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RESUMEN DEL PROYECTO  

Este proyecto propone la aplicación de las técnicas de machine learning interpretable 

al problema del unit commitment con el fin no solo de predecir las soluciones óptimas 

sino también entender cómo se han obtenido dichos resultados. De este modo, el 

modelo podrá ser empleado para explicar el funcionamiento del problema. 

Palabras clave: Unit commitment, machine learning interpretable, árbol de decisión, 

model tree, regresión lineal, clustering, operación del sistema eléctrico  

 

1. Introducción 

La planificación de la generación es una de las tareas más importantes dentro de la 

operación del sistema eléctrico, pues permite satisfacer la demanda al mínimo coste, 

en base a las previsiones de demanda y generación renovable [1]. 

La herramienta más extendida para abordar esta tarea es el unit commitment (UC). Se 

trata de un problema de optimización cuyo objetivo es planificar la conexión y la 

producción de las unidades del sistema en un horizonte determinado, minimizando 

los costes totales de operación, y respetando ciertas restricciones físicas y temporales 

de los generadores y las líneas de transporte, a la vez que se garantizan los requisitos 

de seguridad del sistema [2]. 

Dada su importancia, el unit commitment se ha convertido en uno de los problemas 

más estudiados en el sector eléctrico. En los últimos años, numerosos estudios han 

intentado reducir el tiempo computacional necesario para resolver este problema y 

mejorar su capacidad para modelar los detalles cada vez más complejos de los 

sistemas eléctricos, especialmente la creciente incertidumbre asociada a la aceleración 

de la penetración de las fuentes de energía renovables, con el fin de obtener resultados 

progresivamente más eficientes [3], [4]. 

A pesar de la gran cantidad de investigaciones relacionadas con el problema del unit 

commitment y, en particular, con la aplicación del machine learning (ML) a su 

resolución, no existen trabajos dedicados al desarrollo de modelos que permitan 

comprender las soluciones generadas por los modelos de UC. La interpretación de 

dichos resultados sigue requiriendo un profundo conocimiento del tema, dado que el 

algoritmo de optimización no explica de forma transparente cómo ha obtenido la 

solución encontrada. 
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2. Definición del proyecto 

En consecuencia, este proyecto pretende desarrollar un conjunto de modelos basados 

en las técnicas de machine learning interpretable que puedan estimar los valores de 

las variables y variables duales de las soluciones óptimas del problema del unit 

commitment de una manera comprensible por el ser humano. Estos modelos serán 

empleados para explicar el funcionamiento de dicho problema. 

 

3. Metodología 

En primer lugar, se deben procesar los tanto los datos de entrada del UC como los 

resultados obtenidos para adaptarlos a las necesidades de los modelos de ML. Por un 

lado, las salidas del UC simplemente serán escaladas para poder trabajar con ellas de 

manera conjunta. 

Por otro lado, debemos construir la matriz de entrada del modelo, a partir de la 

información proporcionada al UC. De toda la información disponible, tomaremos la 

demanda y la generación eólica, y con ella obtendremos la demanda neta en cada nodo 

con generación eólica, y la demanda neta total del sistema. De nuevo, escalaremos 

estas variables para homogeneizar los rangos de las mismas. Por último calcularemos 

los incrementos de demanda neta en los tres periodos anteriores y posteriores respecto 

del periodo en cuestión, para que el modelo pueda capturar posibles relaciones inter-

temporales. 

Con este proceso, dispondremos de una matriz de entrada de hasta 77 variables. Como 

estas dimensiones resultarían poco manejables o interpretables, entrenaremos un 

random forest para cada conjunto de variables de salida del mismo tipo, y 

seleccionaremos las 15 variables que este algoritmo haya considerado más 

importantes. Por lo tanto, cada conjunto de variables de salida empleará una matriz 

de entrada diferente. La Ilustración 1 muestra un ejemplo de esta selección de 

variables. 

 
Ilustración 1 – Importancia de las variables de entrada para el conjunto de variables de salida vCirPF. 
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Como el problema del UC está constituido tanto por variables continuas como 

binarias, será necesario desarrollar dos clases de modelos diferentes, uno de regresión 

y uno de clasificación. Ambas clases de modelos estarán basados en árboles de 

decisión con salidas múltiples, y los emplearemos para predecir conjuntamente cada 

grupo de variables del mismo tipo. Esta predicción conjunta tiene una gran ventaja 

desde el punto de vista de la interpretabilidad, puesto que facilita la representación y 

comprensión de los resultados y permite respetar, en mayor medida, las relaciones 

entre las variables de salida.   

El siguiente paso será la selección de los hiperparámetros óptimos para cada modelo. 

Como queremos garantizar la interpretabilidad de los modelos no llevaremos a cabo 

la optimización de los hiperparámetros de manera global, sino que encontraremos la 

combinación óptima de hiperparámetros para distintas profundidades del árbol de 

decisión aplicando una optimización bayesiana. En función de los resultados, se 

seleccionará la profundidad que permita obtener el balance más adecuado entre 

interpretabilidad y precisión. Para los modelos presentados en este proyecto, la 

profundidad escogida ha sido de 5 en el caso de los de regresión, y 6 para los de 

clasificación. 

Sobre los modelos preliminares obtenidos, trataremos de ganar precisión o 

interpretabilidad aplicando técnicas de machine learning complementarias en sus 

nodos terminales. 

En cuanto a modelos de regresión, entrenaremos regresiones lineales de una única 

variable en cada uno de los nodos terminales. Esto permitirá al árbol capturar las 

relaciones lineales que puedan existir en las particiones resultantes del espacio de 

variables, cosa que no puede lograr un simple árbol de decisión. Este es un método 

similar al conocido como model tree (Ilustración 2), pero se ha simplificado su 

implementación debido a la elevada carga computacional que supondría su 

implementación completa. Adicionalmente, la variable escogida para estas 

regresiones no será una común, sino que cada nodo empleará la que arroje los mejores 

resultados. 

 

Ilustración 2 – Model tree basado en regresiones lineales [5]. 
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Por el contrario, para los modelos de clasificación trataremos de mejorar su 

interpretabilidad, lo que nos permitirá partir de árboles más profundos que para los 

modelos de regresión. Un problema habitual de los árboles de decisión aplicados a 

tareas de clasificación es la duplicidad de nodos y ramas. Por ello, llevaremos a cabo 

un clustering (usando el algoritmo de K-modes) de los nodos terminales para reducir 

el número de parámetros únicos del modelo, lo cual facilitará sustancialmente su 

interpretación. Los nodos se identificarán con etiquetas correspondientes a cada 

cluster, y las salidas se representarán en una tabla adjunta. El mismo proceso se 

aplicará a las variables de salida dado que, en muchas ocasiones, existe una gran 

correlación entre estas. 

 

4. Resultados 

Una vez implementados los modelos descritos, se pueden entrenar empleando el 

conjunto de datos de entrenamiento y predecir los resultados del conjunto de 

evaluación, con los cuales se analizará su desempeño. Estos resultados se compararán, 

además, con los obtenidos mediante otros métodos, para aportar una mejor 

perspectiva de cómo de buenos son los resultados obtenidos. 

En la Tabla 1 se muestran los resultados obtenidos por el model tree para tres variables 

del problema. En general, el modelo implementado no solo es el más interpretable de 

todos, sino que también logra los menores errores después del gradient boosting 

decision tree (GBDT), el cual se ha empleado como referencia del mínimo error 

posible. Por lo tanto, los resultados obtenidos son muy positivos.  

La única única excepción la encontramos en el caso de los flujos de potencia por las 

líneas (vCirPF), debido a la complejidad y dimensión de estas variables. En este caso, 

el modelo no logra mejores resultados que una regresión lineal, ni se acerca al 

desempeño del GBDT. 

 

Tabla 1: Desempeño del model tree comparado con otros métodos. 

 vProduct1 vCirPF eMinOutput 

Variable 
mean 

RMSE 

std 

RMSE 

mean 

RMSE 

std 

RMSE 

mean 

RMSE 

std 

RMSE 

Worst case 0.1353 0.1588 0.1269 0.0887 0.0910 0.0091 

Linear regression 0.0720 0.0798 0.0645 0.0518 0.0628 0.0033 

Decision tree (5) 0.0541 0.0659 0.0928 0.0686  0.0364 0.0021 

Model tree (5) 0.0496 0.0641 0.0732 0.0587  0.0327 0.0017 

GBDT 0.0401 0.0508 0.0510 0.0385 0.0295 0.0022 

 

Adicionalmente, la Figura 3 representa la relación en uno de los nodos del modelo 

entre la variable escogida para la regresión lineal y una de las variables de salida. En 

ella, se puede apreciar la ventaja del método empleado frente a un simple árbol de 

decisión, que únicamente puede predecir un valor constante. 
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Figura 3: Representación de la relación entre vProduct1 [gen05] y ND bus008 [h] en el nodo 5 del model tree. 

 

Por último, los resultados obtenidos por el modelo de clasificación se muestran en la 

Tabla 2. En este caso, la precisión del modelo es, evidentemente, inferior al del árbol 

de clasificación original. No obstante, la pérdida de precisión es completamente 

despreciable, especialmente en comparación con la interpretabilidad lograda. 

Además, los resultados vuelven a ser comparables con los obtenidos por el GBDT, y 

mejores que los del resto de métodos. En consecuencia, el modelo cumple con los 

objetivos previstos. 

 

Tabla 2: Desempeño del modelo de clasificación comparado con otros métodos. 

 
vCommit eMinOutput 

Variable 
mean 

accuracy 

std 

accuracy 

mean 

accuracy 

std 

accuracy 

Worst case 0.9102 0.1249 0.6376 0.0963 

Logistic regression 0.9662 0.0549 0.8927 0.0434 

Decision tree (6) 0.9677 0.0470 0.9219 0.0227 

Clustered DT (6) 0.9673 0.0481 0.9207 0.0242 

GBDT 0.9768 0.0334 0.9466 0.0176 

 

 

5. Conclusiones 

Los resultados obtenidos al aplicar ambos modelos al problema del UC definido en 

este proyecto muestran que, en general, logran un equilibrio óptimo entre desempeño 

e interpretabilidad, superando habitualmente en ambos aspectos al resto de algoritmos 

intrínsecamente interpretables. De hecho, la precisión de estos modelos no se aleja 

excesivamente de la obtenida utilizando algoritmos más complejos y no 
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interpretables. En consecuencia, los modelos implementados cumplen 

satisfactoriamente los objetivos que se han definido al inicio del proyecto. 

Estas conclusiones se pueden aplicar a la mayoría de las variables del problema del 

UC, especialmente las relacionadas con los generadores térmicos. Sin embargo, los 

resultados obtenidos para los flujos de potencia a través de las líneas eléctricas 

sugieren que estos modelos no son lo suficientemente flexibles para modelar un 

conjunto de variables tan amplio y complicado. 

No obstante, esta limitación no resta relevancia a los resultados obtenidos y a la 

idoneidad de los modelos desarrollados para estimar el resto de las variables de salida, 

las cuales son, además, las más importantes del problema. 

Finalmente, aunque los modelos presentados permiten comprender mejor el 

funcionamiento del UC y explicar cómo se obtienen las soluciones óptimas, su 

desempeño no permite considerarlos como modelos completamente equivalentes al 

propio problema de optimización en sí, lo cual sucede incluso con los modelos más 

complejos y precisos desarrollados hasta el momento. Por lo tanto, los modelos 

interpretables desarrollados deben entenderse como herramientas complementarias al 

problema del unit commitment. 
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ABSTRACT  

This project proposes the application of interpretable machine learning techniques to 

the unit commitment problem in order not only to predict the optimal solutions but 

also to understand how these results have been obtained. In this way, the model can 

be used to explain how the unit commitment works. 

Keywords: Unit commitment, interpretable machine learning, decision tree, model 

tree, linear regression, clustering, power system operation  

 

1. Introduction 

Generation planning is one of the most important tasks within power system 

operation, which allows meeting the demand at minimum cost, based on demand and 

renewable generation forecasts [1].  

The most widespread tool to address this task is the unit commitment (UC), which is 

an optimization problem whose objective is to plan the commitment and production 

of the system units over a given horizon, minimizing the total operating costs, and 

respecting certain physical and temporal constraints from generators and transmission 

lines while guaranteeing system security requirements [2]. 

Given its importance, the unit commitment has become one of the most studied 

problems in the electricity sector. In recent years, numerous studies have tried to 

reduce the computational time required to solve this problem and to improve its ability 

to model the increasingly complex details of power systems, especially the growing 

uncertainty associated with the accelerating penetration of renewable energy sources, 

in order to obtain progressively more efficient results [3], [4]. 

Despite the large amount of research related to the unit commitment problem and, 

particularly, the application of machine learning (ML) to its resolution, there are no 

works dedicated to developing models that can be used to understand the solutions 

generated by UC models. The interpretation of such results still requires a deep 

knowledge of the topic since the optimization algorithm does not transparently 

explain how it obtained the solution found. 

 

2. Project definition 

Consequently, this project aims to develop a set of models based on interpretable 

machine learning techniques that can estimate the values of the variables and dual 
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variables of the optimal solutions of the unit commitment problem in a human-

understandable way. These models will be used to explain how the unit commitment 

problem works. 

 

3. Methodology 

First, both the UC input data and the generated outputs must be processed to adapt 

them to the needs of the ML models. On the one hand, the UC outputs will simply be 

scaled in order to be able to work with them jointly. 

On the other hand, we must build the input matrix of the model from the information 

provided to the UC. From all the available information, we will take the demand and 

wind generation and compute the net demand at each node with intermittent 

generation and the total net demand of the system. Again, we will scale these variables 

to homogenize their ranges. Finally, we will compute the net demand increases in the 

three periods before and after compared to the corresponding period so that the model 

can capture possible inter-temporal relationships. 

After this process, we will have an input matrix of up to 77 variables. As these 

dimensions would be unmanageable and hardly interpretable, we will train a random 

forest for each set of output variables of the same type and select the 15 variables that 

the algorithm deems more important to predict the outputs. Therefore, each set of 

output variables will use a different input matrix. Figure 1 shows an example of this 

variable selection. 

 

 

Figure 1 – Feature importances for the vCirPF output variable. 
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Since the UC problem consists of both continuous and binary variables, it will be 

necessary to develop two different classes of models, one for regression and another 

for classification tasks. Both classes will be based on multi-output decision trees, and 

we will use them to predict each group of variables of the same type together. This 

joint prediction has a great advantage from the interpretability point of view since it 

facilitates the representation and understanding of the results and allows us to respect, 

to a greater extent, the relationships between output variables.   

The next step will be the selection of the optimal hyperparameters for each model. As 

we want to guarantee the interpretability of the models, we will not carry out the 

optimization of the hyperparameters globally. Instead, we will find the optimal 

combination of hyperparameters for different depths of the decision tree by applying 

a Bayesian optimization. Based on the results, we will select the depth that allows us 

to obtain the most appropriate balance between interpretability and accuracy. The 

depth chosen for the models presented in this project was 5 and 6 for the regression 

and classification models, respectively. 

We will try to gain accuracy or interpretability on the preliminary models obtained by 

applying complementary machine learning techniques on their terminal nodes. 

As for regression models, we will train single-variable linear regressions on each of 

the terminal nodes. This will allow the tree to capture the linear relationships in the 

resulting partitions of the feature space, something that a simple decision tree cannot 

achieve. This method is similar to the one known as a model tree (Figure 2), but its 

implementation has been simplified due to the high computational burden that its full 

implementation would entail. In addition, the variable chosen for these regressions 

will not be a unique one, but each node will use the one that yields the best results. 

 

 

Figure 2 – Linear regression model tree [5]. 

 

Concerning classification models, we will try to improve their interpretability, 

allowing us to start from deeper trees than for regression. A common problem with 
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decision tree classifiers is the duplication of nodes and branches. Therefore, we will 

perform a clustering (using the K-modes algorithm) of the terminal nodes to reduce 

the number of unique parameters of the model, which will substantially facilitate its 

interpretation. The nodes will be identified with labels corresponding to each cluster, 

and the outputs will be represented in an attached table. The same process will be 

applied to the output variables since, in many cases, there is a high correlation 

between them. 

 

7. Results 

Once the models described above have been implemented, they can be trained using 

the training set, and the results of the evaluation set can be predicted, with which the 

performance will be analyzed. These results will also be compared with those 

obtained by other methods to better understand how good the results obtained are. 

Table 1 shows the results obtained by the model tree for three variables of the 

problem. In general, the implemented model is not only the most interpretable of all 

but also achieves the lowest errors behind the gradient boosting decision tree (GBDT), 

which has been used as a reference for the minimum possible error. Therefore, the 

results obtained are very positive.  

The only exception is the group of variables corresponding to the flows through power 

lines (vCirPF) due to the dimension and complexity of these variables. In this case, 

the model does not achieve better results than linear regression, nor does it approach 

the performance of the GBDT. 

Table 1: Performance of the model tree compared to other approaches. 

 vProduct1 vCirPF eMinOutput 

Variable 
mean 

RMSE 

std 

RMSE 

mean 

RMSE 

std 

RMSE 

mean 

RMSE 

std 

RMSE 

Worst case 0.1353 0.1588 0.1269 0.0887 0.0910 0.0091 

Linear regression 0.0720 0.0798 0.0645 0.0518 0.0628 0.0033 

Decision tree (5) 0.0541 0.0659 0.0928 0.0686  0.0364 0.0021 

Model tree (5) 0.0496 0.0641 0.0732 0.0587  0.0327 0.0017 

GBDT 0.0401 0.0508 0.0510 0.0385 0.0295 0.0022 
 

In addition, Figure 3 represents the relationship in one of the terminal nodes of the 

model between the variable chosen for the linear regression and one of the output 

variables. It clearly illustrates the advantage of the employed method over a simple 

decision tree, which can only predict a constant value. 
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Figure 3: Representation of the relationship between vProduct1 [gen05] and ND bus008 [h] in node 5 of the 

model tree. 

 

Lastly, the results obtained by the classification model are shown in Table 2. In this 

case, the model's accuracy is obviously lower than that of the original classification 

tree. However, the loss of accuracy is completely negligible, especially in comparison 

with the interpretability achieved. Moreover, the results are again comparable with 

those obtained by the GBDT and better than those of the other methods. 

Consequently, the model meets the expected objectives. 

 

Table 2: Performance of the clustered decision tree classifier compared to other approaches. 

 
vCommit eMinOutput 

Variable 
mean 

accuracy 

std 

accuracy 

mean 

accuracy 

std 

accuracy 

Worst case 0.9102 0.1249 0.6376 0.0963 

Logistic regression 0.9662 0.0549 0.8927 0.0434 

Decision tree (6) 0.9677 0.0470 0.9219 0.0227 

Clustered DT (6) 0.9673 0.0481 0.9207 0.0242 

GBDT 0.9768 0.0334 0.9466 0.0176 
 

 

4. Conclusions 

The results obtained by applying both models to the UC problem defined in this 

project show that, in general, they achieve an optimal balance between performance 

and interpretability, usually outperforming the rest of the intrinsically interpretable 

algorithms in both aspects. In fact, the accuracy of these models does not depart 

excessively from that obtained using more complex and non-interpretable algorithms. 

Consequently, the implemented models satisfactorily meet the objectives defined at 

the beginning of the project. 
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These conclusions can be applied to most of the variables of the UC problem, 

especially those related to the thermal generators. However, the results obtained for 

the flow through the power lines suggest that these models are not flexible enough to 

model such a large and complicated set of variables. 

Nevertheless, this limitation does not detract from the relevance of the results 

obtained and the suitability of the models developed to estimate the rest of the output 

variables, which are, besides, the most important variables of the problem. 

Finally, even though the models presented allow a better understanding of the 

functioning of the UC and explain how the optimal solutions are obtained, their 

performance does not allow us to consider them as models completely equivalent to 

the optimization problem itself, which is the case even with the most complex and 

accurate models developed so far. Therefore, the implemented interpretable models 

should be understood as complementary tools to the unit commitment problem. 
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1 Introduction 

Generation planning is one of the most important tasks within power system operation, 

which allows meeting the demand at minimum cost, based on demand and renewable 

generation forecasts [1].  

Moreover, any imbalance between total generation and demand in real-time can entail a 

risk to system stability. Therefore, the system operator must take corrective measures, 

such as adjusting the production of committed generators, to return the system to 

equilibrium. These measures can involve significant costs for the system, so the operator 

must consider the uncertainty associated with generation and demand when scheduling 

generation in order to deal with unforeseen events as efficiently as possible [1]. 

The most widespread tool to carry out this task is the unit commitment (UC). It is an 

optimization problem whose objective is to plan the commitment and production of the 

system units over a given horizon, minimizing the total operating costs, and respecting 

certain physical and temporal constraints from generators and transmission lines while 

guaranteeing system security requirements [2]. 

Given its importance, the unit commitment has become one of the most studied problems 

in the electricity sector. In recent years, numerous studies have tried to reduce the 

computational time required to solve this problem and to improve its ability to model the 

increasingly complex details of power systems, especially the growing uncertainty 

associated with the accelerating penetration of renewable energy sources, in order to 

obtain progressively more efficient results [3], [4]. 

One of the main lines of research in this sense has been the application of machine 

learning techniques to the UC problem. Such techniques have been applied to improve 

demand and intermittent generation predictions, reducing the impact of their associated 

uncertainty [5]; to predict which constraints of the problem are active in the optimal 

solution and, therefore, consider them when solving the optimization problem [3]; or to 

obtain preliminary solutions and provide the optimization problem with these close-to-

optimal solutions in order to reduce the computation time [4]. 

Despite the large amount of research related to the unit commitment problem and, 

particularly, the application of machine learning to its resolution, there are no works 

dedicated to developing models that can be used to understand the solutions generated by 

UC models. The interpretation of such results still requires a deep knowledge of the topic 

since the optimization algorithm does not transparently explain how it obtained the 

solution found.  

The problem of lack of transparency is not unique to optimization models. The increasing 

complexity of machine learning algorithms has resulted in a loss of their ability to explain 

how they carry out their estimations in a human-understandable way. For this reason, 

these complex algorithms have been considered as black boxes, a concept that can also 

be applied to optimization models. 
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This loss of accountability can be a major problem when these models are used as tools 

for decision-making since they can lead to undesirable results, which can be difficult to 

detect and solve. To overcome these limitations, interpretable machine learning (IML) 

has emerged in the past few years as a response to the need for developing models that 

can be both accurate and interpretable so as they can be used for critical decision-making 

processes [6]. 

Consequently, in this project, we propose the development of models based on 

interpretable machine learning techniques that can not only generate the optimal solutions 

to the unit commitment problem but also explain how these results have been obtained. 
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2 State of the art 

2.1 The unit commitment problem 

In power systems, the balance between generation and demand is critical for system 

stability due to the difficulty of storing electrical energy. Any imbalance between 

generation and demand in real-time deviates the system’s frequency from its nominal 

value and must be fixed by the system operator by adequately adjusting the output of the 

generators at its disposal. In the most extreme imbalance cases, the system operator may 

be forced to apply specific corrective measures, such as connecting fast-startup generators 

or shedding part of the load, which may entail significant additional costs for the 

system [1].  

Therefore, optimal generation planning is one of the essential tasks in power systems 

operation, and unit commitment is the most popular tool to address this issue. Figure 1 

depicts the day-ahead generation schedule segmented by technologies of the Spanish 

system for April 5th, 2021, elaborated with data published by the Spanish system operator, 

Red Eléctrica de España [7]. 

 

Figure 1: day-ahead scheduled generation and demand of the Spanish system for April 5th, 2021. 

 

The unit commitment problem is an optimization problem that deals with the (generally) 

short-term centralized scheduling of the commitment of units, as well as their output, with 

the purpose of meeting the forecasted demand while minimizing the operational costs of 
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the system over a given horizon, and complying with certain system requirements 

(e.g., spinning reserve) and physical, temporal constraints (e.g., technical limits of the 

generators) [2]. 

The UC problem is mathematically formulated as a non-convex mixed-integer 

programming (MIP) problem, belonging to the NP-hard category, which makes it difficult 

to efficiently obtain the optimal solution. This issue has been magnified over the past 

decades due to the significant increase in the size and complexity of power systems [8].  

Consequently, multiple formulations of the UC problem have been proposed in recent 

years, seeking to more realistically model system constraints and reduce the computation 

time required to solve them, which have opened the door to applying these formulations 

to increasingly larger systems, achieving more accurate and efficient results. However, 

despite the former advances, the computation time required to solve large-scale UC 

problems is still one of the major limitations when it comes to accurately modeling it, 

forcing system operators to either simplify the system constraints or restrict the 

computation time of the problem resolution. As a result, sub-optimal solutions are 

obtained, which involves extra costs for the system compared to the optimal generation 

planning [2], [3], [9]. 

Additionally, uncertainty management has become a central matter concerning the 

scheduling of generation to meet demand at the lowest cost. Traditional UC formulations 

have modeled the problem as deterministic, in which the forecasted demand, renewable 

generation, and real-time availability of generators and other elements of the system are 

assumed to be known at the moment of the problem resolution. Renewable, non-

dispatchable generation is modeled along with demand so that generators must meet the 

net demand of the system (demand minus renewable generation). In this class of 

formulations, the uncertainty associated with these variables is usually managed by 

imposing a contingency generation reserve requirement that could absorb the real-time 

generation-demand imbalances resulting from these sources of variability [1], [4]. 

These formulations have historically offered satisfactory results due to the relative 

predictability of demand and the low generation share of renewable resources, allowing 

cost-effective management of real-time imbalances. However, the increasing penetration 

of intermittent generation and price-responsiveness of demand in electric power systems 

leads to new challenges regarding the efficient contingency of their intrinsic variability, 

given the uncontrollable nature of these elements. Besides, by only considering a single 

reference scenario, which is usually the most likely one, the obtained generation planning 

might turn to be completely inefficient considering the conditions that finally occur in 

real-time [1].  

Thus, alternative UC formulations have been developed in order to take into account the 

uncertainty of these variables when solving the optimization problem, of which three are 

worth mentioning. First, stochastic optimization is carried out employing multiple 

scenarios that reflect the probability distribution of the uncertainty and searches for the 
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solution yielding the most efficient overall results. Second, robust optimization deals with 

the uncertainty by considering a specified variability in the input parameters and finds the 

best solution which is feasible in all the possible scenarios. Lastly, in chance-constrained 

optimization, problem constraints need only to be respected above a certain probability 

level [1], [4]. 

However, even though these variants could allow system operators to carry out a more 

efficient generation planning considering the intrinsic uncertainty of generation and 

demand, these variants generally require the model to consider multiple scenarios or 

combinations of input parameters. This significantly increases the complexity of the 

optimization problem in comparison to the deterministic approach, which could already 

suffer from computational efficiency issues. As a result, the employment of such 

formulations for real-world applications is not yet extended, and further improvements in 

this field will be necessary to make it more attractive [4]. 

 

2.1.1 Elements of the unit commitment 

Despite the wide variety of existing UC formulations, most of them have some common 

elements presented below. 

 

2.1.1.1 Time horizon and periods 

The time horizon defines the timespan to be modeled through the UC, which will be 

divided into periods according to specified time steps. The time horizon usually ranges 

from one day (typical day-ahead scheduling) to one week, while the time step is generally 

equal to one hour and, occasionally, 15 or 30 minutes. As the computational burden of 

solving UC problems has improved over the past years, the interest in reducing the length 

of time periods has correspondingly grown due to the possibility of modeling system 

flexibility constraints with greater detail [10], [11]. 

 

2.1.1.2 Load profile 

In general, the forecasted demand to be satisfied by generation must be defined either for 

the whole system or at each node if a network representation is included. Although system 

operators seek to meet the entire demand, this is not always economically efficient or 

technically possible. Consequently, a cost (penalty) for not serving electricity load must 

be generally introduced so as to account for this issue, and its value should be related to 

the utility of demand. 

Finally, as it has been introduced, the load profile is an important source of uncertainty 

and even the main one in small systems with low penetration of renewable energy sources. 

UC formulations conceived to deal with uncertainty usually require the characterization 
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of multiple demand scenarios, considering their probability of occurrence, for the model 

to yield the optimal generation planning [10]. 

 

2.1.1.3 Generating units 

The definition and modeling of generation units are some of the fundamental parts of the 

UC formulation. Typically, three types of units are distinguished. The primary ones are 

thermal units, such as nuclear, coal, or gas power plants. Thermal generation commonly 

stands for the most remarkable portion of short-term operation costs, if not the whole, 

which implies that their accurate representation is vital for obtaining the most 

economically efficient generation schedule [10], [11].  

Thus, the main distinguishing factors of generating units are their startup, shutdown, and 

generation costs (or cost curves). Depending on these costs, some generators will more 

efficiently satisfy the base load, while others will be more suited to cope with daily 

electricity demand peaks. In addition, thermal generators are usually subject to several 

technical constraints such as generation capacity or flexibility, which need to be 

considered since they restrict their actual operation capability [12].  

In contrast, renewable generation such as wind or solar generation has an intermittent, 

non-dispatchable nature, meaning that system agents cannot control their output. In 

consequence, this kind of generation is normally considered deterministic, in the same 

way as demand [1], [10]. Furthermore, its operating cost is generally considered to be 

zero, and therefore will be the first resource used to meet demand. However, under certain 

circumstances, such as when there is a critical excess of generation compared to 

electricity load and reducing the thermal output is not cost-efficient, part of renewable 

generation might be curtailed to minimize system costs [13]. 

Finally, hydro units are also considered in a large number of UC problems. These are 

generally the most flexible units of the system, and their generation cost can be assumed 

to be zero. However, this assumption may only lead to efficient generation schedules 

when the hydro energy to be produced during the pertinent time horizon has already been 

pre-allocated employing a long-term model that can efficiently account for the water 

value, which reflects the cost of the system that can be avoided by producing the available 

hydro energy in the future. Alternatively, a cost for hydro generation could be introduced 

to consider this issue instead of fixing the hydro energy to be produced [14]. 

There are three main types of hydro units, depending on their characteristics. However, 

they can all be modeled under the same generic formulation through a combination of 

constraints related to their power generation capacity and the level limits of their water 

reservoirs. Conventional hydro plants rely on a water reservoir to store water to be used 

in the most cost-efficient periods, such as expensive peak-load periods. In contrast, run-

of-river hydro plants have little to no water storage capacity. Their electricity production 

highly depends on the river's water flow in which they are located, thus behaving in a 
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similar way to the mentioned renewable generation. Lastly, pumped-storage hydro plants 

have both an upper and a lower water reservoir. They can pump water from the lower to 

the upper one during cheaper hours in order to use it to produce electricity during 

expensive hours [12]. 

 

2.1.1.4 Transmission network 

In certain systems, particularly weakly meshed ones, the transmission network can play 

a decisive role in the system’s operation, forcing the startup and shutdown of some 

generators in order to satisfy the demand at every node without exceeding the capacity 

limits of power lines. In the case of strongly meshed networks, the effect of the 

transmission network is sometimes neglected, which is known as modeling it as a 

copperplate network [11], [15]. 

In many power systems, the market clearance is carried out financially without 

considering the impact of the transmission grid, which may not be technically possible. 

Subsequently, the system operator is in charge of determining a feasible and reliable 

generation schedule by adjusting the commitment of generators as well as their output. 

These adjustments imply an increase in generation costs relative to the optimal 

configuration resulting from the non-restricted optimization problem and may not 

represent the most efficient solution considering the network topology [11], [15]. 

Therefore, the decoupling between generation planning and network management may 

result in inefficient solutions that further increase the cost of system operation. The 

inclusion of network constraints in the UC model allows obtaining the most economical 

feasible dispatches, effectively overcoming the stated issue [10], [11]. 

 

2.1.1.5 Objective function 

Generally, the UC problem's purpose is to minimize the system operation costs over the 

studied horizon, satisfying certain technical, inter-temporal, and reliability constraints or 

requirements [10]. Therefore, the objective function of the mathematical formulation of 

the UC problem should effectively reflect the different costs that result from the operation 

of the power system, such as the cost of electricity generation (𝐶𝐹𝑡 and 𝐶𝑉𝑡), the startup 

(𝐶𝑆𝑈𝑡) and shutdown costs (𝐶𝑆𝐷𝑡) of generating units, and the cost of not satisfying part 

of the demand (𝐶𝑃𝑁𝑆𝑛), as shown in (1). In this expression, renewable and hydro 

generation costs are neglected and, therefore, they are not reflected in the objective 

function. If this was not the case, their operational cost could be modeled similarly to a 

thermal generator. Any other cost or penalty associated with the system operation, such 

as the cost of secondary reserves, may also be included in the objective function [2]. 
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min ∑ 𝐶𝐹𝑡𝑢𝑐𝑛𝑡

𝑛𝑡

+ ∑ 𝐶𝑉𝑡𝑝𝑛𝑡
𝑇

𝑛𝑡

+ ∑ 𝐶𝑃𝑁𝑆𝑝𝑛𝑠𝑛

𝑛

 

+ ∑ 𝐶𝑆𝑈𝑡𝑠𝑢𝑛𝑡

𝑛𝑡

+ ∑ 𝐶𝑆𝐷𝑡𝑠𝑑𝑛𝑡

𝑛𝑡

 

(1) 

 

2.1.1.6 Constraints 

Constraints imposed in the optimization problem aim to model, as loyally as possible, the 

characteristics and constraints of the elements that make up the power system. Depending 

on the definition of these constraints, the resulting model may be simpler but 

computationally more efficient or more accurate, therefore resulting in a more 

economically efficient solution, at the cost of requiring more time to be solved [3]. 

In the following, some of the most common constraints used in UC problems will be 

presented. These constraints are mainly based on the Tight and Compact UC formulation 

described in [2], complemented with the representation of hydro units extracted 

from [16], and network constraints from [17]. 

 

• Generation and demand balance requirement 

One of the critical requirements for the UC is to schedule the necessary generation to 

meet demand at every period. Therefore, the balance between generation and demand (2) 

is one of the fundamental equations of any UC formulation: The sum of thermal 

generation (𝑝𝑛𝑡
𝑇 ), net hydro production (𝑝𝑛ℎ – 𝑏𝑛ℎ), forecasted intermittent  generation 

(𝐼𝐺𝑛), and the non-served demand (𝑝𝑛𝑠𝑛) must equal the total demand of the system (𝐷𝑛) 

for each period [2], [16]. This same principle can be applied to network-constrained UC 

formulations (3). 

∑ 𝑝𝑛𝑡
𝑇

𝑡

+ ∑(𝑝𝑛ℎ − 𝑏𝑛ℎ)

ℎ

+ 𝐼𝐺𝑛 + 𝑝𝑛𝑠𝑛 = 𝐷𝑛    ∀𝑛 (2) 

∑ 𝑝𝑛𝑡
𝑇

𝑡

+ ∑(𝑝𝑛ℎ − 𝑏𝑛ℎ)

ℎ

+ ∑ 𝐼𝐺𝑛𝑖

𝑖

+ ∑ 𝑝𝑛𝑠𝑛𝑖

𝑖

= ∑ 𝐷𝑛𝑖

𝑖

    ∀𝑛 (3) 

 

• Commitment, startup, and shutdown logic 

This equation (4) is used to link the variation of the commitment state (𝑢𝑐𝑛𝑡) of a thermal 

unit t in period n compared to the previous period, and its startup (𝑠𝑢𝑛𝑡) and shutdown 
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decisions (𝑠𝑑𝑛𝑡) for the same period [2]. Concerning these variables, 1 means that unit t 

is committed, starts up or shuts down at period n, respectively. 

𝑢𝑐𝑛𝑡 − 𝑢𝑐𝑛−1,𝑡 = 𝑠𝑢𝑛𝑡 − 𝑠𝑑𝑛𝑡    ∀𝑛𝑡 (4) 

 

• Minimum up and down time constraints 

Some thermal units are required to remain committed or offline for a certain number of 

periods once they have been started up or shut down, respectively. Expressions (5) and 

(6) model the minimum up and down time constraints of these generators [2]. 

∑ 𝑠𝑢𝑛′𝑡 ≤ 𝑢𝑐𝑛𝑡

𝑛

𝑛′=𝑛+1−𝑇𝑈𝑡

    ∀𝑛𝑡 (5) 

∑ 𝑠𝑑𝑛′𝑡 ≤ 1 − 𝑢𝑐𝑛𝑡

𝑛

𝑛′=𝑛+1−𝑇𝐷𝑡

    ∀𝑛𝑡 
(6) 

 

• Total output 

It is common to model the output of thermal units (𝑝𝑛𝑡
𝑇 ) as the production above the 

technical minimum of the generator (𝑃𝑡), considering the commitment state of the unit, 

so as the output variable (𝑝𝑛𝑡) represents the flexible production of the unit (7) [2]. 

The previous equation assumes that thermal units can both start up and shut down in just 

one period, i.e., one hour. However, some generators such as coal plants may actually 

need more time to start up (shut down) and will increasingly (decreasingly) produce 

energy before being fully committed (offline). Therefore, more detailed UC models take 

into account these startup (𝑃𝑆𝑈𝑛𝑡) and shutdown trajectories (𝑃𝑆𝐷𝑛𝑡) to compute the total 

output of thermal units (8) [2]. 

𝑝𝑛𝑡
𝑇 = 𝑝𝑛𝑡 + 𝑃𝑡𝑢𝑐𝑛𝑡    ∀𝑛𝑡 (7) 

𝑝𝑛𝑡
𝑇 = 𝑝𝑛𝑡 + 𝑃𝑡𝑢𝑐𝑛𝑡 + ∑ 𝑃𝑆𝐷𝑛′𝑡𝑠𝑑𝑛−𝑛′+1,𝑡

𝑇𝑆𝐷𝑡

𝑛′=1

      

                                                      + ∑ 𝑃𝑆𝑈𝑛′𝑡𝑠𝑢𝑛−𝑛′+1+𝑇𝑆𝑈𝑡,𝑡

𝑇𝑆𝑈𝑡

𝑛′=1

    ∀𝑛𝑡 

(8) 



 UNIVERSIDAD PONTIFICIA COMILLAS 
OFFICIAL MASTER'S DEGREE IN INDUSTRIAL ENGINEERING 

10 

 

• Minimum production constraint 

Thermal units are designed to produce above a minimum level, known as the generator's 

technical minimum. Expression (9) ensures that the production of any thermal unit t at 

any period n minus the downward generation reserve (𝑟𝑑𝑛𝑡) is always above its technical 

minimum [2]. 

The same expression would be valid for hydro units, provided their output has been 

defined above their minimum production. However, if this is not the case, then this 

constraint would be expressed as in (10). Most conventional hydro plants have a virtually 

zero minimum production but others, namely run-of-river hydro plants, have a running 

water flow requirement that leads them to generate a minimum of electricity which may 

vary over different periods. Pumped-storage hydro plants are able to pump water from a 

lower to a higher reservoir by consuming electricity, and expression (11) ensures that this 

consumption is non-negative at any period [16]. 

𝑝𝑛𝑡 − 𝑟𝑑𝑛𝑡 ≥ 0    ∀𝑛𝑡 (9) 

𝑝𝑛ℎ − 𝑟𝑑𝑛ℎ ≥ 𝑃𝑛ℎ    ∀𝑛ℎ (10) 

𝑏𝑛ℎ ≥ 0    ∀𝑛ℎ (11) 

 

• Maximum production capacity constraint 

Generating units have a maximum technical output which sets an upper bound on their 

generation capacity. As a consequence, the production of a unit t above its technical 

minimum plus its upward generation reserve (𝑟𝑢𝑛𝑡) at any period n must be lower than 

its flexible production capacity (𝑃𝑡 − 𝑃𝑡) when the generator is committed, and below 0 

when it is offline (12) [2]. 

If startup and shutdown trajectories are considered (13), the available production capacity 

the period before starting up or shutting down will be restricted by the maximum startup 

(𝑆𝑈𝑡) or shutdown capacities (𝑆𝐷𝑡), respectively, and not by the maximum output of the 

unit (𝑃𝑡) [2]. 

Analogously to (12), the production plus its upward reserve of a hydro unit h at any period 

n must be below the maximum production capacity of the unit (𝑃ℎ) (14). Expression (15) 

ensures that the consumption of pumped-storage hydro plants is below their maximum 

limit (𝐵ℎ) [16]. 
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𝑝𝑛𝑡 + 𝑟𝑢𝑛𝑡 ≤ 𝑢𝑐𝑛𝑡(𝑃𝑡 − 𝑃𝑡)    ∀𝑛𝑡 (12) 

𝑝𝑛𝑡 + 𝑟𝑢𝑛𝑡 ≤ 𝑢𝑐𝑛𝑡(𝑃𝑡 − 𝑃𝑡) − 𝑠𝑑𝑛+1,𝑡(𝑃𝑡 − 𝑆𝐷𝑡) − 𝑠𝑢𝑛+1,𝑡(𝑃𝑡 − 𝑆𝑈𝑡)    ∀𝑛𝑡 (13) 

𝑝𝑛ℎ + 𝑟𝑢𝑛ℎ ≤ 𝑃ℎ    ∀𝑛ℎ (14) 

𝑏𝑛ℎ ≤ 𝐵ℎ    ∀𝑛ℎ (15) 

 

• Ramping constraints 

Additionally, thermal units can only change their production from one period to another 

up to a defined upward or downward limit (𝑅𝑈𝑡). Therefore, the generation increase of 

unit t at period n compared to the previous period plus the upward reserve for the same 

period (since it may be required to increase its production in real-time operation) must be 

lower than the maximum upward ramp (𝑅𝑈𝑡) (18). Similarly, (19) restricts the downward 

ramp of thermal generators to be below their maximum (𝑅𝐷𝑡). 

𝑝𝑛𝑡 − 𝑝𝑛−1,𝑡 + 𝑟𝑢𝑛𝑡 ≤ 𝑅𝑈𝑡    ∀𝑛𝑡 (16) 

𝑝𝑛𝑡 − 𝑝𝑛−1,𝑡 − 𝑟𝑑𝑛𝑡 ≥ −𝑅𝐷𝑡    ∀𝑛𝑡 (17) 

 
 

• Up and down secondary reserve requirements 

Some UC models include spinning reserve requirements which are employed to adjust 

committed generators’ output to match the actual demand during real-time system 

operation. For every period, the sum of all generators up (18) and down secondary 

reserves  (19) must be above the total required up (𝐷𝑈𝑛) and down reserves (𝐷𝐷𝑛) [2]. 

These hourly requirements are usually set relative to specific parameters such as the 

greatest committed generating unit of the system, a percentage of the demand, or a 

percentage of wind generation. 

∑ 𝑟𝑢𝑛𝑡

𝑡

+ ∑ 𝑟𝑢𝑛ℎ

ℎ

≥ 𝐷𝑈𝑛    ∀𝑛 
 

(18) 

∑ 𝑟𝑑𝑛𝑡

𝑡

+ ∑ 𝑟𝑑𝑛ℎ

ℎ

≥ 𝐷𝐷𝑛    ∀𝑛 
 (19) 



 UNIVERSIDAD PONTIFICIA COMILLAS 
OFFICIAL MASTER'S DEGREE IN INDUSTRIAL ENGINEERING 

12 

 

• Hydro reservoir level and available hydro energy 

Hydropower plants’ water availability is usually modeled through their reservoir levels, 

which are typically expressed in terms of the energy that can be extracted from a volume 

of water rather than the volume itself. According to (20), the reservoir level (𝑤𝑛ℎ) of 

hydro plant h at period n is equal to the level of the previous period, minus the variation 

during the period due to the operation of the hydro plant. The reservoir level will decrease 

when water is turbined (𝑝𝑛ℎ) to produce electricity and, in the case of pumped-storage 

hydro plants, increased when water is pumped up (𝑏𝑛ℎ) –corrected by the efficiency of 

the pumping process (𝜂ℎ). Hydro plants can also spill water (𝑠𝑛ℎ) without generating 

electricity in cases where they have an excess of water in their reservoirs [16].  

This reservoir level is normally required to match a defined value at the last period, 

limiting the amount of water that can be turbined during the UC horizon (21). 

Alternatively, simpler formulations directly represent a fixed available hydro energy to 

be produced over the scheduling horizon (22). This last formulation serves as a good 

approximation for short-term UC problems, but may lead to unfeasible results when 

longer horizons are considered. 

Finally, more complex (and less short-term) hydro formulations include time-space 

relationships of hydro basins (cascaded reservoirs). These formulations are similar to (20) 

but include the increase of the reservoir level due to natural water inflows as well as water 

that has been turbined at an upper hydro plant of the same basin, reduced by an efficiency 

factor, and delayed a number of periods related to the time it takes this water to flow from 

one plant to the other [16]. 

𝑤𝑛ℎ = 𝑤𝑛ℎ−1 − (𝑝𝑛ℎ − 𝜂ℎ𝑏𝑛ℎ + 𝑠𝑛ℎ)    ∀𝑛ℎ (20) 

𝑤𝑛ℎ = 𝑤ℎ
∗     𝑛 = 𝑁 (21) 

𝐸ℎ ≥ ∑(𝑝𝑛ℎ − 𝜂ℎ𝑏𝑛ℎ + 𝑠𝑛ℎ)

𝑛

    ∀ℎ (22) 

 
 

• Hydro reservoir level requirements 

Hydro reservoir levels are generally required to be kept within certain security limits, 

which may prevent hydro plants from producing electricity if the reservoir level reaches 

its minimum level or force the power plant to produce electricity and even spill water if 

the reservoir level rises to its upper limit. When hydro reservoirs are being modeled, (23) 

and (24) are used to ensure that these limits are not exceeded [16]. 
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𝑤𝑛ℎ ≥ 𝑊ℎ    ∀𝑛ℎ (23) 

𝑤𝑛ℎ ≤ 𝑊ℎ    ∀𝑛ℎ (24) 

 

• Maximum transmission capacity constraints 

Finally, network-constrained UC models require to limit the maximum power (𝐹𝑘 and 𝐹𝑘) 

that can flow through the transmission lines of the power system. In (25) and (26), the 

power flow of any line k is computed as the sum of the contributions of the net generation 

(thermal, hydro, and intermittent generation minus pumping consumption and demand) 

of every node excluding the slack node, weighted by the sensitivity factor (𝑄̃𝑘𝑖) of the 

line with respect to each of these nodes [17]. 

𝐹𝑘 ≤ ∑ 𝑄̃𝑘𝑖 (∑ 𝑝𝑛𝑡

𝑡∈Ω𝑖

+ ∑ (𝑝𝑛ℎ − 𝑏𝑛ℎ)

ℎ∈Ω𝑖

+ 𝐼𝐺𝑛𝑖 − 𝐷𝑛𝑖)

𝑖≠𝑠

    ∀𝑛𝑘 (25) 

𝐹𝑘 ≥ ∑ 𝑄̃𝑘𝑖 (∑ 𝑝𝑛𝑡

𝑡∈Ω𝑖

+ ∑ (𝑝𝑛ℎ − 𝑏𝑛ℎ)

ℎ∈Ω𝑖

+ 𝐼𝐺𝑛𝑖 − 𝐷𝑛𝑖)

𝑖≠𝑠

    ∀𝑛𝑘 (26) 

 

2.2 Interpretable machine learning 

Before discussing in detail the concept of interpretable machine learning, it will be helpful 

to provide a general overview of machine learning, as well as its main classes and 

algorithms, since it will serve as a basis for the following sections. 

 

2.2.1 Machine learning 

Machine learning (ML) is the branch of artificial intelligence (AI) that studies the 

development of computer algorithms whose objective is to learn from a "training data 

set" in order to make predictions about new data through inference and generalization of 

relationships between samples, input features, and outputs. More specifically, one of the 

most widespread definitions of ML was proposed by T. Mitchell: “A computer program 

is said to learn from experience E with respect to some class of tasks T and performance 

measure P if its performance at tasks in T, as measured by P, improves with 

experience E.” [18] 
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The origin of machine learning, as we know it today, dates back to the late 1950s with 

the invention of the "perceptron" by F. Rosenblatt, which later enabled the development 

of artificial neural networks (ANN). However, some of the techniques used in the field 

of machine learning were developed much earlier, such as the least-squares method or the 

Bayes' Theorem [19]. 

Since then, this field has experienced exponential growth, both thanks to the development 

of new algorithms and their continuous improvement, which has allowed them to 

significantly increase their predictive accuracy and reduce their training time. As a result, 

machine learning techniques have gained widespread popularity and recognition, finding 

endless applications in virtually all areas of knowledge, including, certainly, power 

systems operation [19].  

Depending on the task to be performed and the nature of the data used, machine learning 

algorithms can be classified into three main groups: 

 

• Supervised learning 

In supervised learning (SL) tasks, the algorithm is trained to predict desired outputs based 

on their corresponding inputs by extracting general relationships between them. 

Consequently, the goal of supervised learning is to infer a general function that is able to 

map inputs to outputs as accurately as possible. SL algorithms can be further grouped into 

classification and regression analysis, depending on the output datatype [20]. 

When the output to be predicted is quantitative (numeric value), the task is defined as 

regression. In addition to estimating the desired outcome for a given input, the algorithm 

can be used to analyze the relationship between input features and the output variable by 

inspecting how the output varies when one or more input features are changed. Figure 2 

(left) presents an example of a one-feature regression task. In contrast, when the output 

variable is qualitative (categorical), the task is said to be a classification problem. The 

purpose of classifier algorithms is to predict the class to which an instance belongs based 

on its attributes. Figure 2 (right) shows an example of a two-dimensional binary 

classification problem.  
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Figure 2: Examples of regression analysis (left) and classification (right) [18]. 

 

Up to now, a wide variety of supervised learning algorithms have been developed based 

on very diverse techniques. Some of the most popular algorithms include linear 

regression, logistic regression, decision trees and other tree-based methods such as 

random forests and gradient boosting decision trees, support-vector machines, and 

artificial neural networks. The kind of relationships modeled by the algorithm will highly 

depend on its nature and complexity. As a consequence, there are generally no better or 

worse algorithms for every possible task. Certain algorithms will be better suited for 

certain problems than others, which makes the selection of the most suitable model for a 

given task one of the most critical steps of developing a supervised learning model [21]. 

A typical example to visualize the presented issue is shown in Figure 3, where the linear 

model clearly outperforms the decision tree classifier in the first problem but not for the 

second. 
 

 

Figure 3: Comparison of linear and decision tree classifiers on different two-dimensional classification tasks [20]. 
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• Unsupervised learning 

As opposed to the previous case, in unsupervised learning (UL), the output label of data 

is not known or available. Thus, the purpose is to infer relationships either between 

features or samples. Within unsupervised learning, the most important types are 

clustering and principal components analysis (PCA) [20].  

On the one hand, clustering algorithms are meant to group observations that share 

attributes and to identify patterns across them. These are commonly used to determine 

groups of similar samples and extract a representative sample for the whole group, which 

allows to significantly reduce the amount of data to be stored. Figure 4 (left) illustrates a 

two-dimensional clustering with 3 clusters.  On the other hand, principal component 

analysis deals with the computation of the principal components of the data distribution, 

i.e., the orthonormal linear combination of features that best fits the distribution, 

minimizing the square distance to every axis of the new space. PCA methods, such as the 

one depicted in Figure 4 (right), are usually used for dimensionality reduction losing the 

least possible amount of information from the original features since the first few 

principal components tend to comprise most of the information [20]. 

 

Figure 4: Examples of clustering (left) [20] and principal component analysis (right) [22]. 

 

• Reinforcement learning 

Reinforcement learning (RL) is the last of the main classes of machine learning methods. 

In this case, the algorithm is provided with an environment with which it can interact. 

Depending on the actions it takes within the given environment, it will receive different 

rewards. Therefore, the purpose of the algorithm is to learn how to optimally behave in 

the provided environment by maximizing its reward function according to the 

reinforcement signals it receives. RL is widely used for control systems [23]. 
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2.2.2 From ML to interpretable machine learning 

The constant research to improve the accuracy of machine learning models has led to the 

development of new, better-performing algorithms, which are able to learn increasingly 

more sophisticated relationships. Because of this flexibility requirement, algorithms have 

become more and more complex, resulting in a loss of transparency regarding their 

underlying behavior [24]. 

Therefore, many of these algorithms are seen as black-box models, i.e., models that do 

not have the ability to explain how they come up with the predictions and whose 

parameters cannot be directly interpreted or understood by humans. Due to their inherent 

complexity, some of the algorithms that are commonly considered black-box models are 

deep neural networks, gradient boosting decision trees, random forests, and support-

vector machines. In addition, proprietary models are also regarded as black boxes because 

only predicted outcomes are available to users and not the model itself [25]. 

This opacity may not imply a problem in itself, as some tasks may only require the best 

possible accuracy, regardless of how the algorithm comes up with the predictions. 

However, ML models are progressively used as relevant tools for decision making, and 

the lack of accountability for predictions made by black-box models has become a highly 

controversial issue, especially when the outcome of the model can have an impact on 

human lives. In recent years, multiple ML models have been reported to generate 

undesired outcomes because of systematic biases related to ethnicity, gender, or sexual 

identity. Some examples of these controversial issues include racially biased legal 

sentencing advice and face-recognition models or gender-biased salary estimating 

algorithms [26].  

This problem has been labeled as algorithmic bias, and it is strongly related to the data 

used to train the model. This means that if for whatever reason, the training data present 

certain correlations between any of the controversial features and the desired output, the 

model will interpret these relationships as causal and will replicate them when generating 

actual predictions. The inability to account for how the algorithm carries out its 

predictions can make it impossible to fix or even identify issues such as the ones presented 

above. Thus the black-box model may not be reliable enough to be used for critical 

decision making [26]. 

In this context, interpretable machine learning (IML) has emerged in the past few years 

as a response to the need for developing models that can be both accurate and interpretable 

in order to be used as valuable and fair tools for crucial decision-making processes. These 

models are popularly referred to as white-box models since they are transparent in how 

they compute their outcomes [6]. 
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2.2.3 Interpretability and algorithm classification 

Since interpretability is the central issue concerning these models, a formal definition is 

needed in order to properly identify ML models as interpretable. According to T. Miller, 

interpretability can be defined as "the degree to which a human can understand the cause 

of a decision" [27]. Thus, the easier it is for someone to understand how the model 

computes its predictions, the more interpretable it is. 

Depending on the point at which the prediction interpretability is achieved, two main 

categories of interpretable machine learning techniques can be identified: 

 

• Intrinsic interpretable models 

Model-based or intrinsic interpretability is based on the use of inherently interpretable 

algorithms. This kind of interpretability's primary challenge is to implement models easily 

understood by humans while achieving high accuracy [28]. Some of the most common 

intrinsic interpretable models are decision trees, rule-based models, and linear 

regression [29].  

Nevertheless, even these simpler models can become less interpretable if their internal 

complexity is not effectively restricted by, for example, limiting the number of features 

they use or by constraining key hyperparameters. Examples of these interpretability 

constraints include forcing sparsity in the model (such as lasso regression), imposing 

monotonicity constraints in classifiers, and limiting the number of leaves or depth of 

decision trees. Including interpretability constraints in ML models often results in a trade-

off between interpretability and performance since more complex models may achieve 

more accurate results for specific tasks than the constrained ones [29].  

Intrinsic interpretable machine learning models will be the most relevant IML techniques 

for the purpose of this project. One of its greatest exponents in recent years has been 

C. Rudin, from which two main works applied to decision-making in medicine and 

criminal justice can be highlighted due to the implications of the obtained results.  

In the first one, she developed a model based on decision lists called Bayesian Rule Lists 

to predict stroke risk in patients [30]. This interpretable model consists of a series of 

if/else if/else... then... statements, where the first part defines a partition of the feature 

space and the second one assigns a prediction for that partition. Despite being a simple 

model, its accuracy was even higher than the previous stroke risk prediction approach 

without compromising its interpretability, challenging the general belief that simpler 

models necessarily result in worse predictions than those obtained using complex 

algorithms. 

In the second of these works, she proposes a transparent and sufficiently accurate 

classification model for predicting recidivism in the context of criminal justice, which 

was called Supersparse Linear Integer Model [31]. It is a scoring system formulated as an 
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optimization problem in which the objective function, composed both of the prediction 

error and an interpretability penalty, is minimized using mixed-integer programming. The 

implemented algorithm proved intrinsic interpretable ML models to effectively overcome 

the issues related to algorithmic bias and lack of transparency that were experienced with 

previous approaches. 

Further on, some of the main intrinsic interpretable models will be introduced, as they 

will be the ones to be studied in the context of this project. 

 

• Post-hoc interpretability 

In contrast, post-hoc interpretability consists of creating interpretable models or using 

diverse methods to explain the predictions made by a black-box model. These methods 

seek to shed light on how complex models work and to provide more trust towards them. 

In this case, the resulting predictions can be highly accurate because it does not depend 

on the interpretable model itself, but on the more complex black-box model [29]. Post-hoc 

interpretability techniques can also be used to improve the accuracy of the underlying ML 

models, as they could help identify relationships learned by the model that are known to 

be incorrect [28]. However, the reliability of the explanations obtained by this method 

can be limited, as it is still an approximation [29].  

Post-hoc interpretability methods are usually categorized into global and local 

interpretability methods, sometimes referred to as dataset-level and prediction-level 

interpretations, respectively. Global interpretability methods provide an explanation of 

how the model works internally, i.e., how outcomes are generated. These methods can 

provide complex models with a greater level of transparency. Local interpretability 

methods are used to explain how the model came out with individual predictions, 

analyzing causal relationships between inputs and output for specific samples [29]. 

These techniques can be further classified into model-agnostic and model-specific 

explanations. On the one hand, model-agnostic explanations are widely applicable to any 

machine learning algorithms because they only use their input and output data. They treat 

the model as if it were strictly a black box, regardless of its actual implementation. On 

the other hand, model-specific explanations are unique to a single machine learning 

model, usually examining its internal parameters and structure [29]. 

One of the main model-agnostic interpretation methods is the surrogate model, an ML 

model trained to replicate the predictions of another –original– model. Surrogate models 

can be either global or local, and they are widely used in a number of engineering 

applications to replace more complex, expensive, or time-consuming models and 

understand how they work. In fact, machine learning algorithms used to generate unit 

commitment solutions, generally with the purpose of reducing the computational burden 

of solving the corresponding optimization problem, fall into the category of global 

surrogate models. In the context of model agnostic interpretation methods, the surrogate 
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model is an intrinsic interpretable model used to explain how a black-box model works 

internally by approximating its behavior [6].  

Another popular model-agnostic technique is known as permutation feature importance, 

and it is used to assess the impact of each input feature in the generation of predictions. 

Given an already trained model and a test set, values within each input feature are 

iteratively shuffled. The prediction accuracy is evaluated for each of the permuted test 

sets, with the advantage of not needing features to be normalized. The decrease of 

accuracy obtained for the permuted test sets compared to the non-permuted one reflects 

the importance level of these features [6], [29].  

Likewise, there are multiple comparable feature importance and feature interaction 

methods, which yield similar insights regarding input features [6]. Some of them are 

model-specific, such as feature importance methods applied to tree-based ensemble 

models. In this case, importance values are computed by assessing how many times each 

feature is used to split the feature space or how much accuracy increases considering all 

the splits corresponding to each feature [29]. All these approaches are easily interpretable 

and can provide valuable insights regarding what the model is learning from the data. 

However, they have significant drawbacks, such as the fact that they do not explain how 

these features are being used by the model and how do predictions change with respect to 

variations in input features, or the decrease of importance observed when input features 

present any kind of correlation, obscuring their relationship with the output variable [6].  

Besides, there has been a significant effort to provide artificial neural networks with 

interpretability in the past years. The main reason is that ANNs are able to obtain 

unrivaled performances in certain highly complex problems, but their internal structure 

is virtually impossible to be understood by humans. Thus, post-hoc model-specific 

methods are used to explain how they come up with predictions without harming the 

predictive accuracy. Most of them are conceived as visualizations of the internal 

parameters of different algorithm layers, which are supposed to depict their specific 

function. Global approaches extract the weights from these layers to explain which is the 

relevant information and how it is being transformed, while local approaches (probably 

the most popular ones, especially in image recognition models) consider the actual values 

of each layer resulting from the prediction of individual samples [28].  

Some authors, such as C. Rudin [25] and W. J. Murdoch [28], have expressed their critical 

opinion on post-hoc methods, emphasizing that the interpretation they provide should be 

carefully analyzed before being used as high-stake decision tools.  

According to [25], intrinsic interpretable models should always be employed in these 

situations instead of black-box ML models. In her work, Rudin presents that the 

interpretability of ML models does not come at the cost of lower accuracy, particularly 

when structured data is available, and features contain meaningful information. 

Moreover, she stresses the fact that post-hoc techniques provide explanations that cannot 

be trusted to represent how the original model computes its predictions because it is just 
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an approximation of the original model. Finally, post-hoc explanations cannot explain 

how a black box model would perform when fed with outlying inputs (inputs significantly 

different from those used to train both models), which is a critical issue when these 

models are used for decision-making purposes [25]. 

Lastly, any of these two main interpretation techniques (model-based and post-hoc) is 

considered to have two fundamental requirements: accuracy and relevance. First, an 

interpretable model needs to be accurate since otherwise, it is impossible to claim that the 

model provides appropriate explanations for the underlying relations between inputs and 

outputs because it could not reproduce them. This accuracy requirement is identified as 

predictive accuracy for intrinsic interpretable models to describe the ability of the model 

to approximate the underlying data relationships, and descriptive accuracy for post-hoc 

interpretation methods (surrogate models) to define their ability to approximate the 

relationships that the original model has learned. Achieving the necessary accuracy level 

may be especially challenging when the problem has highly complex relationships, or 

complex black-box models have been used as predictors [28]. Figure 5 depicts the impact 

of both interpretability methods on predictive and descriptive accuracies. 
 

 

Figure 5: Intrinsic and post-hoc interpretability methods impact accuracy [28]. 

 

Second, the extracted information needs to be relevant, insightful, and consistent for the 

model to be trustworthy. In certain applications, e.g., medicine or policy making, the 

developer of an algorithm may notice that it is learning relationships that are not of 

interest for the purpose of the model, or they can even be known to be incorrect 

relationships, as it was the case for the mentioned biased algorithms. Thus, relevancy 

should be closely analyzed in order to assess whether or not it is fair and reliable. Focusing 

on relevancy can result in a loss of accuracy, as some relationships may be artificially 

concealed to the model but can also yield benefits such as when used to improve feature 

engineering [28]. 
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2.2.4 Interpretable machine learning algorithms 

This section will introduce some of the most common interpretable machine learning 

algorithms, i.e., linear regression, logistic regression, decision trees, and decision lists. 

 

2.2.4.1 Linear regression 

Linear regression (LR) was one of the first techniques to be used to predict outputs and 

extract relationships with their inputs, long before the concepts of ML and, of course, 

interpretable IML took hold. These models assume the output variable (𝑦) to be a linear 

combination of the input features (𝑥𝑗), and can therefore be formulated as  

𝑓(𝒙) =  𝛽0 + ∑ 𝛽𝑗𝑥𝑗

𝑝

𝑗=1

, (27) 

where 𝛽𝑗 , 𝑗 ∈ (1, 𝑝) are the feature weights, and 𝛽0 is a constant term known as the 

intercept. Input features are generally quantitative variables and transformations of these 

variables (square-root, logarithm, exponentiation, etc.), but can also take the form of 

binary variables, qualitative inputs encoded into numeric or dummy variables, or 

interactions between variables [22]. 

The most popular technique to estimate the LR parameters from (27) is the ordinary least 

squares method, in which coefficients 𝜷 = (𝛽0, 𝛽1, … , 𝛽𝑝)
𝑇
 are computed to minimize 

the residual sum of squares (RSS), i.e., the sum of the squared differences between actual 

and estimated outputs, of the training set [22]: 

𝑅𝑆𝑆(𝜷) =  ∑(𝑦𝑖 − 𝑓(𝒙𝑖))2

𝑁

𝑖=1

= ∑ (𝑦𝑖 − (𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

))

2
𝑁

𝑖=1

 (28) 

𝜷̂ = arg min
𝜷

∑ (𝑦𝑖 − (𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

))

2
𝑁

𝑖=1

 (29) 

 

Formula (29) allows obtaining the optimal feature coefficients while imposing additional 

terms and conditions to problem formulation. For instance, shrinkage methods such as 

lasso and ridge regression include in (29) the terms 𝜆 ∑ |𝛽𝑗|𝑝
𝑗=1  and 𝜆 ∑ 𝛽𝑗

2𝑝
𝑗=1 , 

respectively, to penalize the value of the feature weights. 𝜆 is known as the complexity 

parameter. These extensions of the original LR formulation can be useful to avoid the 

disproportionately high feature weights that can be obtained when input features are 
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strongly correlated, to decrease the number of features to be used by the model (favoring 

interpretability), and to reduce overfitting in cases where the number of variables p is 

greater than the number of observations N [22]. 
 

 

Figure 6: Least squares linear regression with 𝑿 ∈ ℝ2 [20]. 

 

Regarding the interpretability of LR, the main advantages of the model are its simplicity 

as well as its transparent, linear relation between inputs and output, which is expressed 

through the model coefficients. Nevertheless, depending on the data type of each feature, 

the interpretation of the coefficients has slight differences, which must be considered [6]: 

- Numerical feature: The output of the model changes by a factor equal to the 

feature weight when the input feature is increased in one unit. Ordinal categorical 

features encoded as integers can also be understood in the same way. 

- Binary feature and one-hot-encoded categorical feature: The feature weight 

expresses the output variation when the variable takes value 1 compared to the 

situation where its value is 0. 

- Intercept 𝛽0: The intercept parameter is a particular case that can be understood 

as the weight of a constant feature, equal to 1 for all samples. It can be interpreted 

as the predicted value of an instance where all features are zero (even if this 

situation was not possible). 

However, the validity of LR models is subject to certain assumptions regarding the data 

that may not hold in particular problems. These assumptions are linearity between 

features and the target, normality of the distribution of the target value relative to input 

features, homoscedasticity (homogeneous variance of the error over the feature space), 

independence of instances, and absence of multicollinearity between input features. 

Therefore, LR models are generally not suited to model complex, nonlinear relationships, 

and its coefficients may not result intuitive when features present high correlation 

levels [6]. 
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2.2.4.2 Logistic regression 

When the task to be carried out is a classification problem, logistic regression (LogR) is 

one of the most straightforward approaches that can be used. The logistic regression 

models a linear relationship between inputs and the logit transformation of the probability 

of belonging to each of the K classes except from one (since all the probabilities must add 

up to 1), as defined in (30). The left-hand side of the expression is also known as the log 

odds, which represents the logarithm of the odds function, i.e., the probability of the event 

divided by the probability of a different event) [22]. 

log
Pr (𝑌 =  𝑘|𝑋 = 𝒙)

Pr (𝑌 =  𝐾|𝑋 = 𝒙)
=  𝛽𝑘0 + 𝜷𝑘

𝑇𝑿,    𝑘 = 1, … , 𝐾 − 1  (30) 

Consequently, predicted probabilities can be expressed as follows [22]: 

Pr (𝑌 =  𝑘|𝑋 = 𝒙) =
exp(𝛽𝑘0 + 𝜷𝑘

𝑇𝒙)

1 + ∑ exp(𝛽𝑙0 + 𝜷𝑙
𝑇𝒙)𝐾−1

𝑙=1

,    𝑘 = 1, … , 𝐾 − 1 (31) 

Pr(𝑌 =  𝐾|𝑋 = 𝒙) =
1

1 + ∑ exp(𝛽𝑙0 + 𝜷𝑙
𝑇𝒙)𝐾−1

𝑙=1

                                     (32) 

 

 

Figure 7: Logistic regression function vs. actual labels for a one-variable problem. 

 

The estimation of the coefficients in logistic regression models is usually carried out 

through the maximum likelihood method. First, we define the log-likelihood for a set of 

N instances as 
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𝑙(𝜽) = ∑ log 𝑝𝑦𝑖
(𝒙𝑖; 𝜽)

𝑁

𝑖=1

, (33) 

where 𝜽 = {𝛽10, 𝜷1
𝑇 , … ,  𝛽𝐾−1,0,  𝜷𝐾−1

𝑇 } comprises the entire set of parameters and 

𝑝𝑘(𝒙𝑖; 𝜽) = Pr (𝑌 =  𝑘|𝑋 = 𝒙𝒊; 𝜽) represents the conditional likelihood of Y given X 

considering the parameter set 𝜽 [22]. 

Focusing on the binary classification (𝑦 ∈ {0,1}), which is the relevant case for the 

purpose of this project, (33) can be expressed as 

𝑙(𝜷) = ∑{𝑦i log 𝑝(𝒙𝑖; 𝜷) + (1 − 𝑦i) log(1 − 𝑝(𝒙𝑖; 𝜷))}

𝑁

𝑖=1

 

= ∑{𝑦i𝜷
𝑇𝒙𝑖 − log(1 + 𝑒𝜷𝑇𝒙𝑖)}

𝑁

𝑖=1

,                           

(34) 

assuming that the input vector 𝒙𝑖 includes a constant term equal to 1 to integrate the 

intercept.  

In order to maximize the log-likelihood, we must differentiate (34) and set it to zero (35) 

so as to compute the optimal coefficients of the model. 

𝑑𝑙(𝜷)

𝑑𝜷
= ∑ 𝒙𝑖(𝑦𝑖 − 𝑝(𝒙𝑖; 𝜷))

𝑁

𝑖=1

= 0 (35) 

The logistic regression shares most of the advantages and disadvantages with linear 

regression. Moreover, it is important to stress that the outcome of the logistic regression 

model is not a specific class but the probability of belonging to each of the possible 

classes. The main benefit of this kind of prediction comes from the fact that the output 

probability threshold to decide whether an instance belongs to each of the categories can 

be selected, which allows to intentionally reduce the most undesired kind of error (false 

positives or false negatives) [22]. 

Finally, the logistic regression model is less intuitive than linear regression since inputs 

are not linearly related to the output odds but their log-odds. Again, depending on the data 

type of each feature, the interpretation of the parameters is different [6]: 

- Numerical feature: A change of a feature in one unit varies the log-odds by a factor 

of 𝛽𝑗, and the estimated odds by exp(𝛽𝑗).  

- Binary feature and one-hot-encoded categorical feature: Switching from the 

reference category to the other (or another) one varies the output odds by a factor 

of exp(𝛽𝑗).  
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- Intercept 𝛽0: The intercept represents the odds of an instance where all features 

are zero, although it is not usually relevant. 

 

2.2.4.3 Decision trees 

As opposed to the previous algorithms, decision trees (DTs) are more suited to model 

nonlinear relationships between inputs and outputs as well as the interaction between 

features and can be used both for regression and classification problems [6]. 

Figure 8 illustrates a decision tree trained for a regression task. Decision trees consist of 

a series of splitting decision rules (known as internal nodes) that successively divide the 

feature space into multiple complementary sub-regions (R1, …, R5 in the left figure). 

These partitioned regions are known as the terminal or leaf nodes of the decision tree, 

and an output value is assigned to each of them, i.e., the expected value of observations 

belonging to each terminal node. In regression tasks, this output is numerical, and it is 

usually computed as the average of the target values from the training observations that 

fell into that feature space partition. In contrast, classification decision trees assign to each 

of the leaf nodes either the mode of these observations or a vector containing the 

proportion of instances belonging to each of the possible classes [20]. 

 

 

Figure 8: Representation of the decision tree rules (left) and the resulting space partition (right) for a 

two-dimensional regression task [20]. 

 

The building of DTs through the successive splits is carried out by selecting the splits that 

minimize their target loss function, i.e., the RSS (36) in the case of regression tasks, and 

the Gini index (37) or cross-entropy (38) functions for classification problems, until a 

given stopping criteria is met. The stopping criteria can be based on multiple parameters 

such as the maximum number of leaf nodes, maximum depth of the tree, minimum error 

decrease, and minimum samples per leaf. These are known as hyperparameters, and they 

are used to control the learning process of the algorithm [20]. 
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𝑅𝑆𝑆 = ∑ ∑ (𝑦𝑖 − 𝑦̂𝑅𝑗
)

2

𝑖∈𝑅𝑗

𝐽

𝑗=1

 (36) 

𝐺 = ∑ 𝑝̂𝑚𝑘(1 − 𝑝̂𝑚𝑘)

𝐾

𝑘=1

 (37) 

D = − ∑ 𝑝̂𝑚𝑘 log 𝑝̂𝑚𝑘

𝑁

𝑖=1

 (38) 

 

The principal advantage of decision trees is their intrinsic interpretability since they can 

be easily represented as a graph (Figure 2 left). In fact, their sequential decision nature is 

closer to human decision-making than any other machine learning algorithm, which 

makes them valuable models to be used within the context of IML. Besides, they can 

handle complex relationships and interactions, any type of input data, and can be used 

both for regression and classification tasks [20].  

Nevertheless, the intrinsic interpretability of DTs is relatively limited by their own size, 

i.e., trees with a very large number of input features, leaf nodes, or depth may become 

challenging to represent and to be understood as a whole. As a result, the selection of the 

abovementioned hyperparameters is not only a critical task to maximize the accuracy of 

the model but also to ensure its transparence and interpretability [6]. 

In addition to explaining how outputs are obtained, decision trees can transparently show 

how each of the decisions contributed to reducing the training error, and thus, how 

relevant were the associated features for the model. This information can be extracted in 

aggregate for each input feature using the feature importances tool, introduced in 

section 2.2.3, which provides a general insight into how much these variables contribute 

to explaining the target variable. Decision trees’ (and their derivate algorithms) feature 

importances tool is so simple and effective that it is extensively used as an embedded 

method for feature selection purposes when building ML models with high-dimensional 

datasets [32]. 

Finally, DTs may not be the best choice for certain tasks, such as when the outcome has 

a linear relationship with the input (Figure 3), and can easily suffer from the overfitting 

of the training set, which usually harms the predictive accuracy of these algorithms. 

Several tree-based algorithms have been developed to overcome these limitations, e.g., 

random forests and boosted gradient decision trees, which rely on bagging and boosting 

methods, respectively. Compared to simple decision trees, these extended algorithms can 

achieve significant performance improvements, but they also involve a critical loss of 

interpretability that virtually excludes them from being used as interpretable machine 

learning models [20]. 
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2.2.4.4 Decision lists 

Decision lists are a series of hierarchically sorted decision rules, equivalent to conditional 

statements in computer programming, which can generally be applied to both regression 

and classification tasks. Each decision rule consists of an if (else if) statement with a single 

condition or logical conjunction of conditions, known as the antecedent, and a then 

statement, the prediction. To make a prediction, decision rules are sequentially applied 

until one of the if statements is satisfied, and the corresponding prediction value is 

assigned to the instance. If none of these rules apply to a specific instance, a default value 

is assigned. This is known as the default rule, which is equivalent to an else statement [6]. 

The usefulness of individual decision rules can be measured by two elements. On the one 

hand, the support or coverage of a rule measures the percentage of training instances that 

have been matched by it. On the other hand, the accuracy or confidence of a rule measures 

how accurately does the rule predict the instances to which it applies. Both measures 

usually face a similar accuracy-precision trade-off as the one faced by decision trees. 

Increasing the number of rules could improve their accuracy but would decrease their 

support [6].  

The concept behind decision lists is very similar to decision trees in that they both apply 

a sequence of rules which split the feature space and assign an outcome to each partition. 

In fact, any decision tree can be expressed as a decision list. However, decision tree’s 

partitions are mutually exclusive and collectively exhaustive by definition, meaning that 

they do not overlap and cover the entire feature space. In contrast, rules from decision 

lists could overlap, a conflict that is solved thanks to the hierarchy of decision rules, and 

the exhaustivity is generally achieved through the application of the default rule [6]. 

The actual implementation of decision lists can vary significantly depending on how 

decision rules are selected, but three of them are the most widespread. The first approach 

is OneR, which only uses the most explanatory feature from the dataset and creates a 

decision rule for each feature value. It only supports categorical inputs, and it has been 

designed for classification tasks but could deal with continuous features and targets if 

these are discretized into intervals [6].  

The process followed by sequential covering, on its behalf, is closer to the one followed 

by decision trees, and it is perhaps the most intuitive. In this case, the algorithm finds the 

best rule based on the training dataset and computes the prediction for the rule. Then, the 

samples to which the rule applies are removed, regardless of how accurate the rule 

prediction was. This procedure is sequentially repeated until all the training data has been 

covered or a specific stop condition is met. The way in which the sequential covering 

selects each rule can take multiple forms depending on the algorithm employed, but, in 

any case, some requirements concerning the support or accuracy of decision rules are 

needed in order to define how to find optimal partition at every step [6].  
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Figure 9 illustrates the learning process of a sequential covering decision list, which 

provides a clear example of how these models work. Besides, the non-exclusivity and 

non-exhaustivity of decision rules can be observed [6]. 

 

Figure 9: Decision rule learning process of a sequential covering decision list [6]. 

 

The third approach is known as Bayesian rule lists, which is the one employed by 

C. Rudin in [30]. This kind of decision lists first pre-mine a number of frequently 

occurring patterns present in the training data. These prior patterns can be obtained either 

from single feature values or a combination of them, and their frequency is measured by 

their support in the dataset. Then, the Bayesian rule list algorithm builds an accurate 

decision list by selecting the pre-mined conditions and outcomes that maximize the 

posterior probability of the resulting model through an iterative process, which prioritizes 

shorter lists and conditions.  

Decision lists' main advantage is also their interpretability, which is comparable to that 

of decision trees. They can even yield more compact results than decision trees when 

these suffer from imbalanced and duplicated sub-trees, typically in classification tasks. 

However, they are only manageable if the number of rules and conditions is relatively 

small, which is the same complexity issue as seen for decision trees [6].  

Finally, despite the fact that decision lists can be the best option for certain tasks, they 

present important limitations. Their main drawback is that most implementations require 

inputs to be categorical, which drastically restricts their range of application. Besides, 

even though they can be applied to regression tasks, they are usually more suited for 
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classification problems since the number of possible outputs is directly related to the 

number of decision rules [6]. 

 

2.3 Unit commitment & machine learning 

The challenges that have arisen in recent years, mainly due to the increase in the size and 

complexity of power systems, as well as the penetration of renewable energies and other 

sources of uncertainty, have led to an increasing difficulty in generating optimal 

generation schedules at a reasonable computational cost. However, the importance of 

resource planning in the electricity sector has opened the door to numerous innovative 

studies aimed at developing more computationally efficient models, without renouncing 

to a detailed modeling of these systems, in order to generate economically efficient 

schedules. 

Unsurprisingly, one of these research lines has been the application of machine learning 

techniques to the unit commitment problem. ML has a wide range of applications closely 

linked to this subject, such as the prediction of electricity generation from non-

dispatchable renewable sources, which allows reducing the uncertainty of the problem 

and, thus, obtaining more efficient results [5], [33]. Nonetheless, the application of ML 

to the resolution of the UC with the aim of totally or partially avoiding the computational 

cost of solving the optimization problem every time a new planning is required is the one 

of greatest interest in the context of this project. 

The existing literature on the topic comprises a wide variety of approaches. The majority 

of these research projects address the UC problem as a supervised learning task, in which 

precomputed solutions of the optimization problem are used to train an ML model with 

the aim of replicating them. With few exceptions attempting to develop strictly surrogate 

models [34], the general purpose of these works is not to create ML models that can be 

used as a solver themselves, but rather to provide tools that can assist the optimization 

problem. According to [35], this approach usually yields the best results. 

Most of the proposed methods rely on the development of ML models trained to generate 

complete or partial solutions to the UC problem, which are then used as starting points 

for the optimization problem. The result in all the proposed approaches is a substantial 

reduction of the computation time is achieved without significantly moving away from 

the optimal solution of the problem.  

Among the existing supervised learning algorithms, artificial neural networks stand out 

as the most popular ones to address this task. For instance, a genetic-based ANN model 

is developed in [36] to compute a set of preliminary solutions that are subsequently 

optimized to obtain the optimal generation planning for a thermal power system. In [37], 

ANNs are used to predict the commitment of generating units, and dynamic programming 

is employed to assist the ML model for units where the predicted outcome is not certain 
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enough. Similarly, an ANN is developed in [38] to predict the discrete variables of the 

problem, e.g., the commitment of the thermal generators, and an optimization approach 

is applied to obtain the continuous ones, e.g., the production of generating units.  

Alternative proposals which are not based on neural networks can be found in [39] 

and [40], where a multi-target random forest and a k-nearest neighbors regression models 

are developed, respectively, to obtain warm-start solutions for the UC problem. This last 

study also proposes an alternative approach, where another k-nearest neighbor algorithm 

is developed to predict the transmission constraints that should be included in the 

optimization problem, leaving out the non-critical ones. A similar method is explored 

in [35], but extending it to a wider variety of constraints. 

Besides the supervised learning approach, different models have been developed 

addressing the UC problem from other perspectives. On the one hand, unsupervised 

learning can be used to reduce the dimension of the problem and thus save execution time. 

For instance, the model proposed in [41] addresses the UC problem under uncertainty by 

clustering the given scenarios and applying the UC optimization model to these clusters. 

The result is an intermediate solution between stochastic and scenario-based unit 

commitment, which can significantly reduce the size of the problem. In [42], the 

clustering of decision variables such as the commitment of multiple units is performed 

without significantly increasing the total cost of the generation planning compared to the 

base formulation. [43] [44] [45] [46] 

On the other hand, there are multiple studies, such as those developed in [43] – [46], that 

address the resolution of the UC using reinforcement learning algorithms, widely used in 

the field of optimization. Besides the reduction of execution time, the main advantage of 

these approaches is that they can generate feasible and efficient solutions without the need 

for a precise UC model definition and, in any case, without having to generate the 

precomputed scenarios that are necessary for other approaches [46]. 

Finally, this project seeks to point out that, despite the abundance of existing studies 

related to the unit commitment problem and, in particular, to the application of ML for 

its resolution, none of them has targeted the development of models that can be used to 

explain the solutions generated by UC models. The ML models that are usually used to 

replace or assist the UC model, and the optimization problem itself, are conceived as 

black boxes whose only purpose is to obtain the optimal generation schedules, regardless 

of their underlying behavior. Consequently, the application of interpretable machine 

learning to this subject constitutes a virtually unexplored horizon so far. 
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3 Case study description 

The development of an interpretable machine learning model applied to the Unit 

Commitment problem requires the elaboration of a reasonable number of scenarios, as 

well as their corresponding resolution, in order to build a data set with which to train the 

model and evaluate its performance. Hence, the main input features that will be used to 

carry out the optimization will be employed to build the input set of the interpretable 

machine learning model. Lastly, this information will be used to predict some of the most 

relevant decision variables extracted from the optimal solutions of the proposed scenarios. 

In the following, the main elements of the case study will be described, as well as the 

mathematical formulation of the Unit Commitment problem.  

 

3.1.1 Power system and wind generation scenarios 

The power system analyzed in this project consists of a modified IEEE 118-bus test 

system, presented in Figure 10, that allows the consideration of the electricity production 

of multiple wind farms throughout the system, and which has been widely used in UC 

studies, for example, [47], [48], and [49]. The primary source of data used to model the 

power system is [50]. This modified IEEE 118-bus system comprises 118 buses, 186 

transmission lines, 54 thermal units, 91 loads, and three wind units (base case).  

All detailed parameters, such as generator characteristics, transmission network, load 

distribution profile, system-wide power demand, and wind power scenarios, are available 

in [51]. 
 

 

Figure 10: Unifilar diagram of the IEEE 118-bus power system. 
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The operation planning will be carried out for a 24-hour horizon, divided into 24 hourly 

periods. A common load profile has been defined for all scenarios within this time 

horizon, with an average and maximum level of 3991 MW and 5592 MW, respectively, 

as shown in Figure 11. This aggregate system demand is distributed among the 91 loads 

of the power system, according to the load factor assigned to each node. Furthermore, it 

is worth noting that the cost of not satisfying part of the demand (𝐶𝑃𝑁𝑆) has been set to 

10000 €/MWh. 

 

Figure 11: Case study’s system load profile. 

 

The differentiation between the case study’s scenarios lies in the generation profile of 

wind units. 365 wind generation scenarios have been considered, using the hourly wind 

capacity factors for different Spain's regions, based on MERRA-2. These scenarios 

simulate the present-day fleet of wind farms, the near-term future, and long-term future 

fleets, as described in [52]. 

Consequently, the base case, in which ten wind units are spread over the system, presents 

an aggregated average and maximum production of 1713 MW and 4848 MW, 

respectively. In addition to this base case, a low wind penetration case with another 365 

scenarios and three units has been elaborated in order to analyze the impact of wind 

penetration in the model performance. The aggregated average and maximum production 

of this alternative case are 584 MW and 1522 MW, respectively. Figure 12 and Figure 13 

illustrate the aggregate hourly wind generation distribution and average wind generation 

per node, respectively, for both wind penetration cases. 
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Figure 12: Aggregate wind generation comparison between the low and the high wind penetration cases. 

 

 

 

Figure 13: Average wind generation per node in the low and high wind penetration cases. 
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3.1.2 Case study UC formulation 

The UC model used to generate the optimal solutions for this study (39) is based on the 

Tight and Compact formulation described in [2], and the resolution of the optimization 

problems has been carried out using GAMS software. 

The objective function of the UC problem considers the fixed and variable costs of 

thermal electricity generation, startup, shutdown costs, non-served energy, and secondary 

reserve costs. 

Moreover, the formulation of the problem includes the following constraints and 

equations: generation and demand balance; up and down secondary reserve requirements; 

maximum power flow through transmission lines; and technical constraints of generators, 

which encompass maximum and minimum production limit constraints, total output and 

commitment logic equations, up and down ramping constraints, and minimum up and 

down time constraints. 

Finally, the impact of the transmission network on the overall performance of the model 

will be assessed by comparing the results obtained when network constraints (25) (26) 

are included in the UC formulation and when the network is modeled as a single node 

(copperplate network approach). This comparison will be carried out only for the base 

(high) wind penetration case. 
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 min ∑ 𝐶𝐹𝑡𝑢𝑐𝑛𝑡

𝑛𝑡

+ ∑ 𝐶𝑉𝑡𝑝
𝑛𝑡
𝑇

𝑛𝑡

+ ∑ 𝐶𝑃𝑁𝑆𝑛𝑝𝑛𝑠
𝑛

𝑛

                                                

+ ∑ 𝐶𝑆𝑈𝑡𝑠𝑢𝑛𝑡

𝑛𝑡

+ ∑ 𝐶𝑆𝐷𝑡𝑠𝑑𝑛𝑡

𝑛𝑡

+ ∑ 𝐶𝑅𝑈𝑡𝑟𝑢𝑛𝑡

𝑛𝑡

+ ∑ 𝐶𝑅𝐷𝑡𝑟𝑑𝑛𝑡

𝑛𝑡

 

 

          𝑠. 𝑡. 

∑ 𝑝𝑛𝑡
𝑇

𝑡

+ ∑ 𝐼𝐺𝑛𝑖

𝑖

+ ∑ 𝑝𝑛𝑠𝑛𝑖

𝑖

= ∑ 𝐷𝑛𝑖

𝑖

    ∀𝑛 

∑ 𝑟𝑢𝑛𝑡

𝑡

≥ 𝐷𝑈𝑛    ∀𝑛 

∑ 𝑟𝑑𝑛𝑡

𝑡

≥ 𝐷𝐷𝑛    ∀𝑛 

𝑢𝑐𝑛𝑡 − 𝑢𝑐𝑛−1,𝑡 = 𝑠𝑢𝑛𝑡 − 𝑠𝑑𝑛𝑡     ∀𝑛𝑡 

∑ 𝑠𝑢𝑛′𝑡 ≤ 𝑢𝑐𝑛𝑡

𝑛

𝑛′=𝑛+1−𝑇𝑈𝑡

    ∀𝑛𝑡 

∑ 𝑠𝑑𝑛′𝑡 ≤ 1 − 𝑢𝑐𝑛𝑡

𝑛

𝑛′=𝑛+1−𝑇𝐷𝑡

    ∀𝑛𝑡 

𝑝𝑛𝑡
𝑇 = 𝑝𝑛𝑡 + 𝑃𝑡𝑢𝑐𝑛𝑡 + ∑ 𝑃𝑆𝐷𝑛′𝑡𝑠𝑑𝑛−𝑛′+1,𝑡

𝑇𝑆𝐷𝑡

𝑛′=1

+ ∑ 𝑃𝑆𝑈𝑛′𝑡𝑠𝑢𝑛−𝑛′+1+𝑇𝑆𝑈𝑡,𝑡

𝑇𝑆𝑈𝑡

𝑛′=1

    ∀𝑛𝑡 

𝑝𝑛𝑡 + 𝑟𝑢𝑛𝑡 ≤ 𝑢𝑐𝑛𝑡(𝑃𝑡 − 𝑃𝑡) − 𝑠𝑑𝑛+1,𝑡(𝑃𝑡 − 𝑆𝐷𝑡) − 𝑠𝑢𝑛+1,𝑡(𝑃𝑡 − 𝑆𝑈𝑡)    ∀𝑛𝑡 

𝑝𝑛𝑡 − 𝑟𝑑𝑛𝑡 ≥ 0    ∀𝑛𝑡 

𝑝𝑛𝑡 − 𝑝𝑛−1,𝑡 + 𝑟𝑢𝑛𝑡 ≤ 𝑅𝑈𝑡     ∀𝑛𝑡 

𝑝𝑛𝑡 − 𝑝𝑛−1,𝑡 − 𝑟𝑑𝑛𝑡 ≥ −𝑅𝐷𝑡    ∀𝑛𝑡 

𝐹𝑘 ≤ ∑ 𝑄̃𝑘𝑖 ( ∑ 𝑝𝑛𝑡

𝑡∈𝛺𝑖

+ 𝐼𝐺𝑛𝑖 − 𝐷𝑛𝑖)

𝑖≠𝑠

    ∀𝑛𝑘 

𝐹𝑘 ≥ ∑ 𝑄̃𝑘𝑖 ( ∑ 𝑝𝑛𝑡

𝑡∈𝛺𝑖

+ 𝐼𝐺𝑛𝑖 − 𝐷𝑛𝑖)

𝑖≠𝑠

    ∀𝑛𝑘 

(39) 
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4 Alignment with Sustainable Development Goals 

The Sustainable Development Goals (SGDs) are a set of 17 global goals established by 

the United Nations General Assembly in 2015 [53], aiming to “achieve a better and more 

sustainable future for all by 2030.” Two years later, specific targets and indicators were 

assigned to each goal in order to facilitate addressing these objectives and measuring the 

achieved impact [54]. 

This project seeks to shed some light on understanding such a studied optimization 

problem as the unit commitment. The possibility of developing models that can explain 

how optimal dispatches are obtained and which are the critical variables of the problem 

can become a valuable tool for decision-making in the path towards a more sustainable 

power sector.  

Subsequently, since the power sector is a cornerstone to fight climate change and achieve 

global sustainable development, this project can be associated with three interrelated 

Sustainable Development Goals: 
 

• Goal 7: Affordable and clean energy 

This goal seeks to “ensure access to affordable, reliable, sustainable, and modern 

energy for all.” To achieve this purpose, it will be necessary to increase the global 

share of renewable generation through increasing investment in clean energy 

infrastructure and energy efficiency. However, the high integration of renewable 

generation sources into power systems often requires significant network 

reinforcement and can entail challenging stability issues due to its intermittent 

nature. These kinds of issues make system operation even more necessary than 

before. Therefore, understanding how integrating more intermittent generation 

into power systems can impact the behavior and optimal operation of the system 

can lead to more efficient, fair, and reliable decisions. 

 

• Goal 11: Sustainable cities and communities 

SDG 11 encourages countries to “make cities and human settlements inclusive, 

safe, resilient, and sustainable.” Many different dimensions are considered by this 

goal, among which achieving more sustainable cities and reducing their 

environmental impact are the ones that can be associated with this project. 

Distributed generation will play a key role in decarbonizing cities. Similar to the 

previous goal, integrating these resources will require significant investments and 

an efficient operation of power systems. Consequently, developing models to 

explain how UC optimal solutions are obtained will also contribute to this 

Sustainable Development Goal. 

 

• Goal 13: Climate action 

Finally, the climate action goal urges countries to “take urgent action to combat 

climate change and its impacts by regulating emissions and promoting 

developments in renewable energy.” As the United Nations described this goal, 
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one of the essential pillars for combating climate change is reducing greenhouse 

gas emissions through the transition to renewable generation sources. Therefore, 

this objective is directly linked to what is indicated in SGD 7, which is committed 

to enhancing clean energy sources, and everything that was mentioned for that 

goal is also applicable in this case. 

 

                           

Figure 14: Main Sustainable Development Goals related to the project (7, 11, and 13). 
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5 Methodology 

The prediction of UC optimal solutions can be addressed from multiple perspectives, as 

described in section 2.2. However, since we would like our model to explain the 

resolution of the unit commitment problem and how it comes up with its solutions, we 

will approach the problem as a supervised learning task, relying on the algorithms 

presented in section 2.2.4. With this purpose, we will implement a set of regression and 

classification algorithms in order to predict the most relevant outputs of the unit 

commitment, such as the commitment and production of thermal generators, or which 

power lines are constrained. 

In a broad sense, we propose developing surrogate models, relatively aligned with the 

concept defined in section 2.2.3 but whose purpose is to replace an optimization model 

instead of a complex ML algorithm. The models therein described aim to replicate the 

behavior of another ML model (a black box), which has been trained on original data. In 

such cases, there is the possibility to directly use an interpretable model instead, 

eliminating the need for an auxiliary algorithm. However, this possibility does not exist 

in the case of the unit commitment since its optimal solutions obtained by solving the 

corresponding optimization problem are necessary to train the ML model. The only way 

to avoid an explanatory model relying on an original UC model would require 

implementing a transparent optimization model that can naturally explain how it 

generates the optimal schedules, which not only is outside the scope of this work but also 

entails exploring a completely new branch of optimization. 

Therefore, the outputs of the UC model can be considered the real outcomes we are 

seeking to predict (and not only to explain), meaning that the development of an IML 

model applied to the UC problem shares characteristics with both intrinsic interpretable 

and surrogate models.  

In this chapter, the methodology followed to implement such interpretable models will be 

described, including the processing of the necessary dataset. The entire work has been 

entirely carried out in Python 3.8.5, mainly relying on NumPy, pandas, and scikit-learn 

libraries.  

 

5.1 Data processing 

5.1.1 Input variables 

Original data used to train machine learning models seldom presents the necessary format 

to carry out the intended task and, therefore, require to be previously processed. This is a 

critical stage in the elaboration of ML models as it can considerably impact their 

capability to infer relationships from the input data and, in the end, the performance of 

the models.  
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Data processing usually includes multiple steps such as outlier detection, instance 

selection, handling of missing values, feature normalization and transformation, feature 

selection, or feature extraction [55]. In the context of this project, the input data to be used 

by the model will need to be built from the input information generated for the 

optimization problem (section 3.1.1), which is already a clean dataset. Therefore, we can 

skip the first three of the mentioned steps and directly dive into the remaining ones. 

From all the information employed by the model, e.g., intermittent generation, demand, 

thermal generators’ characteristics, and network parameters, only the inputs varying 

across the different time periods and scenarios will provide useful information for the 

model. Intermittent generation (𝐼𝐺𝑠𝑛𝑖) and demand (𝐷𝑛𝑖) both satisfy this requirement 

and, thus, will be selected as the basis for our dataset. This means that the model will not 

be provided with knowledge about the parameters of the network topology and its 

generators, even though they have a decisive influence on the resulting solutions. 

Consequently, the IML model will be network-dependent, and its validity will be 

restricted to the original parameters employed to solve the scenarios from which the ML 

model will be trained. 

We will then use these variables to compute the net demand at each of the nodes where 

there is a wind generation unit (𝑵𝑫𝒊), which constitutes a more suitable set of features 

for the model since it represents the energy that needs to be fulfilled by thermal 

generators (40). The total net demand of the system (𝑵𝑫𝑻) will also be included in the 

input features (41) since this is likely to become a significant variable of the model due 

to its relevance in the solution of the UC problem when no network constraints are active. 

Moreover, this will be the feature employed to build the input matrix for the single-node 

UC problem, as the nodal decomposition of the net demand is not relevant for this task. 

𝑁𝐷𝑠𝑛
𝑖 = 𝐷𝑛𝑖 − 𝐼𝐺𝑠𝑛𝑖       ∀𝑠, 𝑛, 𝑖 ∈ Ω𝐼𝐺 (40) 

𝑁𝐷𝑠𝑛
𝑇 = ∑ 𝐷𝑛𝑖

𝑖

− ∑ 𝐼𝐺𝑠𝑛𝑖

𝑖

     ∀𝑠, 𝑛     (41) 

Each of the resulting features presents a different range of values, particularly the system 

net demand. This variety of feature scaling can negatively impact the performance of 

several machine learning algorithms and should be normalized [56]. In this case, only the 

scaling of the input features has been carried out by dividing by the maximum absolute 

value of the feature since we are interested in preserving the sign of the original variable: 

𝑛𝑑𝑠𝑛
𝑖 =

𝑁𝐷𝑠𝑛
𝑖

max
𝑠′,𝑛′

(|𝑁𝐷𝑠′,𝑛′
𝑖 |)

      ∀𝑠, 𝑛, 𝑖 ∈ {𝑇, Ω𝐼𝐺} (42) 

With these scaled features, we could already build a simple input matrix with which to 

train our machine learning model. However, the temporal interdependence between time 
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periods is one of the main challenges of UC problems, especially given the ramps and 

trajectory constraints that are being modeled in the presented case study. This is, in fact, 

the major difficulty faced by surrogate models that need to predict each hour separately 

as if they were not related to each other.  

To mitigate this problem, information from adjacent hours can be provided to the model 

so as it can capture intertemporal relationships. More precisely, we will include the 

variation of the net demand at the three previous and three following periods relative to 

the net demand at the period for which the output will be predicted (43). This will be 

carried out for both wind generation nodes (𝚫𝑵𝑫𝑖,𝑗) and the whole system (𝚫𝑵𝑫𝑇,𝑗).  

The problem with shifting the net demand features is that there is not information to 

perform these calculations for the first and last periods of the scheduling horizon. This is 

not an issue for certain machine learning algorithms such as decision trees and other tree-

based ensembles, but most algorithms cannot handle missing data, e.g., linear regression 

and logistic regression.  

Consequently, depending on the model that will be used to predict the desired outcomes, 

we will follow different imputing strategies: if the model can deal with missing data, we 

will assign a NaN value, representing that the true value is missing. Otherwise, we will 

impute 0 –this is equivalent to assuming that the net demand is kept equal to the 

corresponding first or last period in the periods outside the optimization horizon, which 

is the best assumption we could make. 

𝑖𝑓 (𝑛 + 𝑗 ≥ 1 ) 𝑎𝑛𝑑 (𝑛 + 𝑗 ≤ 24 ): 

Δ𝑁𝐷𝑠,𝑛
𝑖,𝑗

= 𝑁𝐷𝑠,𝑛+𝑗
𝑖 − 𝑁𝐷𝑠,𝑛

𝑖       ∀𝑖 ∈ {𝑇, Ω𝐼𝐺}                

𝑒𝑙𝑠𝑒: 

        Δ𝑁𝐷𝑠,𝑛
𝑖,𝑗

= 𝐼𝑀𝑃      ∀𝑖 ∈ {𝑇, Ω𝐼𝐺}  

                                                                                          ∀𝑠, 𝑛, 𝑗 ∈  {±1, ±2, ±3} 

(43) 

After constructing these new features, we have built an input matrix (𝑋𝑁𝐶) where rows 

are identified by the corresponding scenario and time period, and columns correspond to 

all the net demand features that have been created. For the single-node problem, only 

system-wide features will be needed to build the input matrix (𝑋𝑆𝑁). 

𝑋𝑁𝐶 = 𝑐𝑜𝑛𝑐𝑎𝑡
𝑖∈{𝑇,Ω𝐼𝐺}

([𝚫𝑵𝑫𝑖,−3, 𝚫𝑵𝑫𝑖,−2, 𝚫𝑵𝑫𝑖,−1, 𝑵𝑫𝑖, 𝚫𝑵𝑫𝑖,1, 𝚫𝑵𝑫𝑖,2,  𝚫𝑵𝑫𝑖,3]) 

𝑋𝑆𝑁 = [𝚫𝑵𝑫𝑇,−3, 𝚫𝑵𝑫𝑇,−2, 𝚫𝑵𝑫𝑇,−1, 𝑵𝑫𝑇 , 𝚫𝑵𝑫𝑇,1, 𝚫𝑵𝑫𝑇,2,  𝚫𝑵𝑫𝑇,3] 

(44) 
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As a result, 𝑋𝑆𝑁 will be composed of 7 variables, whereas the number of input features 

obtained for the network-constrained UC problem (𝑋𝑁𝐶) will range from 28 in the low 

wind penetration scenarios (3 wind generation nodes) to 77 in the high wind penetration 

scenarios (10 wind generation nodes). To avoid the loss of interpretability of the IML 

model that this large number of features could imply, an initial feature selection will be 

included as part of the model in order to restrict its dimensionality. 

 

5.1.2 Output variables and equations 

The results obtained from the Unit Commitment optimization model comprise both the 

value of the decision variables of the optimal solution and the marginal value of the dual 

variables of the problem constraints. These results are presented in Table 1 and Table 2, 

which include the number of dimensions and values per scenario for each type of output, 

their description, and the unit in which they are defined. 

 

Table 1: Output variables generated by the UC optimization model. 

Variable 
Number 

of dim. 
Count      

(network) 
Count    

(single node) 
Description Unit 

v2ndResDW 2 1296 2nd reserve down allocation GW 

v2ndResUP 2 1296 2nd reserve up allocation GW 

vCirPF 4 4464 0 Power flow through a line GW 

vCommit 2 1296 Commitment of the unit [0-1] - 

vConsump 2 1296 Consumption of the unit GW 

vENS 2 2832 Energy not served per node GW 

vIG 2 2832 Intermittent generation per bus GW 

vProduct 2 1296 Output of the unit GW 

vProduct1 2 1296 Output of the unit above min. load GW 

vShutDown 2 1296 Shutdown of the unit [0-1] - 

vStartUp 2 1296 Startup of the unit [0-1] - 

vTotalVCost 0 1 Total variable cost of the system M$ 
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Table 2: Output equations obtained from the UC optimization model. 

Equation 
Number 

of dim. 
Count      

(network) 
Count    

(single node) 
Description Unit 

e2ReserveDw 1 24 Downwards operating reserve req. GW 

e2ReserveUp 1 24 Upwards operating reserve req. GW 

eBalance 1 0 24 System load-generation balance GW 

eBalanceBus 2 2832 0 Load-generation balance per bus GW 

eCirPF 4 4464 0 Maximum power flow through a line GW 

eMaxOutput 2 1296 Maximum output of a committed unit GW 

eMinOutput 2 1296 Minimum output of a committed unit GW 

eMinTDown 2 1296 Minimum down time  - 

eMinTUp 2 1296 Minimum up time - 

eRampDw 2 1296 Maximum ramp down GW 

eRampUp 2 1296 Maximum ramp up GW 

eTotOutput 2 1296 Total output of a committed unit        GW 

eUCStrShut 2 1296 
Commitment-startup-shutdown 

relationship 
- 

 

These outputs of the UC problem will be the targets of the IML models that will be 

described later. Therefore, we will need to adapt their format into one that suits the 

machine learning algorithm. The data extracted from the UC model presents the following 

generic structure, which is shared by both variables and equations: 

 

Table 3: Output format example of the UC variables and equations. 

Sce. Result dim1 dim2 dim3 dim4 
Lower 

bound 
Value 

Upper 

bound 
Marginal 

sc001 vProduct1 h002 gen03   0 0.015 0.025 0 

sc125 vCommit h005 gen21   0 1 1 0.001 

sc010 vCirPF h017 bus108 bus109 c1 -0.175 0.027 0.175 0 

sc200 eMinOutput h012 gen09   0 0 inf 0 

sc001 eRampUp h001 gen09   -inf 0.020 0.025 0 

sc365 eCirPF h023 bus001 bus003 c1 2.796 2.796 2.796 0.012 

 

According to the given structure, time periods will be defined by their scenario, and the 

first dimension, which is always the hour (except for the total cost of the system, 

vTotalVCost, not considered in this project). Then, each of the variables and equations 

whose type is reflected in the Result column are defined by the remaining dimensions, 

whenever they apply. It will be convenient to normalize these target variables so that we 

can handle together multiple variables of the same type, regardless of their original range. 

The normalization procedure that has been carried out varies depending on the type of 

target:  
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• Variables 

Decision variables are expressed as values (𝑣) that can range from their corresponding 

lower bound (𝐿𝐵𝑣) to their upper bound (𝑈𝐵𝑣), being both of them constant for each 

variable. Therefore, we will normalize these values employing their corresponding 

bounds: 

𝑣𝑖
𝑛𝑜𝑟𝑚 =

𝑣𝑖 − 𝐿𝐵𝑣

𝑈𝐵𝑣 − 𝐿𝐵𝑣
 (45) 

The only exceptions will be binary variables, such as vCommit, since they do not need to 

be normalized, and vCirPF, as it is the only variable that can take both positive and 

negative values, and we would like to preserve its original sign. In this last case, the 

absolute value of both bounds is equal, and the normalized variable can be obtained by 

dividing its value by the corresponding upper bound: 

𝑣𝑖
𝑛𝑜𝑟𝑚 =

𝑣𝑖

𝑈𝐵𝑣
 (46) 

• Equations 

Regarding equations, we are interested in their Marginal value (𝑚), not the value of the 

equation itself, which is the one located in the Value column. In this case, there are no 

bounds that can be used to normalize them, so we will divide the values of each equation 

(grouping them by their dimensions, not just the type of equation) by their maximum 

absolute value. This will also preserve the sparsity of the original marginal values. 

Additionally, if all the observed values for a given dual variable were zero, then we would 

just assign zero to the variable since it would mean that the constraint is never active. 

𝑖𝑓 max
𝑗

(|𝑚𝑗|) > 0: 

𝑣𝑖
𝑛𝑜𝑟𝑚 =

𝑚𝑖

max
𝑗

(|𝑚𝑗|)
 

𝑒𝑙𝑠𝑒: 

𝑣𝑖
𝑛𝑜𝑟𝑚 = 0 

(47) 

Furthermore, we are commonly more interested in determining whether or not constraints 

are active in the optimal solution of the UC problem rather than in their specific marginal 

value. Employing regression models to obtain these kinds of insights might not 

satisfactorily yield the desired results since non-active constraints would frequently be 

assigned close-to-zero values but not zero, and a certain threshold would be needed. 

Instead, it would be more effective to directly address the issue as a classification 
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problem. For this reason, the dual variables of equations have also been converted to 

binary variables, creating an alternative target for the presented task. 

𝑖𝑓 𝑚𝑖 = 0: 

𝑣𝑖
𝑛𝑜𝑟𝑚 = 0 

𝑒𝑙𝑠𝑒: 

𝑣𝑖
𝑛𝑜𝑟𝑚 = 1 

(48) 

After normalizing the output data, the previous example would now present the structure 

displayed in Table 4. This structure will allow us to work indifferently with both variables 

and dual variables of equations. Thus, we will just use the term variables to refer to both 

of them from now on.  

Table 4: Normalized output example of the UC variables and equations. 

Sce. Result dim1 dim2 dim3 dim4 Norm. value 

sc001 vProduct1 h002 gen03   0.600 

sc125 vCommit h005 gen21   1 

sc010 vCirPF h017 bus108 bus109 c1 0.154 

sc200 eMinOutput h012 gen09   0 

sc001 eRampUp h001 gen09   0 

sc365 eCirPF h023 bus001 bus003 c1 0.128 

 

Finally, since we want the output of the ML model to be the value of a specific variable 

for a given time period, we would like the structure of the output data to fit the following 

scheme: {Scenario, hour} x {Result, dim2, dim3, dim4}. This can be easily achieved by 

unstacking the Result, dim2, dim3, and dim4 columns. 

 

5.2 Interpretable Unit Commitment model 

Once we have prepared the dataset, we can focus on developing the interpretable machine 

learning model. As mentioned before, this project proposes the implementation of 

multiple models that, as a whole, can predict all the UC variables of interest in a human-

understandable way. To this end, it will be necessary to develop both a regression model 

for continuous variables and a classification model for binary ones. 

There are countless alternatives to address this problem, with significant differences 

depending on the class of algorithms employed. The most straightforward approach 

would be to predict each variable separately, training an individual model for each of 
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them, and analyzing results independently. All the algorithms described in section 2.2.4 

could be used for this approach.  

However, the size of the problem would become rapidly unmanageable, a similar problem 

to having an excessive number of features. If we tried to separately predict the 

commitment and production of each of the 54 thermal generators; the power flows 

through the 186 power lines; and which are the active constraints in an optimal solution, 

the resulting complexity of the approach could hardly be described as interpretable. Such 

a procedure would only be reasonable if we wanted to explain particular UC variables but 

not the whole problem. 

Therefore, the most appropriate option would be developing multi-target models, 

enabling the joint prediction of all variables of the same type so that only one algorithm 

would be necessary to model each kind of variable. Moreover, this approach would also 

preserve the relationships between the multiple outputs, which is a very interesting 

attribute for the modeling of the unit commitment, as it was proved in [39]. If independent 

models are trained for each target variable, correlations between these variables are 

difficultly preserved and can result in unfeasible solutions. Employing a single model 

drastically reduces these kinds of issues, though they do not necessarily avoid them 

completely. 

Given these considerations, decision trees prove to be the most suitable of the described 

algorithms, allowing a common framework for both continuous and binary variables. In 

a broad sense, the decision tree will split the feature space and assign a particular 

combination of outputs to the scenarios belonging to each space partition. 

In addition, this algorithm has significant advantages over others, such as logistic and 

linear regression. For instance, UC is a highly complex problem in which data 

relationships are often nonlinear, and tree-based algorithms are more suited for such kinds 

of tasks. Furthermore, it will also be easier to represent and interpret the model, making 

it an excellent approach to accomplish the purpose of this project. 

Based on decision trees, we will propose some model extensions, aiming to either 

simplify the obtained solutions or extract additional information that may be relevant to 

understand UC optimal solutions. 

Lastly, we have divided the dataset into two parts: 80% of the scenarios will serve for 

selecting hyperparameters and training the model, and the remaining 20% to evaluate its 

predictive performance.  

It is important to stress the fact that we must randomly segment the dataset by complete 

scenarios and not by individual periods when carrying out the mentioned division. The 

reason is that the performance of a model should never be assessed using samples related 

to others from the training dataset (meaning that they share some kind of information) 

since this situation could not occur in reality and, hence, the resulting performance would 
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not be representative. This is a common issue in machine learning tasks popularly known 

as leakage and needs to be avoided. 

 

5.2.1 Feature selection 

The first step will be the feature selection in the case of the network constrained unit 

commitment. As mentioned above, the number of input features will range from 28 to 77, 

which can substantially hamper the interpretability of the model. The goal of this step 

will be to reduce this number to only 15. 

In order to select these variables, we will use the feature importance tool (section 2.2.3) 

of a random forest model, which is usually able to achieve reasonable results without the 

need to optimize its hyperparameters. We will train the random forest on the set of outputs 

we want to predict, introducing all the available input variables. The algorithm will infer 

relationships between these inputs and the outputs, assigning importance values to each 

of the features.  

Using these values, we will choose the 15 most relevant features for the RF and discard 

the others. Since this process is carried out for each type of output to be predicted, the 

resulting feature importances will differ, and a different input matrix for each model will 

be obtained.  

Finally, random forests have the advantage of being based on decision trees since their 

implementation is based on the combination of multiple DTs trained with the same 

outputs. Consequently, the extracted variables will be closely related to the DT's most 

explanatory variables for each task. 

 

5.2.2 Hyperparameter selection 

As introduced at the beginning of this chapter, the machine learning model for both 

regression and classification tasks will be a multi-target decision tree, implemented using 

the scikit-learn Python package. Even though we could directly fit the models with the 

training data, the resulting trees would most likely have an unmanageable dimension, and 

their performance could be far from optimal due to the overfitting of the training set. To 

avoid these undesired results, we must carefully choose the hyperparameters of the 

algorithm, which are the parameters that control its learning process. 

This selection has two essential factors. First, we need to artificially constrain the 

complexity of the algorithm in order to ensure its interpretability. As introduced in section 

2.2.4.3, the main parameter controlling the complexity of decision trees is the maximum 

depth. Therefore, we must define a range of values for this parameter that will result in a 

sufficiently interpretable model.  
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For this particular application, we will consider that an interpretable decision tree should 

have a depth lower than or equal to 6. Nonetheless, we will analyze the results with up to 

a maximum depth of 10 since this will allow us to quantify the accuracy that we could 

obtain if we did not restrict the depth of the algorithm. Additionally, the minimum value 

will be set to 3, as lower values will not be able to achieve satisfactory results. 

Second, we want the model to generate as accurate predictions as possible, respecting the 

ranges of the values we want to assign to the mentioned parameters. This is achieved by 

tuning the model hyperparameters. Hyperparameter tuning consists of training and 

evaluating an ML model using different combinations of hyperparameters in order to 

select the one resulting in the best performance on data that has not been employed to 

train the model.  

Besides the maximum depth, we will consider three additional hyperparameters. The first 

of them will be the maximum number of leaves, strongly related to the complexity and 

interpretability of the algorithm, as it restricts the number of feature space partitions. It is 

important to note that the number of leaf nodes in a fully grown tree is equal to 

2𝑚𝑎𝑥.  𝑑𝑒𝑝𝑡ℎ, so setting a greater value would have no effect on the learning process as the 

maximum depth constraint would always apply before. Therefore, the allowed values for 

such parameter will be limited to the maximum value corresponding to each depth, and 

its minimum value will be set to 16. 

Then, we will include the minimum number of samples per leaf, which restricts the 

minimum number of training instances that can be assigned to a terminal node. This 

parameter seeks to prevent the algorithm from learning non-general relationships, which 

could minimize the training error but yield worse results for out-of-sample data. Unlike 

the previous cases, the selection of this value needs to be carried out considering the size 

of the training set. For this application, the allowed values will range from 2 to 200. 

The last hyperparameter that will be considered will be the minimal cost-complexity 

parameter. Once the decision tree has been trained, this hyperparameter is used to remove 

the subtrees resulting in an overall impurity decrease lower than the value defined for it. 

Thus, it only allows the model to learn the most explanatory relations. The minimum and 

maximum bounds selected for this parameter will be 10−8 to 10−4, respectively. 

These last hyperparameters are not explicitly related to the interpretability of the tree 

(even though they can also constrain its depth and number of nodes), but they have a 

crucial role in the generalization capacity of the algorithm since they prevent it from 

overfitting the training set, positively impacting its predictive accuracy. 

The selected bounds for the considered hyperparameters are summarized in Table 5, 

additionally including their type of variable, i.e., integer or continuous. 
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Table 5: Decision tree hyperparameters and their allowed values. 

Hyperparameter Minimum Maximum Type 

Max. depth 3 10 integer 

Max. leaf nodes 16 2max. depth integer 

Min. samples per leaf 2 200 integer 

Cost-complexity param. 10-8 10-4 continuous 

 

The most straightforward approach to perform hyperparameter tuning are grid search, 

which consists of the exhaustive evaluation of all the possible combinations resulting 

from some pre-defined values for the hyperparameters, and random search, which 

randomly evaluates only a specified number of these combinations. However, they are 

computationally expensive as the number of possible combinations exponentially grows 

with the number of predefined values and will not necessarily yield the optimal results 

due to the need for discretizing the hyperparameter space [57].  

Alternatively, the Bayesian optimization approach is usually able to find the optimal 

hyperparameters in significantly less time than the previous approaches. This approach 

analyzes the performance achieved by previously evaluated combinations of 

hyperparameters and maps the remaining hyperspace by estimating the probability of 

other possible combinations to yield a better result than the best performance achieved so 

far, and evaluates the most promising one. As a result, the algorithm can only focus on 

the best-performing hyperparameter values, avoiding losing time with ineffective 

combinations. Besides, hyperparameters do not need to be discretized into a few possible 

values since the evaluation space is only defined by its bounds, as we have defined them 

previously [57]. 

However, we are not only interested in obtaining the best performance of the model, but 

rather we would like to analyze how does the performance vary with the complexity of 

the decision tree or, more precisely, with its maximum depth. Therefore, we will carry 

out a Bayesian optimization for each maximum depth value. This will allow us to estimate 

the best expectable results depending on the depth of the decision tree and select the final 

combination of hyperparameters for each type of output, considering both expected 

accuracy and interpretability. 

Lastly, the analysis of these hyperparameters will be carried out using cross-validation, 

removing the need to use a portion of the data only for this purpose. This method splits 

the training set into k parts or folds, usually between five and ten, in the same way as we 

did for the training and test sets. Starting from these partitions, the algorithm is iteratively 

trained using all but one of the folds, and the validation prediction is made on the left-out 

fold. The validation error will be obtained by averaging the errors obtained in each of 

these iterations. This way, we can assess the model performance on out-of-sample data 

while still using the training set. The selection of the optimal hyperparameters for the 

presented task will be carried out using six folds. 
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After analyzing the results obtained for each combination of hyperparameters, we will 

select the ones yielding the best balance between accuracy and interpretability. With these 

optimal hyperparameters, we can train the interpretable model using the complete training 

set, and finally, assess its performance on the test set. 

 

5.2.3 Linear regression model tree 

Nevertheless, in this project, we propose an extension of the previous model for the 

regression tasks (continuous outputs), which can bring a very different perspective to the 

modeling of the UC problem. One of the major disadvantages of decision trees is the lack 

of sensitivity in their terminal nodes since they are assigned with a single value. To 

overcome this limitation, we propose the training of linear regression models at each 

terminal node, which can approximate some of the specific relationships existing in each 

hyperspace partition. For example, if there is a unit that is marginal for the partition 

corresponding to one terminal node, the output of that generator will have a direct 

relationship with the net demand, and a linear regression could capture this effect.  

The use of additional algorithms on the leaves of a decision tree is known as a model 

tree [58] and is a concept close to the idea of a piecewise linear regression in a 

multidimensional space but without requiring output continuity between adjacent 

partitions. Figure 15 provides an illustrative example of a model tree based on linear 

regression, similar to the one we will try to implement in this project [59]. 

 

Figure 15: Graphical representation of a linear regression model tree for a one-dimensional problem [59]. 
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Implementing a model tree in the strict sense must carry out the partitions of the feature 

space, taking into account the linear regressions that will result at its nodes so that it can 

actually perform the splits that will result in the lowest total error. This is precisely what 

is illustrated in the preceding figure. However, evaluating the optimal splits in a model 

tree has a remarkably higher computational cost than that of a simple decision tree or just 

training the complementary model itself. This, in practice, limits the number of options 

that the model is allowed to evaluate before selecting the best split [59].  

Additionally, model trees are not a widespread class of algorithms, and few 

implementations are available. Tests carried out with the most complete implementations 

available, such as the one found in [59], have not yielded satisfactory results comparable 

to those of a simple decision tree.  

In consequence, the implementation carried out in this project will consist of training 

linear regressions at the terminal nodes of a previously built decision tree regressor, 

significantly simplifying the training process. Even though the terminal nodes of the 

decision tree will not have been optimally selected for subsequently training linear 

regressions, the information extracted from these models will still be very useful to assess 

the relationship between inputs and outputs in the different partitions of the feature space 

and understand the corresponding optimal solutions of the UC problem. 

However, it is important to note that this technique runs the risk of considerably 

difficulting the interpretability of the model, particularly when an excessive number of 

variables are included in the linear regressions. It should be noted that, by including 𝑚 

variables in the linear regression, the number of parameters located at the terminal nodes 

is multiplied by 𝑚 + 1 (due to the intercept) in comparison to the original tree. This means 

that a decision tree with linear regressions with a single variable and the intercept at its 

terminal nodes would have a complexity comparable to that of a tree with one more level. 

Nevertheless, the information provided by the linear regression could be more valuable 

than that of an additional tree level.  

Considering the above, we propose using a single variable at each node, even though 

more variables could be employed. The variable to be selected will not be common to all 

nodes since this would substantially limit the effectiveness of this extension. Instead, we 

will look for the most explanatory feature at each node, i.e., the one resulting in the 

smallest validation error. 

 

5.2.4 Terminal nodes clustering 

The development of the decision tree classifier, used to predict the binary variables of the 

unit commitment, will be essentially identical to the regression model except that, in this 

case, a model tree will not be built from it. 

Instead of integrating an additional model at the terminal nodes to provide a different sort 

of interpretability, we will focus on facilitating the visualization of the output variables 
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of each node and even reducing the number of different output combinations. As a result, 

we can make the decision tree much easier to understand, and thanks to this, we could 

assume a greater depth of the tree. 

First, due to the binary nature of the output variables, multiple terminal nodes of the 

decision tree classifier will likely have the same combination of outputs. Consequently, 

it would be much simpler –and more interpretable– to assign each existing combination 

of output variables an identifier and represent these unique outcomes in a look-up table, 

thus avoiding repeatedly representing the same outputs in different nodes and simplifying 

the identification of these equivalent nodes. 

Moreover, in other cases, there will be leaves whose output is practically identical to those 

of other terminal nodes. Therefore, in this project, we propose applying a clustering 

algorithm to the outputs of the model in order to group those that are nearly equal and 

thus further reduce the dimension of the model. The selected algorithm for carrying out 

the clustering of terminal nodes will be K-modes, which is a modified version of K-means 

that allows clustering data with categorical instead of numerical features. K-modes uses 

the Hamming distance to measure the similarity of data points which computes the 

number of positions where two arrays of the same length are different [60]. 

Finally, this idea can also be applied to the output variables themselves that are totally or 

highly correlated, which is the circumstance, for instance, of some generators' 

commitment status. This is actually a similar strategy to the one implemented in [42] 

(section 2.3), where multiple variables were clustered to reduce the number of decision 

variables of the UC optimization problem.  

However, it is particularly important to note that it would not be appropriate to perform 

the aggregation of variables before training the model since this would reduce the weight 

of those variables in the multi-target objective function and could involuntarily 

undermine the model's accuracy as a whole.  

Finally, we will gather in the mentioned look-up table all the variables that have been 

grouped in this step.  

 

5.2.5 Decision tree representation 

The last phase of developing intrinsic interpretable models is their representation since 

their actual interpretability considerably depends on it. This is a crucial aspect because 

such models, if they are not provided with an understandable representation, will be 

equivalent to a black-box model, losing all their added value. 

Scikit-learn’s decision trees have many useful visualization functions that allow 

representing the resulting models after being trained. However, they have some 

limitations regarding the information that can be included in each node and are not 
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compatible with the extended regression and classification decision trees that have been 

presented in the previous sections. 

Therefore, a tool based on these functionalities has been carefully elaborated, allowing us 

to flexibly adapt the representation of the developed decision and model trees, which will 

be used to illustrate the results in the following chapter.  

Some of this tool’s features include, for instance, selecting the colors of the tree, the 

format of the leaves, whether to display the error or accuracy and the number of training 

samples at each node, the specific variables to be included, or whether to display them in 

a separate look-up table through the labeling of terminal nodes. 

 

 

 

  



 UNIVERSIDAD PONTIFICIA COMILLAS 
OFFICIAL MASTER'S DEGREE IN INDUSTRIAL ENGINEERING 

56 

 



 UNIVERSIDAD PONTIFICIA COMILLAS 
OFFICIAL MASTER'S DEGREE IN INDUSTRIAL ENGINEERING 

57 

6 Analysis of results 

The interpretable machine learning models presented in the previous section were trained 

using the training set (80% of the scenarios) and subsequently applied to predict the 

results corresponding to the test set (the remaining 20% of scenarios). 

In this section, the resulting outcomes for some representative variables, such as 

vProduct1, vCommit, vCirPF, and eMinOutput, will be studied. First, we will analyze 

and compare the feature importances obtained with the random forests for these variables.  

Second, we will evaluate the validation performance of the regression model relative to 

its depth in order to select an appropriate balance between interpretability and accuracy. 

Then, the resulting model will be compared to other approaches with different levels of 

interpretability, allowing us to assess how good the predicted outcomes are for each 

variable. Additionally, the model's performance will be compared with the one obtained 

for the single-node and low wind penetration scenarios to analyze the impact of these 

variations compared to the base case. The trained model will be represented together with 

specific terminal nodes in order to understand the behavior of the model tree. 

Finally, a similar process will be followed for the classification model. We will select a 

reasonable depth for an interpretable decision tree based on the validation performance. 

We will then analyze the impact of clustering terminal nodes and generators and represent 

the resulting models. 

 

6.1 Feature selection 

As explained in section 5.2.1, the number of input features for the network-constrained 

cases is too large to be handled by the IML. Therefore, we have carried a selection of the 

15 most relevant variables based on the feature importances extracted from random 

forests fitted on the training set. In the following, the results obtained for the 20 most 

significant features for the high wind penetration scenarios will be presented for each 

studied variable. 

Regarding the output of generators (vProduct1), Figure 16 shows that there is essentially 

one primary variable in the model, which is the total net demand of the corresponding 

period (Total ND [h]). This is a reasonable result because when generators’ output is not 

limited by any constraint, it will directly depend on the total net demand of the system. 

Following the total net demand, the main features correspond to the increase of total net 

demand in adjacent periods, which provide helpful information for the model to account 

for the load gradient constraints of generators. Lastly, we can also appreciate how the 

random forest algorithm considers node-related features. These will usually be related to 

areas of the network where power lines congestion is likely to happen, which would 
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constrain the generation of units located in those areas. However, the low relative 

importance of these variables makes it difficult to draw precise conclusions about them. 

 

 

 

Figure 16: Random Forest feature importances for vProduct1 in the network-constrained high wind penetration UC 

problem. 

 

In the case of the power flow through the lines (vCirPF), the main variable is again the 

total net demand in the corresponding period, as shown in Figure 17. This is due to the 

fact that, especially in nodes far from wind generation, the flow through power lines 

depends mainly on thermal generation, and this, in turn, on the total net demand, as 

explained above. However, after the previous one, the most relevant variables are not 

related to the total net demand but the net demand in the nodes with renewable generation 

in the corresponding period since the power flow through nearby lines will largely depend 

on it.  
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Figure 17: Random Forest feature importances for vCirPF in the network-constrained high wind penetration UC 

problem. 

 

Subsequently, Figure 18 presents the results obtained for the commitment of generators 

(vCommit). Unlike the previous cases, it is a binary variable, not a continuous one. In 

general, it can be seen how the importance of the variables is much more diluted. For 

example, total net demand is the most relevant variable, but its relative importance is 

much lower than in previous cases. This may be counter-intuitive since one might expect 

much greater importance of the variables related to total net demand, as was the case for 

vProduct1.  

However, as will be seen later, vCommit has relatively low variability for most 

generators. Analyzing the generators with the highest variability in more detail, it has 

been observed that these are generators close to wind generation. In these cases, the 

commitment of the generators is limited by the capacity of the power lines to evacuate 

energy when the renewable generation is very high, which explains why the variables 

associated with these nodes are of great importance in the model.  
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Figure 18: Random Forest feature importances for vCommit in the network-constrained high wind penetration UC 

problem. 

 

In addition to the above variables, we will also study the results obtained for the dual 

variable of the minimum generation constraint (eMinOutput), both in its continuous and 

binary form. The feature importances for both cases are shown in Figure 19 and Figure 20, 

respectively. The feature importances are very similar to those obtained for vProduct1 

and vCommit, respectively, and analogous reasoning can be applied. However, the results 

are more difficult to interpret globally since this constraint can be active regardless of 

whether the generator is connected or not. 
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Figure 19: Random Forest feature importances for eMinOutput in the network-constrained high wind penetration 

UC problem. 

 

 

Figure 20: Random Forest feature importances for eMinOutput (binary) in the network-constrained high wind 

penetration UC problem. 
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6.2 Regression model 

After selecting the main features to be used by the model tree for each of the outputs, we 

must select the combination of hyperparameters that will allow us to obtain an optimal 

balance between accuracy and interpretability. For this purpose, the validation 

performance of the model tree has been analyzed as a function of the depth of the tree on 

which the algorithm is based. 

The performance on each variable in the regression models will be evaluated using the 

root-mean-square error (RMSE), as it is one of the most common metrics to quantify the 

estimation error in continuous variables (49). Consequently, since each model has 

multiple outputs –as many as there are variables of each type–, the global performance of 

each model will be analyzed by computing the mean RMSE obtained for each output. 

𝑅𝑀𝑆𝐸 =   √∑ (𝑦̂
𝑖

− 𝑦
𝑖
)

2𝑁
𝑖=1

𝑁
 

(49) 

 

Applying this metric to the variables corresponding to vProduct1, we obtain the results 

presented in Figure 21. Additionally, the figure includes the mean RMSE obtained both 

by using a single decision tree for all outputs and one tree for each of them. 
 

 

Figure 21: Model tree and decision tree RMSE relative to its maximum depth for vProduct1 in the network-

constrained high wind penetration UC problem. 
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As can be seen in this figure, the model tree manages to significantly reduce the error 

compared to the case of a single decision tree, between 5 and 20%, approximately, 

depending on the depth. As the maximum depth of the tree increases, this difference is 

progressively reduced. One of the main reasons for this effect is that the tree itself begins 

to capture some of the linear relationships in the data. This is one of the main 

disadvantages of training linear regression a posteriori, rather than considering it during 

model training. If that were the case, better results could probably be achieved. 

Additionally, as the depth of the tree increases, the number of samples at the terminal 

nodes decreases, which reduces the information available for training the linear 

regressions, and their accuracy may be negatively affected. This effect can be solved 

simply by using a larger number of instances to train the model (if they are available or 

can be generated).  

An interesting fact to note from this graph is that the model tree can obtain better results 

than a decision tree with a higher depth. This is important because, as indicated in 

section 6.2, training linear regressions with one feature and an intercept at the terminal 

nodes could double the number of model parameters at these nodes, which also occurs 

when the maximum depth of the tree is increased by one level. However, the 

interpretability of both models is not necessarily comparable. On the one hand, in the case 

of the model tree, it is not required to split the node, thus avoiding the addition of a new 

condition at each branch, and the linear regression at a terminal node provides more 

relevant information than just the mean value of the leaves into which the node would be 

split. On the other hand, not all variables at each terminal node will have a linear 

relationship with the feature selected at that node. In these cases, the model tree will 

maintain the mean value of the previous decision tree, thus having no negative impact on 

the interpretability of the model. Considering the above, it can be concluded that the 

model tree can achieve a better balance between interpretability and accuracy than the 

decision tree itself. 

Additionally, the performance obtained by the model tree is comparable to that achieved 

by training a decision tree with the same maximum depth for each output. This difference 

is initially below 6%, and it is reduced as the depth increases, as the model tree has greater 

flexibility to capture the variability of the output. The comparison shown allows us to 

conclude that it would not be effective to train a decision tree for each variable (one model 

for each of the 54 generators) since this would imply an excessive and unmanageable 

complexity compared to the use of a single model tree with a greater level of depth, 

capable of obtaining results comparable to the previous ones, but with much lower 

complexity. 

Finally, using the results shown in Figure 21, the maximum depths of the model tree that 

would achieve the best balance between accuracy and interpretability would be either 5 

or 6. Of these options, the second one obviously yields better results, but its representation 

and interpretation would be relatively complicated, so the depth selected for the final 

model tree will be 5. 



 UNIVERSIDAD PONTIFICIA COMILLAS 
OFFICIAL MASTER'S DEGREE IN INDUSTRIAL ENGINEERING 

64 

 

Table 6 shows the set of hyperparameters selected for each of the regression models 

studied in this section. In all cases, the best results are obtained by training a fully-grown 

tree. On the contrary, the minimum samples per leaf and cost-complexity 

hyperparameters present a higher variability, depending on the generalization capacity 

needed in each case. 
 

Table 6: Selected hyperparameters for the regression models in the network-constrained high wind penetration UC 

problem. 

Hyperparameter vProduct1 vCirPF eMinOutput 

Max. depth 5 5 5 

Max. leaf nodes 32 32 32 

Min. samples per leaf 10 21  12 

Cost-complexity param. 6·10-7  2·10-7 3.5·10-7 

 

Using these hyperparameters, we can train the model with the full training set and 

estimate the test outcomes. To properly evaluate the suitability of the obtained results, it 

is not enough to simply compute the error made by the model. It should be put in context. 

To do so, we will compare these results with those obtained through alternative 

approaches. 

First, we will calculate the maximum error that we should expect in each of the tasks. 

This error is obtained by using the mean value observed in the training set as the 

prediction for each variable. If a model cannot improve this value (the worst case), it is 

completely useless. 

Secondly, we will compare the results with other interpretable models, which will allow 

us to address, from another perspective, the balance between interpretability and 

performance. In this case, the models will be a linear regression and a decision tree with 

the same depth as the model tree. 

Finally, we will compute the performance in the test set of a gradient boosting decision 

tree. GBDTs are not interpretable, but they are algorithms that usually achieve good 

results in a wide variety of tasks. Therefore, we will use it as a reference of what could 

be the minimum possible error for the given task. 

These results are summarized in Table 7. 
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Table 7: Performance of the developed model tree compared to other approaches for the network-constrained high 

wind penetration UC problem. 

 vProduct1 vCirPF eMinOutput 

Variable 
mean 

RMSE 

std 

RMSE 

mean 

RMSE 

std 

RMSE 

mean 

RMSE 

std 

RMSE 

Worst case 0.1353 0.1588 0.1269 0.0887 0.0910 0.0091 

Linear regression 0.0720 0.0798 0.0645 0.0518 0.0628 0.0033 

Decision tree (5) 0.0541 0.0659 0.0928 0.0686  0.0364 0.0021 

Model tree (5) 0.0496 0.0641 0.0732 0.0587  0.0327 0.0017 

GBDT 0.0401 0.0508 0.0510 0.0385 0.0295 0.0022 

 

As for vProduct1, the model tree yields the best result among the interpretable models, 

with a mean RMSE below the decision tree's and substantially lower than that of the linear 

regression. Analyzing the results from a general perspective, it can be observed that it 

achieves an error relatively close to that of the GBDT and almost three times lower than 

that of the worst case. Although the difference in performance relative to the GBDT is 

still notable, it is important to remember that this is a much more complex and non-

interpretable model, so the result obtained by the model tree can be considered reasonably 

good. Therefore, it can be concluded that this approach achieves an optimal balance 

between interpretability and performance. 

The case of eMinOutput is practically analogous to the previous one. The main difference 

is that both the decision tree and the model tree obtain results closer to the GBDT than 

with vProduct1, making this model even more appropriate. 

However, the results obtained for vCirPF are less promising. Even though the mean 

RMSE of the model tree is below the worst case’s, it is far from that of the GBDT. In 

fact, the linear regression obtains a better result for this set of outputs. This fact may seem 

surprising, but it should be remembered that the linear regression model is fitted with the 

whole set of input features, while the model tree chooses a single variable for each 

terminal node. This characteristic is a major limitation for this model since the flow 

through the power lines is a much more complex variable than those associated with 

generators. The model tree does not have enough flexibility to capture all the existing 

relationships in the data. In any case, although linear regression achieves better 

performance, the size of the problem (15 features with their corresponding parameters 

and intercept for each of the 186 outputs) substantially complicates the interpretability of 

the model, so it would not necessarily be optimal. 

Additionally, we can compare the above results with those obtained in the alternative UC 

problems defined in section 3. As shown in Table 8, the mean RMSE obtained when the 

impact of the network is neglected, is lower than in the base case. This is reasonable since, 

by eliminating the grid, the limitations that these may have on the operation of the 

generators are eliminated, and it will be easier to estimate these values. 
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Similarly, reducing the penetration of wind generation reduces one of the main sources 

of variability in the problem, which can also lead to limitations on the generators, both 

due to the load ramp and their influence on grid constraints. Therefore, it is reasonable 

that the results also improve in this alternative case. 
 

Table 8: Performance of the developed model tree in the proposed UC problem alternatives. 

 
vProduct1 vCirPF eMinOutput 

Variable 
mean 

RMSE 

std 

RMSE 

mean 

RMSE 

std 

RMSE 

mean 

RMSE 

std 

RMSE 

Single node HWP 0.0423 0.0567 ─ ─ 0.0295 0.0013 

Network-const. HWP 0.0496 0.0641 0.0732 0.0587 0.0327 0.0017 

Network-const. LWP 0.0409 0.0495 0.0536 0.0469 0.0308 0.0016 

 

Subsequently, we will represent the model tree developed for vProduct1, selecting some 

representative generators in order to illustrate its interpretability (Figure 22). In line with 

what was observed in the feature selection stage, most of the partitions of the input space 

are based on the total net demand features since they have the most influence on the output 

of the generators. The variables associated with specific nodes appear at the bottom of 

the tree, where the tree has been able to segment more local relationships, which only 

take place in specific partitions of the input space. 

Noteworthy in this figure is that not all outputs have a linear dependence on the variable 

associated with each terminal node. Consequently, the resulting model is quite sparse, 

which facilitates its interpretation since the previous value of the decision tree is 

maintained. 

Additionally, one can observe expression 𝑜𝑟𝑑(ℎ) > 𝑖, with 𝑖 ∈ {1,2,3}, as a criterion for 

tree partitioning. This is not because the period number is included as an input variable 

but because the model identifies that information is missing for certain variables and 

decides to segment the training samples when this occurs. Therefore, this logic is 

equivalent to that shown in the figure, with the cutoff time being dependent on the 

variable taken by the model. 
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Figure 22 (1): Developed linear regression model tree for vProduct1 in the network-constrained high wind penetration UC problem. 
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Figure 22 (2): Developed linear regression model tree for vProduct1 in the network-constrained high wind penetration UC problem. 
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gen 1:                 .  
gen 5:    .       .  
gen1 :    . 6     .52
gen15:    . 1     .6 
gen2 :                 .  
gen27:                 .31
gen35:    . 3     . 1
gen  :    . 2     .32
gen 5:    .11     . 6
gen5 :                 .  

ord  h    3 Total ND [h]     .7  

Total ND [h]     .56 Total  ND [h 2]      .315

Total  ND [h 2]      . 2 Total ND [h]     .62 

  16  

  :   Total  ND [h 3]

gen 1:                 .  
gen 5:    . 6     .61
gen1 :    . 1     . 2
gen15:                 .  
gen2 :    .6      .61
gen27:    .2      .  
gen35:    .       . 2
gen  :    .11     . 5
gen 5:    . 3     . 1
gen5 :                 .  

  17  

  :   Total  ND [h 2]

gen 1:                 .  
gen 5:   1.16     . 1
gen1 :    .       . 1
gen15:                 .  
gen2 :    .1      .77
gen27:    . 3    1.  
gen35:                 .  
gen  :    .7      .37
gen 5:    . 3     .  
gen5 :                 .  

  1   

  :   Total  ND [h 2]

gen 1:                 .  
gen 5:    .6      .7 
gen1 :    .21     . 6
gen15:                 .  
gen2 :    . 5     .  
gen27:                1.  
gen35:    . 2     . 1
gen  :    .3      .67
gen 5:    .13     . 3
gen5 :                 .  

  1   

  :   Total  ND [h 2]

gen 1:                 .  
gen 5:    .6      .  
gen1 :    . 2     .15
gen15:                 .  
gen2 :    .35     . 5
gen27:                1.  
gen35:    .       . 1
gen  :    .3      .  
gen 5:    .27     . 5
gen5 :                 .  

  2   

  :   Total  ND [h 2]

gen 1:   3. 3     .6 
gen 5:   6.       .  
gen1 :    . 1     .2 
gen15:    .71     .27
gen2 :   2.62     .1 
gen27:    .       .63
gen35:                 .  
gen  :    .57     .37
gen 5:    .5      .  
gen5 :                 .  

Total ND [h]     .5 5

  21  

  :   ND bus    [h]

gen 1:                 .  
gen 5:   1.22    1. 7
gen1 :    .51     .6 
gen15:                 .6 
gen2 :                 .  
gen27:                 .31
gen35:    .3      .  
gen  :                 .33
gen 5:    .12     .3 
gen5 :    . 5      . 1

  22  

  :   ND bus    [h]

gen 1:                 .  
gen 5:   1. 7    1. 5
gen1 :   1.31     . 6
gen15:    . 2     .6 
gen2 :                 .  
gen27:                 .31
gen35:    .75     .1 
gen  :                 .33
gen 5:                 .5 
gen5 :                 .  

Total ND [h]     .732 Total ND [h]     . 56

Total  ND [h 3]     . 2 Total  ND [h 3]     .  7

  23  

  :   Total  ND [h 3]

gen 1:                 .  
gen 5:    .15     .  
gen1 :    .       .3 
gen15:                 .  
gen2 :    .15    1. 1
gen27:                1.  
gen35:    .11      . 1
gen  :    .2      .  
gen 5:    .36     .23
gen5 :                 .  

  2   

  :   Total  ND [h 3]

gen 1:                 .  
gen 5:    .37     .  
gen1 :   2.1      .  
gen15:                 .  
gen2 :    . 1     .  
gen27:                1.  
gen35:                 .  
gen  :    .55     . 6
gen 5:   1.1      .1 
gen5 :                 .  

  25  

  :   ND bus    [h]

gen 1:                 .  
gen 5:    .      1.  
gen1 :    .3      .5 
gen15:                 .  
gen2 :    . 1    1.  
gen27:                1.  
gen35:    . 1     .  
gen  :    . 1     .  
gen 5:    .35     .27
gen5 :                 .  

  26  

  :   Total  ND [h 2]

gen 1:                 .  
gen 5:                1.  
gen1 :   1.       .6 
gen15:                 .  
gen2 :    . 5    1.  
gen27:                1.  
gen35:                 .  
gen  :    . 1    1.  
gen 5:   1.21     .27
gen5 :                 .  

Total  ND [h 3]     . 61 Total ND [h]     . 16

  27  

  :   ND bus    [h]

gen 1:                 .  
gen 5:    . 7    1. 1
gen1 :    .12     . 2
gen15:                 .  
gen2 :                1.  
gen27:                1.  
gen35:                 . 1
gen  :    . 1    1.  
gen 5:    .31     .5 
gen5 :                 .  

  2   

  :   Total  ND [h 2]

gen 1:                 .  
gen 5:                1.  
gen1 :    .15     . 2
gen15:                 .  
gen2 :                1.  
gen27:                1.  
gen35:                 .  
gen  :                1.  
gen 5:    .5      .62
gen5 :                 .  

  2   

  :   Total  ND [h 1]

gen 1:                 .  
gen 5:                1.  
gen1 :    .3      . 7
gen15:                 .  
gen2 :                1.  
gen27:                1.  
gen35:    . 2     . 1
gen  :    . 1    1.  
gen 5:    .27     .  
gen5 :                 .  

  3   

  :   Total  ND [h 2]

gen 1:                 .  
gen 5:                1.  
gen1 :                1.  
gen15:                 .  
gen2 :                1.  
gen27:                1.  
gen35:                 .  
gen  :                1.  
gen 5:                1.  
gen5 :                 .  
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Finally, we will briefly analyze the resulting linear regression models for some 

generators at certain terminal nodes in order to appreciate this model's advantages over 

a decision tree. 

In the first of these examples, Figure 23, we can see how the model tree is able to 

capture the linear relationship between the increase in the total net demand in period 

ℎ − 3 compared to period ℎ and the production of generator 27. The decision tree, on 

the contrary, could not capture this relationship. 

 

 

Figure 23: Representation of the relationship between vProduct1 [gen27] and Total ΔND [h+3] in node number 

1 of the model tree. 

 

Figure 24 and Figure 25 show the relationship between the output of generator 5 

relative to the net power demand at node 8, located in the same area as the generator, 

at two different terminal nodes. As can be seen, the linear regression of the model tree 

due to the distribution of the training data is practically identical, with the production 

increasing proportionally with the net demand at that node. This shows that this is a 

relevant relationship, which manifests itself in multiple partitions of the space. While 

this does not mean that both nodes are repeated, as differences are manifested in other 

variables, it shows that decision tree regressors may present redundancies in some sub-

trees. However, this is not usually a relevant problem in regression tasks. 
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Figure 24: Representation of the relationship between vProduct1 [gen05] and ND bus008 [h] in node number 5 

of the model tree. 

 

 

Figure 25: Representation of the relationship between vProduct1 [gen05] and ND bus008 [h] in node number 21 

of the model tree. 

 

Figure 26 illustrates another interesting case. The production of generator 15 is 

practically discrete and shows a clear non-linear relationship with the variation of the 

total net demand two periods later compared to the current period. When the total net 

demand decreases, the generator increases its output. Because of its discrete nature, an 
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appropriate partition of the node followed by the assignment of the corresponding 

mean values, which could be achieved by increasing the depth of the tree by one level, 

would result in nearly perfect modeling of this relationship. However, a tree with the 

depth shown is completely incapable of capturing that information. Therefore, linear 

regression is a truly effective solution for modeling relationships such as the one shown 

without the need to increase the depth of the base tree, even if the relationships are not 

strictly linear. 

 

 

Figure 26: Representation of the relationship between vProduct1 [gen15] and Total ΔND [h+2] in node number 

11 of the model tree 

 

Finally, Figure 27 and Figure 28 show how the output of the model tree exactly matches 

that of the decision tree when there is no relationship between the output and the 

variable assigned to that terminal node. This does not mean that the variable is not 

useful since it will be used to model other outputs within the same space partition. It 

simply has no impact on the analyzed outputs. 
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Figure 27: Representation of the relationship between vProduct1 [gen27] and ND bus008 [h] in node number 15 

of the model tree. 

 

 

Figure 28: Representation of the relationship between vProduct1 [gen01] and ND bus008 [h] in node number 21 

of the model tree. 
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6.3 Classification model 

In the same way that we have carried out the selection of hyperparameters for the 

regression model, we must repeat the process for the classification model. In this case, 

the metric used will be the accuracy, which measures the proportion of samples that 

have been correctly classified (50). Therefore, we will evaluate the performance of the 

models by calculating the average accuracy of the set of output variables. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   
𝑇𝑃 + 𝑇𝑁

𝑁
, (50) 

where 𝑇𝑃 stands for true positives, i.e., samples correctly labeled as 1, and 𝑇𝑁 stands 

for true negatives, i.e., samples correctly labeled as 0.  

Figure 29 shows the average accuracy of a single decision tree for all variables versus 

that obtained by training one model per variable. For lower depths, the performance of 

the single decision tree is significantly worse than that of the multiple DTs since the 

latter have much greater flexibility. However, this difference is drastically reduced as 

the maximum depth of the trees increases.  

Again, it can be concluded that a single decision tree is more effective in terms of 

interpretability and accuracy than the use of one tree for each variable, but in this case, 

the depth required to achieve comparable results is approximately two levels higher 

than that of the multiple trees.  

 

Figure 29: Decision tree accuracy relative to its maximum depth for vCommit in the network-constrained high 

wind penetration UC problem. 
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Analyzing the previous graph, a maximum depth of 6 has been chosen for the decision 

tree classifiers. Although the representation of a tree of these dimensions can be 

complicated, the clustering of terminal nodes will allow compacting the result in an 

easier way to analyze. 

The resulting hyperparameters for the models studied are shown in Table 9. The values 

obtained are relatively equivalent to those corresponding to the regression model, 

although taking into account that, in this case, the depth has been increased by one 

level. One element to note is that, in this case, the maximum depths do not correspond 

to those of fully-grown trees. Instead, a smaller maximum number of terminal nodes 

has been selected. 

 

Table 9: Selected hyperparameters for the classification models in the network-constrained high wind penetration 

UC problem. 

Hyperparameter vCommit eMinOutput 

Max. depth 6 6 

Max. leaf nodes 56 60 

Min. samples per leaf 12 6 

Cost-complexity param. 5·10^-7 1.5·10^-6 

 

Employing the hyperparameters shown in the previous table, we will train a decision 

tree for each output type. In this case, we do not intend to develop a model tree but to 

cluster both the terminal nodes and the output variables themselves. 

Figure 30 illustrates the average accuracy of the model as a function of the number of 

unique terminal node output combinations. As can be seen, from 44 unique nodes 

onwards, the accuracy remains constant. This implies that there are 12 terminal nodes 

whose output combinations are exactly the same as those of other leaves in the tree. 

This kind of redundancy, more typical in classification tasks, does have an important 

impact on the model and makes it difficult to understand. 

Additionally, the number of unique terminal nodes can be further reduced without 

significantly affecting the model's performance since the outputs in some of them are 

virtually identical. For vCommit, the number of unique terminal nodes chosen will be 

39. Interestingly, even though the depth of the tree is 6, the number of different nodes 

will be close to the 32 that a fully-grown decision tree of depth 5 would have, which 

has great benefits from an interpretation point of view. 
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Figure 30: Mean validation accuracy of the vCommit decision tree classifier relative to the number of unique 

terminal node output combinations. 

 

Similarly, Figure 31 shows the average model accuracy as a function of the number of 

generator clusters. From the beginning, it can be observed that approximately 30 of 

these generators show a commitment behavior identical to that of other generators in 

the system. Most of these are generators that remain disconnected in all the scenarios 

considered. In addition, we can find another 5 generators whose operation is very 

similar, so aggregating them will not imply a relevant loss of accuracy. Consequently, 

the number of generator clusters used for this model will be 19. 

Considering both factors, we have reduced the dimension of the decision tree from 56 

terminal nodes with 54 generators to only 39 unique terminal nodes with 19 generator 

clusters. This represents a reduction in the number of unique parameters at the terminal 

nodes of more than 75% compared to the original case, with virtually no change in 

model performance (the mean accuracy has been reduced by an amount well 

below 1%). 
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Figure 31: Mean validation accuracy of the vCommit decision tree classifier relative to the number of generator 

clusters. 

 

Using this methodology, we can evaluate the accuracy of the model using the test set. 

Additionally, we will compare these results with those obtained using alternative 

approaches (Table 10), as we did with the model tree. 

The minimum expected mean accuracy for each task will be obtained by calculating 

the accuracy we would obtain by predicting the mode of each of the output variables 

in the training set. 

As alternative interpretable models, we will include a logistic regression and the 

decision tree equivalent to the one elaborated, but without performing the clustering 

processes. Therefore, the latter results can be expected to be just slightly above those 

obtained by the proposed model since the impact of clustering is very small. 

Finally, we will use a GBDT as a reference of the accuracy that could be achieved 

using a model without any limitation in terms of complexity. 
 

Table 10: Performance of the developed decision tree classifier compared to other approaches for the network-

constrained high wind penetration UC problem. 

 
vCommit eMinOutput 

Variable 
mean 

accuracy 

std 

accuracy 

mean 

accuracy 

std 

accuracy 

Worst case 0.9102 0.1249 0.6376 0.0963 

Logistic regression 0.9662 0.0549 0.8927 0.0434 

Decision tree (6) 0.9677 0.0470 0.9219 0.0227 

Clustered DT (6) 0.9673 0.0481 0.9207 0.0242 

GBDT 0.9768 0.0334 0.9466 0.0176 
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Firstly, we can observe that the variability of vCommit is relatively low since the 

minimum expected accuracy is above 90%. The three interpretable models presented 

achieve very similar performance and are satisfactorily close to that obtained by the 

GBDT, which validates all the approaches. However, the interpretation of the logistic 

regressions is much less evident than that of the linear regressions and certainly less 

than that of the decision trees, so their presented performance would not justify their 

use. As for the two decision tree classifiers, it is clear that the former will achieve a 

slightly superior result. However, it can be seen that the difference between both 

models is practically negligible, so it can be concluded that the clustered decision tree 

presents by far the best balance between interpretability and accuracy. 

Second, we analyze the results obtained for the estimation of eMinOutput in its binary 

form, which indicates whether the associated constraint is active or not. In this case, 

the variability is much higher since the minimum accuracy has a considerably low 

value. Once again, the clustered DT manages to greatly improve this result and stands 

out as the optimal interpretable algorithm among those presented here. However, 

despite the fact that the resulting accuracy is not excessively far from that obtained by 

the GBDT in relative terms, it is a remarkable difference in absolute terms. 

Concerning the comparison of the results obtained for the different cases studied, the 

conclusions drawn are analogous to those of the regression model. Either by omitting 

the impact of the network or by reducing the penetration of wind generation, the 

operation of generators is less limited by external constraints, which facilitates the 

modeling of their production. In particular, Table 11 seems to indicate that the 

constraints due to renewable generation in the base case have a greater, or are more 

complicated to model than those of the power grid, since reducing this factor improves 

the resulting accuracy to a greater extent than eliminating the network. 

 

Table 11: Performance of the developed decision tree classifier in the proposed UC problem alternatives. 

 
vCommit eMinOutput 

Variable 
mean 

accuracy 

std 

accuracy 

mean 

accuracy 

std 

accuracy 

Single node HWP 0.9704 0.0493 0.9331 0.0245 

Network-const. HWP 0.9673 0.0481 0.9207 0.0242 

Network-const. LWP 0.9749 0.0437 0.9615 0.0261 

 

Finally, we will represent the clustered decision tree elaborated for the set of vCommit 

outputs. As can be seen in Figure 32, the clustered nodes have been identified with 

unique labels. The outputs associated with these terminal node clusters are shown in 

Table 12 as a look-up table. Finally, the mapping of the reference generators that are 

shown in the previous table allows identifying the rest of the generators in the same 

cluster is found in Table 13. 
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Analyzing the representation of the decision tree, it can also be seen that the system-

wide input features are the ones that dominate the initial partitions of the input space, 

with the features related to specific nodes appearing at the bottom of the tree, where 

they play an important role in identifying sets of scenarios that present similar 

behavior. 

Another relevant observation involves the duplicity of terminal nodes, which are 

generally (but not exclusively) found in nearby branches according to the tree 

representation. This is one of the usual problems of decision tree classifiers, as 

mentioned above. While in certain contexts, decision lists can overcome this problem 

by obtaining more interpretable results than a decision tree itself, this problem still has 

many unique nodes. For that purpose, a set of conditions would have to be defined to 

replicate the space's corresponding partitions. This would result in an excessive number 

of complex conditions that would negatively impact the interpretability of the model. 

In this case, the exclusivity and exhaustivity of the decision three partitions are 

important advantages. 

Finally, Table 13 allows us to understand how the generators have been grouped in 

each cluster. The most remarkable group is the one identified with generator 7, which 

gathers the set of generators that are not connected in any or practically none of the 

periods with which the model has been trained. Similarly, generator 5 represents the 

generators that will always be connected according to the decision tree classifier. The 

rest of the clusters correspond to either single generators or groups of generators that, 

due to their characteristics, present a very high correlation in their mode of operation. 
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Figure 32 (1): Developed clustered decision tree for vCommit in the network-constrained high wind penetration UC problem. 
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Figure 32 (2): Developed clustered decision tree for vCommit in the network-constrained high wind penetration UC problem. 
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Table 12: Unique terminal node vCommit outputs by cluster label. 

 Clustered terminal node output 

Gen. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1 

11 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 

20 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

24 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

29 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

34 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

35 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

37 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

40 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 1 

44 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 1 

45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 
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Table 13: Mapping of the existing generators with their corresponding cluster reference generator. 

Reference generator Clustered generators 

1 1, 2, 3, 8, 9 

4 4 

5 5, 27, 28 

6 6, 30 

7 7, 12, 13, 16, 17, 18, 19, 22, 23, 25, 26, 31, 32, 33, 38, 41, 42, 46, 47, 48, 49, 50, 51, 52, 53, 54 

10 10 

11 11, 21, 39 

14 14 

15 15 

20 20 

24 24 

29 29 

34 34 

35 35 

36 43 

37 37 

40 40 

44 44 

45 45 
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7 Conclusions and Outlook 

7.1 Conclusions 

In this project, interpretable machine learning models have been developed to explain 

in a human-understandable way how the unit commitment problem applied to a 

specific system generates the optimal solutions, as well as to independently predict the 

decision variables and dual variables of the problem. 

Specifically, two models have been developed, a regression and a classification model, 

to estimate the continuous and binary variables, respectively. Both are based on multi-

output decision trees since they offer the best balance between performance and 

interpretability among all intrinsically interpretable algorithms. On the one hand, the 

UC problem is complex and highly nonlinear, so decision trees have some advantage 

over other linear models in addressing the task. On the other hand, the possibility of 

jointly predicting variables of the same type makes the interpretation of the resulting 

model extremely easier than with any other approach. Training a single algorithm for 

each output would not be manageable, and, therefore, neither would they be properly 

interpretable. In addition, much of the interaction between the output variables would 

be lost. 

Even though the UC problem is characterized by important nonlinear relationships, it 

also presents numerous fully or partially linear relationships, which cannot be easily 

modeled by a decision tree, especially if its maximum depth is restricted to ensure 

interpretability. Therefore, the regression model proposed in this work is a linear 

regression model tree, which is a decision tree in whose terminal nodes linear 

regressions models have been trained. In this case, the linear regressions will only 

include one feature. This approach makes it possible to capture a large amount of 

information that would escape a normal decision tree without compromising its 

interpretability. 

Conversely, the problem faced by decision tree classifiers is related to the redundancy 

of sub-trees and terminal nodes, which repeat information unnecessarily. This hinders 

the interpretability of the model since it implies repeatedly representing the same 

parameters multiple times. Therefore, in this project, we propose clustering these 

nodes, which will be compactly represented in an attached look-up table. In this way, 

nodes presenting an identical combination of outputs can be immediately identified. 

Furthermore, a significant redundancy has also been detected in the output variables 

themselves. Therefore, they have also been grouped by generator clusters, further 

reducing the number of parameters needed to describe the classification model. 

The results obtained by applying both approaches to the UC problem studied in this 

work show that, in general, they achieve an optimal balance between performance and 

interpretability, usually outperforming in both aspects the rest of the intrinsically 

interpretable algorithms. In fact, the mean RMSE or accuracy of these models are not 
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excessively far from those obtained using black-box machine learning models, as is the 

case of GBDTs. Therefore, the implemented models satisfactorily meet the objectives 

that had been identified at the beginning of the project. 

These conclusions apply to most of the variables of the UC problem, especially those 

related to the thermal generators. However, the results obtained for the estimated flows 

through power lines suggest that these models are not flexible enough to replicate such 

a large and complex set of variables. 

However, this limitation does not detract from the relevance of the obtained results and 

the suitability of the developed models to estimate the remaining output variables, 

which are, besides, the most important variables of the problem. 

A meaningful reflection related to the models that have been developed aiming to 

explain the general operation of the UC problem is that these not only depend on the 

topology of the system with which the optimal solutions of the problem have been 

obtained, but they also depend closely on the scenarios that have been elaborated to 

obtain these solutions. These models, by default, try to extract the most general and 

useful relationships they find in the data.  

Therefore, they will tend to learn the behavior of the UC model primarily in the most 

common sets of scenarios while tending to disregard extreme or rare cases, which may 

not be found relevant either because of their low frequency or the error incurred when 

they are omitted.  

It could be argued that if we want to understand the performance of the UC in both 

common and rare situations, the solution would be to balance the training set so that 

the model perceives all of them as equally frequent. However, this solution would not 

be the most appropriate since we would be forcing the model to replicate specific 

relationships that, according to the dataset, are a minority without providing more 

helpful information for the model to carry out such a task. Therefore, the algorithm 

will try to learn these relationships, even if they are not actually general enough. 

Analyzing the results in such a context would be meaningless since, if we also balance 

the test set itself, we are modifying the variability of the test set in our favor. If, on the 

other hand, we evaluate the model with the original distribution, results will necessarily 

be worse since we have focused the model on learning certain relationships, which are 

not the most general ones. While interpretability is paramount, even above the 

algorithm's own accuracy, it should not be completely ignored. If the model is not able 

to replicate the data it is intended to explain, it cannot be guaranteed to provide a 

reliable explanation of how the results were obtained [61]. 

Consequently, in order to carry out analyses of this type, it would be more appropriate 

to develop a set of scenarios that properly reflect the behaviors we seek to explain 

through the application of an IML model so that the model can suitably discern those 

cases. 
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Finally, it is important to mention that, even though the presented models allow 

shedding light on the functioning of the UC problem and explain how it obtains the 

optimal solutions, the obtained results do not allow us to consider them as surrogate 

models completely equivalent to the optimization problem itself. Not even the models 

based on GBDTs, which have been employed as a reference in this project, would be 

sufficiently accurate to consider such a possibility.  

This conclusion is the same as the one reached by numerous studies [35]. Therefore, 

the developed interpretable models should be understood not as substitutes but as 

complements to the UC problem. They are truly useful tools to understand, in a general 

way, the operation of the optimization problem; to estimate which constraints will be 

active in the optimal solution of a scenario and for what reasons; or to predict 

approximate solutions, which can also be used as a starting point for the optimization 

itself. 

 

7.2 Outlook 

One of the main challenges of intrinsically interpretable models, especially when 

dealing with such complex tasks as unit commitment, is to achieve results that can 

compete with other highly accurate but completely opaque models. 

As indicated, interpretability has value in itself, meaning that it is not necessary to aim 

for identical results. However, any effort to improve its accuracy will validate it as a 

reliable explanation of the underlying UC model. 

Further efforts following this work could be focused on searching for alternative 

models, equally interpretable, which can yield more accurate results than those 

presented here. However, the simplicity of using a single decision tree for each set of 

output variables makes these models practically unbeatable from the interpretability 

point of view. Therefore, the proposed alternatives are aimed at improving the accuracy 

of the implemented algorithms. Alternative models would only make sense in the case 

of variables such as vCirPF, for which these models may lack the necessary flexibility. 

As for the classification model, the results show that the methodology used can obtain 

considerably accurate and interpretable estimates. Nevertheless, there is still room for 

improvement. One of the best alternatives would be trying to increase its depth without 

compromising its interpretability. For this purpose, the best option would be to carry 

out the tree depth selection together with that of the maximum number of terminal 

nodes. The current implementation does not allow this simultaneity since it determines 

the optimal maximum number of leaves for each depth independently, and this will 

tend to correspond to that of a fully-grown tree. However, restricting the number of 

terminal nodes while giving more flexibility from the depth side may allow modeling 

more complex feature space partitions without exponentially increasing the number of 

model parameters.  
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Nevertheless, the main potential improvement is related to the model tree proposed in 

this project. Implementing a model tree involves an enormous computational burden. 

For each possible partition of the feature space, the model must train the corresponding 

complementary algorithm on each of the hypothetically resulting nodes and select the 

optimal partition. In this work, the complementary model is a single feature linear 

regression, which iteratively selects the most appropriate input variable. This further 

increases the time complexity of the approach.  

Given these obstacles, the model has been simplified by training the linear regressions 

on a previously built decision tree. However, the partitions carried out by the DT are 

far from optimal for the linear regression models since the DT will try to split the linear 

relationships into pieces, while the model tree could automatically handle them in a 

single terminal node. 

Therefore, it would be highly recommended to explore the implementation of a linear 

regression model tree that is more faithful to the original concept. To do so, it will be 

necessary to increase the efficiency of the processes involved. For instance, the 

dimension of the feature space could be further reduced, or the search for the optimal 

variable in linear regressions could be parallelized. 

A more efficient implementation of the model tree would allow a hyperparameter 

selection more adapted to the actual performance of the algorithm and substantially 

improve the results obtained for continuous variables. 
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