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Coupled Electromechanical Optimization of Power Transmission Lines

J.R. Jimenez-Octavio1, O. Lopez-Garcia2, E. Pilo1 and A. Carnicero2

Abstract: This paper presents a multidisci-
plinary design and optimization method of power
transmission lines. This optimization method
solves both mechanical and electrical problems
by a new strongly coupled method that also op-
timizes the potential designs using a genetic algo-
rithm. A multi-objective function is formulated to
simplify a constrained typical optimization prob-
lem into an unconstrained one. The scope of this
work is the sizing and configuration optimization
problem with fixed topology. The method is ap-
plied to a railway overhead transmission line. The
genetic algorithm is applied to mechanical, elec-
trical and electromechanical optimization prob-
lems obtaining good results. Finally, the solution
of the electromechanical optimization problem is
a trade-off between the multidisciplinary nature
of the problem and the sort of optimization, siz-
ing and configuration.

Keyword: multidisciplinary optimization,
multi-objective analysis, structural design,
electrical design, genetic algorithm.

1 Introduction

Nowadays, multidisciplinary design and opti-
mization play a fundamental role in the current
concept of engineering. To afford multidisci-
plinary designs implies dealing with completely
different physical problems. Moreover, optimiza-
tion of these multi-decision designs should take
into account not only multi-objective criteria, but
also the coupling of both design variables and
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constraints.

One of the first applications of multi-objective op-
timization concepts appeared in Krokosky (1968).
In this early paper, the author adopted a random
search technique to find the best trade-off, cor-
relating the different objectives in terms of the
a priori chosen design parameters. Since then,
multi-objective optimization has attracted a lot
of attention among engineers, and several sur-
veys are available in the literature. Coello (1999),
Van Veldhuizen and Lamont (1998) and Coello,
Pulido and Montes (2005) have reviewed evo-
lutionary multi-objective optimization and other
topics related to constraint-handling techniques.
Some applications of multi-objective optimiza-
tion to particular engineering designs have been
carried out, among others, by Di Barba, Fa-
rina and Savini (2001) to electrical devices, Liu
(2003) to seismic design of steel frame structures,
Morino, Bernardini and Mastroddi (2006) to in-
novative aircraft designs, and Yoon, Jung, Hyun,
Hong and Kim (1999) have tackled the optimiza-
tion of electromechanical devices.

Deb and Gulati (2001) revealed that optimal de-
sign has always been an active area of research
in the field of search and optimization. From
the design point of view, electromechanical opti-
mization has been widely studied in the literature.
Most of these papers are focused on electrome-
chanical devices or materials with a strong elec-
tromechanical constitutive behavior. Silva and
Kikuchi (1999a, 1999b), using sequential linear
programming, tackled topology optimization of
piezoelectric transducers. Bai and Chinghong
(2003) optimized the overall configuration of
piezoelectric radiators by means of a genetic al-
gorithm. Topology optimization of microelec-
tromechanical actuators using adjoint sensitivity
analysis was studied in Sigmund (2001a) for one
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material and in Sigmund (2001b) for two mate-
rials. Shape optimization of solenoid actuators
by means of sequential quadratic programming
was carried out by Yoon, Hur, Chun and Hyun
(1997). Branch and Bound algorithm was used
to optimize the design of electromechanical ac-
tuators taking into account multi-objective crite-
ria in Messine, Nogarede and Lagouanelle (1998).
However, to the authors’ knowledge optimization
of power transmission lines has received little at-
tention. One of the aims of this paper is to revital-
ize the multipurpose design of power transmission
lines by incorporating to this field new methods
and tools. However, one important requirement of
optimal solutions is to obtain feasible designs in
the sense of conventional or expected real-world
applications.

Most of the aforementioned techniques can be
classified into three main categories: (i) sizing,
(ii) configuration, and (iii) topology optimization.
In the sizing optimization, cross-sectional areas
of members are considered as design variables
and the coordinates of the nodes and connec-
tivity among various members are considered to
be fixed, see for instance Goldberg and Samtani
(1986). The resulting optimization problem is a
nonlinear programming (NLP) problem. The siz-
ing optimization problem is extended and made
useful by restricting the member cross-sectional
areas to take only certain pre-specified discrete
values, see Rajeev and Krishnamoorthy (1992).
In the configuration optimization, for instance
Imai and Schmit (1981), nodal coordinates are
treated as design variables. In most studies, si-
multaneous optimization of sizing and configu-
ration has been used. The resulting problem
is also a NLP problem with member area and
change in nodal coordinates as variables. A re-
cent publication for these kind of optimizations
has been presented by Lamberti and Pappalet-
tere (2007), about a weight optimization of frame
structures using multi-point simulated annealing.
In the topology optimization, developed by Kr-
ish (1989) and Ringertz (1985), the connectivity
of members has to be determined. Classical opti-
mization methods present difficulties in topology
optimization, simply because they lack efficient

ways to represent connectivity of members. How-
ever, evolutionary strategies have show promis-
ing success tackling the topology optimization.
For example Kaveh and Kalatjari (2003b), using
graph theory and genetic algorithms, have consid-
ered the topology optimization of structures while
Wang and Wang (2006) present a coupled struc-
tural shape and topology optimization by means
of a genetic algorithm. Another interesting branch
of application related to structural topology op-
timization is the material structural one, being
recently dealt by Shiwei and Wang (2006) or
Michael Yu and Shiwei (2006).

The main contribution of this paper is to present
a new multidisciplinary framework to optimize
power transmission lines. As it will be seen
latter, the proposed method is sufficiently gen-
eral to easily include thermal, magnetic, electrical
and mechanical criteria. Without losing general-
ity, this paper is particularly concerned with the
multi-objective optimization of power transmis-
sion lines using electrical and mechanical design
variables. From a practical point of view, the con-
sidered scope of this work is the sizing and config-
uration optimization problem with fixed topology.
One aim of the methodology proposed herein is
the exploration of wide regions of the space of de-
sign variables and the determination of the global
optimum. Thus, a genetic algorithm to optimize
cross sections and geometry configuration simul-
taneously becomes necessary.

2 Problem formulation

Design of power transmission lines, see Fig-
ure 1, is a complex engineering problem which
involves the fulfillment of different requirements.
These requirements usually refer to certain elec-
trical, magnetic, thermal or mechanical objec-
tives, among others. Very often, design variables
are coupled by these goals. Therefore, the design
of power transmission lines can be posed as an op-
timization problem in which complex design vari-
ables should be considered together. The main
goal of this paper is to present an innovative de-
sign method of power transmission lines. In what
follows, and without losing generality, the method
will be focused on the coupling between electrical
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and mechanical variables and constraints using
multi-objective optimization. In this case there
are several variables belonging to different prob-
lems though which are really coupled. For exam-
ple the location of the physical conductors, which
are related to the electrical impedance problem
but also influence the structural design. As far as
the authors’ knowledge is concerned, this partic-
ular methodology establishes an innovative con-
tribution which can be very useful to explore new
configurations of power transmission lines.

optimization

conductors
Electrical

Topology
Configuration
optimization

Strutural
support

Sizing optimization

Figure 1: Power transmission lines for optimiza-
tion

Furthermore, Figure 2 schematizes the coupling
problem in a general flowchart. This figure shows
the relationships between electrical and mechan-
ical designs through the multi-objective function
and the optimization algorithm. These relation-
ships are the main ingredients of the method pro-
posed herein,

Multi-objective optimization can also be called
vector optimization given that Osyczka (1978) de-
fines it as “a vector of decision variables which
satisfies constraints and optimizes a vector func-
tion whose elements represent the objective func-
tions”. Therefore, describing variables and con-
straints of power transmission lines is the first step
to establishing the optimization problem, thus:
(i) sizing and (ii) configuration of the structural
supports, (iii) geometric location and (iv) type of
electric conductors are the design variables, while
the constraints are: (i) maximum allowable stress,

MULTIOBJECTIVE 

EVALUATION FUNCTION 

ELECTRICAL 
DESIGN 

CONSTRAINTS 

MECHANICAL 
DESIGN 

CONSTRAINTS 

OPTIMIZATION  
PROCEDURE 

Figure 2: General coupling problem

and (ii) structural static stability, (iii) geometric
constraints for the electrical design and (iv) max-
imum allowable current of each conductor.

Consequently, these functions and constraints will
be cast as a mathematical description of perfor-
mance criteria, although the objectives could be
opposed to each other, as follows:

min
x

f(x) (1)

being:

f = [ f1, . . ., fnk ]

x =
[

bx1, . . . ,
bxnb ; dx1, . . .,

dxnd ; sx1, . . . ,
sxns

] (2)

subject to:

gi(x)≤ 0 i = 1, ...,ni

h j(x) = 0 j = 1, ...,ne

bxp ∈ {0,1} p = 1, ...,nb

dxq ∈
{

x1
q, ...,x

nq
q

}
q = 1, ...,nq

sxL
r ≤ sxr ≤ sxU

r r = 1, ...,ns

(3)

where f(x) is a vector of nk criteria or objectives, x
is the vector of n design variables which define the
system, g(x) and h(x) are inequality and equality
constraints, respectively. Thus, ni is the number of
inequality constraints, ne is the number of equality
constraints, nb is the number of Boolean design
variables (usually related to topological optimiza-
tion or member connectivities), nd is the number
of discrete design variables (widely used in siz-
ing) selected from a list of nq values, and ns is the
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number of continuous design variables (typically
suitable for configuration optimization).

Nevertheless, multi-objective problems are usu-
ally reduced to a single evaluation function. In
order to achieve this, the following procedures,
which are described in depth by Coello (2002),
have been commonly used: (i) the use of a penalty
function composed of the various criteria; (ii)
the separate solutions of single criterion problems
and their trade-off; or (iii) the solution of a sin-
gle criterion problem, taking the other criteria as
constraints.

However, as Coello (2002) has pointed out, the
use of penalties is the most common formula-
tion, when evolutionary algorithms are used to
solve the optimization problem. The idea of this
method, originally proposed by Courant (1943)
and later expanded by Carroll and Fiacco (1961)
and Fiacco and McCormick (1966), is to add a
penalty value to the objective function, whose
scale or weight is based on the degree of con-
straint violation. In this way, a constrained clas-
sical optimization problem is changed into an un-
constrained one.

In this paper, the formulation of the optimization
problem will use exterior dynamic penalties. One
aim of the optimization procedure is to explore
initially wide regions of the space of design vari-
ables. Therefore unfeasible solutions can appear
at the first stages of the algorithm. Contrary to in-
terior penalties, exterior penalties can tackle ini-
tial unfeasible solutions. Another requirement of
the optimization procedure is the determination of
a global optimum. Consequently as the search
evolves unfeasible solutions should be strongly
penalized. Therefore, dynamic penalties should
be used. Thus, the formulation of penalty func-
tions developed herein is divided into static and
dynamic parts. On one hand, the static part is
inspired in the works of Hoffmeister and Sprave
(1996) and Morales and Quezada (1998). On the
other hand, dynamic penalty uses the approach
proposed by Kazarlis and Petridis (1998).

Thus, the general formulation of the optimization
problem, equations (1), (2) and (3) using dynamic

exterior penalties can be rewritten as:

F(x) =
nk

∑
k=1

αk · fk(x)+π (4)

π = πd ·πs

πd = (1+β · (n−1))

πs =
ni

∑
i=1

δi · ri ·Gi +
ne

∑
j=1

δ j · c j ·Hj

(5)

where F(x) is the new multi-objective function to
be optimized; fk(x) the different criteria, adjusted
by its own weight αk,; and π a vector of penalty
functions. In this aspect, π can be split into two
parts: a dynamic penalty function πd, which is
considered proportional to a constant β and the
number of the current iteration n; and a static one
πs, where Gi and Hj are functions of the degree
of violation of the constraints gi(x) and h j(x), re-
spectively, and ri and c j are positive constants nor-
mally called “penalty factors” that are also con-
ditioned by binary factor δi which is one if the
constraint is active or zero otherwise, mathemati-
cally:

F(x) =

{
F̂(x), if x ∈ Γ
F̂(x)+π , otherwise

(6)

where Γ represents the feasible region.

Regarding power transmission lines two main
objectives are usually sought: minimization of
weight and impedance. Therefore, the follow-
ing expression is the most evident multi-objective
function:

F̂(x) = αm · fm (wm(x))
+αe · fe (we(x))+αz · fz (zi(x))

(7)

the first term reflects structural weights, wm; the
second one is also a weight but related to elec-
trical conductors, we; and finally the equivalent
impedance of the electric system, zi. Due to the
multi-objective nature of the method, other crite-
ria can be easily incorporated into the evaluation
function (7). A new way for construction of this
kind of fitness functions has been recently sug-
gested by Zhu, Liu, Wang and Yu (2004) for two
different multidisciplinary design problems.
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3 Optimization procedure

Optimization algorithms can be classified into
two main streams: evolutionary strategies and
gradient based techniques. The comparison be-
tween evolutionary strategies and gradient based
optimization has been studied by Papadrakakis,
Tsompanakis and Lagaros (1999) and Lagaros,
Papadrakakis and Kokossalakis (2002). These
works have demonstrated that both evolutionary
strategies and genetic algorithms, based on prob-
abilistic searching without needing gradient infor-
mation, present more computational efficiency in
spite of their higher number of analysis until the
optimum is reached. Moreover, gradient-based
mathematical programming may consume a large
part of the total computational effort and could in-
volve major modifications when non linear, dis-
crete or mixed programming techniques are used.

Evolutionary strategies imitate biological evolu-
tion in nature and have three characteristics as
described Papadrakakis, Lagaros, Thierauf and
Jianbo (1998), that differ from any others. Firstly,
instead of deterministic operators, they use ran-
domized operators like selection, crossover and
mutation. Secondly, in order to avoid convergence
to non global minimum these algorithms work si-
multaneously with the whole population of design
points in the space of design variables. Finally,
they easily deal with non linear, discrete or mixed
programming, making it possible to define a “fit-
ness function” which allows evaluation and ad-
justment of different variables and penalties in a
natural way.

3.1 Genetic algorithm

Over the years, much work has been done in en-
gineering optimization and the current tendency
is to deal with real-life applications which are
multi-objective by nature. Hence, metaheuristic
techniques inspired by the mechanics of natural
selection suggested by Darwin (1929), initially
developed and formalized for genetic algorithms
by Holland (1975) and applied in engineering by
Goldberg (1989), seem suitable to solve multi-
objective optimization problems. Moreover, ge-
netic algorithms are also well-recognized as a

powerful optimization method for a wide range
of problems. For example, an unusual applica-
tion, about the determination of non linear polar-
ization curves of buried slender structures through
potential measurements at the soil free surface,
has been successfully dealt and presented by de
Lacerda and da Silva (2006).

In this aspect, Kaveh and Kalatjari (2003b) indi-
cate that optimization by genetic algorithms can
be performed by the following steps: (i) a random
generation of a set of primary designs (initial pop-
ulation) in which each one, consisting of a string
of characters, is called individual. At the same
time, each string contains some substrings rep-
resenting the different design variables. (ii) The
real value of each design variable is evaluated by
decoding. After that, (iii) penalty functions, i.e.
equations (5), are defined representing the viola-
tion of constraints, and combining them with the
objective function, equation (7), result in a mod-
ified objective function called “fitness function”,
equation (4). Finally, (iv) the next population is
produced by the known genetic operators: selec-
tion, crossover and mutation, whose own proba-
bilities are related to the exploration and exploita-
tion of the searching space.

After performing these operations, a new al-
legedly better population, is produced. Repeating
steps (ii)-(iv), other populations are obtained, fin-
ishing this process when a fixed number of gener-
ations are computed or the termination criterion is
satisfied.

Therefore, a standard genetic algorithm has been
applied to the electromechanical optimization, al-
though some specific tools and functions have
been tailored too. As Kaveh and Kalatjari (2003a,
2003b), have pointed out, sizing and configura-
tion optimization problems could present a large
number of design variables, both continuous or
discontinuous, consisting of cross sectional areas
and nodal coordinates, thus resulting in the devel-
opment of modified genetic algorithms. Know-
ing each chromosome’s fitness, the usual selection
process takes place to choose the individuals that
will be the parents of the following generation.
Nevertheless, in this work a new ranking selection
scheme that could be named “pseudo-stochastic
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remainder selection” (PSMER) has been devel-
oped. This is an original contribution of this
work, and from the authors’ experience, fast and
robust convergence is obtained. Other selection
processes were used (roulette-wheel, tournament
and stochastic universal sampling selections), and
algorithm convergence was compromised. In
the PSMER scheme the population is scaled and
sorted from best to worst. Then each individual is
copied as many times as it can, depending on its
fitness scale and according to a non-increasing as-
signment function, and finally a roulette-wheel se-
lection is performed according to that assignment,
as Coello and Christiansen (1998) indicates. The
aim of this method is to properly mix some selec-
tion concepts like scale, elitism and proportionate
reproduction without increasing population.

3.2 Coupling criteria

Scientific literature tackles the coupling between
variables, constraints and objectives with differ-
ent methods. For instance, Missoum and Gürdal
(2002) consider a weak coupled model. They pro-
pose a method based on a nested two-level ap-
proach. The inner level solves sizing optimiza-
tion problem. While the outer level tackles the
configuration optimization problem. On the con-
trary, Regnier, Sareni and Roboam (2005) use a
strongly coupled model. This method is able to
optimize electrical and mechanical variables us-
ing the same fitness function. More particularly,
these authors apply the second version of the well
known multi-objective technique, based on non–
dominated sorting genetic algorithm (NSGA-II)
developed by Deb, Pratap, Agarwal and Meyari-
van (2002). In this paper the electromechanical
coupling can be found at different levels. On one
hand, both electrical and mechanical design vari-
ables define an individual. On the other hand,
a multi-objective electromechanical function has
been presented. Finally, sizing and configuration
problems are treated as the same problem by ex-
panding design variables to include not only phys-
ical parameters but also nodal locations.

Figure 3 shows a detailed flowchart of the pro-
posed optimization problem, reflecting two key
aspects of the coupling method: on one hand the

relation between mechanical and electrical prob-
lems; and in the other hand the relation between
both problems and the genetic algorithm.
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Figure 3: Optimization problem flowchart

First of all, taking into account the initial data and
the constraints of the electrical (ae) and mechan-
ical (am) problems respectively, an initial popula-
tion of potential designs is generated. After con-
sidering the effect of the type and location of the
electrical conductors on the loads that are going
to support the mechanical structure (b), the cou-
pling of both problems takes place by defining the
multi-objective fitness function of the electrical
(ce) and mechanical (cm) variables and boundary
constraints, whose result (dem) is the population
of potential electromechanical designs. Finally,
these designs are evaluated and reproduced by the
genetic algorithm (eem), which feedbacks its pre-
vious blocks ( fe) and ( fm) until the optimization
process finishes fulfilling the imposed termination
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criteria.

4 Application of the Optimization Method to
High Speed Railways Overheads

As a typical application of power transmission
lines, a coupled electromechanical optimization
of high speed railway overheads is tackled in this
section. A more detailed study can be found
in Jimenez-Octavio, Pilo, Lopez-Garcia and Car-
nicero (2006).

Railway overheads design, composed of overhead
supports and electric lines, should take into con-
sideration, among other things, different criteria
like ease of construction, use of standards, max-
imum safety or reliability, minimum cost, etc.
Without losing generality the electromechanical
design proposed herein will be driven by mini-
mization of weight, structural safety requirements
and power supply quality.

The proposed method couples electrical and me-
chanical variables. In addition, from an algorith-
mic point of view, individual genotypes used by
the genetic algorithm are fully coupled. Thus,
their genes couple different variables of the me-
chanical and the electrical problem storing some
consecutive binary bit-strings as follows: (a) type
of structural beams or electrical conductors with
the discrete position in a standard system specifi-
cation; (b) mechanical beam’s node or physical
conductor’s location. Moreover, it is important
to remark that this codification includes different
horizontal and vertical locations in nodal coor-
dinates, and the possibility of relating displace-
ments of different nodes.

The numeric parameters of the genetic algorithm
used in the numerical simulations correspond to
standard values of randomized operators and an-
other related to penalty functions as shown in Ta-
ble 1.

The proposed method is applied to the design of
high speed railway overhead. A typical configu-
ration of this power transmission line is shown in
Figure 4. This AC railway overhead, called EAC-
350 and used in the new line Madrid-Barcelona-
French Border, has been analyzed considering a
bitension or dual electrical system 2×25[kV], al-

Table 1: Genetic algorithm parameters

Property Value
Static penalty, r 106

Dynamic penalty β 0.2
Crossover probability 0.5
Mutation probability 0.02
Population size 800

though the proposed optimization method is also
reliable for monotension systems 1×25[kV]. The
line contains several physical conductors that can
be grouped into three categories: positive, nega-
tive and ground or neutral wires.

The positive wires are the positive phase feeder,
the sustainer or messenger wire and the contact
wire. There is usually only one negative wire
called negative phase feeder. The neutral wires
are the rails, the collector wire and the return wire.
On the other hand a simplified mechanical support
(Figure 5) for the two railways has been consid-
ered.

Neutral phase conductors

Negative phase conductors

Positive phase conductors

Contact

Messenger wire

Transversal section Longitudinal section

feeder

feeder

wire
Return

Rails

Negative
phase

Positive
phase

wire

Figure 4: Typical railway overhead configuration

In the following subsections mechanical, elec-
trical and finally electromechanical optimization
will be shown.

4.1 Mechanical Optimization

The optimization of overhead supports could be
included into the optimal design of truss struc-
tures topic. This problem has always been an ac-
tive area of research in the field of search and op-
timization.
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Figure 5: Simplified mechanical model

In the sizing optimization, cross-sectional areas of
members are considered as design variables, re-
stricting them to take only certain pre-specified
discrete values from a UPN1 beams standard sys-
tem specification. These are the first genes built
on the population’s chromosomes string. Config-
uration optimization considers nodal coordinates
as design variables too.

The material properties of the overhead supports,
corresponding to common steel, are shown in the
following Table 2:

The following variables have been taken into ac-

1 It corresponds to the Spanish regulation NBE-EA-95.
This algorithm also allows the use of another standard
structural shapes.

Table 2: Material properties

Property Value
Elastic modulus 2.1·1011 [N/m2]
Poisson coefficient 0.3
Maximum allowable stress 2.6·106 [N/m2]
Density 7800 [Kg/m3]

count in the simplified mechanical model (Fig-
ure 5), which represents one of the two symmet-
ric overhead railway supports. The first variable
is the cross-section of all the members (from B1
to B6). In order to reduce the number of vari-
ables, a column composed of B1, B2 and B3 in
the same profile set has been considered. Sub-
sequently, they will have the same type of beam
profile after optimization. This can directly im-
prove computational costs. On the other hand, the
change in nodal coordinates is possible: vertically
at nodes N2, N3 and N4; vertically and horizon-
tally at nodes N5 and N6; whereas nodes N1 and
N7 are fixed. The first one for being attached to
earth, and the second one for the structure gauge
limited by the height of the train.

The aim of this optimization is to minimize the
weight of the truss structure, whose influence is
obviously related to final building costs. For this
reason the evaluation function in this case only
tries to minimize the global structure weight (8).

F(x) =

{
Wm(x), if x ∈ Γ
Wm(x)+π , otherwise

(8)

Thus, the fitness function is penalized adding a
term which takes into account the structural in-
tegrity. Based on the equation (5), the penalty
function can be expressed by:

π = πd · r ·G (9)

G :=
ni

∑
i=1

δi · |Si −σcr,i (σi,λi)| (10)

where the inequality penalty functions Gi reflect
the difference between the axial stress Si and the
critical allowable stress σcr,i of each member i.
The critical allowable stress represents the max-
imum stress to avoid buckling or collapse of the
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member. This value can be obtained from struc-
tural standards and usually depends on maximum
allowable stress or yield stress σi and the slender-
ness ratio λi.

In Figure 6 the optimized geometry together with
the initial geometry of the structural support are
shown. In Figure 7 evolution and convergence
of the global weight Wm along generations are
presented. In this figure, the optimal solution is
marked with a circle, although the algorithm con-
tinues until the termination criterion is fulfilled. A
good convergence tendency is shown. In Table 3
optimal design values are also presented.
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Figure 6: Initial and optimized mechanical con-
figuration
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Table 3: Optimal weight, generation and types of
beam profiles

Property Value
Optimal weight 467.6 [kg]
Optimal population 94
Beam B1 UPN 180
Beam B2 UPN 180
Beam B3 UPN 180
Beam B4 UPN 80
Beam B5 UPN 80
Beam B6 UPN 80

4.2 Electrical Optimization

Electrical optimization considers two main design
variables, namely: (i) type of electric conductors
and (ii) their geometric location. In the first one,
physical conductors are restricted to take only cer-
tain pre-specified discrete values from a conduc-
tor’s standard system specification collected in
Table 4.

Some important electric properties and specially
the conductor’s voltage are shown in Table 5.

Thus, the variables taken into account in this op-
timization are: on one hand, the type of electric
conductor used for the positive and negative phase
feeders and the return wire. The type of physi-
cal conductors used for all the others are initially
fixed as: LA-180 for the contact wire; LA-180 for
the messenger wire too; and UIC for the rails. On
the other hand, the change of nodal coordinates is
considered for the same first set of conductors, as-
suming the contact and messenger wires are mo-
tionless and obviously the rails too. In this aspect,
return wire displacement has been restricted, hav-
ing less action space than the others.

The aim of this optimization is two fold: firstly,
to minimize the weight of the electrical conduc-
tors, whose influence is obviously related to final
costs. And, secondly, the equivalent impedance
minimization is considered. This second objec-
tive is related to the improvement of the efficiency
of the electrical system.

From the electrical point of view, power trans-
mission lines are usually modeled by the concen-
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Table 4: Standard system specification of conductors

Standard Radius Internal resistance Internal reactance
name [m] [Ω/m] [Ω/m]
LA-30 3.57·10−3 1.18·10−3 1.48·10−5

LA-56 4.72·10−3 6.74·10−4 1.48·10−5

LA-78 5.67·10−3 4.68·10−4 1.48·10−5

LA-110 7.00·10−3 3.37·10−4 1.45·10−5

LA-145 7.87·10−3 2.66·10−4 1.45·10−5

LA-180 8.75·10−3 2.16·10−4 1.45·10−5

LA-280 1.09·10−2 1.31·10−4 1.47·10−5

LA-380 1.27·10−2 9.42·10−5 1.48·10−5

LA-455 1.39·10−2 7.89·10−5 1.48·10−5

LA-545 1.52·10−2 6.55·10−5 1.48·10−5

LA-635 1.64·10−2 5.61·10−5 1.48·10−5

100Cu 5.64·10−3 1.93·10−4 1.50·10−5

150Cu60% 6.91·10−3 2.15·10−4 1.50·10−5

225Cu 8.46·10−3 5.59·10−5 1.50·10−5

UIC-60 4.95·10−2 2.47·10−5 1.50·10−4

Table 5: Conductor’s voltage

Property Value
Frequency 50 [Hz]
Electric demand 20[MVA], per railway
Bay length 60[m]
Contact wire 25 [kV]
Messenger wire 25 [kV]
Positive feeder 25 [kV]
Negative feeder -25 [kV]
Return wire 0 [kV]
Rails 0 [kV]

trated parameter π-model, see for instance Dom-
mel (1986). This model reduces power transmis-
sion lines to serial impedance and shunt admit-
tance. The serial impedance matrix represents the
effect of resistance, self-inductance and magnetic
coupling between conductors. While the shunt
admittance matrix represents capacitances and the
leakage resistances between conductors (or be-
tween conductors and earth). Moreover, due to
the fact that sectors of high speed railways are
about 50 km long, shunt effects are commonly ne-
glected.

Physical conductor models represent each con-

ductor of the railway overhead separately (Figure
4). In such models, serial impedance matrices can
be calculated from Carson formulas that take into
account the effect of earth currents.

Grounded conductor voltages can be assumed to
be zero, and the equivalent ground conductor can
be eliminated. Consequently, dual system cate-
naries are usually modeled as two mutually cou-
pled conductors.

In the equivalent conductors model used in the
electrical optimization, voltage drops can be ex-
pressed as:

Z ·
[

ip

in

]
=

[
zpp zpn

znp znn

]
·
[

ip

in

]
=

[
vp

vn

]
(11)

where Z is the serial impedance matrix of the
section of the railway overhead, and their sub-
indexes represents the positive and negative con-
ductors respectively, being impedance expressed
per length unit [Ω/m].

Finally, the equivalent impedance used in this op-
timization can be written following Pilo (2003)
and Pilo, Rouco and Fernández (2003), as fol-
lows:

Zeq =
∣∣∣∣ zpp · znn − zpn · znp

zpp + znn + zpn + znp

∣∣∣∣ (12)
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Thus, the evaluation function considers the two
objectives, that is electrical weight and equivalent
impedance together with a penalty term to include
constraint violation and is written as:

F(x) =

{
We(x)+α ·Zeq(x), if x ∈ ℑ
We(x)+α ·Zeq(x)+π , otherwise

(13)

where the parameter α=2·105 is necessary to ad-
just equivalent impedance to the same order of
magnitude of the weight. Moreover, the penalty
function can be expressed as:

π = πd ·
5

∑
j=1

r j ·G j (14)

Being G j different violations of the electrical con-
strains that can be broken down into the following
terms:

G1 :=
ni

∑
i=1

δi · |Ii − Imax,i|

being δi active if Ii > Imax,i (15)

G2 :=
nî

∑
i=1

δî ·
∣∣∣Iî − Idem,î

∣∣∣
being δî active if Iî < Idem,î (16)

G3 :=
ni

∑
i=1

δi ·
∣∣Di, f −di, f

∣∣
being δi active if Di, f > di, f (17)

G4 :=
ni

∑
j=1

ni

∑
i> j

δi j ·
∣∣Di, j −di, j

∣∣
being δi j active if Di, j > di, j (18)

G5 :=
ni

∑
i=1

δi · |Di,s −di,s|

being δi active if Di,s > di,s (19)

These equations reflect electric current and geo-
metric constraints. On one hand, equation (15)

penalizes over current in each conductor i, while
(16) tries to ensure electric demand satisfaction of
each set of electrical conductors with equal volt-
age î. On the other hand, equations (17), (18)
and (19) respond to the structure gauge to limit
the position of physical conductors. Upper case
D’s denote minimum distances limited by elec-
trical standards while lower case d’s are the ac-
tual distances. More particularly, the distance vi-
olation between each conductor i and the field f
is described by equation (17); between conduc-
tors i and j is defined by equation (18); and be-
tween each conductor i and the structural supports
s is shown in equation (19). The numerical val-
ues of D’s have been defined by the Spanish reg-
ulation of the Ministerio de Industria y Energía
(1989). More detailed information can be found
in Jimenez-Octavio, Pilo, Lopez-Garcia and Car-
nicero (2006).
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Figure 10: Equivalent impedance evolution

In what follows, electrical optimization results are
exposed. In Figure 8 the electrical optimized con-
figuration together with the initial geometry is
shown. In Figure 9 and Figure 10 evolution and
convergence of global weight and global equiv-
alent impedance are respectively pictured along
generations.

Equivalent impedance minimization implies just
as can be observed in Figure 8: that the posi-
tive phase feeder moves far away from the rest
of positive conductors, decreasing mutual series
inductance (although at the same time this de-
creases magnetic field cancellation with the nega-
tive phase feeder); while the negative phase feeder
locates close to the positive equivalent magnetic
center location, trying to reduce global equivalent
impedance too. Note that these excessive location
displacements are allowed because this model is
not yet coupled to the mechanical one. Never-
theless, free location displacements could be ex-
pected to move positive and negative phase feed-
ers further down in order to reduce their own se-
ries inductance, but geometric penalties (particu-
larly equation (17)) leads the genetic algorithm to
search in upper regions.

Sizing optimization, shown in Figure 9, converges
very quickly (less than 5 populations), but equiv-
alent impedance evolution of Figure 10 presents
an oscillatory tendency. There are two reasons to
explain this behavior. Firstly, there are only three
kinds of conductors to optimize, thus, with a big

population of 800 individuals it is quite easy to
reach a fast convergence in this aspect. Secondly,
equivalent impedance could modify both kinds
of conductors and location. Hence, though min-
imum impedance is reached earlier, equivalent
impedance continues changing with each popula-
tion without improving its minimum value.

Nevertheless, the behavior of the equivalent
impedance as a function of the number of gen-
erations is concerned with the agreement be-
tween exploration and exploitation mentioned in
the problem formulation. Ideally, as suggested by
Coello (2002), penalty factors should remain just
close to the optimality feasible border. This is a
key topic that can be observed from two perspec-
tives. On one hand, if the penalty is too high the
optimal solution has a high tendency of nearing
the feasible border and, consequently, the algo-
rithm tries to quickly lead solutions inside this re-
gion, damaging exploration. On the other hand, if
penalty factors are too low, the searching process
become slower due to the excessive infeasible so-
lutions that reflect a wide exploration in the whole
searching space but a marginal exploitation of the
feasible region.

Numerical results are shown in Table 6, which
presents optimal weight, impedance and popula-
tion; and also the selected conductors in the elec-
trical optimization.

Table 6: Optimal weight, impedance, population;
and types of electrical conductors

Property Value
Optimal weight 656 [kg]
Optimal Zeq 6.66·10−5 [Ω/m]
Optimal population 26
Messenger wire LA-180
Contact wire LA-180
Positive feeder 100 Cu
Negative feeder 100 Cu
Return wire 100 Cu
Rails UIC-60
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4.3 Electromechanical Optimization

Coupled electromechanical optimization includes
both previous electrical and mechanical optimiza-
tions as is shown in the evaluation function (20),
whose purpose is to add the three optimization ob-
jectives with all mechanical and electrical penal-
ties symbolized with the parameter π .

F(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Wm(x)+We(x)+α ·Zeq(x),
if x ∈ Γ

Wm(x)+We(x)+α ·Zeq(x)+π ,

otherwise

(20)

The electromechanical model completely cou-
ples both optimization variables and design con-
straints. On one hand, variables build chromo-
some strings with the same criterion as before:
firstly, sizing variables like cross sections for
structural members or type of wires for electrical
conductors; and next, geometric location or con-
figuration for all the nodes, both mechanical and
electrical, that define the whole geometric prob-
lem. On the other hand, constraints considered
are: the maximum allowable stress and displace-
ments, and buckling conditions in the mechan-
ical problem (equations (9) and (10)); in addi-
tion to the structure gauge to limit the position of
physical conductors, minimum distance between
conductors (18), between each conductor and the
ground (17) and between conductors and over-
head supports (19), and finally maximum allow-
able current of each conductor (15) and electric
demand satisfaction (16) in the electrical problem.

Some graphical results of the electromechanical
optimization appear below. Figure 11 shows the
optimized configuration together with the initial
geometry. In Figure 12 and Figure 13 evolu-
tion and convergence of electrical and mechani-
cal weights and equivalent impedance are respec-
tively shown as functions of the number of gener-
ations.

As previously observed, Figure 11 shows that op-
timum configuration is lead by weight minimiza-
tion instead of equivalent impedance optimiza-
tion.
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Coupled electromechanical optimization is more
constrained than uncoupled ones, electrical or me-
chanical. Basically, the coupled problem not only
includes the mechanical and electrical constraints
but also objective function and design variables
are fully coupled. Then, the electromechani-
cal optimization algorithm should explore smaller
feasible regions of the space of design variables.
Therefore, the fact that the electromechanical fea-
sible region is a more restricted environment of
configurations inevitably leads to optimized solu-
tions which are relatively close to traditional and
somewhat expected configurations.

There are also detailed numerical results in Ta-
ble 7 which shows optimal weights, impedance
and population; the optimal structure members
obtained; and finally, the optimal physical con-
ductors.

Table 7: Optimal weights, equivalent impedance,
population; types of beam profiles; and types of
electrical conductors

Property Value
Optimal mechanical weight 482 [kg]
Optimal electrical weight 656 [kg]
Optimal Zeq 7.1·10−5 [Ω/m]
Optimal population 38
Beam B1 UPN 180
Beam B2 UPN 180
Beam B3 UPN 180
Beam B4 UPN 80
Beam B5 UPN 80
Beam B6 UPN 80
Messenger wire LA-180
Contact wire LA-180
Positive feeder 100 Cu
Negative feeder 100 Cu
Return wire 100 Cu
Rails UIC-60

5 General conclusions

A general framework to electromechanically op-
timize power transmission lines has been pre-
sented. Due to its multi-objective nature, com-

plex multidisciplinary designs, that is, both me-
chanical and electrical, can be optimized. In order
to guarantee that the optimum design corresponds
to a global optimum an evolutionary strategy has
been selected. A genetic algorithm has been de-
veloped and implemented for sizing and config-
uration optimization of electromechanical prob-
lems. Furthermore, the ranking selection scheme
has been tailored to improve the behavior of the
optimization algorithm.

The validity of the methodology proposed herein
is independent of the complexity of the mod-
els used to evaluate structural and electrical de-
signs. Evidently, the multi-objective nature of
the method, which is easily embedded into the
genetic algorithm, provides the model’s indepen-
dence of the optimization algorithm.

Regarding the different kind of optimization prob-
lems carried out, the genetic algorithm have ex-
hibited an independent behavior on the penalty
constants. Moreover, the same set of constants
have been found to be good enough to be valid
to optimize electrical, mechanical and electrome-
chanical problems.

More particularly, and regarding the application
of the method to railway overhead transmission
lines the conclusions are numerical efficiency,
theoretical consistency and finally a realistic de-
sign solution.

From the numerical point of view, an excellent
and fast convergence behavior of the genetic al-
gorithm is obtained. Regarding this aspect, the
development of the so-called PSMER ranking se-
lection scheme has become one of the most deter-
mining factors. The numerical results of the algo-
rithm have exhibited a robust behavior shared by
all described optimization problems.

The following theoretical conclusions are worth
mentioning. From the comparison between me-
chanical, electrical and electromechanical opti-
mization, two tendencies have been observed. On
one hand, weight is the responsible for the so-
lution of the sizing optimization problem, and
on the other hand equivalent impedance deter-
mines the solution of the configuration optimiza-
tion problem. Thus, proven the versatility of the
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methodology and taking into account the suit-
ability of genetic algorithms, the incorporation of
more complex physical couplings, like termome-
chanic, electromagnetic, wind load effects, etc.
can be easily included.

The electromechanical optimization solution rep-
resents a trade-off between the multidisciplinary
nature of the problem and the sort of optimization,
sizing and configuration. As previously stated,
one aim of the presented method is the produc-
tion of affordable optimal designs. Therefore, the
combination of both arguments leads to an opti-
mized design close to a conservative one.

Consequently, if more innovative or unexpected
designs are required, topological optimization is
the next step ahead whose application allows the
obtention of more advanced designs and results.
The authors are currently working on its imple-
mentation.
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