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ABSTRACT  

This thesis implements and solves a unit commitment model that can be run for many 

consecutive weeks by changing input data. Once the solution set is created, Machine 

Learning is applied, specifically an Artificial Neural Network (ANN), which learns from 

that dataset to improve the optimization process for future input data. 

 

Keywords: Unit Commitment (UC), Artificial Neural Network (ANN), Machine Learning 

(ML), Multi-Layer Perceptron (MLP), Optimization, Optimizer, Execution Time, 

Constraints, Variables, Parameters, Optimal Solution. 

   

1. Introduction 

The unit commitment (UC) problem is the process of optimizing the most cost-effective 

combination of generation units and their output power within a power system to meet 

forecasted demand and other requirements. 

To solve this problem, multiple optimization algorithms have been applied over the past 

years. However, these approaches suffer from different problems related to the 

algorithms’ characteristics.  

Therefore, machine learning (ML) algorithms could be valuable at helping to understand 

the relationship between the UC problem information and the operation schedule, which 

could help to address the UC problems in a more precise and accurate approach. 

    

2. Scope of the project 

This thesis tries to create an ANN that can boost the performance of the traditional 

resolution method in the UC problem. This procedure is aimed at helping to analyze 

certain aspects without needing to run the UC model or even to give extra information 

to guide the UC model optimization process. 

Therefore, this ANN could be used to provide approximations to the unit commitment 

problem that could help other systems within the electric power industry, or even could 

be used to improve the optimization process of the UC problem. 

   



3. Methodology 

The methodology of this thesis can be stated into a cyclical procedure divided into three 

iterative steps. 

First, this Master Thesis focusses in developing a UC model and providing a solution for 

several weeks of input data.  

The next step of the project is creating an ANN in order to learn all the equations of the 

model and obtaining behavior patterns from the solution.  

Lastly, the ANN is used to enhance the UC optimization algorithm by providing a 

starting point for the optimization process.  

This methodology is resumed in Illustration 1.   

 

Illustration 1. Methodology  

 

4. Results 

As stated in Table A, it can be appreciated that when applying the exposed methodology 

in a large-scale UC problem, the execution time required to obtain an optimal solution is 

reduced in 41.1% compared to the traditional resolution procedure. 

Table A. Results for Large Scale Case Study 

Case Case A Case B 

Optcr Requested 1% 1% 

Max Time Allowed (mins) 20 20 

Optcr Achieved 0,917% 0,854% 

Time (mins) 

Feasibilization 2,758 - 

Optimization 8,895 19,781 

Total 11,653 19,781 

Warm-start Objective Function 2,481E+09 - 

Estimated Objective Function 1,873E+08 1,876E+08 

Achieved Objective Function 1,890E+08 1,892E+08 



5. Conclusions 

Regarding UC, the model solves the problem presented successfully. Results obtained 

are rational and the model aims to minimize operating costs by always trying to reduce 

deviations with respect to demand. 

Regarding NN, the model manages to learn patterns of different generators. This is that 

those generators that are a base technology are identified as such, and those that present 

residual behavior are also recognized successfully. 

Lastly, the large-scale case study has verified that there is a considerable improvement 

in the execution time of the UC problem resolution when applying the proposed 

methodology. 

In general terms, this thesis fulfills the objectives that were proposed.  
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Chapter 1.  INTRODUCTION 

1.1 BACKGROUND 

The formulation of generation units’ allocation planning for power systems suffers from 

several complex problems such as the number, type or size of generation facilities and 

demand fluctuations.  

These complexities imply that operators have to face several decision-making processes, 

such as scheduling generation units in a system at any given time, since it is not optimal to 

run all the units required to satisfy peak load during base load periods.  

The unit commitment (UC) problem is the process of optimizing the most cost-effective 

combination of generation units and their output power within a power system to meet 

forecasted demand and other requirements or constraints such as spinning reserve 

constraints, generation constraints or transmission constraints.  

Thus, in analytical terms, this problem is defined as the determination of the start-up and 

shut-down schedules and output power of generation units so that the total production cost 

is minimized whereas satisfying various system, transmission, and generation constraints.  

This optimization problem is fundamental within the electric industry, since low-cost 

solutions of these problems will directly be related into low production costs for generation 

utilities, and any improvements in the UC schedule may result in significant reduction in the 

total production costs. However, this is a very complex problem since it is a non-linear, 

mixed-integer optimization problem, and it becomes more complex as the size of the 

problem increases.  

To solve this problem, multiple optimization algorithms have been applied over the past 

years. However, these approaches suffer from different problems related to the algorithms’ 

characteristics.  
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Indeed, traditional decision-making processes for power systems such as UC problem 

primarily rely on a physical model and numerical calculations. However, there is plenty of 

historical data for the power system that could provide useful information and knowledge of 

the power grid.  

Therefore, machine learning (ML) algorithms could be valuable at helping to understand the 

relationship between the UC problem information and the operation schedule, which could 

help to address the UC problems in a more precise and accurate approach. 

During the last two decades, Artificial Intelligence methods, and hybrid models have also 

been proposed as approaches to solve the UC problem. ML techniques have been 

successfully used for more than a decade ago to solve UC problems and researchers have 

specially investigated the effectiveness of Artificial Neural Networks (ANN) in solving this 

problem. 

ML techniques can be revealed as a valuable alternative or complement to the model-based 

existing methods. As a result, it is expected that the effective combination of ML approaches 

and physical model approaches could lead in more efficient solutions for the UC problem 

that could improve system reliability and economic operation. 

 

1.2 MOTIVATION 

This thesis tries to create an ANN that can boost the performance of the traditional resolution 

method in the UC problem. This procedure is aimed at helping to analyze certain aspects 

without needing to run the UC model or even to give extra information to guide the UC 

model optimization process. 

In other words, the benefit of the technique that has been used is that for each upcoming 

week, with the new current forecasts of demand, available solar power, and available wind 

power, it is possible to avoid running a full UC model, which would imply long waiting 

times to have answers about the possible schedule of the system.  
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Instead, this ANN could be used to provide initial approximations, which could quickly 

provide answers to other types of systems. For example, the department that manages gas 

purchases for CCGTs operation requires approximations of how much gas will be used, but 

they do not need a perfectly detailed schedule. 

In addition, these ANN approximations could also be used as input to a full UC model, to be 

used as an initial solution in the optimization process, which would mean having the detailed 

solution in less time than if the UC problem was run directly.  

 

1.3 OBJECTIVES 

Therefore, some concrete milestones can be determined in order to assess the thesis’s 

achievement as satisfactory. These objectives are as follows:  

- Develop a UC optimization model. 

- Automatize the execution and storage of solution of the UC model for several sets of 

input data.  

- Develop a Neural Network to learn from all the consecutive executions of the 

optimization problem. A Multi-Layer Perceptron (MLP) architecture will be 

developed.  

- Use the Neural Network to estimate different output variables of the UC problem. 

 

1.4 DOCUMENT STRUCTURE 

All the research and development of this thesis is reflected in this single document, which is 

divided into eight (8) main chapters and one (1) annex with complementary information. 
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Chapter 1. Introduction, consists of an initial section to orient the reader to the motivations 

and reasons for undertaking this project as well as the challenges faced and the objectives to 

be achieved. 

Chapter 2. State of the Art, presents a literature review of different areas that are relevant 

to this research. 

Chapter 3. Problem Setting, presents the problem to be solved, its possible difficulties, and 

the methodology carried out to solve the problem.  

Chapter 4. Unit Commitment Model, details and explains the UC optimization model used 

in this thesis. 

Chapter 5. Neural Network, details and explains the neural network model used in this 

thesis. 

Chapter 7. Results, provides a critical analysis of the results obtained. 

Chapter 8. Conclusions & Future Developments, summarizes the difficulties, main 

discussions and conclusions that can be drawn from this thesis. In addition, it also points the 

direction for possible future research. 

Chapter 9. References, presents the references and bibliography used to develop this thesis. 

ANNEX I. Python Scripts, details the programming scripts and algorithms used to develop 

this thesis.   
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Chapter 2.  STATE OF THE ART 

2.1 UNIT COMMITMENT 

UC problem tries to determine the dispatch of generation units within an electric power 

system, subject to technical and system constraints. The decision-making process selects the 

units that will be on or off, the output energy generated by each unit and their reserve margins 

according to a certain objective function. 

 

2.1.1 CLASSIFICATION 

There is not a unique UC problem for all the possible scenarios in the power industry, so the 

UC can be classified within three different categories. With respect to security, UC can be 

divided into traditional UC, security-constrained UC (SCUC) or price-based UC (PBUC). 

Next, regarding market operation, UC can be divided into a vertically integrated 

environment or a deregulated environment. Finally, regarding the approach taken for future 

events, UC can be divided into deterministic and stochastic.  

The traditional UC problem has been formulated as a non-combinatorial, non-convex, large-

scale, non-linear, and constrained optimization problem [9]. Non-linear problems cannot be 

solved easily because they include combinations of binary and non-linear variables. 

Therefore, the UC problem is represented as a Mixed Integer Linear Programming (MILP) 

problem. 

Within this framework, the objective function is stated as the minimization of the operational 

costs of the generation units. Thence, the problem is modeled using binary variables for the 

commitment decisions of the units (ON/OFF) and continuous variables for representing its 

output power.  
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SCUC is fundamental for the reliable and economic functioning of power systems, especially 

in large-scale systems. It refers to the economic dispatch of generation units for meeting the 

demand while timing and operational limits in contingency power system are satisfied [9]. 

Mathematically, it is proposed as a large-scale Mixed Integer Programming (MIP) with 

many variables, binary, continuous and discrete and several restrictions [10].  

In PBUC, hourly demand balancing restriction is removed from the set of constrains, security 

is considered an ancillary service and the objective is a profit-maximization function. 

Therefore, the signal that determines the commitment decisions of the generation units is the 

market price for different products such as energy, ancillary services, and fuel. In this 

problem, suppliers are responsible for the way they sell energy in order to satisfy demand 

and reserve markets [11]. 

Moreover, since 1980s, power systems have turned from a vertical integrated structure to a 

deregulated environment. In an integrated environment, customers of generation companies 

(GENCOs) are already defined. However, in a deregulated environment, GENCOs construct 

their offers based on their available information [9]. Each offer consists of a cost function 

and several parameters that define the operational constraints of the generation units, which 

allows to determine the marginal cost for each period [12]. In addition, in the deregulated 

environment, the objective also changes from cost minimization to profit maximization. 

Next, the stochastic approach is used to give solution to those optimization problems under 

considerable uncertainty, represented by a set of different scenarios. This technique is based 

on scenario tree in which uncertainty of each node is expected to be known by probability 

distributions [9]. Therefore, several scenarios are needed to achieve an acceptable solution, 

but as the number of scenarios increases, the computational effort increases exponentially, 

so it limits its application to large-scale systems. For this reason, scenario reduction 

techniques are commonly used in order to reduce the scale of the problem by withdrawing 

low-probability scenarios or very similar ones [13]. 
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Finally, deterministic approach can be considered as a special case of its respective 

stochastic formulation, in which it is considered only a single scenario with certain 

forecasting values and system parameters. 

 

2.1.2 TRADITIONAL RESOLUTION METHODS 

Several methods and techniques have been proposed over the past years to get an optimal 

generation schedule in any scenario. Some of these are Priority Ordering Methods, Dynamic 

Programming (DP), MIP and MILP, Lagrangian Relaxation (LR), and Branch and Bound 

(B&B), among other approaches. 

First, Priority listing methods re-arrange generation units in a start-up heurist list by a 

combination of operation and transition costs. This order is then used to commit the units 

such that system demand is met [14].  

Then, DP technique searches the units status for an optimal solution. Each time period of the 

horizon is known as the stage of the DP problem, which typically represents one hour of 

operation. The combinations of units within a time period are known as the states of the DP 

problem. This technique finds the optimal commitment by starting at the initial stage and 

accumulating total costs, and then returning back from the combination of least accumulated 

cost at the last stage to the initial stage [14]. 

Furthermore, MIP and MILP approaches solve the UC problem by systematically reducing 

the solution search space by withdrawing infeasible subsets. The general concept is based 

on the resolution of a linear programming problem and checking for an integer solution. So 

if the solution is not integer, linear problems and subproblems are continuously solved.  

Next, LR technique decompose the UC problem into a major problem and several 

subproblems that are iteratively solved until a quasi-optimal solution is obtained. Each 

subproblem determines the commitment of a single unit and then is linked to the master 

problem by LaGrange multipliers in order to build a Dual problem [14].  
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The solution is then obtained by an iterative process in which LaGrange multipliers are 

computed on the master problem, then passed to the subproblems, and then, the solution of 

the subproblems is returned to the master problem obtaining updated multipliers. This 

process is repeated until the solution converges. 

Finally, B&B determines a lower limit to the optimal solution and finds a near optimal 

feasible schedule. That lower bound can be determined from a dual problem that uses 

Langrangian relaxation [14].  Also, that dual problem is used to get information for 

producing priority lists, which are useful for finding feasible solutions and helping in 

determining an upper bound. Therefore it is built a branch and bound tree for searching the 

best solution, but only few nodes are examined if an upper bound is found.  

However, these approaches suffer from different problems related to the algorithms 

themselves such as high sensitivity to the choice of architecture, manual parameter turning, 

different cost functions [1], or exponential computational time growth as the size of the 

problem increases. 

 

2.1.3 CHALLENGES & INNOVATION 

Recently, the increase of participation of renewable energy sources (RES) and more price-

responsive demand, have transformed the UC into an even more difficult problem, due to 

the uncertainty and high variability of RES. It has become necessary to have an effective 

methodology that produces robust UC decisions and ensures system reliability against the 

increasing uncertainty in real time [14]. 

In addition, with the advent of restructuring in power industries, power systems have 

undergone greater changes in structure and operation. In fact, utilities under deregulated 

environments have to design new strategies and tools for their efficient operation and 

management in this stochastic scenario, which is inevitable due to the higher generation of 

RES. 
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Therefore, models must be able to face the current challenges of the power system and 

provide efficient solutions. For instance, Machine Learning (ML) algorithms have found to 

be successful in solving decision making problems under uncertainty. In particular, Artificial 

Neural Networks (ANN) can be very useful in solving or helping to improve the resolution 

of UC problem. 

Estimates of ANN are based on load curves and their corresponding UC schedules. The 

pattern of the load curve is compared to the information in the database to select the most 

economical UC schedule. In fact, if an ANN estimation schedule is not feasible for the entire 

UC period, it can be used as an initial starting point for a near-optimal solution [14].  

Moreover, it has been proposed another innovative approach to the resolution to the UC 

problem in [15]. In this model, the continuous variables (output power) are used as the 

primary decision variables, and several functions are defined to characterize the 

commitment, start-up, and shut-down logic constraints. 

One of the main advantages of this approach is that it can be solved by continuous 

optimization tools such as non-linear solvers, and no integer programming tools are needed.  

Nevertheless, the focus of that model is on a new format of the UC model, rather than 

investigating the global optimization algorithms. Currently, the main attention is being paid 

to solve large scale UC problems with this new method, and further progress will be reported 

in the near future.   

 

2.2 ARTIFICIAL NEURAL NETWORKS 

Artificial Intelligence (AI) models are characterized by their flexibility and their capability 

of integrating several methodologies and algorithms that try to imitate the behaviors of 

biological systems somehow [16]. Within this field, Artificial Neural Networks (ANN) try 

to emulate human brain functions.  
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An ANN is an algorithm based on the imitation of the computation of a human brain, which 

essentially transmits information through neurons. More specifically, an ANN is a large 

number of highly connected but simple elements (neurons) that can receive, process, and 

transmit information, each element mimicking a human neuron [2].  

Therefore, a neural network is created by interconnecting some consecutive layers with 

certain neurons allocated in a particular manner. Then, each neuron in each layer receives 

some input information, processes it, and transmits it to another layer, which will receive 

that information as an input.  

The way that each neuron processes the information depends on the underlying network 

parameters, which are continuously being adjusted to appropriately respond to the problem 

to be solved, until the problem reaches a certain accuracy in solving the problem or some 

termination requirements are met. 

ANN models are data-driven, self-adaptable, and non-linear methods that do not require 

specific assumptions about the underlying model. Therefore, there are many potential 

benefits presented by ANNs:  i) input-output mapping, this is that network learns based on 

examples, ii) adaptability, this is that network can adapt its features even in real time, iii) 

response capacity, this is pattern classification and decision making reliability, iv) integrated 

large scale, which means that is potentially fast for certain tasks and capturing certain 

patterns, and v) uniformity, since the methodology is standardized independently of its 

application [16].    

One of the well-known and most common architecture is the Multi-Layer Perceptron (MLP), 

which is characterized for being a universal approximator.  
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Figure 2-1: MLP architecture [16] 

 

MLP has an input layer (with any processing), an output layer, and one or more hidden 

layers. All layers are formed by a certain number of neurons and are fully connected. This is 

that each neuron of each layer is connected to all the neurons of the following layer.  

In the case of the hidden layer, its inputs come from the neurons of the previous layer and 

its outputs are sent to the following layer. Moreover, input and output layers represent the 

information flow that is implemented in the learning algorithm [17]. 

The learning algorithm for MLP is further explained in [16] and [17]. Finally, once the 

training process is terminated, network weights are established, and the network can be used 

to make estimations for new entries.  

 

2.3 UC MODELS WITH ANN 

As in many other engineering disciplines, artificial neural networks (ANNs) are becoming 

useful in several aspects and problems for the electric power industry. For instance, the 

application of ANNs in UC problems has become an active research field in recent years. 

There are several different approaches to this technique.  
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One of these approaches was presented by Sasaki et al. who proposed the application of 

Hopfield NN to the UC problem considering minimum up and down periods, reserves, and 

demand constraints [19]. The main problem of such approach is that for solving a medium 

size scenario with 30 generators, the size of the NN becomes considerably large. Therefore, 

the average computational time was approximately 2.5 times slower than the Langrangian 

method. 

Furthermore, Gee et al. considered another methodology to improve the NN performance 

[20]. Authors achieved a more precise, and fast, so therefore more efficient, approach than 

the conventional Hopfield NN approach. 

This new technique has been used by Yalcinoz and Short [21] to solve large-scale economic 

dispatch problems and has achieved efficient and precise solutions to different systems with 

different sizes varying from 3 to 240 generation units.  

In [18] it is proposed to use the improved methodology of Hopfield NN to solve the UC 

problem. For developing the model, it has been considered transmission capacity, 

transmission losses, start-up, and shut-down costs, minimum up and down periods and 

demand constraints. 

This methodology has been tested in a 3-unit system and in a 10-unit system, and results 

showed that the improved Hopfield NN methodology can be applied to UC problems and 

could achieve a faster solution than conventional resolution methods.    

Lastly, another approach is proposed in [22]. This presents a hybrid algorithm between an 

ANN and a simulated annealing approach to solve the UC problem. The ANN is used to 

determine the discrete variables such as commitment, start-up, or shut-down variables 

whereas the annealing approach is used to obtain continuous variables such as output power 

or production costs. 

This method uses a MLP trained by backpropagation as the ANN. In order to train the 

network, a set of load profiles are settled as inputs and the corresponding unit-commitment 

(satisfying the UC constraints) schedules as outputs.  
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The proposed approach has been tested in a sample 10-unit power system, and results 

showed that this methodology could solve the UC problem with an optimal generation 

schedule and in a reduced computational time. 
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Chapter 3.  PROBLEM SETTING 

This Master Thesis can be stated as a cyclical process that can be separated into three (3) 

blocks in terms in methodology and problem setting.  

First, this Master Thesis will be focused in developing a Unit Commitment model that can 

be ran for several consecutive weeks changing input data such as demand, wind power 

available or solar power available. 

Once this model is developed, the next step of the project is to apply Machine Learning 

algorithms in order to learn all the equations of the model so that this algorithm enables to 

estimate a preliminary solution for the upcoming weeks.  

Lastly, once trained, the NN is used to enhance the optimization, and it will be assessed the 

feedback of the NN results on the improvement of the UC optimization algorithm. 

As explained in section 1.2 - Motivation, the aim of this thesis is to reduce the overall 

optimization time for a large amount of input data. But contrary to what is proposed in that 

section, as it was not available a large enough amount of input data to be split up, all available 

data was used both to solve the optimization model and to train the network.  

So, the way to evaluate the improvement of the optimization is to compare the differences 

in the time (or alternatively, the number of iterations) taken to solve the optimization model 

directly from the input data and from the estimated neural network solution. 

Therefore, the methodology and problem setting can be broadly summarized in the diagram 

shown in Figure 3-1 below. 
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Figure 3-1: Thesis Problem Setting 

 

3.1 GENERAL SETTINGS 

All the research and main tasks of this master thesis have been performed through an online 

repository (digital library accessible via the internet). This is aimed at having a periodical 

control of the programming code and scripts on which the history of changes and updates 

can easily be monitored, and also to provide open access to the real time code to the master 

thesis supervisors.  

All the models and algorithms in this master thesis are developed using Python programming 

language. Unit commitment modelling is developed with Pyomo library and the neural 

network is implemented with Tensorflow and Keras libraries.  

All programming has been done through the Visual Studio Code IDE interface, which 

enables an online connection with a GitHub repository in order to monitor and have control 

to the improvements of the models through all the duration of the project. 
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Regarding the unit commitment model, it was not developed from scratch, but has been 

based on an existing optimization model [8]. This reference base model consisted of an 

experimental and very simple optimization algorithm that tried to maximize the profit of 

fictitious generating sets, assuming a fictitious market price and fictitious generation costs. 

This model then served as a starting point for implementing the modifications and 

improvements needed to develop the UC model.     

Therefore, according to the above-mentioned features, next they are presented some of the 

main tasks carried out throughout the completion of this master’s thesis. 

Repository completion.  

- Create an online and interconnected GitHub repository that enables to work on the 

project and state and review changes.  

- Connect that online repository to the local working path where the project will be 

developed.  

- Ensure proper operation of the system.  

- Learn and familiarize with the system in order to acquire agility with it.  

 

UC model in Python. 

- Learn and familiarize with the base model. 

- Find appropriate information on costs, limits and characteristics of different thermal 

units. 

- Modify generator input data. 

- Modify input temporal and generation sets. 

- Model Constraints and Objective Function. A complete re-adaptation of the model 

was carried out. All those equations that were unnecessary were modified, and new 

constraints were added. 

- Reorganize the model and add new items useful for the case study: new output 

variables, demand-generation plots, etc. 

- Ensure the functioning of the model and check the correct and quick resolution of 

the optimization. 
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Automatic run algorithm. 

- Get input data from OMIE. (Demand and available wind and solar power) for several 

weeks. 

- Adequate input data to the model. 

- Develop a script that reads the input data for all weeks and gives a solution to all of 

them automatically. 

 

Machine learning algorithm.  

- Define the input features. 

- Study the convenience and usefulness of the predicted features. 

- Build the dataset: training and test sets. 

- Develop a Neural Network model. 

- Train the model and observe the learning behavior. 

- Explore different hyper-parameters. 

- Study Neural Network – UC model interactions. 

 

Finally, it should be mentioned that it has been used 40 consecutive weeks of real data. In 

addition demand, solar and wind energy forecasted data used in this thesis correspond to the 

whole Iberian Peninsula, so it consists of really large demand values.  

Therefore, in order to satisfy this demand, a large number of generators are required. 

Initially, an attempt was made to develop the model with these conditions, but the idea was 

quickly changed, as the computational times were too long to be able to develop the whole 

investigation.  

It was therefore decided to reduce the number of generators to make the model more 

accessible to work with. To achieve this, two different alternatives were carried out, but the 

initial alternative was finally withdrawn due to disappointing results. 
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3.2 PRELIMINARY APPROACH 

The preliminary approach consisted of grouping the generator sets by technology (Nuclear, 

Coal, CCGT…) so that instead of having a large number of real generation units, their costs 

and technical specifications and characteristics would be added up in order to have only a 

few sets corresponding to the different technologies. 

Hence, it would not be necessary to reduce demand values, as actually the installed capacity 

(in terms of maximum power) would be the same as in the previous case, but with a lower 

number of generation units, which reduced the computation time considerably.  

However, once tested, this alternative was found to have a fundamental drawback. This was 

that by grouping units by technology and creating fictitious and very large generation units, 

some of the intrinsic and fundamental conditions of the UC model became meaningless.    

In terms of optimization, this meant that the model lost complexity significantly and several 

constraints became non-binding. Consequently, obtained results were easily predictable, so 

when estimations were made with the neural network and checked its validity, the errors 

obtained were not large enough to consider this situation as realistic and valid. 

Therefore, it was decided to implement another and more realistic approach.  

 

3.3 FINAL APPROACH 

This approach consisted of an intermediate point between the initial approach and the 

approach explained in the previous section. This final approach consists of reducing demand 

values and maintaining a considerable number of generating units but with realistic 

characteristics. 
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This reduction in demand can be justified by arguing that the system to be treated is an island 

or archipelago rather than the previous case. Moreover, this avoids the loss of complexity of 

the model and all constraints remain valid. 

This approach has finally been used for the development of the master thesis and its 

development and results obtained will be discussed in the upcoming sections of the 

document. 
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Chapter 4.  UNIT COMMITMENT MODEL 

This section shows the different features and settings of the UC model used as well as the 

justification for their use. In the same way, the obtained results and solutions are also 

analyzed in order to justify the correct performance of the optimization model. 

 

4.1 GENERAL FEATURES 

In general terms, this model is a weekly unit commitment (UC) model with periods of 1 hour 

(168 periods of 1 hour per week). 

Moreover, this model is thermal and RES based, but there is no hydro power nor water 

storage system included in the model. In addition, the model works through cost and power 

terms and not fuel terms. This is that start-up, operation, and shutdown are not measured in 

terms of fuel consumption and then transferred into costs, but directly measured in terms of 

cost.   

The objective of this problem is the minimization of total operating costs while meeting 

demand. Therefore, the objective function encompasses all costs, including start-up costs, 

shut-down costs, and variable costs, and also penalizes excess of energy and non-served 

energy. Renewables, on the other hand, are assumed to be dispatched without operating 

costs. 

In addition, the main constraints that have been applied in the model are: i) supply-demand 

balance, ii) maximum and minimum output power of generation units, iii) logic coherence 

startup-commitment-shutdown, iv) start-up and shut-down at minimum stable load, v) 

spinning reserves (upwards and downwards), vi) ramp rates (upwards and downwards), and 

vii) minimum up and down time. 
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The entire formulation used in the problem is shown in section 4.3. Variables, Parameters & 

Equations. 

 

4.2 INPUT DATA 

Within the input data, two different types of datasets are distinguished:  i) wind and solar 

forecasts and demand, and ii) number of generators employed as well as generators’ data. 

However, both datasets are related since the demand value determines to some extent the 

number of generators to be used in the model. This number of generators must be large 

enough to meet the demand, but not excessively large since then the number of variables in 

the model (and thus the computation time) grows exponentially.   

The demand data used, as well as wind and solar forecasts, were obtained directly from data 

provided by the Spanish market operator (OMIE). 

The data collected corresponds to 40 weeks of 2018 (January-October). Each week is divided 

into 7 days and each day into 24 hours.  

To facilitate the resolution of the model, this organization of the input data to the model has 

been re-structured by grouping each day of the week consecutively so that the input to the 

model results in 40 weeks with 168 hours. 

Figure 4-1 below shows an example of demand, and Figure 4-2 and Figure 4-3 shows an 

example of wind and solar forecasts for one week. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
OFFICIAL MASTER’S DEGREE IN THE ELECTRIC POWER INDUSTRY 

 

UNIT COMMITMENT MODEL 

27 

 

Figure 4-1: Demand in Week 5 

 

 

Figure 4-2: Wind Power Available in Week 5 
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Figure 4-3: Solar Power Available in Week 5 

 

On the other hand, these demand values were really large, so a very high number of 

generators (>50) was needed to satisfy the demand.  

So, in order not to excessively increase the computation time while maintaining the 

complexity of the model, it has been decided to reduce the value of the demand data (and 

the wind and solar predictions) to 20% of the original value, in order to establish a more 

manageable number of generators. 

Thus, 16 generator units of different types have been established for this model. Generators’ 

data as well as the distribution of generators has been determined based on data used in other 

optimization models [23], [24]. Generators’ data is presented in Table 1 and  

Table 2.  
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Table 1. Generators’ Costs 

 Units 
Type  

€/h €/MWh €/arr € 

gts p_GTScaco p_GTScvar p_GTScarr p_GTScpar 

g01 Nuclear 10400,00 10,00 70000 7000,00 

g02 Nuclear 10400,00 10,00 70000 7000,00 

g03 Coal 990,54 18,71 12000 1200,00 

g04 Coal 959,67 18,13 12000 1200,00 

g05 Coal 930,51 17,58 12000 1200,00 

g06 Coal 1204,20 17,06 15000 1500,00 

g07 Coal 1186,8 16,81 15000 1500 

g08 Coal 1169,88 16,57 15000 1500 

g09 CCGT 1151,5 29,43 6000 600 

g10 CCGT 1105,49 28,25 6000 600 

g11 CCGT 1083,78 27,7 6000 600 

g12 CCGT 1063,04 27,17 6000 600 

g13 CCGT 1042,96 26,65 6000 600 

g14 CCGT 1023,68 26,16 6000 600 

g15 Gas 1266,71 34,55 2800 280 

g16 Gas 1169,86 32,9 2800 280 

 

Table 2. Generators’ Technical Data 

Units 
Type 

MW MW MW/h MW/h h h 

gts p_GTSpmn p_GTSpmx p_GTSrs p_GTSrb p_GTStd p_GTStu 

g01 Nuclear 1000 1000 1000 1000 0 0 

g02 Nuclear 1000 1000 1000 1000 0 0 

g03 Coal 150 300 30 30 6 6 

g04 Coal 150 300 30 30 6 6 

g05 Coal 150 300 30 30 6 6 

g06 Coal 200 400 40 40 6 6 

g07 Coal 200 400 40 40 6 6 

g08 Coal 200 400 40 40 6 6 

g09 CCGT 180 450 60 60 3 3 

g10 CCGT 180 450 60 60 3 3 

g11 CCGT 180 450 60 60 3 3 

g12 CCGT 180 450 60 60 3 3 

g13 CCGT 180 450 60 60 3 3 

g14 CCGT 180 450 60 60 3 3 

g15 Gas 132 330 60 60 3 3 

g16 Gas 128 320 60 60 3 3 
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4.3 VARIABLES, PARAMETERS & EQUATIONS 

The objective function used in this optimization model is shown below in (4.1).   

min∑[𝑃𝑛𝑠𝑒 · 𝑝𝑛𝑠𝑒𝑡 + 𝑃𝑛𝑠𝑒 · 𝑝𝑒𝑥𝑡 +∑𝑐𝑡𝑔,𝑡
𝑔

]

𝑡

 (4.1) 

where:  

𝑡 is the set of time periods. 

𝑔 is the set of generation units.  

𝑃𝑛𝑠𝑒 is the cost of non-served energy and excess of energy. Its value was set large enough 

(1000 €/MWh) so that the model tries to minimize energy excesses and defects. 

𝑝𝑛𝑠𝑒𝑡 is the non-served energy in period 𝑡. 

𝑝𝑒𝑥𝑡  is the excess of energy in period 𝑡. 

𝑐𝑡𝑔,𝑡 is the thermal cost of unit 𝑔 in period 𝑡. This variable is calculated as showed in (4.2).  

𝑐𝑡𝑔,𝑡 = 𝑐𝑎𝑟𝑟𝑔 · 𝑦𝑔,𝑡 + 𝑐𝑝𝑎𝑟𝑔 · 𝑧𝑔,𝑡 + 𝑐𝑎𝑐𝑜𝑔 · 𝑣𝑔,𝑡 + 𝑐𝑣𝑎𝑟𝑔 · 𝑡𝑔,𝑡 (4.2) 

where:  

𝑐𝑎𝑟𝑟𝑔 is the start-up cost of unit 𝑔.  

𝑐𝑝𝑎𝑟𝑔 is the shut-down cost of unit 𝑔.  

𝑐𝑎𝑐𝑜𝑔 is the no-load cost of unit 𝑔. 

𝑐𝑣𝑎𝑟𝑔 is the slope of the linear cost function of unit 𝑔.  



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
OFFICIAL MASTER’S DEGREE IN THE ELECTRIC POWER INDUSTRY 

 

UNIT COMMITMENT MODEL 

31 

𝑦𝑔,𝑡 is the start-up decision of unit 𝑔 at the beginning of period 𝑡.   

𝑧𝑔,𝑡 is the shut-down decision of unit 𝑔 at the beginning of period 𝑡.  

𝑣𝑔,𝑡 is the commitment of unit 𝑔 state in period 𝑡.  

𝑡𝑔,𝑡 is the power generated by unit 𝑔 in period 𝑡. 

The constraints used in this optimization model are shown below (i-vii).  

i) The supply-demand balance constraint is showed in (4.3).  

∑𝑡𝑔,𝑡
𝑔

+ 𝑝𝑤𝑡
+ 𝑝𝑠𝑡 + 𝑝𝑛𝑠𝑒𝑡 − 𝑝𝑒𝑥𝑡 = 𝑑𝑡 (4.3) 

where: 

𝑑𝑡 is the demand in period 𝑡.  

𝑝𝑤𝑡
 is the wind power generation in period 𝑡. 

𝑝𝑠𝑡 is the solar power generation in period 𝑡.  

ii) The maximum and minimum output power constraints are showed in (4.4)-(4.8).  

0 ≤ 𝑝𝑤𝑡
≤ 𝑃𝑡

𝑤 (4.4) 

0 ≤ 𝑝𝑠𝑡 ≤ 𝑃𝑡
𝑠 (4.5) 

0 ≤ 𝑝𝑛𝑠𝑒𝑡 (4.6) 

0 ≤ 𝑝𝑒𝑥𝑡 (4.7) 

𝑝𝑔,𝑡 ≤ 𝑣𝑔,𝑡 · (𝑃𝑔 − 𝑃𝑔) (4.8) 

where:  
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𝑃𝑡
𝑤 is the maximum wind power available in period 𝑡. 

𝑃𝑡
𝑠 is the maximum solar power available in period 𝑡. 

𝑃𝑔 is the maximum power of unit 𝑔. 

𝑃𝑔 is the minimum power of unit 𝑔. 

𝑝𝑔,𝑡 is the power produced above the minimum stable load by unit 𝑔 in period 𝑡. This variable 

is related to 𝑡𝑔,𝑡 according to (4.9).  

𝑡𝑔,𝑡 = 𝑃𝑔 · 𝑣𝑔,𝑡 + 𝑝𝑔,𝑡 (4.9) 

iii) The logic coherence startup-commitment-shutdown constraints is showed in (4.10). 

𝑦𝑔,𝑡 − 𝑣𝑔,𝑡 − 𝑧𝑔,𝑡 + 𝑣𝑔,𝑡−1 + 𝐸𝐼𝑔 = 0 (4.10) 

It should be noticed that for the period 𝑡=1, 𝑣𝑔,𝑡−1 should be substituted by 𝐸𝐼𝑔, which is the 

initial commitment state of unit 𝑔.  

iv) The shut-down and start-up of the units at minimum stable load constraints are showed 

in (4.11) and (4.12). 

𝑝𝑔,𝑡 ≤ (𝑃𝑔 − 𝑃𝑔) · (𝑣𝑔,𝑡 − 𝑧𝑔,𝑡+1) (4.11) 

𝑝𝑔,𝑡 ≤ (𝑃𝑔 − 𝑃𝑔) · (𝑣𝑔,𝑡 − 𝑦𝑔,𝑡) 
(4.12) 

v) The spinning reserves constraints are showed in (4.13) and (4.15). 

∑[𝑣𝑔,𝑡 · 𝑃𝑔 − 𝑡𝑔,𝑡] ≥ 𝑟𝑒𝑠𝑠𝑢𝑏𝑡
𝑔

 (4.13) 

where: 

𝑟𝑒𝑠𝑠𝑢𝑏𝑡 is the upwards spinning reserve in period 𝑡. It is calculated as showed in (4.14).  
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𝑟𝑒𝑠𝑠𝑢𝑏𝑡 = 𝑅𝑒𝑠𝑠𝑢𝑏 · 𝑑𝑡 (4.14) 

where:  

𝑅𝑒𝑠𝑠𝑢𝑏 is level of backup generation to ensure to cover demand in case there is any outage 

in any unit. It is set as 2% of the demand value.   

∑[𝑝𝑔,𝑡] ≥ 𝑟𝑒𝑠𝑏𝑎𝑗𝑡
𝑔

 (4.15) 

where: 

𝑟𝑒𝑠𝑏𝑎𝑗𝑡  is the downwards spinning reserve in period 𝑡. It is calculated as showed in (4.16). 

𝑟𝑒𝑠𝑏𝑎𝑗𝑡 = 𝑅𝑒𝑠𝑏𝑎𝑗 · 𝑑𝑡 (4.16) 

where:  

𝑅𝑒𝑠𝑏𝑎𝑗 is ability of the system to reduce generation quickly in the case of a drop in demand. 

It is set as 1% of the demand value.   

vi) The ramp rates constraints are showed in (4.17) and (4.18). 

𝑝𝑔,𝑡 − 𝑝𝑔,𝑡−1 ≤ 𝑅𝑆𝑔 (4.17) 

𝑝𝑔,𝑡−1 − 𝑝𝑔,𝑡 ≤ 𝑅𝐵𝑔 (4.18) 

where: 

𝑅𝑆𝑔 is the upwards ramp rate of unit 𝑔. 

𝑅𝐵𝑔 is the downwards ramp rate of unit 𝑔.  

It should be noticed that for the period 𝑡=1, 𝑝𝑔,𝑡−1 should be substituted by 𝑃𝐼𝑔, which is the 

initial output power above minimum stable load of unit 𝑔.  

vii) The minimum up and down time constraints are showed in (4.19) and (4.20).  
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∑ 𝑦𝑔,𝑖 ≤ 𝑣𝑔,𝑡

𝑡

𝑖=𝑡−𝑇𝑈𝑔+1

 (4.19) 

∑ 𝑧𝑔,𝑖 ≤ 1 − 𝑣𝑔,𝑡

𝑡

𝑖=𝑡−𝑇𝐷𝑔+1

 

(4.20) 

where: 

𝑇𝑈𝑔 is the minimum time that unit 𝑔 should be committed once it is started up.  

𝑇𝐷𝑔 is the minimum time that unit 𝑔 should be off once it is shut down.  

 

4.4 SEVERAL WEEKS MODEL 

As explained in Section 4.2. Input Data, there are 40 consecutive weeks as input datasets. 

Therefore, this model is designed so that several weeks can be ran consecutively as desired 

instead of going week by week individually. In addition, there is also the possibility to start 

in a week different from the first one and to end in a week different from the last one, in 

chronological terms.  

This means that the 40 weeks of the input dataset can be ran automatically (starting with the 

1st and ending with the last in chronological order), or also a smaller number of input weeks 

can be ran, for example 20 (starting with any desired week and ending 20 weeks later). In 

other words, there is complete flexibility in deciding the time horizon of the optimization. 

In order to do this, it has been taken into consideration that the initial state (𝐸𝐼𝑔 and 𝑃𝐼𝑔)  of 

the coming week (week n+1) should matched to the commitment state of the final period 

(𝑣𝑔,168 and 𝑝𝑔,168) of the previous week (week n). 
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4.5 OPTIMIZATION SETTINGS 

The solver used for the optimization is Gurobi, which is also fully compatible with python. 

The solving method used is dual simplex.  

This model is a small-scale problem, so it is quickly solved. In addition, a maximum 

execution time of 300s for each week has been determined, although this is not really 

significant since at the time of running the optimization, all the optimal solutions were 

reached before that time. 

Finally, one last aspect related to nuclear units that affects optimization should be mentioned. 

In terms of logic, it is inconsistent that nuclear units are being turned on and off 

indiscriminately, both because of their slow start-up and cooldown times and because of 

their start-up and shut-down costs.  

In practice, these units are always on and act as the base technology. Therefore, to simulate 

this, it has been decided to set the commitment variables of the nuclear units always on. In 

addition, this facilitates optimization by "eliminating" these variables from the iteration 

process. 
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Chapter 5.  NEURAL NETWORK 

This section explains the main characteristics of the ANN that has been designed to estimate 

and generalize the UC model.  

The ANN will use as input the hourly demand data and the wind and solar forecasts and will 

make predictions of the output power of the thermal units. This is shown in the scheme of 

Figure 5-1 

 

Figure 5-1: Neural Network Data 

 

In other words, the model being created is actually an ANN that performs a linear regression, 

since it takes as input a set of linear values and generalizes them to another set of linear 

values. 

 

5.1 DATA PROCESSING 

Before working with the model, it is necessary to perform a pre-processing stage for the 

input data. The neural network model works with data tensors, due to the library used in the 
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development of the model (further explained in the next section), so it is necessary to 

reformat the available data to these tensors.  

Therefore, the matrices shown in Table 3 and Table 4 have been formed, which later are 

transformed into tensors. 

Table 3. Matrix X Structure 

Weeks Demand (168 periods) Wind Forecast (168 periods) Solar Forecast (168 periods) 

01 Demand_t01,…,Demand_t168 Wind_t01,…,Wind_t168 Solar_t01,…,Solar_t168 

02 Demand_t01,…,Demand_t168 Wind_t01,…,Wind_t168 Solar_t01,…,Solar_t168 

03 Demand_t01,…,Demand_t168 Wind_t01,…,Wind_t168 Solar_t01,…,Solar_t168 

04 Demand_t01,…,Demand_t168 Wind_t01,…,Wind_t168 Solar_t01,…,Solar_t168 

… … … … 

40 Demand_t01,…,Demand_t168 Wind_t01,…,Wind_t168 Solar_t01,…,Solar_t168 

 

Table 4. Matrix Y Structure 

Weeks P_g1 (168 periods) … P_g16 (168 periods) 

01 P_g1_t01,…,P_g1_t168 … P_g16_t01,…,P_g16_t168 

02 P_g1_t01,…,P_g1_t168 … P_g16_t01,…,P_g16_t168 

03 P_g1_t01,…,P_g1_t168 … P_g16_t01,…,P_g16_t168 

04 P_g1_t01,…,P_g1_t168 … P_g16_t01,…,P_g16_t168 

… … … … 

40 P_g1_t01,…,P_g1_t168 … P_g16_t01,…,P_g16_t168 

 

In addition, the objective sought when designing a neural network is that the model should 

be able to generalize, which means being able to solve the problem that was presented during 

training, but with new data, which the network has not seen before.  
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Then, if all the available data are used to train the model, the model's ability to make 

predictions for new data would be unknown, i.e., the model's ability to generalize would be 

unknown. So, to solve this, three different datasets are used: training, validation, and test.  

The training set is used to train the model, the validation set is used to evaluate the model's 

ability to generalize while training is in progress, and the test set is used to evaluate the 

model's ability to generalize with data that it has never seen before and has not been used for 

training.  

Therefore, only one week has been set as test dataset to evaluate the neural network, and the 

39 weeks remaining have been used for training the model. Within these 39 weeks of 

training, a validation split of 0.2 (20% validation, 80% train) has been established, since it 

is a very widespread practice. 

The last aspect with respect to data processing is normalization. This technique consists of 

leveling the data so that they follow a normal distribution and are centered, to prevent their 

own scale from affecting the model's predictions.  

In fact, as this model is a generalization of a UC problem, which contains several sets of 

large power values, the numerical values that will be used for training the model will be 

certainly large, so the implicit training and estimation errors will be excessive as well.  

Therefore, it has been performed an automatic pre-scaling and normalization of the data to 

unitary values (between 0 and 1). In this way, large error values in the estimations and 

training will be avoided, and the values obtained can be directly perceived as percentages, 

which is more illustrative in analytical terms.  

This normalization technique allows to decrease the error and reduce the time it takes to train 

the model. This can be seen in Figure 5-2, which shows a comparison between the model 

being trained with normalization and the model being trained without normalization of the 

data. 
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Figure 5-2: Normalization vs No Normalization 

 

Lastly, nuclear units have been removed for the modelling of the neural network. Nuclear 

power is always a constant, so if introduced in the model, it may introduce distortions in so 

worse results would be obtained. In addition this would increase the number of variables, 

which leads to an increase in the output layers and a longer execution time. 

 

5.2 CONFIGURATION 

Once data has been processed, the following phase is modelling the neural network. This is 

an iterative process, not sequential as shown through this section, in which the optimal 

architecture and parameters must be found simultaneously to provide the optimal results 

overall. 

First, it is necessary to select the programming environment in which the model will be 

developed. In this sense, there are several libraries for developing Machine Learning models, 

although the three most notorious options are TensorFlow, Keras and Pytorch. 

In addition, there is also the possibility of developing the entire model mathematically, but 

this is withdrawn in advance for any type of project, given that this would be a very complex 

approach and would involve a large amount of time.  
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The existence of libraries makes it possible to avoid this mathematical development and 

simplifies the process to basically calling some default functions that already include all the 

equations and mathematical algorithms internally. 

On the one hand, TensorFlow has the main strength of presenting a great balance between 

flexibility and scalability, which allows to create from quick and easy pre-defined models to 

create undefined ones. This library is based on two aspects: tensors (multidimensional 

matrices), and graphs that represent the flow, but the latter are used to design the algorithms 

and do not take part in the design level that will be carried out in this project.  

Then, Keras is a library that can be used in combination with others, including TensorFlow. 

Its main strength is its manageability, which allows to develop models simply. This is 

because this library offers many possibilities, from easily connectable layers to pre-trained 

models, which makes it very popular and attractive to users.  

Finally, Pytorch implies that all steps of the model must be programmed in detail. This means 

that the layers (parameters, sizes...) of the model must be manually decided, and data flow 

and loops for training must be manually programmed. In other words, this brings a lot of 

flexibility and customizability to the model, but it implies a large amount of time spent in 

detailed programming. 

Therefore, based on a cost-benefit analysis, the most attractive choice for developing the 

model is a combination of the TensorFlow and Keras libraries. Although PyTorch is more 

flexible than both libraries, the complexity in programming it implies represents a very large 

cost. Contrary, the benefit obtained from the increase in flexibility is relatively limited since 

the flexibility offered by the combination of TensorFlow and Keras is more than sufficient 

for the UC problem to be generalized.  

The next step in the model development is the choice of the "neural network type", i.e. to 

select the architecture of the model: the configuration of the layers and the ways in which 

they interact.  
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Based on simplicity and versatility, a three-layer multilayer perceptron (MLP) has been 

chosen. Those three layers are known as input layer, hidden layer, and output layer. This 

configuration offers many possibilities and stands out for its flexibility and 

understandability, which makes this architecture ideal for the proposed scenario.  

In each layer, 4096, 4096 and 2352 neurons have been determined, respectively. For the 

input and hidden layers, the number of neurons has been adjusted continuously according to 

the results obtained in each iteration of the designing process, but always setting this number 

as a power of 2, which is a generalized practice.  

On the other hand, for the output layer, the number of neurons has been set to 2352, which 

is equal to the number of output variables of the neural network model (168 time periods x 

14 generator units). This is due to the model's training algorithms configuration. 

Then, the next step in the neural network model design process are the training algorithms. 

In general terms, neural network training is based on two mutually dependent algorithms: 

forward-propagation and back-propagation.  

The forward-propagation algorithm consists of processing the data from the input layer to 

the output layer, so that, in each layer, by interacting with the neurons (weights), data is 

transformed to generate an output.  

Next, the back-propagation algorithm consists of comparing the outputs obtained in the 

forward-propagation process with the real outputs of the dataset, so that the weights of the 

neurons are adjusted to make the output of the algorithm and the dataset similar. In other 

words, the network "learns" and adapts to the data.  

This two-step procedure is an iterative process whose number of repetitions, known as 

number of epochs, is also one of the parameters of the training process, which must be 

carefully determined as explained below.  

In this sense, as the model is developed under the TensorFlow and Keras environment, there 

are several predefined functions and blocks that simplify this training process. One of these 
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possibilities is the use of an optimizer that executes the forward-propagation and back-

propagation algorithms of the network automatically.  

There are several possible optimizers (Momentum, SDG, RMSprop, Ftrl...), but it has been 

used the Adam optimizer since it is a combination of the other optimizers and also has 

relatively low memory requirements.  

Nevertheless, the libraries allow to change some default parameters of this optimizer, to offer 

a greater customization. This facilitates the iterative process of optimizing the model design. 

In particular, the most interesting parameters are learning rate, number of epochs, and 

activation function.  

First, the learning rate establishes the speed at which the network weights are changed in the 

back-propagation algorithm, i.e., the degree to which the weights are modified as a function 

of the forward-propagation result. It therefore determines the speed of network learning. This 

parameter always has a positive value but is generally small; lower than 1.  

Neither an excessively large nor an excessively small learning rate should be set, since both 

cases are detrimental to training. An excessively small learning rate implies greatly 

lengthening the training process, while, if this value is excessively large, the model may not 

converge, never finding an optimal solution. This can be seen in Figure 5-3 - Figure 5-9. 
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Figure 5-3: Learning Rate = 0.01 

 

 

Figure 5-4: Learning Rate = 0.005 
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Figure 5-5: Learning Rate = 0.001 

 

 

Figure 5-6: Learning Rate = 0.0005 
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Figure 5-7: Learning Rate = 0.0001 

 

 

Figure 5-8: Learning Rate = 0.00005 
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Figure 5-9: Learning Rate = 0.00001 

 

The technique used to determine this parameter consists of starting with a clearly high 

learning rate value and gradually reducing it until it is close to the optimal. This is, initially 

starting with a "rough adjustment" of this parameter, and when better results are obtained, a 

"fine adjustment" is made.     

On the other hand, an epoch is the process of running the entire dataset forward (forward 

propagation) and backwards (back-propagation) through the model. The number of epochs 

is a fundamental parameter for defining the length of model training. The training of the 

model does not end until the epochs that have been set are completed, so selecting this 

number correctly allows the training process to stop at the optimal time. 

Finally, the activation function defines the transformation that occurs at the output of each 

neuron in the network, after the transformation by the network weights. There are different 

types of activation functions (sigmoid, tanh...), and each one is appropriate for certain 

situations.  
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The proposed problem only presents positive values, so it has been determined to use the 

ReLu function, which does not modify those positive values, and ignores negative values. In 

this way, possible inconsistencies in the results of the problem are avoided. 

Once the main parameters have been explained, the technique used to optimize their value 

must be explained. Although there are possibilities of programming (Grid Search) or using 

algorithms (Bayesian Search) to find these optimal values, these techniques are really 

complex to implement and require a lot of computing time.  

Therefore, it has been implemented a simpler technique, known as Manual Search, which 

consists of manually modifying the parameter values, according to the results obtained in 

each iteration.  

Then, the last step of this iterative process consists of evaluating the training process and its 

parameters, and subsequently making the changes considered appropriate to achieve better 

results. 

The main evaluation method consists in the study of the evaluation graphs, which are 

fundamental to understand how the training has evolved over the course of the different 

epochs. These graphs thus allow the identification of harmful trends in the model 

(overfitting, underfitting...) and helps to identify the modifications needed to improve the 

predictions. 

Generally, an analysis is carried out on the loss plot, which presents two curves, one 

representing the results on the training dataset and the other with the validation. This is 

shown in Figure 5-10 below. 
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Figure 5-10: Loss Plots 

 

This graph shows the variation of the loss function over the course of the training epochs. 

This function quantifies the difference (the error) between the model estimates and the actual 

data values, i.e., it measures the similarity between predictions and actual values.  

Naturally, this graph shows a decreasing trend, i.e., as training proceeds, the model learns 

more about the data, and the estimates are closer to the actual values. 

In addition, having two curves (training and validation) in this graph is fundamental to 

evaluate how the model evolves, since by comparing both curves it is possible to detect 

whether it is learning to identify patterns and also is possible to evaluate the model's capacity 

to generalize adequately. 
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5.3 PARAMETERIZATION & EVALUATION 

In conclusion, as explained in previous sections, this neural network design process is an 

iterative process in which the main training parameters are adjusted until an optimal solution 

is found..  

After applying a Manual Search technique, the optimal parameters values were found. A 

sum-up table with the values of the main parameters used in the model is shown below in 

Table 5.  

Table 5. Neural Network Parameters 

Train Set 39 Weeks 

Test Set 1 Week 

Validation Split 0.2 

Library TensorFlow + Keras 

Architecture MLP 

Layers Input Hidden Output 

Neurons 4096 4096 2352 

Activation Function ReLu ReLu Linear 

Learning Rate 1,00E-05 

Technique Manual Search 

 

The last step in the process is model evaluation and choosing the number of epochs of the 

training process. Therefore, it is necessary to check the loss plots and select the number of 

epochs in which there is an elbow in validation and train loss plots.  

For this reason, the number of epochs has been set to 65. This can be seen in Figure 5-11. 
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Figure 5-11: Model Loss Plot 
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Chapter 6.  NN-UC INTERACTION 

The next step in this thesis methodology is achieving interaction between the ANN and the 

UC optimization model. That is, getting the ANN estimates to serve as a starting point for 

the UC model.  

A priori, this may seem trivial since at first sight this would only imply imposing that the 

optimization model starts the iterative process from the powers estimated by the ANN.  

However, there is a problem intrinsic to the nature of the ANN that delays this process of 

interaction with the UC model. This is because ANN predictions are based on learning and 

generalization of trends in the data, not on the equations by which these data are governed.  

Thus, ANN results are really approximations, so there are some deviations in the predictions 

from the actual values. Then, when interacting with an optimization model, these deviations 

can be critical, since a constraint can be satisfied or not fulfilled depending on these small 

variations. 

More specifically, within the UC model there are a number of constraints that any feasible 

solution must satisfy (power limits of the groups, ramps, etc...). However, ANN predictions 

may not meet some of these constraints, making its solution infeasible, even if it is a good 

approximation.  

A priori, this would not be a drawback in practical terms, but the main problem is that these 

ANN approximations cannot be used as a starting point to begin the iterative optimization 

process of the UC model.  

That is, the ANN approximations, although valid in terms of logic and usability, might not 

be valid to feed the UC optimization model in the iterative solving process.  

In programming jargon, when it is imposed to start the optimization procedure from a 

solution instead of starting from scratch, this is called warm-start. Then, if the warm-start is 
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an infeasible solution, the optimizer automatically rejects it and chooses to start the process 

from scratch.   

To solve this, and to prevent possible errors, it has been created a feasibility optimization 

model that is in charge of making the ANN solution feasible. This is that converts an 

infeasible solution into a feasible one, minimizing the necessary deviations with respect to 

the ANN solution.  

In other words, this feasibility model is not a complementary UC model, but simply a model 

that tries to adapt the ANN solution to an admissible solution as a starting point for the UC 

model. 

Then, in order to convert the ANN solution into a feasible starting point for the UC model, 

this feasibility model must consider the constraints of the UC model. However, the main 

difference with respect to the UC model is the objective function.  

While in the UC, the objective is about minimizing operating costs and avoiding non-

compliance with demand (both in excesses and defects), in this model the objective is to 

minimize the difference with respect to the ANN solution while respecting the operating 

constraints of the generating sets (power limits of the sets, ramps, etc...).  

That is to say, in mathematical terms, this feasibility model maintains the constraints 

expressed in equations (4.2)-(4.20), but instead replaces the objective function expressed in 

equation (4.1) by the function of equation (6.1), and also adds a new constraint (6.2).  

∑∑[𝛼𝑔,𝑡 + 𝛽𝑔,𝑡]

𝑔𝑡

 (6.1) 

𝑡𝑔,𝑡 = 𝑁𝑁𝑔,𝑡 + 𝛼𝑔,𝑡 − 𝛽𝑔,𝑡 (6.2) 

where: 

𝑁𝑁𝑔,𝑡 is the ANN approximation for unit 𝑔 in period 𝑡. 
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𝛼𝑔,𝑡 is excess of energy with respect to ANN approximation for unit 𝑔 in period 𝑡.  

𝛽𝑔,𝑡 is deficiency of energy with respect to ANN approximation for unit 𝑔 in period 𝑡. 

Naturally, this intermediate feasibility process involves a longer overall computation time 

until a solution of the complete UC problem is obtained. However, this feasibilization 

process is unavoidable, and although it entails additional time, it does not imply that the 

methodology stated in this thesis is no longer competitive with respect to the classical 

solution of the UC model. 
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Chapter 7.  RESULTS 

7.1 UNIT COMMITMENT MODEL 

As explained earlier in this thesis, the UC model was run for the 40 weeks for which demand 

data were available.  

Some graphs (Figure 7-1 - Figure 7-5)  with the results obtained are shown below. In order 

to simplify the analysis of the solution, the dispatch of the units is grouped according to the 

type of technology of each generation unit. 

  

Figure 7-1: UC Results Week 5 
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Figure 7-2: UC Results Week 20 

 

  

Figure 7-3: UC Results Week 25 
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Figure 7-4: UC Results Week 30 

 

  

Figure 7-5: UC Results Week 35 

 

Firstly, it can be seen that, as mentioned in 4.5. Optimization Settings, the nuclear units are 

kept turned on during all the hourly periods and their power has remained constant at their 

maximum. In other words, the nuclear units have been established as the base technology.  
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However, it can be seen how other technologies such as Coal units are turned ON during all 

the periods, but its output power is variable, depending on the demand required by the 

system. 

On the other hand, other technologies such as CCGTs and more notably Gas units, have a 

residual character, and are only used as peak technology to cover specific demand defects. 

These differences in the behavior of the technologies are due to their different costs. That is 

to say, those with higher fixed costs (start-up costs, shut-down cost, etc.) have a base 

behavior and those with higher variable costs have a residual behavior. 

In addition, it can be appreciated how the model has tried to maximize the use of solar and 

wind technologies. This is logical since the use of these technologies is not penalized as a 

cost in the objective function. 

Furthermore, it can be inferred from the solutions obtained that there is a similar behavior of 

all the units within most weeks. However, there are also some other outlier weeks that differ 

from average, for instance, Week 5 has a lot of wind power and a very few CCGT 

participation. This is a significant aspect because it directly affects the estimates and learning 

of the neural network. 

 

7.2 NEURAL NETWORK MODEL 

To evaluate the results of the neural network model, some graphs are presented (Figure 7-6 

- Figure 7-10) showing a comparison between the network prediction and the results of the 

optimization model. In these graphs the continuous line represents the results of the 

optimization model while the dashed lines represent network predictions.  

It should be noted that the nuclear technology does not appear in these graphs since it was 

not introduced in the learning process to avoid possible distortions. 
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Figure 7-6: ANN Predictions Week 5 

 

 

Figure 7-7: ANN Predictions Week 20 
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Figure 7-8: ANN Predictions Week 25 

 

Figure 7-9: ANN Predictions Week 30 
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Figure 7-10: ANN Predictions Week 35 

 

In general, the neural network model learns satisfactorily the patterns presented by the UC 

model. That is, it recognizes those technologies that act with a higher base technology 

tendency and those with more residual behaviors.  

This can be clearly observed if behavior of CCGTs or Coal Units and Gas units is compared, 

while first ones are always present, but its power varies, the latter only appears residually 

with small peaks.   

 

7.3 UNIT COMMITMENT – NEURAL NETWORK INTERACTION 

When evaluating the interaction, first it is shown a comparison between the results provided 

by the feasibility model with respect to the estimates of the neural network model. This is 

presented in Figure 7-11 - Figure 7-15. In these graphs the continuous lines represent the 

feasibilization model results while the dashed lines represent the network predictions. 
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Figure 7-11: ANN vs Feasibilization – Week 5  

 

 

Figure 7-12: ANN vs Feasibilization – Week 20  
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Figure 7-13: ANN vs Feasibilization – Week 25  

 

 

Figure 7-14: ANN vs Feasibilization – Week 30  
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Figure 7-15: ANN vs Feasibilization – Week 35  

 

It can be seen that, as expected, the results obtained once the feasibility model is executed 

are slightly modified with respect to the neural network estimations. 

Finally, the time it takes to run the optimization model starting from scratch, with no warm-

start (Case B), compared to the time it takes to run the optimization model starting from the 

solution of the feasibilized neural network (Case A) has been calculated. Results are shown 

in Table 6. 

Table 6. Interaction UC – NN. Results 

Computation Times (secs) 

Case Case A Case B 

Proccess Feasibilization Optimization Total Total 

Week 05 13,54 69,17 82,71 53,41 

Week 20 11,93 25,77 37,7 27,43 

Week 25 12,37 13,26 25,63 11,53 

Week 30 13,58 37,50 51,08 38,80 

Week 35 15,49 18,08 33,57 12,99 
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The optimization times for both cases, shown in Table 6, are very similar in all the weeks 

that been executed. However, if the execution time of the Feasibilization model is added to 

the execution time of the optimization model, the overall execution times on the proposed 

methodology are larger than the conventional optimization procedure.  

However, this is because the model used, although valid, is not sufficiently complex and 

extensive to show a significant improvement in execution times.  

If the model used was more extensive and required a longer execution time on its own, it 

would be appreciated an improvement in the overall execution time when applying this 

methodology.  

This means that the methodology explained in this thesis is focused for large-scale systems 

with large execution times, while for smaller scale problems, where execution times are 

much smaller, it loses effectiveness. This can be appreciated in the following section. 

 

7.4 LARGE-SCALE CASE STUDY  

In order to analyze the impact in a large-scale scenario, all the process has been repeated 

changing the input data. The demand was multiplied by a factor of 10, and the number of 

generation units is 10 times bigger. For the generation units, to avoid problem degeneration, 

their variable cost has been modified a little with a gaussian noise to avoid having identical 

units. 

The execution of the 40 weeks to feed the results to the ANN took a 14h, and the ANN 

training took half an hour. 

Then, the main results obtained are summarized in Table 7, in which the main differences 

between the two optimization procedures can be observed. Case A uses the proposed 
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methodology in this thesis, in which ANN estimations are used as starting point for the 

optimization procedure and Case B is the direct optimization procedure. 

Table 7. Large Scale Case Study - Results 

Case Case A Case B 

Optcr Requested 1% 1% 

Max Time Allowed (mins) 20 20 

Optcr Achieved 0,917% 0,854% 

Time (mins) 

Feasibilization 2,758 - 

Optimization 8,895 19,781 

Total 11,653 19,781 

Warm-start Objective Function 2,481E+09 - 

Best Bound Objective Function 1,873E+08 1,876E+08 

Achieved Objective Function 1,890E+08 1,892E+08 

       

It can be appreciated that the computation time in Case A is much lower than in Case B. In 

fact, the execution time required to obtain an optimal solution using ANN estimations as 

starting point (Case A) is reduced in 41.1% compared to the traditional resolution procedure 

(Case B). 

In addition, both the objective function and optcr in both cases are also presented in Table 

7. This is because it is possible that a lower objective function does not necessarily means a 

better result, since it could have a worse optcr. 

Optcr is the parameter that determines the difference between the obtained solution and the 

best solution that the optimizer estimates that could be achieved. When this value is reduced, 

it could be due to two different aspects: i) the optimizer improves the obtained solution or 

ii) the optimizer makes a more realistic estimation. 

However, in both cases, objective function and optcr are similar, so Case A and Case B are 

considered to have equivalent solutions, but being execution time for Case A considerably 

lower than Case B. 
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In general, in MILP type problems, an initial point does not notably improve the execution 

time. In fact, in many cases, what is gained will be similar if not less than what is invested 

in generating that initial point.  

However, there are also cases where the input data makes especially difficult for the solver 

to find the first solution. In those cases, the execution time becomes much longer than usual, 

and having an initial point saves a lot of time. Therefore, an initial point makes the execution 

time of a problem more consistent, avoiding too long cases. 
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Chapter 8.  CONCLUSIONS & FUTURE 

DEVELOPMENTS 

This section summarizes the main conclusions and insights that have been drawn throughout 

the development of this thesis. In the same way, different possibilities are offered to further 

develop the methodology presented in this thesis. 

With respect to the UC model, it can be stated that the model effectively solves the problem 

presented. Thus, the results obtained are consistent with what could be rationally intuited ex-

ante. That is, the model aims to minimize operating costs and always tries to reduce 

deviations with respect to demand. 

With respect to the NN model, the model manages to learn the patterns of the different 

generators in an adequate manner. That is, those generators that have behaviors as base 

technology are identified as such, and those that present more residual trends are also 

correctly recognized.  

With respect to interaction, as it could be appreciated with the large-scale case study, the 

execution time registered with the proposed methodology is significantly lower than with 

the traditional optimization procedure from scratch. This means that there has been a 

considerable improvement in the optimization process. 

Accordingly, the following is a specific evaluation of the different objectives presented in 

section 1.3. Objectives. 

The first objective of the project was to develop a UC optimization model. In this sense, it 

can be considered that the stated objective has been fulfilled, since the developed 

optimization model is able to solve the presented UC problem in a satisfactory way.  
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Then, the next objective was aimed at automatizing the execution and storage of solution of 

the UC model for several sets of input data.  

Again, it can be considered that the stated objective has been fulfilled, since the model 

presents total flexibility in the execution as explained in more depth in section 4.4. Several 

Weeks Model.  

Thirdly, there was the objective of developing a Neural Network to learn from all the 

consecutive executions of the optimization problem. 

As in the previous cases, this objective has been satisfied. After exploring and analyzing 

different possibilities during the development of the network model, it has been possible to 

build a model that allows estimating and generalizing patterns of the UC model.  

Finally, the objective of using the Neural Network to estimate output variables of the UC 

problem has also been met.  

Although it is true that finally it has been chosen to study only the prediction of one output 

variable (output power of thermal units), it is also true that it has been possible to establish 

an interaction and coordination of both models. Therefore, this objective is also considered 

as satisfied.   

In other words, in general terms, it can be confirmed that this thesis fulfills the objectives 

proposed at the beginning of its development.  

Some possibilities for further research related with this thesis are stated below. 

To begin with, the first option for further research on the project could be the development 

of a more complex UC model. To this end, there are several possibilities that would make it 

possible to generate this new approach to the model. 

For example, a possibility would be to introduce hydro technology into the system. This 

would provide much greater workability and would introduce new constraints into the 
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model, which would also adapt the model developed in this thesis to an even more realistic 

model.   

In addition, this development of a more extensive and complex model would imply that the 

improvement when implementing the methodology of this thesis in this model would be 

significant and the execution times would be greatly reduced. 

In fact, this would certainly be in line with the motivation of this project, by allowing to run 

realistic models quickly or to obtain useful information in a simple way avoiding having to 

resort to a long execution of the optimization models. 

On the other hand, another promising possibility would be the use of advanced optimization 

techniques, such as Bayesian optimization, to improve the neural network architecture and 

hyperparameters. That is, the implementation of techniques using optimization algorithms 

that allow finding the optimal parameters of the network. 

The possibility of using other libraries to develop the neural network model could also be 

explored. And independently of the library, it would be possible to create functions more 

adapted to the problem to be generalized. 

Alternatively, another possibility would be to use a neural network with a different approach 

from what is explained through this thesis. This could be the estimation of the commitment, 

start-up and shut-down decisions of the thermal units, rather than their power output. That 

is, in this case, instead of a regression model, it would be a classification model, working 

with binary variables. Due to that the binary variables are the most complex part of the 

model, having a good estimation of them could be useful. 

However, the development of this type of model is likely to require a larger amount of data 

than has been considered in this thesis. That is, a much larger historical data set would be 

necessary for the model to be able to generalize the patterns of these new variables. 
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Finally, it must be concluded that this project, although it still offers possibilities for future 

developments, can be really promising and useful when it comes to obtain information about 

the dispatch of the units or to improve the classical process of optimization of the UC model.  

Although perhaps at a premature stage, the feasibility of the methodology employed has 

been demonstrated, and future opportunities of research may prove that the development and 

results of this thesis may prove to be of great use in many areas other than electric power 

systems. 
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ANNEX I – CODING 

In this Annex, it is stated a review of the main coding scripts that were used for the 

development of this master thesis.  

There are three main coding scripts and also some files that contain different functions that 

were used in the main scripts. The three main scripts are: i) UC_model.py ii) 

NeuralNetwork.py and iii) Interaction.py 

i) UC_model.py is the main script for executing the UC model for several consecutive 

weeks. This script calls the file ModeloOptimizacion.py, where the UC model is defined, 

and utils.py, where some useful functions (data reading, csv creation…) can be found.  

ii) NeuralNetwork.py is the main script for training the NN and making estimations. This 

scripts also calls the file utils.py, where some other useful functions (data processing,…) can 

be found.  

iii)  Interaction is the main script for the feasibilization model and for executing the UC 

model using ANN estimations as starting point. This script calls the file 

ModeloOptimizacion.py, where the UC model and feasilibization model are defined, and 

utils.py, where some useful functions can be found.  

Finally, all the coding scripts, functions and data used in this model can be found in 

https://github.com/pdeotaola/TFM_ManuelFlorezMontes, which is the online repository 

that has been used for development of this thesis.  

 

https://github.com/pdeotaola/TFM_ManuelFlorezMontes
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