
A
U

TH
O

R
 C

O
P

Y

Journal of Intelligent & Fuzzy Systems 40 (2021) 1751–1759
DOI:10.3233/JIFS-189182
IOS Press

1751

Actuarial model for estimating the optimum
rate of return of a joint-and-survivor annuity
portfolio

Gabriel Agudeloa, Luis Francoa and Paolo Saonab,c,d,∗
aDepartment of Finance, Instituto Tecnológico Metropolitano, Medellı́n, Colombia
bRichard A. Chaifetz School of Business, Saint Louis University, Madrid Campus, Av. Del Valle, 34, 28232,
Madrid, Spain
cFaculty of Economics and Business Administration, Universidad Pontificia Comillas, C/Alberto Aguilera, 23,
28015, Madrid, Spain
dFaculty of Economics and Administrative Sciences, Universidad Católica de la Santísima Concepción, Alonso
de Ribera 2850, Concepción, Chile

Abstract. In actuarial science related to pension systems, it is widely assumed that the rate at which the reserves cover the
payment of annuities (calculated for a given number of lives) is equal to the expected rate of return of the portfolios in which
such reserves are invested. Given this assumption, pension fund managers may take greater risks to realize higher returns
and subsequently reduce their pension liabilities. This study demonstrates that the discount rate used to calculate a two-life
annuity and the expected return on the portfolio are not necessarily equal. A stochastic-based model is used to determine
the proper discount rate for calculating the two-life annuity. The model includes fluctuations of both the interest rate and
the payments made by the annuity. In general, this study contributes to the stability of pension systems by determining
the appropriate discount rate when computing required actuarial reserves or the portfolio’s required rate of return given
a reserve.
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1. Introduction

How to calculate the actuarial reserve that is
required to cover the payments of a two-life annu-
ity is a fundamental issue for a pension system and
for insurance companies. In actuarial science, this
reserve is computed as the sum of the present val-
ues of all future feasible payments. This calculation
involves variables such as the life expectancy of the
individuals, inflation rates, ages, the amount of the
future payments, and the discount rate known as the
technical interest rate, defined as the minimum rate at
which a portfolio yields positive returns (also known

∗Corresponding author. Paolo Saona, E-mail: paolo.saona@
slu.edu.

as the warranted rate). In an empirical study, Eling
and Holder [1] compare the way in which regulators
set maximum technical interest rates in life insur-
ance in Germany, Austria, Sweden, the UK, and the
United States. They state that the German method is
the most popular; it is based on the calculation of
the historical rate paid on government bonds, given
that it is assumed that the technical interest rate is
the minimum rate that a fund manager can commit
to providing with the insurance company. The regula-
tors in Austria, Sweden, the UK, and the United States
include some adjustments in estimating the technical
rate that make their computations more flexible in the
face of macroeconomic shocks.

The calculation of the reserve required to cover the
payments of a two-life annuity, which has been the
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most common annuity in the market, directly impacts
the stability and coverage of pension systems, and
consequently the quality of life of individuals, inde-
pendently of the model followed to calculate such a
reserve and its derived benefits.

Battocchio and Menoncin [2] suggest that there
are basically two kinds of pension plans. First,
there are defined-benefits plans, in which the bene-
fits are previously determined by the pension fund
manager and the contributions to the plan are
adjusted to keep the fund balanced. In the second
kind, defined-contribution plans are characterized by
fixed contributions and the future benefits depend
on the portfolio returns. Battocchio and Menoncin
[2] state that most plans are defined-contribution
plans, which transfer most of the default risk to the
workers.

As described by Bodie and Crane [3], defined-
contribution plans are more popular because they
allow employees to know at any time the value of
their retirement account and because this sort of plan
is much easier to manage than a defined-benefits plan.

The actuarial science on annuities assumes that the
discount rate used to compute the required reserves
is the same as the expected rate of return of the
portfolios in which such reserves are invested [4,
5]. This assumption is orthogonal to the distinction
between defined-contribution and defined-benefit
plans. Consequently, the problem of choosing the best
investment strategy to manage the pension funds is
becoming more and more relevant in these sorts of
portfolios [6].

It is a widely accepted practice to use the expected
discount rate of the portfolio in which the funds
are invested as the discount rate in computing the
required reserves. According to Merton [7], such a
practice may drive pension fund managers to take
excessive risks to earn greater profits and to reduce
their liabilities positions. Additionally, Cairns [8]
suggests that deterministic models are suitable for
estimating future cash flows and valuation, while
stochastic models allow one to investigate the dynam-
ics of pension funds over time. Cairns [9] uses a
similar theoretical framework by adding uncertainty
in the estimation of the parameters. Specifically,
he uses stochastic interest rates as an application
to an insurance of single payment and based on
this he estimates the parameters of the feasible dis-
tributions of the accrued interest rate. However,
Cairns [8, 9] does not make any difference about
the annual return that the actuarial reserve should
have. Similarly, Nielsen, Sandmann and Schlögl

[10] develop the needed equations to calculate the
return guarantee in an equity-linked pension scheme,
but constraining the model to the existence of a
retirement system that guarantees such minimum
rate.

Battocchio and Menoncin [2] specify the behavior
of the stochastic variables using the most common
functional forms adopted in the literature. Particu-
larly, they model the term structure of the interest
rate according to Cox, Ingersoll and Ross [11]; that
model does not return negative interest rates as in the
model suggested by Vasicek [12]. Additionally, by
using stochastic models of interest rates and volatility,
the recent work of Luo, Metawa, Yuan and Elhoseny
[13] analyze optimal investment strategies for insur-
ance companies, while Liu, Yang, Zhai and Bai [14]
analyze such variables for pension funds by including
uncertainty in the portfolio rate of return and in the
wages of workers. In the same line, the approach fol-
lowed by Devolder, Bosch Princep and Dominguez
Fabian [15], Gerrard, Højgaard and Vigna [16], Josa-
Fombellida and Rincón-Zapatero [17], and Konicz
and Mulvey [18] uses the stochastic optimal-control
tool to find out the optimal investment strategy, with-
out including in the constraints a minimum portfolio
return. These authors take for granted that the tech-
nical discount rate must be equal to the risk-free rate,
which is used to discount the future payments of the
annuity. The major drawback of this approach is that
the optimal strategy could change if it is demonstrated
that the discount rate and the technical rate are not
necessarily the same.

This paper demonstrates that if one abandons the
assumption of constant interest rates, it is not suitable
to assume that the discount rate used to cover the pay-
ment of the joint-and-survivor annuities is equal to
the expected rate of return of the portfolios in which
such funds are invested. The suggested model is built
upon an equation that describes the required reserve
for this two-life annuity, with certain ages and with
its respective change in the face of stochastic behav-
ior of the technical interest rate. The dynamics of
the interest rates are modeled according to the equa-
tion provided by Cox, Ingersoll and Ross [11], while
the future payments are modeled based on Brownian
motion.

The next section introduces the suggested model;
the subsequent section describes its application to the
Pension Fund of the Territorial Entities of Colombia
(Fondo de Pensiones de las Entidades Territoriales de
Colombia), and finally the article presents its major
conclusions and remarks.
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2. Model

2.1. Preliminaries

2.1.1. Survival function and probabilities
Let S (π) be a survivor function that indicates the

likelihood that the age of death (�) of a person will
be higher than a certain age, π. Hence,

S (π) = P (� > π) .

tpφ is defined as the probability that a person of
age φ will not die in the following t years, and tqφ is
therefore the probability of dying in the current year.
According to this definition, as detailed in Bowers,
Hans, Hickman, Jones and Nesbitt [19]:

tpφ = P (� > φ + t|� > φ)

tpφ = P (� > φ ∩ � > φ + t)

P (� > φ)

tpφ = P (� > φ + t)

P (� > φ)
.

tpφ = S (φ + t)

S (φ)
.

Therefore,

tqφ = 1 − S (φ + t)

S (φ)
.

For the case of joint-and-survivor annuities, con-
sidered as independent and with ages φ and γ ,
respectively, the probability that at least one of them
will survive for at least t years is defined as follows:

tp 1
φ,γ

= tpφtqγ + tqφtpγ + tpφtpγ

tp 1
φ,γ

= S (φ + t)

S (φ)

(
1 − S (γ + t)

S (γ)

)
+

(
1 − S (φ + t)

S (φ)

)
S (γ + t)

S (γ)
+ S (φ + t)

S (φ)

S (γ + t)

S (γ)

tp 1
φ,γ

= S (φ + t)

S (φ)
− S (φ + t)

S (φ)

S (γ + t)

S (γ)
+ S (γ + t)

S (γ)

− S (φ + t)

S (φ)

S (γ + t)

S (γ)
+ S (φ + t)

S (φ)

S (γ + t)

S (γ)

tp 1
φ,γ

= S (φ + t)

S (φ)
+ S (γ + t)

S (γ)
− S (φ + t)

S (φ)

S (γ + t)

S (γ)

2.1.2. Required reserve for a two-life annuity
The required reserve for the annuity payment will

be the sum of the expected present values of the fea-
sible payments [20]. The model assumes an annuity
payment (x) with compensation that increases at the
same rate as the consumer price index in the case in
which the person does not die and zero (0) otherwise.

RN = E (Pmt0) e−r∗0 + E (Pmt1) e−r∗1 + E (Pmt2)

e−r∗2 + . . . + E

(
Pmtw−min(φ,γ)

)
e
−r∗

(
w−min(φ,γ)

)

RN =
[
x (t) 0p 1

φ,γ
+ 0 ∗

(
1 − 0p 1

φ,γ

)]
e−r∗0

+
[
x (t) 1p 1

φ,γ
+ 0 ∗

(
1 − 1p 1

φ,γ

)]
e−r∗1

+
[
x (t) 2p 1

φ,γ
+ 0 ∗

(
1 − 2p 1

φ,γ

)]
e−r∗2

+ . . . +
[
x (t) w−min(φ,γ)p 1

φ,γ

+0 ∗
(

1 − w−min(φ,γ)p 1
φ,γ

)]
e
−r∗

(
w−min(φ,γ)

)

RNt =
w−min(φ,γ)∑

t=0

x (t) tp 1
φ,γ

e−rt

Where xt is defined as the amount of the monthly
payment at moment t; r is the nominal interest rate; ρ
is the percentage change in the general level of prices;
φ, γ are the current ages of the insured people; w −
min (φ, γ) is the maximum time that the youngest
insured person can live; RN is the required reserve
for the payment of the annuity.

This equation, expressed in continuity, is as fol-
lows:

RNt =
∫ w−min(φ,γ)

0
x (t) tp 1

φ,γ
e−rtdt

tp 1
φ,γ

= S (φ + t)

S (φ)
+ S (γ + t)

S (γ)
− S (φ + t)

S (φ)

S (γ + t)

S (γ)

RNt =
∫ w−min(φ,γ)

0
x (t)

S (φ + t)

S (φ)
e−rtdt

+
∫ w−min(φ,γ)

0
x (t)

S (γ + t)

S (γ)
e−rtdt
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−
∫ w−min(φ,γ)

0
x (t)

S (φ + t)

S (φ)

S (γ + t)

S (γ)
e−rtdt

2.2. Change in the required actuarial reserve
with the stochastic interest rate

Suppose a certain country’s interest rate follows
a Cox, Ingersoll and Ross [11] process such as the
following:

drt = [θ − art] dt + ν
√

rtdWt

The amount of the monthly payment x (t) follows
the stochastic process known as the Itô process:

dxt = m ∗ xt ∗ dt + n ∗ xt ∗ dUt

Further, Cov (dWt, dUt) = ρ*dt.
Therefore, the Itô [21] lemma applied to the

required reserve RN defines the change in the reserve
before changes in the interest rates in the monthly
payments and over time.

Hull [22] demonstrates that the change in the price
of the financial derivative—whose price depends on
many underlying variables that follow their own
stochastic process—can be modified as follows.

If G depends on x and y at timet,

dG=
(

∂G

∂x
a1 + ∂G

∂y
a2 + ∂G

∂t
+ 1

2

∂2G

∂x∂y
b1 ∗ b2 ∗ ρ12

)
dt

+ ∂G

∂x
b1*dBt1 + ∂G

∂y
b2*dBt2.

This is true so long as the change in each variable
is such that

dx = a1 ∗ dt + b1 ∗ dBt1

dy = a2 ∗ dt + b2 ∗ dBt2

and so long as Cov (dBt1, dBt2) = ρ12 ∗ dt.
According to this condition, if RNt depends on rt

and xt .,

dRNt =
(

∂RNt

∂r
∗ [θ−art] + ∂RNt

∂xt

∗ m ∗ xt + ∂RNt

∂t

+1

2

∂2RNt

∂r∂x
∗ n ∗ xt ∗ ν ∗ √

rt ∗ ρ

)
dt + ∂RNt

∂r
∗ ν

∗ √
rt ∗ dWt + ∂RNt

∂x
∗ n ∗ xt ∗ dUt.

2.3. Required technical interest rate

Suppose that the change in the constituted reserve
RC is described according to the following stochastic
differential Equation [23]:

dRCt = μt ∗ RCt ∗ dt + σt ∗ RCt ∗ dKt − xt ∗ dt

dRCt = (μt ∗ RCt − xt) dt + σt ∗ RCt ∗ dKt

The condition dRCt = dRNt is needed to maintain
the equilibrium of the actuarial structure [24]. This
implies the following:

μtRCt − xt = ∂RNt

∂r
∗ [θ − art] + ∂RNt

∂xt

∗ m ∗ xt

+ ∂RNt

∂t
+ 1

2

∂2RNt

∂r∂x
∗ n ∗ xt ∗ ν ∗ √

rt ∗ ρ

Therefore,

μt = [θ − art]

RCt

∂RN

∂r
+ mxt

RCt

∂RN

∂x
+ 1

RCt

∂RN

∂t

+ nxtν
3√rtρ

2RCt

∂2RNt

∂r∂x
+ xt

RCt

.

In this case, the following is true:

∂RN

∂r
= −

∫ w−min(φ,γ)

0
tx (t)

S (φ + t)

S (φ)
e−r(t)tdt

−
∫ w−min(φ,γ)

0
sx (t)

S (γ + t)

S (γ)
e−r(t)tdt

+
∫ w−min(φ,γ)

0
tx (t)

S (φ + t)

S (φ)

S (γ + t)

S (γ)
e−r(t)tdt

∂RN

∂t
= x (t)

S (φ + t)

S (φ)
e−r(t)t

∣∣∣∣
w−min(φ,γ)

0

+ x (t)
S (γ + t)

S (γ)
e−r(t)t

∣∣∣∣
w−min(φ,γ)

0

− x (t)
S (φ + t)

S (φ)

S (γ + t)

S (γ)
e−r(t)t

∣∣∣∣
w−min(φ,γ)

0

∂RN

∂t
=x

(
w−min (φ, γ)

) S
(
φ + w − min (φ, γ)

)
S (φ)

e
−r

(
w−min(φ,γ)

)
∗
(

w−min(φ,γ)
)

+x
(
w − min (φ, γ)

)
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S
(
γ+w−min (φ, γ)

)
S (γ)

e
−r

(
w−min(φ,γ)

)
∗
(

w−min(φ,γ)
)

− x
(
w − min (φ, γ)

)

S
(
φ + w − min (φ, γ)

)
S (φ)

S
(
γ + w − min (φ, γ)

)
S (γ)

e
−r

(
w−min(φ,γ)

)
∗
(

w−min(φ,γ)
)

− x (0) .

∂RN

∂x
= ∂

∂x

[∫ w−min(φ,γ)

0
x (t)

S (φ + t)

S (φ)
e−r(t)tdt

]

+ ∂

∂x

[∫ w−min(φ,γ)

0
x (t)

S (γ + t)

S (γ)
e−r(t)tdt

]

− ∂

∂x

[∫ w−min(φ,γ)

0
x (t)

S (φ+ t)

S (φ)

S (γ+ t)

S (γ)
e−r(t)tdt

]

∂RN

∂x
=

∫ w−min(φ,γ)

0

S (φ + t)

S (φ)
e−r(t)tdt

+
∫ w−min(φ,γ)

0

S (γ + t)

S (γ)
e−r(t)tdt

−
∫ w−min(φ,γ)

0

S (φ + t)

S (φ)

S (γ + t)

S (γ)
e−r(t)tdt

∂2RN

∂r∂x
= −

∫ w−min(φ,γ)

0
t
S (φ + t)

S (φ)
e−r(t)tdt

−
∫ w−min(φ,γ)

0
t
S (γ + t)

S (γ)
e−r(t)tdt

+
∫ w−min(φ,γ)

0
t
S (φ + t)

S (φ)

S (γ + t)

S (γ)
e−r(t)tdt

Solving r (t) is the interest rate at which the annuity
reserve must be calculated.

r (t) = f−1 (μt)

Therefore, the required reserve for the two-life
annuity payment will be as follows:

RNt =
∫ w−min(φ,γ)

0
x (t) tp 1

φ,γ
e
−
(
f−1(μt )

)
t
dt

Regarding the sensitivity of μt relative to each of
the parameters, as expected, there is a direct rela-
tionship between this variable and the amount of the

monthly payment x, the trend of amount m, and its
volatility n.

∂μt

∂xt

= m

RCt

∂RN

∂x
+ nν3√rtρ

2RCt

∂2RNt

∂r∂x
+ 1

RCt

∂μt

∂m
= xt

RCt

∂RN

∂x

∂μt

∂n
= xtν

3√rtρ

2RCt

∂2RNt

∂r∂x

The same direct relationship is observed with the
volatility of the interest rate, v.

∂μt

∂v
= 3

2

nxtν
2√rtρ

RCt

∂2RNt

∂r∂x

Consistent with the previous result, the faster the
reversion to the mean (α), the higher the required
return (μt) to keep the pension system in equilibrium:

∂μt

∂a
= − rt

RCt

A comparable effect, although with a different
magnitude, is observed in the actuarial reserve.

∂μt

∂RCt

= − 1

(RCt)2

[
[θ − art]

∂RN

∂r
+ mxt

∂RN

∂x

+∂RN

∂t
+ nxtν

3√rtρ

2

∂2RNt

∂r∂x
+ xt

]

3. Application

3.1. Pension funds of the territorial entities of
Colombia

Until 1993, in Colombia, there were diverse pen-
sion plan schemes. One of them benefited the civil
servants of the national territorial divisions, such
as departments and municipalities, by providing
them annuities upon working a certain number of
years.

In this context, in 1999, the government created
the National Pension Funds of the Territorial Enti-
ties (FONPET is the Spanish acronym), which is
under the supervision of the Ministry of Finance
and Public Credit. The goal of this fund is to unify
and concentrate the actuarial reserves of each of
the territorial divisions under a single administra-
tion. FONPET is defined as “a fund without legal
status administered by the Ministry of Finance and



A
U

TH
O

R
 C

O
P

Y

1756 G. Agudelo et al. / Actuarial model for estimating the optimum rate of return of a joint-and-survivor annuity portfolio

Fig. 1. Value of a unit of FONPET (2/1/2018–1/31/2019). Source:
Authors’ elaboration with data from FONPET, R-Project.

Public Credit, which aims to collect and allocate
resources to the accounts of territorial entities and
administer resources through autonomous assets”
[25]. Currently, FONPET manages more than US$16
billion, and social security is a constitutional right
in Colombia. Hence, the financial stability of the
departments, municipalities, and country depends
substantially on the responsible management of such
funds.

Figure 1 exhibits the evolution of the price per unit
of FONPET from February 1, 2018, until January
31, 2019. The annual rate of return of the fund was
3.81% with an associated annual volatility of 1.19%.
The stochastic differential equation that follows the
price per unit is as follows:

dxt = mxtdt + nxtdUt

dxt = 0.0381xtdt + 0.0119xtdUt

In this section, this article considers a pension
holder (62 years old) and a beneficiary (57 years old).
The hypothetical pension holder earned during his
working life 175,080,164.36 Colombian pesos. Using
the actuarial calculation of the joint-and-survivor
pension according to the methodology suggested
by Bowers, Gerber, Hickman, Jones and Nesbitt
[26], daily pension payments are equal to 26,666.67
Colombian pesos. The annual nominal interest rate
used in the computation was 6%, and the mortality
tables used to estimate the probabilities correspond
to those published by the Financial Superintendency
of Colombia [27].

3.2. Minimum rate of return of the portfolio

In order to develop this application, it is assumed
that the interest rate of the 10-year government bonds
issued by the Ministry of Finance and Public Credit of
the Republic of Colombia follows the Cox-Ingersoll-
Ross stochastic process. Using the daily data for the
same period used in FONPET, the Hessian method as
suggested by Remillard [28], and the est.cir function
of R-Project, the following equation is obtained:

drt = (θ − ar) dt + ν
√

rtdWt

drt = (0.00314285 − 0.04919rt) dt + 0.006308
√

rtdWt

Additionally, it is assumed that Cov (dUt, dWt) =
−0.5dt. Therefore, the portfolio rate of return is given
by the following:

∂RN

∂r
= −1, 342, 607, 150

∂RN

∂t
= −26, 666.34

∂RN

∂x
= 4, 644.509

∂2RN

∂r∂x
= −50, 347.77

μt = [0.00314285 − 0.04919 ∗ (6%)]

175, 080, 164.36

∗ (−1, 342, 607, 150) + 0.0381 ∗ 26, 666.67

175, 080, 164.36

∗ 4, 644.509 + 1

175, 080, 164.36
∗ (−26, 666.34)

+ 0.0119 ∗ 26, 666.67 ∗ 0.0063083 ∗ √
6% ∗ (−0.5)

2 ∗ 175, 080, 164.36

∗ (−50, 347.77) + 26, 666.67

175, 080, 164.36

Hence, the minimum annual rate of return (μt) the
portfolio must have is 2.34%.

3.3. Sensitivity to changes in age

This article’s major finding concerns the portfo-
lio minimum rate of return at which the actuarial
reserve of a 62-year-old and a 57-year-old beneficiary
is invested.
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Fig. 2. Minimum rate of return of the portfolio by age of the
pension holder (φ) and the beneficiary (γ).

Fig. 3. Changes in the portfolio’s minimum rate of return in
response to changes in the amount of the payment xt and in the
parameter of the payment trend m, by ages of the pension holder
(φ) and beneficiary (γ).

In this section, the response of such a rate of return
to changes in the age of both the pension holder
and the beneficiary is analyzed. In order to do this,
the partial derivatives were simulated for individuals
between 60 and 100 years old with beneficiaries of
the opposite gender in the same age range.

As observed in Fig. 2, the combinations exhibit
a certain stability in the portfolio’s minimum rate
of return. The highest rate is observed when
the pension holder and the beneficiary are 85
years old (μt = 2.8281%). In contrast, the low-
est rate is achieved when both are 100 years old
(μt = 2.4995%).

Similar behavior, although at different magnitude,
is shown by the derivatives of μt relative to the
amount of the payments x and their trend m. Figure 3
shows the behavior of such derivatives in response
to changes in the age of the pension holder and
beneficiary.

Fig. 4. Changes in the portfolio’s minimum rate of return in
response to changes in the parameter of payment volatility n, by
ages of the pension holder (φ) and beneficiary (γ).

Fig. 5. Changes in the portfolio’s minimum rate of return in
response to changes in the parameter of the speed of reversion
to the mean (a) and in the parameter of payment volatility (ν), by
ages of the pension holder (φ) and beneficiary (γ).

In both cases, the highest derivative corresponds to
the ages of 80 for the pension holder and 85 for the
beneficiary:

dμt

dxt

= 1, 100387 ∗ 10−6

and

dμt

dm
= 0.7634469

Regarding the impact of changes in the volatil-
ity of the payments, it is observed that as both the
pension holder and the beneficiary get older, the
impact on volatility decreases. The minimum change
is 1, 255596 ∗ 10−7, while the maximum change is
6, 806854 ∗ 10−7, as exhibited in Fig. 4.

Moreover, as displayed in Fig. 5, changes in the
parameters associated with the interest rates (a and ν)
have less impact on the required rate of return as ages
increase. dμt

da
has a maximum equal to −3.21038 ∗

10−10 and a minimum of −1.311556 ∗ 10−9. dμt

dν
has
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Fig. 6. Changes in the portfolio’s minimum rate of return in
response to changes in the portfolio balance (RCt), by ages of
the pension holder (φ) and beneficiary (γ).

a maximum of −6.806854 ∗ 10−7 and a minimum of
−1.255596 ∗ 10−7.

Finally, increases in the balance of the portfolio
RCt represent decreases in the minimum required
rates of return, as expected. This effect is particu-
larly pronounced when both the pension holder and
the beneficiary are 85 years old, as displayed in
Fig. 6.

4. Conclusions

This paper has developed a model that computed
the technical interest rate, or the required yield, for a
portfolio’s actuarial reserve for a joint-and-survivor
annuity (or two-life annuity). The model considered
the stochastic movement of the interest rate modeled
by the Cox, Ingersoll and Ross [11] process and the
Itô process for the derived payments. The findings
have demonstrated that, through the stochastic calcu-
lations, the technical interest rate is a function of the
rate of return the portfolio can yield (where both rates
are not necessarily equal, despite what is suggested by
the previous literature), the age of the annuity holder
and beneficiary, the portfolio’s return volatility, and
the parameters of tendency, volatility, and reversion
to the mean of the market interest rate.

This is presented as an alternative approach to the
traditional and unrealistic method that assumes that

the constant discount rate is equal to the long-term
portfolio’s expected rate of return. Given the incon-
venience of assuming a constant interest rate [7],
this article’s proposal presents an alternative for the
calculation of the actuarial reserve. It is suggested
that an analysis of the practical and legal conse-
quences of computing the pension liabilities is an
avenue for future research. Additionally, it is pro-
posed that one should analyze the impact that the
suggested estimation would have when combined
with dynamic survivorship models, such as those
proposed by Pitacco [29], in contrast with other pro-
posals of estimation of the technical interest rates,
such as the one of Olivares Aguayo, Agudelo Torres,
Franco Arbeláez and Téllez Pérez [30].

With this understanding, this research outlines
recommendations for policy makers to modify the
regulation that includes the assumption of a techni-
cal interest rate equal to the minimum required rate
or a function that depends solely on that rate. Sim-
ilarly, practitioners must not assume the technical
interest rate to be a target yield for their portfolio, but
a variable that helps, together with other variables,
to determine the required rate of return. In fact, each
pair of buyers (the annuity holder and beneficiary)
has a specific return for its actuarial reserve.
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[21] K. Itô, Stochastic integral, Proceedings of the Japan
Academy 20 (1944), 519–24.

[22] J.C. Hull 2012 Option, Futures and other Derivatives (New
York, NY: Prentice Hall).

[23] K. Ito, On stochastic differential equations, Memoirs of the
American Mathematical Society 4 (1951), 1–51.

[24] H. Olivares, J. Téllez, G. Agudelo and L. Franco 2020
Advanced Mathematics for Finance vol 1

[25] Dirección General Dirección de Inversiones y Finanzas
Públicas (DIFP). Panorama actual de los recursos del
Fondo Nacional de Pensiones de las Entidades Territoriales
(FONPET). Departamento Nacional de Planeación, Bogotá,
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