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Abstract

The active cervical range of motion (aROM) is assessed by clinicians to inform their deci-

sion-making. Even with the ability of neck motion to discriminate injured from non-injured

subjects, the mechanisms to explain recovery or persistence of WAD remain unclear. There

are few studies of ROM examinations with precision tools using kinematics as predictive fac-

tors of recovery rate. The present paper will evaluate the performance of an artificial neural

network (ANN) using kinematic variables to predict the overall change of aROM after a

period of rehabilitation in WAD patients. To achieve this goal the neck kinematics of a cohort

of 1082 WAD patients (55.1% females), with mean age 37.68 (SD 12.88) years old, from

across Spain were used. Prediction variables were the kinematics recorded by the EBI® 5 in

routine biomechanical assessments of these patients. These include normalized ROM,

speed to peak and ROM coefficient of variation. The improvement of aROM was repre-

sented by the Neck Functional Holistic Analysis Score (NFHAS). A supervised multi-layer

feed-forward ANN was created to predict the change in NFHAS. The selected architecture

of the ANN showed a mean squared error of 308.07–272.75 confidence interval for a 95% in

the Monte Carlo cross validation. The performance of the ANN was tested with a subsample

of patients not used in the training. This comparison resulted in a medium correlation with R

= 0.5. The trained neural network to predict the expected difference in NFHAS between

baseline and follow up showed modest results. While the overall performance is moderately

correlated, the error of this prediction is still too large to use the method in clinical practice.

The addition of other clinically relevant factors could further improve prediction

performance.

Introduction

Classically, whiplash is defined as an acceleration–deceleration mechanism of energy trans-

ferred to the neck resulting from rear-end or side-impact motor vehicle collisions, but also

from diving or other mishaps. These injury mechanisms can cause what is known as whiplash
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associated disorder (WAD). Common signs and symptoms of WAD include neck pain, stiff-

ness and headaches [1,2]. The cost associated with this condition is EUR 10 billion per annum

in Europe alone [3]. The incidence of this pathology varies across countries, but the average is

300 cases per 100000 inhabitants [4,5]. Recovery rates have not improved over the past decades

with 50% of patients maintaining symptoms 6 months post injury and 20% not being consid-

ered recovered 5 years after the injury [6–11]. WAD has a clear impact on health-related qual-

ity of life (HRQoL), and the worse the level of disability, the lower the HRQoL and the higher

the costs for society [12].

This burden for the health system has made many clinicians and researchers to turn their

attention into WAD to get a better understanding of the pathology. The available evidence

suggests that cervical range of motion impairment is mainly caused by pain [13]. While active

cervical range of motion (aROM) is routinely assessed by clinicians, this assessment is often

performed using unstandardized subjective methods [14]. A recent systematic review on the

clinical tests used to evaluate cervical pathologies stated that visual inspection and palpation

are inconsistent measures for the problems found in cervical pathologies. In this regard, both

visual inspection and palpation showed low inter-rater reliability scores and therefore other

methods of evaluating cervical pathology are suggested [15]. Some attempts have been made to

standardize the evaluation of the cervical spine, such as validating the use of goniometry

[16,17] or tape measures [18]. However, these methods are unable to address other parameters

of the movement such as the speed or detect subtle changes in ROM. Advances in inertial mea-

surement unit (IMU) technology have simplified data acquisition by making available devices

that are accurate, cheap and easy to use and can objectively measure aROM [19–23].

Using equivalent systems Grip et al. [24] explored the idea of differentiating WAD patients

from healthy controls using only the neck kinematics. In their study, multiple parameters are

used to train a neural network. While their results were promising, a sample of 56 controls and

59 patients was deemed small to train a generalizable neural network. It is noteworthy that the

authors point out that speed parameters show most differences between injured and healthy

subjects and therefore they were the principal regressors that defined the group assignment

[25]. These conclusions are further shared by researchers such as Niederer et al. [26]. Recently

published work expanded the identification of presence or absence of injury by determining

the stages of injury in cervical pathologies. This work presented a novel measure, the NFHAS

(Neck Functional Holistic Analysis Score). This score encompasses all ranges of motion and

assigns a single value for the cervical mobility. With the NFHAS the cervical impairment was

staged in 5 categories of increasing severity, easing the identification of the seriousness of the

injury according to kinematics [27].

Even with the ability of neck motion to discriminate injured from non-injured subjects, the

mechanisms to explain recovery or persistence of WAD remain unclear [28]. The development

of clinical prediction rules (CPRs) came about to help in the identification of patients at risk of

developing chronic WAD. These tools are designed to guide the clinicians’ decisions [7,29].

The whiplash CPR uses the neck disability index (NDI), the posttraumatic diagnostic scale and

the age of the patient [8]. The NDI considers the aROM of the patient but with a subjective

approach. Since the CRP has shown good overall performance, the aROM measured objec-

tively could improve the performance of prediction. A major systematic review and meta-anal-

ysis of cohort studies identified that there is a lack of knowledge on hard physical objective

signs that can act as predictors of the most probable progression of the pathology [1]. Further,

it is reported that the procedures used to study WAD are highly inconsistent and this makes it

difficult to compare and synthesize the literature in this area [30].

Synthesizing the reviewed literature, we hypothesize that a combination of aROM parame-

ters could help determining the expected recovery of WAD patients. More severe injuries will
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take longer to recover than milder ones and therefore baseline kinematic parameters could

identify this behaviour. To predict new values, regression approaches constitute the classical

method. Prediction and explanation are two of the main applications of multiple regression

[31], however, in recent years artificial neural networks (ANNs) have gained ground over this

classic approach. In these regard la Delfa et al. [32] propose that ANNs are used more often in

biomechanics as they appear to be the most robust method for predicting complex relation-

ships. The name artificial neural network derivates from the similarities between the function-

ing of these algorithms and actual neurons from the nervous system. A neural network is

composed of three main parts: the input layer, the hidden layers, and the output layer. The

input layer is composed of as many nodes (neurons) as variables are used as predictors of the

output. The output layer is composed of several nodes (neurons) equal to the number of target

variables, the ones that are to be predicted. In the middle the hidden layers are found. The con-

figuration for these hidden layers is not standardized, and their number or the number of neu-

rons to be included remains to the choice of the investigator [33]. Some authors suggest that

most of the problems, where ANNs are used on, can be solved with just one single hidden

layer. It is also suggested that the number of neurons in the hidden layers should range

between the number of neurons between the input and the output layers [34]. All these layers

are connected to each other like neurons in the nervous system are connected by their axons.

These connections have a bias and a weight associated that condition when a neuron is acti-

vated. All these weight and biases are automatically adjusted by optimization algorithms.

These algorithms adjust the weights and biases depending on a correct or incorrect prediction

of the target variable during the training phase of the ANN. In a nutshell, an ANN acts as a

compilation of regression analyses that work together to make a prediction.

The aim of this paper was to evaluate the performance of a neural network model using

kinematic variables to predict the overall change of aROM after a period of rehabilitation in

WAD patients.

Materials and methods

Study design and population

A retrospective approach was used to develop a neural network capable of predicting the direc-

tion and magnitude of change in the Neck Functional Holistic Analysis Score (NFHAS) after

rehabilitation in WAD patients [27]. To achieve this goal the records of the neck kinematics of

a cohort of WAD patients from across Spain were used. The WAD patients from traffic car

collisions assessed by Fisi(ON) Health Group or its associated clinics were used for this

research. All the network of professionals certified to do the assessments are uniformly trained

by Fisi(ON) Health Group personnel and follow the same standardized and strict protocol.

The measuring device used in these assessments is the EBI1 5, which uses two IMUs for the

kinematics recordings at a certified precision of ±0.1˚. The patient sits on an upright position,

one IMU is placed upon the occiput with an elastic headband, and the other one over the

space between the spinous processes of T2 and T3 with double-sided hypoallergenic adhesive

tape. The evaluated patient performs an oscillatory movement between the ROM limits of

each movement pair (flexion/extension, right side bend/left side bend, right rotation/left rota-

tion) for 45 seconds each. The speed of movement is self-determined, and the patient has the

goal to perform the maximum number of repetitions. For these movements, the angles

between the head and the thoracic spine are calculated to get the range of motion of the cervi-

cal spine. All patients’ records were received in the central headquarters of Fisi(ON) for inter-

pretation and reporting. Data collection was repeated for trials that contained unusable results

followed by analysis. The inclusion criteria to be included in this study were: patients over 18
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years old, having a diagnosis related to cervical spine injuries, have a baseline assessment

before treatment and a follow up assessment after treatment between January and August

2019. All the patients received standard rehabilitation treatment for the neck between baseline

and follow up. This treatment included manual therapy, exercises and electrotherapy. The

exclusion criteria were: patients with any of the studied kinematic variables considered as an

outlier, i.e. more than 3 scaled median absolute deviations away from the median [35]. All out-

liers were removed from the sample since those parameters could not correspond to real

human kinematics. Those outliers could be a result of failed biomechanics assessments that

were registered on the database. Few outliers were found since the system has control algo-

rithms that prevent most of these happenings from being recorded. The work of Ogundimu

et al. determined that at least 20 cases should be included for every variable used in a predic-

tion model using binary predictors [36]. According to this rule of thumb it would be recom-

mended to use at least 360 patients in this investigation. Since, our predictors are not binary

and a larger dataset would reduce the risk of overfitting in the model [31], the full sample of

1082 patients will be used. Ethics approval was obtained from the Research Ethics Committee

of Hospital Clínico Universitario San Carlos, Madrid, Spain (approval number 18/405-E). This

organism is independent from any of the investigators to comply with the Good Clinical Prac-

tice guidelines. All the information used was obtained during routine care and was anon-

ymized before its use in the current investigation. All patients had signed an informed consent

where it was specified that clinical data could be used in clinical research.

Model design and statistical analysis. A supervised multi-layer feed-forward neural net-

work was created to predict the change in NFHAS. The input layer is composed of 18 neurons

corresponding to the predictors.

Predictor variables were derived from the kinematics recorded in the biomechanical assess-

ments of the patients. The predictors included age normalized ROM of flexion (F), extension

(E), left lateral bending (Llb), right lateral bending (Rlb), left rotation (Lrt) and right rotation

(Rrt); coefficient of variation (CV) of each ROM; and speed to peak of each ROM. The ROM

and speed were obtained averaging all the repetitions made during the recording. All variables

were z-score normalized to avoid problems with the differences in the scale of measurement

(i.e. percentage of movement, degrees per second).

To address the improvement of aROM the NFHAS was used. This measure combines the

three normalized main ROMs (flexion-extension, lateral bending and rotations) giving a per-

centage of the global movement of the patient [37]. The procedure to obtain the NFHAS is as

follows:

• Determine the sides of a polygon using ROM as coordinates

DROMa ;ROMb
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxROMa � xROMbÞ
2
þ ðyROMa � yROMbÞ

2
þ ðzROMa � zROMbÞ

2

q

Where “a” and “b” are any 2 of the ROM with their “x”, “y” and “z” coordinates. The letter “D”

represents the distance between 2 ROM vertices.

• Calculate the area with Heron’s formula:

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs � aÞðs � bÞðs � cÞ

p
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Where a, b and c are the sides of the polygon, and s represents the semiperimeter calculated

by:

s ¼
aþ bþ c

2

• The NFHAS is the result of comparting the area of this polygon against the ideal (100% in all

ROM):

NFHAS ¼
A

A100%
� 100

The target variable was formed by subtracting the NFHAS obtained in the first assessment

before rehabilitation from the NFHAS obtained in the assessment after rehabilitation.

NFHASdifference ¼ NFHAS2 � NFHAS1

In previous investigations the NFHAS showed that 5 groups was the optimal number of

clusters to stage the severity of ROM impairment [37].

The output layer was created using this the signed difference between pre- and post-rehabil-

itation NFHAS.

Some debate remains on the optimal architecture of ANNs. Most of the literature believes

that just one hidden layer is enough to solve most of real-life problems. However, there is no

definite answer on the optimal number of hidden layers and neurons in each layer [33,34]. Dif-

ferent architectures were tried practically and the one that offered the best performance was

chosen. The levenberg-marquadt algorithm was used in the training for optimization of the

ANN.

A Monte Carlo cross-validation was used to determine the optimal architecture of the

ANN. A maximum of 17 neurons and 2 hidden layers were tested. At every epoch one neuron

was added to the architecture or relocated to the second layer if testing a two-hidden-layer

architecture. Seventy per cent of these were used for training and the thirty per cent remaining

for validation and calculating the mean squared error (MSE) of the prediction. The MSE is the

main variable to address the performance of ANNs. This metric shows the average magnitude

of squares of error, the distance between the model’s estimate of the change in NFHAS and the

actual change in NFHAs that each patient showed. Values closer to 0 demonstrate better per-

formance and a more accurate forecasting of the ANN. Patients were randomly assigned to

each group in each loop. For each possible combination, the MSE was obtained 10 times with

different trained ANNs. The MSEs obtained were then averaged to obtain the effect on the

error of selecting different cases for the training of the ANN.

The architecture that displayed the lowest MSE was chosen for the final training ANN. In

this training patients were randomly assigned again to 2 groups. One group was used to train

the ANN, the other group was used for validation purposes and was not presented to the ANN

previously. To further test the precision of the ANN a regression using the predicted values of

change in NFHAS as independent variable and the real change in NFHAS as dependent vari-

able was performed. All the assumptions (linearity, normality, homoscedasticity, and indepen-

dence) necessary to run a simple linear regression were satisfied, however, this model will not

be used for prediction of measures but a measure of the performance of the developed ANN.

An R value closer to 1 indicates a better fit between the regression model and the expected

values.
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Another ANN was trained adding principal component analysis (PCA) as pre-processing

treatment to the predictor variables. This treatment would create new components that are

unrelated to each other and potentially improve the prediction. The purpose of this PCA is to

eliminate collinearity between the predictors, the maximum fraction of variance for removed

rows was left on 0. Each of the PCA would be orthogonal to each other, therefore maximizing

the differences between the input variables. Another linear regression analysis was conducted

to assess performance, the assumptions for regression analysis were satisfied again.

The sample of patients was further divided into real improvement and predicted improve-

ment (group 1 1), real improvement and predicted to not improve (group 1–1), real deteriora-

tion and predicted to improve (group -1 1) and real deterioration and predicted to not

improve (group -1–1). A paired t-test was conducted between pre- and post-rehabilitation

kinematic values in each group, significance level was set to alpha 0.05.

Results

Participants

A total of 1082 patients were included of which 55.1% were females and a 44.9% were males

(age 37±12.88 years, height 1.67±0.09 m and mass 72.41±15.47 Kg). These patients were classi-

fied at baseline assessment according to the NFHAS in the following percentages: 3.69%

NFHAS type 1, 16.82% NFHAS type 2, 24.67% NFHAS type 3, 31.23% NFHAS type 4 and

23.56% NFHAS type 5. The severity of the injury increases with the NFHAS group number,

e.g. NFHAS type 1 describes complete ROM while NFHAS type 5 describes severe limitations.

The ROM and the speed show a consistent decrease as the severity of injuries increases. The

speed of the rotation is the highest followed by flexion-extension and last the lateral bending.

This finding is consistent for all the NFHAS groups (Fig 1). The consistency of the movement

decreases with increasing severity. The ROM CV is at its highest in the NFHAS type 5 group

in all movements.

ANN architecture selection

All the possible architectures of the ANN were tested with a Monte Carlo cross-validation

method. This procedure showed that the MSE was the lowest with only one hidden layer with

ten neurons. The mean MSE for this architecture was 290 with a confidence interval of

308.07–272.75 for a 95% confidence (Fig 2).

Fig 1. Baseline kinematic variables divided into severity of movement impairment according to NFHAS.

https://doi.org/10.1371/journal.pone.0243816.g001

PLOS ONE Artificial intelligence and whiplash associated disorder

PLOS ONE | https://doi.org/10.1371/journal.pone.0243816 December 17, 2020 6 / 19

https://doi.org/10.1371/journal.pone.0243816.g001
https://doi.org/10.1371/journal.pone.0243816


The resulting ANN was defined with an input layer of 18 neurons, a hidden layer with 10

neurons and an output layer with one regression output (Fig 3).

The distribution of error in the histogram is similar for all the sets used both in training and

validation. Regression error is high for all the training sets. The ANN showed a greater ten-

dency to overestimate the NFHAS difference (Fig 4).

ANN performance on samples not used for training

The generalisation performance of the ANN was tested against a subsample of patients not

used in the training. This comparison resulted in a medium correlation with R = 0.5. The final

MSE of this ANN was 243.29 (Fig 5). With these results 46.3% true positives (group 1 1), 5.5%

Fig 2. MSE average from the Monte Carlo cross-validation of different ANN architectures.

https://doi.org/10.1371/journal.pone.0243816.g002

Fig 3. Final architecture of the ANN.

https://doi.org/10.1371/journal.pone.0243816.g003
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Fig 4. Error histogram from the performance of the ANN.

https://doi.org/10.1371/journal.pone.0243816.g004

Fig 5. Regression with the predicted difference of the NFHAS and the actual difference.

https://doi.org/10.1371/journal.pone.0243816.g005
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true negatives (group -1–1), 20.9% false positives(group -1 1) and 27.1% false negatives (group

1–1).

When PCA is added as pre-processing treatment on the data, the performance of the ANN

deteriorates. Correlation drops to R = 0.3 and the MSE increases to 410.36 (Fig 6).

The pre- and post-rehabilitation ROM values in the 1 1 group showed an increase after

rehabilitation (Fig 7). However, no significant differences could be found (Table 1).

The 1–1 group also showed an overall improvement while significant differences could

only be found in the left rotation (Table 2, Fig 7).

The -1 1 group showed a tendency to decrease the ROM values after rehabilitation (Fig 7).

There were significant differences in the right lateral bending, right rotation and NFHAS

(Table 3).

All the ROM values tended to decrease after rehabilitation in the -1–1 group (Fig 7). Signifi-

cant differences were only found for the left rotation and NFHAS (Table 4).

All the speed values tend to increase after rehabilitation in the 1 1 group (Fig 8), but no sig-

nificant differences were found with the paired t-test result (Table 5).

Fig 6. Regression with the predicted difference of the NFHAS and the actual difference on the ANN using PCA.

https://doi.org/10.1371/journal.pone.0243816.g006

PLOS ONE Artificial intelligence and whiplash associated disorder

PLOS ONE | https://doi.org/10.1371/journal.pone.0243816 December 17, 2020 9 / 19

https://doi.org/10.1371/journal.pone.0243816.g006
https://doi.org/10.1371/journal.pone.0243816


Fig 7. Comparison of the pre- and post-rehabilitation ROM values.

https://doi.org/10.1371/journal.pone.0243816.g007

Table 1. Comparison of the pre and post rehabilitation ROM values in the group that improved and was correctly classified as improving (Group 1 1).

Paired samples t-test results ROM group 1 1

Extension Pre vs

Post

Flexion Pre vs

Post

Left lateral bending

Pre vs Post

Right lateral bending

Pre vs Post

Left rotation Pre

vs Post

Right rotation Pre

vs Post

NFHAS Pre vs

Post

Mean difference

(standard error)

4.18(3.46) 3.22(2.94) 6.39(3.34) -1.2611(3.46) 3.04(3.99) 3.46(3.38) 2.89(2.35)

p Value 0.2234 0.2694 0.05654 0.7126 0.4403 0.3016 0.2146

CI -10.9896 -8.9950 -12.9652 -5.5330 -10.8798 -10.1071 -7.5106

2.6091 2.5480 0.1777 8.0551 4.7813 3.1736 1.7153

https://doi.org/10.1371/journal.pone.0243816.t001

Table 2. Comparison of the pre and post rehabilitation ROM values in the group that improved and was incorrectly classified as not improving (Group 1–1).
�Significant at the 0.05 level of statistical significance.

Paired samples t-test results ROM group 1–1

Extension Pre vs

Post

Flexion Pre vs

Post

Left lateral bending

Pre vs Post

Right lateral bending

Pre vs Post

Left rotation Pre

vs Post

Right rotation Pre

vs Post

NFHAS Pre vs

Post

Mean difference

(standard error)

3.62(5.29) 6.04(5.29) 2.01(4.04) 6.21(4.38) 12.82(5.68) 8.48(4.83) 6.78(3.59)

p Value 0.4826 0.2441 0.6081 0.1514 0.0253� 0.0774 0.0587

CI -14.0142 -16.4260 -9.9417 -14.8167 -23.9676 -17.9551 -13.8391

6.7625 4.3284 5.9079 2.3938 -1.6897 0.9858 0.2645

https://doi.org/10.1371/journal.pone.0243816.t002
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Table 3. Comparison of the pre and post rehabilitation ROM values in the group that did not improve and was incorrectly classified as improving (Group -1 1).
�Significant at the 0.05 level, ��Significant at the 0.01 level of statistical significance.

Paired samples t-test results ROM group -1 1

Extension Pre vs

Post

Flexion Pre vs

Post

Left lateral bending

Pre vs Post

Right lateral bending

Pre vs Post

Left rotation Pre

vs Post

Right rotation Pre

vs Post

NFHAS Pre vs

Post

Mean difference

(standard error)

6.91(4.27) 6.09(3.69) 5.76(3.76) 8.01(4.08) 6.54(3.74) 10.48(5.34) 7.98(4.06)

p Value 0.1034 0.0971 0.1222 0.0301� 0.0793 0.0051�� 0.0046��

CI -15.2867 -13.3318 -13.1462 -15.2159 -13.8948 -17.6428 -13.3638

1.4652 1.1519 1.6106 -0.8082 0.7991 -3.3289 -2.5970

https://doi.org/10.1371/journal.pone.0243816.t003

Table 4. Comparison of the pre and post rehabilitation ROM values in the group that did not improve and was correctly classified as not improving (Group -1–1).
�Significant at the 0.05 level, ���Significant at the 0.001 level of statistical significance.

Paired samples t-test results ROM group -1–1

Extension Pre vs

Post

Flexion Pre vs

Post

Left lateral bending

Pre vs Post

Right lateral bending

Pre vs Post

Left rotation Pre

vs Post

Right rotation Pre

vs Post

NFHAS Pre vs

Post

Mean difference

(standard error)

-2.16 11.98 0.17 3.27 13.90 0.94 6.30

p Value 0.7909 0.1687 0.9669 0.5216 0.0001��� 0.8773 0.0420�

CI -16.0239 -30.2590 -9.8397 -14.5344 -18.4837 -14.5355 -12.3138

20.3491 6.2802 9.4814 7.9890 -9.3259 12.6554 -0.2910

https://doi.org/10.1371/journal.pone.0243816.t004

Fig 8. Comparison of the pre and post speed values in the different groups.

https://doi.org/10.1371/journal.pone.0243816.g008
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There were significant differences between the speed scores of the pre- and post-rehabilita-

tion evaluations in the 1–1 group in the left lateral bending, right lateral bending, left rotation,

and right rotation (Table 6). All values increase in the post rehabilitation assessment (Fig 8).

There were significant differences between the speed scores of the pre- and post-rehabilita-

tion evaluations in the -1 1 group in the extension, flexion, left lateral bending, right lateral

bending, left rotation, right rotation (Table 7). Only the rotation movements show meaningful

differences between pre and post values (Fig 8).

There were no significant differences between the speed scores of the pre- and post-rehabil-

itation evaluations (Table 8 and Fig 8).

The 1 1 group showed a tendency to reduce the ROM CV value after rehabilitation. There

were only significant differences in the extension, left rotation, and right rotation (Table 9 and

Fig 9).

The 1–1 group also decreased the ROM CV value after rehabilitation, but significant differ-

ences were found only for the flexion movement (Table 10 and Fig 9).

Table 5. Comparison of the pre and post rehabilitation speed values in the group that improved and was correctly classified as improving (Group 1 1).

Paired samples t-test results speed group 1 1

Extension Pre vs

Post

Flexion Pre vs

Post

Left lateral bending Pre

vs Post

Right lateral bending Pre

vs Post

Left rotation Pre vs

Post

Right rotation Pre vs

Post

Mean difference

(standard error)

7.98(4.33) 7.74(4.44) 2.60(3.08) 4.90(3.27) 10.75(7.43) 10.03(5.96)

p Value 0.0651 0.0810 0.3944 0.1328 0.1458 0.0917

CI -16.4704 -16.4583 -8.6620 -11.3253 -25.3448 -21.7418

0.5105 0.9781 3.4535 1.5247 3.8261 1.6679

https://doi.org/10.1371/journal.pone.0243816.t005

Table 6. Comparison of the pre and post rehabilitation speed values in the group that improved and was incorrectly classified as not improving (Group 1–1).
�Significant at the 0.05 level, ��Significant at the 0.01 level, ���Significant at the 0.001 level of statistical significance.

Paired samples t-test results speed group 1–1

Extension Pre vs

Post

Flexion Pre vs

Post

Left lateral bending Pre

vs Post

Right lateral bending Pre

vs Post

Left rotation Pre vs

Post

Right rotation Pre vs

Post

Mean difference

(standard error)

13.30(6.57) 12.77(7.44) 9.36(4.07) 10.40(4.48) 28.61(9.63) 33.19(9.73)

p Value 0.0433� 0.0843 0.0225� 0.0218� 0.0041�� 0.0012���

CI -26.1884 -27.3833 -17.3833 -19.2059 -47.4913 -52.2733

-0.4268 1.8295 -1.4058 -1.6131 -9.7327 -14.1136

https://doi.org/10.1371/journal.pone.0243816.t006

Table 7. Comparison of the pre and post rehabilitation speed values in the group that did not improve and was incorrectly classified as improving (Group -1 1).
��Significant at the 0.01 level, ���Significant at the 0.001 level of statistical significance.

Paired samples t-test results speed group -1 1

Extension Pre vs

Post

Flexion Pre vs

Post

Left lateral bending Pre

vs Post

Right lateral bending Pre

vs Post

Left rotation Pre vs

Post

Right rotation Pre vs

Post

Mean difference

(standard error)

19.53(4.92) 16.49(4.71) 10.16(3.94) 13.60(3.77) 34.02(7.08) 32.20(7.74)

p Value 0.0002��� 0.0008��� 0.0113�� 0.0006��� 0.0001��� 0.0001���

CI -29.1909 -25.7445 -17.9041 -21.0091 -47.9186 -47.3754

-9.8807 -7.2502 -2.4224 -6.2057 -20.1232 -17.0297

https://doi.org/10.1371/journal.pone.0243816.t007
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Table 8. Comparison of the pre and post rehabilitation speed values in the group that did not improve and was correctly classified as not improving (Group -1–1).

Paired samples t-test results speed group -1–1

Extension Pre vs

Post

Flexion Pre vs

Post

Left lateral bending Pre

vs Post

Right lateral bending Pre

vs Post

Left rotation Pre vs

Post

Right rotation Pre vs

Post

Mean difference

(standard error)

5.83(10.63) 11.72(12.18) 3.70(9.21) -0.63(9.23) 16.88(18.96) 25.61(19.4)

p Value 0.5367 0.2904 0.6494 0.9376 0.3256 0.1590

CI -26.6944 -35.6161 -21.7799 -17.4726 -54.0651 -63.6428

15.0194 12.1609 14.3772 18.7402 20.2979 12.4136

https://doi.org/10.1371/journal.pone.0243816.t008

Table 9. Comparison of the pre and post rehabilitation ROM CV values in the group that improved and was correctly classified as improving (Group 1 1).
�Significant at the 0.05 level, ��Significant at the 0.01 level of statistical significance.

Paired samples t-test ROM CV group 1 1

Extension Pre vs

Post

Flexion Pre vs

Post

Left lateral bending Pre

vs Post

Right lateral bending Pre

vs Post

Left rotation Pre vs

Post

Right rotation Pre vs

Post

Mean difference

(standard error)

-8.56(2.87) 1.58(3.03) -4.50(3.94) -2.98(3.27) -5.51(2.56) -5.31(2.66)

p Value 0.0034�� 0.5959 0.2501 0.3583 0.0317� 0.0465�

CI 2.9269 -7.5353 -3.2373 -3.4468 0.4985 0.0842

14.2026 4.3569 12.2421 9.4126 10.5410 10.5419

https://doi.org/10.1371/journal.pone.0243816.t009

Fig 9. Comparison of the pre- and post-rehabilitation CV ROM values.

https://doi.org/10.1371/journal.pone.0243816.g009
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The -1 1 group displayed the opposite behaviour to the last two. Some values of the ROM

CV increased after rehabilitation. However, no significant differences were found (Table 11

and Fig 9).

Significant differences were found between the ROM CV scores of the right rotation

between pre- and post-rehabilitation evaluations in the -1–1 group. The figure shows however

some of the values of the ROM CV increasing after rehabilitation (Table 12 and Fig 9).

Discussion

The performance results obtained from the different tested architectures are in accordance to

the established consensus on the optimal number of hidden layers. The ANN with the smallest

MSE had just one hidden layer. The optimal number of neurons is also in accordance to exist-

ing rules of thumb since it is said that these should range between 1 and the maximum number

of input and output neurons. There is no way of knowing a priori which is the optimal number

of neurons. The trial and error approach used, helped to determine the optimal number of

Table 10. Comparison of the pre and post rehabilitation ROM CV values in the group that improved and was incorrectly classified as not improving (Group 1–1).
�Significant at the 0.05 level of statistical significance.

Paired samples t-test ROM CV group 1–1

Extension Pre vs

Post

Flexion Pre vs

Post

Left lateral bending Pre

vs Post

Right lateral bending Pre

vs Post

Left rotation Pre vs

Post

Right rotation Pre vs

Post

Mean difference

(standard error)

-1.17(2.26) -5.92(2.89) 3.17(3.72) -1.71(4.52) -4.76(4.02) -1.54(5.71)

p Value 0.5943 0.0412� 0.3838 0.6963 0.2279 0.7805

CI -3.2702 0.2501 -10.4839 -7.1562 -3.1262 -9.6550

5.6205 11.6080 4.1397 10.5901 12.6573 12.7493

https://doi.org/10.1371/journal.pone.0243816.t010

Table 11. Comparison of the pre and post rehabilitation ROM CV values in the group that did not improve and was incorrectly classified as improving (Group -1

1).

Paired samples t-test ROM CV group -1 1

Extension Pre vs

Post

Flexion Pre vs

Post

Left lateral bending Pre

vs Post

Right lateral bending Pre

vs Post

Left rotation Pre vs

Post

Right rotation Pre vs

Post

Mean difference

(standard error)

-5.23(3.87) -3.45(2.63) -0.82(2.4) -4.55(2.93) -1.83(1.44) -4.94(2.84)

p Value 0.1723 0.1848 0.7270 0.1182 0.1973 0.0808

CI -2.3699 -1.7157 -3.8959 -1.2077 -0.9929 -0.6319

12.8353 8.6286 5.5404 10.3199 4.6705 10.5307

https://doi.org/10.1371/journal.pone.0243816.t011

Table 12. Comparison of the pre and post rehabilitation ROM CV values in the group that did not improve and was correctly classified as not improving (Group

-1–1). �Significant at the 0.05 level of statistical significance.

Paired samples t-test ROM CV group -1–1

Extension Pre vs

Post

Flexion Pre vs

Post

Left lateral bending Pre

vs Post

Right lateral bending Pre

vs Post

Left rotation Pre vs

Post

Right rotation Pre vs

Post

Mean difference

(standard error)

-1.38(3.03) -19.65(12.13) -3.71(2.59) -5.00(6.69) -6.95(3.66) -3.88(1.67)

p Value 0.6072 0.0933 0.1313 0.4048 0.0565 0.0261�

CI -4.5793 -4.1441 -1.3801 -8.1161 -0.2445 0.5956

7.3461 43.4485 8.8041 18.1239 14.1498 7.1757

https://doi.org/10.1371/journal.pone.0243816.t012
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neurons and hidden layers. The use of PCA as a pre-processing treatment did not result useful.

Applying PCA to a set of variables creates new uncorrelated variables, these variables can in

turn help to improve the ANN’s performance, however, the results showed that the both the R

value form the regression and the MSE worsened when PCA was applied. As such, PCA was

not applied as a pre-processing treatment in the final ANN.

Early identification of patients who recover poorly from WAD would help in the specific

management of each case. However, the definition of recovery from WAD is still not well

established [3]. Many risk factors have been identified as potentially causing the transition

from acute to chronic WAD such as gender, age or self-rated pain intensity [28]. Promising

results were obtained by Hendriks et al. using multiple regression models. Their models cor-

rectly classified 80% of the patients on average. It is important to notice that the sample of

patients was small and mainly included biopsychosocial factors [2]. No investigation could be

identified linking kinematic variables as predictors of good or bad recovery.

The present investigation extracted 18 variables from the kinematics of the neck. These

kinematic variables are mainly related to functional capability and consistency of movement.

Their relationship with pain intensity suggested them as good predictors of good or bad kine-

matic recovery [1]. The results obtained partially support this thesis. The predictive power of

the developed ANN is only moderate, showing a great degree of error. The 0.5 result in the

regression analysis demonstrates that the baseline kinematic capabilities of the subject have

relation with the expected ROM improvement after rehabilitation. There is however a high

degree of uncertainty on how much change there would be. Some reasons can explain this

uncertainty. The first reason is the lack of inclusion of other psychosocial factors in the ANN.

Psychosocial factors have shown the ability to identify patients at risk of developing chronic

WAD. It seems reasonable to think that psychosocial factors could also play a part in the effect

of the rehabilitation treatment. Another information that would be important to be included

in the ANN is the treatment received during the rehabilitation period. While homogeneity in

the received treatment was assumed, it cannot be ensured that reality complied with this

expectation. The assessment protocol is standardized and controlled but health professionals

have freedom on treatment choice. This freedom of choice handicaps clinical investigation but

can help to identify best treatment choices depending on the degree of injury shown by the

patient. Including psychosocial factors and treatment as inputs could potentially improve the

performance of the ANN.

The behaviour of ROM and speed showed an inverse relationship with the ROM CV. Base-

line values according to NFHAS type showed that the first two increase with better kinematic

performance while the later decreases. While until NFHAS type 4 the ROM CV increases grad-

ually, the type 5 shows a greater jump, not following a linear increment. Insurance environ-

ments have shown signs of negatively influencing patient reported outcomes [38]. Some

incentives, such as the financial one, can encourage people to intentionally exaggerate some of

their symptoms [39]. The ROM CV quantifies consistency of movement repetition. Feigned

efforts have shown a higher ROM CV value than maximal efforts. Recommendations are not

to use this value as the only indicative of a feigned effort since the variability of this value across

subjects is very large [40]. It is difficult to think that after rehabilitation the movement coordi-

nation gets harmed by the treatment and literature does not support this line of thought either

[8]. The potential intentional exaggeration of some patients could have further influenced the

degree of uncertainty obtained; however, it should not be ruled out the possibility of having

witnessed the effect of applying the wrong treatment to a patient. Common treatment for these

patients involves manual therapy and the application of diverse electrotherapy techniques. In

the other hand, the most recent guidelines recommend different modalities of care depending

on the severity of the symptoms [41]. Our results cannot conclude that patients incorrectly
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predicted are neither intentionally feigning their symptoms nor having been administrated the

wrong treatment for their condition, but suggest that an external unobserved factor is causing

the patients to show worse outcomes after rehabilitation.

Several limitations should be addressed on this paper. This approach lacks information

regarding the psychosocial aspects of the individual. But the chosen variables can be more eas-

ily standardized. Furthermore, kinematics such as the ROM get impaired in the presence of

pain [13]. If the pain levels are reduced, kinematics should improve in the absence of other

limiting factors. Psychosocial data is not collected by default in the clinical environment, and

so it was not available for our analysis. Mixing the information presented here with more data

concerning biopsychosocial factors could potentially improve the performance of the predic-

tion. Mixing both approaches will be tested in next investigations. The second limitation is

that malingering patients cannot be identified objectively. While consistency is worse in

feigned movements, it is not possible to establish a threshold to consider a movement as non-

consistent [42]. While many researchers are working on this topic, there are no good objective

and definitive standards published.

As a conclusion the neural network trained to predict the expected difference in NFHAS

between baseline and follow up showed modest results. While the overall performance is mod-

erately correlated, the error of this prediction is still large to use the method in clinical practice.

Having achieved moderate correlation is promising nonetheless, and justifies further research

exploring the effects of additional clinically relevant factors which could further improve pre-

diction performance.
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Software: José Andrés Moreno-Ruiz.

Supervision: Julio Cesar de la Torre-Montero, Gabor Barton.
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