solution techniques, highlighting the ones this thesis applies: 

 

Table 2-2 – Solution techniques applied to TEP. 

We apply Benders’ decomposition to a MIP model to exploit the structure of the 

problem. In addition, we develop the first published application (to our knowledge) of 

decomposition techniques to offshore wind farm design. 

This thesis also applies non-classical methods, in particular, Ordinal Optimization. We 

combine this technique with MIP to create a hybrid that extracts problem structure and 

exploits it to find a near-optimal solutions efficiently. 

We conduct sensitivity analyses to identify potentially interesting investments and 

reduce problem size. 

2.4. Some Notes on Practical TEP Projects 

Solution methods impose limitations on the level of modeling detail and the complexity 

of the criteria included in the analysis. Therefore, not all the considerations that are 

relevant for a practical TEP problem can be included in the optimization. The most 

straightforward way of reconciling these approaches is to iterate between two different 

modules: 

� A planning module uses one or more of the techniques described in 2.3 to generate 

an expansion plan or, preferably, a set of quasi-optimal solutions. 

� An evaluation module recalculates system operation including all the additional 

criteria needed for the appropriate evaluation of plans, considering also the ones 

that the optimization problem could not include, such as dynamic behavior, impact 
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on market power structure or environmental impact. This module detects possible 

problems. The planner interprets them as additional constraints and adds them to a 

subsequent execution of the planning module. In addition, techno-economical 

indicators calculated in the evaluation module can identify potentially interesting 

candidate investments. When working with several quasi-optimal plans, the best 

solution can be selected according to the additional criteria. 

This setting complements the advantages of optimal planning with the possibility of 

integrating all relevant criteria. More details can be found in the report we prepared for 

project e-Highway [20, 83]. 

2.5. The Particularities of Offshore Networks. Offshore Wind 

Farm Design. 

Offshore wind seems set to play a crucial role in Europe’s future energy landscape. At 

sea, winds are abundant and stable. In addition, the shallow waters of the North and 

Irish Seas allow installing turbines inexpensively and can avoid some of the 

environmental concerns and public opposition raised by their onshore counterparts. As 

of 2012, 5.3 GW of offshore wind power had been installed in Europe [10], including 

farms as large as the London Array (1 GW). Projects such as the Offshore Grid Initiative 

focus on creating an offshore network that links neighboring countries and to which 

large wind farms could connect [13]. Either as a large project stretching across several 

countries or as the connection of a single wind farm to the onshore network, the 

development of an offshore transmission grid is necessary for the integration of this new 

generation into the system. 

Offshore network expansion has some particularities that differenciate it from other TEP 

problems: 

� Offshore network planning is a greenfield expansion, that is, there is no existing 

network to take as the starting point for the developments. 

� This implies considerable additional difficulties that are compounded by the fact that 

there is often a great deal of symmetry present in the layouts, so that many solutions 

are roughly equivalent. This makes the search for optimal solutions much harder. 

� Reliability is especially important in this problem, as repair times at sea are 

remarkably long. This motivates the explicit introduction of reliability scenarios and 

redundant connections. 

� The use of isolated cables, with a high reactance, combined with long distances to 

shore, means that considering HVDC connections is especially important in these 

applications. In addition, the cost of transformers and converters, which is minor in 

general TEP problems, has a large impact on the total cost of an OWF. 

This thesis contemplates offshore network planning and the design of OWFs as a 

particularly interesting case of TEP. We present some context for this problem in the 

following sections. 
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2.5.1. Recent Trends and Current Situation 

The increasing interest in offshore wind is resulting in larger and larger plants, such as 

the London Array with 1 GW or Greater Gabbard in the UK with 504 MW. Furthermore, 

forthcoming projects will be even larger. Dogger Bank in the North Sea will 

accommodate 9 GW of generating power, and there are over 10 more projects over 1 GW 

in the UK and Ireland. This expansion is attracting remarkable amounts of investment. 

According to EWEA, the offshore wind industry received a total investment of up to 

EUR 4.7 bn in 2012 [10]. 

However, there are still some engineering issues that should be overcome for offshore 

wind to reach its full potential. According to a recent study [84], the main drivers for cost 

reduction in the coming years will be the up-scaling of turbines (possibly with 

innovative designs [85]), component standardization and the improvement of vessel 

utilization rates. These factors are expected to lead to a cost reduction in the range of 25-

40% by 2020. In addition, other needs for improvement are already being researched. 

Submarine cables need further refinement; their lead coating tends to not endure 

mechanical wear as needed, and the industry would welcome higher-rated 3xXLPE 

cables [86, 87]. Most importantly, multi-terminal HVDC would allow a more efficient 

transmission and operation of the huge wind farms planned. Floating foundations 

would make it possible to install OWFs even in deep waters and therefore harvest winds 

in areas where now such developments are prohibitively expensive [86]. Given the 

attention that the offshore wind industry is receiving nowadays, there are countless 

research projects (in some cases very close to production stages) that push the limits of 

the current technology. For instance, the Deepwind project by the Technical University 

of Denmark is developing a 20 MW vertical axis floating turbine [88]. KiteGen is an 

Italian company that attempts to exploit the stronger winds at higher altitudes with kite-

like generators without a solid foundation [89]. Researchers at CalTech [90] are 

investigating the potential of imitating the fluid dynamics of fish schools to minimize 

wake effects in wind farms. Although it is not clear whether any of these blueprints will 

someday become the industry standard, they throw light upon the challenges inherent to 

offshore wind farms components and layout optimization. 

2.5.2. Designing an OWF. The General Problem. 

An OWF is a project of considerable complexity with extensive implications between the 

different perspectives of the design problem. 

� Macrositing is the definition of the wider area where the wind farm will be located. 

Different considerations must be taken into account [91], such as wind regimes, 

water depth, and environmental impact factors such as distance to shore (which 

correlates to visual impact) electromagnetic field effects, barrier effects or expected 

bird collision rates [92, 93]. 

� Micrositing studies the specific placement of turbines within the wind farm. Wind 

generators should collect as much energy as possible incorporating the fluid 

dynamic interactions between the turbines (wake effects), which diminish the energy 

effectively collected [94]. 
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� The electrical layout is already a key factor in onshore wind farm design, and it is 

even more important for offshore plants, where it amounts to around 20% of the 

total cost [95]. Cables, transformers and other electrical and electronic equipment 

that constitute the farm’s collector and transmission systems are critical for 

operation and reliability. 

� Other objectives can be incorporated. For instance, optimal control is also an 

interesting area that enables the farm to participate in ancillary services such as 

voltage and both active and reactive power control. Indeed, in some countries, 

regulation is pushing for this to become standard [96]. Several studies develop 

strategies for optimal management of ancillary services [97, 98]. In addition, repair 

times are much longer offshore and costs are much higher. Estimates show that 

maintenance costs amount to around 30% of the total energy generation cost [9, 99]. 

Therefore, maintenance strategies must be carefully studied. The standard is to pay 

service visits to each turbine every six months and perform corrective maintenance 

when needed [100]. Experiences with condition monitoring techniques in OWF have 

not been conclusive yet [99]. 

We can solve most of these objectives independently, in the same order as introduced 

above. First, the area where the farm will be installed is selected. Then, the turbines are 

placed and the electrical layout determined. Once the design is complete, the best 

strategy for operation and control is developed. 

Substantial interactions couple turbine micrositing and the electrical layout problem. 

Placing turbines sparsely in order to minimize wake effects increases the cost of the 

collection system. Conversely, packing the turbines closely reduces cable costs but 

increases wake effects, which results in decreased energy production. However, this 

effect decreases dramatically if we consider that there is a limited area allocated to the 

farm. In this case, micrositing tries to pack the turbines as efficiently as possible into the 

given area. In turn, the electrical layout optimization designs the most efficient collection 

and transmission system for that specific turbine placement. This has led most of the 

reviewed studies to work using a decoupled strategy, which is somehow analogous to 

the independent consideration of GEP and TEP in most studies. 

In the following sections, we discuss the electrical layout problem in more detail. 

2.5.3. The Electrical Layout Problem 

As mentioned above, the electrical system of an OWF amounts to around 20% of the 

total cost and affects deeply the farm’s efficiency and reliability. It is therefore essential 

to find a good design. 

Repair times and costs are much higher at sea. Moreover, getting access to the plant can 

be even impossible during the winter months or under stormy weather. For this reason, 

failures often take several months to be repaired, with substantial economic losses 

arising from not being able to evacuate the produced power. Therefore, an optimization 

that takes into account reliability can bring substantial operation and maintenance cost 

savings. 
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The collector system gathers the energy from the turbines. Often, a few standard 

configurations are used in the design of collector systems [95, 101-103]. The main 

standard configurations are shown in Figure 2-1. 

 

Figure 2-1 – Standard collector configurations. 

� The radial collection system is the simplest of the possible assortments. Several 

turbines connect to the same feeder. It has been the most widely applied design 

because of its low cost and easy control [104]. However, the lack of redundant 

elements means that its reliability is poor, as any fault will potentially prevent all 

upstream turbines from selling their power. In addition, that is the design with the 

most losses. 

� The single-sided ring or simple ring sets an additional cable from the last turbine in a 

string back to the collection hub. This cable should be able to carry the total power 

generated by the string. It is the most expensive of the standard assortments, 

doubling the cost of a radial layout [95]. However, it is also the most reliable and the 

one with the least losses. 

� The double-sided ring or double ring tries to overcome the cost disadvantages of the 

single-sided ring by using the cable of the neighbor string as the redundant circuit. If 

a fault occurs, the string would need to deliver the full power of two strings. 

Therefore, the cable rating should double the power of a single row. This option is 

around 60% more expensive than a radial design [95]. 

� The star design was proposed as an attempt to reduce cable ratings (as all the cables 

from its center to the arms would just need to bear the power coming from one 

turbine). However, cables can be longer and the switchgear more complex, so the 

cost advantage depends on the specific case under study. This configuration also 

offers a high level of reliability, with only failures of the cable that connects the 

center to the collector hub affecting more than one turbine. 

� The multi-ring configuration was conceived as a way of dividing the power 

generated in a faulted string among the rest of the rows, so that the capacity does 

not need to be upgraded as in the double-sided ring. This design has around 25% 
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less losses than a typical radial array, is more reliable and its cost is only around 20% 

higher [95]. 

The main properties of the standard collector options as described above are 

summarized in Table 2-3. 

  
Investment 

cost Losses 
Radial 1.00 1.00 

Single-sided ring 2.10 0.54 

Double-sided ring 1.58 0.81 

Star 0.97 1.01 

Multi-ring 1.18 0.76 

Table 2-3 – Collector characteristics relative to the radial configuration. 

Even though preliminary studies of standard designs are useful, both cost and reliability 

are so dependent on the particular geometry that the optimal solution is normally a 

hybrid of these architectures. What is more, even if the turbine layout is symmetric, the 

optimal layout can be asymmetric. An example of this appears in one of the articles 

published as result of this thesis [105]. For this reason, it is necessary to solve the full 

electrical layout optimization problem rather than selecting a standard collector design. 

This layout appears in Figure 4-2 (Chapter 4). 

The transmission system takes the power generated to shore, bringing it to the main 

network at the Point of Common Coupling (PCC). Its architecture determines the 

number and location of offshore substations or converters, and the cables used. The 

technological option used is the single most important decision. There are several 

alternatives [106]: 

� MVAC. This architecture is the simplest one, gathering the cables from the collector 

system and taking them together to the onshore network. Transmitting in MV 

means that losses will be high, and therefore this approach will only be appropriate 

for small plants relatively close to shore. 

� HVAC. Almost all the OWFs in operation rely on this transmission system [104], 

where a power transformer elevates voltage up to 170 kV therefore reducing losses 

[107]. As distance to shore and power increase (which is the current trend) so does 

the need for reactive power compensation. Therefore, it is expected that this 

architecture will not be used in the large projects currently under planning [107, 

108]. 

� LCC HVDC. The classic version of HVDC (thyristor-based Line-Commutated 

Converters) can transmit large amounts of power at voltages as high as 800 kV. It is 

a mature technology that relies on large converters both onshore and offshore. These 

include transformers, converters and filters, as well as an auxiliary power set [101]. 

Their cost is only competitive at higher distances to shore. In addition, they 

decouple the OWF and the onshore grid so that failures do not propagate and 

operation can be performed at frequencies other than the synchronous one. They 

also enable active and reactive power control [109]. However, this technology has 

the disadvantage of requiring a voltage source in order to provide commutation for 

the thyristors and that the generally used control systems are unable to function 
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when connected to a weak grid. The practical application of this technology has 

been limited for these reasons. 

� VSC HVDC. Voltage Source Converter-based HVDC is based on self-commutated 

switches, mainly Insulated Gate Bipolar Transistors (IGBTs). Pulse Width 

Modulation (PWM) is widely used, although more sophisticated strategies have 

been proposed [110]. VSC provides better and independent active and reactive 

power control in each converter, being able to operate in all the four quadrants of 

the PQ-plane (that is, either consuming or producing active or reactive power). This 

makes it possible to connect the OWF to a weak grid. Furthermore, it is relatively 

easier to implement multi-terminal schemes and the system as a whole is more 

compact than traditional HVDC [111]. 

In general, it is possible to determine which transmission system is most suitable for a 

given OWF just by taking into account its rated power and distance to shore [112, 113]. 

According to these calculations, HVAC is only efficient for distances under 140 km and 

rated powers under 200 MW. VSC performs better in the rest of cases if the rated power 

is below 300 MW. Over 300 MW, component limitations become relevant and LCC 

HVDC is the preferred option. Table 2-4 summarizes these considerations. 

  
Low power Medium power High power 

(<200 MW) (200 MW<Power<300 MW) (>300 MW) 

Short distance (< 140 km) HVAC VSC HVDC LCC HVDC 

Long distance (> 140 km) VSC HVDC VSC HVDC LCC HVDC 

Table 2-4 – Transmission system options depending on rated power and distance to 

shore [112, 113]. 

More innovative options are under research, such as operating the farm at medium 

frequency, which would allow for much cheaper transformers [102, 103]. Other projects 

consider a MV DC grid [114] or variable-frequency mini-grids [115]. 

As part of this thesis, a State of the Art review OWF network design has been 
performed and published (and it is the first one in this topic, to our knowledge): 

S. Lumbreras and A. Ramos, “Offshore Wind Farm Electrical Design: A Review”, Wind 

Energy 16 (3): 459-473 April 2013 10.1002/we.1498. 

In addition, the importance of considering HVDC transmission has been acknowledged 

by the development of a compact model for the technological choice of HVDC. 

2.6. Quick Guide to the Rest of this Document 

The rest of this document is devoted to presenting the main contributions of this thesis. 

We develop contributions in modeling, problem resolution and interpretation of results. 
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First, Chapter 3 describes the optimization models that were used for TEP and OWF 

design. The contributions here are summarized below. 

� We develop a compact model for AC and DC transmission. 

� We publish the first state of the art review on OWF design. 

Then, we detail our work, organized around the three basic challenges identified in 

current transmission planning: 

� Efficient Resolution (Chapter 4), where our main contributions are: 

� We develop the first published application (to our knowledge) of decomposition 

strategies to OWF design. 

� We review of acceleration techniques applied to Benders' decomposition. 

The recent report [116] deals with the joint optimization of the transmission network and 

other supply resources. 

� We proposed Semi-relaxed cuts, a novel type of cut that accelerates the 

convergence of Benders' decomposition when there are binary decision variables 

in the master problem. 

� We also propose a Progressive Contingency Incorporation (PCI) algorithm, 

which solves efficiently stochastic optimization problems where scenarios 

describe element failures. 

� Flexibility and Robustness (Chapter 5): 

� We apply Real Options Valuation to TEP to identify transmission lines with a 

high potential for bringing operating cost savings to the system. 

� We develop a regularization approach to Stochastic Programming applied to 

TEP. Shrinkage makes the solutions to the stochastic problem more robust with 

respect to changes in the definition of scenarios. 

� Structure identification (Chapter 6): 

� We propose a candidate discovery method, which uses sensitivity information to 

identify interesting candidate lines. 

� We develop a candidate management algorithm which focuses the search for 

optimal solutions on the most promising candidates. 

� Candidate analysis. This technique extracts the complementary and substitute 

relationships among transmission investments. 

� We create a Hybrid algorithm combining Ordinal Optimization (OO) and Mixed 

Integer Programming (MIP). This algorithm uses OO to identify the features that 

characterize relatively good solutions. Then, it applies MIP to find the best 

solution within the ones that share these features. 

However, there is a considerable overlap in these challenges as well as in the purposes of 

our contributions. For instance, we used some of the structure identification techniques 

to accelerate problem resolution, so they could also be included under “Efficient 

Resolution”. We classify the developed contributions according to their primary aim and 

discuss other relevant implications. In addition, each of the chapters of the core of this 

thesis includes a “Chapter Takeaways” section that gives a brief context and highlights 

the most relevant contributions. 

Finally, we extract conclusions and outline interesting future lines of research. 



 

 

 

Chapter 3  
TEP and OWF Design Models 
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3.1. Introduction 

This chapter introduces the basic optimization models used in this thesis. The 

description included in this section does not intend to be exhaustive. It is rather a 

stylized model; we leave out some of the details (such as losses approximation) when 

their inclusion does not benefit a clear understanding of the contributions. 

 

Figure 3-1 – Entso-e map of the European Transmission Network [117]. 

We present two different models, one for general TEP (in section 3.2) and another one for 

OWF layout design (in section 3.3). The particularities of OWF design lead us to build a 

specific model for this special case. The main differences between the two problems are: 

� General TEP focuses on installing transmission lines. In OWFs, the selection of 

transformers, converters and offshore substations is also key for the performance of a 

layout. The specific notation we develop for the OWF problem reflects this 

difference. 

� As discussed, repair times and costs are much higher at sea: it is necessary to rent a 

specialized ship and crew and organize a trip to the plant in order to perform a 

repair. What is more, getting access to the OWF can be even impossible during the 

winter months or under stormy weather. For this reason, failures often take several 

months to be repaired, with the subsequent economic losses arising from not being 

able to evacuate the produced power. Therefore, reliability is especially important in 

this context. It is therefore interesting to develop electrical layouts that can withstand 

transmission contingencies, for which redundant connections can be particularly 

useful. Consequently, we include these elements explicitly in our notation. 

� The only uncertainties we consider in the OWF design problem are generation 

scenarios (resulting from different wind speeds) and transmission contingencies. We 

define them explicitly, which also allows us to explore the effect of different scenario 

tree arrangements (Chapter 4). 

� TEP is, in most contexts, a brownfield expansion in the sense that there is a starting 

network that we should take as the initial point of the optimization. However, in 
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OWF design there is no such starting network and we perform a greenfield 

expansion instead. This has deep implications for the computational complexity of 

the problem, which we tackle by introducing additional constraints. 

3.2. Basic Transmission Expansion Planning Model 

The TEP problem selects the optimal network additions that minimize the sum of first-

stage (investment) and second-stage (operation) costs. We define a Mixed-Integer 

Programming (MIP) formulation that accommodates a DC Power Flow (DCPF). The 

model considers uncertain scenarios that can describe different situations for demand, 

generation expansion, fuel prices, hydro inflows or renewable. 

In general, we use lower case letters for indices and variables, and upper case for 

parameters. 

3.2.1. Indices 

,i j : nodes, 

c : cable types, 

t : discrete time periods when lines can be installed. The first period (the decision 

period) and the last period in the analysis will be represented as ,D T  . The 

time elapsed between two periods will be referred to as 
1 2
,t t

Et , with 
2 1
t t> . 

,el cl : existing and candidate lines, 

t
ω : scenarios. 

3.2.2. Parameters 

ijc
EL : parameter that determines existing lines {0,1}. If a line exists, 1

ijc
El = . 

ijc
CL : parameter that determines candidate lines {0,1}. If a line is a candidate, 

1
ijc

Cl = . 

2 1
t t

Df : discount factor to evaluate a future cash flow corresponding to date
1
t  in 

value terms of a closer date 
2
t  [p.u.]. It is calculated as 1 2

1 2

e t t
Et

t t
Df

ρ−
= . 

ρ : discount rate [1/ yr], 

tP
ω

: probability of a scenario, 
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tDur
ω

: duration of a scenario [h], 

ijc
Ic : investment cost of a circuit [M€], 

t

t i
D
ω

: demand at each node [MW], 

Pnsc : penalty for power not served [M€/MWh], 

t

i
Gc

ω
: generation cost [M€/MWh], 

ijc
X : reactance of a circuit [p.u.], 

, , tt t

titijc ti
F G G

ωω ω
: flow and generation limits [MW], 

M : big-M parameter. 

3.2.3. Variables 

3.2.3.1. First-stage variables 

tijc
x : cumulative decision to install a candidate investment {0,1}, 

t
invc : total investment cost. 

3.2.3.2. Second-stage variables 

t

ti
g
ω

: power generated at a node [MW], 

t

t
opc

ω
: operation cost [M€], 

t

ti
pns

ω
: power not served [MW], 

t

tijc
f
ω

: flow through a circuit [MW], 

t

ti

ω
θ : voltage angles at nodes [rad]. 

 

3.2.4. Objective Function 

The objective function minimizes total expected cost, composed of investment cost and 

operation expenses: 

 
,

min t t t

t

tD t tD t
t t

Df invc Df P Dur opc
ω ω ω

ω

+∑ ∑ . (1) 
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3.2.5. Constraints 

3.2.5.1. First-stage constraints 

The investment cost of a plan is calculated adding the costs of the installed lines: 

 ( )1,t ijc tijc t ijc
ijc cl

invc Ic x x
−

∈

= −∑ , (2) 

Once a line has been installed, it is available for the rest of the planning scope: 

 
( 1),tijc t ijc

x x
−

≥ . (3) 

3.2.5.2. Second-stage Constraints 

We define operation cost as the sum of generation cost and penalties for power not 

served: 

 ( )t t t t

t ti i ti
i

opc g Gc pns Pnsc
ω ω ω ω

= +∑ . (4) 

We model a DCPF. Kirchhoff’s First Law establishes power balances at every node and 

scenario. Incoming flows minus outgoing flows plus generated power equal demand 

minus power not served. 

 
/( ) 0 /( ) 0

,t t t t t

jic jic ijc ijc

tjic tijc ti ti ti t
jc El Cl jc El Cl

f f g D pns i
ω ω ω ω ω

ω
+ > + >

− + = − ∀∑ ∑ . (5) 

Kirchhoff’s Second Law or Voltage Law is linearized in the DCPF formulation: 

 
t t

t ti tj

tijc

ijc

f ijc el
X

ω ω

ω
θ θ−

= ∈ , (6) 

 ( ) ( )1 1 ,
t t

t ti tj

tijc tijc tijc

ijc

M x f M x ijc cl
X

ω ω

ω
θ θ−

− − ≤ − ≤ − ∈ , (7) 

Generation and flow limits: 

 
,

,

t t t

t t t

tijc tijc tijc

tijc tijc tijc tijc tijc

F f F ijc el

F x f F x ijc cl

ω ω ω

ω ω ω

− ≤ ≤ ∈

− ≤ ≤ ∈
 , (8) 

 
t t t

ti ti ti
G g G
ω ω ω

≤ ≤
, 

(9) 

 
0 t t

ti ti
pns D

ω ω
≤ ≤

.
 (10) 

Each possible scenario 
t
ω  assigns a value to each of the uncertain parameters that define 

the system 0( , )
t yt

y Yω ω= ∈ , given some 
00 0[ , ]ytyt yt

ω ω ω∈ , where: 

y : set that contains all the uncertainty sources considered in the problem, 

such as generation expansion, demand, fuel prices, renewable 
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production or hydro inputs. 

3.3. Model for OWF Layout Design 

The OWF design problem finds the best architecture for the collector and transmission 

systems of an OWF. It defines the cables, transformers and converters installed. The 

starting data are characteristics and positions of the individual wind turbines, the point 

of common coupling to the grid (PCC) and the possible locations of offshore substations 

(the result of a micrositing problem), as well as the cable, transformer and converter 

types and their features. 

 

Figure 3-2 – Conceptual design of the London Array [12]. 

The main differences with respect to general TEP design are: 

� Transformers and converter stations have a profound impact on the overall design of 

the layout. Hence, we include explicitly transformers/converter stations and 

constraints to impose voltage consistency on the selected equipment. 

� Reliability is especially important in the OWF problem. We include it explicitly in the 

formulation by means of contingency scenarios and modeling redundant cables. 

� The electrical layout is designed and built once. Therefore, it is a static problem 

where the scenarios are not time-dependent. 

� In a greenfield expansion such as the one performed in OWF design, there are 

potentially many layouts with the same objective value; that is, the problem presents 

a high level of degeneracy. This is even more so when the turbines are placed in a 

symmetrical arrangement. Many cables have exactly the same investment cost (for 

instance, linking the turbines either in rows or in columns) and therefore many 

layouts (combinations of installed cables) will have the same investment cost too. 

Benders’ decomposition will have to investigate many of these solutions and 
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therefore the problem will need more iterations to converge. We introduce additional 

constraints to tackle this issue. 

For the sake of brevity, we define only the elements that are different from the ones used 

for the general TEP model. 

3.3.1. Indices 

tt : transformer or converter type. Similarly to the way we deal with 

voltage levels, we develop a compact notation where 

transformers and converters are both considered voltage-

changing devices. The constraints ensure that all equipment is 

consistent with its rated voltage. 

( ), ( )ttac tt ttdc tt : transformers and converters respectively. 

( ), ( )ac c dc c : sets of AC and DC cables, 

( ), ( )vldc vl vlwt vl : parameters that correspond to DC equipment and wind turbines 

{0,1}, 

r : redundancy level (several elements of the same kind can be 

installed in parallel, being marked with redundancy levels of 
1 2
,r r  

and so on), 

ω′ : wind generation scenario, 

ω ′′ : system state scenario, which defines contingencies in the collector 

and the transmission systems. 

3.3.2. Parameters 

α : depreciation parameter, calculated for a French amortization 

schedule (equal payments) as: 

(1 )

(1 ) 1

n

n

ρ ρ
α

ρ

+
=

+ −
. 

i
Dω

′
: demand, 

wt : total number of turbines, 
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ij
Di : distance between any two nodes [m], 

, , ,

,
c c c

c c

Cp Cc Cx

C Cλ µ
: 

rated power, cost, reactance, failure rate and repair rate of a 

certain cable type [MW, M€/km, p.u./km, failures/(km year) and 

repairs/year], 

, , , ,

, ,
tt ct tt tt

tt tt tt

Tp Tc Tvl Tvh

TX T Tλ µ
: rated power, cost, lower voltage, higher voltage, reactance, 

failure rate and repair rate of transformer or converter [MW, 

M€, kV, kV, p.u., failures/year and repairs/year], 

, ,
i i i

Wt Cp Ps : parameters that describe the positions of wind turbines, a PCC 

or suitable locations for offshore substations {0,1}, 

, ,tt vs vl
Btv : parameters that describe the correspondence between 

transformer or converter types and their respective voltage 

levels {0,1}, 

,c vl
Cvl : parameters that describe the correspondence between cable 

types and their respective voltage levels {0,1}, 

G ω ′ : turbine output by scenario [MW], 

maxG Gω
ω

′

′
= : rated power of turbines [MW], 

Durω
′
: period duration of wind scenario [h], 

Pω
′′
: probability of system state [p.u.], 

ijcr
Fcω

′′ : failure in a given system state of the cable between two points of 

a certain cable type and redundancy. The parameter takes a 

value of 1 if the element fails in that state and 0 otherwise {1, 0}, 

, , ,ij tt r vs
Ftω

′′ : failure in a given system state of a transformer. The parameter 

takes a value of 1 if the element is failed on that state and 0 

otherwise {1, 0}, 

PCur : penalty for curtailment. 

3.3.3. Variables 

3.3.3.1. First-stage variables 

invc : investment cost [M€]. We assume that the complete layout is deployed at the 
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time when the plant is completed, so that in this case investment cost does 

not depend on time. 

,i vl
v : selection of voltage level used for a node {0,1}, 

i
os : installation of a substation at a given node {0,1}, 

ijcr
x : installation of a cable between two given nodes, of a certain cable type and 

with a specific redundancy level {0,1}, 

, , ,ij tt r vs
tf : installation of a transformer or converter on the line linking two nodes, using 

equipment of a certain type and with a specified redundancy and position 

{0,1}. 

3.3.3.2. Second-stage variables 

opcω ω
′ ′′

: operation cost [M€], 

ijcr
f ω ω

′ ′′
: power flow between two nodes in a specific scenario [MW], 

i

ω ωθ
′ ′′

: voltage angle of a node in a specific scenario [rad], 

i
cur ω ω

′ ′′ : wind curtailment at a turbine (power that cannot be delivered) [MW], 

pnsω ω
′ ′′ : total energy not served [MW]. 

3.3.4. Objective Function  

The model minimizes total annualized cost as the sum of the annual depreciated amount 

corresponding to investment cost and operation cost. A linear approximation of losses is 

included in some of the case studies, but, for the sake of simplicity, it has not been 

included in this section. 

 min invc P Dur opcω ω ω ω

ω ω

α
′′ ′ ′ ′′

′ ′′

+ ∑ . (11) 

3.3.5. Constraints 

3.3.5.1. First-stage constraints 

Total investment cost considers cables and transformers or converters: 

 
, , ,

, , ,
ijcr c ij ij tt r vs tt

ijcr ij tt r vs

invc x Cc Di tf Tc= +∑ ∑ , (12) 

We can install transformers only in substations and between two connected nodes: 
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, , ,

, , ,

, , ,
,

,
i ij tt r vs

j tt r vs

ijcr ij tt r vs
c r

os tf

x tf
′

′

≥

≥

∑

∑
.

 

(13) 

We impose that can use only one type of transformer or converter for every position. 

This assumption is widespread in realistic settings: 

 
1

1

, , ,

, , ,

1,

1

ij tt r vs
tt

ij tt r vs
vs

tf

tf

≤

≤

∑

∑
. (14) 

Similarly, we impose that if redundant cables are used, they must be of the same type: 

 
1

1
ijcr

c

x ≤∑ .

 

(15) 

Redundancy levels of cables and transformers or converters are used in ascending order, 

so a redundancy level can only be used if the previous ones have been assigned: 

 
, , , , , ,

,
ijcr ijcr

ij tt r vs ij tt r vs

x x
r r

tf tf

′

′

≤
′∀ >

≤
. (16) 

One of the contributions of this thesis is a compact formulation for HVDC. We base it on 

the following constraints, which ensure equipment is used consistently taking into 

account its rated voltage. 

Every node must have a voltage level assigned: 

 
,

1
i vl

vl

v =∑ . (17) 

We can only install transformers that are consistent with the voltage of the host node. As 

we can install only transformers of one type, it is sufficient to impose this condition for 

the first of the redundancy levels, 
1
r : 

 
1

, ,

, , , ,
, / 1

1
tt vs vl

ij tt r vs i vl
tt vs Tvl

tf v
=

≤ −∑ . (18) 

Similarly, we allow only cables that have the same rated voltage as the nodes (or 

transformers) they connect: 

 

( )

( )

1 1

1 1

, , , , , , , ,
/ 1 / 1

, , /

, , , , , , , ,
/ 1 / 1

, , /

c c

c c

ijcr i vl ij tt r vs tt vs vl tt vs vl
vl Cvl vl Cvl

tt vs vs
vs vs

ijcr i vl ij tt r vs tt vs vl tt vs vl
vl Cvl vl Cvl

tt vs vs
vs vs

x v tf Btvl Btvl

x v tf Btvl Btvl

′
= =

′
′≠

′
= =

′
′≠

≤ + −

≤ + −

∑ ∑

∑ ∑
. (19) 

3.3.5.2. Second-stage constraints 

The goodness of a layout is defined in terms of the expected amount of energy that it can 

evacuate. This delivered power is the maximum generating capacity available minus 

curtailment. Therefore, we construct our objective function by adding investment cost 

and curtailment penalties. 
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i

i

opc PCur curω ω ω ω

ω ω

′ ′′ ′ ′′

′ ′′

= ∑ . (20) 

Operation cost minimizes curtailed power assuming a constant penalty per MWh for all 

scenarios. This would be consistent with the wind farm receiving a feed-in tariff. 

We model system operation with a DCPF. Kirchhoff’s First Law establishes that, at every 

node, incoming flows plus generation (if the node has a turbine) equals outward flows 

plus curtailment (if the node has a turbine) and plus demand. Although there is no real 

demand present at the OWF, we capture its operation by introducing an artificial 

demand at the CPP that is always able to absorb the maximum power generated at each 

scenario. That is: 

 
1

0 0
i

i

i

wt G CP
D

CP

ω

ω

′

′
 =
 =

. (21) 

 
/ 1

i
jicr i ijcr i Wt i

jcr jcr

f WtG f cur Dω ω ω ω ω ω ω ω′ ′′ ′ ′ ′′ ′ ′′ ′

=
+ = + +∑ ∑ . (22) 

Kirchhoff’s Second Law. This law applies only to AC cables and transformers: 

 ( ) ( )1 1 , ,
i j

ijcr ijcr ijcr

ijcr

M x f M x ijcr cl c cac
CX

ω ω ω ω

ω ω
θ θ

′ ′′ ′ ′′

′ ′′
−

− − ≥ − ≥ − − ∈ ∈ . (23) 

 ( ) ( ), , , , , ,
1 1 ,

i j

ij tt r vs ijcr ij tt r vs

tt

M tf f M tf tt ttac
TX

ω ω ω ω

ω ω
θ θ

′ ′′ ′ ′′

′ ′′
−

− − ≥ − ≥ − − ∈ . (24) 

Cables respect their rated powers: 

 (1 ) (1 )
ijcr ijcr c ijcr ijcr ijcr c
x Fc Cp f x Fc Cpω ω ω ω′′ ′ ′′ ′′− − ≤ ≤ −   (25) 

Transformers and converters respect their rated powers. These constraints are active 

only if equipment is installed. 

 ( )
1, , , , , , , , ,

, , ,

(1 ) 1
ijcr ij tt r vs ij tt r vs tt ij tt r vs

tt vs tt r vs

f G wt tf tf Tp Ftω ω ω ω′ ′′ ′ ′′− − ≤ −∑ ∑ . (26) 

 

( )
1, , , , , , , , ,

, , ,

(1 ) 1
ijcr ij tt r vs ij tt r vs tt ij tt r vs

tt vs tt r vs

f G wt tf tf Tp Ftω ω ω ω′ ′′ ′ ′′+ − ≥ − −∑ ∑ . (27) 

Another problem that is characteristic of OWF layout is a very large search space. 

Turbine arrangements (resulting from micrositing) are often highly symmetric. This, 

together with the lack of initial connections (the OWF problem is a greenfield 

expansion), leads to a remarkably large, highly degenerate problem. In order to reduce 

the feasible region, we introduce some additional constraints (that is, we strengthen the 

problem). These constraints should restrict as many layouts as possible while preserving 

the optimal solution. The developed additional constraints impose that the farm should 

be able to evacuate its rated power if no contingencies occur. This is a reasonable 

criterion that reduces considerably the search space of the problem. 

All turbines must be connected somewhere in order to be able to evacuate at least their 

rated power. Similarly, all couples of turbines must be connected to a different node 

(outside the couple) so that they can evacuate at least their combined power. The same 
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argument holds for all the possible combination groups ( )gwt i  of one, two, three, four,… 

wt  nodes where there is a turbine, 1
i

Wt = . The number of turbines included in each of 

these sets is given by gwt  (so that, for every group of pairs of turbines 2gwt =  , for the 

threesomes of turbines 3gwt =  and so on). For each of these groups, a constraint 

ensures that they can evacuate their rated power by establishing that there must be 

enough capacity linking the nodes of group i gwt∈  to the exterior i gwt∉ . 

 
/

( )
( )

1 / 1
ijcr i

jcr

ijcr c
ijcr
i gwt wt
j gwt wt

x i Wt

x Cp gwtG

∈
∉

≥ ∀ =

≥

∑

∑ . (28) 

In addition, the cables connecting the offshore substation to shore must be able to 

withstand the total generation power of the farm: 

 
/

0
i j

ijcr c
ijct
Ps CP

x Cp wt G

>

≥∑ . (29) 

We impose an equivalent constraint to transformers/converters. This will only be active 

if there is a transformer installed. 

 
1

, , , , , ,
, , , ,

(1 )
ij tt r vs tt ij tt r vs

ij tt r ij tt vs

tf Tp wt G M tf≥ − −∑ ∑ . (30) 

3.4. Chapter Takeaways 

This chapter introduces concisely the models used in this thesis. We develop two 

different models, one for general TEP and a second one which acknowledges the 

particular characteristics of OWF design. 

The TEP model selects the optimal network additions that minimize the sum of 

investment and operation costs. A DCPF is used for system operation, which includes 

uncertain scenarios for generation expansion, fuel prices, hydro inflows, demand or 

renewable generation. 

The OWF design problem defines the best electrical layout for the collector system 

(which links the turbines among them) and the transmission system (which links them to 

the onshore network), including offshore substations. Uncertain scenarios for available 

wind power and contingencies are modeled explicitly. In addition, it takes into account 

transformers and converter stations explicitly and ensures that voltages are used 

consistently 

 





 

 

Chapter 4  
Efficient Resolution 
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4.1. We Have Work Cut Out For Us… 

The complexity inherent to TEP and the OWF design problem means that some 

optimization techniques can be impractical in this context. Moreover, realistic planning 

involves solving many instances of the same problem. Not all the relevant objectives can 

be introduced in the optimization problem (for instance, voltage stability or short-circuit 

currents), so the usual approach is iterative. First, an optimal expansion is obtained. 

Then, it is evaluated using more detailed models and introducing different 

considerations. If any infeasibilities are detected, they are expressed as new constraints 

or modifications to the starting optimization problem, which is solved again. In the case 

of OWF layout, the complexity of the problem leads to solving micrositing first, the 

electrical layout afterwards. The relationships between these two problems leads to an 

iterative framework too, where several options for micrositing are tested, with the OWF 

electrical layout being solved for each of them. 

Having this into account, these problems demand not only the possibility of solving 

large-scale cases, but also affordable computation times. In this thesis, we develop 

algorithmic enhancements to the state-of-the-art methods in order to solve the large 

problem sizes currently involved in TEP and OWF studies. 

We exploit the structure of the problem applying Benders’ decomposition, a technique 

that divides a two-stage stochastic linear problem into two parts, a master problem and a 

subproblem that are solved iteratively until convergence. We develop the first published 

application (to our knowledge) of decomposition strategies to the OWF problem. In 

addition, in order to develop an efficient implementation of Benders’ decomposition, we 

perform a comparative study of the different techniques that have been applied to 

accelerate it, a study that was missing in the literature. We then evaluate the potential 

time savings that these techniques can bring to TEP. 

Furthermore, we develop some new acceleration techniques ourselves. Semi-relaxed cuts 

are a new kind of cut that deals more efficiently with large numbers of discrete variables 

in the master problem. We also propose a Progressive Contingency Incorporation 

algorithm to evaluate the effect of component failures efficiently. These enhancements 

reduce computation times by up to two orders of magnitude in the case studies 

developed. 

The first application of decomposition strategies to the OWF layout problem, which 

includes free topologies and the consideration of HVDC transmission, was published as: 

� S. Lumbreras and A. Ramos, “Optimal design of the electrical layout of an offshore 

wind farm applying decomposition strategies”, IEEE Transactions on Power Systems 

28 (2): 1434-1441, May 2013 10.1109/TPWRS.2012.2204906.  

The review on Benders’ decomposition acceleration techniques and semi-relaxed cuts 

were presented at: 

� S. Lumbreras, A. Ramos, “Transmission expansion planning using an efficient 

version of Benders’ decomposition. A case study”, PowerTech 2013. Grenoble, 

France, 16-20 June 2013. 
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� S. Lumbreras, A. Ramos, “Improvements to Benders’ decomposition. A practical 

evaluation using a transmission expansion planning problem”, 13th Trans-Atlantic 

Doctoral Conference. London, United Kingdom, 9-11 May 2013. 

They have also been submitted for publication: 

� S. Lumbreras,  A. Ramos ,“Optimal Transmission Expansion Planning using Benders' 

Decomposition. Acceleration Techniques“, submitted to JORS last April. 

The PCI algorithm was published in the paper: 

� S. Lumbreras, A. Ramos and S. Cerisola, “A Progressive Contingency Incorporation 

Approach for Stochastic Optimization Problems ”, IEEE Transactions on Power 

Systems 28 (2): 1452-1460, May 2013 10.1109/TPWRS.2012.2225077 [118]. 

This section describes these developments. First, section 4.2 introduces Benders’ 

decomposition and reviews the existing acceleration techniques and the proposed semi-

relaxed cuts. Section 4.3 details our application of Benders’ decomposition to OWF 

design.  Section 4.4 applies the reviewed acceleration techniques, as well as semi-relaxed 

cuts, to the general TEP problem. Section 4.5 describes the Progressive Contingency 

Incorporation algorithm developed to consider efficiently the failures of elements in 

stochastic design problems. We prove its optimality and show its potential advantages in 

a case study based on OWF design. Finally, section 4.6 presents conclusions. 

4.2. Benders’ Decomposition 

4.2.1. The Basics 

Benders’ decomposition is recognized as one of the most important techniques in the 

optimization domain in general and in Stochastic Optimization in particular [119-121]. 

This method is also known as primal decomposition (because the master problem fixes 

variables in the subproblem), L-shaped decomposition (because of the shape of the constraint 

matrix) or recourse decomposition (because the master problem assigns directly the 

resource decisions to the subproblem). It has been applied extensively to the resolution 

of two-stage stochastic linear problems. 

The two-stage stochastic linear problem is defined conventionally in its complete problem 
form as [122]: 

 
,

min T T

x y

c x d y
ω

ω

ω∈Ω

+ ∑ , (31) 

 Ax b= , (32) 

 Tx Wy hω ω+ = , (33) 

 , 0x yω ≥ , (34) 

where: 
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x : first-stage variables, 

yω : second-stage variables, 

,c d : first and second-stage costs. 

Eq. (32) represents first-stage constraints and Eq. (33) corresponds to the constraints that 

link both stages (known as tender constraints). 

Benders’ decomposition divides the problem into two parts. The master problem 
represents the first stage and some conditions derived from the second stage known as 

cuts [123], which provide a lower bound on second stage costs. The subproblem solves the 

second stage for the particular values of first-stage decisions defined by the master 

problem. This valid solution of the subproblem provides an upper bound for the optimal 

value. In addition, we use the information obtained from the subproblem to improve the 

description of the second stage that is included in the master problem by including a 

new cut. We solve both problems iteratively until we reach convergence. 

The problem can also be interpreted as: 

 

min ( )

. .

0

T

x
c x x

s t Ax b

x

ω

ω

θ
∈Ω

+

=

≥

∑
, (35) 

where ( )xωθ  represents the second-stage objective function as a function of the first-stage 

decisions, that is, the recourse function. This can be expressed as: 

 

( ) min

. . :

0

T

y

x d y

s t Wy h Tx

y

ω

ω ω

ω ω ω

ω

θ

π

=

= −

≥

. (36) 

where ωπ  represent the dual variables of the constraints. In Benders’ decomposition, 

problem (35) is known as the complete master problem and problem (36) as the subproblem. 

Expressed in dual form, the subproblem would be: 

 
( ) max( )

. .

T

T

x h Tx

s t W d

ω

ω ω ω

π
ω

θ π

π

= −

≤
. (37) 

The optimal solution of the problem above must coincide with one of its vertices. The 

problem can therefore be solved by enumeration: 

 { }( ) max ( ) 1,...,T wlx h Tx lω ωθ π υ= − = , (38) 

where l
 
denotes the existing vertices up to the total number of vertices, υ . 

Therefore, if all the vertices of the feasible region were known it would be possible to 

build the complete master problem and solve it directly: 
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,
min

. .

( ) 1, ..., ,

0

T

x

T wl

c x

s t Ax b

h Tx l

x

ω

ω

θ
ω

ω ω

θ

θ π υ ω

∈Ω

+

=

≥ − = ∀

≥

∑

. (39) 

However, instead of obtaining the complete master problem, Benders’ decomposition 

builds the description of the recourse function iteratively, one vertex at a time. The 

relaxed master problem is defined as: 

 

,
min

. .

( ) 1,..., ,

0

T

x

T wl

c x

s t Ax b

h Tx l j

x

ω

ω

θ
ω

ω ω

θ

θ π ω

∈Ω

+

=

≥ − = ∀

≥

∑

, (40) 

where l  denotes the iterations up to the current iteration j  This can also be expressed in 

the following form, which is the most commonly used expression to define the master 

problem: 

 

,
min

. .

( ) 1,..., ,

0

T

x

l wlT l

c x

s t Ax b

f T x x l j

x

ω

ω

θ
ω

ω ω

θ

θ π ω

∈Ω

+

=

≥ + − = ∀

≥

∑

, (41) 

where lf ω  represents the optimal second-stage cost for the first-stage decisions lx  

proposed by the master problem evaluated in scenario ω . The optimal second stage cost 

for iteration j  is obtained by solving the subproblem: 

 

min

:

0

j T

y

j j

f d y

Wy h Tx

y

ω

ω ω

ω ω ω

ω

π

=

= −

≥

. (42) 

Figure 4-1 shows a schematic representation of Benders’ decomposition. 
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Figure 4-1 – Graphical representation of Benders’ decomposition. The recourse function 

in the two-stage linear problem is a piecewise linear convex function, represented as a 

smooth convex function here for the sake of simplicity.  

Because the whole definition of the problem is linear, the recourse function ( )xωθ  is 

piecewise linear (convex) with respect to the first-stage decisions x . This convexity 

means that ωθ  represents a lower bound on second-stage costs. Thus, a lower bound on 

the optimal value can be obtained from the current master problem: 

 min
j T jZ c x ω

ω

θ
∈Ω

= + ∑ . (43) 

Conversely, the subproblem minimizes second-stage costs for the first-stage decisions 

proposed by the master problem at the current iteration j , jx . This constitutes a feasible 

solution for the problem. The best of the solutions obtained until the current iteration 

provides an upper bound on the optimal value: 

 
1,2,...,
minj T j j

l j
Z c x f ω

ω
=

∈Ω

   = + 
   

∑ . (44) 

The algorithm terminates when the upper and lower bound converge under a given 

relative optimality tolerance: 

 

jj

j

Z Z

Z
ε

−
≤ . (45) 

If the problem has an incomplete recourse (that is, some of the master problem solutions 

are not feasible in the second stage) the cut structure needs to be adapted to generate 

what is known as feasibility cuts. If the subproblem is infeasible (dual unbounded), it is 

modified so that the sum of the infeasibilities is minimized: 
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, , 0

j T T
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f e v e v

s t Wy Iv Iv h Tx

y v v

ω ω ω

ω ω ω

ω ω ω ω ω

ω ω ω

π

+ −

+ −

+ −

+ −

= +

+ − = −

≥

, (46) 

where ,e I
 
represent a vector of ones and the identity matrix. The result of this problem 

is used to build a feasibility cut, which does not add information about second-stage 

costs but rather eliminates infeasible first-stage solutions. 

The formulation of both types of cuts (optimality and feasibility cuts) is unified under 

the following expression: 

 
( )

,
min

. .

1,...,

0

T

x

l l lT l

c x

s t Ax b

f T x x l j

x

ω

ω

θ
ω

ω ω ω ω

θ

δ θ π

+

=

≥ + − =

≥

∑

   , (47) 

where lωδ
 
takes the values 1 for optimality and 0 for feasibility cuts. 

The initial scope for Benders’ decomposition was restricted to linear problems that could 

have integer variables in the master problem. However, early after the method was first 

proposed, Generalized Benders Decomposition (GBD) [124] extended it to convex 

subproblems in general. Other similar algorithms have been proposed by adding 

modifications to the master problem or the subproblem of GBD, such as [125]. 

Benders’ decomposition has been applied in a wide variety of fields. The topological 

optimization of networks [126] and robust spanning tree construction [127] have been 

solved using this method. There are also applications of this technique to fixed-charge 

network design problems [128], scheduling [129, 130] and related problems such as 

aircraft routing [131], the traveling salesman problem [132], locomotive assignment [133] 

or distribution system management [134, 135]. Within computer and communications 

architecture, Benders’ decomposition has been applied to network design [136] and 

spare capacity allocation [137]. Manufacturing system design has also been approached 

from this perspective [138]. There are also applications of this method to finance, in 

particular to portfolio optimization [139, 140]. 

Within power systems, Benders’ decomposition has been applied to problems as diverse 

as generation expansion planning [53, 141-143], transmission expansion planning [25, 54] 

and distribution system design [144], hydrothermal co-ordination [145], the unit 

commitment problem [146], SO2 compliance planning [147] or distributed utility 

planning [148]. 

As can be seen from the formulation, the subproblem that we formulate for TEP is a 

linear problem and the master problem is mixed-integer, so we can apply Benders’ 

decomposition 
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4.2.2. When is Benders’ Decomposition Efficient? 

Benders’ decomposition is likely to yield time savings when one or both of the following 

conditions are met: 

� First-stage variables (also known as complicating variables) increase notably the 

difficulty of the problem. That is, the problem becomes much easier to solve if first-

stage variables temporarily take some fixed values. In addition, the possibility of 

decoupling the second-stage scenarios and solving them individually or in groups 

(typically in parallel) is especially interesting. 

� The master problem and the subproblem have a different nature. Decomposition 

enables the application of the technique that is best suited for each [121], resulting in 

improved efficiency. A particularly relevant case arises when first-stage decisions are 

discrete and second-stage decisions are continuous. This results in the application of 

MIP algorithms for the master problem such as Branch & Cut, while the subproblem 

can benefit from the efficient application of LP solvers. 

Both conditions apply to TEP and OWF design: 

� The number of first-stage variables (which correspond to the candidate transmission 

lines) is much smaller than the number of second-stage variables (which describe all 

power flows thorough candidate and existing transmission lines at each scenario). 

Moreover, some case studies have so many scenarios that the resulting problem can 

be too large for direct resolution. 

� The master problem and the subproblem have a different nature, as the first stage 

deals with integer variables (investments) while the second stage is linear (power 

flows). 

We show the stylized formulation for Benders’ decomposition for the general TEP 

problem in section 4.2.3. In addition, we develop the first published application (to our 

knowledge) of decomposition strategies to OWF design, where the advantages of this 

method can be observed. Section 4.3 reports our main findings. 

However, even if the two conditions for the suitability of the method are met, they are 

not sufficient to guarantee that the decomposition will be more efficient than direct 

resolution. What is more, usually after an initial phase where the upper and lower 

bounds converge very quickly, often the decomposition only converges very slowly. 

Therefore, the use of acceleration methods can be interesting in this context.  Section 

4.2.4 details the accelerating methods that can increase the efficiency of a particular 

implementation of Benders’ decomposition, which we then apply to the OWF design 

and TEP problems. 

4.2.3. TEP Formulation using Benders’ Decomposition 

This section describes the formulation for the master problem and the subproblem 

obtained when we apply Benders’ decomposition to the TEP problem as modeled in 3.2. 

The master problem decides transmission investments taking into account operation 

costs based on a cutting plane approximation: 
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where: 

t
ω : scenarios, 

2
t
ω

Θ : recourse variables for every scenario, 

,t t
l l

tijc tijc

ω ω
π π+ −

: dual variables of the equations imposing maximum and minimum power 

flows through lines, 

,t t
l l

tijc tijc

ω ω
ρ ρ+ − : dual variables of the equations imposing Kirchhoff’s Second Law, 

l

tijc
x : first-stage variables selected by the master problem at iteration l . 

It should be noted that, in this case, no feasibility cuts are needed. All master proposals 

are feasible at the second stage, although some solutions will be penalized for instance if 

there is ENS. 

The subproblem calculates operation cost for the investment variables fixed by the 

master problem and obtains the parameters needed for a new cut: 
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j
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Z g cg pns Pnsc
ω ω

ω ω ω ω
= +∑ . (49) 

With all the remaining constraints being exactly the same as in Chapter 3. 

This formulation is a stylized version of the one implemented in TEPES [149] and used 

in the developments of this thesis. 

4.2.4. Accelerating Benders’ Decomposition 

In general, acceleration methods focus on reducing the computation time spent on either 

the master problem or the subproblem. Master problem resolutions can be slow because 

of size, the presence of integer variables or the addition of a large accumulated number 

of cuts. Alternatively, the subproblem can be burdensome because of a large number of 

constraints or stochastic scenarios. The rest of this section focuses on describing the 

solutions that have been proposed to deal with these issues, linking them to the 

particular issue they aim at tackling. The technique descriptions do not intend to be 

exhaustive but rather give a general idea of the concepts involved and refer the reader to 

the appropriate literature for more detailed information. 

4.2.5. Master Problem Modification Techniques 

Usually, the master problem requires more computational resources than the 

subproblem. This is due to size (in addition, the master problem grows with every 
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added cut) and because it is typical to find discrete first-stage variables. Therefore, the 

need to accelerate master problem resolutions is widespread and a multitude of 

techniques is aimed at this issue. We classify them in two categories: 

� Solution technique modifications, which change how the algorithm finds proposals 

for the first-stage variables. 

� Modifications to Benders’ cuts, which define alternative cuts, append additional ones 

or remove them. 

These techniques have a double impact on solution time. Solution technique 

modifications reduce computation time per iteration. However, the number of iterations 

needed to find the optimal solution might increase. Which of these two effects has the 

largest impact depends on the particular problem. In particular, in the case of methods 

that return sub-optimal master proposals, the relationship between time savings and the 

distance to the optimal solution is especially important. 

Similarly, modifications to Benders’ cuts generally result in more efficient formulations 

that can be solved in shorter computation times. However, some time will be spent in 

building these more sophisticated cuts. Again, the dominant effect will depend on the 

particular problem under study. 

4.2.5.1. Solution Technique Modifications 

a. Master Problem Relaxations. Semi-Relaxed Cuts. 

It is not necessary to use the optimal solution from the master problem to obtain a valid 

Benders’ cut [150]. Any feasible first-stage solution will suffice. If obtaining an optimal 

solution is computationally slow, the use of relaxed solutions can result in efficiency 

improvements. 

In particular, solving a MIP problem is notably more complicated than finding the 

solution for its linear relaxation. Some authors have proposed solving linear relaxations 

of the master problem to derive a first set of cuts [151, 152] and this strategy can be 

found in a variety of practical contexts [153, 154]. This kind of approaches provides with 

a relatively good starting description of the recourse function at a low computational 

cost. 

We propose to start with the relaxed problem introducing the binary description of 

variables progressively, one variable at a time, so we generate semi-relaxed cuts. The 

discretizations take place once the decomposition has converged under a given 

tolerance, and the variable to be discretized is chosen to be the one closest to take the 

values 0 or 1. It should be noted that the discretization just imposes that the variable is 

binary (i.e. not relaxed). In any case does it impose the value that it should take. This 

method improves convergence and avoids stagnant master proposals [105]. 

b. Sub-optimal Master Problem Solutions 

Given that all first-stage solutions are acceptable for generating Benders’ cuts, some 

authors have resorted to using sub-optimal solutions for the master problem, obtained 

from solving the master problem with a relatively high optimality tolerance. This 
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tolerance is reduced gradually in order to guarantee that the optimal solution is finally 

obtained. 

Although more iterations might be needed, the computation time per master problem 

resolution can be greatly reduced. Which of these opposite effects dominates depends on 

the characteristics of the problem under study. Some particular strategies include using 

any newly discovered first-stage feasible solution for cut generation [134], every node 

evaluated in a Branch & Bound resolution of the master problem [155] or rounded 

linearized solutions [156]. 

The application of non-classical optimization techniques to the master problem can be 

advantageous as well. In many cases, these methods are able to find near-optimal 

solutions in affordable computation times. In addition, very often these algorithms have 

a relatively good behavior with growing problem size. For instance, the master problem 

can be solved by metaheuristics such as Genetic Algorithms [157] or any heuristic 

technique in general [158]. 

Another version of the use of sub-optimal master solutions is the boxstep method [159]. 

This technique consists in incorporating an additional constraint to the master problem 

to reduce its feasible region, so that the solution is found in a smaller number of 

iterations. If the additional constraint is active at the optimal solution, then it cannot be 

considered actually optimal. In that case, the decomposition is resumed relaxing the 

additional constraint by a pre-specified amount (the step). 

c. Regularization Approaches 

It has also been argued that the approximation of second-stage costs that is implicit in 

the recourse function is only valid for values relatively close to the already explored 

solutions. Extrapolating to solutions that are far from them necessarily leads to high 

errors and probably introduces instability in the search that results in damaged 

convergence. Some authors have proposed to limit the distance between master problem 

proposals and an incumbent solution that is defined as the best one found until that 

moment [160]. 

4.2.5.2. Modifications to Benders’ Cuts 

Another fundamental way to accelerate the master problem is to modify the definition of 

cuts. Some approaches focus on building cuts so that they bring the maximum possible 

amount of information about the recourse function. Others eliminate the cuts that are not 

likely to be active again. This section reviews the main approaches followed in this area. 

a. Cut Structure 

Approaches that place a single cut per iteration are known as monocut (50) , while the 

ones that add several of them are referred to as multicut (51) [161]. 
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Scenario partitioning techniques explore the different possibilities of arranging the 

resolution of the different scenarios and assigning them to different cuts [162].  We 

partition the set of scenarios into subsets and cuts are generated for each subset. 
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More cuts define the recourse function more accurately, but also increase the 

computation time needed to solve the master problem. Therefore, it is usually desirable 

to test several alternatives before making this choice [163]. More sophisticated 

approaches assign scenarios to cuts dynamically, trying to optimize the amount of 

information available in them [164]. In addition, if some scenarios have a particularly 

high impact on the final solution, it can be interesting to extract them from the 

subproblem and insert them into the master problem, together with all their related 

constraints and variables. In this way, the master problem grows but gets an exact 

description of the second-stage cost of these high-impact scenarios since the very first 

iteration. We used this approach to solve the OWF layout problem [162]. 

b. Minimal Infeasible Subsystems (MIS) 

In problems with both optimality and feasibility cuts, the appropriate selection of the 

latter might accelerate convergence notably. The usual method to choose the cut is to 

minimize the sum of infeasibilities as explained in 4.2.1. MIS provide an alternative 

method for the generation of feasibility cuts [165, 166]. MIS are defined as the smallest 

subset of constraints that result in an infeasibility. The calculation of these sets is in itself 

an NP-hard problem, but several alternative approaches have been proposed to generate 

cuts through MIS in an efficient way [167]. 

Feasibility cuts only provide information about the feasibility of first-stage decisions, but 

bring no information about second-stage cost. Therefore, in problems with more 
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feasibility than optimality cuts it can be difficult to guide master proposals. In these 

cases, it is possible to generate constraints with the structure of optimality cuts from 

infeasible subproblems. Apart from originating the corresponding feasibility cut, a 

minimum number of constraints is relaxed in order to obtain a feasible subproblem, 

which is then solved to create an optimality cut [168]. 

c. Non-Dominated Cuts 

A cut or constraint *C  is said to dominate or be stronger than another cut C , expressed 

as: 

 * * *

: ( ) ( )

: ( ) ( )

C z f u yg u

C z f u yg u

≥ +

≥ +
 . (53) 

if: 

 * *( ) ( ) ( ) ( )f u yg u f u yg u+ ≥ + . (54). 

with an strict inequality for at least one value y Y∈ . 

Pareto-optimal cuts are constraints that are not dominated by any other. Adding 

dominated cuts to the master problem does not change the feasible region and increases 

size making problem resolution generally slower. Non-dominated cuts [169] have been 

applied in a variety of works [170]. In particular, when the subproblem is degenerated, 

there is more than one set of cuts that could be built from the same master solution. 

Some authors have suggested using the solution that generates a non-dominated cut, so 

that the information encoded in the master problem constraints is as efficient as possible 

[169]. 

For a feasible first-stage solution x̂  (called a core point), the algorithm selects the solution 

of the subproblem that will generate a cut with the highest value when evaluated at the 

core point. That is, if we express the value of the cut at the core point as: 

 ˆ( )T h Txπ − , (55) 

where 
opt

π ∈ Π  stands for the set of alternative dual solutions of the subproblem for the 

value of the first-stage decisions x̂ . The non-dominated cut will be the one that gives the 

highest value at the core point: 

 * ˆmax ( )T h Tx
π

π π= − . (56) 

Some authors have highlighted potential difficulties in the implementation of this 

method, such as complications finding a core point and the fact that computational 

improvements cannot be guaranteed given that there is an additional linear problem to 

be solved at each iteration [131, 171]. Other similar techniques include maximal cuts, 

which are calculated by means of small perturbations of the right-hand-side of the 

subproblem [168]. 

d. Covering Cuts 

It has been noted that Benders’ cuts are often low-density in the sense that they involve 

only a small fraction of the decision variables. These cuts strengthen the problem only to 
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a limited extent. It is desirable to generate cuts that cover the highest possible number of 

variables [172, 173]. When a master proposal is infeasible at the subproblem, a feasibility 

cut is generated under the form: 

 0 ( )l lT lf T x xω ωπ≥ + − . (57) 

The coefficients that affect first-stage variables are given by the product of the dual 

variables vector and the constraint matrix. The coefficient that affects a particular first-

stage variable j  is: 

 ( )lT

j
Tωπ . (58) 

A cut is said to α-cover a given variable if the absolute value of the ratio of the variable 

coefficient divided by the maximum coefficient in the cut exceeds α . That is: 

 ( ) ( ){ }maxlT lT

jj j
T Tω ωπ α π

′ ′
≥ . (59) 

A series of auxiliary subproblems is solved with the aim of generating cuts that cover all 

the first-stage variables. For a given variable j , not yet covered, bounds are imposed to 

the existing dual subproblem so that the coefficient corresponding to the variable results 

in a higher cover: 

 ( )lT

j jj
LB T UBωπ≤ ≤ . (60) 

Where 
j

LB  and 
j

UB  represent the bounds that are imposed to the coefficient. 

This process is repeated with the variables that have not yet appeared with large enough 

coefficients, adding the necessary number of cuts so that all variables are covered to the 

desired level. The increased number of cuts results in a larger master problem. However, 

the consequent reduction in the feasible region is reported to overweight this cost [173, 

174]. 

e. Inactive Cut Removal  

Keeping more cuts generally implies larger master problems and longer solution times. 

However, it has been shown that, often, large fractions of the existing cuts are not active. 

Cut removal can result in lighter master problems. However, some cuts might have to be 

generated more than once with the consequent impact in solution times. In addition, a 

mechanism to avoid the elimination of recurrent cuts is necessary to avoid cyclical 

solutions. A number of authors have followed this approach with notable time savings 

[53, 153]. 

4.2.6. Subproblem Modification Techniques 

4.2.6.1. Scenario Structure 

In multi-stage problems or problems with more than one source of stochasticity, the 

definition of a suitable scenario tree is not always straightforward. Scenario tree 
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reduction and node aggregation techniques can reduce efficiently the size of the scenario 

tree [175, 176]. 

4.2.6.2. Bunching 

Fixing first-stage variables allows solving the subproblems independently. Notably, 

parallel computing solves scenarios simultaneously with the consequent time savings 

[177]. 

However, it is possible to avoid solving some of the scenarios until optimality applying 

information about previously solved subproblems. Bunching [121] solves some of the 

scenarios using sensitivity information. It applies the optimal basis B  obtained for one 

scenario to approximate others: 

 1( )y B h Txω ω−= − . (61) 

4.2.6.3. Specific Algorithms 

In the cases where there are specific algorithms available for the subproblem, their 

application can result in significant time savings. For instance, this approach has been 

applied to a network design problem that uses a shortest-path algorithm instead of a 

regular LP solver [53]. 

4.2.6.4. Increasing Modeling Complexity 

Another alternative is to solve an increasingly accurate version of the subproblem. For 

the cuts to be valid, approximations must give values below the exact cost. This 

technique can accelerate convergence if the solution of the approximations is very 

similar to the one of the exact model but takes a shorter computation time. A particularly 

interesting example of this technique is the use of increasingly detailed network 

representations in a TEP problem while keeping the cuts generated in the less accurate 

and faster stages [178]. Along the same lines, we propose the resolution of design 

problems where scenarios describe the possible failures of the installed components by 

solving a series of progressively more complex problems (4.5). A similar approach using 

increasingly complex master problems was proposed in [28].  

4.2.6.5. Sub-optimal Subproblem Solutions 

Any dual feasible solution of the subproblem (primal infeasible) will still yield valid cuts 

that can be used as a lower bound for second-stage costs. In the cases where the 

subproblems are large it can make sense to use sub-optimal dual solutions for cut 

generation (Zakeri’s cuts) [179]. 
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4.3. OWF Design with Benders’ Decomposition 

4.3.1.1. Introduction 

We apply Benders’ decomposition to the OWF design model described in 3.3. The 

formulation is very similar to the one for the TEP problem. Therefore, we omit it for the 

sake of simplicity. We solve several case studies in order to illustrate the efficiency of this 

approach, and also the economical benefits implied by optimizing the layout rather than 

using pre-established configurations. 

The case studies include a real case representative of the wind farms currently in 

operation. The OWF chosen was Barrow Offshore Wind Farm (BOWF), which was the 

largest OWF when commissioned in 2006 by Centrica and Dong Energy. A detailed 

description of the plant and its components is included in [180]. We also consider a 

much larger case (525 MW, 75 turbines, which is larger than the largest case seen in the 

literature) as a representation of the large projects that will be committed in the future. 

4.3.1.2. Results 

Figure 4-2 compares the actual layout of BOWF to the result of our optimization. In the 

former, generators are linked to form four rows. The extremes of the strings are linked 

using higher rated cables due to the higher power they carry. The four extremes connect 

to the offshore platform, which hosts a 120 MVA transformer. 

 

Figure 4-2 – Actual layout for BOWF vs. proposed layout. 

The main differences between them are the use of two 60 MVA transformers instead of a 

single 120 MVA device, which improves reliability, and some breaks of symmetry close 

to the offshore substation that allow a more efficient use of cables. The objective values, 

split in investment cost and operation cost, can be seen in Table 4-1. 

 

 Total (M€/y)  InvC (M€) OpC (M€/y) 

Actual layout  2.28 19.10 0.88 

Optimized layout 2.24 18.69 0.86 

Table 4-1 – Optimization results for the real size case example. 
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The optimized layout results in savings of 1.8% in total cost including 2.2% in 

investment cost. The proposed design allows using the more expensive cables more 

sparingly (only four links versus the ten present in the original layout). In addition, 

reliability improves mainly due to the redundancy in the transformer. The total 

realizable savings would have been of the order of 800,000 € during the life of the 

project, 410,000 € in the investment phase and the remaining amount to be recovered 

throughout the life of the farm. The analysis of the results was based only in a base case 

for the parameters, so they should be taken with caution. However, they show clearly 

that the optimal layout is in general different from any standard configuration and that 

there are cost savings achievable by optimization. 

4.3.1.3. Problem Size and Algorithm Performance 

 Table 4-4 shows the main problem statistics for the cases solved: number of equations , 

continuous and binary variables, non-zero elements and integrality gap (the difference 

between the optimal solution to the discrete problem and its linearization, which is 

commonly used as a measure of the complexity of problems with discrete variables). 
 

 Equations Continuous 
variables 

Binary 
variables 

Non-zero 
elements 

Integrality 
Gap 

BOWF 42767 27042 102 147357 24.96% 

Larger case 475685 300292 415 2219362 84.12% 

Table 4-2 – Problem size. 

Four different versions of Benders’ decomposition were tested. Detailed explanations of 

these versions can be found in section 4.2.5.2.a. 

The first three correspond to different ways of arranging the scenarios in the generated 

cuts: 

� Both: one cut per system state (which describes contingencies) and wind scenario. 

� System state: one cut per system state, which aggregates across wind scenarios. 

� Wind scenario: one cut per wind scenario, which aggregates across system states. 

The other one, system state aggregation, corresponds to adding the base case (no 

contingencies) to the master problem. This is also explained in more detail in section 

4.2.5.2.a. 

CPU times, expressed in seconds, were calculated using CPLEX 12.1 on GAMS on a PC 

at 2.80 GHz with 4 GB RAM running Microsoft XP 32 bits. The optimality tolerance was 

0.1% in all cases. 

In the case study based on BOWF, Benders’ decomposition converges in only 4.3% of the 

time spent by the complete problem. 

 Complete Problem Benders’ decomposition 
Both System state Wind 

scenario 

System state and 

wind scenario 

Total 14055.5 597.6 880.7 672.5 124.3 

Table 4-3 – Computation time for the case study (BOWF), in seconds. 
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It was not possible to perform a direct resolution of the larger case given its size. 

However, it was solved in only 225.1s using Benders’ decomposition and the proposed 

PCI algorithm (as described in section 4.5). The final design can be seen in Figure 4-3. It 

combines a radial topology for each of the rows with a multi-ring at the extremes for 

enhanced reliability. Two offshore substations are installed. The main one is placed at 

the closest point to the CPP. The second one is placed at the center of the layout. The 

latter allows using lower rated (and cheaper) cables by joining the farthest half of the 

layout directly to the main substation. 

 

Figure 4-3 – Proposed layout for the larger case. 

As can be seen from the results, Benders’ decomposition is able to reduce efficiently 

computation time in the OWF design problem, with the best time savings reaching two 

orders of magnitude for the case study. Furthermore, the large case study could be 

solved only by the decomposition approach. 

4.4. Accelerating Benders’ Decomposition in the TEP Problem 

We solve several TEP case studies in order to assess the performance of the proposed 

improvements with growing problem size. The cases are based on the 46N IEEE test 

system and the 87N IEEE test system [181]. Table 4-4 shows some statistics on the 

straightforward application of Benders’ decomposition to the case studies. We consider a 

single scenario except in the 46N 100-scenario case, which explores the effect of a larger 

number of stochastic scenarios. We generated these scenarios from demand profiles 

calculated proportionally to the base case, stretched from 70% to 100% of the base-case 

load. The relative optimality tolerance was 0.1% for both the master problem and 
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Benders’ decomposition in all cases. The number of equations corresponds to the last 

iteration of the decomposition. We report solution times of the master problem and the 

subproblem as an average value per iteration. As can be seen, most of the solution time 

is spent in the master problem, where decision variables are discrete. This is the main 

fact that will determine the selection of improvement techniques applied. 

 Master Subproblem Decomposition 
Case Eq Var D var Time (s) Eq Var Time (s) It. Time (s) Time per it.(s) 

46N 162 82 79 1.0 208 359 0.0 161 162.6 1.0 

46N/ 100 sc 7402 181 79 9.7 208 359 1.2 75 820.6 10.9 

87N 124 155 152 2.9 181 748 0.0 123 364.5 3.0 

Table 4-4 – Case study statistics. ”Eq” means “equations”, “var” means “variable”s and 

“D var” means “discrete variables”, ”Time (s)” means” time in seconds” and “it” means 

iterations.  

4.4.1.1. Selection of the Improvements to Benders Decomposition Applied to 

the Case Study 

This section explains the rationale for the selection of the improvement methods that we 

apply to the case study. First, as explained, most of the decomposition time is spent in 

the master problem. In all cases, the total time invested in the subproblem is less than 

12%. Therefore, even if the subproblem could be accelerated so much that virtually no 

time was spent on its resolution, the maximum achievable savings would be 12%. This 

discourages the application of subproblem modification methods in this case. Therefore, 

we test only master modification techniques. Within master problem modification 

techniques we find modifications to the solution technique and modifications to 

Benders’ cuts. We explore both. 

a. Solution Technique Modifications 

The relatively slow resolution of the master problem is mainly due to the presence of 

binary variables. We observe this when solving the linearized problem. For instance; the 

largest case study contains 152 discrete variables and is solved in 2.9 s, while its linear 

relaxation is solved in less than 0.1 s (97% savings). Therefore, in an ideal situation 

where the cuts obtained were exactly the same, there would be potential savings up to 

85% (This is, (1-12%)·97% = 85%) if we used a relaxation of the master problem. This 

leads us to test some alternative master problem relaxations: 

� Solving a linear relaxation of the problem for a certain number of Benders’ iterations 

to derive a first set of cuts (identified with the label linear first in the results table). 

� Using semi-relaxed cuts (our proposed cuts that discretize variables progressively). 

b. Sub-Optimal Master Solutions 

As seen above, the potential savings if we can find a solution for the master more 

efficiently can reach up to 85% of total solution time. Therefore, we also consider 

suboptimal master solutions: 

� Using sub-optimal master solutions obtained by setting a large relative optimality 

tolerance that decreases as the algorithm progresses. This mechanism is defined by 
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the initial tolerance and the step by which the tolerance is reduced at each iteration. 

In order to prevent premature convergence, the tolerance will be adjusted so that it 

is always lower than the convergence ratio that has been obtained at the previous 

iteration: 

 
1

min ,
jj

j j

j

Z Z
Master Master Step

Z
ε ε ε

−

 −  = −    
. (62) 

where: 

j
Masterε : convergence ratio at current iteration j , 

j
Z : current upper bound, resulting from the best evaluated solution until the 

moment, 

jZ : current lower bound, resulting from the most recent evaluation of the 

master problem. 

Stepε : step by which the tolerance is reduced at each iteration, 

This will be referred to as inexact master in the results section. 

In order to assess the parameters that should be used for inexact master resolution, we 

present some considerations on the effect of tolerance on computation time. Increasing 

tolerance reduces computation time for the individual iterations. However, using 

suboptimal solutions can result in less efficient cuts and therefore more iterations. 

Computation time savings per iteration that can be obtained by relaxing the tolerance 

can be assessed by solving several instances of the same problem for different tolerance 

values. Figure 4-4 shows how computation time varies with tolerance for the 87N case 

study. 

 

Figure 4-4 – Computation time vs. optimality tolerance for the master problem in the 

87N example. 

Relative optimality tolerances of around 2.5% seem to offer a good compromise. 

Therefore, it can be inferred that an inexact master method that spends most of its 

solution time using tolerance values of around 2.5% could accomplish notable time 

savings. However, as mentioned above, the decomposition might need more iterations 
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to converge. This is also shown in Table 4-5, which shows total computation time and 

number of iterations for different optimality tolerances. The tolerance applied to 

Benders’ decomposition was 0.1% in all cases. 

Relative 
optimality 

tolerance (%) 

Time (s) Optimal solution 
(M€) 

Distance from 
true optimal (%) 

Benders’ 
decomposition 

iterations 
10.0% 20.4 141779.0 1.5% 41 

5.0% 51.1 139853.5 1.0% 118 

2.5% 112.6 139726.4 0.0% 132 

1.0% 222.8 139726.4 0.0% 124 

0.1% 364.5 139726.4 0.0% 123 

Table 4-5 –Relative optimality tolerance for the master problem vs. solution time, 

optimal value and number of iterations for Benders’ decomposition on the 87N case. 

Solving the problem with an inexact master can result in a larger number of iterations 

(for instance, a tolerance of 2.5% needs 132 iterations to converge, which compares to 

only 124 for a tolerance of 1%). However, quicker iterations mean that the 2.5% value is 

still advantageous. It should be noted that a correct implementation of this method 

should adjust the master problem tolerance to be always lower than or equal to the 

current convergence ratio of Benders’ decomposition. If this is not done, it is possible to 

arrive to convergence prematurely. We include an example with a relatively high 

starting value for the tolerance which is quickly reduced to match the current 

convergence ratio of the decomposition under the name highest tolerance. 

In addition, we implement a boxstep method, where we set an additional constraint to 

limit maximum investment: 

 
,

ijc tijc
t ijc cl

Ic x MaxInv
∈

≤∑ . (63) 

where MaxInv , the maximum investment, has a starting value 
0

MaxInv  and is increased 

in steps of MaxInv∆  as needed. We select the values of these parameters to be relatively 

close to the optimal value but with sufficient variation in order to illustrate the possible 

effects of this technique. We use values of 85%, 100% and 115% of the total investment in 

the optimal solution (which was previously calculated), with step increments in the 

constraint of the equivalent of one transmission line in all cases. 

c. Alternative Techniques to Find Master Problem Solutions 

If there were more efficient methods to find the optimal solution, the time savings 

provided by the alternative solution technique would be translated directly to savings in 

the decomposition by a factor of 85%. However, we could not identify any specific 

solution algorithm for this particular case, so we do not consider this alternative. 

d. Modifications to Benders’ Cuts 

Modifying Benders’ cuts can be advantageous in two main cases: if there is an 

excessively large number of cuts or if many of them are feasibility cuts. The inspection of 

the cuts in the case study showed that the number of cuts was not excessive, so 

techniques such as cover cut generation or inactive cut removal are not advisable. In 

addition, the subproblem is feasible for all possible solutions of the master, so there are 
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no feasibility cuts. Therefore, we implement none of the modifications to Benders’ cuts 

except for semi-relaxed cuts as explained. 

4.4.2. Relative Performance of the Improvements 

We test the improvements for the three different problem sizes. 

46N  Time (s) % Savings 

Benders' decomposition  156.6  

Linear first  144.6 8% 

Semi relaxed cuts  105.8 32% 

Inexact master εMaster = 10%  εStep = 0.1% 151.4 3% 

Inexact master εMaster = 2.5%  εStep = 0% 111.3 29% 

Inexact master Highest tolerance 113.6 27% 

Boxstep Initial = 85% optimal 176.7 -13% 

Boxstep Initial = 100% optimal 77.9 50% 

Boxstep Initial = 115% optimal 170.2 -9% 

Table 4-6 – 46N system. Relative performance of improvements. 
 

46N (100 x scenarios) Time (s) % Savings 
Benders' decomposition   820.6   

Linear first   844.5 -3% 

Semi relaxed cuts   499.8 39% 

Inexact master εMaster = 10% εStep = 0.1% 702.0 14% 

Inexact master εMaster = 2.5% εStep = 0% 691.4 16% 

Inexact master Highest tolerance 689.1 16% 

Boxstep Initial = 85% optimal 3,141.0 -283% 

Boxstep Initial = 100% optimal 2,482.0 -202% 

Boxstep Initial = 115% optimal 1,570.4 -91% 

Table 4-7 –. 46N system with 100 scenarios. Relative performance of improvements. 
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87N  Time (s) % Savings 
Benders' decomposition  364.5  

Linear first  374.7 -3% 

Semi relaxed cuts  162.4 55% 

Inexact master εMaster = 5% εStep = 0.025% 106.5 71% 

Inexact master εMaster = 2.5% εStep = 0% 232.5 36% 

Inexact master Highest tolerance 237.1 35% 

Boxstep Initial = 85% optimal 193.0 47% 

Boxstep Initial = 100% optimal 135.8 63% 

Boxstep Initial = 115% optimal 551.3 -51% 

Table 4-8 – 87N system. Relative performance of improvements. 

As can be seen, the two versions of the 46N system studied (a single scenario and 100 

scenarios respectively) benefit from the techniques tested in some cases. The linear-first 

approach does not seem to offer any consistent advantage. Inexact master approaches 

seem to be generally beneficial, reaching savings of 71%. Results tend to favor relatively 

high initial tolerance values that decrease slowly. Boxstep generated time savings that 

were considerable in some instances (up to 63%) but are inconsistent and depend heavily 

on the starting value given to the additional constraint. The approach we propose, semi-

relaxed cuts, delivers notable time savings of up to 55% in a consistent manner. 

4.4.3. Conclusions 

Relatively simple techniques can generate substantial computation time reductions in 

Benders’ decomposition. We have reviewed the acceleration techniques available in the 

literature and classified them with respect to the component of the decomposition they 

modify: the master problem or the subproblem. 

If most of the computation time is spent solving the master problem, the decomposition 

can be accelerated by the use of low-cost solutions to get cuts (such as relaxations, sub-

optimal solutions or alternative techniques). In addition, if most cuts are feasibility cuts, 

Minimal Infeasible Subsystems can improve efficiency. Maximal Feasible Subsystems 

generate additional optimality cuts to guide master proposals. Alternatively, if the 

master problem is slow due to a large number of cuts that are not active, removing cuts 

can be an interesting alternative. More efficient definitions of cuts, such as non-

dominated or cover cuts, can be useful as well. 

If most of the computation time is spent solving the subproblem, an improved definition 

of the scenario tree or the cut structure can have a notable impact on efficiency. In 

addition, it is possible to apply specific algorithms, use increasingly accurate models or 

inexact cuts. 

The TEP problem is particularly amenable to Benders’ decomposition and therefore has 

been solved extensively using this method. We describe the formulation of Benders’ 
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decomposition applied to the problem and test some of the acceleration techniques in 

several case studies based on the IEEE 46N and the IEEE 87N test systems. 

Given that most of the computation time spent on the subproblem was negligible, the 

improvement mechanisms suitable for TEP focused on modifications of the master 

problem. We solved a linear relaxation at the first iterations of the decomposition (linear-

first), applied semi-relaxed cuts (which are one of the contributions of this thesis), 

inexact master resolution and a boxstep method. Using semi-relaxed cuts or inexact 

master resolution generated reductions in computation time in excess of 50%. This 

illustrates how acceleration techniques can accelerate implementations of Benders’ 

decomposition in a relatively straightforward way. We presented our improved version 

of Benders’ decomposition applied to TEP at the conference: 

� S. Lumbreras, A. Ramos, “Transmission expansion planning using an efficient 

version of Benders’ decomposition. A case study”, PowerTech 2013. Grenoble, 

France, 16-20 June 2013. 

4.5. A Progressive Contingency Incorporation Algorithm 

Reliability is a key objective in many optimal design problems, including TEP and, even 

more so, OWF design. Very often, this criterion is incorporated through contingency 

evaluation scenarios [182]. This generates a special problem structure where the 

stochastic reliability scenarios describe the failure of specific individual elements. We 

develop a Progressive Contingency Incorporation (PCI) algorithm that takes advantage 

of this structure to increase efficiency. We apply this algorithm to TEP and OWF design. 

In the case of OWF design, which is particularly suited for the proposed approach, we 

reach time savings of two orders of magnitude. 

This algorithm has been published as: 

� S. Lumbreras, A. Ramos and S. Cerisola, “A Progressive Contingency Incorporation 

Approach for Stochastic Optimization Problems”, IEEE Transactions on Power 

Systems 28 (2): 1452-1460, May 2013 10.1109/TPWRS.2012.2225077. 

4.5.1. Introduction 

Many optimal design problems incorporate reliability as one of their objectives and thus 

involve the evaluation of contingencies in one way or another. Reference [182] performs 

a literature review on system reliability optimization, highlighting applications in wide 

areas such as software development, systems with common mode failure, optimal 

assembly, maintenance policy or burn-in optimization. Many of these represent a two-

stage optimization problem where both design and operation subject to failures must be 

taken into account simultaneously. 

In particular, software development seems to be an area of increasing interest [183, 184]. 

These models represent the software system as an interaction between series and parallel 

modules where the optimal redundancy of each constituent is determined. Real-time 
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applications, as in the aerospace industry are a good example of software systems where 

the need for robustness leads to this sort of optimization [185]. Electronic device design, 

where elements present different costs and failure rates and can be arranged in 

redundant architectures, has been subject to similar research [186]. Communication 

networks, with their special hub-based structure, are also optimized taking into account 

possible contingencies [126, 187, 188]. Supply chain networks have also been studied 

from a similar perspective [189, 190]. 

Within power systems, the design optimization problem with contingency evaluation 

appears in a number of different areas. GEP with reliability considerations 

acknowledges the effect of individual generator failures in the system [53, 143, 191, 192]. 

There are applications to TEP that consider stochastic element failures [16, 193]. In 

general, explicit enumeration is used to represent failures in specific transmission lines. 

The optimized placement of switchgear [194, 195] and capacitors [196-198] has also been 

analyzed. More recently, the design of offshore wind farms (OWF), particularly the 

electrical layout considering element failures, is receiving increasing attention [199, 200]. 

We propose an algorithm that can improve computation times for problems that present 

this structure, where the design of a given architecture must be performed taking into 

account the possible failures of its elements. We propose a strategy that solves a reduced 

version of the problem where not all the possible contingencies are included. We add 

contingencies progressively until a specified condition is met. We show that the reduced 

problem and the original one have the same optima. As the reduced problem is smaller 

and generally much quicker to solve, considerable time savings can be derived from this 

approach. The Progressive Contingency Incorporation (PCI) algorithm is applicable to 

problems where uncertainty in element failures is incorporated as scenario enumeration 

in a stochastic programming model. 

This section presents this algorithm. First, we define contingency structure for stochastic 

problems. Then, we define the reduced problem that will actually be solved by the 

algorithm and prove that they have the same optimal solution. A case study illustrates 

the high computation time savings achievable by this approach. 

4.5.2. Stochastic Problems with a Contingency Structure 

For the sake of simplicity, we will restrict our focus to a two-stage linear problem, 

although we can apply the results to a multi-stage problem as long as all stages present 

the same structure. The two-stage stochastic optimization problem P
Ω

 is defined as: 

 

{ }

0

0 0

,
min (1 )

. .

0,1 , 0,
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x y

ω

ωω ω ω

ω ω
ω ω ω ω

ω ω

ω ω

Ω
∈Ω ∈Ω
≠ ≠

= + − +

=

+ =
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, (64) 

where:  
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x : first stage or investment decisions (binary variables). For each investment 

proposal, the investment variable 
i
x  takes a value of 1 when the element 

i  has been installed and 0 when it has not. 

c : investment costs, 

ω ∈ Ω : second-stage scenarios describing contingencies. The base case (no 

failures) 
0
ω  must always be included in this subset, that is, 

0
ω ∈ Ω . 

Pr ω : probability associated to each scenario. The probability that weights the 

base case equals one minus the sum of the probabilities of the 

contingencies: 

 0

0

1Pr Pr
ω ω

ω ω≠

= − ∑ , (65) 

 1Prω

ω

=∑ . (66) 

yω : second stage or operation decisions for each scenario. In particular, 0y
ω

 

represents the operation decisions for the base-case scenario (no 

contingencies). 

d : operation costs. 

The objective function reflects the first-stage or investment costs plus the expected 

operation cost taking into account the different stochastic scenarios. It is also useful to 

define, for any given feasible set of values for the first-stage decisions x , the problem 

that minimizes expected cost for the second stage. This is known as the recourse 

problem, ( )Q x
Ω

: 

 

( ) 0

0 0

min(1 )

. .

0,

T T

y

Q x Pr d y Pr d y

s t Wy h Tx

y

ω

ωω ω ω

ω ω
ω ω ω ω

ω ω

ω ω

Ω
∈Ω ∈Ω
≠ ≠

= − +

= −

≥ ∈ Ω

∑ ∑

. (67) 

The second-stage scenarios introduce a great deal of complexity. The base-case scenario 

describes operation with no outages. Every remaining scenario describes system 

operation under the loss of a single element. We define problems with contingency 

structure as the stochastic optimization problems where uncertainty arises from 

considering the failures of the elements that can be selected as investment decisions. This 

implies that the evaluated scenarios correspond to the failures of the elements that will 

be installed ( 1
i
x = ) or not ( 0

i
x = ) at the investment stage. In addition, the operation 

cost associated to a contingency scenario must be higher than or equal to the cost 

associated to the base case. We summarize this definition below. 
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� Second-stage scenarios describe the failures of the elements already in the system 

and the ones that can be installed at the first stage. Without loss of generality, we 

assume an N-1 framework [201]. This approach assumes that, for low probabilities 

of failure, the events where two or more elements fail at the same time can be 

neglected (hence the name; all the elements of the system are working except for 

one). This allows assigning a failure scenario to each of the possible investments. In 

this way, a scenario 
i
ω  describes the failure of element i . 

All the scenarios of installed elements must be present in the optimization. 

However, if an element has not been installed, the scenario that describes its loss 

does not have any meaning. Any constraints or terms in the objective function that 

refer to it should have no impact. Therefore, the scenarios referring to elements that 

have not been installed have a behavior that is identical to the base case. 

That is, let *( )y xω  be the optimal values of yω  in the recourse problem ( )Q x
Ω

 for a 

specific feasible proposal of first stage decisions x : 

 

*( ) argmin

. .

0,

T

y

y x Pr d y

s t Wy h Tx

y

ω

ω ω ω

ω
ω ω

ω ω

∈Ω

=

= −

≥ ∈ Ω

∑
. (68) 

Then, the decision of not installing a given element 0
i
x =  implies that the 

operation stage of the scenario describing its failure will be identical to the base 

case. That is: 

 0
* *

0 ( ) ( )i

i
x y x y x

ω ω
= ⇒ = . (69) 

� Element failures increase operation costs. Any failure scenario has an associated 

term in the objective function that is larger than or equal to the base case. It should 

be stressed that this is a condition for the algorithm to be valid rather than a general 

statement about systems with element failures, although it is commonly true. That 

is, let *( )y xω  be the optimal values of yω  in the recourse problem ( )Q x
Ω

 defined for 

a specific feasible set of first stage decisions x . Then, for this optimal operation, the 

costs associated to the contingency scenarios must be always higher than or equal to 

the costs of the base case: 

 0
**

0
( ) ( ) ,T Td y x d y x

ωω ω ω≥ ∈ Ω . (70) 

Given the large number of variables (and therefore, of associated contingency scenarios) 

present in real-life problems, the resolution of the complete optimization model is 

usually very computationally intensive and sometimes unaffordable. Next, we define a 

reduced version of the optimization problem and present its links to the developed 

contingency structure. 
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4.5.3. Reduced Problem Definition 

The proposed algorithm exploits the contingency structure of the problem. We define a 

reduced problem P ′Ω
 where only a subset of the contingency scenarios (the reduced 

subset ′Ω ) is evaluated and the probability of the not-evaluated scenarios is added to the 

base case (so that probabilities still sum to 1): 
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. (71) 

Similarly to the recourse of the original problem ( )Q x
Ω

, the recourse of the reduced 

problem ( )Q x′Ω
 is defined on a subset of the contingency scenarios ′Ω . 

We state two basic properties of the reduced problem: 

� The recourse value of the complete problem is always greater than or equal to the 

recourse value of the reduced problem. Given that the cost associated with 

contingency scenarios is higher, and that the reduced problem includes necessarily 

less contingency scenarios, we have: 

 
( ) ( )Q x Q x′Ω Ω

≤ . (72) 

� If the reduced set of scenarios includes the failure scenarios of all the elements that 

were installed at the first stage, the recourse value of the reduced problem is 

identical to the recourse value of the original problem. 

That is equivalent to say that the inclusion of scenarios that describe failures of 

elements that have not been installed can have no impact on the optimization. Only 

the contingency scenarios that describe failures of installed elements have an 

impact. Therefore, any reduced problems that include the contingency scenarios of 

every installed element will have the same value. If we have a given solution of the 

first stage x  where the installed elements have 1x = , if all the scenarios describing 

its failure are included, that is: 

 
/ 1

,
i

i
i x

where ω
=

′Ω ⊂ Ω Ω =ɶ ɶ ∪ . (73) 

The definition of the recourse function of the reduced problem ( )Q x
′Ω

 is: 
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 (74). 

We can split the argument of the minimization into two parts, corresponding to the 

set of the scenarios that describe contingencies of the specified solution x  (that is, Ωɶ ) 
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and the remaining ones (i.e., 
i
ω ′∈ Ω ∩ Ωɶ ), where a bar above a set represents 

negation, that is, the elements that do not belong to it. 
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 (75). 

If an element is not installed then its failure has no effect and the optimal second-

stage variables in that failure scenario are identical to the base case: 

 0
* *

0 ( ) ( )i

i
x y x y x

ω ω
= ⇒ =  (76). 

Substituting this in the definition of the problem, and then expanding the first term 

and rearranging, we get: 
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 (77). 

Simplifying: 
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As we have imposed the condition ′Ω ⊂ Ωɶ  we can simplify to the following: 
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 (79). 

This does not depend on ′Ω  (the reduced set of scenarios) but only on Ωɶ  (the set of 

scenarios that describe failures of elements installed at the first stage). That is, the 

recourse value for all the reduced problems that include all the failure scenarios of the 

installed elements is the same. As the original problem includes all the scenarios, this 

value is identical to the recourse of the original problem: 

 
( ) ( )Q x Q x′Ω Ω

′Ω ⊂ Ω ⇒ =ɶ  (80). 

4.5.4. Support for the Developed Algorithm 

We base our algorithm on the following scenario condition. 

Scenario condition: 

Let us have a reduced set of scenarios ′Ω  and the optimal solution of the reduced 

problem ẑ ′Ω
, together with the optimal investment and operation variables 

( )
*

*, argmin ,x y Pω ω′Ω
′≡ ∈ Ω . 
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The scenario condition defines the situation where all the scenarios that refer to the 

investment decisions installed in the optimal solution of the reduced problem are 

already included in the reduced subset of scenarios. That is: 

 *ˆ ˆ, / 1
i i

i

where xωΩ ⊂ Ω Ω = =∪ . (81) 

For instance, the scenario condition would be met if the reduced set of scenarios 

included the failures of elements a and b, and the optimal solution of the reduced 

problem installed element a. It would not be met if the optimal solution installed 

elements b and c.  

It is important to note that, in order to check the scenario condition, only the reduced 

problem needs to be solved. It is not necessary to solve the original problem. This is the 

main idea for the developed algorithm. 

Theorem 1: 

If the scenario condition is met, the optimal solution of the reduced problem is also the 

optimal solution of the complete problem. 

A proof of Theorem 1 follows, in italics. The reader can skip this section without 

damaging his understanding of the rest of the section. 

Proof: 

In general, we know that the evaluation of any given first-stage decisions in the recourse function 
of the complete problem is larger than or equal to the evaluation of those decisions in the recourse 
function of the reduced problem. This is true for all feasible first-stage solutions. Therefore, the 
optimal value of the complete problem ẑ

Ω
 has to be larger than or equal to the optimal value of the 

reduced problem ẑ ′Ω
:  

 ˆ ˆz z′Ω Ω
≤ . (82) 

If the scenario condition is met, then we have that at least all the failure scenarios related to the 
installed elements are included in the reduced set. Thus, if *x  represents the optimal first-stage 
decisions for the reduced problem, we have: 

 
*/ 1

,

i

i

i x

where ω
=

′Ω ⊂ Ω Ω =ɶ ɶ ∪ . (83) 

Therefore, the only difference between them are terms that describe failures of elements that were 
not installed and are thus meaningless. Then, both recourse functions must have the same value 
at the optimal of the reduced problem: 

 * *( ) ( )Q x Q x′Ω Ω
= . (84) 

Adding the constant term that describes the cost of the first-stage, which is the same for both as it 
does not depend on the scenarios, we can get the optimal value of the reduced problem ẑ ′Ω

: 

 * * * *ˆ ( ) ( )T Tz c x Q x c x Q x′ ′Ω Ω Ω
= + = + . (85) 

Therefore, we have these two facts: 
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� The objective value of the reduced problem must be lower than or equal to the objective value 
of the original problem. That is, there can be no combination of first-stage decisions that 
gives a lower cost than the optimal value of the reduced problem. 

� If the scenario condition is met, then the original problem evaluated at *x  has the same 
objective value than the reduced problem evaluated at *x . 

Therefore, if there can be no solution of the original problem with a better value and there is one 
solution with the same value (the same first-stage decisions) then both problems have necessarily 
the same optima. 

 * *ˆ ˆ( )Tz c x Q x z′ ′Ω Ω Ω
= + = . (86) 

This result is the core of the algorithm developed as detailed in the next section. 

Optimizing the original, complete problem requires, assuming an N-1 criterion, to solve 

a problem of ( 1)N v× +  variables and 
1 2

( 1)r r N+ × +  restrictions, where N  is the 

number of possible elements to install, v  is the number of operation variables per 

scenario, 
1
r  is the number of first-stage restrictions and 

2
r  is the number of second-stage 

restrictions per scenario. In many problems, the amount of possible options is far larger 

than the subset of elements that will be installed. The larger the array of choices present 

in the model, the more scenarios need to be solved. The number of variables and 

constraints gets multiplied by that number of alternatives. However, most of the 

scenarios linked to those alternatives do not have an impact on the value of the objective 

function because they are not installed. This situation is very relevant for capacity 

expansion or network expansion planning problems. 

We propose to solve the problem iteratively for an evolving subset of scenarios until the 

scenario condition is met. In addition, the objective function values found in the process 

are lower bounds of the optimal solution, therefore providing an increasing lower 

bound. We can calculate an upper bound by evaluating the problem with the next set of 

scenarios, usually a very quick step as it involves evaluation only and not optimization. 

We can describe the process as follows. 

1. Initialize the reduced scenario set to contain the base case only. This base case 

contains the failures of the existing elements only:  

0 0
wΩ = . 

2. Solve * *, argmin
l

l l
x y Pω

Ω
≡  

3. Update the reduced scenario set, adding the scenarios that refer to the elements that 

have been installed at the previous stage : 

1

/ 1
i

l l

i
i x

ω

+

=

Ω = Ω ∪ Ω

Ω =

ɶ

ɶ ∪ , 

4. If 1l l+
Ω = Ω  (that is, all the scenarios referring to installed elements were already 

contained in the reduced scenario set so the scenario condition is met) then the 

algorithm has converged. Else, go to step 2. 
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Note that as 
1l l+

Ω ⊂ Ω  (scenarios get added but never removed) the succession of 

intermediate solutions increases monotonically. This ensures convergence as there are 

only two possible outcomes: 

� The subset Ω
 
stabilizes at some point, so that the ending criterion is met: 

 
1l l−

Ω = Ω . (87) 

This would mean that all the contingencies associated to the installed elements are 

included and therefore the solution is the actual optimum. 

� Alternatively, the subset does not stabilize but rather grows until all the contingency 

scenarios have been incorporated. In this case the reduced problem would be exactly 

equal to the original definition of the problem: 

 
l

l
P P

Ω Ω
Ω = Ω ⇒ = . (88) 

In this extreme case the proposed algorithm would converge to the optimum too, 

although its application would not have been efficient. 

In practice, given that contingency events have a low probability, we can expect the 

algorithm to converge in a very limited number of iterations, so that computation time 

savings are significant. These savings will be related to the difference in size between the 

number of investments made and the total available alternatives. The OWF layout 

problem in general considers a much higher number of decision variables than TEP. In 

addition, reliability is arguably more important in this case, with transmission 

contingencies taking longer times to be repaired. For this reason, the proposed approach 

represents a higher advantage for OWF design. 

The potential savings will be reduced if more iterations are necessary. Although difficult 

to assess beforehand, it can be seen that problems with a higher level of degeneracy, 

with solutions that are very close in objective function value, will take more iterations to 

be solved. In general, the more subtle the differences between the solutions (especially 

concerning contingencies) and the more cost-indifferent they are, the longer the 

algorithm will take to converge. 

We present several problems of different sizes in order to illustrate the performance of 

the algorithm. Turbine positions and wind inputs are given. The problem must 

determine the placement and type of cables. For the optimization problem, we use the 

model described in 3.3. The full description of the plant and the technical specifications 

of its elements can be found in [180]. We take the failure and repair rates from reference 

[202]. 

4.5.5. Results 

First, we present a small example in detail to demonstrate the algorithm. We later 

present similar results for other instances of the problem. 

Consistently with most layouts, we design the turbine layout as parallel rows, so there is 

a high level of symmetry and several configurations exhibit the same objective value. In 
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principle, the algorithm would need to evaluate all of them with their associated 

contingency scenarios in order to prove the optimality of the final solution. 

All CPU times were calculated using CPLEX 12.1 called from GAMS on a PC at 2.80 GHz 

with 4 GB RAM running Microsoft Windows XP 32 bits. The relative optimality 

tolerance was set to 0.1% both for CPLEX and for the Progressive Contingency 

Incorporation algorithm. We found consistent results for other tolerance levels. 

a. Detailed Execution of a Case Study 

The table below summarizes the execution run when solving a case study (27249 

equations and 14517 total variables, 336 of which were discrete). This is not a case where 

the largest time savings can be expected: the number of first stage variables (the discrete 

ones) is small. In addition, the layout is highly symmetrical, as it generally happens in 

OWF layout optimization problems. This causes a high level of degeneracy in the 

objective function, which can result (if not controlled by the tolerance) in the algorithm 

exploring a large number of equivalent solutions. The objective value at each iteration, as 

well as the changes in the installed cables between consecutive iterations and the 

solution time are presented in Table 4-9. 

 Value 
(M€) 

Changes Solution time 
(s) 

Original problem 0.071290 - 42.6 
PCI iteration 1 0.063248 - 0.2 

PCI iteration 2 0.065959 6 0.5 

PCI iteration 3 0.067587 4 1.0 

PCI iteration 4 0.068784 6 2.0 

PCI iteration 5 0.071290 6 7.3 

PCI iteration 6 0.071290 6 8.3 

PCI iteration 7 0.071290 2 10.4 

Total   29.7 

Table 4-9 – Detailed Execution Example. 

As can be seen above, the Progressive Contingency Incorporation (PCI) algorithm 

achieves a modest 30% time savings with respect to the complete problem. The optimal 

solution was already found in iteration 5. This would represent 75% savings. Iterations 

from 5 to 7 are spent testing equivalent configurations with the same objective value. 

Time savings vary with problem size and structure, so they cannot be easily estimated 

beforehand. We solve several case studies of different characteristics in order to illustrate 

the behavior of the algorithm further. 

b. Time Savings with respect to Wind Scenarios (Non-Contingency Related) 
Algorithm efficiency derives from the obliteration of scenarios that are not relevant ac-

cording to the current selected configuration. Therefore, the more scenarios can be ig-

nored, the more time savings this method will generate. This is illustrated by Table 4-10. 
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 Original problem Progressive Contingency Incorporation 
Scenarios Eq Var Time (s) Eq Var PCI iterations Time (s) Savings (%) 

4 2594 1695 0.2 1026 687 3 0.1 50.0% 

8 5170 3351 0.5 2034 1335 3 0.2 60.0% 

16 10322 6663 1.0 4050 2631 3 0.3 70.0% 

32 20626 13287 2.4 8082 5223 3 0.4 83.3% 

64 41234 26535 8.0 16146 10407 3 0.9 88.8% 

128 82450 53031 47.7 32274 20775 3 3.7 92.2% 

Table 4-10 – Performance versus number of non-contingency scenarios. 

All the executions represent the same case study, with 36 discrete optimization variables 

optimized under an increasing number of wind scenarios, from 4 to 128, represented as 

the case study index. The number of equations and variables for the PCI algorithm 

correspond to the maximum incorporated equations and variables in the problem 

resolution. 

c. Time Savings with respect to the Number of First-Stage Variables 

Another advantage of PCI is that optimization time gets to some extent decoupled from 

the number of first stage possibilities. If a configuration (or set of configurations) turns 

out to be far better than the rest, the remaining ones will not be selected and therefore 

their corresponding contingency scenarios will never be incorporated to the 

optimization. Therefore, time savings should increase as the number of possible 

configurations for a given problem increase. This can be seen in Table 4-11 where the 

index column corresponds to the number of possible first-stage decisions. 

 Original problem Progressive Contingency Incorporation 
1st stage variables Eq Var Time (s) Eq Var PCI iterations Time (s) Savings (%) 

36 2594 1695 0.2 1026 687 3 0.1 50.0% 

48 3965 2487 0.8 1245 807 3 0.2 75.0% 

60 6270 3807 6.3 1470 927 3 0.8 87.3% 

72 8687 5151 25.9 1695 1047 3 1.3 95.0% 

84 11482 6687 31.8 1914 1167 3 1.3 95.9% 

Table 4-11 – Performance versus number of first stage variables. 

d. Time Savings with respect to Problem Size and Considerations about Degeneracy 

Because of the effects presented in the previous sections, larger problems tend to exhibit 

more time savings when solved with the PCI algorithm. 

Original problem Progressive Contingency Incorporation 
Active var Eq Var Time (s) Eq Var PCI iterations Time (s) Savings (%) 

9 23702 15123 0.6 1302 1123 3 0.2 66.7% 

11 32587 20303 9.4 2843 3051 4 0.5 94.7% 

14 45921 27703 919.7 4505 2987 4 41.9 95.4% 

15 57771 34663 36978.2 5043 3267 3 405.5 98.9% 

Table 4-12 – Performance versus actual investments. 

Table 4-12 illustrates this point. The number of installed elements in the optimal 

solution, which are represented by binary variables with a value of one, has been 

included as a figure related to problem size. In all cases, the number of discrete variables 

is constant and equal to 320.  
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However, larger problems often present higher degrees of degeneracy. In many cases, 

this degeneracy results from geometrical symmetry. This effect is remarkable in the 

OWF design problem. However, a good choice of the PCI tolerance parameter should 

avoid most of the redundant evaluations. This can also be seen in Table 4-12, as the 

number of iterations completed by the PCI algorithm does not increase with problem 

size. 

Time savings are expected to deteriorate with the ratio between actually installed 

elements and elements available for installation, given that more scenarios should be 

added to the reduced problem. There is no guarantee that, in extreme cases, PCI will be 

more efficient than direct resolution. However, most real-life cases exhibit some 

correlation between the number of installed elements and resolution difficulty (that is, 

the more elements need to be installed, the more difficult the optimization tends to be). 

This effectively counteracts the impact of adding a larger set of scenarios, as can be seen 

in Table 4-13, where we represent problem complexity as integrality gap as usual in MIP 

optimization [123]. 

Integrality gap (%) Active var Original problem time (s) PCI time(s) 
4.2% 9 221.4 0.1 

7.0% 10 238.3 0.2 

9.7% 9 688.1 1.4 

10.9% 12 527.6 2.2 

12.4% 14 1218.0 3.6 

14.9% 14 1360.9 5.8 

Table 4-13 – Performance versus integrality gap. 

In all cases problem sizes were the same (62954 equations and 37323 variables, with 320 

discrete investment decisions), but installation costs and non-served energy costs varied. 

4.5.6. Conclusions 

Many optimal design problems present a special contingency structure in which the 

stochastic scenarios related to reliability are linked to the failures of individual elements. 

We propose to exploit this structure with the Progressive Contingency Incorporation 

algorithm described in this section. The algorithm works by introducing the scenarios 

corresponding to the failure of specific elements only when they have been selected for a 

previous first-stage solution. We present a proof of optimality. The PCI algorithm 

produces substantial time savings which grow with the number of total first-stage 

variables, non-contingency scenarios and problem complexity. 

4.6. Chapter Takeaways 

TEP and OWF design are highly complex problems that need efficient solution 

techniques. We exploit the structure of the problems applying Benders’ decomposition, 

developing the first published application (to our knowledge) of decomposition 

strategies to OWF design. In addition, we review and compare the different techniques 

that have been developed to accelerate Benders’ decomposition, a study that was 
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missing in the literature. We then evaluate the potential time savings that these 

techniques can bring to TEP. Furthermore, we develop some new acceleration 

techniques. We propose semi-relaxed cuts to deal efficiently with large numbers of 

discrete variables in the master problem. In addition, we develop a Progressive 

Contingency Incorporation algorithm to evaluate the effect of component failures in an 

efficient way. These approaches reduce computation times by up to two orders of 

magnitude in the case studies developed. 

The review on Benders’ decomposition acceleration techniques, as well as semi-relaxed 

cuts, were presented at the conferences: 

� S. Lumbreras, A. Ramos, “Transmission expansion planning using an efficient 

version of Benders’ decomposition. A case study”, PowerTech 2013. Grenoble, 

France, 16-20 June 2013. 

� S. Lumbreras, A. Ramos, “Improvements to Benders’ decomposition. A practical 

evaluation using a transmission expansion planning problem”, 13th Trans-Atlantic 

Doctoral Conference. London, United Kingdom, 9-11 May 2013. 

This has also been submitted for publication: 

� S. Lumbreras,  A. Ramos ,“Optimal Transmission Expansion Planning using Benders' 

Decomposition. Acceleration Techniques“, submitted to JORS last April. 

The first application of decomposition strategies (to our knowledge) to the OWF layout 

problem was published as: 

� S. Lumbreras and A. Ramos, “Optimal design of the electrical layout of an offshore 

wind farm applying decomposition strategies”, IEEE Transactions on Power 

Systems 28 (2): 1434-1441, May 2013 10.1109/TPWRS.2012.2204906.  

We present the PCI algorithm in the paper: 

� S. Lumbreras, A. Ramos and S. Cerisola, “A Progressive Contingency Incorporation 

Approach for Stochastic Optimization Problems ”, IEEE Transactions on Power 

Systems 28 (2): 1452-1460, May 2013 10.1109/TPWRS.2012.2225077 [118]. 
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Flexibility and Robustness 
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5.1. Hard and Flexible 

TEP is a problem characterized by the presence of large uncertainties. Some of these 

uncertainties, such as generation expansion or fuel prices are dynamic in the sense that 

they evolve with time. They are also known as nonrandom because it is not possible to 

use past data to fit a probability distribution to describe their future. Building a new line 

involves a long permitting process (around ten years), so TEP must anticipate the future 

evolution of these uncertainties. In particular, transmission expansion must foresee 

generation projects (where new investments can take less than three years to be 

completed). It is therefore extremely important to develop expansion strategies that are 

able to adapt with flexibility to the unveiling of uncertainties. Our concept is based on 

identifying the transmission lines with the highest potential for bringing operation 

savings in the future and starting the permitting process for them even though not all 

lines will be built finally when the permits are granted. We develop an approach based 

on Real Options Valuation (ROV) to evaluate the potential benefit of candidate lines and 

identify priority projects. We carry out a simplified interpretation of optionality in TEP 

projects and propose an approximation that enables a feasible evaluation of option 

value. The proposed technique is able to identify the candidate transmission lines with 

the highest potential and the ones that are essential to an expansion plan, as well as their 

main value drivers. We illustrate this with a realistic case study based on the Spanish 

system. 

In addition, solving the Stochastic Problem (SP) for all the relevant scenarios in TEP can 

be too complex, so Sample Average Approximations (SAA) are often necessary. 

Moreover, obtaining accurate descriptions for the probability distributions of the 

uncertainties is extremely difficult and scenarios are often designed by experts based on 

their subjective judgment. In this situation, it is desirable to obtain transmission 

expansion plans that are relatively stable with respect to changes in the definition of the 

scenario tree. We propose to apply regularization to the SAA problem to obtain a more 

stable behavior. We do this by shrinking the SAA solution towards a robust benchmark. 

Shrinkage is a technique that has been widely used in statistical estimation. We 

reinterpret it to apply it in a SP context. In this case, we essentially modify the TEP 

solution to make it more similar to a selected benchmark plan. We present two different 

alternative techniques to apply shrinkage to the SAA problem: linear shrinkage and 

norm-constraint shrinkage. We develop two case studies to illustrate the advantages of 

the proposed approach, based on a academic and a realistic network. Shrinkage provides 

results that are consistently better in terms of average out-of-sample cost and decision 

error. 

The Real Options approach for TEP is under review: 

S. Lumbreras, A. Ramos, D. Bunn, M. Chronopoulos, “Real Options Valuation Applied 

to Dynamic Transmission Expansion Planning”, under review at IEEE Transactions on 

Power Systems. 

The regularization approach for SP will be submitted for publication as: 
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� S. Lumbreras, V. DeMiguel, A. Ramos, “Transmission Expansion Planning. A 

Regularized Stochastic Programming Approach”, to be submitted for publication to 

Operations Research. 

5.2. Real OptionsValuation Applied to TEP 

5.2.1. Introduction 

Envisaging the load flow consequences of all possible sequences of upgrades to an 

existing system, over a long horizon, with stochastic evolutions of generation expansion, 

demand and fuel prices, is a task of unmanageable dimensionality. Furthermore, from a 

welfare maximizing perspective, the joint optimization of generation and transmission 

expansion has always been difficult to handle, and even more so in an age of unbundled 

ownerships rather than central planning. 

This pragmatic framework for analysis is perhaps most evident at the initial stages of 

TEP and the first phase of any expansion strategy: the decision to seek permits. The 

process of building a line usually involves a relatively long permitting process of up to 

10 years, followed by 1-2 years of actual construction. In comparison, the lead-time to 

build a new power plant is much shorter, e.g. 1-3 years for a CCGT. This means that TEP 

must anticipate generation investments. However, new generation is a key element in 

the valuation of transmission investments. Given this dependency, transmission projects 

are often withdrawn when, after a long permitting process, forecasts have not 

materialized as anticipated. 

Realistic, dynamic stochastic TEP is too complex to solve towards a comprehensive 

optimal solution and so approximation techniques are necessary. The permitting process 

is the longest stage in TEP, and so we decide to focus on the decision of which permits to 

request. As it would not be possible, at the outset, to seek permits simultaneously for all 

possible upgrades of the transmission system, evaluating permits based on the potential 

savings that transmission lines can bring is an attractive alternative. ROV provides an 

appealing approach to evaluate these permits. We provide a feasible solution technique 

for this and demonstrate its application in a realistic context. 

5.2.2. Dynamic Uncertainty 

Some uncertainties can be described with a probability distribution. They are known as 

random uncertainties. Examples of these are renewable production or hydro inflows. 

Other sources of uncertainty, such as generation expansion or fuel prices, cannot be 

captured accurately with a static probability distribution and are therefore more difficult 

to handle. They are known as dynamic or nonrandom uncertainties. In particular, the 

relationship between generation expansion planning (GEP) and TEP is complex and 

difficult to characterize. Some transmission investments are dependent on the 

installation of new generation and are worthless if the generation project fails to 
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materialize. Therefore, their construction should be delayed until the generation project 

is sufficiently assured. Conversely, the generator will not be able to sell its power unless 

the transmission investments are completed. Therefore, it will not commit to the project 

without a reasonable guarantee that an adequate connection will be provided. This 

endogeneity is notably difficult to model in a competitive electricity market. 

Furthermore, even in a centralized setting, the joint resolution of GEP and TEP can be 

challenging for real-size systems given the large problem size. Some authors have 

attempted to model this interrelationship. For instance, reference [203] recently proposed 

a 3-level model that optimizes TEP, GEP and solves system operation. However, most 

studies consider that GEP and TEP take a leader and a follower role respectively. This 

work focuses on TEP entirely and, consistently with most of the literature, GEP is 

considered an input for transmission planning. This input is defined through uncertain 

scenarios. The recent report [116] deals with the joint optimization of the transmission 

network and other supply resources. 

TEP is by nature a multi-stage problem. Decisions can be re-evaluated in light of the 

revealed uncertainties, namely generation expansion. However, the complexity of this 

dynamic nature has caused most studies to focus on simplifications of the problem. Most 

research works consider a static version of the problem [36]. A second group develops 

sequential static planning, with several time horizons [204]. A few studies carry out 

dynamic planning. Given its difficulty, most of the available research works have 

focused on very small case studies and used heuristic methods with no optimality 

guarantee. Some of the most relevant techniques that have been applied are Dynamic 

Programming (DP) [205] and metaheuristics [71]. ROV can be understood as a 

simplification of the dynamic problem. 

5.2.3. A Dynamic TEP Model 

In order to apply ROV and evaluate the potential benefits from investments in the 

future, we need to introduce a dynamic TEP formulation. The only difference with 

respect to the model in 3.2 is that now, first-stage decisions depend on the scenario. This 

is, hence, a dynamic TEP model. 

5.2.1. Indices 

,i j : nodes, 

c : cable types, 

t : discrete time periods when lines can be installed. The first period (the decision 

period) and the last period in the analysis will be represented as ,D T  . The 

time elapsed between two periods will be referred to as 
1 2
,t t

Et , with 
2 1
t t> . 

,el cl : existing and candidate lines, 
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t
ω : scenarios. 

5.2.2. Parameters 

ijc
EL : parameter that determines existing lines {0,1}. If a line exists, 1

ijc
El = . 

ijc
CL : parameter that determines candidate lines {0,1}. If a line is a candidate, 

1
ijc

Cl = . 

2 1
,t t

Df : discount factor to evaluate a future cash flow corresponding to date 
1
t  in 

value terms of a closer date 
2
t  [p.u.]. It is calculated as 1 2

1 2

e t t
Et

t t
Df

ρ−
= . 

ρ : discount rate [p.u.], 

tP
ω

: probability of a scenario, which depends on the previous state 
1t

ω
−

, 

tDur
ω

: duration of a scenario [h], 

ijc
Ic : investment cost of a circuit [M€], 

t

t i
D
ω

: demand at each node [MW], 

Pnsc : penalty for power not served [M€/MWh], 

t

i
Gc

ω
: generation cost [M€/MWh], 

ijc
X : reactance of a circuit [p.u.], 

, , tt t

titijc ti
F G G

ωω ω
: flow and generation limits [MW], 

M : big-M parameters. 

5.2.3. Variables 

5.2.3.1. First-stage variables 

t

tijc
x
ω

: cumulative decision to install a candidate investment {0,1}. The main 

difference of this model with respect to the one in Chapter 3 is that in this 

case investment decisions depend on the state, 

t
invc : total investment cost. 
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5.2.3.2. Second-stage variables 

t

ti
g
ω

: power generated at a node [MW], 

t

t
opc

ω
: operation cost [M€], 

t

ti
pns

ω
: power not served [MW], 

t

tijc
f
ω

: flow through a circuit [MW], 

t

ti

ω
θ : voltage angles at nodes [rad]. 

 

5.2.4. Objective Function 

The objective function minimizes total expected cost, composed of investment cost and 

operation expenses: 

 min t t t t

t

tD t tD t
t t

Df invc Df P Dur opc
ω ω ω ω

ω

+∑ ∑ . (89) 

5.2.5. Constraints 

5.2.5.1. First-stage constraints 

The investment cost of a plan is calculated adding the costs of the installed lines: 

 ( )1,
t t t

t ijc tijc t ijc
ijc cl

invc Ic x x
ω ω ω

−
∈

= −∑ , (90) 

Once a line has been installed, it is available for the rest of the planning scope. We will 

decide the transmission lines that are installed at a given time and they will be available 

for all the scenarios that describe the moments in the planning scope after the investment 

was made: 

 
( 1),

t t

tijc t ijc
x x
ω ω

−
≥ . (91) 

5.2.5.2. Second-stage Constraints 

We define operation cost as the sum of generation cost and penalties for power not 

served: 

 ( )t t t t

t ti i ti
i

opc g Gc pns Pnsc
ω ω ω ω

= +∑ . (92) 

We model a DCPF. Kirchhoff’s First Law establishes power balances at every node and 

scenario. Incoming flows minus outgoing flows plus generated power equal demand 

minus power not served. 
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/( ) 0 /( ) 0

,t t t t t

jic jic ijc ijc

tjic tijc ti ti ti t
jc El Cl jc El Cl

f f g D pns i
ω ω ω ω ω

ω
+ > + >

− + = − ∀∑ ∑ . (93) 

Kirchhoff’s Second Law or Voltage Law is linearized in the DCPF formulation: 

 
t t

t ti tj

tijc

ijc

f ijc el
X

ω ω

ω
θ θ−

= ∈ , (94) 

 ( ) ( )1 1 ,
t t

t t tti tj

tijc tijc tijc

ijc

M x f M x ijc cl
X

ω ω

ω ω ω
θ θ−

− − ≤ − ≤ − ∈ , (95) 

Generation and flow limits: 

 
,

,

t t t

t t t t t

tijc tijc tijc

tijc tijc tijc tijc tijc

F f F ijc el

F x f F x ijc cl

ω ω ω

ω ω ω ω ω

− ≤ ≤ ∈

− ≤ ≤ ∈
 , (96) 

 
t t t

ti ti ti
G g G
ω ω ω

≤ ≤
, 

(97) 

 
0 t t

ti ti
pns D

ω ω
≤ ≤

.
 (98) 

Each possible system scenario 
t
ω  assigns a value to each of the uncertain parameters that 

define the system 0( , )
t yt

y Yω ω= ∈ , given some 
00 0[ , ]ytyt yt

ω ω ω∈ , where: 

y : set that contains all the uncertainty sources considered in the problem, 

such as generation expansion, demand, fuel prices, renewable 

production or hydro inputs. 

5.2.6. Real Options and the Value of Waiting to Invest 

ROV applies option valuation techniques to decision making under uncertainty. 

Financial options are instruments which grant the holder the right (but not the 

obligation) to buy (in the case of a call option) or sell (in the case of a put option) a given 

underlying asset at a future date (the expiry) at a specified price (the strike) [206].The 

holder pays the premium in exchange for the option. The value of the option lies in the 

fact that the holder only decides whether he will buy or sell at the future date, when he 

knows the final value of the underlying asset. The expected payoffs (and hence the 

values) of a call and a put option are, respectively: 

 

( )
( )

,

,

[ ]

[ ]
T T D

T T D

N Y K Df

N K Y Df

+

+

Ε −

Ε −
, (99) 

where: 

max(0, )X X
+

   Ε = Ε       : denotes the expected value of the positive values of a random 

variable, 



  109 

 

 

N : option notional (total invested amount), 

K : strike, 

T
Y : price of the underlying asset at expiry T , 

,T D
Df : discount factor to value cash at expiry T  at decision date D . 

Option Value (OV) has two main components, intrinsic value and time value: 

 OV IV TV= + . (100) 

Intrinsic value (IV) captures net present value. This amounts to the expected payoff that 

the holder would receive if he exercised the option at a given moment. Time value (TV) 

reflects the potential for the payoff to increase before expiry. Consequently, time value is 

higher for longer option maturities and more volatile underlying assets. Time value and 

option value can only be positive. 

Option valuation techniques assume a given model for the evolution of the underlying 

asset (in a financial context this often means a Geometric Brownian Motion, GBM) and 

obtain outputs such as option value or optimal exercise time. In some cases, these 

magnitudes can be calculated conveniently as closed-form solutions. 

A real option is similarly defined as the right (but not the obligation) to engage in a 

business initiative such as expanding capacity, deferring investment or abandoning a 

project [207, 208]. This technique provides with a framework to analyze the value of 

flexibility in management decisions. 

It has been proven that the solutions found using a ROV approach coincide exactly with 

those of dynamic optimization at least in the cases where myopic decisions are optimal 

[209]. This method is therefore an interesting simplification of dynamic problems [209]. 

There have been some applications of real options to power systems, in particular to 

GEP [209-211]. Some authors have also studied some specific aspects of transmission 

investments using this technique, such as the optionality embedded in selecting the size 

of interconnections [212], the optimal moment to invest [213, 214],  or the potential of 

distributed generation or FACTS for deferring investment in transmission lines [43, 215]. 

We apply ROV to TEP, developing a feasible approximation for option value that can be 

applied to individual transmission lines and support the selection of which permits to 

request and what option lines are key for a given expansion plan. 

5.2.7. Transmission Expansion Decisions 

The expansion decisions that should be considered in TEP include: 

� Adding a new circuit to an existing OHL (overhead line). This can take up to 1 year 

and can be undertaken relatively easily in most cases. 

� Building a new line. This can take from one to two years and is the most expensive 

action in transmission expansion. The process of building an overhead line (OHL) 

consists of land clearing at the right-of-way, building temporary access roads, 

material delivering, foundation building, tower assembly and erection, conductor 
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stringing, inspection and site restoration [216]. These steps are represented in Figure 

5-1. The relevant permits should be obtained before starting construction. 

 
Figure 5-1 –Stages in the process of building a new OHL [216]. 

� Starting a permitting process for building a new line. This step is relatively 

inexpensive but it is the most time consuming, taking usually from 7 to 10 years and 

even up to 15 years if problems arise. In general, the more jurisdictional areas are 

crossed by the line, the longer this procedure will take. In addition, public 

opposition or environmental concerns can get a project rejected. A permit gives the 

right (but not the obligation) to build a line. It is possible to abandon permitted 

projects that once were in the medium-term plan if they are not optimal short-term 

decisions. However, it is not possible to initiate the permitting process for all the 

potentially interesting lines (which are prohibitively many). 

Our work considers that initiating a permitting process creates a real option on investing 

on a transmission project at the future date when the permit is granted. ROV will be 

applied to calculate intrinsic value (expected operation cost savings minus investment 

cost) and option values (potential upside) for the candidate transmission investments 

considered. These magnitudes constitute easily interpretable information that can be 

used for decision support. In particular: 

� Intrinsic value can be used to prioritize transmission lines according to their relative 

urgency. This is related to the candidate discovery methods we show in Chapter 6. 
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� Option value can be used to identify investments with a high potential upside. The 

permitting process should be initiated for the most promising investments, 

identified by high option values. 

� It is possible to calculate the threshold levels of the uncertain parameters that would 

make a given investment attractive. These thresholds determine by how much fuel 

prices should rise or how much new generation should be installed so that a given 

investment is profitable. 

5.2.8. Definition of Intrinsic and Option Value 

Although ROV can be applied to other decisions in TEP, we focus on the optionality that 

is implicit in the longest stage, the permitting process. The simplified decision dynamics 

are: 

D : decision period when permits are requested based on potential operation cost 

savings (option value). 

P : time period when the permit is granted (assumed to be around ten years after 

the permit was requested). Once the permit has been granted, the decision to 

build the line or not is made. Lines with a sufficiently high intrinsic value 

(they bring high operation cost savings to the system) will be built. 

B : time period when the line is already built and in operation. This is assumed 

to happen one year after the decision to build the line was taken and the 

investment cost was realized. 

T : final time period in the analysis. 

 

Figure 5-2 –Simplified investment dynamics in the TEP problem. 
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The intrinsic value of an investment is calculated as the expected value of operation cost 

savings that the investment would bring. In the case of building a line, this means the 

difference in operation costs between a base case where the line is not installed and the 

situation where the line is in operation, minus the investment cost: 

 

, ,
/ 0 / 1

, , ,

t t
t t ijc t t ijc

T T
x x

ijc t D t t D t ijc P D
t B t B

IV Df opc Df opc Ic Df
ω ω

ω ω= =

= =

 
 = Ε −
 
 
∑ ∑ , (101) 

where 

,
/ 0t
t t ijc
x

t
opc

ω
ω =

: operation cost calculated considering the line ijc  is not installed. 

,
/ 1t
t t ijc
x

t
opc

ω
ω =

: operation cost calculated considering the line ijc  is indeed installed. 

We calculate option value at the starting date assuming the line is only built if doing so 

results in net savings. 
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It is important to note that, given that investment is discrete, the differences in operation 

costs are based on increments rather than on marginal information. 

If an expansion plan has already been defined, a line can be canceled if it is not profitable 

enough once the permit has been granted. Option value reflects the possibility of 

canceling or deferring the project. In this case, we invert the calculation of expected 

savings: 
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5.2.9. Proposed Approximation 

The exact evaluation of option value is complex, as it implies integrating costs across the 

probability distributions of all uncertain parameters, with each evaluated point 

demanding the resolution of optimal system operation. Therefore, a simplified 

procedure is necessary. 

5.2.9.1. Operation Cost Approximation 

The proposed operation cost approximation considers several sources of uncertainty y  
(such as demand or fuel prices). Given that the problem is a two-stage SP, once 

investment variables are fixed, changes in operation cost when only one of the uncertain 

parameters varies can be exactly described with a piecewise linear function [121]. For 

small changes in the uncertain parameters, we can approximate the changes in operation 

cost for a given scenario 
t
ω  by a linear function. The sensitivity of operation cost with 

respect to every uncertain parameter is: 
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For the sake of simplicity, hatted expressions will represent the expected values of 

variables or parameters. For instance, 0ˆy
t
ω  represents the expected value of the uncertain 

parameter y  at time t . The expected operation cost is therefore 0ˆ (ˆ )t t y

t t t
opc opc

ω ω
ω= . 

A linear approximation of operation cost for a given scenario ω  as a function of the 

uncertain parameters gives: 
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It should be noted that y

t
δ , the sensitivities of operation cost with respect to the 

uncertainties, are marginal information that is readily available from solving the linear 

problem that represents system operation. For instance, the sensitivity of operation cost 

with respect to demand at each node corresponds to the dual variable of the energy 

balance equations. 

5.2.9.2. Expressions for Intrinsic and Option Value 

The expected value of investing in line 
,D ijc

x  (Intrinsic Value) can be calculated as the 

expected value of its operation cost savings (the difference in operation cost when the 

line is installed with respect to the base case where it is not installed) net of investment 

costs: 
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Option value captures the expected value of the investment conditional to it being 

positive at the time when the decision to build the line is made: 
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These expressions will guide the rest of this section. 

5.2.9.3. Description of the Uncertainties 

For a given scenario, the uncertain parameters at time B  are assumed to follow a normal 

distribution centered on its forecast 0ˆy
t
ω . We must adjust its standard deviation yσ  for 

time, therefore giving: 

 
*

,

y y

B D
Etσ σ= . (108) 

This assumption is arguably good for uncertainty sources such as fuel prices or 

generation capacities where increments can be very small (such as wind or solar) [217]. It 

will not be as good when representing lumpier investments, such as nuclear capacity. In 
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addition, it is consistent with a GBM when increments are small, a very frequent 

assumption in financial contexts and a very reasonable hypothesis when dealing with 

financial uncertainties such as fuel prices. Then, we have the normal distribution: 
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5.2.9.4. Expressions for option value 

Substituting in the option value expression, we obtain the following: 
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Where the parameters of the normal distribution describing the overall dynamics for the 

transmission line ijc  are ,
Total Total
µ σ . For the sake of simplicity, the indices ijc  have been 

omitted in the remaining of this section. 

A linear combination of normal distributions, where each normal ( , )
i i
µ σΝ  has a weight 

i
w  is defined as: 
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The mean of the combination, 
LC
µ  , is: 
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The volatility of the combination, 
LC
σ  , can be obtained as: 
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It is convenient to define a constant correlation coefficient applicable to all pairs, known 

as equicorrelation: 
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Therefore, for the particular case of option value: 
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Option value can be calculated as: 
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This can be expressed as the expected value of a truncated normal probability 

distribution where only positive values are integrated. This can be calculated as: 

 

( , )

( / )
1 ( / )

1 ( / )

ijc Total Total

Total Total

Total Total Total Total

Total Total

OV µ σ

φ µ σ
µ σ µ σ

µ σ

+
 = Ε Ν =  

 −   + − Φ −    − Φ −  

, (118) 

where φ  and Φ  denote the standard normal probability density function and the 

standard cumulative distribution respectively. We use this result to approximate option 

value in a closed form and apply it in the case study. Another interesting result is the 

probability that a given investment will be carried out at a future date. This is referred to 

as the In-The-Moneyness or In-The-Money (ITM) Probability of the option, and can be 

calculated as: 
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In addition, we can calculate the sensitivity of intrinsic value with respect to the 

uncertainties as: 
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We can identify the uncertainties *y  that have the largest impact on the value of a given 

transmission line as the ones with the largest absolute sensitivity * argmax y

ijc y ijc
y Sens= . 

The thresholds for having a positive intrinsic value assuming only one of the 

uncertainties varies can be calculated as: 
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We can use these threshold values to analyze the robustness of a decision with respect to 

changes in the scenarios, which can be very useful for decision support. We show this in 

the case study. 

5.2.10. Case Study 

We illustrate the proposed approach with a realistic case study based on the Spanish 

power system. We implement our ROV approximation as an additional feature to the 
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existing TEPES model, which is based on the model described in Chapter 3 [64]. We take 

transmission data as of 2008 from publicly available ENTSO-e and REE E-SIOS cases 

[218]. We use the same E-SIOS cases to build forecasts for a peak-demand scenario and 

generation capacities. The system is composed of 1084 nodes and 294 power plants 

(nuclear, coal, CCGTs, hydro, wind and solar) plus the 1505 lines and transformers that 

configure the existing transmission network. The network was stressed by introducing a 

security coefficient of 60% (that is, an effective reduction on the NTC of the line to 60% of 

its TTC). The case incorporates uncertain demand, generation capacities, fuel and carbon 

prices. For the sake of simplicity, we assume that demand and capacities grow equally at 

every node. We analyze historical data to extract values for the volatilities of the 

uncertain parameters. We use public values for fuel prices, extracting them from 

Bloomberg, using 12m futures for Rotterdam coal, UK gas prices (the most relevant 

European price indicators) and EU Allowances for carbon prices. We take historical 

installed capacities for wind, solar and gas generators from the system operator [219]. 

When possible, we use a 15 year-long data series. If there was not sufficient history, we 

used all the available data. We adjust annual volatility from historical data as the 

standard deviation among consecutive increments: 
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where: 

yN : number of observations, 

yn : number of observations that can be found in one year. For instance, if there is an 

observation every business day, 260yn = . 

The resulting parameters can be seen in Table 5-1. 

 

 Annual volatility 

Demand 4.1% 

Generation capacities 
  

Wind 17.5% 

Solar 57.7% 

Gas 22.1% 

Fuel and carbon prices   

Coal 24.9% 

Gas 53.4% 

Carbon 77.4% 

Table 5-1 – Annual volatilities considered. 

We use intrinsic and option value to establish investment priorities: 
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� Relatively high, positive intrinsic values signal transmission lines that are expected 

to bring immediate savings. Permits should be requested for them and they should 

already be treated as priority projects. 

� Transmission lines with a low intrinsic value but a relatively high option value have 

the potential of bringing high savings in the future. Permits should be requested for 

them and their value should be monitored during the permitting process. 

A total of 74 promising candidate lines were included in the study. The optimal 

expansion plan identified by TEPES installed 24 of these lines. Intrinsic and option 

values were calculated for all these candidates. 

  Initial state of the network     Intermediate       Optimal plan       
                                

Line 
Included 
in plan? 

Intrinsic 
Value 

Option 
Value 

ITM 
Prob Priority 

Included 
in plan? 

Intrinsic 
Value 

Option 
Value 

ITM 
Prob Priority 

Included 
in plan? 

Intrinsic 
Value 

Option 
Value 

ITM 
Prob Priority 

1   302.5 302.5 1.00 High    77.5 77.5 1.00 High  YES -25.4 0.0 0.00   

3   306.3 306.3 1.00 High    88.1 88.1 1.00 High  YES -0.7 3.2 0.47   

4   304.9 304.9 1.00 High    90.6 90.6 1.00 High    -5.3 6.5 0.41   

6   341.4 341.4 1.00 High    34.7 34.7 1.00 High  YES -9.2 3.7 0.31   

17   308.2 308.2 1.00 High    86.6 86.6 1.00 High  YES -20.1 0.0 0.01   

18   306.8 306.8 1.00 High    109.3 109.3 1.00 High    -5.0 5.8 0.40   

20   385.6 385.6 1.00 High  YES -84.3 0.0 0.00   YES -81.9 0.0 0.00   

25   343.0 343.0 1.00 High    61.5 61.5 1.00 High  YES -67.2 0.0 0.00   

30   383.9 383.9 1.00 High    3.7 4.2 0.79   YES -76.0 0.0 0.00   

31   346.2 346.2 1.00 High    20.2 20.4 0.97 High  YES -4.7 8.4 0.43   

33   389.0 389.0 1.00 High    -0.7 2.7 0.47   YES -1.4 9.0 0.48   

36   344.4 344.4 1.00 High    36.1 36.1 1.00 High  YES -48.1 0.0 0.00   

40   419.1 419.1 1.00 High  YES -159.6 0.0 0.00   YES -125.9 0.0 0.00   

45   315.2 315.2 1.00 High    -3.9 1.4 0.30   YES -56.3 0.5 0.04   

46   313.8 313.8 1.00 High  YES -81.9 0.0 0.00     -5.3 8.9 0.43   

47   356.8 356.8 1.00 High    34.6 34.6 1.00 High  YES -1.5 14.6 0.48 Low  

51   219.8 219.8 1.00 High    -2.9 1.9 0.36   YES -18.7 7.3 0.31   

52   218.7 218.7 1.00 High  YES -92.9 0.0 0.00     -4.0 9.5 0.44   

55   348.3 348.3 1.00 High    -1.5 2.1 0.41   YES -1.8 14.9 0.48 Low  

57   348.8 348.8 1.00 High    43.2 43.2 1.00 High  YES -2.3 14.1 0.48 Low  

59   365.3 365.3 1.00 High    63.8 63.8 1.00 High  YES -31.1 4.6 0.21   

60   364.0 364.0 1.00 High    63.4 63.4 1.00 High  YES -75.6 0.0 0.00   

62   328.6 328.6 1.00 High    -1.0 1.3 0.41   YES -7.6 6.8 0.38   

63   330.2 330.2 1.00 High    -2.9 1.9 0.36   YES -16.1 9.7 0.35   

66   338.0 338.0 1.00 High    14.2 14.6 0.92 High  YES -36.7 1.2 0.09   

67   316.8 316.8 1.00 High    -0.5 2.6 0.47   YES -2.1 16.5 0.48 Low  

69   342.6 342.6 1.00 High    19.4 19.7 0.94 High  YES -16.2 10.1 0.35 Low  

73   331.2 331.2 1.00 High    9.1 11.6 0.73 Medium  YES -4.8 14.0 0.45 Low  

Table 5-2 – Intrinsic value, option value and ITM probability for a subset of the 

candidate transmission lines studied (this is, not all lines tested are reported in the table). 

As intrinsic and option values depend on operation cost, they also depend on the 

starting situation of the network. Intrinsic and option value depend on the base case of 

the network, and to illustrate this we consider three different base case situations in the 

case study: 

� Initial state of the network, with no transmission additions. 

� Assuming the optimal expansion plan is going to be fully deployed. For the 24 

transmission lines actually included in the plan, the values refer to the option of not 

building them or deferring their construction. The optimal plan was obtained by 

TEPES. It should be noted that, given that there are synergies among lines, the 

optimal expansion plan does not correspond to merely installing the lines with a 

positive intrinsic value. This synergies are explored in section 6.2.5. 

� An intermediate situation where only the most urgent investments are considered 

committed, and the others are only being studied. This is an interesting example as 
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often long-term TEP selects only some of the most important investments while 

leaving the rest of the plan undefined. This assumes only 4 lines are installed. 

Table 5-2 shows some of the most interesting results. A threshold of 10 M€ (roughly 

equivalent to the investment cost of a single circuit, 400 kV 20 km line) has been 

established in order to filter investments. As expected, intrinsic and option values are 

much higher at the initial state of the network, where more improvements can be made. 

Conversely, if the base case is the optimal plan, option values are much lower. Moreover, 

by definition, all intrinsic values are negative (deviating from the optimal plan 

necessarily worsens costs). The intermediate situation presents intermediate results. 

High option values point to investments that should be monitored and for which a 

permit should be requested. For the lines not included in the expansion plan, a high 

option value signals a permit that should be requested. For lines already included in the 

plan, the values refer to the option to cancel them or deferring their construction. In 

many cases, this value is very close to zero. This means that the line seems so profitable 

under the current conditions that it will be built almost certainly. For instance, deferring 

line 60 has an option value of 0, while deferring line 67 has an option value of 16.5 M€. 

The first kind of lines should be prioritized, while in the second case potential savings 

should be monitored. 

In addition, all the sensitivities with respect to the uncertain parameters are available as 

intermediate calculations. In the example of line 67, the key uncertainties are gas prices 

(with a sensitivity of -2.42 M€/ 1€ increase in gas prices) and carbon prices (with a 

sensitivity of -2.24 M€/ 1€ increase in carbon prices). This means that, although that line 

is currently in the optimal expansion plan, it will be withdrawn if gas or carbon prices 

rise sufficiently. For instance, the threshold increase in gas prices before the line becomes 

unprofitable can be calculated as the intrinsic value of not building it divided by the 

sensitivity of intrinsic value with respect to gas prices. That is: 
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This means that if gas prices increase just slightly (by 0.87 €), then transmission line 67 

will not be part of the optimal plan. The ITM probability represents the probability of the 

line being still profitable when the permit is granted. In this case, it was 47%. This means 

that there is roughly a 50/50 chance that this line will be built. 

This example shows how some investments that form part of the optimal plan are so 

sensitive to the uncertainties that they have a high probability of not being completed. 

However, some others (such as the example of line 60, where deferring investment had 

an option value of 0) seem robust with respect to the uncertainties and their assumed 

volatilities. This information can make it easier for planners to identify the key 

investments and focus on them while requesting additional permits for other lines that 

could bring important savings in some scenarios. 
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5.2.11. Conclusions 

TEP is challenged by the presence of long-term uncertainties. In particular, while lead 

times for installing generation expansion can be as short as 1-3 years in the case of 

CCGTs, the lengthy permitting process for a new transmission line can take around 10 

years. This means that TEP must anticipate the future state of the system, in particular 

with respect to new generation capacity and fuel prices. This situation would make 

dynamic optimization appear attractive but the complexity of the problem generally 

means that such approaches are not viable for real-sized systems. 

ROV is a useful technique when studying investment opportunities in an uncertain 

context. We interpret TEP from a real options perspective focusing on its longest stage, 

this is, the permitting process. Given that the exact evaluation of option value would be 

intractable, we develop a feasible approximation that can provide with intrinsic value 

(expected benefit) and option value (potential upside) for a list of candidate transmission 

lines. We illustrate the proposed approach with a realistic case study based on the 

Spanish power system. We use option value to identify the investments with a high 

potential and for which permits should be requested. Lines for which the option to defer 

investment is worthless and therefore will almost certainly be completed are labeled as 

priority projects. We use sensitivities to assess the robustness of any given transmission 

line with respect to the uncertain parameters as well as to establish approximate 

thresholds that would result in them being completed or withdrawn. 

5.3. A Regularization Approach to Stochastic Programming 

As explained, the long lead-times involved in transmission expansion mean that TEP 

decisions must anticipate generation investments, with the consequent risks involved: it 

is extremely difficult to assess the completion probability of these generation projects. 

Each proposal is so different from the others that previous history is hardly applicable. It 

can be argued that the only useful information in these cases is expert opinion. However, 

scenario trees based on expert opinion are necessarily imprecise, with vaguely defined 

scenarios and probabilities. In addition, although further studies can improve scenario 

analyses in other contexts, interviewing additional experts acquainted with the problem 

might not be possible. In this context, it would be interesting to generate expansion plans 

that are stable with respect to changes in the definition of the scenario tree. However, 

Stochastic Programming (SP) approaches in general ignore this risk and focus on 

expected cost entirely, so the optimal stochastic solution can be highly sensitive to the 

definition of scenarios. 

Robust Optimization acknowledges that small data errors can lead to optimal solutions 

that are highly infeasible [18] and focuses on guaranteeing feasibility for the worst-case 

scenario [220]. However, the main issue TEP faces in this context is not avoiding 

infeasibility but rather ensuring a relatively good solution regardless of changes in the 

definition of scenarios. 
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Fuzzy decision analysis deals with the outcomes of different scenarios (or different 

definitions of the scenario tree) in an analogous way to the several attributes defined in a 

multi-criteria problem. It looks for non-dominated solutions and works with the decision 

maker to analyze the relative importance of the objectives [33]. Although this approach 

can evaluate the suitability of a given expansion plan, it cannot generate robust solutions 

on its own. In addition, it requires the manual intervention of the decision maker to 

select the best alternative plans. 

Our approach originates from the need to find good solutions in terms of expected cost 

that are relatively stable with respect to changes in the definition of the scenario tree. We 

propose to regularize the SP solution in order to obtain an expansion plan with a more 

stable behavior with respect to the uncertainties. 

Regularization in general refers to the process of introducing additional information to 

avoid overfitting or to solve an ill-posed problem. This additional information usually 

takes the form of a penalty for complexity. We extend this definition to the SP by 

penalizing solutions that depend too much on the scenario tree. This is assessed by 

comparing them to a benchmark solution that is considered robust in the sense that it does 

not depend on the scenario tree. For instance, this robust benchmark can be calculated as 

the solution of a deterministic version of the problem (such as the expected value 

problem). 

In essence, we combine two different estimations for the optimal expansion plan. The 

first one is the solution of the SP, which, as the scenario tree built from expert opinion is 

necessarily incomplete, we interpret as a Sample Average Approximation (SAA) 

problem. The second one is the robust benchmark. 

This technique has been widely applied in statistical estimation, where shrinkage or 

James-Stein estimators [221] improve the error of a given estimator by combining it with 

another one, typically with less variance. This kind of estimators is called shrinkage 
estimators as they “shrink” their estimate towards the low-variance estimator. 

This technique has been applied to estimating the covariance matrix of a series of stock 

returns. The covariance matrix is key to build a minimum-variance portfolio, which is a 

frequently used investment strategy. The main reason for the success of the minimum-

variance strategy is that the Markowitz portfolio (maximum mean-variance) has a 

usually very poor out-of-sample performance due to the inherent difficulty in accurately 

forecasting mean asset returns. In comparison, the minimum-variance portfolio has a 

much more stable behavior, but it is extremely dependent on the quality of the estimated 

covariances. A direct estimation of the covariance matrix involves calculating the sample 

historical covariances among stock pairs. However, this direct estimation can lead to 

substantial errors. Several approaches have been proposed in the literature to deal with 

this problem. Some authors use higher-frequency data, such as daily returns. Some 

others impose a certain factor structure to the matrix so that fewer elements are 

estimated. Regularization has been successfully applied to this problem [222]; extreme 

values in the covariance matrix, which might signal estimation errors, are avoided by 

shrinking the covariance matrix towards the identity matrix. 
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To our knowledge, shrinkage had never been applied to Stochastic Programming. We 

propose two alternative mechanisms to do so. Linear shrinkage creates a linear 

combination of the SAA solution and the robust benchmark. We prove the existence of 

an optimal shrinkage parameter and provide an expression for its value based on the 

characteristics of the SAA solution and the robust benchmark. 

The second shrinkage approach we propose is norm-constraint shrinkage. It imposes a 

maximum distance between the SAA solution and the robust benchmark, so that the SP 

incorporates this constraint and automatically generates solutions within a given 

distance to the robust benchmark. As the optimal shrinkage parameter, the best distance 

parameter depends on the characteristics of the SAA solution and the robust benchmark. 

We select it by cross-validation, that is, we test several values of distances and select the 

one that gives the best empirical results. 

We apply this method to two TEP case studies, an academic example and a realistic one. 

Both cases reflect the uncertainties present in large, long-term generation expansion 

projects as described above. The academic case study is based on the well-known Garver 

system [36]. The system is composed of 6 nodes where load and generation are installed. 

The case considers a situation where two areas have a high potential for new renewable 

generation and studies the impact of the two proposed shrinkage approaches. 

A realistic case study based on the Spanish system illustrates the applicability of the 

method to real-sized systems. The case assumes that a large amount of renewable energy 

could be available for import from North Africa in the future. This is consistent with 

visions such as the Desertec Industrial Initiative [6]. Some of this energy would have to 

be exported to France through the North-East and North-West. The amount available for 

import and the export needs are uncertain. Shrinkage consistently generates solutions 

that are more stable with respect to these uncertainties and shows the suitability of the 

proposed approach for realistic TEP problems. 

The rest of this section is organized as follows. First, SP and the SAA problem are 

defined. Then, we introduce the proposed linear and norm-constraint shrinkage 

approaches. Finally, we present the case studies and discuss conclusions. 

5.3.1. Stochastic Programming and the Sample Average Approximation 

Problem 

Stochastic Optimization deals with optimization under uncertainty, where the problem 

depends on parameters that follow a known probability distribution. The SP selects the 

best alternative from the feasible set in terms of expected value. 

An especially relevant case is the two-stage problem, of which TEP and OWF design are 

particular examples. The problem minimizes expected total cost by selecting values for 

some first-stage variables without knowing which realization of the parameters will 

occur in the second stage. Then, second-stage decisions optimize costs for the particular 

realized values of the parameters. If costs and constraints are linear, the two-stage 

stochastic problem takes the form: 
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where Q( )x  represents the optimal value of the second stage problem for a given first-

stage solution: 
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In the formulation above, we have: 

x : first-stage decisions, which can be either continuous or discrete. 

c : costs of first-stage decisions. 

y : second-stage decisions. 

d : costs of second-stage decisions. 

The relationship between W ω

 and hω  depends on ω ∈ Ω  The possible realizations 
1 2, ,..,ξ ξ ξΩ  are referred to as scenarios. These scenarios have an associated probability, 

which we represent as P
kω . We will refer to the optimal solution of the two-stage 

stochastic linear problem as *x . 

Often, the scenario tree is too large for optimization and must be reduced to be tractable. 

In addition, if experts build the scenario tree they do so based on their subjective 

judgment and experience, which is necessarily incomplete. In both cases, the SP can be 

considered an approximation of the problem based on a reduced scenario tree. In 

particular, we will consider a reduced scenario tree as j  random samples of the original, 

not necessarily known tree, containing s  realizations of scenarios each: 

 
{ } { }, 1,2, 3,...,i i sωΩ = = , (127) 

where 
1

P
i

s

ω =  represents the probability applied to every sampled scenario. 

The sample average approximation (SAA) problem solves the two-stage optimization 

problem for the reduced tree, and considers that the optimal value of the problem is the 

average of the individual results for the samples: 

 

ˆmin Q( )T

x
c x x+ , (128) 

 1

1
Q̂( ) : Q( , )

s
i

i

x x
s

ξ
=

= ∑ , (129) 
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where Q( , )x ξ
 
represents the optimal second-stage cost for a given first-stage decision: 

 
Q( , ( )) min T

y
x d yξ ω = , (131) 

 

. .

0

s t T x W y h

y

ω ω ω

ω

+ =

≥
. (132) 

The optimal first-stage solution to this problem, X̂  (for the sake of clarity, we use upper 

case to represent random variables) converges exponentially quickly to the optimal 

solution of the original tree *x  as the number of scenarios in the scenario samples 

increases [223]. 

 

*1 ˆlim log 1 P( )
s k

X x
k

β
→

 − = = −  
, (133) 

where 0β >  depends on the characteristics of the problem, namely its condition 

number, with better-conditioned problems converging faster than ill-conditioned ones. 

This fact has led some authors to solve a series of SAA problems with increasingly large 

scenario samples until an estimation of the error Q̂( ) Q( )x x−  is below a certain 

threshold [224]. However, it is not always possible to increase the number of samples. 

This is often the case for scenario trees based on expert opinion, as it might be impossible 

to obtain new interviews with experts acquainted with the problem. In addition, even if 

we can generate a new sample, it is possible that the number of scenarios needed for a 

sufficiently good SAA solution is still larger than the optimization capabilities available. 

This situation is widespread in applications of Stochastic Programming. In particular, 

both conditions apply to TEP. First, increasing the number of scenario samples 

describing the future evolution of the power system is very difficult, as the availability of 

expert opinion is limited. In addition, the complexity of real systems limits the size of the 

scenario tree that optimization can handle. 

Therefore, we focus on improving the SAA solution without increasing the number of 

samples, making the solution stable with respect to changes in the scenario samples. For 

this, we propose a regularization approach. In some Stochastic Optimization contexts, 

regularization is understood as a technique that accelerates problem resolution by 

limiting the distance between consecutively evaluated solutions [160], without affecting 

the final result. However, we refer to the term as in the field of statistical estimation, by 

which regularization introduces additional information to a problem with the aim of 

avoiding overfitting or solving an ill-posed problem. Usually, this additional 

information is expressed as a penalty for complexity. In the SAA problem, we penalize 

solutions that depend too much on the scenario samples. We assess this dependence by 

comparing the SAA solution to a benchmark solution that is robust in the sense that it 

does not depend on the scenario tree. 

Therefore, the proposed method combines the information of two different estimations 

for the optimal expansion plan: the SAA solution and the robust benchmark. Similar 

techniques have been applied extensively in statistical estimation. Shrinkage or James-
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Stein estimators [221] improve estimation error by combining a given estimator with 

another one, typically with a lower variance. These estimators are known as shrinkage 
estimators because they “shrink” their estimate towards the low-variance estimator. We 

develop two alternative shrinkage techniques for the SP: linear shrinkage, which uses a 

linear combination of the SAA solution and norm-constraint shrinkage, which imposes a 

maximum distance between the SAA solution and the robust benchmark. Linear 

shrinkage cannot be applied to problems with discrete variables directly; however, we 

develop an extension for discrete variables. Norm-constraint shrinkage can be applied to 

problems with both continuous and discrete variables. 

5.3.2. Linear Shrinkage 

We combine the SAA solution X̂  and the robust benchmark bx . The resulting estimation 

of the optimal first-stage decisions is: 

 
ˆ ˆ(1 )est bX x Xα α= + − . (134) 

The literature offers some useful results for calculating the optimal shrinkage parameter 
*α  in shrinkage estimators when the estimated variable is a scalar [222]. We extend this 

result to multidimensional variables and provide an expression for the shrinkage 

parameter that minimizes the expected squared error of the SAA solution. 

Theorem 1  

We define estimation error as the norm (represented as ) of the vector difference 

between the estimator ˆestX  and the optimal solution *x : 

 

2
*ˆestX x

 
Ε − 

  
. (135) 

The linear combination parameter that minimizes estimated error is: 

 

* 1 2

1 2
2

B B C

A B B C
α

+ −
=

+ + −
, (136) 

where:
 

 

2
*

2
*

1

2

2

* *

:

ˆ:

ˆ ˆ:

ˆ: ,

b

b

A x x

B X x

B X X

C x x X x

= −

 = Ε −  

 = Ε − Ε   
 = − Ε −  

. (137) 

We can interpret these magnitudes as: 

A: squared bias of the benchmark solution, 

1
B : squared bias of the stochastic problem solution, 
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2
B : variance of the stochastic problem solution, 

C : inner product of the biases of the benchmark solution and the stochastic 

problem solution. 

A proof for this theorem is provided below, italics. The reader can skip this section 

without any damage to the understanding of the rest of this chapter. 

Proof 

Our first goal is to express the expected square error of the linear shrinkage estimator as a 
function of the linear combination parameter. Then, we derive this expression with respect to 
alpha to find the extreme point. Expected square error takes the form: 

 

2 2 2
* * *ˆ ˆ ˆ(1 )est est bX x X x x X xα α

     
Ε − = Ε − = Ε + − −     

          
. (138) 

Adding and subtracting the same term, ˆ(1 ) Xα  − Ε   
, we find: 

 

2
*

2
*

ˆ ˆ ˆ(1 ) (1 ) (1 )

ˆ ˆ ˆ( (1 ) ) (1 )( )

b

b

x X X X x

x X x X X

α α α α

α α α

     Ε + − − − Ε + − Ε − =        
     = Ε + − Ε − + − − Ε        

.  (139) 

We can expand the expression using 
2 2 2

2 ,a b a b a b+ = + + , where ,a b  represents the 

inner product of the two vectors a  and b : 

 

2 2
* *

*

ˆ ˆ ˆ( ) (1 )( ) (1 )( )

ˆ ˆ ˆ2 (1 ) ,(1 )( )

b

b

x x X x X X

x X x X X

α α α

α α α

         Ε − + − Ε − + Ε − − Ε +            
    + Ε + − Ε − − − Ε        

. (140) 

After some algebraic manipulation, we arrive to: 

 

2 22
2 * 2 * 2

* * *

*

ˆ ˆ ˆ(1 ) (1 ) ( )

ˆ ˆ ˆ2 ( ),(1 )( ) 2 ( ),(1 )( )

ˆ ˆˆ2 (1 )( ),(1 )( )

b

b b

x x X x X X

x x X x x x X X

X x x X

α α α

α α α α

α α

     − + − Ε − + − Ε − Ε +        
    + − − Ε − + Ε − − − Ε        

    + Ε − Ε − − − Ε        

. (141) 

The inner product of a fixed vector and a vector with an expected value of zero is zero. Therefore, 

as 
2

ˆ ˆ 0X X  Ε − Ε =    
, and we can eliminate the last two terms. Using the definitions of 

1 2
, , ,A B B C , the expression for the error results in: 

 
2

* 2 2 2

1 2
ˆ 2 (1 )(1 ) (1 )estX x A B B Cα αα α α

 
+ −Ε − = + − + − 

  
. (142) 

Deriving with respect to α , we obtain: 

 

2
*

1 2

ˆ
2 2( 1) 2( 1) 2(1 2 )

estd X x
A B B C

d
α α α α

α

−
= + − + − + − , (143) 
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1 22

ˆ
2 2 2 4

estd X x
A B B C

dα

−
= + + − . (144) 

Given that , cos( , )a b a b a b a b= ≤ , we can find an upper bound on the scalar product of 

the biases: 

 
* * * *

1

ˆ ˆ,b bx x X x x x X x

C AB

   − Ε − ≤ − Ε −      

≤
, (145) 

 

2
2 *

1 2 12

ˆ
2 2 2 4

estd x x
A B B AB

dα

−
≥ + + − . (146) 

From Jensen’s inequality we can infer: 

 1

12

A B
AB

+
≥  (147) 

Consequently, the second derivative of the squared error is necessarily positive and, therefore, the 
extreme point is a minimum: 

 

2
2 *

2

ˆ
0

estd X x

dα

−
≥ . (148) 

The minimum is: 

 

2
*

1 2

ˆ
2 (2 2)( ) (2 4 ) 0

estd X x
A B B C

d
α α α

α

−
= + − + + − = . (149) 

This results in the following optimal value: 

 * 1 2

1 2
2

B B C

A B B C
α

+ −
=

+ + −
. (150) 

For the combination to bring any advantages, the optimal shrinkage parameter must 

take a value within the interval [0,1], with * 0α =  meaning that the optimal estimation is 

actually the SAA solution and * 1α =  meaning that the optimal estimation is the robust 

benchmark. 

Proposition 1 

The optimal linear combination parameter takes a value in the interval ]0,1[ if the 

following sufficient conditions are met: 

 1 2
2A B B− < . (151) 

 1
A B> . (152) 

A proof of this proposition is provided below, in italics. The reader can skip this section 

without any damage to the understanding of the rest of the chapter. 

Proof: 



  127 

 

 

For the optimal value to represent a valid convex linear combination parameter it must be reached 
in the interval ]0,1[. We obtain sufficient conditions for this. Given the described bound on C , 
the denominator is strictly positive: 

 
1 2

2 0A B B C+ + − > . (153) 

The numerator is positive in the cases where: 

 1 2

1 2

0B B C

C B B

+ − >

< +
. (154) 

Given that 1

1 2

A B
C AB

+
≤ ≤ , a sufficient but not necessary condition for this is: 

 
1

1 2

1 2

2
2

A B
C B B

A B B

+
< < +

− ≤

. (155) 

This condition means that the robust benchmark must be sufficiently close to the optimal solution 
(the difference in the biases of the benchmark solution and the SAA solution must not be larger 
than twice the variance of the SAA solution). That is, the smaller the variance of the SAA 
solution, the better the robust benchmark should be for shrinkage to represent an advantage in 
terms of expected error. 

The numerator is lower than the denominator in the following cases: 

 1 2 1 2
2A B B C B B C

C A

+ + − > + −

<
. (156) 

Given that 
1

C AB≤ , a sufficient (but not necessary) condition for this to happen is to have: 

 
1

A B> . (157) 

The first condition means that the robust benchmark must not be too far from the 

optimal solution. In particular, the difference of the biases of the robust benchmark and 

the SAA solution must not be larger than twice the variance of the SAA solution. That is, 

the smaller the variance of the SAA solution, the better the robust benchmark must be 

for linear shrinkage to represent an advantage. The second condition simply states that 

the bias of the SAA solution must be lower than the bias of the robust benchmark. 

We estimate the optimal shrinkage parameter *α  by solving several instances of the SAA 

problem. Then, we evaluate them out-of-sample. The optimal solution is estimated as the 

SAA solution with the lowest out-of-sample cost. Assuming we use t  samples of s  

scenarios { }, 1, 2,..,jx j t= , which for the sake of simplicity will be referred to as 

{ }, 1,2,..,
stoch j
x j t= . 

The optimal solution is estimated as the one that provides the lowest out-of-sample cost. 

The estimation of the optimal value of *α  then results: 
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Linear shrinkage is not applicable to problems with discrete variables. Given the 

prevalence of this kind of problems, which include TEP if discrete investments are 

considered, we propose to extend this definition to discrete combinations. 

A linear combination x  between vectors a  and b , according to a linear combination 

parameter α  is: 

 
(1 )x a bα α= + − . (160) 

This implies the following conditions on the norms of the vector differences between the 

starting vectors and the combination, as seen in Figure 5-3. 

d
a

b

=
−

a

x

dα

(1
)dα−

b

 
Figure 5-3 – Relationships between the norms of a linear combination and the individual 

vectors. 

 
(1 )

x a a b

x b a b

α

α

− = −

− = − −
. (161) 

We use these conditions define the discrete combination. However, it is possible that no 

integral solution satisfies them. Therefore, we formulate an optimization problem that 

minimizes the deviations from these conditions: 
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1 2

1

1

2

2
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. (162) 
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ε+

d
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Figure 5-4 – Graphical representation of a discrete combination. It imposes the same 

relationships between the norms of the combination and the individual vectors than in 

the linear case. If there is no integer solution, it minimizes the deviations with respect to 

these conditions. 

5.3.3. Norm-Constraint Shrinkage 

Norm-constraint shrinkage guarantees that the estimator is not too far away from the 

robust benchmark by imposing a maximum distance, as represented in Figure 5-5: 

 
ˆest bx x δ− < . (163) 

bx

ˆestx

δ

ˆstochx

 
Figure 5-5 – Graphical representation of norm-constraint shrinkage. We limit the 

distance between the estimator and the robust benchmark. 

We determine the optimal distance parameter by cross-validation, one of the most 

widely used methods for estimating prediction error. This technique estimates out-of-

sample error as the average generalization error [225]. Cross-validation partitions the 

available data into two complementary subsets, the training set and the test set. We adjust 

the model using the training set and validate it using the test set. The parameters that 

give the best results over the test sets are the ones are selected. 

We calculate out-of-sample performance as the cost of the solution obtained when 

optimizing the SAA problem over the training set of scenarios, evaluated in the scenarios 
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of the test set. We define average out-of-sample performance as the average cost 

obtained across several of these training and test sets. Then, the optimal distance 

parameter is the one that provides the best average out-of-sample performance. A 

similar approach is followed in reference [226]. 

The rest of this chapter presents the developed case studies. First, an academic network 

illustrates the applicability of the proposed approach. Then, a case study based on the 

Spanish system demonstrates the potential of regularization applied in a realistic TEP 

context. 

5.3.4. The Academic Network 

The academic network is based on the well-known Garver system [36]. This network is 

composed of six nodes where load and generation can be located. The details of the 

network are described in the appendix. The case study describes a situation where there 

are two areas with a high potential for new renewable generation. However, how much 

new capacity will be installed at each area is uncertain. This situation is representative of 

real TEP studies where ambitious generation projects could materialize partly or in full. 

To be able to explore the consequences of using scenario samples instead of the complete 

scenario tree, we will assume that we know the complete tree, although this is not the 

case in real problems. We model installed capacity as a uniform distribution: 

 

2 2 2 2

3 3 3 3

( ) U[(1 )E( ),(1 )E( )]

( ) U[(1 )E( ),(1 )E( )]

G u gb mv G mv G

G u gb mv G mv G

= − +

= − +
. (164) 

where: 

2 3
E( ),E( )G G : expected value of generation capacities. This takes a value of 200 MW 

in the case study. 

mv : maximum variation. In order to study the impact of uncertainty, the 

case study considers several values for this parameter: 50% (low 

uncertainty), 100% (moderate uncertainty) and 150% (high uncertainty). 

We create 100 generation scenarios based on this distribution. 

We solve a version of the problem that allows continuous investment as well as the 

discrete one. The use of continuous variables can be reasonable in TEP when the planner 

simplifies a large area into a reduced network. In these cases, individual decision 

variables do not represent individual transmission lines but aggregate capacities 

between areas. 

In order to apply shrinkage to the problem, we must define the norm and the robust 

benchmark. We should develop the definition of distance having into account the 

characteristics of the problem as well. In general, we can use norms of the following 

form: 
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ijc ijcn
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x x x x
  − = −   
∑ . (165) 

Where n  determines the order of the norm. In order to keep the linearity of the problem, 

we will use 1n = . If first-stage decisions are binary, this norm coincides with the 

Hamming distance. 

However, if first-stage decisions are not equally important, we should capture their 

relative significance: 

 

1

* *
nn

b b

ijc ijc ijcn
ijc

x x w x x
  − = −   
∑ . (166) 

In the case of TEP, not all first-stage decisions are equally important; some transmission 

lines are more expensive than others. What is more, lines that are more expensive are 

usually longer and with a higher capacity, so their impact on system operation is 

generally higher. Therefore, we take a weighted approach to the definition of distance, 

where weights correspond to first-stage costs: 

 ijc ijc
w Ic= . (167) 

We use this definition of norm in both case studies. 

The benchmark should be robust in the sense of not depending on the details of the 

scenario set. For instance, we can use the solution of a deterministic problem for the 

average scenario. In general, the most appropriate benchmark definition should have 

into account the particular characteristics of the problem under study. If 

underinvestment is preferred to overinvestment, the solution that provides with the 

minimum first-stage cost can be an interesting robust benchmark. We can calculate it as 

the solution of a deterministic version of the problem where the uncertain parameters 

take either their upper or lower bounds depending on what results in the lowest 

investment. Conversely, if the problem favors solutions with overinvestment, we can use 

the solution of a deterministic problem where the uncertain parameters take the bounds 

that result in the lowest operation costs (and highest investment). TEP does not favor 

any of these options clearly. What is more, which side is favored will depend, for 

instance, on the penalty value given to ENS or curtailment. If this parameter is very high, 

the robust benchmark should focus on situations with overinvestment in transmission 

lines (we make sure that ENS and curtailment will be low). If this parameter is low, then 

underinvestment would be preferred. As we do not know beforehand which of this 

situation is closer to the reality of the case studies, we test several alternatives for the 

robust benchmark: 

 Therefore, we test several alternatives for the robust benchmark: 

� The optimal solution for a deterministic problem with minimum generation, referred 

to as minimum-generation benchmark. 

� The optimal solution for a deterministic problem where the capacities take their 

expected value, referred to as expected value benchmark. 

� The optimal solution for a deterministic problem where generators take their 

maximum capacity, referred to as maximum-generation benchmark. 
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We develop four instances of the case study to test linear and norm-constraint shrinkage 

for discrete and continuous variables. We use out-of-sample performance to evaluate the 

stability of the resulting transmission expansion plan with respect to changes in the 

scenario tree. We measure it in two different ways: as average expected cost and as 

average squared error of the plan compared to the optimal solution of the complete 

stochastic problem. In all cases, reported results correspond to 25 samples of 5 scenarios 

from a total of 100 scenarios. 
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Minimum-generation 
benchmark 

Expected-generation 
benchmark 

Maximum-generation 
benchmark 

Uncertainty α  
Avg cost 
[M€] 

Avg sq 
error 
decision 
[p.u.] 

Avg cost 
[M€] 

Avg sq 
error 
decision 
[p.u.] 

Avg cost 
[M€] 

Avg sq 
error 
decision 
[p.u.] 

Low 

0 31.2271 1.1037 31.2271 1.1037 31.2271 1.1037 

0.01 31.1402 1.0711 31.1909 1.1046 31.147 1.1102 

0.05 30.8689 0.9788 31.049 1.115 30.8853 1.1903 

0.1 30.802 0.9493 30.89 1.1433 30.7637 1.4122 

0.2 31.1262 1.1761 30.6585 1.251 31.0107 2.2619 

0.3 31.5792 1.7842 30.5428 1.4268 31.5695 3.6527 

0.4 32.0763 2.7735 30.5169 1.6707 32.2773 5.5847 

0.5 32.5995 4.1441 30.5365 1.9826 33.0853 8.0579 

0.6 33.1308 5.896 30.5862 2.3627 33.9667 11.0722 

0.7 33.6645 8.0292 30.645 2.8108 34.8763 14.6277 

0.8 34.2006 10.5436 30.7156 3.327 35.7892 18.7243 

0.9 34.7381 13.4393 30.7931 3.9113 36.7022 23.3621 

0.95 35.0072 15.0301 30.8335 4.2289 37.1587 25.8839 

0.99 35.2224 16.3714 30.8667 4.4953 37.5239 27.9988 

1 35.2763 16.7163 30.8752 4.5636 37.6152 28.5411 

Medium 

0 59.0243 4.2518 59.0243 4.2518 59.0243 4.2518 

0.01 58.3274 4.2442 58.791 4.1659 58.4124 4.1521 

0.05 55.6796 4.2455 57.9164 3.8368 56.1125 3.8095 

0.1 52.6263 4.3183 56.9076 3.4583 53.4718 3.5076 

0.2 47.2948 4.7012 55.1975 2.8108 48.9433 3.3245 

0.3 43.071 5.4006 53.9528 2.3095 45.4084 3.7026 

0.4 39.9667 6.4164 53.1708 1.9541 42.9635 4.642 

0.5 37.8374 7.7488 52.9531 1.7449 41.5049 6.1425 

0.6 36.5163 9.3976 53.4417 1.6817 40.8096 8.2042 

0.7 35.9088 11.3628 54.4445 1.7646 40.6535 10.8271 

0.8 35.8066 13.6446 55.8502 1.9935 40.8264 14.0112 

0.9 36.0251 16.2428 57.7684 2.3685 41.5006 17.7565 

0.95 36.2219 17.6606 58.8892 2.6108 42.0966 19.8396 

0.99 36.4048 18.8517 59.7949 2.8309 42.5894 21.607 

1 36.4517 19.1575 60.0227 2.8896 42.7172 22.0629 

High 

0 71.612 6.3356 71.612 6.3356 71.612 6.3356 

0.01 70.93 6.1678 71.4764 6.2818 71.0278 6.3425 

0.05 68.2739 5.5254 71.0021 6.0848 68.7691 6.431 

0.1 65.0751 4.7873 70.5088 5.88 66.1042 6.6785 

0.2 59.1536 3.5277 69.9706 5.6086 61.2665 7.63 

0.3 53.7811 2.5568 70.0431 5.5217 57.1332 9.1903 

0.4 49.0836 1.8745 70.6306 5.6191 53.7694 11.3592 

0.5 45.265 1.481 71.8255 5.9009 51.4274 14.1369 

0.6 42.1805 1.3761 73.6697 6.3671 50.0206 17.5233 

0.7 39.8048 1.5599 76.0184 7.0177 49.5647 21.5183 

0.8 38.0989 2.0324 79.0167 7.8526 49.9567 26.1221 

0.9 37.1285 2.7935 82.636 8.8719 51.6129 31.3347 

0.95 36.9208 3.2824 84.6584 9.4507 53.444 34.1692 

0.99 36.9462 3.7254 86.3544 9.9469 55.1129 36.5464 

1 36.9787 3.8434 86.7824 10.0755 55.5334 37.1559 

Table 5-3 – Garver system. Results for linear shrinkage with continuous variables. α  

represents the linear shrinkage intensity parameter. 
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Minimum-generation 
benchmark 

Expected-generation 
benchmark 

Maximum-generation 
benchmark 

Uncertainty δ  
Avg cost 
[M€] 

Avg sq 
error 
decision 
[p.u.] 

Avg cost 
[M€] 

Avg sq 
error 
decision 
[p.u.] 

Avg cost 
[M€] 

Avg sq 
error 
decision 
[p.u.] 

Low 

INF 33.0618 8.362 33.0618 8.362 33.0618 8.362 

15 33.0618 8.362 33.0618 8.362 33.0618 8.362 

12 32.9726 6.3615 33.0618 8.362 33.1033 10.8026 

11 31.8718 2.8806 33.0618 8.362 33.1033 10.8026 

10 31.776 0 33.0773 7.0416 33.2429 13.0433 

9 31.776 0 33.0773 7.0416 33.3746 17.0041 

8 31.776 0 33.0773 7.0416 33.3746 17.0041 

7 34.7045 7.3216 32.5807 6.9215 33.3746 17.0041 

6 34.7044 7.0015 32.5807 6.9215 34.1646 26.0063 

5 35.1043 10.6022 32.5807 6.9215 34.1646 26.0063 

4 34.7761 13.003 31.8718 2.8806 34.1646 26.0063 

3 34.7761 13.003 32.0753 9.0019 36.8934 40.4101 

2 36.7767 17.0052 31.159 9.0019 37.1651 35.0092 

1 36.7767 17.0052 32.0753 9.0019 37.1651 35.0092 

0 36.7767 17.0052 32.0753 9.0019 37.1651 35.0092 

Medium 

INF 53.1546 10.2423 53.1546 10.2423 53.1546 10.2423 

15 53.1546 10.2423 53.1546 10.2423 53.2331 9.5222 

12 51.2999 11.3226 53.1546 10.2423 46.5679 7.0017 

11 47.9697 10.1223 53.1546 10.2423 45.4526 4.9212 

10 47.9713 12.0027 45.5836 9.9222 46.342 9.1624 

9 50.2142 12.3628 45.3298 9.2021 44.5629 8.4423 

8 43.9182 13.243 45.2737 8.3219 44.2607 10.0827 

7 40.9966 15.8838 43.4946 7.6017 46.5113 14.724 

6 40.896 15.5637 43.2208 7.0416 42.4094 15.0841 

5 41.8873 21.2449 43.3616 5.8013 43.2897 18.6854 

4 37.0565 21.5651 38.7091 5.6813 44.4678 23.4867 

3 37.0565 21.5651 35.7902 0.9603 47.3191 25.2871 

2 37.9521 26.007 35.6896 0.6402 44.5984 24.567 

1 37.9521 26.007 35.5258 0 65.1171 26.0073 

0 37.9521 26.007 35.5258 0 65.1171 26.0073 

High 

INF 60.7942 9.5976 60.7942 9.5976 60.7942 9.5976 

15 60.7942 9.5976 60.7942 9.5976 60.905 12.0832 

12 60.7268 7.8371 60.7942 9.5976 55.218 16.3244 

11 57.8834 8.3973 60.7942 9.5976 54.3118 16.5244 

10 53.9645 3.6184 55.8859 9.2375 52.0975 19.8053 

9 56.6793 4.2986 55.8505 8.4998 48.8213 20.5255 

8 50.1684 4.5386 55.7438 8.98 45.6179 21.9258 

7 46.2781 3.1606 52.4677 9.7002 47.7874 25.9269 

6 46.1914 2.8406 48.5683 7.762 44.712 26.6471 

5 47.8263 8.4824 48.8465 14.3811 44.9976 31.8888 

4 40.7422 8.1623 42.5819 13.5409 48.3324 35.3698 

3 40.7422 8.1623 39.8935 10.9225 49.7197 37.3303 

2 38.4791 13.0037 39.8068 10.6025 46.2657 36.6101 

1 38.4791 13.0037 43.1322 13.0033 91.4528 39.0106 

0 38.4791 13.0037 43.1322 13.0033 91.4528 39.0106 

Table 5-4 – Garver system. Results for norm-constraint shrinkage and discrete variables. 

δ  represents the maximum distance allowed between the solution and the robust 

benchmark. 
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   A B1 B2 C Alpha * 

Continuous - 
Linear 
combination 

Minimum-
generation 
benchmark 

Low 
uncertainty 17.00 0.32 0.81 -0.62 0.09 

Medium 
uncertainty 19.00 2.16 2.18 3.79 0.03 
High 
uncertainty 3.84 2.73 3.76 -2.13 0.59 

Expected-
generation 
benchmark 

Low 
uncertainty 4.56 0.32 0.81 1.13 0.00 

Medium 
uncertainty 2.89 2.16 2.18 -0.08 0.60 
High 
uncertainty 10.00 2.73 3.76 3.60 0.31 

Maximum-
generation 
benchmark 

Low 
uncertainty 29.00 0.32 0.81 1.29 -0.01 

Medium 
uncertainty 22.00 2.16 2.18 -0.87 0.19 
High 
uncertainty 37.00 2.73 3.76 6.53 0.00 

Table 5-5 – Garver system. Optimal alpha parameter and intermediate magnitudes for 

linear shrinkage with continuous variables. These magnitudes are defined in Theorem 1. 

Table 5-3 shows the results for linear shrinkage with continuous variables and Table 5-4 

displays the results for norm-constraint shrinkage with discrete variables. Table 5-5 

shows the calculation of the optimal shrinkage parameter for linear shrinkage with 

continuous variables. For the sake of brevity, the rest of the results appear in the 

appendix section. Also in the appendix section, we provide the optimal solution to the 

complete scenario tree for illustration purposes, although in general it is not possible to 

solve this problem. As can be observed, higher levels of uncertainty usually result in 

higher total costs. 

The proposed approach achieves substantial reductions in decision error and expected 

cost. Both linear and norm-constraint shrinkage perform well, although norm-constraint 

shrinkage seems to provide slightly better results in terms of out-of-sample cost. The 

three benchmarks considered gave relatively good results, although the expected-

generation benchmark is arguably more consistent across problem instances. 

In addition, our estimation of the optimal shrinkage parameter fits nicely with the 

experimental results (to see this, compare our estimation in Table 5-5 and the best value 

obtained in Table 5-3). Higher values of the optimal shrinkage parameter (that is, a 

higher proportion of robust benchmark in the optimal estimator) seem to correspond to 

higher reductions in decision error. We predicted accurately the optimal shrinkage 

parameter for the three levels of uncertainty considered. The intermediate calculations 

for this optimal shrinkage parameter are interesting in themselves. As seen in Table 5-5, 

the bias of the SAA solution and its standard deviation grows with uncertainty, 

shrinkage will provide higher benefits in problems with higher uncertainty. On the 

contrary, the studied benchmarks behave differently with respect to uncertainty. The 

bias of the minimum-generation benchmark decreases quickly as uncertainty rises, while 

the maximum-generation benchmark displays the opposite behavior. Their quality as 

benchmarks therefore depends on the extreme scenarios. The expected-generation 
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benchmark shows an intermediate behavior, so it is expected to perform better in a 

wider range of situations. 

5.3.5. The Spanish Case Study 

We develop a case study based on the Spanish network to demonstrate the proposed 

approach in a realistic context. We take transmission data as of 2008 from publicly 

available ENTSO-e and REE E-SIOS cases [218]. We use the same E-SIOS cases to build 

forecasts for a peak-demand scenario and generation capacities. The system is composed 

of 1084 nodes and 294 power plants (nuclear, coal, CCGTs, hydro, wind and solar). The 

existing network includes 1505 lines. The case assumes that a large amount of relatively 

inexpensive renewable energy could be available for import from North Africa. This is 

consistent with visions such as the Desertec Industrial Initiative). In addition, Spain 

would have to export an uncertain amount of renewable generation power to France 

through interconnections at the North-East and the North-West of the country. The 

amounts imported and exported would be: 

 

1 1

2 2

U[0, ]

U[0, ]

U[0, ]

I I

E E

E E

=

=

=

, (168) 

where: 

I :   maximum imported power. This takes a value of 5 GW in the case study, 

1 2
,E E :  maximum exported power though the North-East and the North-West. 

These take a value of 2.5 GW. 

The results obtained from the Garver system led us to use the solution to the expected 

value problem as the robust benchmark. We obtained this solution solving the 

deterministic problem assuming that 5 GW were available for import and that the export 

needs were exactly 5 GW, equally split between North-East and North-West. 

This case study studies a real, detailed network and so it considers specific transmission 

lines as opposed to corridors between areas. Therefore, the model should use discrete 

variables. As in the Garver system case study, reported results correspond to 25 samples 

of 5 scenarios from a total of 100 scenarios. Table 5-6 shows the results for discrete 

variables and norm-constraint shrinkage. Additional results can be found in the 

appendix section. 

The case study considers an uncertain amount of power entering the country from the 

South and exiting at the North-East and North-West. These amounts vary across 

scenarios, so that different scenario samples in the SAA problem lead to different 

network reinforcement needs. If we understand a project as a set of transmission lines, 

possibly disconnected, that serve the same purpose, the network reinforcement needs in 

the case study essentially consist in strengthening corridors from South to North-East 

and from South to North-West. The robust benchmark is the optimal expansion plan for 
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the expected value problem and installs a moderate amount of reinforcements along 

both power routes. 

δ : 
Avg cost 
[bln €] 

Avg sq 
error 
decision 
[p.u.] 

 +INF 11.3 1.0007 

8.9814 11.4 1.0072 

6.736 10.6 0.8799 

4.4907 10.7 0.8963 

3.368 11.3 0.9992 

2.2453 11.1 0.9517 

2.0208 11.1 0.9517 

1.7963 11.2 0.9814 

1.5717 11.2 0.9814 

1.3472 11.2 0.9814 

1.1227 11.2 0.9814 

0.8981 11.4 1.0128 

0.6736 11.4 1.0128 

0.4491 11.4 1.0128 

0.2245 11.4 1.0128 

Table 5-6 – Realistic Network. Results for norm-constraint shrinkage and discrete 

variables. δ  represents the maximum distance allowed between the solution and the 

robust benchmark. 

Regularization avoids extreme expansion plans with either very large or very low 

investment and favors balanced solutions with moderate reinforcements along both 

corridors. This leads to expansion plans that are considerably more robust with respect 

to changes in the scenarios: the regularized plans are up to 7% better than the SAA plans 

in terms of out-of-sample cost (10,600 vs. 11,300). This example shows that the proposed 

approach can indeed be useful when dealing with realistic TEP problems. 

5.3.6. Conclusions 

The scenario trees used to model the dynamic uncertainties that impact TEP are based 

largely on expert opinion. Therefore, it is desirable to obtain expansion plans that are 

relatively stable with respect to changes in the definition of scenarios. 

We propose to regularize the SP to obtain solutions that are more robust by using 

shrinkage. Shrinkage estimators improve the error of a given estimator by combining it 

with another one, typically one with a lower variance. We shrink the SAA solution 

towards a robust benchmark that is relatively independent from the scenario tree. We 

propose two alternative techniques. Linear shrinkage creates a combination of the SAA 

solution and the robust benchmark. We prove the existence of an optimal shrinkage 

parameter and provide an expression for its value. Norm-constraint shrinkage imposes a 

maximum distance between the SAA solution and the robust benchmark. We select the 

best distance parameter by cross-validation. 

We develop two TEP case studies to illustrate this approach, an academic network based 

on the well-known Garver system and a realistic one based on Spanish power system. 

Both cases are representative of the uncertainties inherent to new generation projects. 

We study continuous and discrete versions of the problem for both linear and norm-
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constraint shrinkage. The proposed approach results in expansion plans that are notably 

more robust with respect to changes in the scenarios, with average out-of-sample cost 

reductions of up to 7% in the realistic case study, which illustrates the usefulness of 

regularization in this context. Discrete problems benefit more from regularization than 

continuous ones. Although both shrinkage approaches produce improvements, norm-

constraint shrinkage performs better in all the problem instances studied. 

5.4. Chapter Takeaways 

TEP is a problem characterized by the presence of large dynamic uncertainties, such as 

generation expansion or fuel prices. The long permitting process for building a new line 

(around 10 years) means that transmission expansion must anticipate the evolution of 

these uncertainties. Therefore, it is extremely important to develop flexible plans that are 

able to adapt to the unveiling of events. In addition, these uncertainties are modeled by 

expert opinion, which means that forecasts are necessarily limited. This makes it 

desirable to design expansion plans that are robust with respect to changes in the 

definition of scenarios. 

We identify the transmission lines with the highest potential for bringing operation cost 

savings in the future. The permitting process for these promising transmission lines 

should be initiated, even though not all lines will be built once the permits are granted. 

We apply Real Options Valuation (ROV) to evaluate the potential benefit of candidate 

lines and identifying priority projects. We develop a simplified interpretation of 

optionality in TEP and calculate an approximation that enables to evaluate option value 

in realistic settings. We are able to identify the candidate transmission lines with the 

highest potential and the ones that are essential to an expansion plan, as well as their 

main value drivers. We illustrate this with a realistic case study based on the Spanish 

system. 

In addition, we propose a technique to obtain expansion plans that are robust with 

respect to changes in the scenario tree. We regularize the SAA problem shrinking the 

solution towards a robust benchmark. We essentially modify the TEP solution to make it 

more similar to a plan that does not depend on the scenario tree. We develop two 

different alternatives to apply shrinkage to the SAA problem: linear shrinkage and 

norm-constraint shrinkage. We produce two case studies to illustrate the advantages of 

the proposed approach, based on an academic and a realistic network respectively. 

Shrinkage provides results that are consistently better in terms of average out-of-sample 

cost and decision error. 

The Real Options approach for TEP is under review: 

� S. Lumbreras, A. Ramos, D. Bunn, M. Chronopoulos, “Real Options Valuation 

Applied to Dynamic Transmission Expansion Planning“, under review at IEEE 

Transactions on Power Systems. 

The regularization approach for SP will be submitted for publication as: 
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� S. Lumbreras, V. DeMiguel, A. Ramos, “Transmission Expansion Planning. A 

Regularized Stochastic Programming Approach”, to be submitted for publication to 

Operations Research. 

 





 

 

 

 

Chapter 6  
Structure Identification 
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6.1. A Matter of Structure 

The study of the structure of the problem is essential in large-scale TEP. To begin with, 

the combinatorial nature of the problem makes it impossible to take into account all 

possible transmission investments. Therefore, the candidate investment proposal 

formerly carried out by the TSO played the crucial role of reducing an unmanageably 

large search space. However, there is currently no single TSO with experience of the 

whole system under planning. Hence, there is a need for automatic candidate proposal 

mechanisms. Moreover, when the TSO proposed investments, each candidate line was 

linked to a specific network need; the rationale for investments and their relationships 

was known. However, if we perform proposals automatically, this information is lost. 

We propose an automatic, objective method for candidate proposal, and a power-flow 

based approach for extracting the rationale and relationships among investments. We 

illustrate the proposed approach with a TEP case study based on the Spanish Power 

system. 

In addition, although a TEP problem might consider a huge number of possible 

candidate investments, often just a few of them have the largest impact. Identifying these 

investments gives extremely interesting information about the structure of the network. 

We apply Ordinal Optimization (OO) with the aim of extracting the most significant 

investments in the optimization problem. Moreover, we exploit this information to solve 

larger problems in shorter computation times. For this, we develop a hybrid 

optimization algorithm that combines OO and MIP. We demonstrate the advantages of 

this approach in a case study based on OWF design. 

We published the candidate proposal approach as: 

� S. Lumbreras, A. Ramos, P. Sánchez, “Automatic Selection of Candidate Investments 

for Transmission Expansion Planning”, International Journal of Electrical Power and 

Energy Systems, vol. 59, pp. 130-140, July 2014. 

We describe the OO+MIP hybrid in: 

� S. Lumbreras, A. Ramos, P. Sánchez, “Offshore Wind Farm Electrical Design using a 

Hybrid of Ordinal Optimization and Mixed Integer Programming”, under review at 

Wind Energy. 

6.2. Candidate Discovery 

6.2.1. Introduction 

We deal explicitly with the problem of proposing candidate lines (sometimes referred to 

as technical alternatives) for TEP. Candidate lines have been traditionally regarded as 

expert-provided system information. However, given the need to plan larger networks, 
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identifying interesting candidates is an issue of increasing relevance and complexity. We 

propose a consistent method to tackle this problem. 

First, an automatic and objective candidate discovery mechanism based on sensitivities 

proposes potentially interesting investments. Then, a candidate management strategy 

filters the list of candidates to keep problem size within tractable levels without 

compromising global optimality. Finally, a candidate analysis tool reveals the 

relationships among investments from a relatively fast and simple power flow study. 

This information can be interesting to support expansion decisions. We complement 

these theoretical developments with a realistic case study that illustrates the applicability 

of the method. 

TEP is a complex problem with ramifications that extend from system operation, static 

reliability and dynamic stability analyses to environmental and political considerations. 

For this reason, when confronted with this problem, TSOs tend to structure the decision 

process in several stages. 

� Several alternative expansion plans are proposed. These proposals can be generated 

manually by the planner or obtained by optimization. In the latter case, problem size 

makes it often necessary to simplify its scope by using a reduced model of the system 

and considering only some of the relevant objectives. The general approach seems to 

be to consider system operation cost and static reliability [193]. These two objectives 

are the ones that have arguably the largest impact on cost and can be efficiently 

incorporated into an optimization problem. 

� The alternative expansion plans are evaluated, this time, across all the relevant 

objectives. These can include stability and short-circuit currents, flexibility, social 

acceptance or environmental impact [227]. 

The decision maker selects his preferred expansion plan from the list of alternative 

expansion plans that score acceptably in his objectives. Multi-Criteria Decision 

Methods can be used to guide this selection [228]. 

When the alternative expansion plans are generated by optimization, the problem is 

generally understood as the selection of the best combination of individual investments 

from a pre-defined list of candidate lines. Usually, this list is considered part of the input 

data of the problem. 

� Academic studies assume candidates are provided externally. 

� Practical applications, usually carried out by the relevant TSO, make use of the TSO’s 

own knowledge and experience about the system. Candidate lines are defined 

manually according to the planner’s expertise. 

However, this traditional approach can lead to fundamental problems that are becoming 

increasingly relevant. 

First, it is possible that the planner’s expertise fails to identify candidate lines with a 

better potential than the ones actually included in the list, leading to a suboptimal final 

solution. 

In addition, market integration means that there is a trend to plan increasingly large 

geographical areas, where new generation (particularly renewable) can be located far 

away from demand areas [229]. TSOs have experience on their individual systems, 
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which can be very large, as for instance in the NERC regions [230]. However, when 

planning several regions coordinately, most often, there is no entity familiar with the 

whole area, and therefore large investments stretching among several territories could be 

overlooked. These investments constitute the backbone of supergrid architectures and 

are therefore extremely relevant for TEP in large regions. This is manifest in studies such 

as ENTSO-e’s Ten-Year Network Development Plan (TYNDP) [231], which performs a 

bottom-up approach where investments are proposed by TSOs in the scope of their 

individual regions and are integrated at a later stage. A similar problem arises when the 

object of TEP is a completely new region with no existing network. An interesting 

example of this is the design of large OWFs. 

It is also important to note that the inherent computational complexity of optimal TEP 

(usually formulated as a discrete combinatorial problem) makes it necessary to limit the 

size of the candidate list in order to keep the problem tractable. It is therefore impossible 

to consider all the feasible investments as a way to avoid the candidate selection 

problem. What is more, in very large systems, even a reduced list of interesting 

candidates (as opposed to all feasible candidates) can be excessive for optimization. 

We propose a method to deal with these issues: 

� Candidate discovery demands automatic, objective methods rather than manual 

processes relying on individual or institutional expertise. 

� The potentially large number of interesting candidates should be managed in order 

to keep problem sizes tractable. 

� When candidates are proposed by the planner, they can be easily related to specific 

needs in the existing network (e.g. integrating new generation or reinforcing a 

congested corridor). The relationships among them are therefore understood (e.g. 

alternative circuits that serve the same function or lines that complement each other 

to create a longer corridor). However, if candidates are proposed automatically, this 

information is no longer available. It would be desirable to recover as much of this 

knowledge as possible and make it available for decision support. 

These identified needs, which the literature has not dealt with explicitly, are the three 

main points around which we structure our approach. We propose an automatic 

candidate discovery method. In addition, we develop an algorithmic candidate 

reduction algorithm that keeps problem sizes tractable while guaranteeing optimality. 

We have incorporated this algorithm into a Benders’ decomposition framework 

efficiently, so that existing cuts are easily updated to incorporate the newly discovered 

candidates. Finally, a candidate analysis mechanism elicits the relationships among 

candidates with the aim of supporting decision-making. After introducing the proposed 

approach, we describe the case studies and discuss results. 

6.2.2. The Proposed Approach 

We base our approach on three complementary and sequential algorithms: 

� Automatic candidate discovery searches for potentially interesting candidate lines using 

sensitivity information. 
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� Candidate management reduces problem size to tractable levels without compromising 

global optimality. It deals with large numbers of integer variables as well as reducing 

computation time. 

� Candidate analysis reveals the relationships among the investments analyzed. 

We base the developed approach in the formulation for the TEP problem presented in 

3.2 and using Benders’ decomposition as explained in 4.2. 

6.2.3. Automatic Candidate Discovery 

In addition to the lines directly proposed by the planner, we would like to add all other 

potentially interesting candidates to the optimization problem. It is not possible to 

incorporate all the potential candidate lines (that is, all the possible pairs of nodes and 

type of cable). Of course, not all possible transmission lines are feasible or reasonable. 

Some lines are, for instance, too long for their capacity according to the planner’s criteria 

(for instance, we can impose that no AC line can be longer than 1000 km). Other filters 

can impose, for instance, social or environmental criteria (such as that no line can cross a 

natural reserve). In addition, different alternatives for the structure of TEP can be 

imposed by controlling the length of the candidates: an incremental grid would be 

characterized by relatively short candidates while supergrid investments would present a 

longer length and higher capacity. 

However, even after this step the possible number of candidate lines leads in general to 

an intractable problem. We define candidate discovery as the selection of a subset of 

these suitable lines that we deem promising. Automatic candidate discovery should be 

based on objective and readily available information, ideally element characteristics and 

power flow data. Candidate discovery should identify a set of investments with 

potential to reduce operation costs and produce savings in excess of their combined 

costs. 

Some references [81, 232, 233] have used sensitivities to guide heuristics determining the 

next step in a local search among a pre-defined list of candidates. These sensitivities give 

an upper bound on the potential benefit of installing a new line. We then compare the 

potential benefit to investment cost, which is calculated as the product of line cost per 

km and length: 

 ijc c ij
c CC GD=  (169), 

where: 

c
CC : cost of a cable type [M€/km], 

ij
GD : distance between line extremes adjusted for geographical accidents [km]. 

It is possible to modify this distance to include other considerations in 

the analysis, for instance, increasing it for some lines to represent 

environmental costs or social concerns. 
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In order to ensure that we include all promising candidates, we need to ensure that our 

approximation of potential benefits is optimistic. In addition, we need to apply the 

mechanism iteratively until no more potential candidates appear. This is described in 

Figure 6-1. 

{ }0
CL = ∅

{ }1n nCL CL PC−= ∪

PC

 

Figure 6-1 – Candidate discovery algorithm. 

As the problem formulation is convex, we can use sensitivity information to derive an 

upper bound on benefits. In general, if Benders’ decomposition is used, we can obtain 

cost sensitivities with respect to any transmission asset from the slopes of the cuts. In 

addition, if a transportation model is used, we get an upper bound on benefits from the 

current nodal price differences and the capacity of the line: 

 
ijc

ijc i j
PB P D Fω ω ω ω

ω

σ σ= −∑ , (170) 

where: 

ijc
PB : potential benefit of installing a line [M€]. 

ijc
F : rated power of the line [MW], 

If a DCPF is used, a better approximation of the flow is given by the angle difference and 

the reactance of the circuit: 
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where: 
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c
X : reactance per km of cable type c  [pu/km]. 

Both calculations, the DCPF and the transportation one, require only information 

available from a power flow calculation of the existing network. It should be noted that 

all stochastic scenarios are taken into account in this calculation, in particular the 

different load levels and the reliability scenarios. Therefore, we can assess the potential 

benefit as the sum of these benefits per scenario weighted by the relevant probability 

and duration. This leads to recurrent congestions being weighted more than infrequent 

ones. 

Once we have calculated the potential benefits, we identify promising candidates as the 

ones where the ratio between potential benefits and cost is higher than one: 

 

1ijc

ijc

ijc

PB
BTC

ic
= ≥ . (172) 

For the sake of simplicity, we have only expressed these rates for transmission lines, 

which are arguably the most important type of transmission asset. However, we can 

build equivalent expressions for other types of transmission assets such as transformers. 

In addition and as explained above, we can obtain sensitivities from the slopes of 

Benders’ cuts for any transmission asset in general. 

It is interesting to note that, the more reinforcements the transmission network needs, 

the more promising candidates will appear. In case the promising candidate lines are too 

many, we can define a maximum number of promising candidates. The best candidates 

according to their potential benefit 
ijc

BTC  will be included progressively. 

Candidate discovery should include different cable types and technologies. In particular, 

this list should include the installation of new large-capacity HVDC links that could 

conform the backbone of a supergrid. 

In order to ensure that we explore all potentially interesting candidates, we solve the 

TEP problem iteratively until no more promising candidates are identified. Figure 6-1 

shows a schematic description of the candidate discovery process. 

One of the advantages of using Benders’ decomposition to solve the problem is that, if 

new candidate lines are added, we can still keep all the information about the problem 

that we have already calculated (namely, all the calculated Benders’ cuts). 

A cut gives a lower bound on second-stage cost as a linear function of first-stage 

variables. The cut is defined by a point 
2

( , )l
ijc
x Z ω  and some slopes ,l l

ijc ijc

ω ωπ π+ − . The 

formulation of the master problem and the subproblem given in Chapter 3 is reproduced 

here for convenience. 
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The point relates a first-stage solution and its cost, and the slopes relate increments in 

first-stage variables with increments in second-stage cost. In classical Benders’ 

decomposition, the first-stage solution used is the optimal solution of the master 

problem. The value used for the cost of this solution is its exact cost as calculated by the 

subproblem. The slopes that relate cost and first-stage variables are the exact marginal 

information calculated by the subproblem. 

However, it is possible to build different cuts that are still valid, as long as the 

approximation of second-stage cost they provide is lower than or equal to the real cost: 

� Any first- stage solution can be used to build the cut as long as the subproblem is 

used to evaluate second-stage cost and the slopes. This includes linearized solutions 

or suboptimal solutions (for instance, if we fix some first-stage variables). 

� If any of the parameters of the cannot be obtained (for instance, the slopes), it is 

possible to assign them other values as long as we ensure that the approximation of 

second-stage cost that results from the cut is lower than or equal to the exact second-

stage cost. 

We refer the reader to the work in [121] for a more detailed description of Benders’ 

decomposition and to [150] for a more detailed discussion on valid cuts. 

The stylized formulation of Benders’ decomposition applied to the TEP problem is 

reproduced below for the sake of convenience: 
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where: 

2
t
ω

Θ : recourse variables, 
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l l
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ω ω
π π+ −

: dual variables of the equations imposing maximum and minimum power 

flows through lines, 

,t t
l l

tijc tijc

ω ω
ρ ρ+ − : dual variables of the equations imposing Kirchhoff’s Second Law, 

l

tijc
x : first-stage variables selected by the master problem at iteration l . 

The subproblem calculates operation cost for the investment variables fixed by the 

master problem and obtains the parameters needed for a new cut: 
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We can use the cuts calculated in previous iterations because the subproblem is the same 

in all the defined problems (system operation is identical). The only modification needed 

is to supplement all already calculated cuts with valid slopes for the new variables.  

Calculating , , ,
ijc ijc ijc ijc

ω ω ω ωπ π ρ ρ+ − + −  for the new candidates in all the already calculated cuts 

would imply solving again the subproblems for all previously calculated iterations, this 

time including the new candidates. However, we can avoid this if, instead of calculating 

the exact slopes, we use some conservative values that make sure that the cuts obtained 

are valid. 

Any definition of the slopes that guarantees that the cut lies below the recourse function 

originates a valid Benders’ cut. That is, operation cost evaluated using the cut must be 

lower than or equal to the true cost. A relatively straightforward way to introduce a new 

variable is to define the cut such that: 

� If the new candidate i j c′ ′ ′  is not installed, the previously calculated cut is left 

unchanged. 

� If the new candidate is installed indeed, the recourse function is equal to a known 

lower bound on total cost regardless of the remaining investment decisions. We have 

a lower bound that will always be valid: zero, as we know that cost must be positive 

in this problem. 

A proposed value for the slopes using a lower bound of zero is: 
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This expression enables adding new candidates while keeping all the previously 

accumulated information. 

Similarly, the candidate management technique described in the next section can benefit 

from the decomposition structure as well. 

Figure 6-1 describes the iterative application of candidate discovery, keeping all 

previously calculated cuts and using candidate management (described below) to solve 

the problem more efficiently if a large number of candidates are identified. The loop is 

repeated until there are no more promising candidates. 

6.2.4. Candidate Management 

Given that candidate discovery can result in an unmanageably large list, it is necessary 

to reduce problem size to tractable levels. The developed method reduces master 

problem size by temporarily filtering out some candidate lines (restricting them). We 

refer to this as algorithmic candidate reduction. 

The candidates that will be restricted are the ones that have not appeared in a previous, 

simplified solution of the problem (a linear relaxation where fractional investments are 

allowed and which is generally calculated much quicker than the MIP version, referred 
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to as stage 1a) . As the case study shows, a large fraction of the available candidates is 

never used, so that a substantial size reduction can be achieved from restricting those 

unused candidates (fixing their values to 0). Then, the reduced MIP problem is solved 

(1b). When we reach convergence for the reduced MIP problem, in order to prove 

optimality, we must solve the problem again including all potentially interesting 

candidates (1c). 

Cuts derived from the linear relaxations and from the MIP resolution with some 

restricted candidates are valid cuts because they correspond to linearized and 

suboptimal first-stage solutions calculated with the same subproblem [134]. Therefore, 

we can keep all Benders’ cuts calculated previously. The previously calculated cuts make 

it possible to solve the problem much more efficiently than if they were not included. 

 

Figure 6-2 – Candidate management. 

Time savings resulting from the application of this simple strategy can be seen in the 

case study section. However, if we identify a very large number of candidate 

investments, solving the MIP problem might not be possible. Then, candidate restriction 

(and, in extreme cases, only steps 1a and 1b) can be the only suitable alternative. 

6.2.5. Candidate Analysis 

If candidate discovery is performed manually, experts are able to link each candidate 

investment to a specific network need and therefore understand the relationships among 

investments. However, if the proposal is automatic, this explanation is lost. The 

developed candidate analysis method aims at providing this information in an efficient 

manner. 

It is known that the benefit that can be obtained from some investments can be higher if 

they are installed together (positive synergy), or lower (negative synergy) [234]. Positive 

synergy usually corresponds to investments that form part of the same long-distance 

corridor, so the full benefit can only be obtained when all stretches are installed. That is, 
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the investments should be deemed as complementary goods. Negative synergy is related 

to alternative ways of dealing with the same need; if one circuit is built to alleviate 

congestion between two given nodes and it is successful, adding extra capacity will not 

bring any additional advantage. That is, the investments are substitute, competitive 

goods. 

 

Figure 6-3 – Schematic illustration of positive and negative synergy between pairs of 

investments. 

Positive synergy leads to diversifying investment (that is, investments bring more 

benefits if installed together) and negative synergy leads to concentrating investment 

(investments tend to not be installed together). This information can be useful to justify 

planning decisions within a transmission expansion project. We include some schematic 

examples of positive and negative synergy. 

The identification of complementary and substitutability relationships allows defining 

transmission projects, that is, sets of transmission lines that are highly related and that 

should be analyzed as a whole. 
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Figure 6-4 – Example of positive synergy (complementary assets). Combined savings are 

higher than the sum of individual savings, as a longer corridor appears, taking cheap 

energy from node 3 to node 1.  
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Figure 6-5 – Example of negative synergy (substitute assets). Savings in the combined 

case are lower than the sum of individual savings. Installing both lines gives no 

additional benefit as Node 1 can be completely supplied with cheap energy with just one 

of the lines. 

It has been claimed [235] that it seems to be a common rule in complex systems that the 

synergetic relationships between pairs of variables reveal also the higher order 

relationships (groups of three, four, etc). This issue is remarkably important in genetics 

and as such has been extensively studied in this context [235], although this rule does not 

appear to be documented yet for other types of systems. In power systems, the fact that 

some sets of transmission lines appear to be related has been acknowledged in reference 

[236]. Therefore, we limit our approach to analyzing the relationships between pairs of 

lines. Although other alternatives are possible, the implementation we propose studies 

the variations in utilization (measured as power flow through the circuit) that a single 

line experiences when a second line is installed. The rest of the network is assumed to 

have the configuration that has been deemed optimal. 

We calculate this variation as the percentage difference in power flow through a line ijc  

when a second line i j c′ ′ ′  is installed versus a case where the second line is not installed. 

Similar ratios have been used in the literature with the objective of assessing the effect of 

contingencies on the network [237]. We add these variations across scenarios weighted 

by their probability and duration in order to get a single measure: 
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� Investment pairs where this variation is positive tend to be used more when both of 

them are installed and are deemed complementary. 
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� Investments where this variation is negative tend to be used less when both of them 

are installed and are deemed substitutes. 

Similarly to the approach in reference [234], a certain percentage threshold (e.g. 50%) is 

established in order to filter only the significant relationships. The only calculation 

needed is therefore a series of power flows (in particular, as many as analyzed 

candidates). That is generally affordable in terms of computational time for realistic 

systems. 

6.2.6. Case Study 

We develop a realistic case study based on the Spanish system in order to demonstrate 

the discovery, management and explanation methods. We implement the proposed 

techniques using TEPES [64]. 

The case study is based on the Spanish power system. We take transmission data as of 

2008 from publicly available ENTSO-e REE E-SIOS cases [218]. We build forecasts for a 

peak-demand scenario and generation from the E-SIOS cases as well. We stress the 

system by decreasing all line capacities by 35% and importing 15GW of renewable 

generation from North Africa at Tarifa and exporting it to the rest of Europe through 

Barcelona and Bilbao. This kind of high renewable import scenario is currently being 

considered in different forms in several international initiatives [6]. The system is 

composed of 1084 nodes and 294 power plants (nuclear, coal, CCGTs, hydro, wind and 

solar). The existing transmission network is configured by 1505 lines and transformers. 

Figure 6-6 shows the 400 kV circuits. CPU times, expressed in seconds, were calculated 

using CPLEX 12.1 on GAMS in a PC at 2.80 GHz with 4 GB RAM running Microsoft XP 

32 bits. The relative optimality tolerance was 0.1%. 

 

Figure 6-6 – Initial state of the network for the Spanish case study. 

The size of the initial candidate pool (in the sense of all possible lines that could link 

every pair of nodes with every cable type available) was 1.7 million. From them, 
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automatic candidate discovery takes 6.6 s to select 4447 corridors as potentially 

interesting (which was lower than the maximum number of candidates we had imposed, 

which were 10000). The optimal solution installed 71 new lines. They consist of 

reinforcements along the routes from the import point to the export nodes. 

 

Figure 6-7 – 400 kV lines installed in the optimal solution. 

 

Figure 6-8 – Example of substitute investments identified. 
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. 

Figure 6-9 – Example of complementary investments indentified. 

The straightforward application of Benders’ decomposition found the optimal solution 

in 1129 iterations and 14923.0 s. If algorithmic candidate management is applied, only 88 

corridors are not restricted (i.e. 98% of all candidates are filtered out). None of these 

restricted candidates were subsequently selected for the optimal solution. Algorithmic 

candidate management reduces computation time to 5860.4 s, which represents 61% time 

savings. Our candidate analysis mechanism analyzed all the possible pairs of 

investments, which amounted to 2845 pairs. Candidate analysis identified 163 pairs of 

substitute investments and 16 pairs of complementary investments. We represent some 

examples for illustration in Figure 6-8 and Figure 6-9. Figure 6-8 represents two 

alternative ways of increasing network capacity at the South. Figure 6-9 shows a corridor 

that is made of four seemingly disconnected stretches that serve the same function, 

namely bringing power from South to North. This kind of relationship is not obvious 

from direct examination and its identification allows for better project management. For 

instance, the identification of complementary investments can lead to proposing other 

supergrid investments that comprise all the identified lines that are part of a corridor. 

 Iterations Time(s) 

Solve relaxed problem (1a) 656 1784.8 

Solve reduced discrete problem 
(1b) 

140 278.3 

Solve complete discrete problem 
(1c) 

204  3797.3 

Total  1000 5860.4 

Table 6-1 – Computational performance of candidate management mechanism in the 

illustrative case study. 
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6.2.7. Conclusions 

Proposing investment candidates for Transmission Expansion Planning is a relevant 

issue when large areas are studied or in cases where expert knowledge of the system is 

not available. We deal with this problem explicitly and propose a consistent and efficient 

method to tackle it, articulated around three main strategies: 

An automatic candidate discovery mechanism objectively proposes potentially interesting 

investments based on sensitivity information. 

Given that automatic candidate discovery can result in a very large number of 

candidates, a candidate management algorithm reduces problem size in order to keep it 

within tractable levels without losing optimality. 

A candidate analysis mechanism analyzes the joint variations of flows. This reveals 

complementary and substitute groups of investments. 

We test these techniques on a realistic case study that illustrates the applicability of our 

approach. 

6.3. A Hybrid OO+MIP Algorithm Applied to Network Design 

Problems 

In TEP and OWL problems, expansion plans can be highly complex, so identifying the 

most important investments can be extremely interesting for decision support. 

Furthermore, we take advantage of this structure to accelerate problem resolution by 

applying a OO+ MIP hybrid algorithm. 

6.3.1. Introduction 

Ordinal optimization (OO) was proposed in 1992 [238] and is now an established 

paradigm within soft computing techniques. OO lowers the demands of classical 

optimization and offers a statistical optimality guarantee instead of an absolute one. This 

means that OO can provide a solution in the top X% of solutions with a given probability 

P [239]. Both X and P can be chosen arbitrarily. On the contrary, MIP offers an absolute 

guarantee, which warrants a solution that is ensured to not be worse than X% in cost 

than the optimal one. Again, X can be arbitrarily chosen. 

In OO, the group of solutions that are in the top X% of solutions is known as the good 
enough subset. OO returns several solutions (the selected subset) as a result. At least one of 

these solutions will belong to the good enough subset with probability P, 

( ( ) )P card G S k∩ ≥ ; where G  represents the good enough subset, S  is the selected 

subset and k  is the alignment level (the number of elements of the selected subset that 

belong to the good enough subset). 
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The potential of OO can be appreciated intuitively by calculating a simple example: in 

200 random samples, there is a 86.60% probability of having at least one solution in the 

top 1%: 2001 (1 1%)− − . Similarly, there is almost a 100% probability of having at least one 

solution in the top 5%. 

Feasible Region

Good enough 

subset Selected 

subset

Optimal

 

Figure 6-10 – OO searches for a subset of solutions that has some overlap with the good 

enough subset. 

It should be noted that this sample size does not depend on the number of decision 

variables, unlike what happens with other techniques (for instance, the number of 

solutions that must be inspected to solve a MIP optimization problem). This is the main 

cause of the relatively benign behavior of this method with growing problem size. It has 

been proven that algorithms based on OO converge exponentially under certain 

conditions [240],[241]. We refer the reader to reference [242] for a detailed explanatory 

account of OO. 

As with metaheuristics, OO is not guaranteed to return a local optimum, that is, there is 

a possibility that a small change in the solution will provide a better result. By analyzing 

the solutions that OO provides as the selected sample, we can check whether they have 

any common features. For instance, if all the solutions in the selected subset for an OWF 

problem have two 60 MVA transformers in the transmission system, we can infer that 

the transformer is a key factor in the economical viability of a solution. Moreover, two 60 

MVA transformers seem to be the preferred option so, probably, the optimal solution 

will have them as well. In addition, if the decision maker can test additional components 

not originally included in the problem, it might be worth exploring other additional 

types of transformers. 

OO has been welcomed in a variety of fields. Within power systems, it has solved an 

optimal power flow problem with discrete variables [243]. Similarly, optimal meter 

placement [244], power system control [245, 246] distributed generation capacity 

expansion [245, 247] and optimal bidding strategies [248] have been studied with OO. 

Moreover, there have been also some applications of this technique to TEP [72, 249]. 

We combine OO and MIP to search efficiently for good solutions to the OWF layout 

problem. Given the need to plan large OWFs, the technique should be able to deal with 

large problem sizes. In addition, this kind of problems is usually solved multiple times 

(for instance, testing several micrositing solutions as explained in Chapter 4). This makes 
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it necessary to keep computation times as low as possible. An absolute optimality 

guarantee would be ideal, but given the large problem sizes, this requirement should be 

softened to having at least some kind of guarantee (such as the statistical one in OO). In 

addition, OO generates a good enough set that we can analyze in order to extract 

structure. This possibility is very attractive as well. Finally, it would be desirable that the 

returned solution is at least a local optimum. 

The proposed algorithm combines OO and MIP in an attempt to benefit from their best 

features. First, we apply OO to the problem. OO returns the selected subset, where we 

search for common features. These common features are based on the fact that some 

variables or combinations of variables have a special importance in the problem. This 

has been observed, within a TEP context, in reference [236]. If common features exist, 

then we assume that good solutions have a structure consistent with them. We express 

the common features as constraints that we add to the problem. For instance, if all the 

solutions in the good enough subset have two 60 MVA transformers, the constraints 

impose that the transmission system must have two 60 MVA transformers as well. These 

constraints reduce the feasible region for the problem, so that we can solve it with MIP in 

a reduced computation time. This MIP problem returns a local optimum. However, the 

added constraints can result in this local optimum being different from the global 

optimal solution. 

The hybrid inherits the statistical optimality guarantee and the explicit expression of 

solution structure from OO. We combine this with a constrained optimality guarantee 

brought by the subsequent application of MIP (that is, the solution is guaranteed to be 

the best one that abides the additional constraints). Table 6-6 displays a comparison of 

the characteristics of the proposed hybrid against MIP, metaheuristics (MH) and OO: 

  MIP MH OO OO+MIP 

Global optimality guarantee Absolute None Statistical Statistical 

Can deal with large problems No Yes Yes Yes 

Extracts structure No No No Yes 

Constrained optimality guarantee Yes No No Yes 

Table 6-2 – Comparison of the characteristics of the main solution techniques considered. 
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Figure 6-11 – Comparison of the structure of a representative implementation of OO 

versus the developed hybrid OO+MIP algorithm. 

The steps in the process are: 

I. OO: Solution structure identification phase 

The first part of the algorithm generates the selected subset and analyzes their structure 

in order to identify common features. 

1. Calculate sample size 

We choose a target alignment of having at least one element from the top 1% of solutions 

with a 99% probability. A size of 500 samples satisfies this condition (actually, using the 

formulae explained in section 6.3.1 the resulting probability is 99.44%). 

2. Generate samples 

Each sample describes a possible layout for the OWF, with its cables, transformers or 

converter stations. We build random samples by generating a random value for each of 

the decision variables. In the case of the OWF layout problem, these decision variables 

define the cables in the collector system and the cables and transformers/converters in 

the transmission system. They are described as binary variables, so that a {0,1} is 

generated for each. Although we applied simple random sampling, more efficient 

techniques could be used, such as Latin Hypercube sampling. If a different sampling 

technique is used, the OPCs will change, but this does not impact the applicability of the 

method. 

If the generated solution is infeasible, an auxiliary feasibility problem minimizes the 

deviations from that random solution while satisfying first stage constraints. 
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Figure 6-12 – Feasible sample generation. 

3. Evaluate samples 

Sample evaluation involves calculating the investment and operation costs associated 

with each of the generated layouts. We perform this evaluation by solving the model 

presented in 3.3 while keeping the decision variables fixed. This is a linear problem that 

can be solved relatively quickly. 

a. Select the top samples to form the selected subset 

The selected subset contains the samples solutions that have the lowest cost. In this case, 

we select the top 1 % performers in terms of total cost. 

b. Analyze common features in the selected subset 

Similarly to the measures used in reference [250] to guide a heuristic solution, the 

mechanism that looks for common features studies decision variables and aggregations 

of variables (this will be referred to as descriptive variables). The purpose of aggregating 

information is to make it easier to find structure. The different ways of aggregating 

variables identified in this problem are: 

� aggregated capacity linking each node to the rest of the layout (referred to later as 

CP1), 

� aggregated capacity linking each pair of nodes in the layout (CP2), 

� number of cables linking each pair of nodes (RP2), 

� total capacity linking a node to the rest (CP1), 

� total number of cables linking a node to the rest (RP1), 

� total power of the transformers installed, 

� number of transformers installed. 

As shown in the results, all these descriptive variables give good results in the case 

study. 

The mechanism calculates the ranges taken by the descriptive variables in both the set of 

all samples and the selected subset. For instance, the total power of transformers 

installed might be between 0 and 500 MVA in the samples but 120 MVA exactly for the 

selected subset. Having a range in the selected subset (selected range) that is much 
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narrower than its equivalent for the set of all samples indicates that this particular 

descriptive variable is important. The optimal solution will probably be within the 

selected range (in this example, the optimum will be assumed to have a total transformer 

power of 120 MVA). How much narrower the selected range must be in order to impose 

an additional constraint is determined by a threshold parameter. 

Therefore, the only information that must be specified for a given implementation are 

the definition of the descriptive variables and the threshold parameters. 

II. MIP: Optimization phase 

The optimization phase makes use of the identified structure in order to focus on the 

most promising area of the feasible region. 

6. Impose the identified structure as constraints 

In the cases where the selected range of a certain descriptive variable is much smaller 

than the all-sample range, we add a constraint to the problem to ensure that the relevant 

descriptive variable takes a value within the selected range. 

7. Solve the reduced optimization problem 

The inclusion of additional constraints reduces the feasible region of the problem and 

allows finding the optimal solution in a relatively short computation time. The example 

below illustrates this. The following two figures show two different examples of Ordered 

Performance Curves (OPCs). OPCs represent the relative abundance of good and bad 

solutions when sampling randomly. The x-axis describes cost and the y-axis represents 

the probability density of obtaining a solution with a given objective value when 

sampling randomly. 

 

Figure 6-13 – OPC of small case example. Objective function value expressed in M€. 

Figure 6-13 shows the OPC corresponding to the OWF design of a small case study [251]. 

The distribution is clearly bimodal. An examination of the solutions showed that each of 

the two halves of the distribution correspond to a different choice in the cable type that 

links the substation to shore. Therefore, this decision has a profound impact on total cost. 

We can use this information to improve algorithm performance. 
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Figure 6-14 – OPC of real case study without additional constraints (right) and with the 

additional constraints (left).Objective function value expressed in M€. 

Figure 6-14 displays two OPCs for the real case study; one missing the additional 

constraints described in 3.3.5.2 and the other including them. The fact that the OPC with 

the additional constraints is more benign, with more solutions with low objective values, 

demonstrates that their inclusion is strongly beneficial for the problem. 

6.3.2. Case Study 

We test the algorithm on a real case study based on Barrow Offshore Wind Farm. All the 

details of the plant, as well as the characteristics of the components considered, can be 

found in references [180, 199, 252, 252]. The model is coded in GAMS using CPLEX 12.4 

for the optimizations, on a PC at 2.80GHz with 4GB RAM running Microsoft XP 32 bits. 

 Equations Continuous 
variables 

Binary 
variables 

Non-zero 
elements 

Case study 42767 27042 102 147357 

Table 6-3 – Problem size. 

If a sample size of 500 is used, OO has a 99.44% chance of returning at least a value in the 

top 1% performers. In addition, the final optimization step improves this result, so that 

the final solution of the hybrid algorithm is expected to be better than the result of the 

OO stage. In particular, it will be a local optimum. 

We tested the algorithm exhaustively in order to assess its robustness. We executed 

several problem instances for different descriptive variables and threshold levels. 
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We study all the different types of identified descriptive variables independently, as well 

as several possible values for the thresholds. In all cases, the number of samples 

calculated was equal to 500. We find that performance is robust with respect to both 

descriptive variables and threshold values. 

 Direct 
resolution 

Th= 0.999 Th= 
0.99 

Th= 
0.9 

Generation time (s)  0.9 0.6 0.9 

OO time (s)  158.1 156.0 157.5 

MIP time (s)  0.3 1.0 0.35 

Total time (s) 1688.1 159.4 157.7 158.7 

OO result (€ million)  2.1203 2.1203 2.1203 

MIP result (€ million) 1.9985 2.0082 2.0082 1.9941 

Table 6-4 – Performance vs. threshold values (Th). 

 

 CP1+RPI CP2+RP2P2 CP1+CP2 RP1+RP2 

Generation time (s) 0.8 0.8 0.8 0.8 

OO time (s) 158.8 157.8 159.6 155.8 

MIP time (s) 159.2 158.1 160.0 156.2 

Total time (s) 159.2 158.1 160.0 156.2 

OO result (€ million) 2.1203 2.1203 2.1203 2.1203 

MIP result (€ million) 1.9941 2.0082 2.0020 2.0105 

Table 6-5 – Performance vs. descriptive variables. 

In the next table, we present solution times and optimal values as a percentage of the 

direct optimization with a relative optimality tolerance of 1%. For reference, we obtain 

the true optimal, 1.99005, solving the problem with CPLEX 12.1 using MIP with a 

tolerance of 0.1%, taking 13327s. This problem was at the size limit of what can be solved 

using this technique. 

As can be seen, results are notably robust with respect to algorithm parameters. In 

addition, the obtained layouts were all very similar to the optimal one, with only small 

differences in the cables close to the substation. The additional constraints mainly 

referred to the transmission system. 

 

 

Time Distance to 
0.01 optimal value 

Distance to 
true optimal 

MIP with 1% tolerance 100.00% 0.00% 0.43% 

Th=0.999/all vars 9.45% 0.48% 0.91% 

Th=0.99/all vars 9.34% 0.48% 0.91% 

Th=0.9/all vars 9.40% -0.22% 0.20% 

Th=0.999/one point 9.43% -0.22% 0.20% 

Th=0.999/two points 9.36% 0.48% 0.91% 

Th=0.999/capacity 9.47% 0.17% 0.60% 

Th=0.999/redundancy 9.25% 0.60% 1.03% 

Table 6-6 – MIP vs. OO+MIP. 

Computation times were only several minutes in all cases, which allows solving the 

layout problem for as many times as needed. In addition, this shows that the OO+MIP 

hybrid would be able to deal also with larger layouts that might be too complex for other 

optimization techniques. 
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6.3.3. Conclusions 

Ordinal Optimization (OO) is able to find solutions with a statistical guarantee (the 

solution will be in the top X% of solutions with a probability P). 

We develop a novel hybrid technique that combines OO and MIP to benefit from their 

best features. First, we apply OO to obtain a subset of good solutions (the selected 

subset). We inspect these solutions for common features. In order to do this, we define 

some descriptive variables as either decision variables or aggregations of decision 

variables (for instance, the total transformer power installed). We identify a common 

feature when the range of values taken by a descriptive variable in the selected subset is 

much narrower than the range of values taken in the set of all samples. For instance, if 

transformer power is between 0 and 200 MVA in general but it is always 120 MVA in the 

selected subset of top solutions, we assume that the optimal solution has 120 MVA of 

transformer power. 

We express the identified common features as constraints that we add to the MIP 

problem. They reduce its feasible region so that we can solve the problem faster. All 

types of descriptive decision variables give good results. In addition, in all the instances 

tested the solution found was either optimal or very close to the optimal one. 

6.4. Chapter Takeaways 

When planning large areas, there is no single TSO with experience of the whole system, 

so it is not possible to rely on its experience to propose interesting candidate 

investments. Therefore, automatic candidate proposal methods are necessary. In the 

same way, it is necessary to recover the rationale for investments and their relationships. 

We propose an automatic, objective method for candidate proposal, an algorithm that 

manages large lists of candidate investments and an approach for extracting the 

rationale and relationships among investments. We illustrate the proposed techniques 

with a TEP case study based on the Spanish Power system. 

In addition, we apply OO to identify the transmission decisions with the highest impact 

and exploit this information by means of a novel OO+MIP algorithm that solves the 

problem efficiently. We demonstrate the advantages of this approach in a case study 

based on OWF design. 

We published our candidate proposal approach as: 

� S. Lumbreras, A. Ramos, P. Sánchez, “Automatic Selection of Candidate Investments 

for Transmission Expansion Planning”, International Journal of Electrical Power and 

Energy Systems, vol. 59, pp. 130-140, July 2014. 

We describe the OO+MIP hybrid in: 

� S. Lumbreras, A. Ramos, P. Sánchez, “Offshore Wind Farm Electrical Design using a 

Hybrid of Ordinal Optimization and Mixed Integer Programming”, under review at 

Wind Energy. 
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7.1. Conclusions 

As explained, power systems experience a deep transformation towards more 

sustainable models. These changes require the installation of large amounts of renewable 

generation. Unlike traditional generation technologies, where location can be decided at 

the planner’s discretion, renewable power plants are projected based on the abundance 

of the resource they use. For wind and solar power, this often means relatively distant 

regions, often poorly interconnected to the rest of the system. What is more, in the case 

of offshore wind, the whole network must be designed, with no starting grid to 

reinforce. Expanding the existent network will be fundamental to accommodate this new 

generation and hence for the success of these projects. 

The design of these large-scale network expansions presents considerable challenges that 

make this problem extremely interesting. 

Building a new transmission line involves a complex permitting process that can take 

over ten years. This means that transmission expansion decisions must anticipate the 

evolution of uncertainties such as fuel prices or, more importantly, the generation 

expansion decisions of competitive players in a deregulated environment. Therefore, it is 

necessary to develop robust expansion plans and flexible strategies that can adapt to the 

evolution of the system as the future unfolds. 

Moreover, market integration and the increase of cross-border flows leads to planning 

increasingly large areas. In these cases, there is no single TSO with experience of the 

whole region under planning. The TSO traditionally performed functions such as 

proposing the candidate transmission lines to consider in the optimization. Therefore, it 

is necessary to create automatic, objective techniques to fulfill this function. 

Finally, the planning of large systems results in complex problems where existing 

optimization techniques can fail. 

This thesis is born as an attempt to address these challenges. We present contributions in 

modeling, problem resolution and the interpretation of results. We develop new 

techniques and illustrate them with case studies. For this, we take tools from classical 

and non-classical optimization (such as Benders’ decomposition and Ordinal 

Optimization), project finance (in particular, ROV) or statistical estimation (namely, 

shrinkage). 

The focus of this thesis is the development of new methods; case studies should not be 

valued in themselves but only as illustrations. In addition, we assume TEP is performed 

centrally with cost-based operation, which as explained is a reasonable assumption in 

this context. The introduction of market considerations in the transmission network was 

out of the scope of this thesis. In addition and although the ramifications of regulatory 

decisions are extremely interesting in TEP and other related issues such as transmission 

cost allocation, this lies beyond our scope as well. 

Chapter 1 introduces TEP and diagnoses the main challenges it faces in the current 

environment. 
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Chapter 2 reviews the main approaches to TEP that appear in the literature, focusing on 

the modeling options and the solution techniques applied. We also describe the problem 

of offshore network design as an especially relevant particular case. We published the 

first review (to our knowledge) of this topic as: 

� S. Lumbreras and A. Ramos, “Offshore Wind Farm Electrical Design: A Review”, 

Wind Energy 16 (3): 459-473 April 2013 10.1002/we.1498.  

Chapter 3 presents stylized versions of the two optimization models used in this thesis. 

The first one deals with general TEP. The second one is a particularization for offshore 

network design, which has some singular characteristics that lead us to deal with it 

specifically. In particular, we develop a compact model for the consideration of HVDC 

transmission in OWF design. This model was published in: 

� S. Lumbreras and A. Ramos, “Optimal design of the electrical layout of an offshore 

wind farm applying decomposition strategies”, IEEE Transactions on Power Systems 

28 (2): 1434-1441, May 2013 10.1109/TPWRS.2012.2204906.  

The rest of the chapters deal with the contributions we made around the identified 

challenges. Chapter 4 describes the developments aimed at efficient resolution, Chapter 

5 deals with flexibility and robustness and Chapter 6 explores structure identification 

techniques in TEP problems. 

7.1.1. Efficient Resolution 

Large-scale TEP is a highly complex problem that demands efficient solution techniques. 

We exploit its structure applying Benders’ decomposition. In addition, we develop the 

first application of decomposition strategies (to our knowledge) to OWF design. 

Then, in order to build an efficient implementation of this method, we review the 

techniques developed to accelerate Benders’ decomposition, a study that was missing in 

the literature. Then, we apply these techniques to TEP and compare their potential 

savings. 

Moreover, we develop some new acceleration techniques of our own. We propose semi-
relaxed cuts to deal with large numbers of discrete variables in the master problem. In 

addition, we develop a Progressive Contingency Incorporation algorithm to evaluate the 

effect of component failures in an efficient way. These enhancements reduce 

computation times by up to two orders of magnitude in the case studies developed. 

The first application of decomposition strategies (to our knowledge) to the OWF layout 

problem was published as: 

� S. Lumbreras and A. Ramos, “Optimal design of the electrical layout of an offshore 

wind farm applying decomposition strategies”, IEEE Transactions on Power 

Systems 28 (2): 1434-1441, May 2013 10.1109/TPWRS.2012.2204906.  

The review on acceleration techniques applied to Benders’ decomposition, as well as 

semi-relaxed cuts, were presented at the conferences: 
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� S. Lumbreras, A. Ramos, “Transmission expansion planning using an efficient 

version of Benders’ decomposition. A case study”, PowerTech 2013. Grenoble, 

France, 16-20 June 2013. 

� S. Lumbreras, A. Ramos, “Improvements to Benders’ decomposition. A practical 

evaluation using a transmission expansion planning problem”,13th Trans-Atlantic 

Doctoral Conference. London, United Kingdom, 9-11 May 2013. 

This has also been submitted for publication: 

� S. Lumbreras,  A. Ramos ,“Optimal Transmission Expansion Planning using Benders' 

Decomposition. Acceleration Techniques“, submitted to JORS last April. 

The PCI algorithm is described in the paper: 

� S. Lumbreras, A. Ramos and S. Cerisola, “A Progressive Contingency Incorporation 

Approach for Stochastic Optimization Problems ”, IEEE Transactions on Power 

Systems 28 (2): 1452-1460, May 2013 10.1109/TPWRS.2012.2225077. 

7.1.2. Flexibility and Robustness 

TEP is challenged by the presence of large dynamic uncertainties, such as generation 

expansion. The long permitting process involved in building a new line means that 

transmission expansion decisions must anticipate the evolution of these uncertainties. 

Therefore, it is extremely important to develop flexible strategies that can adapt to the 

future as it unfolds. In addition, these uncertainties are usually assessed by expert 

opinion, which means that forecasts are necessarily limited. This makes it desirable to 

design robust plans that are able to perform relatively well in spite of changes in the 

definition of scenarios. 

We apply Real Options Valuation (ROV) to determine the potential benefit of candidate 

lines and identify priority projects. We derive a simplified interpretation of optionality in 

TEP projects that evaluates option value in realistic settings. We identify the candidate 

transmission lines with the highest potential and the ones constitute the core of an 

expansion plan, as well as their main value drivers. We illustrate this with a case study 

based on the Spanish system. 

We also develop a technique to apply regularization to the Stochastic Optimization 

problem in order to obtain expansion plans that are robust with respect to changes in the 

scenario tree. Our approach “shrinks” the Sample Average Approximation (SAA) 

solution towards a robust benchmark, that is, we modify the TEP solution to make it 

more similar to a plan that does not depend on the scenario tree. We develop two 

different alternatives to apply shrinkage to the SAA problem: linear shrinkage and 

norm-constraint shrinkage. We illustrate the advantages of the proposed approach with 

two case studies based on an academic case and on the Spanish system. Shrinkage 

produces expansion plans that are consistently better in terms of average out-of-sample 

cost and decision error. 

An article that is currently under review details our ROV approach for TEP: 
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� S. Lumbreras, A. Ramos, D. Bunn, M. Chronopoulos, “Real Options Valuation 

Applied to Dynamic Transmission Expansion Planning“, under review at IEEE 

Transactions on Power Systems. 

We will submit for publication a paper describing our shrinkage technique as: 

� S. Lumbreras, V. DeMiguel, A. Ramos, “Transmission Expansion Planning. A 

Regularized Stochastic Programming Approach”, to be submitted to Operations 

Research. 

7.1.3. Structure Identification 

Automatic candidate proposal methods are necessary to substitute the formerly 

available experience of the TSO. These automatic mechanisms should also recover the 

rationale for investments and their relationships. We develop an automatic, objective 

method for candidate proposal, an algorithm that manages large lists of candidate 

investments and a technique to disentangle the relationships among them. We illustrate 

our approach with a case study based on the Spanish system. 

In addition, we apply Ordinal Optimization (OO) to the identification of the 

transmission decisions with the highest impact. Moreover, we make use of this 

information to solve the problem more efficiently by means of a novel OO+MIP 

algorithm. We demonstrate the advantages of our method in a case study based on OWF 

design, where computation time is reduced by a factor of ten. 

We published our candidate proposal approach as: 

� S. Lumbreras, A. Ramos, P. Sánchez, “Automatic Selection of Candidate Investments 

for Transmission Expansion Planning”, International Journal of Electrical Power and 

Energy Systems, vol. 59, pp. 130-140, July 2014. 

We describe the OO+MIP hybrid in: 

� S. Lumbreras, A. Ramos, P. Sánchez, “Offshore Wind Farm Electrical Design using a 

Hybrid of Ordinal Optimization and Mixed Integer Programming”, under review at 

Wind Energy. 

7.2. Further Research 

While working on this thesis, we encountered some additional questions and interesting 

ideas for future work. The study of architectural alternatives, such as the so-called 

supergrid, could be undertaken in an explicit way. In addition, the discovered 

relationships among investments could be further exploited to define transmission 

expansion projects. This section summarizes these lines of further research. 
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7.2.1. Solving OWF Design and Micrositing 

Solving micrositing (the positioning of wind turbines) together with the electrical design 

is an interesting problem that presents a high level of complexity. 

7.2.2. Efficient Resolution. 

7.2.2.1. Formal Study of Acceleration Techniques 

In this thesis, the acceleration techniques proposed for Benders’ decomposition have 

been studied from a practical, case-study based perspective. It would be interesting to 

tackle this issue from a theoretical perspective, so that their underlying mechanisms can 

be understood. 

7.2.2.2. Simultaneous Decomposition. 

In this thesis, we defined descriptive variables as single variables and aggregations of 

variables that have a special significance for a given problem. In the case of TEP, they 

represent variables or aggregations of variables that have a deep impact on the total cost 

associated to a given expansion plan. We used OO to identify them and proposed an 

OO+MIP hybrid algorithm to exploit them. 

We would like to go one step further and use these descriptive variables within our 

Benders’ decomposition scheme in what we refer to as a simultaneous decomposition. On 

top of the classical Benders’ cuts, we would generate cuts in the space of the descriptive 

variables, therefore working in two spaces of variables simultaneously. As the 

descriptive variables are the ones that have the largest impact in the solution, 

simultaneous decomposition should solve the problem more efficiently than classical 

decomposition. 

We would implement this in a relatively straightforward way: 

� Descriptive variables can be built by either expert opinion or identified using 

information from the problem. They are defined as a function of simple variables in 

the master problem. That is, we include their definition as first-stage constraints. 

� Two types of Benders’ cuts are added with each iteration: 

� The classical ones. 

� A second set of cuts which only depend on the descriptive variables. The 

slopes with respect to the descriptive variables are calculated as aggregations 

of the slopes with respect to simple variables, so there are no complex 

calculations associated with the second set of cuts. 

The space of descriptive variables has a much smaller number of variables. In general, 

the convergence of Benders’ decomposition is linked to the number of not-obvious first-

stage variables. With not-obvious, we mean the ones where the relationship between the 

variable and total cost is not straightforward, so that the decomposition has to spend a 

substantial number of iterations modeling this relationship. This opposes to the behavior 
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of obvious variables, where just a few iterations suffice for determining clearly that the 

variable will or will not be present at the optimal solution. 

Depending on the particular characteristics of the problem, the number of iterations 

necessary to discriminate obvious and not-obvious variables might vary. Simultaneous 

decomposition would provide this information directly, so that we should expect time 

savings that could be considerable depending on the problem. 

In addition, because descriptive variables all have a considerable impact on cost, the 

slopes of Benders’ cuts will be more meaningful in general. Therefore, the cuts are 

expected to have a better cover, which usually leads to improved convergence (see 

section 4.2.5.2.d). 

Of course, searching for the appropriate descriptive variables is an intricate issue in its 

own. We have already used OO to identify the most relevant descriptive variables. Some 

other interesting ideas are presented in 7.2.4. 

7.2.3. Flexibility and Robustness 

We find two main extensions to our proposed approaches that would be worth 

exploring. 

7.2.3.1. Extending our Real Options Approach to Projects and Portfolios 

In this thesis, we have developed an interpretation of optionality for individual 

transmission lines. We propose to extend it to TEP projects, that is, highly related sets of 

lines. As explained in Chapter 6, the synergetic relationships among transmission lines 

define complementary and substitute investments. We define a transmission project as a 

set of investments whose performance is relatively independent from all other projects. 

We can identify the relationships among investments using the candidate analysis tool 

as described in 6.2.5. Defining the relevant projects is equivalent to partitioning the set of 

investments into subsets among which there are no meaningful complementarity or 

substitution relationships. Then, all possible combinations of the assets within a subset 

are formulated as combined investments. The intrinsic and option values for these 

combined investments can be calculated independently. That is, total cost is roughly 

separable in terms of projects. 

In addition, we propose to study flexibility from a portfolio perspective by means of 

sensitivity analysis at an aggregate level. This could answer the questions: How prepared 
are we to respond to the uncertainties? What are the weaknesses, the blind spots of our expansion 
strategy? 

We will refer to the transmission licenses that we have already requested as our 

expansion portfolio. We need to make sure that our portfolio contains investments that 

can face, to a certain extent, all possible scenarios for the uncertainties. We can assess 

that by means of sensitivities. 
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That is, let’s assume that, in our portfolio, we have some transmission lines with a very 

high positive sensitivity with respect to gas prices (that is, these transmission lines will 

bring benefits to the system if gas prices rise). Then, we need to include others with the 

opposite behavior, so that if gas prices fall we will have projects that would be valuable 

in that situation as well. We can progressively add lines from the set of candidate 

investments to make sure that all possible future evolutions are covered, that is, that we 

are hedged against the uncertainties. This concept is very similar to what we would do to 

manage the risk of a portfolio of financial options. 

7.2.3.2. Extending Regularization to Several Robust Benchmarks 

When we applied regularization, we shrunk the SAA solution towards a robust 

benchmark. We obtained this benchmark as the solution of the problem for the expected 

value of the uncertainties or for some scenario that was deemed particularly relevant for 

a given problem. In some cases, several of these benchmarks worked well. We would 

like to explore the possibility of using several of these benchmarks simultaneously, 

shrinking the SAA solution towards all of them. 

We propose to obtain these benchmarks as the first-stage solutions for particularly 

relevant scenarios. We expect extreme scenarios to originate similarly extreme 

benchmarks whose impact will be diluted when several of them are used. 

7.2.4. Structure Identification 

The definition of transmission projects and expansion portfolios requires a relatively 

deep understanding of the network structure, namely: 

� Sets of complementary and alternative investments, 

� Definition of relevant descriptive variables. 

We proposed candidate analysis to acknowledge complementary and substitutability 

relationships. In addition, we applied OO to identify high-impact descriptive variables. 

However, we have not exploited yet another interesting source of information about 

structure: Benders’ cuts themselves. 

We advanced this idea in the conference paper: 

� S. Lumbreras, A. Ramos, “Transmission expansion planning using an efficient 

version of Benders’ decomposition. A case study”, PowerTech 2013. Grenoble, 

France, 16-20 June 2013. 

Benders’ cuts reveal part of the problem structure. Some of the transmission lines are 

either installed or not across iterations. These are obvious investments, where it is 

relatively clear whether they will appear or not in the optimal solution. The lines that 

most certainly will be installed have sometimes been referred to as robust corridors. Some 

others keep oscillating, pointing to equivalent solutions in the problem where it is 

particularly difficult to discern differences in cost (that is, they are not-obvious 
investments). If some of these oscillating variables tend to appear together in the 

evaluated solutions, we could consider them complementary. The opposite case will 
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happen with alternative investments. Benders’ cuts are therefore a valuable source of 

information in themselves that seems worth exploring. 

 



 

 

 

Additional Materials 





 

 

Node 
Demand 
[MW] 

Maximum 
Generation 
[MW] 

Generation 
cost 
[USD/MWh] 

1 80 150 50 

2 240     

3 40 uncertain 10 

4 160     

5 240     

6   uncertain 10 

Table 0-1 – Academic network. Generation and load data. 

 

From To 

Existing vs. 
Candidate 
lines 

X 
[p.u] 

NTC 
[MW] 

Cost 
[M$] 

1 2 E 0.4 100 2 

1 3 C 0.38 100 1.9 

1 4 E 0.6 80 3 

1 5 E 0.2 100 1 

1 6 C 0.68 70 3.4 

2 3 E 0.2 100 1 

2 4 E 0.4 100 2 

2 5 C 0.31 100 1.55 

2 6 C 0.3 100 1.5 

3 4 C 0.59 82 2.95 

3 5 E 0.2 100 1. 

3 6 C 0.48 100 2.4 

4 5 C 0.63 75 3.15 

4 6 C 0.3 100 1.5 

5 6 C 0.61 78 3.05 

Table 0-2 – Academic network. Existing and candidate lines. Plans can install identical 

copies of these lines up to a limit of four copies. 
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 Continuous investment Discrete investment 

From To 

Minimum-
generation 
benchmark 

Expected-
generation 
benchmark 

Maximum-
generation 
benchmark 

Minimum-
generation 
benchmark 

Expected-
generation 
benchmark 

Maximum-
generation 
benchmark 

1 5 2.25 0.4  3 1  

2 3   0.45    

2 6  1 2  1 2 

3 5   0.4   1 

4 6  1 1.25  1 2 

Cost with low 

uncertainty [M€] 35.27 30.88 37.62 36.77 32.08 37.17 

Cost in moderate 

uncertainty [M€] 36.45 60.02 42.72 37.95 35.53 65.11 

Cost with high 

uncertainty [M€] 36.98 86.78 55.53 38.47 43.13 91.45 

Table 0-3 – Academic network. Benchmark solutions. 

 

From To 
Low 
variability 

Medium 
variability 

High 
variability 

1 5  0.42 1.16 

2 6 1.19 1.26 1.02 

3 5 0.40   

4 6 0.17 0.42 0.55 

Cost [M€] 30.19 31.75 34.36 

Table 0-4 – Academic network. Stochastic solutions. 

   A B1 B2 C Alpha * 

Continuous - 
Linear 
combination 

Minimum-
generation 
benchmark 

Low 
uncertainty 17.00 0.32 0.81 -0.62 0.09 

Medium 
uncertainty 19.00 2.16 2.18 3.79 0.03 
High 
uncertainty 3.84 2.73 3.76 -2.13 0.59 

Expected-
generation 
benchmark 

Low 
uncertainty 4.56 0.32 0.81 1.13 0.00 

Medium 
uncertainty 2.89 2.16 2.18 -0.08 0.60 
High 
uncertainty 10.00 2.73 3.76 3.60 0.31 

Maximum-
generation 
benchmark 

Low 
uncertainty 29.00 0.32 0.81 1.29 -0.01 

Medium 
uncertainty 22.00 2.16 2.18 -0.87 0.19 
High 
uncertainty 37.00 2.73 3.76 6.53 0.00 

Table 0-5 – Academic network. Optimal alpha parameter and intermediate magnitudes 

for linear shrinkage with continuous variables. 

 



 

 

    
Minimum-generation 
benchmark 

Expected-generation 
benchmark 

Maximum-generation 
benchmark 

Uncertainty α  
Avg cost 
[M€] 

Avg sq 
error 
decision 
[p.u.] 

Avg cost 
[M€] 

Avg sq 
error 
decision 
[p.u.] 

Avg cost 
[M€] 

Avg sq 
error 
decision 
[p.u.] 

Low 

0 31.2271 1.1037 31.2271 1.1037 31.2271 1.1037 

0.01 31.1402 1.0711 31.1909 1.1046 31.147 1.1102 

0.05 30.8689 0.9788 31.049 1.115 30.8853 1.1903 

0.1 30.802 0.9493 30.89 1.1433 30.7637 1.4122 

0.2 31.1262 1.1761 30.6585 1.251 31.0107 2.2619 

0.3 31.5792 1.7842 30.5428 1.4268 31.5695 3.6527 

0.4 32.0763 2.7735 30.5169 1.6707 32.2773 5.5847 

0.5 32.5995 4.1441 30.5365 1.9826 33.0853 8.0579 

0.6 33.1308 5.896 30.5862 2.3627 33.9667 11.0722 

0.7 33.6645 8.0292 30.645 2.8108 34.8763 14.6277 

0.8 34.2006 10.5436 30.7156 3.327 35.7892 18.7243 

0.9 34.7381 13.4393 30.7931 3.9113 36.7022 23.3621 

0.95 35.0072 15.0301 30.8335 4.2289 37.1587 25.8839 

0.99 35.2224 16.3714 30.8667 4.4953 37.5239 27.9988 

1 35.2763 16.7163 30.8752 4.5636 37.6152 28.5411 

Medium 

0 59.0243 4.2518 59.0243 4.2518 59.0243 4.2518 

0.01 58.3274 4.2442 58.791 4.1659 58.4124 4.1521 

0.05 55.6796 4.2455 57.9164 3.8368 56.1125 3.8095 

0.1 52.6263 4.3183 56.9076 3.4583 53.4718 3.5076 

0.2 47.2948 4.7012 55.1975 2.8108 48.9433 3.3245 

0.3 43.071 5.4006 53.9528 2.3095 45.4084 3.7026 

0.4 39.9667 6.4164 53.1708 1.9541 42.9635 4.642 

0.5 37.8374 7.7488 52.9531 1.7449 41.5049 6.1425 

0.6 36.5163 9.3976 53.4417 1.6817 40.8096 8.2042 

0.7 35.9088 11.3628 54.4445 1.7646 40.6535 10.8271 

0.8 35.8066 13.6446 55.8502 1.9935 40.8264 14.0112 

0.9 36.0251 16.2428 57.7684 2.3685 41.5006 17.7565 

0.95 36.2219 17.6606 58.8892 2.6108 42.0966 19.8396 

0.99 36.4048 18.8517 59.7949 2.8309 42.5894 21.607 

1 36.4517 19.1575 60.0227 2.8896 42.7172 22.0629 

High 

0 71.612 6.3356 71.612 6.3356 71.612 6.3356 

0.01 70.93 6.1678 71.4764 6.2818 71.0278 6.3425 

0.05 68.2739 5.5254 71.0021 6.0848 68.7691 6.431 

0.1 65.0751 4.7873 70.5088 5.88 66.1042 6.6785 

0.2 59.1536 3.5277 69.9706 5.6086 61.2665 7.63 

0.3 53.7811 2.5568 70.0431 5.5217 57.1332 9.1903 

0.4 49.0836 1.8745 70.6306 5.6191 53.7694 11.3592 

0.5 45.265 1.481 71.8255 5.9009 51.4274 14.1369 

0.6 42.1805 1.3761 73.6697 6.3671 50.0206 17.5233 

0.7 39.8048 1.5599 76.0184 7.0177 49.5647 21.5183 

0.8 38.0989 2.0324 79.0167 7.8526 49.9567 26.1221 

0.9 37.1285 2.7935 82.636 8.8719 51.6129 31.3347 

0.95 36.9208 3.2824 84.6584 9.4507 53.444 34.1692 

0.99 36.9462 3.7254 86.3544 9.9469 55.1129 36.5464 

1 36.9787 3.8434 86.7824 10.0755 55.5334 37.1559 

Table 0-6 – Academic network. Results for linear shrinkage with continuous variables. α  

represents the linear shrinkage intensity. 
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Minimum-
generation 
benchmark 

Expected-
generation 
benchmark 

Maximum-
generation 
benchmark 

Low 
Uncertainty 1% 2% 1% 

Medium 
Uncertainty 39% 10% 31% 

High 
Uncertainty 48% 2% 31% 

Table 0-7 – Academic network. Best reduction achieved in average cost with linear 

shrinkage and continuous variables. 

 

  

Minimum-
generation 
benchmark 

Expected-
generation 
benchmark 

Maximum-
generation 
benchmark 

Low 
Uncertainty 14% 0% 0% 

Medium 
Uncertainty 0% 60% 22% 

High 
Uncertainty 78% 13% 0% 

Table 0-8 – Academic network. Best reduction achieved in average squared decision 

error with linear shrinkage and continuous variables. 

  



 

 

    
Minimum-generation 
benchmark 

Expected-generation 
benchmark 

Maximum-generation 
benchmark 

Uncertainty α  
Avg cost 
[M€] 

Avg sq 
error 
decision 
[p.u.] 

Avg cost 
[M€] 

Avg sq 
error 
decision 
[p.u.] 

Avg cost 
[M€] 

Avg sq 
error 
decision 
[p.u.] 

Low 

0 33.0618 8.362 33.0618 8.362 33.0618 8.362 

0.01 32.3047 2.2006 32.4551 8.0817 33.662 17.8442 

0.05 32.3047 2.2006 32.4551 8.0817 33.662 17.8442 

0.1 32.3047 2.2006 32.4551 8.0817 33.662 17.8442 

0.2 32.224 2.2406 32.4551 8.0817 33.662 17.8442 

0.3 32.6678 4.001 32.4551 8.0817 33.6345 18.8045 

0.4 32.8198 3.6409 31.9316 4.681 33.5338 22.7656 

0.5 34.3806 7.6015 31.9316 4.681 33.5338 22.7656 

0.6 34.9406 9.8421 31.9316 4.681 34.3011 26.0065 

0.7 34.9763 12.0032 32.0633 8.6418 36.0849 31.7681 

0.8 35.1364 11.2032 32.0753 9.0019 36.565 33.2086 

0.9 36.1368 11.2442 32.0753 9.0019 37.1651 35.0092 

0.95 36.7767 17.0052 32.0753 9.0019 37.1651 35.0092 

0.99 36.7767 17.0052 32.0753 9.0019 37.1651 35.0092 

1 36.7767 17.0052 32.0753 9.0019 37.1651 35.0092 

Medium 

0 53.1546 10.2423 53.1546 10.2423 53.1546 10.2423 

0.01 39.8884 15.5238 41.9659 2.5607 44.6186 9.0023 

0.05 39.8884 15.5238 41.9659 2.5607 44.6186 9.0023 

0.1 39.8884 15.5238 41.9659 2.5607 44.6186 9.0023 

0.2 39.8884 15.5238 41.9659 2.5607 44.5858 8.3621 

0.3 41.4115 16.204 41.0764 2.2006 42.9125 8.5624 

0.4 41.7666 18.7245 38.661 2.0405 41.5869 8.9225 

0.5 41.7163 18.5644 38.661 2.0405 43.5448 13.8838 

0.6 39.5129 21.5651 36.0331 0.8802 43.3447 18.6452 

0.7 37.4255 20.8055 35.9828 0.7201 43.4608 23.6868 

0.8 37.7066 20.646 35.5258 0 48.5461 25.2072 

0.9 37.9404 25.647 35.5258 0 64.1302 25.8473 

0.95 37.9521 26.007 35.5258 0 65.1171 26.0073 

0.99 37.9521 26.007 35.5258 0 65.1171 26.0073 

1 37.9521 26.007 35.5258 0 65.1171 26.0073 

High 

0 60.7942 9.5976 60.7942 9.5976 60.7942 9.5976 

0.01 45.7566 5.8017 48.759 14.7412 51.5461 15.1641 

0.05 45.7566 5.8017 48.759 14.7412 51.5461 14.8439 

0.1 45.7566 5.8017 48.759 14.7412 51.5461 14.8439 

0.2 45.7566 5.8017 49.1664 14.021 51.5079 18.9251 

0.3 46.2275 5.6816 47.5283 14.3811 46.8917 21.7257 

0.4 46.2275 5.6816 43.9862 14.221 45.4835 23.1662 

0.5 46.1842 5.5216 43.9862 14.221 46.6254 24.4865 

0.6 43.7331 7.9623 43.4092 13.3634 45.7026 30.2082 

0.7 39.6338 8.9627 43.7733 12.4832 47.9852 34.6495 

0.8 38.7367 10.3232 43.1322 13.0033 61.9191 36.8902 

0.9 38.4894 12.2836 43.1322 13.0033 79.6521 38.3705 

0.95 38.4791 13.0037 43.1322 13.0033 91.4528 39.0106 

0.99 38.4791 13.0037 43.1322 13.0033 91.4528 39.0106 

1 38.4791 13.0037 43.1322 13.0033 91.4528 39.0106 

Table 0-9 – Academic network. Results for linear shrinkage and discrete variables. α  

represents the linear shrinkage intensity. 
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Minimum-
generation 
benchmark 

Expected-
generation 
benchmark 

Maximum-
generation 
benchmark 

Low 
Uncertainty 3% 3% 0% 

Medium 
Uncertainty 30% 33% 22% 

High 
Uncertainty 37% 29% 25% 

Table 0-10 – Academic network. Best reduction achieved in average cost with linear 

shrinkage and discrete variables. 

 

  

Minimum-
generation 
benchmark 

Expected-
generation 
benchmark 

Maximum-
generation 
benchmark 

Low 
Uncertainty 74% 44% 0% 

Medium 
Uncertainty 0% 100% 18% 

High 
Uncertainty 42% 0% 0% 

Table 0-11 – Academic network. Best reduction achieved in average squared decision 

error with linear shrinkage and discrete variables. 

  



 

 

    
Minimum-generation 
benchmark 

Expected-generation 
benchmark 

Maximum-generation 
benchmark 

Uncertainty δ  
Avg cost 
[M€] 

Avg sq 
error 
decision 
[p.u.] 

Avg cost 
[M€] 

Avg sq 
error 
decision 
[p.u.] 

Avg cost 
[M€] 

Avg sq 
error 
decision 
[p.u.] 

Low 

INF 31.2271 1.1037 31.2271 1.1037 31.2271 1.1037 

15 31.2271 1.1037 31.2271 1.1037 31.2271 1.1037 

12 31.1299 1.0912 31.1253 1.0098 31.1307 1.093 

11 31.1299 1.0912 31.1299 1.0912 31.1188 1.0718 

10 31.1144 0.9729 31.1299 1.0912 31.3004 1.1218 

9 30.8563 0.5837 31.1299 1.0912 31.7404 1.3595 

8 30.7599 0.3547 31.1299 1.0912 32.0999 2.929 

7 32.8044 0.8971 31.1299 1.0912 31.3206 6.2722 

6 36.2756 1.9922 31.1307 1.093 31.9208 11.3971 

5 41.7415 3.9923 31.1299 1.0912 33.8276 18.9908 

4 41.443 6.6935 31.0574 1.082 34.0458 23.2806 

3 38.1652 10.3227 30.816 1.0295 34.6366 23.0847 

2 33.2763 13.0767 30.6392 1.2317 35.6315 21.469 

1 34.2763 14.6454 30.5978 2.1219 36.6152 22.5857 

0 35.2763 16.7163 30.8752 4.5636 36.865 23.477 

Medium 

INF 59.0243 4.2518 59.0243 4.2518 59.0243 4.2518 

15 59.0243 4.2518 59.0243 4.2518 59.022 4.2255 

12 59.0243 4.2518 59.0243 4.2518 58.9663 3.4414 

11 59.032 4.2418 59.0243 4.2518 59.0269 3.0454 

10 60.0461 4.346 59.0243 4.2518 58.1282 3.1846 

9 62.1493 4.5137 59.0243 4.2518 56.9702 2.6326 

8 61.9645 4.6903 59.0243 4.2518 56.0114 2.7493 

7 61.7789 5.23 59.0243 4.2518 56.1122 3.6946 

6 61.2808 6.1872 58.8254 4.2014 51.123 4.456 

5 58.4089 6.996 57.3849 3.928 47.6202 6.0547 

4 55.1872 8.199 54.4868 3.1491 45.473 9.9904 

3 51.2586 10.2529 51.4645 2.2092 46.1681 11.9421 

2 46.8106 13.8749 48.8118 1.6399 43.8067 13.6072 

1 39.876 17.8479 47.2972 2.1847 41.4307 16.2724 

0 36.4517 19.1575 60.0227 2.8896 41.9671 16.9989 

High 

INF 71.612 6.3356 71.612 6.3356 71.612 6.3356 

15 71.612 6.3356 71.612 6.3356 71.5753 6.1624 

12 71.6028 6.2763 71.612 6.3356 71.5058 6.9898 

11 71.656 6.1494 71.612 6.3356 70.3487 7.5692 

10 73.4755 5.9148 71.612 6.3356 69.0386 8.5014 

9 73.3085 5.3546 71.612 6.3356 67.5127 9.7101 

8 72.288 4.7726 71.6749 6.3555 65.7508 11.2073 

7 71.3176 4.1196 71.2763 6.1104 62.8051 13.2065 

6 69.0799 3.2929 69.6946 5.9249 59.0792 15.2376 

5 65.9099 2.4355 66.5712 5.9237 55.8585 18.1859 

4 61.661 1.5267 62.0929 6.1305 52.7792 21.3228 

3 56.7538 1.1723 57.7609 6.6878 52.2874 24.2257 

2 49.8127 1.6941 53.249 8.1693 48.3037 28.0082 

1 44.7342 2.7223 56.2586 8.9668 50.2797 31.6618 

0 36.9787 3.8434 86.7824 10.0755 54.7833 32.0918 

Table 0-12 – Academic network. Results for norm-constraint shrinkage with continuous 

variables. δ  represents the maximum allowed distance between the solution and the 

robust benchmark. 
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Minimum-
generation 
benchmark 

Expected-
generation 
benchmark 

Maximum-
generation 
benchmark 

Low 
Uncertainty 1% 2% 0% 

Medium 
Uncertainty 38% 20% 30% 

High 
Uncertainty 48% 26% 33% 

Table 0-13 – Academic network. Best reduction achieved in average cost with norm-

constraint shrinkage and continuous variables. 

 

  

Minimum-
generation 
benchmark 

Expected-
generation 
benchmark 

Maximum-
generation 
benchmark 

Low 
Uncertainty 68% 9% 3% 

Medium 
Uncertainty 0% 61% 38% 

High 
Uncertainty 81% 7% 3% 

Table 0-14 – Academic network. Best reduction achieved in average squared decision 

error with norm-constraint shrinkage and continuous variables. 

  



 

 

    
Minimum-generation 
benchmark 

Expected-generation 
benchmark 

Maximum-generation 
benchmark 

Uncertainty δ  
Avg cost 
[M€] 

Avg sq 
error 
decision 
[p.u.] 

Avg cost 
[M€] 

Avg sq 
error 
decision 
[p.u.] 

Avg cost 
[M€] 

Avg sq 
error 
decision 
[p.u.] 

Low 

INF 33.0618 8.362 33.0618 8.362 33.0618 8.362 

15 33.0618 8.362 33.0618 8.362 33.0618 8.362 

12 32.9726 6.3615 33.0618 8.362 33.1033 10.8026 

11 31.8718 2.8806 33.0618 8.362 33.1033 10.8026 

10 31.776 0 33.0773 7.0416 33.2429 13.0433 

9 31.776 0 33.0773 7.0416 33.3746 17.0041 

8 31.776 0 33.0773 7.0416 33.3746 17.0041 

7 34.7045 7.3216 32.5807 6.9215 33.3746 17.0041 

6 34.7044 7.0015 32.5807 6.9215 34.1646 26.0063 

5 35.1043 10.6022 32.5807 6.9215 34.1646 26.0063 

4 34.7761 13.003 31.8718 2.8806 34.1646 26.0063 

3 34.7761 13.003 32.0753 9.0019 36.8934 40.4101 

2 36.7767 17.0052 31.159 9.0019 37.1651 35.0092 

1 36.7767 17.0052 32.0753 9.0019 37.1651 35.0092 

0 36.7767 17.0052 32.0753 9.0019 37.1651 35.0092 

Medium 

INF 53.1546 10.2423 53.1546 10.2423 53.1546 10.2423 

15 53.1546 10.2423 53.1546 10.2423 53.2331 9.5222 

12 51.2999 11.3226 53.1546 10.2423 46.5679 7.0017 

11 47.9697 10.1223 53.1546 10.2423 45.4526 4.9212 

10 47.9713 12.0027 45.5836 9.9222 46.342 9.1624 

9 50.2142 12.3628 45.3298 9.2021 44.5629 8.4423 

8 43.9182 13.243 45.2737 8.3219 44.2607 10.0827 

7 40.9966 15.8838 43.4946 7.6017 46.5113 14.724 

6 40.896 15.5637 43.2208 7.0416 42.4094 15.0841 

5 41.8873 21.2449 43.3616 5.8013 43.2897 18.6854 

4 37.0565 21.5651 38.7091 5.6813 44.4678 23.4867 

3 37.0565 21.5651 35.7902 0.9603 47.3191 25.2871 

2 37.9521 26.007 35.6896 0.6402 44.5984 24.567 

1 37.9521 26.007 35.5258 0 65.1171 26.0073 

0 37.9521 26.007 35.5258 0 65.1171 26.0073 

High 

INF 60.7942 9.5976 60.7942 9.5976 60.7942 9.5976 

15 60.7942 9.5976 60.7942 9.5976 60.905 12.0832 

12 60.7268 7.8371 60.7942 9.5976 55.218 16.3244 

11 57.8834 8.3973 60.7942 9.5976 54.3118 16.5244 

10 53.9645 3.6184 55.8859 9.2375 52.0975 19.8053 

9 56.6793 4.2986 55.8505 8.4998 48.8213 20.5255 

8 50.1684 4.5386 55.7438 8.98 45.6179 21.9258 

7 46.2781 3.1606 52.4677 9.7002 47.7874 25.9269 

6 46.1914 2.8406 48.5683 7.762 44.712 26.6471 

5 47.8263 8.4824 48.8465 14.3811 44.9976 31.8888 

4 40.7422 8.1623 42.5819 13.5409 48.3324 35.3698 

3 40.7422 8.1623 39.8935 10.9225 49.7197 37.3303 

2 38.4791 13.0037 39.8068 10.6025 46.2657 36.6101 

1 38.4791 13.0037 43.1322 13.0033 91.4528 39.0106 

0 38.4791 13.0037 43.1322 13.0033 91.4528 39.0106 

Table 0-15 – Academic network. Results for norm-constraint shrinkage and discrete 

variables. δ  represents the maximum allowed distance between the solution and the 

robust benchmark. 
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Minimum-
generation 
benchmark 

Expected-
generation 
benchmark 

Maximum-
generation 
benchmark 

Low 
Uncertainty 4% 6% 0% 

Medium 
Uncertainty 30% 33% 20% 

High 
Uncertainty 37% 35% 26% 

Table 0-16 – Academic network. Best reduction achieved in average cost with norm-

constraint shrinkage and discrete variables. 

  



 

 

 

  

Minimum-
generation 
benchmark 

Expected-
generation 
benchmark 

Maximum-
generation 
benchmark 

Low 
Uncertainty 100% 66% 0% 

Medium 
Uncertainty 1% 100% 52% 

High 
Uncertainty 70% 19% 0% 

Table 0-17 – Academic network. Best reduction achieved in average squared decision 

error with norm-constraint shrinkage and discrete variables. 

  

δ  
Avg cost 
[M€] 

Avg sq 
error 
decision 
[p.u.] 

 +INF 11,300.00 1.0007 

8.9814 11,400.00 1.0072 

6.736 10,600.00 0.8799 

4.4907 10,700.00 0.8963 

3.368 11,300.00 0.9992 

2.2453 11,100.00 0.9517 

2.0208 11,100.00 0.9517 

1.7963 11,200.00 0.9814 

1.5717 11,200.00 0.9814 

1.3472 11,200.00 0.9814 

1.1227 11,200.00 0.9814 

0.8981 11,400.00 1.0128 

0.6736 11,400.00 1.0128 

0.4491 11,400.00 1.0128 

0.2245 11,400.00 1.0128 

Table 0-18 – Realistic Network. Results for norm-constraint shrinkage and discrete 

variables. 

 

Avg cost 6.23% 

Avg sq error 
decisión 12.07% 

Table 0-19 – Realistic Network. Best reductions achieved in average cost and average 

squared decision error achieved with norm-constraint shrinkage and discrete variables. 
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Figure 0-1 – Academic network. 

 
Figure 0-2 – Realistic case study: initial state of the network, import and export node 
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